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Chapter 1

Introduction

1.1 Motivation

The Ramsey theory starts with a classical result:

Fact 1.1.1. For every partition of pairs of natural numbers into two classes
there is a homogeneous infinite set: a set a C w such that all pairs of natural
numbers from a belong to the same class.

It is not difficult to generalize this result for partitions into any finite number
of classes. An attempt to generalize further, for partitions into infinitely many
classes, hits an obvious snag: every pair of natural numbers could fall into its
own class, and then certainly no infinite homogeneous set can exist for such a
partition. Still, there seems to be a certain measure of regularity in partitions
of pairs even into infinitely many classes. This is the beginning of canonical
Ramsey theory.

Fact 1.1.2. For every equivalence relation E on pairs of natural numbers there
is an infinite homogeneous infinite set: a set a C w on which one of the following
happens:

1. pEq < p = q for all pairs p,q € [a)?;

2. pEq < min(p) = min(q) for all pairs p,q € [a]?;
3. pEq < max(p) = max(q) for all pairs p, q € [a)?;
4. pEq for all pairs p,q € [a]?.

In other words, there are four equivalence relations on pairs of natural numbers
such that any other equivalence can be canonized: made equal to one of the
four equivalences on the set [a]?, where a C w is judiciously chosen infinite set.
It is not difficult to see that the list of the four primal equivalence relations is
irredundant: it cannot be shortened for the purposes of this theorem. It is also



2 CHAPTER 1. INTRODUCTION

not difficult to see that the usual Ramsey theorems follow from the canonical
version.

Further generalizations of these results can be sought in several directions.
An exceptionally fruitful direction considers partitions and equivalences of sub-
structures of a given finite or countable structure, such as in [27]. Another
direction seeks to find homogeneous sets of larger cardinalities. In set theory
with the axiom of choice, the search for uncountable homogeneous sets of arbi-
trary partitions leads to large cardinal axioms [16], and this is one of the central
concerns of modern set theory. A different approach will seek homogeneous
sets for partitions that have a certain measure of regularity, typically expressed
in terms of their descriptive set theoretic complexity in the context of Polish
spaces. This is the path this book takes. Consider the following classical result:

Fact 1.1.3. [34] For every partition [w]¥° = ByU By into two Borel pieces, one
of the pieces contains a set of the form [a]*°, where a C w is some infinite set.

Here, the space [w]¥ of all infinite subsets of natural numbers is considered
with the usual Polish topology which makes it homeomorphic to the space of
irrational numbers. This is the most influential example of a Ramsey theorem
on a Polish space. It deals with Borel partitions only as the Axiom of Choice can
be easily used to construct a partition with no homogeneous set of the requested
kind.

Are there any canonical Ramsey theorems on Polish spaces concerning sets
on which Borel equivalence relations can be canonized? A classical example of
such a theorem starts with an identification of Borel equivalence relations £,
on the space [w]™ for every function 7 : [w]<®° — 2 (the exact statement and
definitions are stated in Section 3.10) and then proves

Fact 1.1.4. [29, 25] If f : [w]¥0 — 2% is a Borel function then there is v and
an infinite set a C w such that for all infinite sets b,c C a, f(b) = f(c) < bE,c.
Thus, this theorem deals with smooth equivalence relations on the space [w]Xo,
i.e. those equivalences E for which there is a Borel function f : [w]¥® — 2% such
that b E ¢ < f(b) = f(c), and shows that such equivalence relations can be
canonized to a prescribed form on a Ramsey cube. Other similar results can be
found in the work of Otmar Spinas [40, 39, 23].

The starting point of this book consists of three simple sociological observa-
tions:

1. Among the known canonization theorems on Polish spaces, most deal with
smooth equivalence relations. However, there are many Borel equivalence
relations that are not smooth, and there is also the fast-growing area of
descriptive set theory ordering the Borel equivalence relations according
to their complexity in the sense of Borel reducibility, in which the smooth
ones serve as the simplest case only. Perhaps it is possible to connect the
canonical Ramsey theory with the reducibility complexity of the equiva-
lence relations in question?
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2. The known canonization theorems all seek a homogeneous set which in
retrospect is a Borel set positive with respect to a suitable o-ideal on the
underlying Polish space. Perhaps there is something to be gained by look-
ing at many different o-ideals, attempting to prove a suitable canonical
Ramsey theorem for each.

3. For every o-ideal I on a Polish space X there is the quotient algebra
Pr of Borel subsets of X modulo the ideal I, and it can be considered
as a notion of forcing. A quick look shows that every smooth equivalence
relation corresponds to an intermediate forcing extension of the P;-generic
extension. Perhaps it is possible to connect canonization properties of
Borel equivalences with forcing properties of Pr?

The conjunction of these three points opens a whole fascinating new landscape,
to which this book can only be a short introduction. It turns out that there
is a whole array of canonization results depending on the Borel reducibility
properties of E and forcing properties of the quotient poset Pj, for a Borel
equivalence E and a o-ideal I on a Polish space X. The techniques range from
the Borel reducibility theory [8, 18], Shelah’s theory of proper forcing [32, 1] and
the theory of definable forcing [43] to such concepts as concentration of measure
[28].

The basic setup for a problem addressed by this book can then be described
as follows. Let I be a o-ideal on a Polish space X and E a Borel equivalence
relation on X. Is there a Borel I-positive set B C X on which the equivalence
relation E' is significantly simpler than on the whole space? In a fairly small
but significant number of cases, we show that great simplification is possible-we
find a finite or countable collection of Borel equivalences such that the Borel set
B can be found so that E | B is equal to one of the equivalences on this short
list. In particularly advantageous circumstances, we even prove a strong Silver
type dichotomy: either the whole space breaks into a countable collection of
equivalence classes and an I-small set, or there is a Borel I-positive set consisting
of pairwise inequivalent elements. In a typical case though, one cannot hope
to prove anything so informative, so we will at least attempt to find a Borel
I-positive set B C X such that the restricted equivalence relation E [ B is in
the Borel reducibility sense strictly less complex than F itself. A negative result
will say that an equivalence relation F' is in the spectrum of the ideal I: there
is an equivalence relation F on a Borel I-positive subset B C X bireducible
with F' such that for every smaller Borel I-positive set C' C B, E [ C is still
bireducible with F. Both positive and negative canonization results have their
worth and their applications.

1.2 Navigation
Chapter 2 introduces basic techniques and concepts useful for the canonization

results in Polish spaces in general. It starts with the Trichotomy Theorem 2.1.3,
showing that every Borel equivalence relation E on a Polish space X defines in
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a rather mysterious way an intermediate forcing extension of the Pr-extension,
where [ is a o-ideal on the space X. In all cases that we have been able to
compute explicitly, this extension comes from the o-algebra PIE of Borel E-
invariant sets modulo the ideal I or its close relatives; in all these cases P
happens to be a regular subalgebra of P;. The most pressing open issue in this
book is to find natural examples in which this regularity fails badly.

Chapter 2 then introduces an array of possible weakenings and strengthen-
ings of canonization on Polish spaces that can serve to attack the canonization
problems more efficiently and to formulate the strongest possible results. The
most curious of them are the generalizations of the classical Silver dichotomy
[35]. It turns out that in many cases, a canonization result for a Borel equiva-
lence relation F and a o-ideal I on a Polish space X can be abstractly converted
into the strongest possible form: the space X breaks down into countably many
pieces, on each of which the equivalence relation E is very simple, and a remain-
der which is small in the sense of the ideal I.

The whole landscape is indexed by two variables, ' and I, and in order
to exhibit its main features efficiently, one needs to fix one of these variables
and look at the resulting cross-section. The various sections of Chapter 3 fix
a o-ideal I-typically, P; is equivalent to a classical notion of forcing such as
Sacks or Laver forcing—and attempts to prove canonization theorems for various
classes of equivalence relations and I. In the case that such canonization results
are not forthcoming, we attempt to evaluate the spectrum of the o-ideal-the
set of those Borel equivalence relations that cannot be simplified in a Borel
reducibility sense by passing to a Borel I-positive set. Surprisingly, even the
most thoroughly exploited notions of forcing all of a sudden spring back to life
with new unexpected features and open problems.

Chapter 4 proceeds in the perpendicular direction. In its various sections, we
fix a Borel equivalence relation and study the consequences of possible canon-
ization features connected to it, mainly for the forcing properties of the quotient
posets. Thus smooth equivalence relations correspond to intermediate forcing
extensions given by a single real, Borel equivalence relations with countable
classes correspond to specific o-closed intermediate extensions, and equivalence
relations classifiable by countable structures correspond to choiceless interme-
diate models of a certain kind. We do stay fairly low in the Borel reducibility
hierarchy though, and do not have much to say about complicated equivalences
such as isometry of Polish spaces or isomorphism of Banach spaces.

The last chapter deals with the study of equivalence cardinals in choice-free
context. Whenever X is a Polish space and F is an equivalence relation on
it, then one can consider the set X/FE of all E-equivalence classes. With the
Axiom of Choice, these sets typically all have the same cardinality, and therefore
from the cardinality point of view they are uninteresting. The situation changes
profoundly when the Axiom of Choice is dropped and replaced with principles
such as the Axiom of Determinacy. Then the comparison of cardinalities of
these sets for various equivalence relations E, F' is very similar to the comparison
of E, F modulo Borel reducibility. Canonization and anti-canonization results
offer a very good tool for the study of these cardinalities. We will show that
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a number of these cardinals are measurable and their respective measures have
great degree of completeness, that the comparison does not change much even
with a help of an ultrafilter etc.

1.3 Background facts

1.3.1 Descriptive set theory

Familiarity with basic concepts of descriptive set theory is assumed throughout.
[22] serves as a standard reference.

Definition 1.3.1. A o-ideal I on a Polish space X is IT} on X1 if for every
analytic set A C 2¥ x X the set {y € 2* : {z € X : (y,z) € A} € I} is
coanalytic.

Fact 1.3.2. If AC X XY is a Borel set with countable vertical sections, then
A is the countable union of graphs of Borel functions from X toY.

Fact 1.3.3. A Borel one-to-one image of a Borel set is Borel.

1.3.2 Invariant descriptive set theory

If E, F are Borel or analytic equivalence relations on Polish spaces X,Y then
E <p F (E is Borel reducible to F) denotes the fact that there is a Borel
function f : X — Y such that g E 21 < f(x¢) F f(z1). Bireducibility is an
equivalence relation on the class of all Borel equivalence relations. <pg turns
into a complicated ordering on the bireducibility classes. There are several
equivalences occupying an important position in this ordering:

Definition 1.3.4. Ej is the equivalence on 2% defined by = Fy y < xAy is
finite. Fj is the equivalence relation on (2¢)“ defined by & E; ¢ « {n €
w: Z(n) # §(n)} is finite. Es is the equivalence relation on 2¢ defined by
x Eyy— X{1/(n+1): z(n) # y(n)} < co. Fy is the equivalence relation on
(2¥)“ defined by & Fy ¥ < rng(¥) = rg(y). Ek, is the equivalence on IT,, (n+1)
defined by = Ek, y < ImV¥n |x(n)—y(n)| < m. E,, is the equivalence on [0, 1]*
defined by z E., y < lim(z(n) —y(n)) = 0.

Fact 1.3.5. (Silver dichotomy, [35], [18, Section 10.1]) For every coanalytic
equivalence relation E on a Polish space, either E is covered by countably many
equivalence classes or there is a perfect set of mutually inequivalent points.

One consequence often used in this book: if E is a coanalytic equivalence relation
on X and A C X is an F-invariant analytic set then either A can be covered
by countably many classes or contains a perfect set of pairwise incompatible
elements. To see this, apply the Silver dichotomy to the equivalence relation £
defned by x Ey« (r ¢ ANy ¢ I)Va Evy.

Fact 1.3.6. (Glimm-Effros dichotomy, [9], [18, Section 10.4]) For every Borel
equivalence relation E on a Polish space, either E <pid or By <p FE.
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Fact 1.3.7. [12] If E < Ej is a Borel equivalence relation then either E is
essentially countable, or Fs <p FE.

Here, an equivalence is essentially countable if it is Borel reducible to a countable
equivalence relation, i.e. a Borel equivalence relation with countable classes.

Fact 1.3.8. [19], [18, Section 11.3] For every Borel equivalence relation E < F;
on a Polish space, either E <pg Ey or E1 <p F.

Fact 1.3.9. [30], [18, Section 6.6] Every K, equivalence relation on a Polish
space is Borel reducible to Fy_ .

Fact 1.3.10. [30], [18, Chapter 18] For every Borel equivalence relation E there
is a Borel ideal I on w such that E <p=j.

Here, =; is the equivalence on 2¢ defined by © =; y < {n € w: z(n) # y(n)} €
1.

1.3.3 Forcing

Familiarity with basic forcing concepts is assumed throughout the book. If
(P, <) is a partial ordering and @ C P then @ is said to be regular in P if every
maximal antichain of @) is also a maximal antichain in P; restated, for every
element p € P there is a pseudoprojection of p into @, a condition ¢ € @) such
that every strengthening of ¢ in @ is still compatible with p.

Fact 1.3.11. Let k be a cardinal, P a poset of size < k, and G C Coll(w, k) be a
generic filter. In V|G, for every V -generic filter H C P there is a V[H]-generic
filter K C Coll(w, k) such that V[G] = V[H|[K].

Fact 1.3.12. (Shoenfield) Let x € X be an element of a Polish space, and ¢ a
I formula with one variable. Then the truth value of ¢(x) is the same in all
forcing extensions.

1.3.4 Idealized forcing

The techniques of the book depend heavily on the theory of idealized forcing as
developed in [43]. Let X be a Polish space and I be a o-ideal on it. The symbol
Py stands for the partial ordering of all Borel I-positive subsets of X ordered
by inclusion; its separative quotient is the o-complete Boolean algebra of Borel
sets modulo /. The forcing extension is given by a unique point zgen € X such
that the generic filter consists of exactly those Borel sets in the ground model
containing Tge, as an element.

Fact 1.3.13. The following are equivalent:
1. Py is proper;

2. for every Borel I-positive set B C X and every countable elementary
submodel of a large structure, the set C C B of all M -generic points in B
for the poset Py is I-positive.
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Fact 1.3.14. (P; uniformization) Suppose that Py is proper. Whenever f : B —
Y is a Borel function defined on a Borel I-positive set to a Polish space, there is
a Borel I-positive set C C B such that f"'C is Borel. Whenever A C BXY is an
analytic set with nonempty vertical sections, or a coanalytic set with nonempty
vertical sections in all forcing extensions, there is a Borel I-positive set C C B
and a Borel function g : C — Y such that g C A.

Fact 1.3.15. Suppose that Pr is proper and Tgen 15 a generic real. Whenever
y € V]Zgen] is a real then V[y|N2¥ = {f(y) : f is a ground model Borel function
with y € dom(f) and rng(f) C 2¢}.

The following general result will be convenient in several places in this book.
The proof is nontrivial and unfortunately does not appear in [43]. It is not in
any way related to equivalence relations and so it is included in this section.

Theorem 1.3.16. Let I be a suitably definable o-ideal such that the forcing Py
is proper; et B be an I-positive Borel set. Let V[G] be some forcing extension
in which (2°) of V is countable. In V[G], there is an I-positive Borel set C C B
consisting only of V -generic points for the poset Py.

We will prove this in ZFC with the assumption that the ideal I is TI} on
31, The argument for more complicated ideals uses the determinacy of the
associated properness game, similar to [43, Proposition 3.10.5], and uses large
cardinal assumptions. One can obtain ZFC proofs for other classes of ideals.
The reader is advised to use the standard fusion arguments to prove the theorem
for such forcings as Sacks or Laver forcing.

Proof. Assume that the ideal I is II7 on X, fix a partition w = J, ax of w
into infinite sets, fix a universal analytic set A C 2¢ x X, and fix a closed set
Z C (2¥)¥ x w* projecting into the analytic set {¢ : B N, U,neca, Ain) &
I} C (2¥)“. Note that the latter set is analytic by the definability assumptions
on the ideal I.

Consider the game (an unraveled version of the properness game) between
Player I and IT in which at round n € w Player I chooses an open dense subset
D, of the poset Pr, and Player II responds with a point y(n) € 2% and numbers
kn > n,i, € w. Player II has to satisfy the following extra requirements at his
n-th move: Ay, is an I-positive Borel set, and if n € ay,, for some m € n then
Ag(n) € Dpm; moreover, there still is a point (i, z) € Z such that Ym < n (m) =
y(m) and y(m) = i,,. Player II wins if he can pass all rounds. Note that if
Player II wins then the result of the game, the set BN, UnEak Ag(n), is a Borel
I-positive subset of the set B, since the sequence (y(n) : n € w, i, : n € w) must
be in the closed set Z. The game is closed for Player II and therefore determined.

Player I cannot have a winning strategy in this game. If ¢ was such a
strategy, find a countable elementary submodel M of a large enough structure
containing the strategy, enumerate the open dense subsets of P; in the model
M by FEj : k € w with infinite repetitions, and let Player II play against the
strategy o in such a way that the moves ¢(n) : n € aj, enumerate the set ExNM.

Since the poset Pr is proper, it must be the case that B N, U,ecq, Ayn) ¢ 1,
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and therefore there must be a point z € w* such that (y(n) :n € w,z) € Z. Let
Player II choose i,, = z(n). Observe that if Player II challenges the strategy
o in this way, all of the moves will be in the model M no matter what the k
numbers are, and therefore at each stage n there must be a number k,, > n such
that D,, = E},,. Let Player II play these numbers at each round. It is clear that
such a counterplay is going to defeat the strategy o.

Thus, Player IT must have a winning strategy o. The fact that ¢ is winning
is a wellfoundedness statement, and therefore o will be a winning strategy in
every transitive model containing it for the game with the same set of allowed
moves and the same closed winning condition for Player II. In particular, this
strategy is still a winning strategy in the generic extension V[G]. In this model,
the cardinal 2¢ of V' is countable, therefore there are only countably many open
dense subsets of Py in V. Consider the counterplay against the strategy o in
which Player I enumerates these sets. All moves of such a play will belong to
the ground model, the strategy ¢ wins, and the result of the play is the required
set C' C B. O

1.3.5 Ramsey theory on Polish spaces

Let (w)“ be the space of all infinite sequences a of finite sets of natural numbers
with the property that min(a,11) > max(a,) for every number n € w. Define a
partial ordering < on this space by b < a if every set on b is a union of several
sets on a.

Fact 1.3.17. [/1, Corollary 4.49] (Bergelson-Blass-Hindman) For every par-
tition (w)¥ = Bg U By into Borel sets there is a € (w)“ such that the set
{b€ w)¥:b<a} is wholly included in one of the pieces.

Suppose that {(a,, ¢, : n € w is a sequence of finite sets and submeasures on
them such that the numbers ¢, (a,,) increase to infinity very fast. The necessary
rate of increase is irrelevant for the applications in this book; suffice it to say
that it is primitive recursive in n and the sizes of the sets {a,, : m € n}.

Fact 1.3.18. [33] For every partition Il,a, Xw = BoU DBy into two Borel pieces,
one of the pieces contains a product I1,,b,, X ¢ where each b, C a, is a set of ¢y,
mass at least 1 and ¢ C w is infinite.

There is an similar partition theorem parametrized by measure. For the given
€ > 0 in the following theorem, the necessary rate of growth of the numbers
¢n(ay) must be adjusted.

Fact 1.3.19. [33] Suppose in addition that the submeasures ¢, are measures.
For every Borel set D C ya, X w x [0,1] such that the sections of the set D
in the last coordinate have Lebesque mass at least e, there are sets {b, : n € w},
¢ C w and a point z € [0,1] such that b, C ay, ¢n(by) > 1, ¢ C w is inifnite,
and I,,b, x ¢ x {z} C D.
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1.4 Notation

We employ the set theoretic standard notation as used in [14]. If E is an
equivalence relation on a set X and z € X then [z]p denotes the equivalence
class of z. If B C X is a set then [B]g denotes the saturation of the set B, the
set {x € X : 3y € BxEy}. If E, F are equivalence relations on respective Polish
spaces X, Y, we write £ < F'if FE is Borel reducible to Y, in other words if there
is a Borel function f : X — Y such that zoFz1 < f(zo)Ef(z1). f f: X =Y
is a Borel function between two Polish spaces and F is an equivalence relation
on the space Y, then f~!F is the pullback of F, the equivalence relation F on
the space X defined by zoFEx1 < f(xo)F f(x1); so E < F. If T is a tree then
[T] denotes the set of all of its infinite branches. id is the identity equivalence
relation on any underlying set, ev is the equivalence relation making every two
points of the underlying set equivalent. If z € 2 and m € w then z ® m is the
element of 2 that differs from x exactly and only at its m-th entry. If h € 2<%
is a finite binary sequence then z @ h is the sequence in 2¥ obtained from
by rewriting its initial segment of corresponding length with h.

Theorem is a self-standing statement ready for applications outside of this
book. Claim is an intermediate result within a proof of a theorem. Fact is a
result that has been obtained elsewhere and is not going to be proved in this
book; this is not in any way to intimate that it is an unimportant or easy or
peripheral result.
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Chapter 2

Basic tools

2.1 The trichotomy theorem

Let I be a o-ideal on a Polish space X. The key idea underlying much of the
current of thought in this book is the correspondence between Borel equivalence
relations on X and intermediate forcing extensions of the generic extension given
by the quotient poset P; of Borel I-positive sets ordered by inclusion. The
correspondence is easiest to illustrate on smooth equivalence relations. If E' is a
smooth equivalence on X and f: X — 2“ is a Borel function reducing it to the
identity, then the model V[f(&4en)] depends only on E and not on the choice
of the reduction.

The nonsmooth case generates much more interest and difficulty. The first
attempt is to consider the o-algebra of Borel E-invariant sets modulo the o-ideal
I as a subalgebra of the algebra of Borel sets modulo I. In all special cases we
can compute, and in some fairly broad classes such as equivalence relations with
countable classes (see Theorem 4.2.1), this is in fact a regular subalgebra and
therefore generates an intermediate forcing extension. However, we do not have
a sufficiently general theorem that this always happens, and more sophistication
is required.

The second attempt considers the Pr-generic extension V[G] with its atten-
dant generic point zgen € X, and the model W of all sets hereditarily definable
from parameters in the ground model V and from the equivalence class [Zgen] 5.
On general grounds, this is a model of ZFC with V C W C VI[G]. In a typical
case, the equivalence class [xgen] g does not define any of its alements, and there-
fore it is absent from W. In all specific cases we can compute, the model W is
exactly the extension by the poset of E-invariant I-positive Borel sets ordered
by inclusion.

In order to overcome certain technical difficulties in the study of the model
W, we need to amend its definition a little, and use the opportunity to make it
fairly sweeping.

Definition 2.1.1. Let E be a Borel equivalence relation on a Polish space X.

11
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Let V[G] be a generic extension containing a point € X. The model V]z]g is
the collection of all sets hereditarily definable from parameters in V' and from
the equivalence class [z]g in the model V[G][H], where H C Coll(w, k) is a
generic filter for a sufficiently large cardinal &.

This is certainly somewhat mysterious. The important point is that this is well
defined as proved in the following claim; then we conclude that V[x]g is a model
of ZFC by basic facts about HOD type models.

Claim 2.1.2. V[z]g depends only on = and not on G, H, or k. Also, V]z|g C
V]z].

Proof. Let k be a cardinal larger than 2!71, let H C Coll(w, x) is a generic filter,
and let and ¢ a formula defining a set of ordinals in V|G, H]: a = {a € 3 :
(¥, [r] g, )} for some sequence of ground model parameters ¥. We will show
that a is definable from parameters in V' and the parameter [x]g in every other
model extending V' and containing the point x. This will prove the claim.

Let P be a poset in V' which is responsible for the generic extension V]G],
and let 7 be a P-name for the point x € X. By a homogeneity argument, it
must be the case that V[G] = Coll(w, k) I+ ¢(¥, [z] g, &) or V[G] = Coll(w, k) IF
—¢(7, [x]E, &); let us assume the former. We claim that in V[G], Coll(w, k)
forces the following formula ¢ (7, [x]g, «): for every V-generic filter g C P such
that 7/g E x, g contains some condition p € P such that V' |= p IF Coll(w, ) IF
6(a, [1]p).

If this was not the case then there would be a generic filter H C Coll(w, k)
and in the model V[G][H] there would be the offending V-generic filter g C
P, which then must contain some condition p such that p I+ Coll(w, k) IF
—¢(&, [7] ). By homogeneity facts such as Fact 1.3.11, there would be a V]g]-
generic filter h C Coll(w, k) such that V[G][H] = V]g][h]. By the forcing
theorem, the two equal models would disagree on the status of ¢(«, [x]g) =
o(a, [T/g)E, and that is a contradiction.

Now note that in every transitive model containing x and VNP (P) for which
V' NP(P) is countable, ¥ (7, [x]g, ) is (equivalent to) a coanalytic formula with
parameters in V' U {[z]g}. Therefore, it is absolute between all such models.
Thus, whenever M is an extension of V satisfying ZFC with x € M, it must
be that a = {a € §: M |= Coll(w,2!"!) IF (7, [x]g, @)} and so the set a is
definable in M from the required parameters. O

We can now state the main result of this section, a trichotomy theorem:

Theorem 2.1.3. Suppose that X is a Polish space, I is a suitably definable
o-ideal on it such that the quotient forcing Pr is proper, and E is a Borel
equivalence relation on X. Let V|G] be a Pr-generic extension of V. and Tgen €
X its associated generic point. One of the following holds:

1. (ergodicity) if V. = V([zgen|r then there is a Borel I-positive set B C X
such that any two Borel I-positive sets C; D C B contain E-equivalent
points x € C,y € D;
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2. (intermediate extension) the model V|tgen|r is strictly between V and
VIG;

3. (canonization) if V]zgen|p = V|G| then there is a Borel I-positive set
B C X such that E | B =1id.

The wording of the theorem must be discussed more closely. The argument
presented works in ZFC for ideals I which are IT} on 1. Small changes in the
proof of Theorem 1.3.16 will produce a ZFC argument for other ideals as well.
If one desires to use ideals with much more complicated projective definitions,
suitable large cardinal assumptions will push the proof of that theorem through
as explained after its statement.

The first item is fairly close to saying that the F-saturation of every Borel
set either has an I-small intersection with B, or contains all of B up to an I-
small set. This is indeed equivalent to (1) if every coanalytic set is either in I or
contains a Borel I-positive set, or if every positive Borel set has a positive Borel
subset whose E-saturation is Borel. Both of these assumptions frequently hold:
the former perhaps on the basis of the first dichotomy of the ideal I [43] or a
redefinition of the ideal I, and the latter perhaps on the basis of the quotient
Pr being bounding and the equivalence E being K.

A trivial way to satisfy the first item is to find an I-positive equivalence class
of E. A typical special case in which the ergodicity case holds nontrivially is that
of Laver forcing and the Ex_ equivalence relation, see Section 3.9. The Laver
forcing generates a minimal forcing extension, prohibiting the second item from
ever occurring, but still there is an equivalence relation that cannot be simplified
to id or ev on any Borel I-positive set. Another interesting special case is the
Cohen forcing and the F5 equivalence relation, see Theorem 3.2.22. There,
the ergodicity is not at all surprising, but we get more information looking at
choiceless intermediate models of ZF as in Section 4.3.

In the second case we get a somewhat mysterious intermediate forcing ex-
tension strictly between V' and the Pr-extension V[G]. For many o-ideals, the
existence of such an intermediate model is excluded purely on forcing grounds,
such as the ideal of countable sets or o-compact subsets of w®, or the more
general [43, Proposition 3.9.2]. In such cases, we get a neat dichotomy. It is
not true that every intermediate extension is necessarily obtained from a Borel
equivalence relation in this way, as Section 3.3 shows. In special cases though
(such as the countable length « € w iteration of Sacks forcing), the structure of
intermediate models is well-known (each of them is equal to V{z, : v € ] for
some ordinal § < «) and they exactly correspond to certain critical equivalence
relations (such as the relations Eg on (2¢)® connecting two sequences if they
are equal on their first 3 entries). We cannot compute the forcing responsible
for the extension V{[zgen]r directly, but in all specific cases we can compute,
it is the poset of E-invariant I-positive Borel sets ordered by inclusion. In the
common situation that the model V[xgen] g does not contain any new reals, we
can compute the forcing leading from V{zzen] to V[G]-it is a quotient poset of
the form Pj« for a suitable o-ideal I* O I which has the ergodicity property of
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the first item of the theorem. As Asger Tornquist remarked, in this context the
theorem can be viewed as a general counterpart to Farrell-Varadarajan ergodic
decomposition theorem [20, Theorem 3.3] for actions of countable groups by
measure preserving Borel automorphisms.

Proof. To prove the theorem, choose a cardinal £ > 2¢ and choose a V' [G]-generic
filter H C Coll(w, k). There are the three cases.

Either, V]zgen]r = V. In this case, in the model V[G][H] consider the
collection K = {C € P}/ : C'N [gen]p # 0}. This collection is certainly in the
model V{Zgen| g, and therefore it is in V. There must be conditions B € Py and
p € Coll(w, k) and an element L € V such that (B,p) - K = L. If there were
two Borel I-positive sets Cy, C; C B with [Colg N[C1]g = 0, then only one, say
Cy of these sets can belong to the set L. But then (Cy,p) I+ Cy € K\ L! This
contradiction shows that we are in the first case of the theorem.

In fact, V{zgen]p = V is equivalent to the statement that the filter G contains
an ergodic condition. If V[zgen]g = V then an ergodic condition can be found
in the generic filter by the argument in the previous paragraph, and a genericity
argument. On the other hand, suppose that B € P is an ergodic condition
and B |- & is a set of ordinals in V[2gen]r; we must prove that B I-a € V.
Thinnig out the condition B if necessary find a formula ¢ with parameters in
the ground model or with the parameter [Z4e,|r defining the set a and show
that B decides the statement 3 € a for every ordinal 8. And indeed, if there
were Borel sets Cy,C; € Pr below the set B, one forcing § € a and the other
forcing the opposite, use Claim 1.3.16 below to find conditions Cy C Cy, C; C Cy
in the forcing P; in the model V|G, H] consisting purely of V-generic points.
Note that the ergodicity of the set B is a IT3 statement and use Shoenfield’s
absoluteness 1.3.12 to transport the ergodicity of the condition B from the
ground model to the model V[G, H] and find points x¢ € Cy and z; € C; which
are E-equivalent. Use a standard homogeneity argument, Fact 1.3.11, to find
generic filters Hy, Hy on it so that V{zg, Ho| = Vx1, H1] = V|G, H]. Note that
Vizo, Hol = ¢(8, [zo] k) if and only if V{zi, H1] |= ¢(B, [21]p) simply because
the two models are the same and the two E-equivalence classes are the same.
This contradicts the forcing theorem and the assumption on the conditions
Co, C1.

The second possibility is that V' C V{zgen|r C V[G] and these inclusions are
proper. In this case, we are content to fall into the second item of the theorem.

Lastly, assume that V[zgen|r = V[G]; in particular, gen € V]zgen]r. Then,
there must be a condition B € P; forcing & gen € V[xgcn]E, say (B, 1) I &gep is
the only element z € X satisfying ¢(z, [£gen]r, U) for some sequence of parame-
ters ¥ € V and a formulag. Let C' C B be a Borel I-positive set of V-generic
points as guaranteed by Theorem 1.3.16.

Claim 2.1.4. E | C =id.

Proof. Work in the model V|G, H]. Suppose for contradiction that z,y €
V|G, H] are two distinct E-equivalent points in the set C. The usual homo-
geneity properties of Coll(w, ) as in Fact 1.3.11 imply that there are filters
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H,, H, C Coll(w,«) such that G, x H,,G, x H, C Pr x Coll(w, k) are V-
generic filters, where G, = {D € P}/ :z € D} and G, = {D € P} :y € D},
and moreover V|G, H] = V|G, H,;] = V[G,,H,]. Since both filters G, G,
meet the condition B € Py, the forcing theorem implies that x is the only
point in X satisfying ¢(z, [x]g,¥), and similarly y is the only point satisfying
o(y, [yl g, V). However, [z]g = [y]g, reaching a contradiction! O

Thus, we see that in VG, H| there is an I-positive Borel set C' C B such that
E | C =id. If the ideal I is II{ on X{, this is a X1 statement, and therefore
pulls back into the ground model by Shoenfield’s absoluteness 1.3.12. If the
o-ideal I is more complicated, we can use a large cardinal assumption and a
corresponding absoluteness argument to find such a set C in the ground model.
We are safely in the third case of the theorem, and the proof is complete!
Again, it is not difficult to see that the statement V{zeen]p = V[G] is equiv-
alent with the existence in the generic filter G of a set B such that F | B = id.
O

As with most models of set theory, the user wants to know which reals belong
to the model V[z]|g. In the most interesting cases, 2 NV = 2“ N Vx]g. Then,
the remainder forcing leading from V[z]g to V]z] can be computed via idealized
forcing.

Definition 2.1.5. Let I be a o-ideal on a Polish space X, let ¥ be a Borel
equivalence relation, and let 2z € X be a Pj-generic point. In V[z], let I* be the
collection of ground model coded Borel sets that are forced by a large collapse
to contain no Pj-generic reals E-equivalent to x.

It should be clear that I* is a o-ideal of Borel sets extending I, and I* €
V]z]g. Moreover, if 2¥ N Viz]g = 2¥ NV, the ideal I* has the ergodicity
property in V[z]g: any pair of I*-positive Borel sets contains a pair of FE-
connected points. This follows from the fact that in some large collapse, each
of the sets in the pair contains some points equivalent to x; in particular, such
points are equivalent to each other, and analytic absoluteness transports this
feature back to V(z]g.

Theorem 2.1.6. Suppose that X is a Polish space, I a II} on 31 o-ideal on
X such that the quotient forcing Pr is proper. Let x be a Pr-generic point.
Then, 2° NV [Zgen|lE = {f(Tgen) : [ : X — 2¢ is a Borel function coded in V
which is E-invariant on its domain}. Moreover, if 2 NV = 2° N V[z|g, then
Viz]lg = V[I*] and V][] is a Pr«-extension of V[z|g.

Again, the theorem holds in ZFC for many ideals with a definition more com-
plicated than IT! on X1.

Proof. For the first part, suppose that (B,p) € Pr x Coll(w, k) is a condition
that forces y € V[igen]p N 2%, Strengthening the condition we may assume
that there is a formula ¢ and a sequence ¥ € V of parameters such that it
is forced that y is the unique element of 2 satisfying ¢(¥, [£g4en]E, T). Since
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Vzgen]E C V[Zgen]|, we may also strengthen the condition if necessary to find a
Borel function g : X — 2 such that it is forced that § = §(Zgen)-

We will now find a Borel I-positive set C' C B on which the function g is F-
invariant. This will certainly complete the proof of the proposition, since then
(C,p) forces that ¢ is the image of the generic real by an E-invariant function.
We will in fact find such a set in a model V[H] where H C Coll(w, k) is generic,
and then pull it back to V using Shoenfield absoluteness 1.3.12.

Indeed, in V[H] consider the set C C B of all V-generic points for the
poset P; in the set B. As in Claim 1.3.16, the set C' is Borel and I-positive.
Suppose that zg, z; € C are two F-equivalent points. By standard homogeneity
arguments, find mutually V-generic filters Go C Pr, Hy C Coll(w, k) and Gy C
Py, Hy C Coll(w, k) such that x¢ is the point associated with Gg, x; is the filter
associated with Gy, p € Hy, Hy, and V[H| = V|[Gq, Hy] = V[G1, Hy]. Tt is clear
that the formula ¢ must define the same point in V[H| whether 2y or z; are
plugged into the generic real, since these two points share the same equivalence
class. By the forcing theorem, it must be the case that f(xo) = f(z1), and we
are done!

Now assume that V[z]g contains the same reals as V; we will first show
that x is a Py~ generic point over V[z]g. Move back to the ground model, and
assume for contradiction that a condition (B,p) € Pr x Coll(w, ) forces that
Dc Py~ is an open dense set in the model V[acgen]E such that the point @ gep
does not belong to any of its elements. Strengthening the condition if necessary,
we may find a formula ¢(u, [ g4en] g, ¥) wWith parameters in VU{[# yen] £} defining
the set D: D = {C € P : ¢(C, [£4en]r,¥)}. Of course, the condition (B, p)
forces B € Pr+, so there must be a strengthening B’ C B,p’ < p and a Borel
set C' C B such that (B’,p') IF C € D. Note that C' € P; must be an I-positive
Borel set in the ground model.

Find mutually generic filters G C P;, H C Coll(w, x) with B’ € G, p’' € H,
let z4en € X be the point associated with the filter G, use the definition of the
ideal I* to find a point y € CNV[G, H] which is V-generic for the poset P; and
equivalent to Zgen, and use the homogeneity features of the poset Coll(w, k) as ijn
Fact 1.3.11 to find mutually generic filters G C P;, H C Coll(w, x) such that y is
the generic point associated with G (so C € G), p € H, and V|G, H] = V|G, H].

Since the points Tgen,y are £-equivalent, the definition of the set D is evalu-
ated in the same way with either zgen or ¥ plugged into the definition. Applying
the forcing theorem to the filters G, H, there must be a condition in that filter
stronger than (B, p) which forces C € D and Zgen € C. However, this directly
contradicts the statement forced by the weaker condition (B, p)!

To show that V{z]g = V[I*], note that I* € V[2gen]r, so the right to left
inclusion is immediate. For the opposite inclusion, assume that a € V[z]|g
is a set of ordinals, perhaps defined as a = {« : ¢(a, ¥, [z]g)} in the model
V[z, H], where ¢ are parameters in the ground model and H C Coll(w, k). Let
b={a:3B € P/,B ¢ I Bl Collw,k) IF ¢(&,7, [Tgen]r)} € V[I*] and
show that a = b. It is immediate that a C b since the filter defined by the
Pr-generic point x € X has empty intersection with I*. On the other hand, if
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a € b as witnessed by a set B then there is a V-generic point y € B N [z|g, by
the usual homogeneity argument there is a V[y]-generic filter H, C Coll(w, k)
such that V[y|[H,] = V[z][H], by the forcing theorem V[y|[H,] = ¢(«, ¥, [z]E),
and therefore o € a. The theorem follows.

O

The model V[z]|g has a larger, less well understood, choiceless companion.

Definition 2.1.7. Let E be a Borel equivalence relation on a Polish space X
and Vz] a generic extension of V' such that x € X. The model V{[[z]] g is defined
as the intersection of all set generic extensions of V' in set generic extensions of
V[z] that contain a point E-equivalent to x.

Proposition 2.1.8. V{[z]|g is a well defined model of ZF with V{z|g C V[[z]]lg C
Vz].

Proof. First, the obvious restatement of the definition of V[[z]] g in the language
of set theory. V[[z]]g is the class of those sets a € V[z]| such that V[z] satisfies
the following formula ¢(a,x): for all sufficiently large A < &, Coll(w, k) forces
that for every V-generic filter H C @ for some poset ) € V of size \. such that
V[H] contains a point E-equivalent to z, a € V[H].

Now, if V[g] is a set generic extension of V' inside some set generic extension
of V[z] containing a point y E equivalent to z, then the same formula ¢ (with
the parameter z replaced with y) must define the same class V|[[z]]|g in V[g]. We
will show that {a € Vix] : V[z] E ¢(a,2)} C {a € V]g] : V[g] = ¢(a,y)}; the
other inclusion has the same proof. Suppose that a € Vig] and V[g] = é(a,y).
Then a € V[z], since otherwise V[z] forms a counterexample to Vg] = ¢(a,y)
inside some large common generic extension of both models V[g] and V]z]. Also,
Viz] & ¢(a,z), because otherwise in some common forcing extension of V[z]
and Vg], there is a counterexample to ¢(a,x) which is also a counterexample
to ¢(a,y).

To show that V[[z]]g is a model of ZF, argue that L(V[[z]|g) = V|[[z]]E.
Indeed, every element of L(V[[z]]g) must belong to every forcing extension of
V inside some forcing extension of V[z]| containing a point E-equivalent to x,
since as argued in the previous paragraph, such models all contain V[[z]|g as a
class. But then, this element belongs to V[[z]]g by the definition of V[[z]] k.

To show that V[x]g is a subset of V[[z]]g, let a € V]z]g be a set of ordinals
and let V[g] be a set generic extension of V' inside a set generic extension of V|x]
containing a point y € X equivalent to x; we must argue that a € V[g]. There
is a common Coll(w, k) extension V[h] of both V[g] and V[z] for a sufficiently
large cardinal k. Then « is definable in V[H] from parameters in V' and perhaps
the additional parameter [z]g = [y]g. Since V[h] is a homogeneous extension
of the model Vg] and all parameters of the definition are themselves definable
from parameters in V[g], it must be the case that a € V[g] as desired, and the
proof is complete. O

We do not know much more about the comparison of V[z|g and V|[z]|g
at this point. If the equivalence E is smooth and reduced to the identity by a
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Borel function f : X — 2, then both of the models are equal to V[f(z)]. If the
equivalence E has countable classes, then every generic extension containing a
representative of an equivalence class contains the whole class by an absoluteness
argument, and therefore V[[z]]p = V]z] in such a case, while the model V[z]|g
does not contain x unless x belongs to a ground model coded Borel set on which
the equivalence is smooth by Theorem realstheorem. If the Borel equivalence
E is classifiable by countable structures then V[[z]]g = V(a) for a hereditarily
countable set a, and the model fails the axiom of choice unless x belongs to a
ground model coded Borel set on which the equivalence is essentially countable.
Other cases are much less clear.

Theorem 2.1.9. Let I be a II3 on X1 o-ideal on a Polish space X such that
the quotient forcing P is proper. Let E be a Borel equivalence relation on X,
and let x € X be a Pr-generic point. Then 2° NV [[z]]g = {f(x) : f is a Borel
function coded in 'V which on its domain attains only countably many values on
each equivalence class}.

Proof. Suppose that B € P; is a Borel [-positive set and 7 a name for an
element for the set 2 N V{[z]|g; by thinning out the condition B if necessary
we may assume that 7 is represented by a Borel function f : B — 2. We will
find a condition C' C B such that f [ C' attains only countably many values on
each equivalence class; this will complete the proof.

Let H C Coll(w, k) be a generic filter for a sufficiently large cardinal x. It
will be enough to find the set C' in the model V[H] and then pull it back to the
ground model using Shoenfield absoluteness. Let C'= {z € B : x is V-generic}.
By Theorem 1.3.16 this is a Borel I-positive set. If there is an E-equivalence
class in C' on which f takes uncountably many values, then choose a point z € C'
in such an equivalence class, note that the model V[z] contains only countably
many reals as viewed from the model V[H], and find a point y in the same
equivalence class such that f(y) ¢ V[z]. Now, the forcing theorem implies that
V{y] = f(y) € V][z]]g; however, in the forcing extension V[H] of V[y] there is
a forcing extension V|[z] of V' which contains an equivalent of y but does not
contain f(y). A contradiction.

O

2.2 Associated forcings

In all special cases investigated in this book, the intermediate extension V [zgen| &
of Definition 2.1.1 is generated by a rather natural regular subordering of P;:

Definition 2.2.1. (A somewhat incorrect attempt) Let X be a Polish space
and I a o-ideal on it. PF is the partial ordering of I-positive E-saturated Borel
sets ordered by inclusion.

The problem here is that E-saturations of Borel sets are in general analytic,
and in principle there could be very few Borel E-saturated sets. There are two
possibilities for fixing this. The preferred one is to work only with o-ideals I
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satisfying the third dichotomy [43, Section 3.9.3]: every analytic set is either in
the ideal I or it contains an [-positive Borel subset. Then the quotient Pr is
dense in the partial order of analytic I-positive sets, and we can define PF as
the ordering of analytic E-saturated I-positive sets.

Another possibility is to prove that in a particular context, E-saturations
of many Borel sets are Borel. This is for example true if E is a countable
Borel equivalence relation. It is also true if the poset P is bounding and the
equivalence E is reducible to Ex_. There, if B C X is a Borel I-positive set
and f: B — II,(n + 1) is the Borel function reducing E to F,, the bounding
property of P; can be used to produce a Borel I-positive compact set C C B on
which the function f is continuous, and then [C]g is Borel. However, in general
the question whether every analytic I-positive F-saturated set has a Borel I-
positive F-saturated subset seems to be quite difficult even if one assumes that
I satisfies the third dichotomy.

Definition 2.2.2. (The correct version) Let X be a Polish space and I a o-ideal
on it satisfying the third dichotomy. PF is the poset of I-positive E-saturated
analytic sets ordered by inclusion. If C' C X is a Borel I-positive set then PIE ¢
is the poset of relatively F-saturated analytic subsets of C' ordered by inclusion.

By a slight abuse of notation, if the ideal I has the third dichotomy, we will
write Py for the poset of all analytic I-positive sets ordered by inclusion, so that
PEF C Pp. The previous discussion seems to have little to offer for the solution
of the main problem associated with the topic of this book:

Question 2.2.3. Is PIE’C a regular subposet of P; for some Borel I-positive
set C' C X7

Even in quite natural cases, it may be necessary to pass to an I-positive
subset even in fairly simple cases to find the requested regularity:

Example 2.2.4. Consider X = w®“ x 2 and the o-ideal I generated by sets
B C X such that {y € w¥ : (y,0) € B} is compact and {y € w* : (y,1) € B}
is countable. The quotient forcing is clearly just a disjoint union of Sacks and
Miller forcing. Consider the equivalence relation E on X defined as the equality
on the first coordinate. Then F has countable classes, indeed each of its classes
has size 2, and PF is not a regular subposet of P;. To see that, consider a
maximal antichain A C w® consisting of uncountable compact sets, and let
A={Cx2:C € A}. It is not difficult to see that A is a maximal antichain in
PIE, but the set w* x 1 C X is Borel, I-positive, and has an I-small intersection
with every set in A.

The answer to the previous question turns out to be positive in all specific
cases investigated here, and the set C' is invariably equal to the whole space.
Even more, it always so happens that the model V{[zgen]r introduced in The-
orem 2.1.3 is exactly PF extension of the ground model. We will use only one
way to prove that the forcing PF is a regular subforcing of P;. Namely, we
will show that there is a dense set of conditions B € P; such that the set [B]g
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is a pseudoprojection of B into P£. This is to say that for every E-saturated
set C' C [B]g in Py the intersection C'N B is I-positive; restated, for every set
C C [B]g in Py the set BN [C|g is I-positive.

It will be often the case that the forcing PF is No-distributive. We will
always prove this through the following property of the equivalence:

Definition 2.2.5. The equivalence E on a Polish space X is I-dense if for every
I-positive Borel set B C X there is a point # € B such that [z]g N B is dense
in B.

Proposition 2.2.6. If the poset Pr has the continuous reading of names, PF
s a reqular subposet of Pr, and E is I-dense, then PIE is No-distributive.

Proof. Since Py is proper, so is PP, and it is enough to show that PF does
not add reals. Suppose that B € P; forces that 7 is a name for a real in the
PF-extension. Let M be a countable elementary submodel of a large enough
structure, and let C' C B be the [-positive set of all M-generic points for Pj.
If x € C is a point, write H, C PF for the M-generic filter of all sets D € PF
such that [x]g C D. It is clear that the map x — H, is constant on equivalence
classes, and so is the Borel map x +— 7/H,. Thin out the set C if necessary
to make sure that the map  — 7/H, is continuous on C. By the density
property, there is a point « € C such that [z]gNC is dense in C. Thus, the map
x — 7/H, is continuous on C and constant on a dense subset of C, therefore
constant on C. The condition C' clearly forces 7 to be equal to the single point
in the range of this function. O

Note that typically the poset PF is fairly simply definable. If suitable large
cardinals exist, then the descending chain game on the poset P¥ is determined.
Thus, when the poset is Nyp-distributive, Player I has no winning strategy in
this game, so it must be Player II who has a winning strategy and the poset
is strategically o-closed. It is not entirely clear whether there may be cases in
which PF is Rg-distributive but fails to have a o-closed dense subset. In many
situations, one can find forcing extensions in which P¥ is even ¥;-distributive
or more.

If the poset PF is regular in P;, we will want to show that it generates the
model V[zgen] g introduced in Definition 2.1.1. This will always be done through
the following proposition:

Proposition 2.2.7. Suppose that I is a o-ideal on a Polish space X such that
1. every analytic I-positive set contains an I-positive Borel subset;

2. Py is proper, PIE s regular in Py, and for some dense set D C Pp, the
E-saturation of a condition in D is its pseudoprojection to PE;

3. for every two analytic I-positive sets B,C C X with the same E-saturation
there are a Borel I-positive sets B’ C B and C' C C in the dense set D
and a Borel bijection f : B’ — C' whose graph is a subset of E and which
preserves the ideal I-a subset of B’ is in I if and only if its image is.
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Then the PF extension is exactly the model V[ gen |-

Proof. Let G C Pr be a generic filter and K = G N PF. Clearly, VK| C
V]Zgen|E, since K is just the collection of all E-saturated analytic sets contain-
ing the class [zgen]. For the opposite inclusion, we must analyze the remainder
forcing P;/K. We will show that the truth value of every formula with parame-
ters in V' and another parameter [&4.,]|r is decided by the largest condition in
P;/K % Coll(w, k). This means that the set of ordinals defined by such a formula
must be already in VK] and V[igen|p C V[K].

So suppose that ¢ is such a formula, A € P¥ is a condition forcing that
B,C € P;/K are conditions in the dense set D that decide ¢ differently. Since
B,C € D it must be the case that BN A, C N A are both I-positive Borel sets
and their saturation is equal to A up to an I-small set. 777 O

Another forcing feature of the arguments in this book is the use of a reduced
product of quotient posets. There is a general definition of such products:

Definition 2.2.8. Let I be a o-ideal on a Polish space X, and let E be a
Borel equivalence relation on X. The reduced product P; xg Pr is defined
as the poset of those pairs (B, C) of Borel I-positive sets such that for every
sufficiently large cardinal &, in the Coll(w, k) extension there are E-equivalent
points z € B and y € Py, each of them V-generic for the poset P;. The ordering
is that of coordinatewise inclusion.

It is not difficult to see that the reduced product generic filter is given by two
points Figen, Trgen € X, €ach of which is V-generic for the poset Pr. These two
points are typically not E-related. The general definition of the reduced product
is certainly puzzling, and in all special cases, a good deal of effort is devoted to
the elimination of the Coll(w, ) forcing relation from it. The reduced products
are always used in the intermediate case of the trichotomy 2.1.3:

Proposition 2.2.9. If I is a II} on X} o-ideal on a Polish space X such that
the quotient forcing Pr is proper, and E is a Borel equivalence relation on X
such that the ergodic case of Theorem 2.1.3 happens, then the E-reduced product
of Pr with itself is equal to product.

Proof. Let B C X be a Borel I-positive subset such that every two Borel I-
positive subsets Cy, C; C B contain a pair of equivalent points. We will show
that the reduced product below the condition (B, B) consists of all pairs of
Borel I-positive subsets of B. And indeed, if Cy, C; are two such sets, then pass
to a Coll(w, k) extension, apply in it Theorem 1.3.16 to find Borel I-positive
sets Dy C Cpy, D, C Cy consisting only of Pr-generic points, use Shoenfield
absoluteness to transfer ergodicity from the ground model to the extension and
find E-equivalent points, one in Dy, the other in D;. These points show that
the pair (Cy, Cy) is a condition in the reduced product as desired. O

Proposition 2.2.10. Let I be a o-ideal on a Polish space X such that the
quotient Py is proper. Suppose that E is a Borel equivalence relation on X such
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that the model V[m'gen]E is forced to contain mo new reals. Then the reduced
product forces that V[& gen| g is equal to the intersection of V[&igen] and V[irgen)-

2.3 The spectrum of an ideal

To the untrained eye, the most typical situation regarding a Borel equivalence
relation and a o-ideal may apper to be that the equivalence relation cannot be
significantly simplified by passing to a Borel I-positive set. This is the contents
of the central definition in this book:

Definition 2.3.1. Let X be a Polish space, I a o-ideal on X, and F' an equiva-
lence relation on another Polish space. We say that F' is in the spectrum of I if
there is a Borel I-positive set B C X and an equivalence relation E on B bire-
ducible with F' such that for every Borel I-positive set C C B, the equivalence
E | C is still bireducible with F'.

If the quotient forcing P is more commonly known than the o-ideal itself, as
is the case with the Laver forcing for example, we will refer to the spectrum of
the quotient forcing.

The notion of a spectrum is natural from several points of view. The study of
the interplay of the quotient forcing and the equivalence relation will gravitate
towards the cases that cannot be simplified by passing to a stronger condition.
The study of structures that a given o-ideal imparts on the quotient space of E-
equivalence classes will tend towards structures that disappear when restricted
to a simpler quotient space. And finally, identifying an equivalence relation that
is in a spectrum of a given o-ideal is the strongest kind of negative canonization
results possible within the calculus developed in this book. Thus, how do we
investigate the notion of a spectrum?

One possible line of research is the attempt to evaluate the spectrum for a
given o-ideal. Some ideals have trivial spectrum consisting of just the identity
and the equivalence relation with a single class. For others, the spectrum is
nontrivial, but still fairly easy to identify. Still some others may have extremely
complicated spectrum, rich in features or quite chaotic. The spectrum does not
appear to have any general monotonicity or closure properties.

In another direction, one may fix an equivalence relation and ask what it
means for a o-ideal to have it in the spectrum, especially in terms of forc-
ing properties of the quotient poset P;. These are fairly new and fine forcing
properties mostly concerning the nature of intermediate forcing extensions as
the Trichotomy Theorem would lead one to believe. There do not seem to be
any obvious general forcing operation preservation theorems dealing with the
properties obtained in this way.

The notion of spectrum is informative, but not without its faults. In par-
ticular, there is no guarantee that there will be a Borel I-positive set B C X
such that the equivalence E will be as simple as possible in the sense of the
reducibility ordering on the set B. There just may be a decreasing chain of sets
By C By C ... such that the equivalence relations F | By, E [ By ... strictly
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decrease in complexity, without a possibility of reaching a stable point. While
such a situation may appear to be somewhat exotic, it does occur in the impor-
tant case of the Lebesgue null ideal and countable Borel equivalence relations
by a result of Hjorth 7?7 The notion of spectrum will not detect this type of
behavior.

2.4 Canonization of equivalence relations

The simplest situation that one may hope to encounter is that when a given
equivalence relation simplifies either to identity on a Borel I[-positive set, or
makes all elements of an [-positive Borel set equivalent.

Definition 2.4.1. A o-ideal I on a Polish space X has total canonization for
a certain class of equivalence relations if for every I-positive Borel set B C X
and every equivalence F on B in the given class there is a Borel I-positive set
C C B such that either E [ C =idor E | C = ev.

As an example, the o-ideal on w* generated by compact sets has total canoniza-
tion for all Borel equivalence relations, and the Laver ideal has total canonization
for all equivalence relations classifiable by countable structures. In most cases
though, the total canonization is way too much to hope for, and one has to
settle for lesser, but still quite informative conclusion:

Definition 2.4.2. Let E, F be two classes of equivalence relations, and let I
be a o-ideal on a Polish space X. E —; F denotes the statement that for every
I-positive Borel set B C X and an equivalence £ € E on B there is a Borel
I-positive set C' C B such that £ [ C € F.

For example, the ideal I associated with Silver forcing satisfies classifiable by
countable structures—; {C FEjy, ev}, meaning that every equivalence relation on
a Borel I-positive set classifiable by countable structures either has an I-positive
equivalence class or else can be simplified to a subset of Ey on an I-positive Borel
subset.

The total canonization is often proved using the free set property, see below.
The trichotomy theorem 2.1.3 allows us to argue for total canonization from
fairly common abstract properties of the ideal I. In order to state a compre-
hensible theorem, we must introduce two properties of o-ideals.

Definition 2.4.3. A o-ideal I on a Polish space X has the rectangular property
if for Borel I-positive sets B,C' C X and a Borel partition B x C' = |J,, D, of
their product into countably many pieces one of the pieces contains a product
B’ x C' of Borel I-positive sets.

This property is useful for the study of the product forcing Py x P;. It
has been verified for all definable o-ideals such that the quotient P; is proper,
bounding and Baire category preserving [43, Theorem 5.2.6], for the o-ideal
generated by compact subsets of w* [40], as well as for many other cases.
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Definition 2.4.4. A o-ideal I on a Polish space X has the transversal property
if for every Borel set D C 2“ x X such that the vertical sections are pairwise
disjoint I-positive sets there is an [-positive Borel set B C X which is covered
by the vertical sections of D and each of the vertical sections visits in at most
one point.

This property is a ZFC version of the determinacy dichotomies such as the
first dichotomy of [43, Section 3.9.1]. It holds true of all definable o-ideals
generated by closed sets and many others, as in Proposition 3.2.1. It fails for
the likes of the Ey ideal and Mathias ideal.

Proposition 2.4.5. (CH) Suppose that I is a suitably definable o-ideal such
that the quotient forcing Py is < wy-proper, has the rectangular and transversal
properties. Then I has total canonization.

The continuum hypothesis assumption can be dropped if the quotient forcing
is < wj-proper in all forcing extensions, which is invariably true in all applica-
tions. We will prove it for IT} on X1 o-ideals, but small adjustments will result
in a proof for other specific ideals in ZFC and for larger definability classes
under large cardinal assumptions. The rectangular property is used to rule out
the nontrivial ergodicity clause of the trichotomy theorem, and the example
of Laver ideal and the Ef_ equivalence—see Section 3.9 shows that some such
assumption is again necessary.

Proof. Let E be a Borel equivalence relation on an I-positive Borel set. Look at
the trichotomy theorem 2.1.3. The rectangular property of the ideal I excludes
nontrivial ergodicity in item (1): if all equivalence classes are I-small then E
cannot contain a rectangle with Borel I-positive sides, and so its complement
must contain such a rectangle, which gives two E-disconnected Borel I-positive
sets. The transversal property excludes the intermediate model option (2).
All intermediate models must be c.c.c. extensions of the ground model by
the argument of [43, Proposition 3.9.2]. The discussion of the possibilities for
c.c.c. intermediate extensions below shows that they must be trivial. Total
canonization is just what is left of our options!

To see what the c.c.c. intermediate extension could possibly be, first argue
that it must add a real. Suppose for contradiction that it is effected by a c.c.c.
forcing @) which does not add a real. Let M be a countable elementary submodel
of a large enough structure containing ). Since no real is added by @, @ forces
that the intersection of its generic filter with M belongs to the ground model.
By c.c.c. of Q, there are only countably many possibilities {g, : n € w} for this
intersection, and each of them is in fact M-generic. Let h C Coll(w, k) N M be
an M-generic filter which is mutually generic with all the filters g, : n € w, and
work in the model M[h]. By Claim 1.3.16, M[h] contains (a code for) a Borel
I-positive set B C X consisting only of M-generic reals. Let f : B — P(Q)NM
be the function defined by f(z) = {¢ e QNM :3C €e PPNM z € CNC
forces ¢ to belong to the @Q-generic filter}. This is a Borel function with code
in the model M[h]. In that model, there are obviously two cases: either the
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f-preimage of every subset of Q N M is in the ideal I, or there is a subset of
Q N M with Borel I-positive preimage. In the first case, the property of B and
f is a coanalytic statement since the ideal I is II} on X1, therefore transfers
to the model V', and there B forces that the intersection of the Q)-generic filter
with M is not in the ground model, contradicting the assumptions. In the latter
case, B IF the intersection of the @Q-generic filter with M is in the model M [h]
and therefore not on the list {g, : n € w}, reaching a contradiction again.

Thus, suppose that P; adds a nontrivial c.c.c. real; let B € P; be a condition
forcing that f(&gen) is such a real for some fixed Borel function f : X — Y.
Let J be a o-ideal on the Polish space Y defined by A € J « f~1A € I. Since
f(&gen) is forced to be a c.c.c. real, falling out of all J-small sets, it must be
the case that it is P; generic. If the ideal I is TI} on X}, then so is J. There
are two cases.

If Py adds an unbounded real, then it in fact adds a Cohen real by a result
of Shelah [1, Theorem 3.6.47]. One has to adjust the final considerations of the
proof very slightly to conclude that it works for all ITI} on X} c.c.c. o-ideals.
Let g : Y — 2% be a Borel function representing the Cohen real. Now, the
meager ideal does not have the rectangular property, and it is easy to transport
this feature to the ideal I. Just let D C B x B be the set of all points (xg,z1)
such that g(f(xo))FEog(f(z1)) and observe that neither D nor its complement
can contain a rectangle with Borel I-positive sides.

If Py is bounding, then Player IT has a winning strategy in the bounding
game [43, Theorem 3.10.7]. By a result of Fremlin [15, Theorem 7.5], there is a
continuous submeasure ¢ on the space Y such that J = {A C Y : ¢(A) = 0}.
The relevant properties of such ideals were investigated in [7] and it turns out
that they cannot have rectangular property. They in fact fail to have even the
Fubini property with each other unless both of the submeasures in the product
share their null ideal with a g-additive Borel probability measure. In this last
case, the rectangular property fails again since every Borel probability measure
is ergodic with respect to some hyperfinite Borel equivalence relation. O

The total canonization of Borel equivalence relations is not the strongest
possible statement one can obtain. A significant strengthening is the Silver
type dichotomy introduced in the next section. A strengthening in a different
direction concerns arbitrary graphs:

Definition 2.4.6. A o-ideal I on a Polish space X has total canonization of
Borel graphs if for every Borel I-positive set B C X and every Borel graph G C
[B]? there is a Borel I-positive set C' C B such that [C]?> € G or [C]? NG = 0.

This can be restated in a somewhat different language: the collection of those
Borel sets G' C [X]? for which there is no Borel I-positive C' C X with [C]? C G,
is an ideal. Where the canonization of Borel equivalence relations is often at-
tained simply by an analysis of the forcing properties of the poset Py, the can-
onization of Borel graphs invariably needs strong partition theorems for Polish
spaces such as the Milliken theorem.
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2.5 A Silver-type dichotomy for a o-ideal

In fairly common circumstances, the total canonization takes up an even stronger
form:

Definition 2.5.1. A o-ideal I on a Polish space X has the Silver property for
a class E of equivalence relations if for every I-positive Borel set B C X and
every equivalence relation £ € E on the set B, either B can be decomposed
into countably many equivalence classes and an I-small set or there is a Borel
I-positive set C C B such that E [ C' = id. If E is equal to the class of all Borel
equivalence relations, it is dropped from the terminology and we speak of the
Silver property of I instead.

This should be compared with the classical Silver dichotomy [35], which
establishes the Silver property for the ideal of countable sets. Observe that
unlike total canonization, the Silver property introduces a true dichotomy: the
two options cannot coexist. It also has consequences for undefinable sets: if an
equivalence relation E € E has an I-positive set A C X consisting of pairwise
FE-inequivalent points, then it has an I-positive Borel set B C X consisting of
pairwise E-inequivalent points, simply because the first clause of the dichotomy
cannot hold in such circumstances.

Let us offer a perhaps artificial reading of the dichotomy which nevertheless
fits well with the techniques developed in this book or [43]. Given a o-ideal T
on a Polish space X and a Borel equivalence E on X, consider the ideal I* D I
o-generated by F-equivalence classes and sets in I. Then either I* is trivial,
containing the whole space, or else the quotient forcing Pj« is equal to P; below
some condition.

Proposition 2.5.2. Suppose that total canonization holds for I and the ideal
I is TI} on X1 and has the transversal property. Then the ideal I has the Silver
property.

Proof. Let E be a Borel equivalence relation, and consider the set C = {x €
X : [z]g ¢ I}. This is an analytic set. Either there are only countably many
equivalence classes in the set C. In this case, the set C' is even Borel. If the
complement of C' is in the ideal I then we are in the first clause of the Silver
property, and if the complement of C' is [-positive then we can apply total
canonization to it: the equivalence classes of E below the complement of C' are
in the ideal I and so the application of total canonization must yield a Borel
I-positive set consisting of E-inequivalent points.

Or, there are uncountably many equivalence classes in the set C. The clas-
sical Silver dichotomy [35] then provides a perfect set P C C of pairwise in-
equivalent points. Let D C P x X be the set defined by (x,y) € D < xFEy.
The transversal theorem yields an I-positive Borel set C' covered by the vertical
sections of D, visiting each of its sections in at most one point. We are in the
second clause of the Silver property! O

A quick perusal of the argument shows that the proposition in fact holds even
if restricted to any class of Borel equivalence relations closed under reduction.
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Thus for example the ideal I(Fin x Fin) introduced in Section 3.2.2 is I} on
31, has the transversal property, and has canonization for equivalences below
Ex, even though it perhaps does not have total canonization. The proof shows
that in fact I(Fin x Fin) has the Silver property for the class of equivalences
reducible to Ek_ .

Note that the transversal property is implied by the Silver property. If
D C 2¥x X is a counterexample to the transversal property then the equivalence
relation E on X connecting two points if they are from the same section of the
set D or if they both fail to be in any section of the set D can be computed to
be Borel, and it is easily seen to be a counterexample to the Silver property.

2.6 Free set property

Definition 2.6.1. An ideal I on a Polish space X has the free set property if
for every I-positive Borel set B C X and every Borel set D C B x B with all
vertical sections in the ideal I there is a Borel I-positive set C' C B such that
(CxC)nD cCid.

This should be viewed as a generalization of the various free set properties
in combinatorics to the Borel context: if one assigns a small set to every point,
then there will be a large set which is free for this assignment. The search
for free sets of various sizes on uncountable cardinals is always present in the
work of Péter Komjath, for example [24]. One nontrivial instance of the free
set property in the Borel context was obtained by Solecki and Spinas [38]. The
free set property implies total canonization of all Borel equivalences. Namely,
if F is a Borel equivalence on a Borel I-positive set B C X, then either one of
its equivalence classes is I-positive (in which case this class is an I-positive set
on which E = ev), or one can use the free set property with D = E to find a
positive Borel set on which F = id.

The free set property does not seem to be equivalent to the total canonization
of Borel equivalences, one such candidate is discussed in Section 3.2.2. The
most important way to argue for the free set property is via the mutual generics

property.

2.7 Mutual genericity

Definition 2.7.1. The ideal I has the mutual generics property if for every
countable elementary submodel M of a large structure and every Borel I-positive
set B € M there is a Borel I-positive set C' C B such that every pair of distinct
points in the set C' is generic for the product of the forcings P;.

The mutual generics property holds for a variety of ideals. One important
class of ideals with this property is the class of all suitably definable ideals
generated by closed sets for which the quotient poset is bounding—Theorem 3.2.3.

Mutual generics property may fail for a variety of reasons. It may fail even
though the free set property holds—Section 3.3. However, the typical reason for
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its failure is that there is a Borel equivalence relation E on the space X which
cannot be completely canonized. In such a case, one can consider variations of
the mutual generics property asserting that there is a Borel I-positive set such
that every pair of nonequivalent points is suitably generic etc. It is here where a
variety of reduced products of the poset P; may enter the scene. In the simplest
case, a reduced product Py x g Py is the set of all pairs (By, By) € Py x Pr such
that [Bo]g = [B1]g, ordered by coordinatewise inclusion—Definition 2.2.8.

Mutual genericity is not equivalent to the free set property, as the example
of symmetric Sacks forcing in Section 3.3 shows. Another potential example is
the Miller forcing, where Solecki and Spinas [38] proved the free set property,
while the status of mutual genericity remains unknown.

One way to disable most versions of the mutual generics property is to find
a Borel function f : X? — 2% such that for every Borel I-positive set B C X,
the image f”B? contains a nonempty open set. This means that a pair of
points in any given Borel I-positive set can code anything, in particular it can
code a wellordering of length greater than that of ordinals of any give countable
transitive model, and so it cannot be suitably generic.

2.8 Functions on squares

Thus, instead of equivalences on Polish spaces we may want to consider general
Borel functions on squares of Polish spaces and investigate their behavior on
squares of positive Borel sets. This turns out to have a close relationship with
the behavior of Borel equivalence relations:

Proposition 2.8.1. If Ey is in the spectrum of I then there is a Borel I-positive
set B C X and a Borel function f : B2 — w® such that f"'C? C w® is unbounded
for every Borel I-positive set C C B.

Proof. Suppose that Ejy is in the spectrum of the ideal I, as witnessed by a Borel
function g : B — 2“ on a Borel I-positive set B C X. Define f : B2 — w* by
g(z,y)(n) =the least m > n such that g(x)(m) # g(y)(m) if ~g(z) Eo g(y), and
f(z,y) =trash otherwise. We claim that this function works.

Suppose for contradiction that the conclusion fails for some Borel I-positive
set C' C B; the set ¢”’C C w* would be modulo finite bounded by some function
h € w*. In such a case, for any points =,y € C it would be the case that
f(z) Eo f(y) if and only if V*°n f(z) | [n,h(n)) = f(y) | [n,h(n)) if and only
if 3°n f(z) [ [n,h(n)) = f(y) | [n,h(n)). This means that the equivalence Ey
on the analytic set f”C is relatively Gs, and by the argument of [8, Theorem
6.4.4] it is in fact smooth on this set. This contradicts the assumption that Ey

is in the spectrum of the ideal I.
O

The conclusion cannot be strengthened to obtain dominating images, as a
basic example shows. Consider the o-ideal I associated with the Ey-forcing as
in Section 3.4; thus Fj is in the spectrum of I. Let B C 2“ be an I-positive
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Borel set, and f : [B]? — w* be a function. Let M be a countable elementary
submodel of a large structure containing all this information. The proof of
Theorem 3.4.5 yields a Borel I-positive subset C' C B such that every pair of
non-Fy-equivalent points of C' is reduced product generic for the model M, and
every single point in C' is Pr-generic. Let g € w* be a function dominating all
the functions in M. The reduced product does not add a dominating real by
Theorem 3.4.6, and so if =,y € C are not Fy related then f(z,y) cannot modulo
finite dominate g. And, if the points z,y € C are Fy-related, then the functional
value f(z,y) belongs to M|x], and as the Py forcing is bounding, f(z,y) cannot
modulo finite dominate g in this case either.

Proposition 2.8.2. If FEs is in the spectrum of I then there is a Borel I-
positive set B C X and a Borel function f : B> — [0,1] such that f"C? C [0,1]
is somewhere dense for every Borel I-positive set C C B.

Proof. Recall the summable metric d on 2, d(z,y) = Z{1/n+1: z(n) # y(n)};
the distance of two points may be infinite. E5 is the equivalence relation on 2“
connecting points of finite distance. Now suppose that Fs is in the spectrum
of I as witnessed by a Borel function g : B2 — 2%. Define a Borel function
f: B? — [0,1] by setting f(z,y) = d(g(z),g(y)) if this number is < 1, and
f(x,y) =trash otherwise. We claim that this function works. Consider an
arbitrary Borel [-positive set C' C B.

Indeed, since Fs is in the spectrum of the ideal I, it must be that Es | f”C' is
not essentially countable, and therefore the analytic set f”C cannot be grainy
as described in Section 3.5. Thus, for every real € > 0 there is a finite walk
through the set C' such that its steps are shorter than € and the endpoints have
d-distance at least 1. If the set f”/C C [0,1] was not dense, perhaps avoiding a
basic open neighborhood of diameter ¢, no such walk could exist for that ! [

Proposition 2.8.3. Suppose that there is a Borel function f : X2 — 2% such
that f"C? C 2% contains a nonempty open set for every Borel I-positive set
C C B. Then I does not have the mutual generics property.

Proof. The mutual generics property most certainly fails since for every count-
able elementary submodel M of a large structure and a Borel I-positive set
C C B there are two points z,y € C such that f(z,y) codes the transitive col-
lapse of the model M, and therefore this pair cannot be (mutually or otherwise)
generic over the model M. O

Example 2.8.4. Consider the Laver forcing with the associated o-ideal I on
w* and the function f : (w*)? — 2¢ defined by f(x,y)(n) =1 < z(n) > y(n).
Every I-positive Borel set B C w® contains all branches of some Laver tree T'
with trunk of length n, and then it is easy to find, for every binary sequence
z € w¥, two branches z,y € [T] so that f(x,y) = z on all entries past n. So
f"B? contains a nonempty open set.

Example 2.8.5. Consider the Silver forcing with the associated ideal I and the
function f : (2¥)? — 2 defined by f(x,y) = z o7~ ! where 7 is the increasing
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enumeration of the set {n : z(n) # y(n)} if this set is infinite, and f(z,y) =trash
if this set is finite. Every I-positive Borel set B contains all total extensions of
some fixed partial function g : w — 2 with co-infinite domain. Whenever z € 2%
is a binary sequence, let x,y € 2 be the unique points such that g C x,y and
z=xom 'and 1 -z =yonr ! where 7 is the increasing enumeration of the
complement of the domain of g. Clearly then, f(z,y) = z and f”B? = 2%,

Both Silver and Laver forcing contain Ex_ in their spectrum, and also other
approaches in this book that insert Ex_ into the spectrum of a o-ideal immedi-
ately lead to a construction of a Borel function f : X x X such that the image
of any Borel square with an I-positive side contains an open set. This brings
up the obvious question.

Question 2.8.6. Suppose that E is in the spectrum of a o-ideal I on a Polish
space X. Does there have to exist a Borel I-positive set B C X and a Borel
function f : B? — 2¢ such that for every Borel I-positive subset C C B, the
image f”C? contains a nonempty open set?



Chapter 3

Particular forcings

3.1 Sacks forcing and variations

The exposition of canonization properties of various o-ideals is best started
with the simplest and most instructive example, that of Sacks forcing, its finite
products and countable iterations. Sacks forcing is the poset of all perfect binary
trees ordered by inclusion. The associated o-ideal is the ideal of countable
subsets of 2¢, as the perfect set theorem shows. Every uncountable Borel set
has a perfect subset, and therefore the map T — [T] is a dense embedding of
the Sacks forcing into P;. Restating the classical Silver dichotomy 1.3.5,

Fact 3.1.1. The ideal of countable sets has the Silver property.

Let us now move to a finite product of Sacks forcing of dimension n € w. The
associated ideal I,, on the space (2*)™ is generated by those Borel sets which
do not contain a product Il;¢,,C; of nonempty perfect sets, as the rectangular
property of the ideal of countable sets shows [43, 5.2.6]. The map m, : (C; : i €
n) — I1;c,C; then constitutes a dense embedding of the n-fold product of the
Sacks forcing into the poset Py, . The ideal I,, is I} on X1 and every positive
analytic set contains a positive Borel subset. These fairly well-known facts and
more follow from [43, Section 5.2.1].

There are some new equivalence relations on the product as opposed to the
single Sacks forcing. Let a C n be a set, and define the equivalence relation E,

n (2¢)" by setting £E, ¥ if and only if Z [ @ = ¢ | a. This is obviously a smooth
equivalence relation which is not equal to identity or everything on any Borel
I,,-positive set. However, these equivalence relations are the only obstacles to
total canonization:

Theorem 3.1.2. Letn € w be a natural number. Then Borel—j, {E,:a Cn}.

The much more complicated case of the infinite product of Sacks forcing will be
treated in its own section.

31
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Proof. Let a C n be a set. Define the reduced product P, as the product of
n \ @ many copies of Sacks forcing (indexed with elements of the set n \ a) with
a many copies of Sacks forcing (indexed with (i,0) : ¢ € a) and further with
a many more copies of Sacks forcing (indexed with (i,1) : i € a). Clearly, the
reduced product is isomorphic to the product of n 4 |a| many copies of Sacks
forcing, and it adds n + |a| many mutually generic reals, indexed by the set
(n\a)U{(i,j) : i € a,j € 2}. We will organize these reals into sequences
Tigen € (2¢)" and Trgen € (2¢)" With Zigen [ (7 \ @) = Trgen | (n\ @).

If M is a countable elementary submodel of a large structure and 7, & € (2¥)™
are two sequences, we will say that they are reduced product generic for M, if
writing a = {i € n: Z(i) = ()}, the sequence Z defined by z(i) = Z(i) if i € a,
Z(1,0) = Z(4) and 2(i,1) = ¢(¢) if i € n\ a, is P, generic for the model M. The
following is the key claim:

Claim 3.1.3. Let M be a countable elementary submodel of a large structure,
and let B; : © € n be perfect subsets of 2% in the model M. There are perfect
subsets C; C B; : i € n of the Cantor space such that the product I1;¢,C; consists
of pairwise reduced product generic sequences for the model M.

This is to say that any two sequences &,y € Il;c,C; satisfying z(i) = y(i) <
i ¢ a, are reduced product generic for the model M.

The theorem immediately follows from the claim. Let E be a Borel equiv-
alence relation on the space (2¢)", and find an inclusion minimal set a C n
such that some condition in P, forces Tigen £ Trgen. If a condition p =
(Bi : i€ (n\a),B; : i € a,C; : i € a) in P, forces this, then so does
g=(B;:i1€ (n\a),B; i €a,B; i€ a) whenever Figen, Trgen are generic
sequences meeting the condition ¢, in a further generic extension one can find
a condition ¥gen such that the pairs Figen, Ygen and Trgen, Ygen are generic se-
quences meeting the condition ¢, so these pairs consist of F-equivalent sequences
by the forcing theorem, and consequently Zigen F Trgen by the transitivity of the
relation E. Now let M be a countable elementary submodel of a large struc-
ture and use the claim to find sets C; C B; : i € n whose product consists of
pairwise reduced product generic sequences for the model M. We claim that
E rHiEnCi =FE,.

To show this, suppose that Z, ¢ € II;¢,,C; are sequences and let b = {i € n :
Z(1) = y(7)}. Find sequences &, ¢ in the product such that a = {i € n: Z(i) =
F@)}={ien:g6@)=¢@{)}andanb={i € n: (i) =4 (i)} The forcing
theorem applied to the reduced product P, together with Borel absoluteness
implies that £ F @' and § E . Now if a Nb = a then the forcing theorem
also implies that & F ¢ and so ZE¢. on the other hand, if a N'b # a then the
minimal choice of the set a together with the forcing theorem applied to P,y
give =% E 3 and -7 E !

The claim is proved by a standard fusion argument.

O

The countable support iteration of Sacks forcing of countable length is an-
other natural subject of study. Let a € w; be a countable ordinal, and consider
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the Polish space X = (2¥)* with the product topology. The ideal I, associ-
ated with the countable support iteration of the Sacks forcing of length « is the
transfinite Fubini power of the countable ideal, as described in [43].

There are obvious obstacles to total canonization in this case. Let 8 < « be
an ordinal and consider the equivalence relation Ez on (2¥)“ given by # Eg ¢ if
and only if ¥ | 8 = ¢ [ 8. Again, it turns out that these are exactly the optimal
irreducible list of obstacles:

Theorem 3.1.4. Let a € wy be a countable ordinal. Then Borel—, {Eg: [ <

at.

Proof. Given ordinals § < o € wy, consider the reduced product P§ consisting
of pairs (p,q) € P* x P, for which p [ 8 = ¢q | 8. The reduced product adds
sequences Tigen, Lrgen € (2)* which coincide on their first 8 many coordinates.
If M is a countable elementary submodel of a large structure, we call sequences
Z, ¥ € (2¥)* reduced product generic if the set 8= {y € a: Z(y) = g(v)} is an
ordinal and the sequences are Pg-generic for the model M. As in the product
case, there is a key claim:

Claim 3.1.5. Let M be a countable elementary submodel of a large enough
structure, and B € Pr, N M is a condition. There is a Borel 1,-positive set
C C B consisting of pairwise reduced product generic sequences.

The theorem follows from the claim exactly as in the previous argument.
The claim itself is proved by a standard fusion process.
O

3.2 o-ideals generated by closed sets

Following the exposition of [43], the o-ideals that should be easiest to deal
with are those generated by closed sets. Indeed, there is a wealth of relevant
information available:

Proposition 3.2.1. Suppose that I is a o-ideal on a Polish space generated by
closed sets. Then

1. the poset P is < wi-proper and preserves Baire category;
2. if I is a TI3 on X1 then I has the transversal property;

3. moreover, if I is II1 on X1 then every intermediate extension of the Pr
extension is generated by a single Cohen real.

Proof. (1) is contained in [43, Theorem 4.1.2] and (3) is in [43, Theorem 4.1.7)].
That leaves (2) to be proved.

Let D C 2% x X be a Borel set with pairwise disjoint I-positive vertical
sections. Solecki’s theorem [36] shows that every vertical section contains a G
I-positive subset. Further manipulation even yields a homeomorphic copy of w*
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such that every nonempty relatively open set is I-positive. Note that for every
such a set the sets in the ideal I must be relatively meager.

Use the Sacks uniformization to find a perfect set C' C 2* and a continuous
injective map 7 : C' x w* — X fixing the first coordinate such that for every
y €, my : w¥ — X is a homeomorphic embedding with range included in D,,
such that relatively open subsets of the range are I-positive. Find an F, set
F C P x X such that its vertical sections range over all F,-subsets of X. The
set G CCxw’, G={(y,2): (y,7(y, 2)) € F} is Borel.

The set C' = {y € C' : G, is meager in w*} is Borel by [22, Theorem 16.1].
Use uniformization [22, Theorem 18.6] to find a Borel map f : C' — w* such
that for every point y € C’, f(y) ¢ G,. Consider the set B = {n(y, f(y)) : y €
C'} € X. As a Borel one-to-one image of a Borel set it is Borel. It intersects
only the vertical sections D, : y € C’, and each of them in exactly one point,
namely 7(y, f(y)). Finally, the set B is I-positive: every I-small set is covered
by an F, set in the ideal I, indexed as Fj for some point y € C. The set F,
must be relatively meager in rng(m,), so y € C’ and 7 (y, f(y)) € B\ F, and
B ¢ I as desired! O

Now, the spectrum of the Cohen forcing (associated with the meager ideal,
which certainly is o-generated by closed sets) is extremely complicated, it is
treated as a separate case. We first concentrate on the treatment of those o-
ideals whose quotient does not add a Cohen real. For these ideals, the interme-
diate generic extension case of Theorem 2.1.3 is ruled out by Proposition 3.2.1,
and a natural conjecture appears:

Conjecture 3.2.2. If [ is a II} on X o-ideal on a Polish space X generated
by closed sets, then either the quotient forcing adds a Cohen real, or the ideal
I has the Silver property.

This section should be understood as a work towards the decision of this
conjecture by consideration of a number of special cases. Note that if the quo-
tient forcing adds no Cohen reals, then we have a minimal forcing extension, and
total canonization of equivalences classifiable by countable structures follows by
Corollary 4.3.8. Proposition 2.5.2 then yields the Silver property of I for Borel
equivalences classifiable by countable structures. Thus, the difficulty lies on the
other side of the Borel equivalence relation map.

3.2.1 The bounding case

The initial suspicions voiced in Conjecture 3.2.2 are fully confirmed in the case
of bounding quotient forcing.

Theorem 3.2.3. Suppose that I is a TI} on X} o-ideal generated by closed sets
such that the quotient forcing Py is bounding. Then I has the mutual generics

property.

Corollary 3.2.4. In this case, the ideal I has the Silver property.



3.2. ¢0-IDEALS GENERATED BY CLOSED SETS 35

To prove the corollary, look at the trichotomy theorem 2.1.3. For every given
Borel equivalence relation on a Borel I-positive set B C X, the intermediate
model case is excluded by the bounding property and Proposition 3.2.1(3). Non-
trivial ergodicity is excluded as well by the free set property, which is implied by
the mutual generics property. Thus, we have total canonization. The transversal
property 3.2.1(2) and proposition 2.5.2 then close the deal.

The assumptions do not imply total canonization for Borel graphs, as the
basic example of the ¢,,;,-graph and the associated ideal shows [43, Section
4.1.5].

Proof. The argument is a sort of fusion of fusions, and it requires some prelim-
inary considerations and notation. [43, Section 5.2.1] shows that Player I has a
winning strategy in a certain game. The game between Players I and II starts
with Player II indicating an initial condition By,; € P;. After that, there are
infinitely many mega-rounds, the n-th ending with a set B,, € P;. The n-th
megaround proceeds in the following way. Player I indicates one by one condi-
tions C; € Py, and Player II responds with subsets D; C C;, D; € P;. After
some finite number of rounds, Player I decides to end the megaround n, and
the set B,, equals to | J; D;. Player I wins if B;,; N[, Bn ¢ I.

We will need the following notation. If 7 is a finite play of the game ending
after Player I finished the n-th megaround, we will write 7(ini) for the initial
condition indicated, and 7(end) = 7(ini) N (,,c,, Bm. If 7 is an infinite play
then 7(end) = 7(ini) N[, Bn. The following is the essence of the proofs in [43,
Claim 5.2.7]:

Fact 3.2.5. If o is a strategy for Player I and 19,71 are finite play respecting the
strategy o, and D C Py x Py is an open dense set, then there are finite extensions
74,71 of the plays, still respecting the strategy o, such that t}(end) x 7{(end) is
covered with finitely many elements of D.

Now we are ready to start the argument for the theorem. Let B € P;
be a set, let ¢ be a winning strategy for Player I in the game, let M be a
countable elementary submodel of a large enough structure. We must produce
an I-positive Borel subset of B consisting of points mutually generic for the
model M. Let t, : n € w enumerate w<% with infinite repetitions, let O; : i € w
enumerate basic open sets of X, and let D,, : n € w enumerate dense open
subsets of Py x Pr in the model M. By induction on n € w build finite trees
T, C w<¥ and maps f, with dom(f,) = T}, such that

e IhCcTyC1s...

e for every node t € T,,, f,(t) is a finite play of the game G in the model
M respecting the strategy o with f,(¢)(ini) C B, and if m > n then

Tn(t) C fn(t);

e whenever t # s € T, are nodes then f,,(t)(end) x f,(s)(end) is covered by
finitely many sets in the set D,,;
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o ift, € T), then T, 11 = T,, Ut} i from the smallest possible ¢ € w such that
toi & Ty, fagar(td)(ini) C fo(tn)(end) and if f,(¢,)end)(ini) N O; ¢ I
then even f,,(t;1) C fn(tn)(end) N O;;

o ift, ¢ T,, then T),11 = T,.

The induction is not difficult to perform using the previous Fact. Let x € w®
be a point. The third item implies that the sets f,(¢)(ini) : t C z,t € T}, form
a system of compact sets linearly ordered by inclusion, with a single point g(x)
in the intersection. The point g(z) is M-generic. The map g : w¥ — X is a
Borel injection, and its range must be Borel. The following two claims show
that rng(g) C B is the required set.

Claim 3.2.6. rng(g) ¢ I.

Proof. Suppose that C; : j € w are closed sets in the ideal I. By induction on
J € w build nodes s; € w<* as follows: note that the set J,, fn(s;)(end) is I-
positive, and let ¢ be a number such that C;NO; = 0 while |J,, f..(s;)(end)NO; ¢
I. In the end, let z = (J; s; and observe that g(z) ¢ U; C;. O

Claim 3.2.7. If ¢ # y then g(x), g(y) are mutually Pr-generic points for the
model M.

Proof. Let D = D,, € M be an open dense subset of P; x P; in the model
M. Find a large enough number m > n such that the longest initial segments
t C x,u C y still in the tree T}, are already distinct. The third item of the
induction construction shows that (g(x), g(y)) € fm(¢)(end) x fm(u)(end). At
the same time, f,,(¢)(end) x f,,(u)(end) € M is a set covered by finitely many
elements of D; these elements can be found in the model M as well. Thus, the
pair (g(x), g(y)) belongs to some element of D N M as required. O

O

3.2.2 Miller forcing and generalizations

The basic example not covered in the previous section is the Miller forcing. It
is the poset of all superperfect trees in w<“ ordered by inclusion is connected
with the o-ideal I on w* o-generated by compact sets:

Fact 3.2.8. [21] Whenever A C w¥ is an analytic set, exactly one of the fol-
lowing is true: either A € I or A contains all branches of a superperfect tree.
The ideal I is TI} on 31.

Thus the map 7 : T — [T] is an isomorphism between Miller forcing and a
dense subset of the poset P;. The canonization properties of the ideal I have
been thoroughly studied by Otmar Spinas.

Fact 3.2.9. [38] The ideal I has the free set property. [39] The ideal I has the
rectangular property.
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As every I} on X1 o-ideal generated by closed sets, the ideal I has the transver-
sal property, and so in conjunction with Proposition 2.5.2 this yields

Corollary 3.2.10. The ideal I has the Silver property.
Fact 3.2.11. The ideal I has total canonization for Borel graphs.

In another breakthrough, Otmar Spinas [39] computed the ideal associated
with the product of Miller forcing with itself and canonized smooth equivalence
relations on it. The ideal J on w* X w* consists of exactly those Borel sets which
do not contain a product of two superperfect trees. Every smooth equivalence
relation canonizes either to identity, or to equality on one of the two coordinates,
or to ev on a superperfect rectangle. The product adds a dominating real and
therefore, essentialy by the results of Section 3.9, Ex_ belongs to the spectrum
of the ideal J.

We will now attempt to generalize Spinas’s results to partially ordered sets
of infinitely branching trees with varying measures of the size of branching. For
an ideal K on a countable set a let P(K) be the poset of all trees T' C a<“ such
that every node of T" extends to a splitnode of T', and every splitnode ¢ € T" the
set {i € a:¢7i € T} is not in the ideal K. Thus for example the Miller forcing
is P(Frechet ideal on w). The computation of the ideal I (K') associated with the
forcing gives a complete information. Let X = ¢ with the product topology,
where a is taken with the discrete topology. For every function g : a<* — K
consider the closed set A; = {x € a¥ : Vn z(n) € g(z | n)} C X, and the o ideal
on the space X generated by all these closed sets. The following is obtained by
a straightforward generalization of the proof of Fact 3.2.8.

Fact 3.2.12. Let A C X be an analytic set. FExactly one of the following
happens:

e AcI;

o there is a tree T € P such that [T] C A.

Moreover, the ideal I is II] on X1.

Thus the map T+ [T'] is a dense embedding of the poset P(K) into Pr(). It
is clear now that the poset P(K) is proper and preserves Baire category since
the corresponding ideal is generated by closed sets [43, Theorem 4.1.2]. If the
ideal K is nonprincipal then the forcing adds an unbounded real. Other forcing
properties depend very closely on the position of the ideal K in the Katétov
ordering. The poset may have the Laver property (such as with K =the Frechet
ideal), or it may add a Cohen real (such as in K =the nowhere dense ideal on
2<¢). Similar issues are addressed in [31, Section 3]. We first look at a very
well behaved special case, generalizing the result of [38].

Theorem 3.2.13. Suppose that K is an F, ideal on a countable set. Then
I(K) has the free set property.
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Proof. Fix a F,-ideal K on w and use Mazur’s theorem [26] to find a lower
continuous submeasure ¢ on P(w) such that K = {a C w : ¢(a) < co}. The
argument now proceeds with a series of claims.

Claim 3.2.14. The forcing P(K) has the weak Laver property.

Here, a forcing P has the weak Laver property if for every condition p € P,
every name f for a function in w* dominated by a ground model function there
is a condition ¢ < p, an infinite set b C w, and sets ¢, : n € b of the respective
size n such that ¢ IF VYn € b f(n) € ¢,. This is a forcing property appearing
prominently in connection with P-point preservation [44].

Proof. Let p € P(K) be a condition, g € w* a function and f a P(K)-name for
a function in w* pointwise dominated by g. By induction on n € w construct
trees U,, € P(K) and their finite subsets w,, C U,,, numbers m,, and finite sets
¢p C w so that

e T =Uy DU D... and {t} = up C uy C ... where t is the shortest
splitnode of T

e u, is an inclusion initial set of splitnodes of U,, and for every node t € u,,,
the set of its immediate successors that have some successor in u,41 has
¢-mass at least n;

o Upyi I f(mn) € &, and |c,| < my,.

The induction is not difficult to perform. Given U, u,, let m,, = |u,| and for
every splitnode t € u,, and every immediate successor s of ¢ that has no successor
in wuy, thin out the tree U, | s to decide the value of g(m,,). Thinning out the
set of immediate successors further if necessary, the decision can be assumed to
be the same for all such immediate successors of ¢, yielding a number k; € w.
Let ¢, = {kt : t € u,} and let U,41 be the thinned out tree. Finally, find
Upt1 C Upy1 satisfying the second item.

In the end, U = ), U,, is a tree in the poset P(K) forcing Vn f(m,) € &(n)
as desired. O

Claim 3.2.15. Whenever a C w is a K-positive subset and T € P(K) forces
b C w is an element of K, then there is a condition S < T and a K-positive
ground model set ¢ C a such that SIFé¢nb=0.

Proof. This is in fact true for any forcing with weak Laver property in place of
P(K). Thinning out the condition 7" if necessary we may find a number m € w
such that T I ¢(b) < m. Find disjoint finite sets a, C a with ¢(a,) > 2mn,
and use the weak Laver property to find a condition S < T, an infinite set
b C w and sets B,, C P(a,) for every n € b such that all sets in B,, have ¢-mass
<m, |By| <mn,and S IF bNa, € B,. Then for every number n € b, the set
¢n = an \ U B, has mass at least nm, and it is forced by S to be disjoint from

b. Thus the set ¢ = Unes ¢n works as desired. O
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Now, suppose that D C w* x w* is a Borel set with I(K)-small vertical
sections, and T € P(K) is a tree. We must find a tree S C T such that
[S]x[S]ND C id. Thinning out the tree T if necessary we may assume that there
is a continuous function f : [T]xw<* — K such that for every branch = € [T the
section D, is included in the I(K)-small set {y € w* : V*n y(n) € f(z)(y [ n)}.
Let ¢, : n € w be an enumeration of w<* with infinite repetitions, and construct
trees U,, € P(K) and their finite subsets u,, C U, so that

e T =Uy DU D... and {t} = ugp C uy C ... where t is the shortest
splitnode of T’

e u, is an inclusion initial set of splitnodes of U,;

e if ¢, € u, then u,4+1 = u, together with some set of splitnodes extending
t,. All the new splitnodes differ from all the old ones and among each other
already at their |¢,|-th entry. Moreover the set {i € w : 3t € upq1 0 C t}
has ¢-mass at least n. If ¢, & w,, then w,11 = up;

e ift, € u, and t # ¢, is another node in u,,, then for every node s € u,11\u
and every x € [U,y1 | s] it is the case that f(x)(¢) is disjoint from the set
{i €w:t"i € Uy41 but no node of u,, extends t"i}.

This is not difficult to do using the previous claim. In the end, the tree
S =, Un belongs to P(K), and its set of splitnodes is exactly J,, u,. We
must show that [S] x [S]N D C id. To see this, suppose for contradiction that
x # y € [S] are two branches and y € D,. This means that there is a number
myg such that for every m > mg, y(m) € f(z)(y [ m). Find a number n € w
such that ¢, € w, is an initial segment of x, wu,41 \ u, contains still longer
initial segment of x, and the longest node ¢ € w,, which is an initial segment of
y is of length greater than mg. Then the last item shows that y(|t|) ¢ f(x)(t),
contradicting the choice of mg! O

Corollary 3.2.16. For Borel ideals K as in the theorem, the ideal I(K) has
the Silver property.

The previous result cannot be generalized to much more general ideals. A
more or less canonical ideal on a countable set which is not a subset of an F,-
ideal is K = F'in x Fin, the ideal on w X w generated by vertical sections and
sets with all vertical sections finite.

Example 3.2.17. The ideal I(K) does not have the free set property.

Proof. Let 7 : wxw — w be a bijection. For every point € X = (wxw)* define
the function g(z) € w* by g(x)(n) = max{n(z(m)) :m € n}. Let D C X x X
be defined by (x,y) € D if for all but finitely many n € w, writing y(n) = (I, m),
it is the case that g(z)(l) > m. It is not difficult to see that the vertical sections
of the Borel set D are in the ideal I(K).

To show that the set D contradicts the free set property, suppose that T, U €
P(K) are two trees. We will find = € [T] and y € [U] such that (z,y) € D. By
induction build splitnodes ¢; € T and u; € U so that
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e u;:j € w form an increasing sequence as well as ¢; : j € w;

e whenever n € dom(u;jy1) \ dom(u;) and wjpq1 = (I,m) then I > |t;] + 1
and m < 7T(tj+1(‘tj‘).

The choice of the splitnodes ¢, uo is arbitrary. Suppose ¢;,u; have been
found. Find a pair (I',m’) such that I" > [|t;] and u} (I',;m’) € U. Let ujiq
be an arbitrary splitnode of the tree U above the node u} (I’ m’). Find a pair

l,m € w such that t;(l, m) € T and (I, m) is larger than all numbers appearing
in rng(u;41). Let tj41 be an arbitrary splitnode of the tree T' above the node
t7 (I, m). The induction hypotheses continue to hold.

In the end, write z = (J,t; and y = |J; u;. It is clear from the construction
that for all numbers n > fu0|, writing (m,l) = y(n), it is the case that [ €
g(x)(m) and therefore (z,y) € D. Thus the free set property fails. O

3.2.3 The measure preserving case

Theorem 3.2.18. If the o-ideal I is TI} on X1, it is generated by closed sets,
and the quotient forcing preserves outer Lebesgue measure then I has the Silver
property below Ex_ and also below E., .

Proof. We will start with Ex_; the case of E,, is then only a minor variation
of the whole argument.

Recall that Ef_ is an equivalence relation on the space ¥ = w* below the
identity, connecting two functions yg,y; € Y if their distance, the maximum of
lyo(n) — y1(n)| : n € w, is finite. Suppose now that B is an I-positive Borel set
and E is a Borel equivalence relation on B Borel reducible to Ex_ by a Borel
function f : B — w*. We must prove that F has either an I-positive Borel
equivalence class or an I-positive Borel set consisting of pairwise inequivalent
elements. The argument is then completed as in Proposition 2.5.2. If there is
an [-positive E-equivalence class, then we are certainly done. So assume that
preimages of Ex_-equivalence classes are I-small, and work to produce a Borel
I-positive set of pairwise inequivalent elements. Proceed in two stages: first
get a Borel I-positive set C C B on which the equivalence classes of E are
countable, and then use the general Corollary 4.2.6.

The main tool in the argument is the ¢race ideal tr(I) on the countable
collection of basic open subsets of X: a set a of basic open sets is in [ if the
set the closed set p(a) = {z € X : every open neighborhood of x contains a
subset which is in a} is in the ideal I. It is not difficult to show that ¢tr(7) is an
ideal, and if Pr preserves outer Lebesgue measure then the ideal ¢r(I) has the
Fubini property. That is, whenever a is a tr(I)-positive set and D C a x 2¥ is a
Borel set with vertical sections of p-mass > ¢ for the standard Borel probability
measure g on 2¢ and some fixed £ > 0, then for some point y € 2 the horizontal
section DY is I-positive. To see this, note that p(a) as a condition in the forcing
Py forces the set {y € 2* : some open neighborhood of the generic point g,
contains no subset in a containing y} C 2¢ is of mass at most 1 — ¢, and as Py
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preserves outer Lebesgue measure, there is a condition C' C p(a) forcing some
definite point y € 2“ to not belong to this set. Then the vertical section DY C a
is tr(I)-positive since C' IF & ge,, € p(DY).

Thinning out the condition B if necessary we may assume that the function
f is continuous on it, that B is G5, B = [, Op, and that the intersection of
every open set with B is either empty or I-positive. By induction on n € w,
we will construct trees T, labeled by basic open subsets of X which decrease
with respect to inclusion along the branches of T,,, T}, is of height n, T;,41 is
an end-extension of T;, and writing a(t) for the set of immediate successors of a
node t € T;,, we have

e a(t) consists of pairwise disjoint sets of radius < 27";
e VO €a(t) O C Om;

o a(t) & tr(I);
e VO#Pca(t) Vx e ONBYy € PN B d(f(z), fy)) >n;

e cach open set used has I-positive intersection with the set B.

In the end, let T = |J,, T, and let C = { € X : = belongs to infinitely
many open sets on the tree T'} be the set of points obtained by intersecting the
open sets along the branches of the tree T'. The first item shows that there is
a one-to-one correspondence between points in C' and infinite branches through
the tree T. The second item shows that C' C B.

The third item secures the I-positivity of the set C. Indeed, if D; : i € w
are closed sets in the ideal I, one can induce on ¢ to pick open sets (P; : i € w)
forming a branch through the tree T such that D; N P;y; = 0, and then the
single point in the intersection of these sets will belong to the set C'\ (U, D;,
witnessing the I-positivity of the set C. To pick the open set P; once the
sequence t = (P; : j € ) has been constructed, note that if every set P € a(t)
had nonempty intersection with D;, then p(a(t)) C D;, contradicting the third
item of the induction hypothesis above.

The fourth item shows that the E-equivalence classes on the set C' are count-
able. If z € C and n € w then every open set at level n of the tree T' can
contain at most one point y € B such that d(f(z), f(y)) < n/2. There are
only countably many numbers n and nodes in the tree T', and therefore the set
{y € C : z E y} must be countable. The last item just makes the induction go
through.

Thus, once the induction is complete, the theorem for Ex_ will follow. The
induction is simple except for the fourth item. Suppose that some endnode
t € T;, has been constructed, labeled with an open set O. The collection b(t) =
{P : P C O is a basic open set of radius < 27", a subset of O,, with I-
positive intersection with B} is positive in the ideal tr(I) since BNO C tr(b(t)).
Enumerate the set b(t) by {P; : i € w} and by induction on i € w build sets
¢; C O N B and numbers k; € w so that
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e ¢; is a set of size 2' consisting of pairwise inequivalent elements of P; N B;

e for each pair {z, y} of distinct elements of ¢; there is a number k € k; such

that [ f(x)(k) — f(y)(k)| > 2n;

e for all elements x € ¢;11, the finite sequence f(z) | k; is the same.

This is easy to do. To obtain ¢;41, first pick an arbitrary point x € BN P14
and note that the set P = {y € P, : f(z) | k; = f(y) | ki} is relatively open
in B by the continuity of the function f, it has nonempty intersection with
B N P;;; and therefore an [-positive intersection with this set, and since E-
classes are I-small, there must be a collection of 2i*! many inequivalent points
in BN P;41 N P. Then choose the number k;41 to be sufficiently large to satisfy
the second item.

In the end, consider the space II;c; and the Borel probability measure p on
it which is the product of the normalized counting measures on the various ¢;’s.
For numbers j € ¢ € w, there can be at most one = € ¢; such that f(x) | k; is
n-close to some (any) f(y) | k; : y € ¢;, and so the set D; C Y of those y € Y
that pick such a point at at least one j € i is of size at most ¥,;27°72 = 1/2.
By the Fubini property of the ideal ¢r(I), there is y € Y such that the set
d={P;:y ¢ D;} is not in the ideal. For every open set P; € d let Q; C P; be
a basic open subset of P; such that Vz € BNQ; f(2) [ k; = y(i) | k;. This is a
nonempty relatively open subset of B, therefore I-positive. 777

Now let us return to the case of equivalence relations below E,,. Recall that
E,, is the equivalence relation on R connecting sequences z,y if lim |z(n) —
y(n)] = 0. Suppose that B € Py is a Borel I-positive set and E a Borel
equivalence relation on it reducible to E., by a Borel function f: B — R“. We
must find a Borel I-positive subset of B such that E is equal to the identity or
everything on it. As always, thinning out the set B if necessary we may assume
that the function f is continuous on it, B is a G set, and its intesection with
any open set is either I-positive or empty. There are two distinct cases.

In the first case, for every relatively open I-positive subset of B and every
e > 0 there is a still smaller I-positive relatively open subset of B such that
for every two points z,y in it, limsup|f(z)(n) — f(y)(n)] < e. In this case,
a similar construction as in the Ek_ case yields a tree T' labeled by open sets
such that for any open set at n-th level and any points x,y € B in this open
set, limsup |f(z)(n) — f(y)(n)] < 27™. Let C C B be the Borel I-positive set
associated with the tree T'. It is immediate that the complement of F is relatively
open in C?, and therefore E is smooth on C? by [8, Proposition 5.4.7]. The
forcing P; adds a minimal forcing extension by [43, Theorem 4.1.7] and so has
total canonization for smooth equivalences, which concludes the proof in this
case.

In the second case, there is a relatively open I-positive subset B’ C B and
a positive real € > 0 such that every smaller relatively open set contains points
x,y such that the limsup |f(x)(n) — f(y)(n)| > €. In this case, proceed just as
in the treatment of Fy_. 0
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3.2.4 Cohen forcing

The Cohen forcing is the partial ordering of finite binary sequences with inclu-
sion. The associated ideal I is the ideal of meager subsets of 2* as the following
fact shows.

Fact 3.2.19. Whenever B C 2“ is an analytic set the there is an open set
O C 2¥ such that OAB is meager.

The spectrum of Cohen forcing is probably quite complicated; we only point
out several fairly simple features.

Proposition 3.2.20. Ej is in the spectrum of Cohen forcing.

No other countable Borel equivalence relations belong to the spectrum as by
Theorem 4.2.8, essentially countable— jreducible to Ej.

Proof. Tt is enough to show that for every Borel nonmeager set B C 2%, Ey <
Ey | B. By the Baire category theorem, there is a finite sequence s € 2<“ such
that B is comeager in O,, B C Os N[, P, where P, C 2¥ is open dense. By
induction on n € w build pairs {t2, 1} of distinct finite binary sequences of the
same length such that for every number n € w, writing ¢ for the concatenation
s“(tf)(o))“(tzl(l))“ S0 il(")), we have O; C P, no matter what the choices of
i(0),4(1),...4(n). Now let f : 2 — B be the continuous function for which
f(z) is defined as the concatenation of s with all £2™ : n € w. It is not difficult
to see that f is the required reduction of Ey to Fy [ B.

O

Proposition 3.2.21. Fs is in the spectrum of Cohen forcing.
Proposition 3.2.22. F; is in the spectrum of Cohen forcing.

Proof. Consider the underlying space of the Cohen forcing to be X = (2¥)“ with
the product topology, and the ideal I to be the meager ideal in this topology.
Consider the equivalence relation F5 on this space. It will be enough to show
that Fy reduces to Fj restricted to any Borel non-meager set.

Let B C (2¥)¥ be a nonmeager set. Let M be a countable elementary
submodel containing the set B. The main point is the following folkloric obser-
vation:

Claim 3.2.23. If b C 2% is a countable dense subset of 2 Cohen generic for
the model M in finite tuples, then the set of all enumerations of this set in B is
non-meager in the space of all one-to-one enumerations of b.

Proof. Find a nonempty basic open set O C X and countably many open dense
sets {O,, : n € w} such that B D O N[, Oy,. Find a finite one-to-one function
go : w — b such that any totalization of it will belong to the basic open set
O. Now, for every number n € w and every finite one-to-one function g :
w — b extending go there is a finite one-to-one extension h O g such that all
totalizations of it belong to the set O,: by Kuratowski-Ulam theorem, the set



44 CHAPTER 3. PARTICULAR FORCINGS

{# € (2v)dom9) . {7 € (2#)¥\dom(9) . #~7 € O,,} is open dense} is comeager,
it belongs to M, and so g belongs to it by Cohen genericity in finite tuples.
The desired extension h is then readily at hand. We just proved that the set
of all enumerations of b in B is comeager in the basic open set of all one-to-one
enumerations extending gg. O

Thus, let D C 2¥ be a Borel set with uncountable intersection with every
basic open set, consisting of reals mutually Cohen over M in any finite tuple. It
is not difficult to find a Borel map f : 2¢ — D such that for every x € 2¥, f(x)
enumerates a dense subset of D and for every y # x, rng(f(x)) Nrng(f(y)) = 0.
Consider the Borel set A C (2¥)¥ x (2¥)“ given by (Z,9) € A if § enumerates
U,, mg(f(Z(n))) and it is Cohen generic over M and belongs to the set B. The
observation in the previous paragraph shows that we can use [22, Theorem 18.6]
to find a Borel uniformization h : (2¥)¥ — (2¢)¥. It is not difficult to see that
the function h is a reduction of Fy to F5 | B. O

Proposition 3.2.24. The spectrum of Cohen forcing is cofinal in <p and it
includes B .

Proof. In the Section 3.8 on the infinite countable support product of Sacks
forcing, we prove that its associated ideal on (2¢)“ consists of meager sets, and
its spectrum is cofinal in <pg. Thus, the equivalence relations exhibited in that
proof will also yield the same feature for Cohen forcing. These equivalence
relations include Ef_, among others. O

3.3 Halpern-Lauchli forcing

The Halpern-Lauchli forcing P consists of those trees T' C 2<“ such that there is
an infinite set ar C w such that ¢ € T is a splitnode if and only if |t| € ap. The
ordering is that of reverse inclusion. It is not difficult to see that P is proper
and has the continuous reading of names. Consequently, the computation of the
associated ideal can be found in [43, Proposition 2.1.6]. Let X = 2, and let
I be the o-ideal generated by those Borel sets A such that for no tree T' € P,
[T] € A. Then I is a II{ on Xi o-ideal, every positive analytic set contains a
positive Borel subset, and the map T — [T] is a dense embedding from P to
Pr.

This forcing serves as a good example refuting several natural conjectures.
It has the free set property, but not the mutual generics property. It has total
canonization, but not the Silver dichotomy. There is a natural o-closed regular
subforcing, which then cannot be obtained as P£ from any Borel equivalence
relation £ on X.

Proposition 3.3.1. I has the free set property.

Proof. We will need a sort of a reduced product of the Halpern-Léuchli forcing.
Let P x,. P be the poset of all pairs (T, U) € P x P such that ar = ay. Similarly
to the usual product, the reduced product adds points #igen, Trgen € X which are
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the intersections of all trees on the left (or right, respectively) side of conditions
in the generic filter. Still, the difference between P x,. P and P x P should be
immediately apparent. A more detailed analysis will show that P forces that
the set ap : T € G is a generic filter for the poset P(w) modulo finite, and the
reduced product is equivalent to the two step iteration of P(w) modulo finite
followed with the product of two copies of the remainder forcing P/P(w) modulo
finite.

We will need a computation of the o-ideal associated with the product P x,.
P. Let I x,. I be the collection of all Borel subsets B C 2 x 2¢ such that there
is no pair T,U € P x, P such that [T] x [U] C B.

Claim 3.3.2. [ x,. I is a o-ideal of Borel sets, and the map T,U — [T] x [U]
is a dense embedding of P x, P into Prx, 1.

Proof. Suppose that T,U € Po P, and [T] x [U] = |J,, By is a countable union
of Borel sets. We must find trees T,U € P x,. P such that the set [T] x [U] is
a subset of one of the Borel sets in the union. Strengthen the condition T, U if
necessary to find a specific number n € w such that (T, U) Ik &igen, Trgen € B,.
Let M be a countable elementary submodel of a large enough structure, and let
D,, : m € w be an enumeration of all open dense subsets of P x,. P in the model
M. By induction on m € w build conditions (T}, Uy,) € M in the reduced

product so that

e Ty =T, the conditions T;, € M N P form a decreasing sequence, and the
first m + 1 splitting levels of T}, are equal to the first m levels of T},11,
and the same on the U side;

e for every choice of nodes t € T}, 41, u € Up,41 just past the m-th splitting
level, the condition (Tp,4+1 | t,Upmy1 [ u) € P X, P is in the set D,,.

The induction is elementary, at each step making a pass through all pairs (¢, u)
as in the second item to handle them all. In the end, the pair (T =1, Tp,,U =
N,, Un) € P X, P is a condition such that every pair (z,y) € [T] x [U] is M-
generic for the reduced product below the condition (T, U. The forcing theorem
implies that Mz,y] = (x,y) € B,, and by analytic absoluteness (z,y) € B,,.
In other words, [T] x [U] C B,, as desired. O

An essentially identical argument yields

Claim 3.3.3. Suppose that M 1is a countable elementary submodel of a large
enough structure and T € M NP is a tree. There is a tree U € P, U C T, such
that every two distinct elements of U are M -generic for the reduced product.

The theorem immediately follows. Let D C X x X be a Borel set with
all vertical sections in the ideal I; clearly, such a set belongs to the o-ideal
I. Let T € P. Let M be a countable elementary submodel of a large enough
structure containing both D and T'. Let U C T be a tree in P such that every
two distinct points of [U] are reduced product generic for M. An absoluteness
argument immediately shows that ([U] x [U]) N D C id. O
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Proposition 3.3.4. I does not have the mutual generics property.

Proof. Suppose that M is a countable elementary submodel of a large structure,
and suppose for contradiction that there is a symmetric tree T' € P such that [T
consists solely of points mutually generic for P x P over M. Thinning out the
tree T if necessary, we may find a continuous function f : [T] — (PN M)“ such
that for every x € [T] the conditions {f(x)(n) : n € w} generate the M-generic
filter g, C PN M whose associated real is x. It is then immediate that the filter
h,; on w generated by the sets ag : S € g, is diagonalized by the set ap. In other
words, for every two distinct points z,y € [T the set hy U h, again generates a
nontrivial filter. This could not be the case if x,y were mutually generic for the
poset P. O

Proposition 3.3.5. I does not have the transversal property and so fails the
Silver dichotomy.

Proof. Find a Borel injection f : 2 — [w]®° whose range consists of pairwise
almost disjoint sets. Let D C 2% x 2 be the Borel set of all pairs (z,y) such
that y(n) = 0 whenever n ¢ f(x). It is fairly obvious that the vertical sections
of the set D are pairwise disjoint [-positive sets. It turns out that D is the
sought counterexample to the transversal property.

Indeed, suppose that T' € P is a tree such that the closed set [T] C 2¢ is
covered by the sections of the set D, and visits each section in at most one point.
There must be distinet points yg,y; € [T] and an infinite set a C w such that
for both ¢ = 0,1 it is the case that y;(n) = 1 whenever n € a. If x € 2% is such
that yo € D,, it must be the case that a C f(z), and the same for y;. However,
since the sets in the range of f are pairwise almost disjoint, there can be only
one such point x € 2¥, and both yg,y; must belong to D,, contradicting the
choice of the tree T' € P. O

Proposition 3.3.6. P; regularly embeds a nontrivial o-closed forcing.

Proof. If G C Py is a generic filter, then H C P(w) mod finite, H = {ar :
T € G} is a generic filter as well. The function T — ar is the associated
pseudoprojection from P to P(w) mod finite. O

3.4 E, forcing

Let I be the o-ideal on the space X = 2“ generated by Borel partial Ey selectors.
The quotient forcing P; is proper, bounding, preserves outer Lebesgue measure
as well as Baire category [43, Section 4.7.1]. T will describe the quotient forcing
as creature forcing with gluing. A creature is a pair of distinct finite binary
sequences of the same length. If ¢(i) : i € n is a finite sequence of creatures then
[c(7) : i € n] is the set of all binary sequences obtained by choosing one sequence
from each creature and concatenating them all. A composition of the finite
sequence of creatures is another creature, a pair of distinct binary sequences
in [¢; : ¢ € n]. A partial order P consists of pairs p = (t,,&,) where &, is
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an w-sequence of creatures. ¢ < p if there is a decomposition of w into finite
consecutive intervals i, : n € w such that ¢, is the concatenation of ¢, with
sequences chosen from creatures ¢,(m) : m € ig, and the creatures &,(n) are
obtained as a composition of creatures in ¢,(m) : m € i,41. For a condition p,
let [p] C 2% be the closed set of all binary sequences z such that x =t"s5's]" . ..
where s,, € ¢,(n). The following fact shows that the map p — [p] is a dense
embedding of P into P.

Fact 3.4.1. The o-ideal I on 2% is II3 on X1. For every analytic set A C 2%,
exactly one of the following holds:

1. Ael;

2. there is a condition p € P such that [p] C A.

Fact 3.4.2. The forcing Py is proper, bounding, preserves Baire category and
outer Lebesque measure, and it adds no independent reals.

Clearly, the ideal I defined in such a way that the poset P; has Fj in its
spectrum.

Theorem 3.4.3. Ej is in the spectrum of the ideal I. The poset PIE0 is reqularly
embedded in Py, it is Ro-distributive, and it yields the V|Zgen|g, extension.

The reduced product Pr x g, Pr is exceptionally well behaved and deserves
closer attention. Recall its general definition from Definition 2.2.8: it is the
set of those pairs (A, B) € P; x P such that some large collapse forces that
there are V-generic points z € A, Y € B which are Fy related. The reduced
product adds a pair of points £igen, £rgen, €ach of which is Pr-generic, and the
associated ideal I x g, I consists of those analytic subsets of 2¢ x 2 such that
the generic pair is outright forced not to belong to them. We will first define its
combinatorial version and prove that it is equivalent to the general notion.

Definition 3.4.4. P xp, P is the set of all pairs (p,q) € P x P such that
[tp| = |tq| and €, = &, ordered coordinatewise.

Theorem 3.4.5. The ideal I xg, I is TI} on Xi. For every analytic set A C
2¢ x 2% exactly one of the following happens:

1. Ael X B, I;
2. there is a condition (p,q) € P X g, P such that [p] X [¢] \ Eo C A.

Thus, the map (p, ¢) — [p] x [¢] \ Ep is an isomorphism of P x g, E with a dense
subset of PIXEOI‘

Proof. First observe that the map (p, q) — ([p], [¢]) is an isomorphism of P x g, P
with P; x g, Pr. It is clear that {[p],[q]) is a condition of the general reduced
product. We just must show that every condition (B,C) € Pr xg, Pr has a
strengthening of this form. To see this, note that it must be the case that the
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analytic [B]g, N [C] g, must be I-positive and therefore it must contain a subset
of the form [r] for some r € P. Using the o-additivity of the ideal I, it is possible
to strengthen the condition 7 so that there will be finite sequences u,v € 2<%
shorter than the trunk of r such that [t, @u, ] C B and [t ©v,¢.] C C. Thus,
the conditions p = (¢, @ u, &) and ¢ = (t, @ v, &.) will be as required.

To prove the dichotomy, argue that whenever M is a countable elementary
submodel of a large enough structure, and (p,q) € P Xg, PN M is a condition,
then there is a condition p’, ¢’ < p,q with the same trunks such that whenever
x € [p] and y € [g] are non-Ey-equivalent sequences then the pair is P x g, P-
generic for the model M. Thus, if A C 2¢ x 2¥ is an analytic I X g, I-positive
set and (p, q) I (F1gen; Frgen) € A then ([p] x [¢']) \ Eo is a subset of A by the
forcing theorem and analytic absoluteness between transitive models of ZFC,
proving the dichotomy.

To get the condition (p/,q’), by induction on n € w build a decreasing
sequence of conditions (p,,qn) € P xg, PN M so that

o iy, =tp,lg, =1lg Cp, [N=0Cp,y [y

e whenever ug,vg € [c,(i) : @ € n] are binary sequences and uy,v1 € ¢, .,
are distinct binary sequences then the condition ({t;ugu1,pny1(i) @i >

n+1), (t;vg v1,Par1(i) 14 > n+1)) is in all the first n open dense subsets
of P x g, P in the model M under some fixed enumeration.

The induction is elementary. In the end, consider p’ = lim, p, and ¢ =
lim,, ¢,. The first item of the induction shows that the pair (p’,¢’) is indeed a
condition in P X g, P. The second item shows that all elements of [p/,¢'] are
M-generic. Clearly, (p',q') € P xg, P is an M-master condition. Moreover, if
B C 2¥ x 2¥ was a Borel set in the model M such that (p, ) = Tigen, Trgen € B
then [p/, ¢'] C B. Thus, writing J for the o-ideal of those Borel subsets of 2¢ x 2¢
which are forced by the largest condition in the reduced product not to contain
the generic pair, it is the case that J = I and the theorem follows.

The complexity of the ideal is a direct corollary of the previous method of
proof. 777

O

Theorem 3.4.6. The reduced product forcing is proper. It adds an unbounded
real and an independent real. It preserves outer Lebesgue measure and Baire
category.

Proof. The first sentence is proved in the previous argument. Simple genericity
arguments will show that the function f : n — min{m : &igen(Mm) # Trgen(m)}
is not bounded by any ground model function in w*. The function g : n —
d1gen(f(n)) in 2 cannot contain a ground model infinite subfunction, and so an
independent real is added as well. The two preservation properties are harder.

For the preservation of Baire category, it is enough to verify that the ideal
I x g, I is an intersection of a collection of meager ideals associated with Polish

topologies generating the given Borel structure. Let (p,q) € P xg, P be a
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condition; it will be enough to produce a Polish topology on the set [p, ¢] such
that I is a subset of its meager ideal. It is not difficult to verify that the
product topology on [p] x [g] restricted to the set [p,q] is exactly such. Note
that [p, ¢] = ([p] % [g]) \ Eo, so it is a dense G5 set in this topology and therefore
Polish.

The preservation of outer measure seems to be a much more complicated
deal. We need to use a probability version of a partition theorem of 7?7 to
establish the following auxiliary claim. For a condition p € P let sp(p), the
set of splitnodes of p, be the collection of all binary sequences obtained as the
concatenation of t, and w; : ¢ € n where u; € &,(i) are arbitrary sequences and
n € w is a natural number. Clearly, ¢ < p — sp(q) C sp(p)

Claim 3.4.7. For every condition p € P, every positive real number € > 0,
and every assignment t — By of Borel subsets of 2 of Lebesgue mass > € to
splitnodes of p, there is ¢ < p and y € 2¥ such that y € By for every splitnode t

of q.

Proof. Let 0 =19 < i1 < iz < ... be a sequence of natural numbers, increasing
very fast. For every n € w, let a, be the collection of all distinct pairs of
sequences obtained as concatenations of sequences u; : ¢ € [ig, 1), u; € Cp(7).
Recall the quantitative Ramsey theorem ?7?7?7: for every number n € w there
is a positive real §,, > 0 such that every subset of a, of normalized counting
measure mass > d,, contains a triangle, and the real §,, can be made arbitrarily
small by increasing the number i, 1 and therefore the size of the set a,,. Thus,
the numbers i, : n € w can be chosen increasing so fast that for some numbers
my, 1 n € w, writing ¢,, for the normalized counting measure on a,, multiplied
by m,,, every set of ¢,-mass contains a triangle and the numbers m,, increase
so fast as to satisfy [33, Theorem 1.5] for the given positive number &.

Now, define a Borel set D C II,a, X w X 2 in the following way: (w, :
n € w,k,y) € D if y € By, where t € 2<“ is the splitnode of p obtained by the
concatenation of t,, together with u,, : n € k, (where u,, € w,, is the lexicograph-
ically smaller sequence in the pair), together with the longest common initial
segment of the two sequences in the pair wi. Note that the vertical sections
of this set have Lebesgue mass at least e. By [33, Theorem 1.5], there are sets
b, : n € w of respective ¢,-masses at least 1, an infinite set ¢ C w and a point
y € 2% such that II,,b, x ¢ x {y} C D.

Now, for every number n € c, the set b,, contains a triangle, and two vertices
of the triangle will be lexicographically smaller than the third vertex, forming
a pair wg. For every n ¢ ¢, just pick any pair w,, € b,, and consider the set
B = {z € 2¥ : z is a concatenation of ¢, and (u, : n € w), where for n € ¢ the
sequence u, € wy, is arbitrary, and for n ¢ ¢, u, € w, is the lexicographically
smaller sequence}. It is not difficult to see that there is exactly one condition
q € P such that [q] = B, and this condition together with the point y € 2%
witness the statement of the claim!

7777
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The strong canonization properties of the ideal I are now very easy to prove.

Theorem 3.4.8. Fvery Borel equivalence relation on an I-positive Borel set
B C 2 simplifies to id or to ev or to Ey on I-positive Borel subset. Moreover,
the ideal has total canonization of graphs disjoint from Ey.

The total canonization of graphs is a result of Clinton Conley; we will prove a
probabilistic version of it.

Proof. To argue for the canonization of Borel equivalences, fix a Borel I-positive
set B C 2“ and a Borel equivalence relation E on it. We will first prove that
there is a Borel I-positive set C' C C such that on it, either E C Eg or E = C2.

Choose a countable elementary submodel M of a large structure and an I-
positive Borel set C' C B such that any two non-FEjy-equivalent points of C are
M-generic for the reduced product. Thinning out the set C we may assume
that its intersection with any Borel set in the model M is either I-positive or
empty. If no two Ey-inequivalent points x,y € C are E-equivalent, then £ C Ej
as desired. If there are two such points x,y € C such that = E y, then there
must be a condition (p,q) € P x g, P in the model M forcing igen E Zrgen,
and such that (x,y) € [p,q]. The set C N [q] is I-positive, and by the forcing
theorem applied in th