


Combinatorial Games

Traditional game theory has been successful at developing strategy in games of incomplete
information: when one player knows something that the other does not. But it has little to
say about games of complete information, for example Tic-Tac-Toe, solitaire, and hex. This
is the subject of Combinatorial Game Theory. Most board games are a challenge for
mathematics: to analyze a position one has to examine the available options, and then the
further options available after selecting any option, and so on. This leads to combinatorial
chaos, where brute force study is impractical.

In this comprehensive volume, József Beck shows readers how to escape from the
combinatorial chaos via the fake probabilistic method, a game-theoretic adaptation of the
probabilistic method in combinatorics. Using this, the author is able to determine the exact
results about infinite classes of many games, leading to the discovery of some striking new
duality principles.
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35 Reinforcing the Erdős–Selfridge technique (I) 470
36 Reinforcing the Erdős–Selfridge technique (II) 479
37 Almost Disjoint hypergraphs 485
38 Exact solution of the Clique Game (II) 492



Contents ix

Chapter VIII Advanced decomposition 504
39 Proof of the second Ugly Theorem 505
40 Breaking the “square-root barrier” (I) 525
41 Breaking the “square-root barrier” (II) 536
42 Van der Waerden Game and the RELARIN technique 545

Chapter IX Game-theoretic lattice-numbers 552
43 Winning planes: exact solution 553
44 Winning lattices: exact solution 575
45 I-Can-You-Can’t Games – Second Player’s Moral Victory 592

Chapter X Conclusion 610
46 More exact solutions and more partial results 611
47 Miscellany (I) 620
48 Miscellany (II) 634
49 Concluding remarks 644

Appendix A Ramsey Numbers 658

Appendix B Hales–Jewett Theorem: Shelah’s proof 669

Appendix C A formal treatment of Positional Games 677

Appendix D An informal introduction to game theory 705

Complete list of the Open Problems 716

What kinds of games? A dictionary 724

Dictionary of the phrases and concepts 727

References 730





Preface

There is an old story about the inventor of Chess, which goes something like this.
When the King learned the new game, he quickly fell in love with it, and invited
the inventor to his palace. “I love your game,” said the King, “and to express my
appreciation, I decided to grant your wish.” “Oh, thank you, Your Majesty,” began
the inventor, “I am a humble man with a modest wish: just put one piece of rice
on the first little square of the chess board, 2 pieces of rice on the second square,
4 pieces on the third square, 8 pieces on the fourth square, and so on; you double
in each step.” “Oh, sure,” said the King, and immediately called for his servants,
who started to bring in rice from the huge storage room of the palace. It didn’t take
too long, however, to realize that the rice in the palace was not enough; in fact, as
the court mathematician pointed out, even the rice produced by the whole world in
the last thousand years wouldn’t be enough to fulfill the inventor’s wish (264− 1
pieces of rice). Then the King became so angry that he gave the order to execute
the inventor. This is how the King discovered Combinatorial Chaos.

Of course, there is a less violent way to discover Combinatorial Chaos. Any
attempt to analyze unsolved games like Chess, Go, Checkers, grown-up versions of
Tic-Tac-Toe, Hex, etc., lead to the same conclusion: we get quickly lost in millions
and millions of cases, and feel shipwrecked in the middle of the ocean.

To be fair, the hopelessness of Combinatorial Chaos has a positive side: it keeps
the games alive for competition.

Is it really hopeless to escape from Combinatorial Chaos? The reader is surely
wondering: “How about Game Theory?” “Can Game Theory help here?” Traditional
Game Theory focuses on games of incomplete information (like Poker where neither
player can see the opponent’s cards) and says very little about Combinatorial Games
such as Chess, Go, etc. Here the term Combinatorial Game means a 2-player zero-
sum game of skill (no chance moves) with complete information, and the payoff
function has 3 values only: win, draw, and loss.

The “very little” that Traditional Game Theory can say is the following piece of
advice: try a backtracking algorithm on the game-tree. Unfortunately, backtracking

xi



xii Preface

leads to mindless exponential-time computations and doesn’t give any insight; this
is better than nothing, but not much. Consequently, computers provide remarkably
little help here; for example, we can easily simulate a random play on a computer,
but it is impossible to simulate an optimal play (due to the enormous complexity
of the computations). We simply have no data available for these games; no data
to extrapolate, no data to search for patterns.
The 3-dimensional 5×5×5 version of Tic-Tac-Toe, for instance, has about 3125

positions (each one of the 53 cells has 3 options: either marked by the first player,
or marked by the second player, or unmarked), and backtracking on a graph of
3125 vertices (“position graph”) takes at least 3125 steps, which is roughly the third
power of the “chaos” the chess-loving King was facing above. No wonder the
5×5×5= 53 Tic-Tac-Toe is unsolved!
It is even more shocking that we know only two(!) explicit winning strategies

in the whole class of n× n× · · · × n = nd Tic-Tac-Toe games: the 33 version
(which has an easy winning strategy) and the 43 version (which has an extremely
complicated winning strategy).
If traditional Game Theory doesn’t help, and the computer doesn’t really help

either, then what can we do? The objective of this book is exactly to show an
escape from Combinatorial Chaos, to win a battle in a hopeless war. This “victory”
on the class of Tic-Tac-Toe-like games is demonstrated. Tic-Tac-Toe itself is for
children (a very simple game really), but there are many grown-up versions, such
as the 4× 4× 4 = 43 game, and, in general, the n× n× · · ·× n = nd hypercube
versions, which are anything but simple. Besides hypercube Tic-Tac-Toe, we study
Clique Games, Arithmetic Progression Games, and many more games motivated by
Ramsey Theory. These “Tic-Tac-Toe-like games” form a very interesting sub-class
of Combinatorial Games: these are games for which the standard algebraic methods
fail to work. The main result of the book is that for some infinite families of natural
“Tic-Tac-Toe-like games with (at least) 2-dimensional goals” we know the exact
value of the phase transition between “Weak Win” and “Strong Draw.” We call
these thresholds Clique Achievement Numbers, Lattice Achievement Numbers, and
in the Reverse Games, Clique Avoidance Numbers and Lattice Avoidance Numbers.
These are game-theoretic analogues of the Ramsey Numbers and Van der Waerden
Numbers. Unlike the Ramsey Theory thresholds, which are hopeless in the sense
that the best-known upper and lower bounds are very far from each other, here we
can find the exact values of the game numbers. For precise statements see Sections
6, 8, 9, and 12.
To prove these exact results we develop a “fake probabilistic method” (we don’t

do case studies!); the name Tic-Tac-Toe theory in the title of the book actually refers
to this “fake probabilistic method.” The “fake probabilistic method” has two steps:
(1) randomization and (2) derandomization. Randomization is a game-theoretic



Preface xiii

adaptation of the so-called Probabilistic Method (“Erdős Theory”); derandomiza-
tionmeans to apply potential functions (“resource count”). The Probabilistic Method
(usually) gives existence only; the potential technique, on the other hand, supplies
explicit strategies. What is more, many of our explicit winning and drawing strate-
gies are very efficient combinatorial algorithms (in fact, the most efficient ones that
we know).

The “fake probabilistic method” is not the first theory of Combinatorial Games.
There is already a well-known and successful theory: the addition theory of “Nim-
like compound games.” It is an algebraic theory designed to handle complicated
games which are, or eventually turn out to be, compounds of several very simple
games. “Nim-like compound games” is the subject of the first volume of the
remarkable Winning Ways for your Mathematical Plays written by Berlekamp,
Conway, and Guy (published in 1982). Volume 1 was called Theory, and volume 2
had the more prosaic name of Case Studies. As stated by the authors: “there are lots
of games for which the theories we have now developed are useful, and even more
for which they are not.” The family of Tic-Tac-Toe-like games – briefly discussed
in Chapter 22 of the Winning Ways (vol. 2) – definitely belongs to this latter class.
By largely extending Chapter 22, and systematically using the “fake probabilistic
method” – which is completely missing(!) from the Winning Ways – in this book
an attempt is made to upgrade the Case Studies to a Quantitative Theory.

The algebraic and probabilistic approaches represent two entirely different view-
points, which apparently complement each other. In contrast to the local viewpoint
of the addition theory, the “fake probabilistic method” is a global theory for games
which do not decompose into simple sub-games, and remain as single coherent
entities throughout play. A given position P is evaluated by a score-system which
has some natural probabilistic interpretation such as the “loss probability in the ran-
domized game starting from position P.” Optimizing the score-system is how we cut
short the exhaustive search, and construct efficient (“polynomial time”) strategies.

The “fake probabilistic method” works best for large values of the parameters –
a consequence of the underlying “laws of large numbers.” The “addition theory,”
on the other hand, works best for little games.

The pioneering papers of the subject are:

1. Regularity and Positional Games, by A. W. Hales and R. I. Jewett from 1963;
2. On a Combinatorial Game, by P. Erdős and J. Selfridge from 1973;
3. Biased Positional Games by V. Chvátal and P. Erdős from 1978; and, as a

guiding motivation,
4. the Erdős–Lovász 2-Coloring Theorem from 1975.

The first discovered fundamental connections such as “strategy stealing and Ramsey
Theory” and “pairing strategy andMatching Theory”, and introduced our basic game
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class (“positional games”). The last three papers (Erdős with different co-authors)
initiated and motivated the “games, randomization, derandomization” viewpoint,
the core idea of the book. What is developed here is a far-reaching extension of
these ideas – it took 25 years hard labor to work out the details. The majority of
the results are published here for the first time.
Being an enthusiastic teacher myself, I tried to write the book in a lecture series

format that I would like to use myself in the classroom. Each section is basically
an independent lecture; most of them can be covered in the usual 80-minute time
frame.

Beside the Theory the book contains dozens of challenging Exercises. The reader
is advised to find the solutions to the exercises all by him/herself.

The notation is standard. For example, c� c0� c1� c2� � � � denote, as usual, positive
absolute constants (that I could but do not care to determine); “an = o�1�” and
“an = O�1�” mean that an → 0 and �an� < c as n → �; and, similarly, “f�n� =
o�g�n��” and “f�n� = O�g�n��” mean that f�n�/g�n�→ 0 and �f�n�/g�n�� < c as
n→�. Also logx, log2 x, and log3 x stand for, respectively, the natural logarithm,
the base 2 logarithm, and the base 3 logarithm of x.
There are two informal sections: A summary of the book in a nutshell at the

beginning, and An informal introduction to Game Theory at the end of the book in
Appendix D. Both are easy reading; we highly recommend the reader to start the
book with these two sections.
Last but not least, I would like to thank the Harold H. Martin Chair at Rutgers

University and the National Science Foundation for the research grants supporting
my work.



A summary of the book in a nutshell

Mathematics is spectacularly successful at making generalizations: the more than
2000-year old arithmetic and geometry were developed into the monumental fields
of calculus, modern algebra, topology, algebraic geometry, and so on. On the
other hand, mathematics could say remarkably little about nontraditional complex
systems. A good example is the notorious “3n+1 problem.” If n is even, take n/2,
if n is odd, take �3n+ 1�/2; show that, starting from an arbitrary positive integer
n and applying the two rules repeatedly, eventually we end up with the periodic
sequence 1,2,1,2,1,2,� � � . The problem was raised in the 1930s, and after 70 years
of diligent research it is still completely hopeless!

Next consider some games. Tic-Tac-Toe is an easy game, so let’s switch to
the 3-space. The 3× 3× 3 Tic-Tac-Toe is a trivial first player win, the 4× 4× 4
Tic-Tac-Toe is a very difficult first player win (computer-assisted proof by O.
Patashnik in the late 1970s), and the 5× 5× 5 Tic-Tac-Toe is a hopeless open
problem (it is conjectured to be a draw game). Note that there is a general recipe
to analyze games: perform backtracking on the game-tree (or position graph).
For the 5× 5× 5 Tic-Tac-Toe this requires about 3125 steps, which is totally
intractable.

We face the same “combinatorial chaos” with the game of Hex. Hex was invented
in the early 1940s by Piet Hein (Denmark), since when it has become very popular,
especially among mathematicians. The board is a rhombus of hexagons of size
n×n; the two players, White (who starts) and Black, take two pairs of opposite
sides of the board. The two players alternately put their pieces on unoccupied
hexagons (White has white pieces and Black has black pieces). White (Black) wins
if his pieces connect his opposite sides of the board.

In the late 1940s John Nash (A Beautiful Mind) proved, by a pioneering applica-
tion of the Strategy Stealing Argument, that Hex is a first player win. The notorious
open problem is to find an explicit winning strategy. It remains open for every
n≥ 8. Note that the standard size of Hex is n= 11, which has about 3121 different
positions.

1



2 Combinatorial Games

What is common in the 3n+ 1 problem, the 5× 5× 5 Tic-Tac-Toe, and Hex?
They all have extremely simple rules, which unexpectedly lead to chaos: exhibiting
unpredictable behavior, without any clear order, without any pattern. These three
problems form a good sample, representing a large part (perhaps even the majority)
of the applied world problems. Mathematics gave up on these kinds of problems,
sending them to the dump called “combinatorial chaos.” Is there an escape from
the combinatorial chaos?
It is safe to say that understanding/handling combinatorial chaos is one of the

main problems of modern mathematics. However, the two game classes (nd Tic-
Tac-Toe and n×n Hex) represent a bigger challenge, they are even more hopeless,
than the 3n+1 problem. For the 3n+1 problem we can at least carry out computer
experimentation; for example, it is known that the conjecture is true for every
n≤ 1016 (a huge data bank is available): we can search the millions of solved cases
for hidden patterns; we can try to extrapolate (which, unfortunately, has not led us
anywhere yet).
For the game classes, on the other hand, only a half-dozen cases are solved.

Computers do not help: it is easy to simulate a random play, but it is impossible to
simulate an optimal play – this hopelessness leaves the games alive for competition.
We simply have no data available; it is impossible to search for patterns if there
are no data. (For example, we know only two(!) explicit winning strategies in the
whole class of n×n×· · ·×n= nd Tic-Tac-Toe games: the 33 version, which has
an easy winning strategy, and the 43 version, which has an extremely complicated
winning strategy.) These Combinatorial Games represent a humiliating challenge
for mathematics!
Note that the subject of Game Theory was created by the Hungarian–American

mathematician John von Neumann in a pioneering paper from 1928 and in the
well-known book Theory of Games and Economic Behavior jointly written with
the economist Oscar Morgenstern in 1944. By the way, the main motivation of von
Neumann was to understand the role of bluffing in Poker. (von Neumann didn’t
care, or at least had nothing to say, about combinatorial chaos; the von Neumann–
Morgenstern book completely avoids the subject!) Poker is a card game of incom-
plete information: the game is interesting because neither player knows the oppo-
nent’s cards. In 1928 von Neumann proved his famous minimax theorem, stating that
in games of incomplete information either player has an optimal strategy. This opti-
mal strategy is typically a randomized (“mixed”) strategy (to make up for the lack of
information).
Traditional Game Theory doesn’t say much about games of complete information

like Chess, Go, Checkers, and grown-up versions of Tic-Tac-Toe; this is the subject
of Combinatorial Game Theory. So far Combinatorial Game Theory has developed
in two directions:
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(I) the theory of “Nim-like games,” which means games that fall apart into simple
subgames in the course of a play, and

(II) the theory of “Tic-Tac-Toe-like games,” which is about games that do not fall
apart, but remain a coherent entity during the course of a play.

Direction (I) is discussed in the first volume of the well-known book Winning Ways
by Berlekamp, Conway, and Guy from 1982. Direction (II) is discussed in this
book.

As I said before, the main challenge of Combinatorial Game Theory is to handle
combinatorial chaos. To analyze a position in a game (say, in Chess), it is important
to examine the options, and all the options of the options, and all the options of
the options of the options, and so on. This explains the exponential nature of the
game tree, and any intensive case study is clearly impractical even for very simple
games, like the 5× 5× 5 Tic-Tac-Toe. There are dozens of similar games, where
there is a clearcut natural conjecture about which player has a winning strategy,
but the proof is hopelessly out of reach (for example, 5-in-a-row in the plane, the
status of “Snaky” in Animal Tic-Tac-Toe, Kaplansky’s 4-in-a-line game, Hex in a
board of size at least 8×8, and so on, see Section 4).
Direction (I), “Nim-like games,” basically avoids the challenge of chaos by

restricting itself to games with simple components, where an “addition theory” can
work. Direction (II) is a desperate attempt to handle combinatorial chaos.

The first challenge of direction (II) is to pinpoint the reasons why these games
are hopeless. Chess, Tic-Tac-Toe and its variants, Hex, and the rest are all “Who-
does-it-first?” games (which player gives the first checkmate, who gets the first
3-in-a-row, etc.). “Who-does-it-first?” reflects competition, a key ingredient of
game playing, but it is not the most fundamental question. The most fundamental
question is “What are the achievable configurations, achievable, but not necessarily
first?” and the complementary question “What are the impossible configurations?”
Drawing the line between “doable” and “impossible” (doable, but not necessarily
first!) is the primary task of direction (II). First we have to clearly understand
“what is doable”; “what is doable first” is a secondary question. “Doing-it-first”
is the ordinary win concept; it is reasonable, therefore, to call “doing it, but not
necessarily first” a Weak Win. If a player fails to achieve a Weak Win, we say the
opponent forced (at least) a Strong Draw.

The first idea is to switch from ordinary win to Weak Win; the second idea
of direction (II) is to carefully define its subject: “generalized Tic-Tac-Toe.” Why
“generalized Tic-Tac-Toe”? “Tic-Tac-Toe-like games” are the simplest case in the
sense that they are static games. Unlike Chess, Go, and Checkers, where the players
repeatedly relocate or even remove pieces from the board (“dynamic games”),
in Tic-Tac-Toe and Hex the players make permanent marks on the board, and
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relocating or removing a mark is illegal. (Chess is particularly complicated. There
are 6 types of pieces: King, Queen, Bishop, Knight, Rook, Pawn, and each one has
its own set of rules of “how to move the piece.” The instructions of playing Tic-
Tac-Toe is just a couple of lines, but the “instructions of playing Chess” is several
pages long.) The “relative” simplicity of games such as “Tic-Tac-Toe” makes them
ideal candidates for a mathematical theory.
What does “generalized Tic-Tac-Toe” mean? Nobody knows what “generalized

Chess” or “generalized Go” are supposed to mean, but (almost) everybody would
agree on what “generalized Tic-Tac-Toe” should mean. In Tic-Tac-Toe the “board”
is a 3×3= 9 element set, and there are 8 “winning triplets.” Similarly, “generalized
Tic-Tac-Toe” can be played on an arbitrary finite hypergraph, where the hyperedges
are called “winning sets,” the union set is the “board,” the players alternately occupy
elements of the “board.” Ordinary win means that a player can occupy a whole
“winning set” first; Weak Win simply means to occupy a whole winning set, but
not necessarily first.
How can direction (II) deal with combinatorial chaos? The exhaustive search

through the exponentially large game-tree takes an enormous amount of time (usu-
ally more than the age of the universe). A desperate(!) attempt to make up for the
lack of time is to study the random walk on the game-tree; that is, to study the
randomized game where both players play randomly.

The extremely surprising message of direction (II) is that the probabilistic analysis
of the randomized game can often be converted into optimal Weak Win and Strong
Draw strategies via potential arguments. It is basically a game-theoretic adaptation
of the so-called Probabilistic Method in Combinatorics (“Erdős Theory”); this is
why we refer to it as a “fake probabilistic method.”
The fake probabilistic method is considered a mathematical paradox. It is a

“paradox” because Game Theory is about perfect players, and it is shocking that
a play between random generators (“dumb players”) has anything to do with a
play between perfect players! “Poker and randomness” is a natural combination:
mixed strategy (i.e. random choice among deterministic strategies) is necessary
to make up for the lack of complete information. On the other hand, “Tic-Tac-
Toe and randomness” sounds like a mismatch. To explain the connection between
“Tic-Tac-Toe” and “randomness” requires a longer analysis.
First note that the connection is not trivial in the sense that an optimal strat-

egy is never a “random play.” In fact, a “random play” usually leads to a quick,
catastrophic defeat. It is a simple general fact that for games of “complete informa-
tion” the optimal strategies are always deterministic (“pure”). The fake probabilistic
method is employed to find an explicit deterministic optimal strategy. This is where
the connection is: the fake probabilistic method is motivated by traditional Proba-
bility Theory, but eventually it is derandomized by potential arguments. In other
words, we eventually get rid of Probability Theory completely, but the intermediate
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“probabilistic step” is an absolutely crucial, inevitable part of the understanding
process.

The fake probabilistic method consists of the following main chapters:

(i) game-theoretic first moment,
(ii) game-theoretic second and higher moments,
(iii) game-theoretic independence.

By using the fake probabilistic method, we can find the exact solution of infinitely
many natural “Ramseyish” games, thought to be completely hopeless before, like
some Clique Games, 2-dimensional van der Waerden games, and some “sub-
space” versions of multi-dimensional Tic-Tac-Toe (the goal sets are at least
“2-dimensional”).

As said before, nobody knows how to win a “who-does-it-first game.” We have
much more luck with Weak Win where “doing it first” is ignored. A Weak Win
Game, or simply a Weak Game, is played on an arbitrary finite hypergraph, the two
players are called Maker and Breaker (alternative names are Builder and Blocker).
To achieve an ordinary win a player has to “build and block” at the same time. In
a Weak Game these two jobs are separated, which makes the analysis somewhat
easier, but not easy. For example, the notoriously difficult Hex is clearly equivalent
to a Weak Game, but it doesn’t help to find an explicit first player’s winning
strategy.

What we have been discussing so far was the achievement version. The Reverse
Game (meaning the avoidance version) is equally interesting, or perhaps even more
interesting.

The general definition of the Reverse Weak Game goes as follows. As usual, it
is played on an arbitrary finite hypergraph. One player is a kind of “anti-builder”:
he wants to avoid occupying a whole winning set – we call him Avoider. The other
player is a kind of “anti-blocker”: he wants to force the reluctant Avoider to build
a winning set – “anti-blocker” is officially called Forcer.

Why “Ramseyish” games? Well, Ramsey Theory gives some partial information
about ordinary win. We have a chance, therefore, to compare what we know about
ordinary win with that of Weak Win.

The first step in the fake probabilistic method is to describe the majority play,
and then, in the second step, try to find a connection between the majority play and
the optimal play (the surprising part is that it works!).

The best way to illustrate this is to study the Weak and Reverse Weak versions
of the �Kn�Kq� Clique Game: the players alternately take new edges of the com-
plete graph Kn; Maker’s goal is to occupy a large clique Kq; Breaker wants to
stop Maker. In the Reverse Game, Forcer wants to force the reluctant Avoider to
occupy a Kq.
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If q = q�n� is “very small” in terms of n, then Maker (or Forcer) can easily win.
On the other hand, if q = q�n� is “not so small” in terms of n, then Breaker (or
Avoider) can easily win. Where is the game-theoretic breaking point? We call the
breaking point the Clique Achievement (Avoidance) Number.
For “small” ns no one knows the answer, but for “large” ns we know the exact

value of the breaking point! Indeed, assume that n is sufficiently large like n≥ 210
10
.

If we take the lower integral part

q = �2 log2 n−2 log2 log2 n+2log2e−3�
(base 2 logarithm), then Maker (or Forcer) wins. On the other hand, if we take the
upper integral part

q = �2 log2 n−2 log2 log2 n+2log2e−3��
then Breaker (or Avoider) wins.
For example, if n= 210

10
, then

2 log2 n−2 log2 log2 n+2log2e−3=
= 2 ·1010−66�4385+2�8854−3= 19�999�999�933�446�

and so the largest clique size that Maker can build (Forcer can force Avoider to
build) is 19�999�999�933.
This level of accuracy is even more striking because for smaller values of n we

do not know the Clique Achievement Number. For example, if n= 20, then it can
be either 4 or 5 or 6 (which one?); if n= 100, then it can be either 5 or 6 or 7 or 8
or 9 (which one?); if n= 2100, then it can be either 99 or 100 or 101 or � � � or 188
(which one?), that is there are 90 possible candidates. (Even less is known about
the small Avoidance Numbers.) We will (probably!) never know the exact values
of these game numbers for n= 20, or for n= 100, or for n= 2100, but we know the
exact value for a monster number such as n= 210

10
. This is truly surprising! This is

the complete opposite of the usual induction way of discovering patterns from the
small cases (the method of direction (I)).
The explanation for this unusual phenomenon comes from our technique: the

fake probabilistic method. Probability Theory is a collections of Laws of Large
Numbers. Converting the probabilistic arguments into a potential strategy leads to
certain “error terms”; these “error terms” become negligible compared to the “main
term” if the board is large.

It is also very surprising that the Weak Clique Game and the ReverseWeak Clique
Game have exactly the same breaking point: Clique Achievement Number = Clique
Avoidance Number. This contradicts common sense. We would expect that an eager
Maker in the “straight” game has a good chance to build a larger clique than a
reluctant Avoider in the Reverse version, but this “natural” expectation turns out
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to be wrong. We cannot give any a priori reason why the two breaking points
coincide. All that can be said is that the highly technical proof of the “straight” case
(around 30 pages) can be easily adapted (like maximum is replaced by minimum) to
yield the same breaking point for the Reverse Game, but this is hardly the answer
that we are looking for.

What is the mysterious expression 2 log2 n− 2 log2 log2 n+ 2log2e− 3? An
expert of the theory of Random Graphs immediately recognizes that 2 log2 n−
2 log2 log2 n+2log2e−3 is exactly 2 less than the Clique Number of the symmetric
Random Graph R�Kn�1/2� (1/2 is the edge probability).
A combination of the first and second moment methods (standard Probability

Theory) shows that the Clique Number ��R�Kn�1/2�� of the Random Graph has
a very strong concentration. Typically it is concentrated on a single integer with
probability→ 1 as n→� (and even in the worst case there are at most two values).
Indeed, the expected number of q-cliques in R�Kn�1/2� equals

f�q�= fn�q�=
(
n

q

)
2−�

q
2��

The function f�q� drops under 1 around q ≈ 2 log2 n. The real solution of the
equation f�q�= 1 is

q = 2 log2 n−2 log2 log2 n+2 log2 e−1+o�1�� (1)

which is exactly 2 more than the game-theoretic breaking point

q = 2 log2 n−2 log2 log2 n+2 log2 e−3+o�1� (2)

mentioned above.
To build a clique Kq of size (1) by Maker (or Avoider in the Reverse Game) on

the board Kn is the majority outcome. The majority play outcome differs from the
optimal play outcome by a mere additive constant 2.

The strong concentration of the Clique Number of the Random Graph is not that
terribly surprising as it seems at first sight. Indeed, f�q� is a very rapidly changing
function

f�q�

f�q+1�
= q+1

n−q
2q = n1+o�1�

if q ≈ 2 log2 n. On an intuitive level, it is explained by the obvious fact that if q
switches to q+1� then

(
q

2

)
switches to

(
q+1
2

)= (
q

2

)+q, which is a large “square-root
size” increase.

Is there a “reasonable” variant of the Clique Game for which the breaking point is
exactly (1), i.e. the Clique Number of the Random Graph? The answer is “yes,” and
the game is a “Picker–Chooser game.” To motivate the “Picker–Chooser game,”
note that the alternating Tic-Tac-Toe-like play splits the board into two equal (or
almost equal) parts. But there are many other ways to divide the board into two
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equal parts. The “I-cut-you’ll-choose way” (motivated by how a couple shares a
single piece of cake after dinner) goes as follows: in each move, Picker picks two
previously unselected points of the board, Chooser chooses one of them, and the
other one goes back to Picker. In the Picker–Chooser game Picker is the builder
(i.e. he wants to occupy a whole winning set) and Chooser is the blocker (i.e. his
goal is to mark every winning set).
When Chooser is the builder and Picker is the blocker, we call it the Chooser–

Picker game.
The proof of the theorem that the “majority clique number” (1) is the exact

value of the breaking point for the �Kn�Kq� Picker–Chooser Clique Game (where
of course the “points” are the edges of Kn) is based on the concepts of:

(a) game-theoretic first moment; and
(b) game-theoretic second moment.

The proof is far from trivial, but not so terribly difficult either (because Picker
has so much control of the game). It is a perfect stepping stone before conquering
the much more challenging Weak and Reverse Weak, and also the Chooser–Picker
versions. The last three Clique Games all have the same breaking point, namely
(2). What is (2)?
Well, (2) is the real solution of the equation(

n

q

)
2−�

q
2� = f�q�=

(
n

2

)
2
(
q

2

) � (3)

The intuitive meaning of (3) is that the overwhelming majority of the edges of the
random graph are covered by exactly one copy of Kq . In other words, the Random
Graph may have a large number of copies of Kq, but they are well-spread (un-
crowded); in fact, there is room enough to be typically pairwise edge-disjoint. This
suggests the following intuition. Assume that we are at a “last stage” of playing
a Clique Game where Maker (playing the Weak Game) has a large number of
“almost complete” Kqs: “almost complete” in the sense that, (a) in each “almost
complete” Kq all but two edges are occupied by Maker, (b) all of these edge-pairs
are unoccupied yet, and (c) these extremely dangerous Kqs are pairwise edge-
disjoint. If (a)–(b)–(c) hold, then Breaker can still escape from losing: he can block
these disjoint unoccupied edge-pairs by a simple Pairing Strategy! It is exactly the
Pairing Strategy that distinguishes the Picker–Chooser game from the rest of the
bunch. Indeed, in each of the Weak, Reverse Weak, and Chooser–Picker games,
“blocker” can easily win the Disjoint Game (meaning the trivial game where the
winning sets are disjoint and contain at least two elements each) by employing a
Pairing Strategy. In sharp contrast, in the Picker–Chooser version Chooser always
loses a “sufficiently large” Disjoint Game (more precisely, if there are at least 2n

disjoint n-element winning sets, then Picker wins the Picker–Chooser game).
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This is the best intuitive explanation that we know to understand breaking point
(2). This intuition requests the “Random Graph heuristic,” i.e., to (artificially!)
introduce a random structure in order to understand a deterministic game of complete
information.

But the connection is much deeper than that. To prove that (2) is the exact value
of the game-theoretic breaking point, one requires a fake probabilistic method. The
main steps of the proof are:

(i) game-theoretic first moment,
(ii) game-theoretic higher moments (involving “self-improving potentials”), and
(iii) game-theoretic independence.

Developing (i)–(iii) is a long and difficult task. The word “fake” in the fake
probabilistic method refers to the fact that, when an optimal strategy is actually
defined, the “probabilistic part” completely disappears. It is a metamorphosis: as a
caterpillar turns into a butterfly, the probabilistic arguments are similarly converted
into (deterministic) potential arguments.

Note that potential arguments are widely used in puzzles (“one-player games”).
A well-known example is Conway’s Solitaire Army puzzle: arrange men behind
a line and then by playing “jump and remove”, horizontally or vertically, move a
man as far across the line as possible. Conway’s beautiful “golden ratio” proof, a
striking potential argument, shows that it is impossible to send a man forward 5 (4
is possible). Conway’s result is from the early 1960s. (It is worthwhile to mention
the new result that if “to jump a man diagonally” is permitted, then 5 is replaced
by 9; in other words, it is impossible to send a man forward 9, but 8 is possible.
The proof is similar, but the details are substantially more complicated.)

It is quite natural to use potential arguments to describe impossible configurations
(as Conway did). It is more surprising that potential arguments are equally useful
to describe achievable configurations (i.e. Maker’s Weak Win) as well. But the
biggest surprise of all is that the Maker’s Building Criterions and the Breaker’s
Blocking Criterions often coincide, yielding exact solutions of several seemingly
hopeless Ramseyish games. There is, however, a fundamental difference: Conway’s
argument works for small values such as 5, but the fake probabilistic method gives
sharp results only for “large values” of the parameters (we refer to this mysterious
phenomenon as a “game-theoretic law of large numbers”).

These exact solutions all depend on the concept of “game-theoretic inde-
pendence” – another striking connection with Probability Theory. What is
game-theoretic independence? There is a trivial and a non-trivial interpretation
of game-theoretic independence.

The “trivial” (but still very useful) interpretation is about disjoint games. Consider
a set of hypergraphs with the property that, in each one, Breaker (as the second
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player) has a strategy to block (mark) every winning set. If the hypergraphs are
pairwise disjoint (in the strong sense that the “boards” are disjoint), then, of course,
Breaker can block the union hypergraph as well. Disjointness guarantees that in any
component either player can play independently from the rest of the components.
For example, the concept of the pairing strategy is based on this simple observation.
In the “non-trivial” interpretation, the initial game does not fall apart into disjoint

components. InsteadBreaker can force that eventually, in amuch later stageof theplay,
the family of unblocked (yet) hyperedges does fall apart into much smaller (disjoint)
components. This is how Breaker can eventually finish the job of blocking the whole
initial hypergraph, namely “blocking componentwise” in the “small” components.
A convincing probabilistic intuition behind the non-trivial version is the well-

known Local Lemma (or Lovász Local Lemma). The Local Lemma is a remarkable
probabilistic sieve argument to prove the existence of certain very complicated
structures that we are unable to construct directly.
A typical application of the Local Lemma goes as follows:

Erdős–Lovász 2-Coloring Theorem (1975). Let F = �A1�A2�A3� � � � � be an
n-uniform hypergraph. Suppose that each Ai intersects at most 2

n−3 other Aj ∈ F
(“local size”). Then there is a 2-coloring of the “board” V =⋃

i Ai such that no
Ai ∈ F is monochromatic.

The conclusion (almost!) means that there exists a drawing terminal position
(we have cheated a little bit: in a drawing terminal position, the two color classes
have equal size). The very surprising message of the Erdős–Lovász 2-Coloring
Theorem is that the “global size” of hypergraph F is irrelevant (it can even be
infinite!), only the “local size” matters.
Of course, the existence of a single (or even several) drawing terminal position

does not guarantee the existence of a drawing strategy. But perhaps it is still true
that under the Erdős–Lovász condition (or under some similar but slightly weaker
local condition), Breaker (or Avoider, or Picker) has a blocking strategy, i.e. he can
block every winning set in the Weak (or Reverse Weak, or Chooser–Picker) game
on F . We refer to this “blocking draw” as a Strong Draw.
This is a wonderful problem; we call it the Neighborhood Conjecture. Unfortu-

nately, the conjecture is still open in general, in spite of all efforts trying to prove
it during the last 25 years.

We know, however, several partial results, which lead to interesting applications.
A very important special case, when the conjecture is “nearly proved,” is the class of
Almost Disjoint hypergraphs: where any two hyperedges have at most one common
point. This is certainly the case for “lines,” the winning sets of the nd Tic-Tac-Toe.
What do we know about the multidimensional nd Tic-Tac-Toe? We know that it

is a draw game even if the dimension d is as large as d = c1n
2/ logn, i.e. nearly
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quadratic in terms of (the winning size) n. What is more, the draw is a Strong
Draw: the second player can mark every winning line (if they play till the whole
board is occupied). Note that this bound is nearly best possible: if d > c2n

2, then
the second player cannot force a Strong Draw.
How is it that for the Clique Game we know the exact value of the breaking point,

but for the multidimensional Tic-Tac-Toe we could not even find the asymptotic
truth (due to the extra factor of logn in the denominator)? The answer is somewhat
technical. The winning lines in the multidimensional nd Tic-Tac-Toe form an
extremely irregular hypergraph: the maximum degree is much larger than the
average degree. This is why one cannot apply the Blocking Criterions directly to
the “nd hypergraph.” First we have to employ a Truncation Procedure to bring the
maximum degree close to the average degree, and the price that we pay for this
degree reduction is the loss of a factor of logn.
However, if we consider the nd Torus Tic-Tac-Toe, then the corresponding

hypergraph becomes perfectly uniform (the torus is a group). For example, every
point of the nd Torus Tic-Tac-Toe has �3d − 1�/2 winning lines passing through
it. This uniformity explains why for the nd Torus Tic-Tac-Toe we can prove
asymptotically sharp thresholds.

A “winning line” in the nd Tic-Tac-Toe is a set of n points on a straight
line forming an n-term Arithmetic Progression. This motivates the “Arithmetic
Progression Game”: the board is the interval 1�2� � � � �N , and the goal is to build an
n-term Arithmetic Progression. The corresponding hypergraph is “nearly regular”;
this is why we can prove asymptotically sharp results.

Let us return to the nd Torus Tic-Tac-Toe. If the “winning line” is replaced by
“winning plane” (or “winning subspace of dimension ≥ 2” in general), then we can
go far beyond “asymptotically sharp”: we can even determine the exact value of the
game-theoretic threshold, as in the Clique Game. For example, a “winning plane”
is an n×n lattice in the nd Torus. This is another rapidly changing 2-dimensional
configuration: if n switches to n+1, then n×n switches to �n+1�×�n+1�, which
is again a “square-root size” increase just as in the case of the cliques. This formal
similarity to the Clique Game (both have “2-dimensional goals”) explains why there
is a chance to find the exact value of the game-theoretic breaking point (the actual
proofs are rather different).

It is very difficult to visualize the d-dimensional torus if d is large; here is an
easier version: a game with 2-dimensional goal sets played on the plane.

Two-dimensional Arithmetic Progression Game. A natural way to obtain a 2-
dimensional arithmetic progression (AP) is to take the Cartesian product. The
Cartesian product of two q-term APs with the same gap is a q×q Aligned Square
Lattice.
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Figure 1 4×4 Aligned Square Lattice on a 13×13 board

Let �N ×N�q×q Square Lattice� denote the game where the board is the N ×N

chessboard, and the winning sets are the q×q Aligned Square Lattices (see Figure 1
for N = 13, q = 4, and for a particular 4×4 winning set). Again we know the exact
value of the game-theoretic breaking point: if

q =
⌊√

log2N +o�1�
⌋
�

then Maker can always build a q× q Aligned Square Lattice, and this is the
best that Maker can achieve. Breaker can always prevent Maker from build-
ing a �q + 1�× �q + 1� Aligned Square Lattice. Again the error term o�1�
becomes negligible if N is large. For example, N = 210

40+1020 is large enough, and
then √

log2N =
√
1040+1020 = 1020+ 1

2
+O�10−20��

so
√
log2N is not too close to an integer (in fact, it is almost exactly in the middle),

which guarantees that q= 1020 is the largest Aligned Square Lattice size that Maker
can build.
Similarly, q = 1020 is the largest Aligned Square Lattice size that Forcer can

force Avoider to build.
Here is an interesting detour: consider (say) the biased (2:1) avoidance version

where Avoider takes 2 points and Forcer takes 1 point of the N ×N board per
move. Then again we know the exact value of the game-theoretic breaking point: if

q =
⌊√

log 3
2
N +o�1�

⌋
�
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then Forcer can always force Avoider to build a q× q Aligned Square Lattice,
and this is the best that Forcer can achieve. Avoider can always avoid building
a �q+ 1�× �q+ 1� Aligned Square Lattice. Notice that the base of the logarithm
changed from 2 to 3/2.

How about the biased (2:1) achievement version where Maker takes 2 points and
Breaker takes 1 point of the N ×N board per move? Then we know the following
lower bound: if

q =
⌊√

log 3
2
N +2 log2N +o�1�

⌋
�

then Maker can always build a q×q Aligned Square Lattice. We conjecture (but
cannot prove) that this is the best that topdog Maker can achieve (i.e. Breaker can
always prevent Maker from building a �q+ 1�× �q+ 1� Aligned Square Lattice).
Notice that in the biased (2:1) game (eager) Maker can build a substantially larger
Aligned Square Lattice than (reluctant) Avoider; the ratio of the corresponding qs
is at least as large as √

1
log�3/2� + 2

log2√
1

log�3/2�

= 1�473�

This makes the equality Achievement Number = Avoidance Number in the fair
(1:1) games even more surprising.

We can prove the exact formulas only for large board size, such as KN with
N ≥ 210

10
(Clique Game) and the N ×N grid with N ≥ 210

40
(Square Lattice Game),

but we are convinced that the exact formulas give the truth even for small board
sizes like 100 and 1000.

We summarize the meaning of “game-theoretic independence” in the (1:1) game
as follows. It is about games such as Tic-Tac-Toe for which the local size is much
smaller than the global size. Even if the game starts out as a coherent entity, either
player can force it to develop into smaller, local size composites. A sort of intuitive
explanation behind it is the Erdős–Lovász 2-Coloring Theorem, which itself is a
sophisticated application of statistical independence. Game-theoretic independence
is about how to sequentialize statistical independence.

Here we stop the informal discussion, and begin the formal treatment. It is going
to be a long journey.





Part A

Weak Win and Strong Draw

Games belong to the oldest experiences of mankind, well before the appearance
of any kind of serious mathematics. (“Serious mathematics” is in fact very young:
Euclid’s Elements is less than three-thousand years old.) The playing of games has
long been a natural instinct of all humans, and is why the solving of games is a
natural instinct of mathematicians. Recreational mathematics is a vast collection
of all kinds of clever observations (“pre-theorems”) about games and puzzles,
the perfect empirical background for a mathematical theory. It is well-known
that games of chance played an absolutely crucial role in the early develop-
ment of Probability Theory. Similarly, Graph Theory grew out of puzzles (i.e.
1-player games) such as the famous Königsberg bridge problem, solved by Euler
(“Euler trail”), or Hamilton’s roundtrip puzzle on the graph of the dodecahedron
(“Hamilton cycle problem”). Unlike these two very successful theories, we still do
not have a really satisfying quantitative theory of games of pure skill with com-
plete information, or as they are usually called nowadays: Combinatorial Games.
Using technical terms, Combinatorial Games are 2-player zero-sum games, mostly
finite, with complete information and no chance moves, and the payoff function
has three values ±1�0 as the first player wins or loses the play, or it ends in
a draw.

Combinatorial Game Theory attempts to answer the questions of “who wins,”
“how to win,” and “how long does it take to win.” Naturally “win” means “forced
win,” i.e. a “winning strategy.”

Note that Graph Theory and Combinatorial Game Theory face the very same
challenge: combinatorial chaos. Given a general graphG, the most natural questions
are: what is the chromatic number of G? What is the length of the longest path
in G? In particular, does G contain a Hamiltonian path, or a Hamiltonian cycle?
What is the size of the largest complete subgraph of G? All that Graph Theory
can say is “try out everything,” i.e. the brute force approach, which leads to
combinatorial chaos.
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Similarly, to find a winning strategy in a general game (of complete information)
all we can do is backtracking of the enormous game-tree, or position-graph, which
also leads to combinatorial chaos.

How do we escape from the combinatorial chaos? In particular, when and how
can a player win in a game such as Tic-Tac-Toe? And, of course, what are the “Tic-
Tac-Toe like games”? This is the subject of Part A. We start slowly: in Chapter I we
discuss many concrete examples and prove a few simple (but important!) theorems.
In Chapter II we formulate the main results, and prove a few more simple theorems.
The hard proofs come later in Parts C and D.



Chapter I
Win vs. Weak Win

Chess, Tic-Tac-Toe, and Hex are among the most well-known games of complete
information with no chance move. What is common in these apparently very differ-
ent games? In either game the player that wins is the one who achieves a “winning
configuration” first. A “winning configuration” in Tic-Tac-Toe is a “3-in-a-row,”
in Hex it is a “connecting chain of hexagons,” and in Chess it is a “capture of the
opponent’s King” (called a checkmate).

The objective of other well-known games of complete information like Checkers
and Go is more complicated. In Checkers the goal is to be the first player either
to capture all of the opponent’s pieces (checkers) or to build a position where
the opponent cannot make a move. The capture of a single piece ( jumping over)
is a “mini-win configuration,” and, similarly, an arrangement where the opponent
cannot make a move is a “winning configuration.”

In Go the goal is to capture as many stones of the opponent as possible
(“capturing” means to “surround a set of opponent’s stones by a connected set”).

These games are clearly very different, but the basic question is always the same:
“Which player can achieve a winning configuration first?”.
The bad news is that no one knows how to achieve a winning configuration

first, except by exhaustive case study. There is no general theorem whatsoever
answering the question of how. The well-known strategy stealing argument gives
a partial answer to when, but doesn’t say a word about how. (Note that “doing it
first” means competition, a key characteristic of game playing.)

For example, the 4×4×4= 43 Tic-Tac-Toe is a first player’s win, but the winning
strategy is extremely complicated: it is the size of a phone-book (computer-assisted
task due to O. Patashnik). The 5×5×5= 53 version is expected to be a draw, but
no one can prove it.

In principle, we could search all strategies, but it is absurdly long: the total number
of strategies is a double exponential function of the board-size. The exhaustive
search through all positions (backtracking the “game tree,” or the “position graph”),

17
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which is officially called Backward Labeling, is more efficient, but still requires
exponential time (“hard”).
Doing it first is hopeless, but if we ignore “first,” then an even more fundamental

question arises: “What can a player achieve by his own moves against an adversary?”
“Which configurations are achievable (but not necessarily first)?” Or the equivalent
complementary question: “What are the impossible configurations?”

To see where our general concepts (to be defined in Section 5) come from, in
Sections 1–4 we first inspect some particular games.



1
Illustration: every finite point set in the plane is a

Weak Winner

1. Building a congruent copy of a given point set. The first two sections of
Chapter I discuss an amusing game. The objective is to demonstrate the power of
the potential technique – the basic method of the book – with a simple example.
Also it gives us the opportunity for an early introduction to some useful Potential
Criterions (see Theorems 1.2–1.4).

To motivate our concrete game, we start with a trivial observation: every
2-coloring of the vertices of an equilateral triangle of side length 1 yields a side
where both endpoints have the same color (and have distance 1).

This was trivial, but how about 3 colors instead of 2? The triangle doesn’t work,
we need a more sophisticated geometric graph: the so-called “7-point Moser-graph”
in the plane – which has 11 edges, each of length 1 – will do the job.

equilateral
triangle

1 1

1

1
1

1

1

1
1

1

1

1
11

7-point
Moser-graph

The Moser-graph has the combinatorial property that every 3-coloring of the vertices
yields an edge where both endpoints have the same color (and have distance 1).

How about 4 colors instead of 3? Does there exist a geometric graph in the plane
such that every edge has length 1, and every 4-coloring of the vertices of this graph
yields an edge where both endpoints have the same color? This innocent-looking
question was unsolved for more than 50 years, and became a famous problem under
the name of the chromatic number of the plane. Note that the answer to the question
is negative for 7 colors; nothing is known about 4, 5, and 6 colors.

An interesting branch of Ramsey Theory, called Euclidean Ramsey Theory,
studies the following more general problem: consider a finite set of points X in
some Euclidean space Rd. We would like to decide whether or not for every

19
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partition of X = A1 ∪A2 ∪ · · · ∪Ar into r subsets, it is always true that some Ai

contains a congruent copy of some given point set S (the “goal set”). The partition
X = A1∪A2∪· · ·∪Ar is often called an r-coloring of X, where A1, � � �, Ar are the
color classes. For example, if X is the 7-point Moser-graph in the plane, the “goal
set” S consists of two points a unit distance apart, and r = 3. Then the answer to
the question above is “yes.”
Unfortunately Euclidean Ramsey Theory is very under-developed: it has many

interesting conjectures, but hardly any general result (see e.g. Chapter 11 in the
Handbook of Combinatorics). Here we study a game-theoretic version, and prove
a very general result in a surprisingly elementary way.

The game-theoretic version goes as follows: there are two players, called Maker
and Breaker, who alternately select new points from some Euclidean space Rd.
Maker marks his points red and Breaker marks his points blue. Maker’s goal is to
build a congruent copy of some given point set S, Breaker’s goal is simply to stop
Maker (Breaker doesn’t want to build).
The board of the game is infinite, in fact uncountable, so how to define the length

of the game? It is reasonable to assume that the length of the game is ≤�, where �
denotes, as usual, the first infinite ordinal number. In other words, if Maker cannot
win in a finite number of moves, then the players take turns for every natural
number, and the play declares that Breaker wins (a draw is impossible). We call
this game the “S-building game in Rd.”

Example 1: Let the goal set S = S3 be a 3-term arithmetic progression (A.P.)
where the gap is 1, and let d = 1 (we play on the line). Can Maker win? The
answer is an easy “no.” Indeed, divide the infinite line into disjoint pairs of points
at distance 1 apart – by using this pairing strategy (if a player takes one member of
the pair, the opponent takes the other one) Breaker can prevent Maker from building
a congruent copy of S3. This example already convinces us that the 1-dimensional
case is not very interesting: Maker can build hardly anything. In sharp contrast, the
2-dimensional case will turn out to be very “rich”: Maker can build a congruent
copy of any given finite plane set, even if he is the underdog!
But before proving this surprisingly general theorem, let us see more concrete

examples. Of course, in the plane Maker can easily build a congruent copy of the
3-term A.P. S3 in 3 moves, and also the 4-term A.P. S4 (the gap is 1) in 5 moves.
Indeed, the trick is to start with an equilateral triangle, which has 3 ways to be
extended to a “virgin configuration.”

unoccupied

How about the 5-term and 6-term A.P.s S5 and S6 (the gap is always 1)?
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S5 : S6 :

We challenge the reader to spend some time with these concrete goal sets S5 and
S6 before reading the proof of the general theorem below.

Example 2: Let the goal set be the 4 vertices of the “unit square” S = S4

“unit square”

S4 S9

“Tic-Tac-Toe set”

A simple pairing strategy shows that Maker cannot build a “unit square” S4 on the
infinite grid ZZ2, but he can easily do it on the whole plain. The trick is to get a trap

pairing
strategy
on �2 trap

We challenge the reader to show that Maker can always build a congruent copy
of the “unit square” S4 in the plane in his 6th move (or before).

Example 3: Let us switch from the 2×2 S4 to the 3×3 goal set S = S9. We call
S9 the “Tic-Tac-Toe set.” Let d = 2; can Maker win? If “yes,” how long does it
take to win?

Example 4: Example 2 was about the “unit square”; how about the regular pentagon
S = S5 or the regular hexagon S = S6?

S5 S6

Let d = 2; can Maker win? If “yes,” how long does it take to win? We challenge
the reader to answer these questions before reading the rest of the section.

2. A positive result. The objective is to prove:

Theorem 1.1 Let S be an arbitrary finite point set in the plane, and consider the
following S-building game: 2 players, called Maker and Breaker, alternately pick
new points from the plane, each picks 1 point per move; Maker’s goal is to build
a congruent copy of S in a finite number of moves, and Breaker’s goal is to stop
Maker.
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Given an arbitrary finite point set S in the plane, Maker always has a winning
strategy in the S-building game in the plane.

Proof. We label the points of S as follows: S = �P0�P1� � � � � Pk�, i.e. S is a �k+1�-
element set. We pick P0 (an arbitrary element of S) and consider the k vectors
vj = �P0Pj , j = 1�2� � � � � k starting from P0 and ending at Pj. The k planar vectors
v1� v2� � � � � vk may or may not be linearly independent over the rationals.

Remark. It is important to emphasize that the field of rational numbers is being
discussed and not real numbers. For example, if S is the regular pentagon in the unit
circle with P0 = 1 (“complex plane”), then the 4 vectors v1� v2� v3� v4 are linearly
independent over the rational numbers (because the cyclotomic field Q�e2�i/5� with
i = √−1 a 4-dimensional vector space over Q), but, of course, the same set of
4 vectors are not linearly independent over the real numbers (since the dimension
of the plane is 2). In other words, the “rational dimension” is 4, but the “real
dimension” is 2.

1

�

e2πi 
.

 k/5
 – 1, k = 1, 2, 3, 4

are independent over the
rational numbers

On the other hand, for the 9-element “Tic-Tac-Toe set” S = S9 (see Example 3),
the 8 vectors v1� v2� � � � � v8 have the form kv1 + lv2, k ∈ �0�1�2�, l ∈ �0�1�2�,
k+ l ≥ 1, implying that the rational and the real dimensions coincide: either
one is 2.

= = 2

P2

P0 P1

υ2

υ1

S9 = “Tic-Tac-Toe set”

rational
dimension

real
dimension

For an arbitrary point set S with �S� = k+1, let m=m�S� denote the maximum
number of vectors among vj = �P0Pj , j = 1�2� � � � � k, which are linearly independent
over the rational numbers. Note thatmmay have any value in the interval 1≤m≤ k.
For notational convenience assume that vj , j = 1�2� � � � �m are linearly

independent over the rational numbers; then, of course, the rest can be expressed as

vm+i =
m∑
j=1

	
� j�
m+ivj� i= 1�2� � � � � k−m� (1.1)

where the coefficients 	� j�
m+i are all rational numbers.
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The basic idea of the proof is to involve a very large number of rotated copies
of the given goal set S. The lack of rotation makes the 1-dimensional game disap-
pointingly restrictive, and the possibility of using rotation makes the 2-dimensional
game rich.

We are going to define a large number of angles

0< 
1 < 
2 < 
3 < · · ·< 
i < · · ·< 
r < 2�� (1.2)

where r = r�S� is an integral parameter to be specified later (r will depend on goal
set S only).
Let Rot
 denote the operation “rotated by angle 
”; for example, Rot
ivj denotes

the rotated copy of vector vj , rotated by angle 
i. For notational convenience write
vj�i = Rot
ivj , including the case 
0 = 0, that is vj�0 = vj .

The existence of the desired angles 
i in (1.2) is guaranteed by:

Lemma 1: For every integer r ≥ 1, we can find r real-valued angles 0= 
0 < 
1 <

· · ·< 
i < · · ·< 
r < 2� such that the m�r+1� vectors vj�i (1 ≤ j ≤m, 0 ≤ i ≤ r)
are linearly independent over the rational numbers.

Proof. We use the well-known fact that the set of rational numbers is countable,
but the set of real numbers is uncountable. We proceed by induction on r; we start
with r = 1. Assume that there exist rational numbers aj�i such that

1∑
i=0

m∑
j=1

aj�ivj�i = 0� (1.3)

where in the right-hand side of (1.3) 0 stands for the “zero vector”; then∑m
j=1 aj�1vj�1 = −∑m

j=1 aj�0vj�0, or, equivalently, Rot
1u = w, where both vectors
u and w belong to the set

Y =
{

m∑
j=1

ajvj � every aj is rational and
m∑
j=1

a2
j �= 0

}
� (1.4)

Since set Y defined in (1.4) is countable, there is only a countable set of solutions
for the equation Rot
u= w, u ∈ Y , w ∈ Y in variable 
.
Choosing a real number 
 = 
1 in 0 < 
1 < 2�, which is not a solution, we

conclude that
1∑

i=0

m∑
j=1

aj�ivj�i = 0� where
1∑

i=0

m∑
j=1

a2
j�i �= 0�

can never happen, proving Lemma 1 for r = 1.
The general case goes very similarly. Assume that we already constructed r−1

(≥ 1) angles 0= 
0 < 
1 < · · ·< 
i < · · ·< 
�r−1� < 2� such that the mr vectors
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vj�i (1 ≤ j ≤m, 0 ≤ i ≤ r−1) are linearly independent over the rationals. Assume
that there exist rational coefficients aj�i such that

r∑
i=0

m∑
j=1

aj�ivj�i = 0� (1.5)

where in the right-hand side of (1.5) 0 stands for the “zero vector”; then∑m
j=1 aj�rvj�r =−∑r−1

i=0

∑m
j=1 aj�ivj�i, or, equivalently, Rot
1u= w, where u ∈ Y (see

(1.4)) and w belongs to the set

Z =
{

r−1∑
i=0

m∑
j=1

bj�ivj�i � every bj�i is rational and
r−1∑
i=0

m∑
j=1

b2j�i �= 0

}
�

Since both Y and Z are countable, there is only a countable set of solutions for the
equation Rot
u= w, u ∈ Y , w ∈ Z in variable 
.
By choosing a real number 
 = 
r in 
r−1 < 
r < 2�, which is not a solution,

Lemma 1 follows.

The heart of the proof is the following “very regular, lattice-like construction”
(a finite point set in the plane)

X = X�r�D�N�=
{

r∑
i=0

m∑
j=1

dj�i

D
vj�i � every dj�i is an integer with �dj�i� ≤ N

}
�

(1.6)

where both new integral parameters D and N will be specified later (together with
r = r�S�).

Notice that the “very regular, lattice-like plane set” (1.6) is the projection of an
m�r+1�-dimensional �2N +1�×· · ·× �2N +1�= �2N +1�m�r+1� hypercube to the
plane.
The key property of point set X=X�r�D�N� is that it is very “rich” in congruent

copies of goal set S.

Lemma 2: Point set X – defined in (1.6) – has the following two properties:

(a) the cardinality �X� of set X is exactly �2N +1�m�r+1�;
(b) set X contains at least �2N +1−C0�

m�r+1� · �r+1� distinct congruent copies of
goal set S, where C0 = C0�S� is an absolute constant depending only on goal
set S, but entirely independent of the parameters (r, D, and N ) of the proof.

Proof. By Lemma 1 the m�r+ 1� vectors vj�i (1 ≤ j ≤ m, 0 ≤ i ≤ r) are linearly
independent over the rationals. So different vector sums in (1.6) determine different
points in the plane, which immediately proves part (a).
To prove part (b), fix an arbitrary integer i0 in 0 ≤ i0 ≤ r, and estimate from

below the number of translated copies of Rot
i0S in set X (i.e. angle 
i0 is fixed).
Select an arbitrary point
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Q0 =
r∑

i=0

m∑
j=1

dj�i

D
vj�i ∈ X� (1.7)

and consider the k points Ql =Q0+vl�i0 , where l= 1�2� � � � � k. The �k+1�-element
set �Q0�Q1�Q2� � � � �Qk� is certainly a translated copy of Rot
i0

S, but when can
we guarantee that set �Q0�Q1�Q2� � � � �Qk� is inside X? Visualizing plane set X
as a “hypercube,” the answer becomes very simple: the set �Q0�Q1�Q2� � � � �Qk�

is inside X if point Q0 is “far from the border of the hypercube.” The following
elementary calculations make this vague statement more precise.

We divide the k points Q1�Q2� � � � �Qk into two parts. First, consider an arbitrary
Ql with 1≤ l≤m: by definition

Ql =
r∑

i=0

m∑
j=1

dj�i+�l� i0� j� i�D

D
vj�i� (1.8)

where �l� i0� j� i�= 1 if �l� i0�= � j� i� and �l� i0� j� i�= 0 if �l� i0� �= � j� i�.
If m+1≤ l≤ k, then by (1.1)

vl =
m∑
j=1

	
� j�
l vj =

1
D

m∑
j=1

C
� j�
l vj� (1.9)

where D is the least common denominator of all rational coefficients 	
� j�
l , and,

of course, all C� j�
l are integers. So if m+1≤ l≤ k, then by (1.9)

Ql =
r∑

i=0

m∑
j=1

dj�i+�i0� i�C
� j�
l

D
vj�i� (1.10)

where �i0� i�= 1 if i0 = i and �i0� i�= 0 if i0� �= i. Let

C∗ = max
1≤j≤m

max
m+1≤l≤k

�C� j�
l �� and C∗∗ =max�C∗�D�� (1.11)

Now if �dj�i0
� ≤N−C∗∗ holds for every j= 1�2� � � � �m (meaning “the pointQ0 is far

from the border of hypercube X”), then by (1.6)–(1.11) the set �Q0�Q1�Q2� � � � �Qk�

is inside X. We recall that �Q0�Q1�Q2� � � � �Qk� is a translated copy of Rot
i0S;
therefore, if the inequality �dj�i� ≤ N −C∗∗ holds for every j = 1�2� � � � �m and
i = 0�1� � � � � r, then by (1.6) the point Q0 ∈ X (defined by (1.7)) is contained in
at least �r+1� distinct copies of goal set S (namely, in a translated copy of Rot
iS
with i= 0�1� � � � � r).
Let #�S ⊂ X� denote the total number of congruent copies of goal set S; the

previous argument gives the lower bound

#�S ⊂ X�≥ �2�N −C∗∗�+1�m�r+1� · �r+1�= �2N +1−C0�
m�r+1� · �r+1�� (1.12)

where C0 = 2C∗∗, completing the proof of Lemma 2.
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The fact that “set X is rich in congruent copies of goal set S” is expressed in
quantitative terms as follows (see Lemma 2 and (1.12))

#�S ⊂ X�

�X� ≥
(
1− C0

2N +1

)m�r+1�

· �r+1�� (1.13)

In (1.13) C0 = 2C∗∗ and m (≤ k= �S�−1) are “fixed” (i.e. they depend on goal set
S only), but at this stage parameters r and N are completely arbitrary. It is crucial
to see that parameters r and N can be specified in such a way that

#�S ⊂ X�

�X� ≥ r+1
2

≥ “arbitrarily large.” (1.14)

Indeed, for every “arbitrarily large” value of r there is a sufficiently large value of
N such that (

1− C0

2N +1

)m�r+1�

≥ 1
2
�

and then (1.13) implies (1.14).
We emphasize that inequality (1.14) is the key quantitative property of our point

set X (see (1.6)).
After these preparations we are now ready to explain how Maker is able to

build a congruent copy of the given goal set S. The reader is probably expecting a
quick greedy algorithm, but what we are going to do here is in fact a slow indirect
procedure:

(i) Maker will stay strictly inside (the huge!) set X;
(ii) Maker will always choose his next point by optimizing an appropriate potential

function (we define it below);
(iii) whenever set X is completely exhausted, Maker will end up with a congruent

copy of goal set S.

Steps (i)–(iii) describe Maker’s indirect building strategy. Of course, Breaker
doesn’t know about Maker’s plan to stay inside the set X (Breaker doesn’t know
about the set X at all!), and Maker doesn’t know in advance whether Breaker’s
next move will be inside or outside of X – but these are all irrelevant, Maker will
own a congruent copy of S anyway.
The main question remains: “What kind of potential function does Maker use?”

Maker will use a natural Power-of-Two Scoring System. As far as we know, the
first appearance of the Power-of-Two Scoring System is in a short but important
paper of Erdős and Selfridge [1973], see Theorem 1.4 below. We will return to the
“potential technique” and the Erdős–Selfridge Theorem in Section 10.

3. Potential criterions. It is convenient to introduce the hypergraph F of “winning
sets”: a �k+ 1�-element subset A ⊂ X of set X (defined in (1.6)) is a hyperedge
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A ∈ F if and only if A is a congruent copy of goal set S. Hypergraph F is �k+1�-
uniform with size �F � = #�S ⊂ X�; we refer to X as the “board,” and call F the
“family of winning sets.” We will apply the following very general hypergraph
result; it plays the role of our “Lemma 3,” but for later applications we prefer to
call it a “theorem.”

Theorem 1.2 Let �V�F� be a finite hypergraph: V is an arbitrary finite set, and
F is an arbitrary family of subsets of V . The Maker–Breaker Game on �V�F� is
defined as follows: the two players, called Maker and Breaker, alternately occupy
previously unoccupied elements of “board” V (the elements are called “points”);
Maker’s goal is to occupy a whole “winning set” A ∈ F , Breaker’s goal is to stop
Maker. If F is n-uniform and

�F �
�V � > 2n−3 ·�2�F��

where �2�F� is the Max Pair-Degree, then Maker, as the first player, has a winning
strategy in the Maker–Breaker Game on �V�F�.

The Max Pair-Degree is defined as follows: assume that, fixing any 2 distinct
points of board V , there are ≤ �2�F� winning sets A ∈ F containing both points,
and equality occurs for some point pair. Then we call �2�F� the Max Pair-Degree
of F .

In particular, for Almost Disjoint hypergraphs, where any two hyperedges have
at most one common point (like a family of “lines”), the condition simplifies to
�F �> 2n−3�V �.
Remark. If F is n-uniform, then �F �

�V � is
1
n
times the Average Degree. Indeed, this

equality follows from the easy identity n�F � = AverDeg�F��V �.
The hypothesis of Theorem 1.2 is a simple Density Condition: in a “dense”

hypergraph Maker can always occupy a whole winning set.
First we explain how Theorem 1.2 completes the proof of Theorem 1.1, and

discuss the proof of Theorem 1.2 later. Of course, we apply Theorem 1.2 with
V = X, where X is defined in (1.6), and F is the �k+ 1�-uniform hypergraph
such that a �k+ 1�-element subset A ⊂ X of set X (see (1.6)) is a hyperedge
A ∈ F if and only if A is a congruent copy of goal set S. There is, however, an
almost trivial formal difficulty in the application of Theorem 1.2 that we have to
point out: in Theorem 1.2 Breaker always replies in set X, but in the “S-building
game” Breaker may or may not reply in set X (Breaker has the whole plane to
choose from). We can easily overcome this formal difficulty by introducing “fake
moves”: whenever Breaker’s move is outside of set X, Maker chooses an arbitrary
unoccupied point in X and declares this fake move to be “Breaker’s move.” If later
Breaker actually occupies this fake point (i.e. the “fake move” becomes a “real
move”), then Maker chooses another unoccupied point and declares this fake move
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“Breaker’s move,” and so on. By using the simple trick of “fake moves,” there is
no difficulty whatsoever in applying Theorem 1.2 to the “S-building game in the
plane.” As we said before, we choose V = X (see (1.6)) and

F = �A⊂ X � A is a congruent copy of S��

Clearly n= �S� = k+1, but what is the Max Pair-Degree �2�F�? The exact value
is a difficult question, but we don’t need that – the following trivial upper bound
suffices

�2�F�≤
(�S�
2

)
=

(
k+1
2

)
� (1.15)

Theorem 1.2 applies if (see Lemma 2)

�F �
�V � =

#�S ⊂ X�

�X� ≥
(
1− C0

2N +1

)m�r+1�

· �r+1� > 2n−3 ·�2�F�� (1.16)

(1.16) is satisfied if (see (1.15))
(
1− C0

2N +1

)m�r+1�

· �r+1� > 2n−3 ·�2�F�≥
(
k+1
2

)
2k−2� (1.17)

Here C0 and m�≤ k = �S� − 1� are fixed (in the sense that they depend only on
set S), but parameters r and N are completely free. Now let r = �k+ 1�22k−2,
then inequality (1.17) holds if N is sufficiently large. Applying Theorem 1.2 (see
(1.16)–(1.17)) the proof of Theorem 1.1 is complete. �

It remains, of course, to prove Theorem 1.2.

Proof of Theorem 1.2. Assume we are in the middle of a play where Maker
(the first player) already occupies x1� x2� � � � � xi, and Breaker (the second player)
occupies y1� y2� � � � � yi. The question is how to choose Maker’s next point xi+1.
Those winning sets that contain at least one yj� j ≤ i� are “useless” for Maker;
we call them “dead sets.” The winning sets which are not “dead” (yet) are called
“survivors.” The “survivors” have a chance to be completely occupied by Maker.
What is the total “winning chance” of the position? We evaluate the given position
by the following “opportunity function” (measuring the opportunity of winning):
Ti =

∑
s∈Si 2

n−us , where us is the number of unoccupied points of the “survivor” As

(s ∈ Si =“index-set of the survivors,” and index i indicates that we are at the stage
of choosing the �i+ 1�st point xi+1 of Maker. Note that the “opportunity” can be
much greater than 1 (i.e. it is not a probability), but it is always non-negative.
A natural choice for xi+1 is to maximize the “winning chance” Ti+1 at the next

turn. Let xi+1 and yi+1 denote the next moves of the 2 players. What is their effect
on Ti+1? Well, first xi+1 doubles the “chances” for each “survivor” As � xi+1, i.e.
we have to add the sum

∑
s∈Si� xi+1∈As

2n−us to � Ti.
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On the other hand, yi+1 “kills” all the “survivors” As � yi+1, which means we
have to subtract the sum ∑

s∈Si� yi+1∈As

2n−us

from Ti.

Warning: we have to make a correction to those “survivors” As that contain both
xi+1 and yi+1. These “survivors” As were “doubled” first and “killed” second. So
what we have to subtract from Ti is not∑

s∈Si� �xi+1�yi+1�⊂As

2n−us

but the twice as large ∑
s∈Si� �xi+1�yi+1�⊂As

2n−us+1�

It follows that

Ti+1 = Ti+
∑

s∈Si� xi+1∈As

2n−us − ∑
s∈Si� yi+1∈As

2n−us − ∑
s∈Si� �xi+1�yi+1�⊂As

2n−us �

Now the natural choice for xi+1 is the unoccupied z for which
∑

s∈Si� z∈As
2n−us

attains its maximum. Then clearly

Ti+1 ≥ Ti−
∑

s∈Si� �xi+1�yi+1�⊂As

2n−us �

We trivally have ∑
s∈Si� �xi+1�yi+1�⊂As

2n−us ≤ �2 ·2n−2�

Indeed, there are at most �2 winning sets As containing the given 2 points
�xi+1� yi+1�, and 2n−us ≤ 2n−2, since xi+1 and yi+1 were definitely unoccupied points
at the previous turn.

Therefore
Ti+1 ≥ Ti−�22

n−2� (1.18)

What happens at the end? Let � denote the number of turns, i.e. the �th turn is the
last one. Clearly �= �V �/2� Inequality T� = Tlast > 0 means that at the end Breaker
could not “kill” (block) all the winning sets. In other words, T� = Tlast > 0 means
that Maker was indeed able to occupy a whole winning set.

So all what we have to check is that T� = Tlast > 0. But this is trivial; indeed,
Tstart = T0 = �F �, so we have

Tlast ≥ �F �− �V �
2

�22
n−2� (1.19)

It follows that, if �F �> 2n−3�V ��2, then Tlast > 0 , implying that at the end of the
play Maker was able to completely occupy a winning set. �
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Under the condition of Theorem 1.2, Maker can occupy a whole winning set A ∈F ,
but how long does it take for Maker to do this? The minimum number of moves
needed against a perfect opponent is called the Move Number.
A straightforward adaptation of the proof technique of Theorem 1.2 gives a

simple but very interesting lower bound on the Move Number.

Move Number. Assume that F is an n-uniform hypergraph with Max Pair-Degree
�2�F�; how long does it take for Maker to occupy a whole A ∈ F? The following
definition is crucial: a hyperedge A ∈ F becomes visible if Maker has at least
2 marks in it. Note that “2” is critical in the sense that 2 points determine at
most �2�F� hyperedges. We follow the previous proof applied for the visible
sets. Assume that we are in the middle of a play: x1� x2� � � � � xi denote the points of
Maker and y1� y2� � � � � yi−1 denote the points of Breaker up to this stage (we consider
the “worse case” where Breaker is the second player). The “danger function” is
defined as

Di =
∑

A∈F � ∗∗
2�A∩�x1�x2�����xi��

where ∗∗ means the double requirement A ∩ �y1� y2� � � � � yi−1� = ∅ and �A ∩
�x1� x2� � � � � xi�� ≥ 2; Breaker chooses that new point y = yi for which the sum

Di�y�=
∑

y∈A∈F � ∗∗
2�A∩�x1�x2�����xi��

attains its maximum. What is the effect of the consecutive moves yi and xi+1? We
clearly have

Di+1 =Di−Di�yi�+Di�xi+1�−
∑

�yi�xi+1�⊂A∈F � ∗∗
2�A∩�x1�x2�����xi�� + ∑

A∈F � ∗∗∗
22�

where ∗ ∗ ∗ means the triple requirement xi+1 ∈ A, �A∩ �x1� x2� � � � � xi�� = 1, and
A∩ �y1� y2� � � � � yi� = ∅. Since 2 points determine at most �2�F� hyperedges, we
obtain the simple inequality

Di+1 ≤Di−Di�yi�+Di�xi+1�+
∑

A∈F � ∗∗∗
22 ≤Di+4i ·�2�F��

Now assume that Maker can occupy a whole winning set for the first time at his
Mth move (M is the Move Number); then

2n ≤DM ≤DM−1+4�2�F��M−1�≤DM−2+4�2�F��M−1+M−2�≤ · · ·
≤D1+4�2�F��1+2+ � � �+ �M−1��=D1+2�2�F�M�M−1��

Notice that D1 = 0 (for at the beginning Maker does not have 2 points yet), so
2n ≤ DM ≤ D1 + 2�2�F�M�M − 1� = 2�2�F�M�M − 1�, implying the following:
exponential lower bound.
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Theorem 1.3 If the underlying hypergraph is n-uniform and the Max Pair-Degree
is �2�F�, then playing the Maker–Breaker game on hypergraph F , it takes at least

2�n−1�/2√
�2�F�

moves for Maker (the first player) to occupy a whole winning set.

What it means is that there is no quick win in an Almost Disjoint, or nearly Almost
Disjoint, hypergraph. Even if the first player has a winning strategy, the second
player can postpone it for an exponentially long time! Exponential time practically
means “it takes forever.”

The potential proof technique of Theorems 1.2–1.3 shows a striking similarity
with the proof of the well-known Erdős–Selfridge Theorem. This is not an accident:
the Erdős–Selfridge Theorem was the pioneering result, and Theorems 1.2–1.3 were
discovered after reading the Erdős–Selfridge paper [1973], see Beck [1981a] and
[1981b].

The Erdős–Selfridge Theorem is a draw criterion, and proceeds as follows.

Theorem 1.4 (“Erdős–Selfridge Theorem”) Let F be an n-uniform hypergraph,
and assume that �F �+MaxDeg�F� < 2n� whereMaxDeg�F� denotes the maximum
degree of hypergraph F . Then playing the Maker–Breaker game on F , Breaker
(the second player) can put his mark in every A ∈ F .

Remark. If the second player can block every winning set, then the first player
can also block every winning set (hint: either use the general “strategy steal-
ing” argument, or simply repeat the whole proof); consequently, the “generalized
Tic-Tac-Toe game” on F is a draw.

Exercise 1.1 Prove the Erdős–Selfridge Theorem.

We will return to Theorem 1.4 in Section 10, where we include a proof, and
show several generalizations and applications.

For many more quick applications of Theorems 1.2–1.4, see Chapter III (Sec-
tions 13–15). The reader can jump ahead and read these self-contained applications
right now.

What we do in this book is a “hypergraph theory with a game-theoretic moti-
vation.” Almost Disjoint hypergraphs play a central role in the theory. The main
task is to develop sophisticated “reinforcements” of the simple hypergraph criteri-
ons Theorems 1.2–1.4. For example, see Theorem 24.2 (which is an “advanced”
building criterion) and Theorems 34.1, 37.5, and 40.1 (the three “ugly” blocking
criterions).



2
Analyzing the proof of Theorem 1.1

1. How long does it take to build? Let us return to Example 1: in view of
Theorem 1.1, Maker can always build a congruent copy of the 5-term A.P. S5 in
the plane

but how long does it take to build S5? Analyzing the proof of Theorem 1.1 in this
very simple special case, we have

k= 4� m= 1� D = 1� C∗ = C∗∗ = 4� C0 = 2C∗∗ = 8� �2 = 4�

and the key inequality (1.17) is
(
1− 8

2N +1

)r+1

· �r+1� > 24−2 ·�2 = 22 ·4� (2.1)

By choosing (say) r = 43 and N = 154, inequality (2.1) holds. It follows that, if
Maker restricts himself to set X (see (1.6)), then, when X is exhausted, Maker will
certainly own a congruent copy of the 5-term A.P. S5. Since �X� = �2N +1�m�r+1�

(see Lemma 2 (a)), this gives about 30944 ≈ 10110 moves even for a very simple
goal set like S5. This bound is rather disappointing!

How about the 6-term A.P. S6?

The proof of Theorem 1.1 gives

k= 5� m= 1� D = 1� C∗ = C∗∗ = 5� C0 = 2C∗∗ = 10� �2 = 5�

and the key inequality (1.17) is
(
1− 10

2N +1

)r+1

· �r+1� > 25−2 ·�2 = 23 ·5� (2.2)

32
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By choosing (say) r = 108 and N = 491, inequality (2.2) holds. Since �X� =
�2N +1�m�r+1� (see Lemma 2 (a)), the argument gives about 983109 ≈ 10327 moves
for goal set S6.

Next we switch to Example 3, and consider the 3×3 “Tic-Tac-Toe set” S9; how
long does it take to build a congruent copy of S9?

The proof of Theorem 1.1 gives

k= 8� m= 2� D = 1� C∗ = C∗∗ = 2� C0 = 2C∗∗ = 4� �2 = 12�

and the key inequality (1.17) is
(
1− 4

2N +1

)2�r+1�

· �r+1� > 28−2 ·�2 = 26 ·12�

which is satisfied with r = 2087 and N = 10450, so �X� = �2N + 1�m�r+1� =
209014176 ≈ 1018�041 moves suffice to build a congruent copy of goal set S9.
Example 4 is about the regular pentagon and the regular hexagon; the corre-

sponding “rational dimensions” turn out to be m= 4 and m= 2, respectively. Why
4 and 2? The best is to understand the general case: the regular n-gon for arbi-
trary n ≥ 3. Consider the regular n-gon in the unit circle of the complex plane
where P0 = 1

−i

i

−1 P0 = 1
υ1

P1 = e
2πi/n

 = ζ

υ1 = e
2πi/n

 – 1 = ζ – 1

�

By using the notation of the proof of Theorem 1.1, we have vj = �j −1, 1≤ j ≤
n−1, where � = e2�i/n (and, of course, i=√−1). For later application note that

n−1∑
j=1

vj =
n−1∑
j=1

��j −1�=−1− �n−1�=−n� (2.3)

Note that the algebraic number field Q��� = Q�e2�i/n� is called the cyclotomic
field of the nth roots of unity. It is known from algebraic number theory that Q���

is a ��n�-dimensional vector space over the rationals Q, where ��n� is Euler’s



34 Win vs. Weak Win

function: ��n� is the number of integers t in 1 ≤ t ≤ n which are relatively prime
to n. We have the elementary product formula

��n�= n
∏

p�n� p=prime

(
1− 1

p

)
�

for example, ��5�= 4 and ��6�= 2.
Since 0 = �n− 1 = ��− 1��1+ �+ �2 + � � �+ �n−1�, we have �n−1 = −�1+ �+

�2+ � � �+�n−2�, so the cyclotomic field Q��� is generated by 1� �� �2� � � � � �n−2. The
n− 1 generators 1� �� �2� � � � � �n−2 can be expressed in terms of the n− 1 vectors
v1� v2� � � � � vn−1; indeed, by (2.3) we have

1=−v1+v2+· · ·+vn−1

n
� �j = vj −

v1+v2+· · ·+vn−1

n
� 1≤ j ≤ n−2�

Therefore, in the special case of the regular n-gon, the “rational dimension” of
vector set �v1� � � � � vn−1�, denoted by m in the proof of Theorem 1.1, is exactly the
Euler’s function m= ��n�.
For the regular pentagon (see Example 4) the proof of Theorem 1.1 gives

k= 4� m= ��5�= 4� D = C∗ = C∗∗ = 1� C0 = 2C∗∗ = 2� �2 = 5�

and the key inequality (1.17) is
(
1− 2

2N +1

)4�r+1�

· �r+1� > 24−2 ·�2 = 22 ·5�

which is satisfied with r = 54 and N = 110, so �X� = �2N+1�m�r+1� = 221220 ≈ 10516

moves suffice to build a congruent copy of a regular pentagon.
Finally consider the regular hexagon: the proof of Theorem 1.1 gives

k= 5� m= ��6�= 2� D = 1� C∗ = C∗∗ = 2� C0 = 2C∗∗ = 4� �2 = 6�

and the key inequality (1.17) is
(
1− 4

2N +1

)2�r+1�

· �r+1� > 25−2 ·�2 = 23 ·6�

which is satisfied with r = 130 and N = 393, so �X� = �2N +1�m�r+1� = 787262 ≈
10759 moves suffice to build a congruent copy of a regular hexagon.
The wonderful thing about Theorem 1.1 is that it is strikingly general. Yet there

is an obvious handicap: these upper bounds to the Move Number are all ridiculously
large. We are convinced that Maker can build each one of the concrete goal sets
listed in Examples 1–4 in (say) less than 1000 moves, but do not have the slightest
idea how to prove it. The problem is that any kind of brute force case study becomes
hopelessly complicated.

By playing on the plane, Maker can build a congruent copy of a given 3-term
A.P. in 3 moves, a 4-term A.P. in 5 moves, an equilateral triangle in 3 moves,
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a square in 6 moves. These are economical, or nearly economical, strategies. How
about some more complicated goal sets such as a regular 30-gon or a regular 40-gon
(“polygons”)? Let F denote the family of all congruent copies of a given regular
30-gon in the plane. The Max Pair-Degree of hypergraph F is 2 (a regular polygon
uniquely defines a circle, and for the family of all circles of fixed radius the Max
Pair-Degree is obviously 2). Applying Theorem 1.3 we obtain that Maker needs at
least 215−1 = 214 > 16000 moves to build a given regular 30-gon. For the regular
40-gon the same argument gives at least 220−1 = 219 > 524000 moves. Pretty big
numbers!

Note that for an arbitrary n-element goal set S in the plane the corresponding
Max Pair-Degree is trivially less than

(
n

2

)
< n2/2 (a non-trivial bound comes from

estimating the maximum repetition of the same distance; this is Erdős’s famous
Unit Distance Problem). Thus Theorem 1.3 gives the general lower bound ≥ 1

n
2n/2

for the Move Number. This is exponentially large, meaning that for large goal sets
the “building process” is extremely slow; anything but economical!

The trivial upper bound ≤ (
n

2

)
for the Max Pair-Degree (see above) can be

improved to ≤ 4n4/3; this is the current record in the Unit Distance Problem
(in Combinatorial Geometry), see Székely’s elegant paper [1997]. Replacing
the trivial bound

(
n

2

)
with the hard bound 4n4/3 makes only a slight (“log-

arithmic”) improvement in the given exponential lower bound for the Move
Number.

2. Effective vs. ineffective. Let us return to Theorem 1.1. One weakness is the
very poor upper bound for the Move Number (such as ≤ 1018041 moves for the
9-element “Tic-Tac-Toe set” S9 in Example 3), but an even more fundamental
weakness is the lack of an upper bound depending only on �S� (the size of the given
goal set S). The appearance of constant C0 in key inequality (1.17) makes the upper
bound “ineffective”!

What does “ineffective” mean here? What is “wrong” with constant C0? The
obvious problem is that a rational number 	=C/D is “finite but not bounded”, i.e.
the numerator C and the denominator D can be arbitrarily large. Indeed, in view
of (1.1), the rational coefficients 	� j�

l in vl =
∑m

j=1	
� j�
l vj� l=m+1�m+2� � � � � k�

may have arbitrarily large common denominator D and arbitrarily large numerators:
	
� j�
l = C

� j�
l /D, which implies that

C∗ = max
1≤j≤m

max
m+1≤l≤k

�C� j�
l � and C∗∗ =max�C∗�D��

are both “finite but not bounded in terms of S.” Since C0 = 2C∗∗ and C0 show up
in the key inequality (1.17), the original proof of Theorem 1.1 does not give any
hint of how to bound the Move Number in terms of the single parameter �S�.
We have to modify the proof of Theorem 1.1 to obtain the following effective

version.



36 Win vs. Weak Win

Theorem 2.1 Consider the “S-building game in the plane” introduced in Theo-
rem 1.1: Maker can always build a congruent copy of any given finite point set S
in at most

22
�S�2

moves if �S� ≥ 10�

Question: Can we replace the doubly exponential upper bound in Theorem 2.1 by
a plain exponential bound? Notice that “plain exponential” is necessary.

For the sake of completeness we include a proof of Theorem 2.1. A reader in a
rush is advised to skip the technical proof below, and to jump ahead to Theorem 2.2.
As said before, we are going to modify the original proof of Theorem 1.1, but

the beginning of the proof remains the same. Consider the k = �S� − 1 vectors
v1� � � � � vk, and again assume that among these k vectors exactly the first m (with
some 1 ≤ m ≤ k) are linearly independent over the rationals; so v1� � � � � vm are
linearly independent over the rationals, and the rest can be written in the form

vl =
m∑
j=1

	
� j�
l vj� l=m+1�m+2� � � � � k

with rational coefficients

	
� j�
l = A1� j� l�

B1� j� l�
�

here A1� j� l� and B1� j� l� are relatively prime integers. Write

Cl = max
1≤j≤m

��A1� j� l��� �B1� j� l��� � l=m+1�m+2� � � � � k� (2.4)

For notational convenience we can assume

Cm+1 ≥ Cm+2 ≥ · · · ≥ Ck (2.5)

(if (2.5) is violated, then simply rearrange the lower indexes!), and take the largest
one M1 = Cm+1.
Next we basically repeat the previous step with the one larger set �v1� v2� � � � �

vm� vm+1� instead of �v1� v2� � � � � vm�: for every l=m+2�m+3� � � � � k consider the
solutions of the linear equation

vl =
m+1∑
j=1

�
� j�
l vj� (2.6)

with rational coefficients

�
� j�
l = A2� j� l�

B2� j� l�
�

here A2� j� l� and B2� j� l� are relatively prime integers. Since the vector set
�v1� v2� � � � � vm+1� is not linearly independent any more, system (2.6) may have seve-
ral solutions; one solution comes from the previous step �

� j�
l = 	

� j�
l (j = 1� � � � �m),

�
�m+1�
l = 0 for every l=m+2�m+3� � � � � k. Since (2.6) may have many solutions,
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we optimize: for every l = m+ 2�m+ 3� � � � � k we choose that particular solution
of (2.6) for which

C ′
l = max

1≤j≤m+1
��A2� j� l��� �B2� j� l���

attains its minimum. For notational convenience we can assume

C ′
m+2 ≥ C ′

m+3 ≥ · · · ≥ C ′
k (2.7)

(if (2.7) is violated, then simply rearrange the lower indexes!), and take the largest
one M2 = C ′

m+2. Then, of course, M1 ≥M2.
Again we repeat the previous step with the one longer set �v1� v2� � � � � vm+1� vm+2�

instead of �v1� v2� � � � � vm+1�: for every l=m+3�m+4� � � � � k consider the solutions
of the linear equation

vl =
m+1∑
j=1

�
� j�
l vj (2.8)

with rational coefficients

�
� j�
l = A3� j� l�

B3� j� l�
�

here A3� j� l� and B3� j� l� are relatively prime integers. Since the vector set
�v1� � � � � vm+2� is not linearly independent, system (2.8) may have several solu-
tions; one solution comes from the previous step �

� j�
l = �

� j�
l (j = 1� � � � �m+ 1),

�
�m+2�
l = 0 for every l=m+3�m+4� � � � � k. Since (2.8) may have many solutions,

we optimize: for every l = m+ 3�m+ 4� � � � � k we choose that particular solution
for which

C ′′
l = max

1≤j≤m+2
��A3� j� l��� �B3� j� l���

attains its minimum. For notational convenience, we can assume

C ′′
m+3 ≥ C ′′

m+3 ≥ · · · ≥ C ′′
k (2.9)

(if (2.9) is violated, then simply rearrange the lower indexes!), and take the largest
one M3 = C ′′

m+3. Then, of course, M1 ≥M2 ≥M3.
By repeating this argument, we obtain a decreasing sequence

M1 ≥M2 ≥M3 ≥ � � �≥Mk−m� (2.10)

Notice that sequence (2.10) depends only on the given point set S; the elements
of the sequence can be arbitrarily large (since a rational number is “finite but
unbounded”).

We are going to define a decreasing sequence of constants

�1 >�2 >�3 > � � � > �k−m (2.11)

depending only on the size �S� = k+1 of S (the explicit form of (2.11) is “ugly,”
see (2.19) and (2.20) later), and compare the “arbitrary” sequence (2.10) with the
“constant” sequence (2.11).
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Assume that there is an index � ≥ 1 such that

M� >�� but M�+1 ≤��+1� (2.12)

We modify our “board set” X (see (1.6)): let

X̃ = X̃�r�D�N�=
{

r∑
i=0

m+�∑
j=1

dj�i

D
vj�i � every dj�i is an integer with �dj�i� ≤ N

}
�

(2.13)
here again r, D, and N are unspecified integral parameters.
Notice that (2.13) is the projection of an �m+���r+1�-dimensional �2N +1�×

· · ·× �2N + 1� = �2N + 1��m+���r+1� hypercube; the value of ��≥ 1� is defined by
(2.12). The meaning of (2.13) is that, although the “extra” vectors vm+1� � � � � vm+�

are not rationally independent of v1� � � � � vm, we still handle the m+ � vectors
v1� � � � � vm� vm+1� � � � � vm+� like an independent vector set (because any dependence
among them requires rationals with too large numerator/denominator).
We define parameters N and D in (2.13) as follows

N =�� and D=
m+�∏
j=1

k∏
l=m+�+1

B�+1� j� l�� (2.14)

i.e. D is the “product of the denominators” showing up in the ��+1�st step of the
iterated procedure above (see (2.5)–(2.10)). By (2.12) and (2.14)

D ≤ ���+1�
k2 � (2.15)

By repeating the proof of Lemma 2 in Section 1, we get the following “effective”
analogue.

Lemma 1: Point set X̃ – defined in (2.13) – has the following 2 properties:

(a) the cardinality �X̃� of set X̃ is exactly �2N +1��m+���r+1�;
(b) set X̃ contains at least �2N +1− C̃��m+���r+1� · �r+1� distinct congruent copies

of goal set S, where
C̃ = 2 ���+1�

k2

is an “effective” constant.

We apply Theorem 1.2 to the new “board” V = X̃ (see (2.13)) with the simple
trick of “fake moves,” and, of course

F = �A⊂ X̃ � A is a congruent copy of S��

clearly n= �S� = k+1.
Theorem 1.2 applies if (see Lemma 1)

�F �
�V � =

#�S ⊂ X̃�

�X̃� ≥
(
1− C̃

2N +1

)�m+���r+1�

· �r+1� > 2n−3 ·�2�F�� (2.16)



Analyzing the proof of Theorem 1.1 39

(2.16) is satisfied if(
1− C̃

2N +1

)�m+���r+1�

· �r+1� > 2n−3 ·�2�F�≥
(
k+1
2

)
2k−2� (2.17)

By choosing r = �k+1�22k and

N ≥ �k+1�32k ���+1�
k2 � (2.18)

inequality (2.17) holds.
Now it is clear how to define the constants in (2.12). We proceed backward; we

start with the last one �k−m: let

�k−m = �k+1�32k� (2.19)

and define the backward recurrence relation

�� = �k+1�32k ���+1�
k2 � (2.20)

Formulas (2.19)–(2.20) are clearly motivated by (2.14) and (2.18).
Now we are ready to complete the proof of Theorem 2.1: Theorem 1.2 implies

that, staying in X̃ as long as possible, at the end Maker will own a congruent copy
of goal set S; this gives the following upper bound for the Move Number (see
(2.14))

≤ �X̃� = �2N +1��m+���r+1� = �2�� +1��m+���r+1� ≤ �2�� +1��k+1�32k � (2.21)

By (2.20) the first (i.e. largest) member of the constant sequence in (2.12) is less
than

�1 ≤
(((

22k
)22)2k2

· · ·
)2k2

= 22k·2k
2·2k2···2k2 ≤ 2�2k

2�k+1
�

so, by (2.20), the “Move Number” is less than
(
2�2k

2�k+1
)�k+1�32k

< 22
�k+1�2

if �S� = k+1≥ 10� (2.22)

Finally, consider the last case when there is no index � ≥ 1 such that M� > ��

but M�+1 ≤��+1, i.e. when (2.2) fails. Then

�1 ≥M1��2 ≥M2� � � � ��k−m ≥Mk−m�

so the original proof of Theorem 1.1 already gives the “effective” upper bound
(2.22). This completes the proof of Theorem 2.1. �

3. The biased version. Last question: What happens if Maker is the “underdog”?
More precisely, what happens in the “biased” case where Maker takes 1 point per
move but Breaker takes several, say, b (≥ 2) points per move? For example, let
(say) b = 100. Can Maker still build a congruent copy of any given finite point
set S in the plane? The answer is “yes”; all what we need to do is to replace the
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“fair” �1�1� type building criterion Theorem 1.2 with the following “biased” �p � q�

version (see Beck [1982]):

Theorem 2.2 (“biased building”) If

∑
A∈F

(
p+q

p

)−�A�
> p2 ·q2 · �p+q�−3 ·�2�F� · �V�F���

where �2�F� is the Max Pair-Degree of hypergraph F� and V�F� is the board,
then the first player can occupy a whole winning set A ∈ F in the biased �p � q�

play on F (the first player takes p new points and the second player takes q new
points per move).

Applying Theorem 2.2 instead of Theorem 1.2 we immediately obtain the following
“biased” version of Theorem 2.1.

Theorem 2.3 Let S be an arbitrary finite set of points in the Euclidean plane, let
b ≥ 1 be an arbitrary integer, and consider the �1 � b� version of the S-building
game where Maker is the underdog: Maker and Breaker alternately pick new points
in the plane, Maker picks one point per move, Breaker picks b ≥ 1 point(s) per
move; Maker’s goal is to build a congruent copy of S in a finite number of moves,
and Breaker’s goal is to stop Maker. For every finite S and b≥ 1, Maker can build
a congruent copy of S in less than

�b+1��b+1��S�2 moves if �S� ≥ 10�

Not surprisingly, the proof of the “biased criterion” Theorem 2.2 is very similar
to that of the “fair” Theorem 1.2. Assume we are in the middle of a �p � q� play,
Maker (the first player) already occupies

X�i�= �x
�1�
1 � � � � � x

�p�
1 � x

�1�
2 � � � � � x

�p�
2 � � � � � x

�1�
i � � � � � x

�p�
i �

and Breaker (the second player) occupies

Y�i�= �y
�1�
1 � � � � � y

�q�
1 � y

�1�
2 � � � � � y

�q�
2 � � � � � y

�1�
i � � � � � y

�q�
i ��

at this stage of the play the “weight” wi�A� of an A ∈ F is either 0 or an integral
power of p+q

p
. More precisely, either (1) wi�A� = 0 if A∩Y�i� �= ∅ (meaning that

A ∈ F is a “dead set”), or (2)

wi�A�=
(
p+q

p

)�A∩X�i��
if A∩Y�i�= ∅

(meaning that A ∈ F is a “survivor”). Maker evaluates his chances to win by using
the following “opportunity function”

Ti =
∑
A∈F

wi�A�� (2.23)
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We stop here and challenge the reader to complete the proof of Theorem 2.2. Just
in case, we include the whole proof at the end of Section 20.

It is very important to see what motivates “opportunity function” (2.23). The
motivation is “probabilistic,” and goes as follows. Assume we are right after the
ith turn of the play with sets X�i� and Y�i� defined above, and consider a Random
2-Coloring of the unoccupied points of board V with odds �p � q�, meaning that,
we color a point red (Maker’s color) with probability p

p+q
and color a point blue

(Breaker’s color) with probability q

p+q
, the points are colored independently of each

other. Then the renormalized “opportunity function” (see (2.23))(
p

p+q

)n

Ti =
(

p

p+q

)n ∑
A∈F

wi�A�

is exactly the expected number of completely red winning sets (red means: Maker’s
own). In other words, a probabilistic argument motivates the choice of our potential
function! We refer to this proof technique as a “fake probabilistic method.” We
will return to the probabilistic motivation later in great detail.

Theorem 2.2 is the biased version of Theorem 1.2; the biased version of
Theorem 1.4 will be discussed, with several interesting applications, in Section 20
(see Theorem 20.1); a biased version of Theorem 1.3 will be applied in Section 15
(see Lemma 2 there).



3
Examples: Tic-Tac-Toe games

1. Weak Winners and Winners. The game that we have been studying in
Sections 1–2 (the “S-building game in the plane,” where S is a given finite point
set) was a Maker–Breaker game. One player – called Maker – wanted to build a
goal set (namely, a congruent copy of S), and the other player – called Breaker –
simply wanted to stop Maker. Tic-Tac-Toe and its variants are very different: they
are not Maker–Breaker games, they are games where both players want to build,
and the player declared the winner is the player who occupies a whole goal set first.
The main question is “Who does it first?” instead of “Can Maker do it or not?”.
The awful truth is that we know almost nothing about “Who does it first?” games.

For example, consider the “Who does it first?” version of the S-building game in
Section 1 – we restrict ourselves to the fair (1:1) version and assume that Maker
is the first player. We know that Maker can always build a congruent copy of the
2×2 goal set S4

S4 = 2 × 2
S9 = 3 × 3

in ≤ 6 moves. What is more, the same case study shows that Maker can always
build a congruent copy of S4 first (again in ≤ 6 moves). But how about the 3×3
goal set S9 in Example 3? Can Maker build S9 first? If “yes,” how long does it take
to build S9 first?
If Maker can do it, but not necessarily first, we call it a Weak Winner; if Maker

can do it first, we call it a Winner.
So the previous question goes as follows: “Is S9 a Winner?” Is the regular

pentagon a Winner? Is the regular hexagon a Winner? we don’t know!
The message of Section 1 is that “every finite point set in the plane is a Weak

Winner” – explaining the title of the section. Is it true that every finite point set in the

42



Examples: Tic-Tac-Toe games 43

plane is a Winner? The answer is “No.” For example, the following irregular pen-
tagon is not a Winner; the key property is that angle 	 is an irrational multiple of �

Pegden’s
pentagon forced

move

α

α

α

2

irrational  ⇒  infinite

going around
by α :
infinite chain
of forced
moves

This example is due to Wesley Pegden (Ph.D. student at Rutgers). Pegden’s
pentagon consists of 4 consecutive points with common gap 	 plus the point in the
middle. The idea of the proof is that the second player can always threaten the first
player with an infinite sequence of forced moves, namely with irrational rotations
of angle 	 along a fixed circle, before the first player can complete his own copy
of the goal pentagon. More precisely, at an early stage of the play, the second
player can achieve that on some circle he owns 3 points from some consecutive
4 with gap 	, and he can take the 4th point in his next move. Then of course the
first player is forced to take the middle point. After that the second player takes
the 5th point with gap 	, which again forces the first player to take the middle
point of the last four; after that the second player takes the 6th point with gap 	,
which again forces the first player to take the middle point of the last four; and
so on. We challenge the reader to clarify this intuition, and to give a precise proof
that Pegden’s irrational pentagon is not a Winner. The proof requires some case
study(!) which we skip here, see Pegden [2005].

The underlying idea of Pegden’s irrational pentagon construction is illustrated on
the following oversimplified “abstract” hypergraph game. Consider a binary tree of
3 levels; the players take vertices

the “winning sets” are the 4 full-length branches (3-sets) of the binary tree. This is
a simple first player win game; however, adding infinitely many disjoint 2-element
“extra” winning sets to the hypergraph enables the second player to postpone his
inevitable loss by infinitely many moves!

infinitely many
pairs

In other words, by adding the extra 2-sets, the first player cannot force a finite
win anymore.
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Pegden’s clever construction is one example (a pentagon); are there infinitely
many examples of “Weak Winner�=Winner” with arbitrarily large size (number of
points)? In general, we can ask:

Open Problem 3.1 Is there a finite procedure to decide whether or not a given
finite point set S in the plane is a Winner? In other words, is there a way to
characterize those finite point sets S in the plane for which Maker, as the first
player, can always build a congruent copy of S in the plane first (i.e. before the
opponent could complete his own copy of S)?

We think Open Problem 3.1 is totally hopeless even for medium size point sets
S, especially that “building is exponentially slow.” What we are referring to here
is Theorem 1.3, which gives the exponential lower bound ≥ 1

n
2n/2 for the Move

Number of an arbitrary S with �S� = n.

2. Tic-Tac-Toe games on the plane. The S-building game was an artificial example,
constructed mainly for illustration purposes. It is time now to talk about a “real”
game: Tic-Tac-Toe and its closest variants. We begin with Tic-Tac-Toe itself,
arguably the simplest, oldest, and most popular board game in the world.
Why is Tic-Tac-Toe so popular? Well, there are many reasons, but we think the

best explanation is that it is the simplest example to demonstrate the difference
between “Weak Win” and ordinary “win”! This will be explained below.

Let us emphasize again: we can say very little about ordinary win in general,
nothing other than exhaustive search; the main subject of the book is “Weak Win.”

Now let’s return to Tic-Tac-Toe. The rules of Tic-Tac-Toe (called Noughts-
and-Crosses in the UK) are well-known; we quote Dudeney: “Every child knows
how to play this game; whichever player first gets three in a line, wins with the
exulting cry:

Tit, tat, toe, My last go;
Three jolly butcher boys All in a row.”

The Tic-Tac-Toe board is a big square which is partitioned into 3×3= 9 congruent
small squares. The first player starts by putting an X in one of the 9 small squares,
the second player puts an O into any other small square, and then they alternate X
and O in the remaining empty squares until one player wins by getting three of his
own squares in a line (horizontally, vertically, or diagonally). If neither player gets
three in a line, the play ends in a draw. Figure 3.1 below shows the board and the
eight winning triplets of Tic-Tac-Toe.
Figure 3.2 below shows a “typical” play: X1� � � � �X5 denote the moves of the

first player, and O1� � � � �O4 denote the moves of the second player in this order.
This particular play ends in a draw.
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32

Figure 3.1

O3

X4

X5

X2

X1

O2

O1

O4

X3

Figure 3.2

X1

X2

X3

?

?

O1

O2

Figure 3.3

Figure 3.3 above shows another play in which the second player’s opening move
O1 was a “mistake”: the first player gets a “winning trap” and wins in his 4th
move.

Every child “knows” that Tic-Tac-Toe is a draw game, i.e. either player can force
a draw. We mathematicians have higher standards: we want a proof. Unfortunately,
there is nothing to be proud of about the proof that we are going to give below.
The proof is an ugly case study (anyone knows an elegant proof?).

The first half of the statement is easy though: the first player can always force
a draw by an easy pairing strategy. Indeed, the first player opens with the center,
which blocks 4 winning lines, and the remaining 4 lines are easily blocked by the
following pairing ⎡

⎣ � − −
� X �
− − �

⎤
⎦

This means the first player can always put his mark in every winning set, no matter
what the opponent is doing. By contrast, the second player cannot put his mark in
every winning set. In other words, the second player cannot prevent the first player
from occupying a winning set. The reader is probably wondering, “Wait a minute,
this seems to contradict the fact that Tic-Tac-Toe is a draw!” But, of course, there
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is no real contradiction here: the first player can occupy a whole winning set, but he
cannot occupy it first if the opponent plays rationally. Indeed, let the first player’s
opening move be the center

X1

O1
Case 1

X1

O1
Case 2

Then the second player has two options: either he takes a corner, or a side. In
either case the first player occupies X2, X3, X4, and completes a winning triplet.
Of course, this way the opponent’s winning triplet (O1�O2�O3 if the second player
plays rationally) comes first; notice that here we changed the rule and assumed that
the players do not quit playing even after some winning set is completely occupied
by either player, they just keep playing till the whole board is completed. We refer
to this as the Full Play Convention.

X1

X3 X4X2

O1
Case 1

X1

X4 X3X2

O1
Case 2

Occupying a whole winning set, but not necessarily first, is what we call a Weak
Win. We have just learned that in Tic-Tac-Toe the first player can achieve a Weak
Win (assuming the Full Play Convention!).
The complement of Weak Win is called a Strong Draw. Tic-Tac-Toe is a draw

game (we prove this fact below) but not a Strong Draw. We sometimes refer to this
property – draw but not a Strong Draw – as a “Delicate Draw.”
Tic-Tac-Toe is a “3-in-a-row” game on a 3× 3 board. A straightforward

2-dimensional generalization is the “n-in-a-row” game on an n×n board; we call
it the n×n Tic-Tac-Toe, or simply the n2 game. The n2 game has 2n+2 winning
sets: n horizontals, n verticals, and 2 diagonals, each one of size n. The n2 games
are rather dull: the 22 game is a trivial first player win, and the rest of the n2 games
(n≥ 3) are all simple draw games – see Theorems 3.1–3.3 below. We begin with:

Theorem 3.1 Ordinary 32 Tic-Tac-Toe is a draw but not a Strong Draw.

The only proof that we know is a not too long but still unpleasant(!) case study.
However, it seems ridiculous to write a whole book about games such as Tic-Tac-
Toe, and not to solve Tic-Tac-Toe itself. To emphasize: by including this case study
an exception was made; the book is not about case studies.
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We have already proved that the first player can force a draw in the 32 game; in
fact, by a pairing strategy. It remains to give the second player’s drawing strategy.
Of course, we are not interested in how poorly the second player can play; all that
we care about is the second player’s optimal play. Therefore, when we describe
a second player’s drawing strategy, a substantial reduction in the size of the case
study comes from the following two assumptions:

(i) each player completes a winning triplet if he/she can;
(ii) each player prevents the opponent from doing so in his/her next move.

It is either player’s best interest to follow rules (i) and (ii). A second source of
reduction comes from using the symmetries of the board. We label the 9 little
squares in the following natural way

64 5

31 2

7 8 9

The center (“5”) is the “strongest point”: it is the only cell contained by 4 win-
ning lines. The second player’s drawing strategy has 3 parts according, as the
opponent’s opening move is in the center (threatening four winning triplets), or
in a corner (threatening 3 winning triplets), or on a side (threatening two win-
ning triplets). If the first player starts in the center, then the second player’s
best response is in the corner, say in 1. The second player can force a draw
in the 5 → 1 end game. This part of second player’s drawing strategy is the
following

4 → 6 (Draw: next the second player can block the 3, 5, 7-line)

7 → 3 (Draw: next the second player can block the 4, 5, 6-line)
6 → 4 → 7 → 3 → 9 (Draw)

9 → 4 → 7 → 3 → 6 (Draw)

2 → 8 → 3 → 7 (winning trap: the second player wins)

3 → 7 → 4 → 6 (Draw: next the second player can block the 2, 5, 8-line)

6 → 4 → 7 → 3 → 2 → 8 → 9 (Draw)
9 → 3 → 2 → 8 (Draw: next the second player can block the 4, 5, 6-line)
4: same as 5 → 1 → 2
7: same as 5 → 1 → 3
8: same as 5 → 1 → 6

5 → 1

If the first player does not start in the center, then, not surprisingly, the second
player’s best response is in the center. If the first player starts in the corner, say
in 1, then the second player’s drawing strategy is the following
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2 → 3 → 7 → 4 → 6 (Draw)

3 → 2 → 8 → 4 → 6 → 9 → 7 (Draw)

6 → 2 → 8 → 7 → 3 → 9 → 4 (Draw)

9 → 2 → 8 → 7 → 3 → 6 → 4 (Draw)
4: → same as 1 → 5 → 2

7: → same as 1 → 5 → 3
8: → same as 1 → 5 → 6

1 → 5

Finally, if the first player starts on the side, say in 2, then the second player’s
drawing strategy is the following

4 → 1 → 9 → 3 → 7 (Draw)

7 → 4 → 6 → 9 → 1 → 3 → 8 (Draw)

8 → 1 → 9 → 7 → (winning trap: second player wins)

3: → same as 1 → 5 → 2
1: → same as 1 → 5 → 2

6: → same as 1 → 5 → 4
9: → same as 1 → 5 → 7

2 → 5

This completes the case study, and Theorem 3.1 follows. �

The 42 Tic-Tac-Toe is a “less interesting” draw: neither player can force a Weak
Win (assuming the Full Play Convention). First we show that the first player can
put his mark in every winning set (4-in-a-row) of the 42 board, i.e. he can force a
Strong Draw. In fact, this Strong Draw is a Pairing Strategy Draw: first player’s
opening move is in the middle

*
X1

X1 in the middle blocks 3 winning lines, 7 winning lines remain unblocked, and
we have 42 − 1 = 15 cells to block them. An explicit pairing strategy is given on
the picture above (the first player doesn’t even need the asterisk-marked cell in the
upper-left corner).
Next we show how the second player can put his mark in every winning set

(“Strong Draw”). This case is more difficult since the second player cannot have a
Pairing Strategy Draw. Indeed, the cell/line ratio is less than 2 (there are 42 = 16
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cells and 4+4+2= 10 winning lines), so it is impossible that every winning line
owns a “private pair of cells.”

Nevertheless the second player can block by using a combination of 3 different
pairing strategies! Indeed, apart fromsymmetry thereare threepossibleopeningmoves
of the first player, marked by X. The second player’s reply is 0, and for the rest of the
play the second player employs the pairing strategy direction marked in the corre-
sponding picture (for every move of the first player in a marked square the second
player takes the similarly marked square in the direction indicated by the mark).

O

X

O

X

X O

This elegant argument is due to David Galvin.
This shows that the 42 game comes very close to having a Pairing Strategy

Draw: after the first player’s opening move the second player can always employ
a draw-forcing pairing strategy.

Theorem 3.2 The 42-game is a Strong Draw, but not a Pairing Strategy Draw
(because the second player cannot force a draw by a single pairing strategy).

The n2 Tic-Tac-Toe with n ≥ 5 is particularly simple: either player can force a
draw by a pairing strategy; in fact, both players may use the same pairing.

Case n= 5
In the 52-game either player can force a draw by employing the following “pairing”⎡

⎢⎢⎢⎢⎢⎣

11 1 8 1 12
6 2 2 9 10
3 7 ∗ 9 3
6 7 4 4 10

12 5 8 5 11

⎤
⎥⎥⎥⎥⎥⎦

Note that every winning line has its own pair (“private pair”): the first row has two
1s, the second row has two 2s, � � � , the fifth row has two 5s, the first column has
two 6s, � � � , the fifth column has two 10s, the diagonal of slope −1 has two 11s,
and finally, the other diagonal of slope 1 has two 12s. Either player can occupy
at least 1 point from each winning line: indeed, whenever the first (second) player
occupies a numbered cell, the opponent takes the other cell of the same number. (In
the first player’s strategy, the opening move is the asterisk-marked center; in the
second player’s strategy, if the first player takes the center, then the second player
may take any other cell.)

By using this pairing strategy either player can block every winning set, implying
that 52 is a draw game.
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A more suggestive way to indicate the same pairing strategy for the 52-game is
shown below: all we have to do is to make sure that for every move of the opponent
in a marked square we take the similarly marked square in the direction indicated
by the mark.

*

Case n= 6
The 62-game is another Pairing Strategy Draw. An explicit pairing goes as follows⎡

⎢⎢⎢⎢⎢⎢⎢⎣

13 1 9 10 1 14
7 ∗ 2 2 ∗ 12
3 8 ∗ ∗ 11 3
4 8 ∗ ∗ 11 4
7 ∗ 5 5 ∗ 12

14 6 9 10 6 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Whenever the first (second) player occupies a numbered cell, the opponent takes
the other cell of the same number. We do not even need the eight asterisk-marked
cells in the 2 diagonals.

Case n≥ 7
By using the special cases n = 5 and 6, the reader can easily solve all n2-games
with n≥ 7.

Exercise 3.1 Let n ≥ 5 be an integer. Show that if the n2-game has a Pairing
Strategy Draw, then the �n+2�2-game also has a Pairing Strategy Draw.

Theorem 3.3 The n×n Tic-Tac-Toe is a Pairing Strategy Draw for every n≥ 5.

Ordinary 32 Tic-Tac-Toe turns out to be the most interesting member of the (dull)
family of n2-games. This is where the “phase transition” happens: 22 is a trivial
first player win (the first player always wins in his second move), 32 is a draw, and
the rest – the n2-games with n≥ 4 – are all drawn, too.
This gives a complete understanding of the 2-dimensional n×n Tic-Tac-Toe.

3. Tic-Tac-Toe in higher dimensions. Unfortunately, we know much less about
the 3-dimensional n×n×n= n3 Tic-Tac-Toe. The 2×2×2= 23-game ( just like
the 22-game) is a trivial win. Every play has the same outcome: first player win.

The 33 Tic-Tac-Toe is a less trivial but still easy win. Every play has only
two possible outcomes: either a (1) first player win, or a (2) second player win.
That is, no draw play is possible. Thus the first player can force a win – this
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follows from a well-known general argument called “Strategy Stealing.” We return
to “Strategy Stealing” later in Section 5 (We recommend the reader to finish the
proof him/herself).

In the 33-game there are 49 winning lines (3-in-a-row): 4 space-diagonals
( joining opposite corners of the cube), 18 plane-diagonals (in fact 12 of them are on
the 6 faces joining opposite corners of some face, and 6 more plane-diagonals inside
the cube), and 27 axis-parallel lines (parallel with one of the 3 coordinate axes).
We illustrate 4 particular winning lines in the left-hand side of the figure below.

PROPER 2-COLORING
OF 33 \ {center}

4 3
111

4
3

42
2

23

Exercise 3.2 Find an explicit first player winning strategy in the 33-game.

Exercise 3.3

(a) Show that no draw is possible in the 33-game: every play must have a winner.
(b) Show that every 2-coloring of the cells in the 33-board yields a monochromatic

winning line.

Exercise 3.4 Consider the Reverse version of the 33-game: the player who gets
3-in-a-row first is the loser. Which player has a winning strategy?

The right-hand side of the figure above demonstrates an interesting property of the
33-game. We already know that Drawing Position cannot exist (see Exercise 3.3
(b)), but if we remove the center and the 13 winning lines going through the center,
then the “truncated” 33-hypergraph of 33−1= 26 points and 49−13= 36 winning
lines has a Proper 2-coloring, i.e. there is no monochromatic winning line.
It is interesting to note that the sizes of the two color classes differ by 2, so this is

not a Drawing Terminal Position. In fact, a Drawing Terminal Position (i.e. Proper
Halving 2-Coloring) cannot even exist!
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43

Three typical winning sets in 4 × 4 × 4 gameQubic = 43 Tic-Tac-Toe

The first variant of Tic-Tac-Toe, which is truly exciting to play, is the 3-
dimensional 4× 4× 4 = 43 game: it was marketed by Parker Brothers as Qubic;
henceforth we often refer to it as such. A remarkable property of Qubic is that it
has a Drawing Terminal Position, but the first player can nevertheless force a win.
In Qubic there are 4 space-diagonals ( joining opposite corners of the cube), 24

plane-diagonals (in fact 12 of them are on the 6 faces joining opposite corners
of some face, and 12 more plane-diagonals inside the cube), and 48 axis-parallel
lines (parallel with one of the 3 coordinate axes); altogether 76 4-in-a-row. As said
before, Qubic has a Drawing Terminal Position: we can put 32 Xs and 32 Os on
the board such that every 4-in-a-row contains both marks – see the figure below.

Proper Halving 2-Coloring
of 43 Tic-Tac-Toe
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Qubic is a first player win just like the 33 game, but there is a big difference:
the winning strategy in Qubic is extremely complicated! The first explicit winning
strategy was found by Oren Patashnik in 1977, and it was a celebrated victory
for Computer Science (and Artificial Intelligence). The solution involved a
most intricate human–computer interaction; for the details we refer the reader
to Patashnik’s fascinating survey paper [1980]. Patashnik’s solution employes
hundreds of long sequences of forced moves. A sequence of forced moves means
that the second player must continually block first player’s 3-in-a-line until at some
move the first player has a winning trap: the second player must simultaneously
block two such 3-in-a-line, this is clearly impossible, so the first player wins.
Patashnik’s solution contains a “dictionary” of 2 929 “strategic moves.” The first
player forces a win as follows:

(1) if he can make 4-in-a-row with this move, he does it;
(2) he blocks the opponent’s 3-in-a-line if he must;
(3) he looks for a sequence of forced moves, and employs it if he finds one;
(4) otherwise he consults Patashnik’s dictionary.

After this brief discussion of the 43 game (“Qubic”), we switch to the general
case, called hypercube Tic-Tac-Toe, which is formally defined as follows.

nd hypercube Tic-Tac-Toe or simply the nd game. The board V of the nd game
is the d-dimensional hypercube of size n×· · ·×n= nd, that is, the set of d-tuples

V = {
a = �a1� a2� � � � � ad� ∈ ZZd � 1≤ aj ≤ n for each 1≤ j ≤ d

}
�

The winning sets of the nd-game are the n-in-a-line sets, i.e. the n-element sequences(
a�1��a�2�� � � � �a�n�

)

of the board V such that, for each j� the sequence a
�1�
j � a

�2�
j � � � � � a

�n�
j composed of

the jth coordinates is either 1�2�3� � � � � n (“increasing”), or n�n− 1� n− 2� � � � �1
(“decreasing”), or a constant. The two players alternately put their marks (X and O)
in the previously unmarked cells (i.e. unit cubes) of the d-dimensional solid hyper-
cube nd of side n. Each player marks one cell per move. The winner is the player to
occupy a whole winning set first, i.e. to have n of his marks in an n-in-a-line first.
In other words, the winning sets are exactly the n-in-a-line in the nd hypercube;
here, of course, each elementary “cell” is identified with its own center. If neither
player gets n-in-a-line, the play is a draw. The special case n = 3�d = 2 gives
ordinary Tic-Tac-Toe. Note that in higher dimensions most of the n-in-a-line are
some kind of diagonal.

The winning sets in the nd game are “lines,” or “winning lines.” The number of
winning lines in the 32 and 43 games are 8 and 76. In the general case we have
an elegant short formula for the number of “winning lines,” see Theorem 3.4 (a)
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below. In the rest of the book we often call the cells “points” (identifying a cell
with its own center).

Theorem 3.4

(a) The total number of winning lines in the nd-game is
(
�n+2�d −nd

)
/2.

(b) If n is odd, there are at most �3d−1�/2 winning lines through any point, and
this is attained only at the center of the board. In other words, the maximum
degree of the nd-hypergraph is �3d−1�/2.

(c) If n is even (“when the board does not have a center”), the maximum degree
drops to 2d −1� and equality occurs if there is a common c ∈ �1� � � � � n� such
that every coordinate cj equals either c or n+1− c (j = 1�2� � � � � d).

Proof. To prove (a) note that for each j ∈ �1�2� � � � � d�� the sequence
a
�1�
j � a

�2�
j � � � � � a

�n�
j composed of the jth coordinates of the points on a winning

line is either strictly increasing from 1 to n� or strictly decreasing from n to 1�
or a constant c = cj ∈ �1�2� � � � � n�. Since for each coordinate we have �n+ 2�
possibilities �1�2� � � � � n� increasing�decreasing�, this gives �n+2�d, but we have
to subtract nd because at least one coordinate must change. Finally, we have to
divide by 2, since every line has two orientations.

An alternative geometric/intuitive way of getting the formula
(
�n+2�d−nd

)
/2

goes as follows. Imagine the board nd is surrounded by an additional layer of cells,
one cell thick. This new object is a cube

�n+2�× �n+2�×· · ·× �n+2�= �n+2�d�

It is easy to see that every winning line of the nd-board extends to a uniquely
determined pair of cells in the new surface layer. So the total number of lines is
��n+2�d−nd�/2.

Why does ordinary
Tic-Tac-Toe
have 8 winning
triplets?

32

52

⇒

8 = 52 − 32

2

Next we prove (b): let n be odd. Given a point c= �c1� c2� � � � � cd� ∈ nd� for each
j ∈ �1�2� � � � � d� there are three options: the jth coordinates of the points on an
oriented line containing c:
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(1) either increase from 1 to n,
(2) or decrease from n to 1,
(3) or remain constant cj.

Since every line has two orientations, and it is impossible that all coordinates remain
constant, the maximum degree is ≤ �3d−1�/2� and we have equality for the center
(only).

This suggests that the center of the board is probably the best opening move
(n is odd).
Finally, assume that n is even. Let c = �c1� c2� � � � � cd� ∈ nd be a point, and

consider the family of those n-in-a-line which contain c. Fixing a proper subset
index-set I ⊂ �1�2� � � � � d�, there is at most one n-in-a-line in this family for which
the jth coordinates of the points on the line remain constant cj for each j ∈ I� and
increase or decrease for each j �∈ I . So the maximum degree is ≤∑d−1

i=0

(
d

i

)= 2d−1�
and equality occurs if for some fixed c ∈ �1� � � � � n� every coordinate cj equals c or
n+1− c (j = 1�2� � � � � d).

4. Where is the phase transition? We know that the n2 games are rather dull
(with the possible exception of ordinary 32 Tic-Tac-Toe itself); the 33 game is too
easy, the 43 game is very interesting and difficult, but it is completely solved; how
about the next one, the 53 game? Is it true that 53 is a draw game? How about the
54 game? Is it true that 54 is a first player win? Unfortunately these are hopeless
questions.

Open Problem 3.2 Is it true that 53 Tic-Tac-Toe is a draw game? Is it true that
54 Tic-Tac-Toe is a first player win?

Very little is known about the nd games with d ≥ 3, especially about winning.
We know that the first player can achieve a 4-in-a-row first in the 3-space (43

Tic-Tac-Toe); how about achieving a 5-in-a-row? In other words, the first player
wants a winning strategy in some 5d Tic-Tac-Toe. Let d0 denote the smallest
dimension d when the first player has a forced win in the 5d game; how small
is d0? (A famous result in Ramsey Theory, called the Hales–Jewett Theorem, see
Section 7, guarantees that d0 is finite.) The second question in Open Problem 3.2
suggests that d0 = 4, but what can we actually prove? Can we prove that d0 ≤ 1000?
No, we cannot. Can we prove that d0 ≤ 10001000? No, we cannot. Can we prove that
d0 ≤ 10001000

1000
? No, we cannot prove that either. Even if we iterate this 1000 times,

we still cannot prove that this “1000-tower” is an upper bound on d0. Unfortunately,
the best-known upper bound on d0 is embarrassingly poor. For more about d0, see
Section 7.

Another major problem is the following. We know an explicit dimension d0 such
that in the 5d0 Tic-Tac-Toe the first player has a winning strategy: (1) it is bad
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enough that the smallest d0 we know is enormous, but (2) it is even worse that the
proof does not give the slightest hint how the winning strategy actually looks (!),
see Theorems 5.1 and 6.1 later.
Next we mention two conjectures about hypercube Tic-Tac-Toe (published

in Patashnik [1980]), which represent a very interesting but failed(!) attempt
to describe the “phase transition” from draw to win in simple terms. The first
one, called “modification of Gammill’s conjecture” by Patashnik [1980], predicted
that:

Conjecture A (“Gammill”) The nd game is a draw if and only if there are more
points than winning lines.

For example, the 32 and 43 games both support this conjecture. Indeed, the 32

game is a draw and number-of-lines= 8 < 9 = number-of-points; on the other
hand, the 43 game is a first player win and number-of-lines= 76 > 64 = number-
of-points.
In the 53 game, which is believed to be a draw, there are �73−53�/2= 109 lines

and 53 = 125 points. On the other hand, in the 54 game, which is believed to be a
first player win, there are �74−54�/2= 938 lines and 54 = 625 points.

A modification of Citrenbaum’s conjecture (see Patashnik [1980]) predicted
that:

Conjecture B (“Citrenbaum”) If d> n, then the first player has a winning strategy
in the nd game.

Of course, we have to be very critical about conjectures like these two: it is difficult
to make any reasonable prediction based on such a small number of solved cases.
And indeed, both Conjectures A and B turned out to be false; in Section 34, we
prove that both have infinitely many counterexamples.

Unfortunately, our method doesn’t work in lower dimensions: an explicit
relatively low-dimensional counter-example to Conjecture A that we could
come up with is the 14480-game (it has more lines than points), and an
explicit counter-example to Conjecture B is the 214215-game which is a draw.
These are pretty large dimensions; we have no idea what’s going on in low
dimensions.
The failure of the at-first-sight-reasonable Conjectures A and B illustrates the

difficulty of coming up with a “simple” conjecture about the “phase transition”
from draw to win for hypercube Tic-Tac-Toe games. We don’t feel confident
enough to formulate a conjecture ourselves. We challenge the reader to come up
with something that makes sense. Of course, to formulate a conjecture is one
thing (usually the “easy part”), and to prove it is a totally different thing (the
“hard part”).
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Before discussing more games, let me stop here, and use the opportunity to
emphasize the traditional viewpoint of Game Theory. First of all, we assume that
the reader is familiar with the concept of strategy (the basic concept of Game
Theory!). Of course, strategy is such a natural/intuitive “common sense” notion
that we are tempted to skip the formal definition; but just in case, if there is any
doubt, the reader can always consult Appendix C for a formal treatment. Now the
traditional viewpoint: Game Theory is about optimal strategies, which is shortly
expressed in the vague term: “the players play rationally.” We certainly share
the traditional viewpoint: we always assume that either player knows an optimal
strategy, even if finding one requires “superhuman powers” such as performing a
case study of size (say) 101000!.

A pithy way to emphasize the traditional viewpoint is to name the two players
after some gods. Let us take, for example, the most famous war in Greek Mythology:
the Trojan War between the Greeks and Troy, see The Iliad of Homer. Motivated
by the Trojan War we may call the first player Xena (or Xenia) and the second
player Apollo. Of course, Xena uses mark X and Apollo uses mark O. Xena is an
epithet of Pallas Athena, meaning “hospitable.” Xena (alias Pallas Athena), goddess
of wisdom, sided with the Greeks, and Apollo, god of arts and learning, sided with
Troy.

It is most natural to expect a god/goddess to know his/her optimal strategy;
carrying out a case study of size (say) 101000! shouldn’t be a problem for them (but
it is a BIG problem for us humans!).

The only reason why we don’t follow the advice, and don’t use a name-pair
such as Xena/Apollo (or something similar), is to avoid the awkwardness of he/she,
him/her, and his/her (the gender problem of the English language).

We conclude Section 3 with an entertaining observation, and a picture.
Consider the following number game: two players alternately select integers

from 1 to 9 and no number may be used twice. A player wins by getting three
numbers the sum of which is 15; the first to do that is declared to be the winner.
Who wins?

Well, this is a mathematical joke! The number game is just Tic-Tac-Toe in
disguise! Indeed, there are exactly 8 solutions �a� b� c� of the equation a+b+c =
15� 1 ≤ a < b < c ≤ 9� and the 8 solutions are represented by the 8 winning lines
of Tic-Tac-Toe (3 horizontals, 3 verticals, and 2 diagonals). Therefore, this number
game is a draw.

2 7 6

9 5 1

4 3 8

Finally, a figure illustrating the hopeless Open Problem 3.2.
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A hopeless problem:
53 Tic-Tac-Toe
Is this a draw game?
53 = 125 points (“cells”)
63−53 = 91 combinatorial lines like
(1) and (3), and 18 geometric lines
which are not combinatorial lines
like (2)

(1) xxx x = 1�2�3�4�5
(2) x1x′ x′ = 6−x

(3) 43x



4
More examples: Tic-Tac-Toe like games

Tic-Tac-Toe itself is a simple game, but some natural changes in the rules quickly
lead to very difficult or even hopelessly difficult games. We have already men-
tioned the 3-dimensional 4×4×4 version (“Qubic”), which was solved by a huge
computer-assisted case study (it is a first player win). The next case, the 5×5×5
version, is expected to be a draw, but there is no hope of proving it (brute force
is intractable). A perhaps more promising direction is to go back to the plane, and
study 2-dimensional variants of Tic-Tac-Toe. We will discuss several 2-dimensional
variants: (1) unrestricted n-in-a-row, (2) Harary’s Animal Tic-Tac-Toe, (3) Kaplan-
sky’s n-in-a-line, (4) Hex, and (5) Gale’s Bridge-it game. They are all “who does
it first” games.

1. Unrestricted n-in-a-row. The 52 Tic-Tac-Toe, that is, the “5-in-a-row on a
5× 5 board” is a very easy draw game, but if the 5× 5 board is extended to the
whole plane, we get a very interesting and still unsolved game called unrestricted
5-in-a-row. Unrestricted means that the game is played on an infinite chessboard,
infinite in every direction. In the unrestricted 5-in-a-row game the players alternately
occupy little squares of an infinite chessboard; the first player marks his squares
by X, and the second player marks his squares by O. The person who first gets 5
consecutive marks of his own in a row horizontally, or vertically, or diagonally (of
slope 1 or−1) is the winner; if no one succeeds, the play ends in a draw.Unrestricted
n-in-a-row differs in only one aspect: the winning size is n instead of 5.

59
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Similarly to the “S-building game” in Section 1, unrestricted n-in-a-row is a
semi-infinite game: the board is infinite but the winning sets are all finite. Since
the board is infinite, we have to define the length of the game. We assume that the
two players take turns until either of them wins in a finite number of moves, or
until they have taken their nth turns for every natural number n. In other words,
the length of a play is at most �, where � denotes (as usual) the first countable
(infinite) ordinal number.
Every nd Tic-Tac-Toe is determined, meaning that:

(i) either the first player has a winning strategy,
(ii) or the second player has a winning strategy,
(iii) or either player can force a draw (called “draw game”); see Appendix C.

This simple fact is a special case of a general theorem about finite Combinatorial
Games, usually called “Zermelo’s Theorem,” see Appendix C.
Unrestricted n-in-a-row is not finite, but the standard proof easily extends to semi-

infinite games as follows. If player P (first or second) has no winning strategy, then
the opponent, called player Q, can always make a next move so that player P still has
no winning strategy, and this is exactly how player Q can force a draw. The point
is that the winning sets are finite, so, if a player wins, he wins in a finite number of
moves; this is why player P cannot win and the opponent–player Q–forces a draw.
Note that alternative (ii) cannot occur for (the finite) nd Tic-Tac-Toe or for (the

semi-infinite) unrestricted n-in-a-row; in other words, the second player cannot
have a winning strategy. This follows from the well-known “Strategy Stealing”
argument, see Appendix C. Later we will settle this issue under much more general
circumstances.
Thus we have two alternatives only: (i) either the first player has a winning

strategy, (ii) or the game is a draw.

Exercise 4.1 Prove that unrestricted 4-in-a-row is a first player win.

Open Problem 4.1 Is it true that unrestricted 5-in-a-row is a first player win?

Open Problem 4.2 Is it true that unrestricted n-in-a-row is a draw for every n≥ 6?

In Open Problem 4.2 the real question is the two cases n= 6 and n= 7; for n≥ 8
we know that the game is a draw. We give a proof at the end of Section 10. The
figure above illustrates the weaker result that n= 9 is a draw (why?).

2. Harary’s Animal Tic-Tac-Toe. Unrestricted n-in-a-row is a very interesting
2-dimensional variant of Tic-Tac-Toe, which is wide open for n = 5�6�7. In
the 1970s, Frank Harary introduced another 2-dimensional variant that he called
Animal Tic-Tac-Toe. The first step in Animal Tic-Tac-Toe is to choose an arbitrary
polyomino, or, using the old terminology, cell animal, and declare it to be the
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objective of the game. Note that a cell animal is by definition edge connected (or
using chess terminology: rookwise connected in the sense that a rook can visit every
cell of the set). For example, the “diagonal 3-in-a-row,” a winning set in ordinary
Tic-Tac-Toe, is not a cell animal.

The two players play on an n×n board (of course, the board is assumed to be
large enough to contain at least one congruent copy of the goal animal), and as in
ordinary Tic-Tac-Toe, they alternately mark the cells with X and O. Each player
tries to mark the cells to build a congruent copy of the goal animal. The player who
builds a congruent copy of the goal animal with his own mark first is the winner;
otherwise the play ends in a draw. For example, if the goal animal is the 3-cell

“Tic”

called “Tic,” the first player wins on every n×n board with n≥ 4 in 3 moves (the
fastest way!) – We leave the easy proof to the reader.

Next consider “El,” “Knobby,” and “Elly” (the funny names were coined by
Harary and his colleagues)

The first player can build a congruent copy of “El” on every n× n board with
n≥ 3 in 3 moves; a congruent copy of “Knobby” on every n×n board with n≥ 5
in 4 moves; and a congruent copy of “Elly” on every n×n board with n ≥ 4 in
4 moves. Harary calls “Tic,” “El,” “Knobby,” and “Elly” Economical Winners for
the obvious reason that the first player can build each one without having to take
any cell that is not part of the winning goal animal.

There are exactly 5 4-cell animals: besides “Knobby” and “Elly” we have

Tippy Skinny Fatty

“Fatty” is a Loser (i.e. not a Winner); indeed, either player can prevent the opponent
from building a congruent copy of “Fatty” by applying the following simple domino
tiling (pairing strategy)



62 Win vs. Weak Win

This pairing strategy proof is due to Andreas R. Blass; the termsWinner, Economical
Winner, and Loser were coined by Harary.
“Skinny” and “Tippy” are bothWinners, but neither one is an Economical Winner.

Indeed, a mid-size case study proves that the first player can build a congruent copy
of “Skinny” first on every n×n board with n ≥ 7 in at most 8 moves, and he can
also build a congruent copy of “Tippy” first on every n×n board with n≥ 3 in at
most 5 moves.
We have a complete understanding of the 4-cell animals; let’s move next to the

5-cell animals. There are exactly 12 5-cell animals: 9 are Losers and 3 are Winners
(neither one is an Economical Winner). Haray calls a Loser that contains no Loser
of lower order (“order” is the number of cells) a Basic Loser. “Fatty” is the smallest
Basic Loser; among the 9 5-cell Losers 8 are Basic Losers

not a Basic Loser

Exercise 4.2 Find a domino tiling pairing strategy for each one of the 8 5-cell
Basic Losers.

There are exactly 35 6-cell animals, all but 4 contain one of the 9 Basic Losers of
order ≤ 5; the 4 exceptions are

Snaky

The first 3 turned out to be Losers (consequently Basic Losers).

Exercise 4.3 Find a domino tiling pairing strategy for each one of the first 3 6-cell
Basic Losers (not “Snaky”).

The status of “Snaky” is undecided–this is the big open problem of Animal
Tic-Tac-Toe.

Open Problem 4.3 Is it true that “Snaky” is a Winner? In particular, is it true
that “Snaky” is a Winner on every n×n board with n ≥ 15, and the first player
can always build a congruent copy of “Snaky” first in at most 13 moves?
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This conjecture, formulated by Harary 20 years ago, remains unsolved.
If “Snaky” is a Winner, there are 12 Basic Losers of order ≤ 6: one of order

4, eight of order 5, and three of order 6. The 5 domino tilings (pairing strategy)
provide the proof:

Here comes the surprise: there are 107 7-cell animals, each containing one of
the 12 Basic Losers of order ≤ 6 (we don’t need “Snaky”!), so even if “Snaky”
remains unsolved, Haray and his colleagues could still prove the following elegant
result: there are no Winners among the cell animals of order ≥ 7. The proof is
elementary: domino tiling pairing strategy and exhaustive search suffice.

In other words, every Animal Tic-Tac-Toe is “easy”: either a Winner in a
few moves, or a Loser by a simple pairing strategy (domino tiling), with the
exception of “Snaky”! For more about Animal Tic-Tac-Toe, see Chapter 37 in
Gardner [2001].

Brute force complexity. Let me return to the conjecture about “Snaky”: “Snaky”
is conjectured to be a Winner on every n×n board with n≥ 15, and the first player
is expected to be able to build a copy of “Snaky” in at most 13 moves. Why is
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this innocent-looking conjecture still open? Consider the special case n = 15; the
“brute force complexity” of this special case of the conjecture is about

25∑
m=0

(
225
m

)(
m

m/2

)
≈ 1044�

What we mean by the “brute force complexity” is the running time of the backward
labeling algorithm, the only known general method to solve an arbitrary finite
Combinatorial Game (for the concepts of Combinatorial Game and backward
labeling we refer the reader to Appendix C). We give a nutshell illustration of
backward labeling as follows. A position is called even or odd depending on the
parity of the total number of marks made by the two players together; for example,
the starting position (“empty board”) is even. In an even (or odd) position, it is
the first (or second) player who makes the next move. The sum

∑25
m=0

(225
m

)(
m

m/2

)
above gives the total number of positions on a 15× 15 board in which the first
player made ≤ 13 moves and the second player made ≤ 12 moves; among these
positions we label those odd positions which were just won by the first player (i.e.
the first player owns a whole winning set but the second player doesn’t own a
whole winning set yet): the label reads “I-wins.” The backward labeling algorithm
means to apply the following two rules:

Rule 1: if an even position P is a predecessor of a “I-wins” position, then P is also
a “I-wins” position;

Rule 2: if an odd position P has the property that all of its options (“successors”)
are “I-wins” positions, then P is also a “I-wins” position; otherwise P is
not labeled.

The brute force way to prove the above-mentioned conjecture about “Snaky” is
to show that, by repeated application of Rules 1–2, the starting position becomes
labeled with “I-wins.” The brute force way to decide whether this is the case or
not takes about

∑25
m=0

(225
m

)(
m

m/2

) ≈ 1044 steps, which is beyond hope. This is the
“combinatorial chaos” that prevents us from proving (or disproving) the “Snaky
conjecture” (Open Problem 4.3), and the same applies for Open Problem 3.2.

3. Kaplansky’s n-in-a-line. We already saw two different 2-dimensional variants
of Tic-Tac-Toe (the unrestricted n-in-a-row and Harary’s Animal Tic-Tac-Toe); a
third, no less interesting, variant was invented by Kaplansky, and goes as follows.
Two players move alternately by marking unmarked integer lattice points in the
plane; for example, the first player may color his points red and the second player
may color his points blue. If, during a play, there ever occurs a configuration
where some straight line contains n points of one color and no points anywhere
on the line of the other color, then whoever does it first is declared the winner;
otherwise the play ends in a draw. The length of the play is ≤� exactly like in the
unrestricted n-in-a-row or the S-building game in Section 1. We refer to this game
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as Kaplansky’s n-in-a-line. The novelty of this variant is that the whole line has to
be “opponent-free.”

The cases n= 1�2�3 are all trivial (why?), but the case n= 4 is already unsolved.

Open Problem 4.4 Is it true that Kaplansky’s 4-in-a-line is a draw game? Is it
true that Kaplansky’s n-in-a-line is a draw game for every n≥ 4?

This conjecture is due to Kleitman and Rothschild [1972]; it is about 35-years-old
now. There is no progress whatsoever. We will return to this game in Section 15,
where we discuss a weaker version.

The next game is well known among mathematicians.

4. Hex. The popular game of Hex was invented by Piet Hein in the early 1940s,
and it is still “unsolved.” The board of Hex is a rhombus of hexagons of size n×n

(the standard size is n = 11). Why hexagons (why not squares or triangles)? The
hexagons have the unique property that, if two hexagons share a corner point, then
they must share a whole edge. In other words, in a hexagon lattice vertex-connected
and edge-connected mean the same thing.

WHITE
BLACK

BLACK WHITE

Black has a
winning chain
in Hex

The two players, White (the first player) and Black (the second player) take the
two pairs of opposite sides of the board. The players alternately put their pieces on
unoccupied hexagons (White has white pieces, and Black has black pieces). White
wins if his pieces connect his opposite sides of the board, and Black wins if his
pieces connect the other pair. Observe that Hex is not a positional game: the winning
sets for White and Black are (mostly) different. In fact the only common winning
sets are the chains connecting diagonally opposite corners (a small minority among
all winning sets).

In the late 1940s John Nash proved, by a pioneering application of the Strategy
Stealing argument (see Section 5), that Hex is a first player win.
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Exercise 4.4 By using the strategy stealing argument show that the first player has
a winning strategy in Hex.

It is a famous open problem to find an explicitwinning strategy (unsolved for n≥ 8).

Open Problem 4.5 Find an explicit first player (“White”) winning strategy in
n×n Hex for every n≥ 8. In particular, find one for the standard size n= 11.

5. Bridge-it. Bridge-it is a variant of Hex. It was invented by D. Gale in the 1960s.
The board of the game is a pair of interlaced n by n+1 lattices (a white one and a
black one). White (the first player) joins to adjacent (horizontal or vertical) spots of
the white lattice, and Black (the second player) joins to adjacent (horizontal or verti-
cal) spots of the black lattice. There is a restriction: no two moves may cross. White
wins if he forms a white chain connecting a left-most spot to a right-most spot; Black
wins if he forms a black chain connecting a top-most spot to a bottom-most spot.

White wins
in Bridge-it

White’s
opening move

Gross’s
explicit
winning strategy

Exercise 4.5 By using the strategy stealing argument show that the first player has
a winning strategy in Bridge-it.
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To find an explicit first player winning strategy in Hex remains a famous unsolved
problem; however, for Bridge-it we know several explicit winning strategies! The
first one was found by Oliver Gross, which is vaguely indicated on the second
picture above (it will be clarified below).

Before studying Gross’s explicit first player winning strategy, it is very instructive
to solve a simpler game first that we call 2-Colored Dots-and-Cycles. Two players
start from a rectangular array of dots and take turns to join two horizontally or ver-
tically adjacent dots; the first player uses red pen and the second player uses blue
pen. That player who completes a cycle of his own color first is declared the winner.

Exercise 4.6 Prove that 2-Colored Dots-and-Cycles is a draw game. What is more,
it is a Strong Draw game: either player can prevent the opponent from occupying
a monochromatic cycle (by using a pairing strategy).

Now we are ready to explain Gross’s explicit first player’s winning strategy (see
the picture above). It is a shockingly simple Pairing Strategy which guarantees a
first player win as follows: White (first player) opens with the move on the picture
above, thereafter whenever Black’s play crosses the end of a dotted line, White
plays by crossing the other end of the same line.

Exercise 4.7 Prove that, by using Gross’s “dotted line” pairing strategy, the first
player can force a win in Bridge-it.

A completely different solution of Bridge-it was given later by Alfred Lehman
[1964]. In fact, Lehman solved a large class of games, the Multigraph Connectivity
Games (it is also called “Shannon’s Switching Game”).

6. Multigraph Connectivity Game. This game is defined as follows: two players,
Inker (basically “Maker”) and Eraser (basically “Breaker”), play a game on a
multigraph G = �V�E�; multigraph means a graph where two vertices may be
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joined by two or more edges. The players take turns, with Eraser going first, and
each of them in his turn claims some previously unclaimed edge of G� Inker’s aim
is to claim all the edges of some spanning tree of G� Eraser’s aim is simply to
prevent Inker from achieving his goal.
Each edge of the multigraph represents a permissible connection between the

vertices at its ends; begin the game with the edges drawn in pencil. Inker at his
move may establish one of these connections permanently (ink over a penciled
edge) and attempts to form a spanning tree (i.e. a tree containing every vertex). The
opponent (Eraser) may permanently prevent a possible connection (erase a penciled
edge) and his goal is to “cut” Inker’s graph forever. When can Inker win?
Lehman [1964] completely answered this question by the following sim-

ple/elegant criterion.

Theorem 4.1 In the Multigraph Connectivity Game played on a multigraph G,
Inker, as the second player, can win if and only if G contains two edge-disjoint
spanning trees.

Proof. Both parts are surprisingly simple. The “only if ” part goes as follows. If
Inker, as the second player, has a win in the game, then by the Strategy Stealing
argument, there must be two edge-disjoint spanning trees. Indeed, an extra move
is no disadvantage, so both players can play Inker’s strategy. If they do this, two
disjoint spanning trees will be established.
Next the “if ” part: whenever Eraser’s move cuts one of the two trees into two

parts, say, A and B, Inker’s reply is an edge in the other tree joining a vertex of A to
one of B. Identifying the two endpoints, we obtain a multigraph with one less vertex,
which again contains two edge-disjoint spanning trees, and keep doing this.

White’s
first move

Single
vertex

Single
vertex
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The key fact is that Bridge-it is a particular case of the Multigraph Connectivity
Game. Indeed, we can assume that both players play on White’s lattice. White (the
first player in Bridge-it) starts with an edge (say) in the lower-left corner. Identifying
the endpoints, we get a multigraph which contains two edge-disjoint spanning trees:
the “horizontal” tree (marked with heavy lines) and the complementary “vertical”
tree, see the figure above. From now on Black becomes Eraser and White becomes
Inker. White (i.e. Inker) wins Bridge-it by using the above-mentioned “joining a
vertex of piece A to a vertex of piece B” strategy.

This strategy is not a pairing strategy, but there is a strong resemblance: we need a
pair of spanning trees (see the two edge-disjoint spanning trees on the figure above).
If the opponent damages one tree, we use the other one to fix the broken tree.

Lehman’s Theorem inspired some important work in Matching Theory. Tutte
[1961] and Nash-Williams [1961] proved independently of each other that the
non-existence of two disjoint spanning trees of a multigraph G is equivalent to the
existence of a set S of edges whose deletion splitsG into at least ��S�+3�/2 compo-
nents. When such an edge-set exists, Eraser wins simply by claiming edges from S

so long as there remain any. In fact the theorem of Tutte and Nash-Williams is more
general. It asserts that G has k pairwise disjoint spanning trees if and only if there
is no set S of edges whose deletion splits G into more than ��S�+1�/k components.
This theorem has then been generalized by Edmonds [1965]. Edmonds’s Theorem
is accompanied by an efficient algorithm which, in the special case of multigraphs,
terminates by constructing either the set S or the k pairwise disjoint spanning trees.
It follows that the inefficient “only if” part in the proof of Theorem 4.1 (“Strategy
Stealing”) can be replaced by an efficient polynomial strategy.

Next we discuss a Reverse generalization of Lehman’s Theorem where the goal
becomes the anti-goal.

7. Multigraph Connectivity Game: a Biased Avoidance version. Very recently
Hefetz, Krivelevich, and Szabó [2007] made the surprising/elegant observation that
Theorem 4.1 (“Lehman’s Theorem”) can be extended to the �1 � b� Avoidance play
as follows. Let b ≥ 1 be a fixed integer. In the �1 � b� Avoidance version the board
remains the same multigraph G = �V�E�, and the two players remain the same:
Inker and Eraser. The players take turns, with Eraser going first; Inker claims one
previously unclaimed edge of G and Eraser claims b previously unclaimed edge(s)
of G. Eraser’s goal is to force Inker to claim all the edges of some spanning tree
of G� Inker’s aim is simply to avoid building a spanning tree.
Each edge of the multigraph represents a permissible connection between the

vertices at its ends; begin the game with the edges drawn in pencil. Inker at his
move may establish one of these connections permanently (ink over a penciled
edge) and attempts to form a spanning tree (i.e. a tree containing every vertex).
The opponent (Eraser) may permanently prevent b possible connection(s) (erase
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penciled edges). When can Eraser win, i.e. when can he force the reluctant Inker
to build a spanning tree?
Hefetz, Krivelevich, and Szabó [2007] discovered the following simple criterion,

a kind of generalization of Lehman’s Theorem (the special case of (1:1) play was
independently discovered by Brian Cornell, my former Ph.D. student at Rutgers).

Theorem 4.2 In the Multigraph Connectivity Game played on a multigraph G, if
G contains b+1 edge-disjoint spanning trees, then topdog Eraser can always win
the �1�b� Avoidance game. In other words, Eraser can always force underdog Inker
to occupy a whole spanning tree.

Proof. Eraser’s strategy is to “prevent cycles.” Let T1� T2� � � � � Tb+1 be b+1 pair-
wise disjoint spanning trees in multigraph G. For simplicity assume that G equals
the union of these b+ 1 spanning trees, and Eraser is the second player. Let e1
denote Inker’s first move, and assume that e1 ∈ Tj . For every 1 ≤ i ≤ b+ 1 with
i �= j consider the spanning tree Ti: adding the extra edge e1 to Ti there is a uniquely
determined cycle Ci in Ti∪ �e1� containing e1. For every 1 ≤ i ≤ b+1 with i �= j

Eraser picks an edge fi from cycle Ci which is different from e1, this is Eraser’s
first move. Eraser defines the new spanning trees: T ′

j = Tj, and T ′
i = Ti∪ �e1�\ �fi�

for every 1 ≤ i ≤ b+ 1 with i �= j. Identifying the two endpoints of e1 we obtain
a multigraph with one less vertex, which again contains b+ 1 pairwise disjoint
spanning trees as before. Thus Eraser has no difficulty repeating the first step.
We leave the general case – when G is strictly larger than the union of b+1 span-

ning trees, and Eraser is the first or second player – to the reader as an exercise.

Here is a natural question: can Theorem 4.2 be generalized to the �1�b� Achievement
game, where underdog Inker is eager to build a spanning tree? The answer is “no”;
we will discuss the proof in Section 20.
We conclude Section 4 with another reverse game; in fact, with a Reverse Clique

Game.

8. Sim and other Clique Games on graphs. A well-known puzzle states that in a
party of 6 people there is always a group of 3 who either all know each other or are
all strangers to each other (this is the simplest special case of Ramsey’s well-known
theorem). This fact motivates the very entertaining game of Sim. The board of Sim
is K6, a complete graph on 6 vertices.

K6

b

Blue does not
want to take
the ab-edge

Blue
Red

a
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There are 2 players: Red and Blue. At a turn a player colors a previously uncolored
edge with his own color. Sim is a Reverse Game: that player loses who builds a
monochromatic K3 first; otherwise the play ends in a draw. In other words, in Sim
either player’s goal is to force the opponent to complete a monochromatic triangle
first. The game is named after Gustavus J. Simmons, see [1969].

The beauty of this game lies in its simplicity and the fact that a draw is impossible
(this follows from the above-mentioned puzzle).

In Sim the second player has a winning strategy, i.e. alternately coloring the edges
of the complete graph K6 red and blue, the second player can force the opponent
to build a monochromatic triangle first. This result was proved by an exhaustive
computer analysis. We don’t know any simple winning strategy; for a relatively
simple one we refer the reader to O’Brian [1978–79].

Sim is a Reverse Clique Game (“clique” is a nickname for “complete graph”);
we denote it by �K6�K3�−�. The notation is clear: K6 is the board, “−” stands
for “Reverse,” and K3 is the “anti-goal.” How about the “normal” version? The
“normal” version, the �K6�K3� Clique Game, is just too easy: the first player can
always have a triangle of his own first in his 4th move (or before). We leave the
trivial details to the reader.

An advanced version of the initial puzzle goes as follows: in a party of 18 people
there is always a group of 4 who either all know each other or are all strangers to
each other. This implies that if the board is K18 and the goal (or anti-goal) is K4,
then again a draw is impossible. There are two game versions: the normal �K18�K4�

Clique Game and the Reverse �K18�K4�−�. Both are good games, although the
difficulty of identifying tetrahedrons �K4� makes them somewhat hard to play.
The normal �K18�K4� Clique Game is known to be a first player win (why? see
Theorem 6.1 later), but we don’t know how he wins. The Reverse version is a
complete mystery; we don’t know anything.

Open Problem 4.6

(a) Find an explicit first player winning strategy in the �K18�K4� Clique Game.
(b) Which player has a winning strategy in the Reverse Clique Game �K18�K4�−�?

If you know who wins, find an explicit winning strategy.

The Clique Games are clearly related to the Ramsey Theorem, and the nd hyper-
cube Tic-Tac-Toe is clearly related to the Hales–Jewett Theorem – two basic results
in Ramsey Theory. In the next few sections we explore the connection between
Games and Ramsey Theory.



5
Games on hypergraphs, and the combinatorial

chaos

1. Positional Games. In Sections 1–4 we discussed several classes of concrete
games:

(1) S-building game on the plane;
(2) nd Tic-Tac-Toe;
(3) unrestricted n-in-a-row;
(4) Harary’s Animal Tic-Tac-Toe;
(5) Kaplansky’s n-in-a-line;
(6) Hex on an n×n board;
(7) Bridge-it on n× �n+1� boards;
(8) Multigraph Connectivity Game;
(9) Sim and other Clique Games.

We could find a satisfying solution only for each of the two Maker–Breaker games,
classes (1) and (8), but the “who does it first” classes, namely classes (2)–(6) and
(9), seem to be hopelessly difficult, with the lucky exception of Bridge-it (class (7))
and the small game of Sim. The humiliating Open Problems 3.1–3.2 and 4.1–4.6
do not give too much reason for optimism. Why are “who does it first” games
so difficult? Why do they lead to combinatorial chaos? Before addressing these
exciting questions, we need to introduce some very general concepts, the basic
concepts of the book.

Is there a common way to generalize the seemingly very different classes (1)–(9)?
A common feature is that there is always an underlying set V that we may call
the “board,” and there is always a family F of “winning sets” (a family of subsets
of V ).

Classes (2) and (4) are special cases of the following very general concept.

Positional Games. Let �V�F� be an arbitrary finite hypergraph. A “finite hyper-
graph” means that V is an arbitrary finite set, called the board of the game, and
F is an arbitrary family of subsets of V, called the family of winning sets. The

72
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two players, the first player and the second player, alternately occupy previously
unoccupied elements (“points”) of board V. That player wins who occupies all the
elements of some winning set A ∈ F first; otherwise the play ends in a draw.

V : board

� : family of
winning sets

Sometimes we just give the family F of winning sets, then the board V is the
union

⋃
A∈F A of all winning sets. Note that the board V is also called the “vertex

set,” the elements of V are also called “points” or “vertices,” and the winning sets
A ∈ F are also called “hyperedges.”

Every Positional Game is determined, which means that either:

(a) the first player has a winning strategy, or
(b) the second player has a winning strategy, or
(c) both of them have a drawing strategy.

Remarks. Alternatives (a), (b), (c) are what we call the three outcomes of a
game. Of course, every single play has three possible outcomes: either the first
player wins, or the second player wins, or the play ends in a draw, but the outcome
of a particular play has nothing to do with the outcome of the game. For example,
the second player can easily lose in ordinary Tic-Tac-Toe (e.g. if the first player
opens in the center, and the second player replies on the side), even if Tic-Tac-Toe
is a draw game (i.e. the game itself belongs to class (c)).

The proof of the fact that Positional Games are all determined is very simple: it
is a straightforward application of De Morgan’s law. Indeed, there are only three
alternatives: either:

(a) the first player= I has a winning strategy: ∃x1∀y1∃x2∀y2 · · · such that I wins; or
(b) the second player= II has a winning strategy: ∀x1∃y1∀x2∃y2 · · · such that II

wins;
(c′) or the negation of (a)∨(b)

¬
(
�∃x1∀y1∃x2∀y2 · · · I wins�∨ �∀x1∃y1∀x2∃y2 · · · II wins�

)
�
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which, by De Morgan’s law, is equivalent to

�∀x1∃y1∀x2∃y2 · · · I loses or draw�∧ �∃x1∀y1∃x2∀y2 · · · II loses or draw��

So the third alternative is that both players have a drawing strategy, which is exactly
case (c).
This explains why strategy is the primary concept of Game Theory; in fact Game

Theory is often called the Theory of Strategies.
Every game can be visualized as a “tree of all possible plays,” called the game-

tree. Backtracking of the game-tree gives a constructive proof for the previous
existential argument. It provides an explicit winning (or drawing) strategy. The bad
news is that backtracking is usually impractical. From a complexity viewpoint it
is better to work with the (usually smaller) position graph; then “backtracking”
is called “backward labeling of the position graph.” Unfortunately, “backward
labeling” is still impractical: it takes “exponential time” (see Appendix C).

(It is worth noting that infinite Positional Games are not necessarily determined.
This is a famous paradox, see Theorems C.4 and C.5 in Appendix C.)

2. Strategy Stealing: a remarkable existence argument. It is well known that
whoever plays first in a Positional Game can force at least a draw. In other words,
for Positional Games case (b) cannot occur. This seems very “plausible” because
Positional Games are symmetric (i.e. both players want the same thing: to occupy
a whole winning set first), and the first player has the advantage of the first move
which “breaks” the symmetry. We will return to this “plausible proof” later.

Theorem 5.1 (“Strategy Stealing”) Let �V�F� be an arbitrary finite hypergraph.
Then playing the Positional Game on �V�F�, the first player can force at least a
draw, i.e. a draw or possibly a win.

Remark. Theorem 5.1 seems to be folklore. “Strategy stealing” was definitely
used by Nash in the late 1940s (in his “existential” solution of Hex), but the first
publication of Theorem 5.1 is probably in Hales and Jewett [1963].

Proof. Assume that the second player (II) has a winning strategy, STR, and we
want to obtain a contradiction. The idea is to see what happens if the first player (I)
steals and uses STR. A winning strategy for a player is a list of instructions telling
the player that if the opponent does this, then he does that, so if the player follows
the instructions, he will always win. Now I can use II’s winning strategy STR to win
as follows. I takes an arbitrary first move, and pretends to be the second player (he
ignores his first move). After each move of II, I, as a fake second player, reads the
instruction in STR before taking action. If I is told to take a move that is still avail-
able, he takes it. If this move was taken by him before as his ignored “arbitrary” first
move, then he takes another “arbitrary move.” The crucial point here is that an extra
move, namely the last “arbitrary move,” only benefits I in a positional game.
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This was a non-constructive proof: we did not construct the claimed drawing
strategy. In a non-constructive proof it is particularly important to be very precise,
so a true algebraist reader – requesting the highest level of precision – is justly
wondering: “Where is the formal definition of the concept of strategy?” This
criticism is especially well-founded so that we referred to Game Theory above as
the Theory of Strategies.

Well, we have to admit: this approach was informal. We felt the concept of
strategy was so natural/intuitive that it could be taken it for granted, something like
“common sense.” Those who agree on this may go on reading the rest of the book
without interruption. Those who don’t agree and feel it was “cheating” (they cannot
be blamed; they have a point), should consult Appendix C first (before reading the
rest of the book).

Let’s return to “strategy stealing”; the fact that it does not supply an explicit strat-
egy is a major weakness of the argument. It is an unlimited source of hopeless open
problems. Here is a striking example. Open Problem 4.6 can be extended as follows:
we know from Theorem 5.1 that the �Kn�K4� Clique Game is a first player win for
every n≥ 18. Is there a uniform upper bound for the Move Number? More precisely

Open Problem 4.6 (c) Is there an absolute constant C4 < � such that the first
player can always win in less than C4 moves in every �Kn�K4� Clique Game with
n≥ 18?

Is there an absolute constant C5 <� such that the first player can always win
in less than C5 moves in every �Kn�K5� Clique Game with n≥ 49?

These questions were asked more than 20 years ago, and it is unlikely that a solution
for K5 (or K6 or K7) will be found in our lifetimes.

Computational Complexity in a nutshell. Strategy stealing doesn’t say a word
about how to find the existing strategy. What can we do then? As a last resort, we
can always try exhaustive search, which means backtracking of the game-tree (or
the position-graph). What is the complexity of the exhaustive search? To answer
the question, consider a Positional Game, i.e. a finite hypergraph. If the board V

is N -element, then the total number of positions is obviously O(3N ). Indeed, in
any particular instant of a play each point on the board can have 3 options: either
marked by the first player, or marked by the second player, or unmarked yet. It
follows that the size of the position-graph, i.e. the number of edges, is O�N ·3N ��
The size of the game-tree is clearly O(N !). Indeed, a play is a permutation of

the board. Note that for large N� O(N · 3N ) is substantially less than O(N !). This
saving, O(N ·3N ) instead of O(N !), is the reason why it is more efficient to work
with the position-graph instead of the game-tree.

The exhaustive search of the position-graph, often called “backward labeling,”
describes the winner and provides an explicit winning or drawing strategy in linear
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time – linear in terms of the position-graph. For Positional Games the running time
is O(N ·3N ), where N is the size of the board.
At first sight this seems to be a satisfying answer. Well, not exactly. An obvious

problem is that the exhaustive search is hardly more than mindless computation,
lacking any kind of “understanding.” The practical problem is computational com-
plexity: A 3N–step algorithm is intractable; to perform 3N operations is far beyond
the capacity of the fastest computer even for a relatively small board-size such
as (say) N = 100. This means that, unless we find some substantial shortcut, the
exhaustive search of a positional game with board-size ≥ 100 leads to completely
hopeless combinatorial chaos. For example, the 53 Tic-Tac-Toe game has 125 cells
(“Open Problem 3.1”) and K18 has 153 edges (“Open Problem 4.6”); in both cases
the board-size is well over 100.
This concludes our brief discussion of the “complexity of the exhaustive search.”

For a more detailed (and more precise!) treatment of the subject we refer the
sceptical reader to Appendix C.

3. Reverse and semi-infinite games. Let us return to the “plausible proof” of
Theorem 5.1: in a Positional Game the two players have exactly the same goal
(“to occupy a whole winning set first”), but the first player has the “first-move-
advantage,” which breaks the symmetry in favor of him, and guarantees at least a
first player’s drawing strategy. This sounds pretty convincing.
Here comes the surprise: the argument is faulty! Indeed, if we repeat the argument

for the Reverse Positional Game (where that player loses who occupies a whole
winning set first, see e.g. Sim in Section 4), then it leads to a false conclusion,
namely to the conclusion that “the second player cannot lose.” Indeed, we can argue
that in a Reverse Positional Game, the two players have exactly the same goal, but
the first player has the “first-move-disadvantage,” which breaks the symmetry
in favor of the opponent, implying that the second player cannot lose. But the
conclusion is false: it is not true that the second player cannot lose a Reverse
Positional Game. There are infinitely many Reverse Positional Games in which the
first player has a winning strategy, e.g. the Reverse 33 Tic-Tac-Toe.

Theorem 5.2 (“Reverse nd Tic-Tac-Toe”) Consider the Reverse nd game: the only
difference in the rule is that the player who occupies a whole n-in-a-line first is
the loser. If n is odd (i.e. the geometric center of the board is a “cell”), the first
player has an explicit drawing strategy. If n is even (i.e. the geometric center of
the board is not a “cell”), the second player has an explicit drawing strategy.

The following shockingly simple proof is due to Golomb and Hales [2002]. If n
is odd, then first player’s opening move is the center C, and whenever the second
player claims a point (i.e. a cell) P, the first player chooses the reflection P ′ of P
with respect to center C (i.e. P�C�P ′ are on the same line and the PC distance
equals the CP ′ distance). Assume the first player colors his points red, and the
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second player colors his points blue. We show that the first player cannot lose.
Indeed, assume that the first player loses, and L is the first n-in-a-line owned by
a player during the course of a play (i.e. L is a red line). Observe that L cannot
contain center C. Indeed, every completed n-in-a-line containing the center has
precisely �n+1�/2 red and �n−1�/2 blue points. If L doesn’t contain the center,
then its reflection L′ is a complete blue line, and since L′ was completed before L,
we get a contradiction.

On the other hand, if n is even, then the second player can use the “reflection strat-
egy,” i.e. choosing P′ if first player’s last move is P, and achieve at least a draw.

Note that the 33 board does not have a drawing terminal position (“easy case study”),
so first player’s explicit drawing strategy in the Reverse 33 game is automatically
“upgraded” to a winning strategy.

In general, for every n (≥ 3) there is a finite threshold d0 = d0�n� such that the
nd board does not have a Drawing Terminal Position if d ≥ d0. This follows from
a famous result from Ramsey Theory (“Hales–Jewett Theorem”). So, if d ≥ d0,
then first player’s (resp. second player’s) explicit drawing strategy if n is odd (resp.
even) in Theorem 5.2 is automatically upgraded to a winning strategy. This proves
that, for Reverse Positional Games each one of the 3 possible outcomes – see (a),
(b), and (c) above – can really occur.

The concept of Positional Games covers class (2) (“nd Tic-Tac-Toe”) and class (4)
(“Harary’s Animal Tic-Tac-Toe”). In order to include class (3) (“unrestricted n-in-
a-row”) we just need a slight generalization: the concept of semi-infinite Positional
Games. Theminor difference is that the boardV is infinite, but thewinning setsA ∈ F
areallfinite.Thelengthofasemi-infinitePositionalGamesisdefinedtobetheusual≤�.
Semi-infinite Positional Games and Reverse Positional Games remain determined:

(a) either the first player has a winning strategy, (b) or the second player has a winning
strategy), (c) or either player can force a draw. We can basically repeat the proof
of the finite case as follows. If player P (first or second) has no winning strategy,
then the opponent, called player Q, can always make a next move so that player P
still has no winning strategy, and this is exactly how player Q can force a draw. The
point is that the winning sets are finite, so if a player wins, he wins in a finite number
of moves; this is why player P cannot win and the opponent, player Q, forces a draw.

Similarly, for semi-infinite Positional Games one alternative is excluded: the
second player cannot have a winning strategy. Again the same proof works.

In the rest of the section we focus on Positional Games.
We are ready to address the main question of the section: Why are “who does it

first” games so difficult? Consider, for example, Open Problem 4.1: Is it true that
unrestricted 5-in-a-row is a first player win? This remains open in spite of the fact
that for the 19×19 board there is an explicit first player’s winning strategy! (It is a
computer-assisted proof, a huge case study. The 19×19 board comes up naturally
as the crosspoints of the Go board.)



78 Win vs. Weak Win

The game 5-in-a-row on a 19×19 board has an explicit first player win strategy,
but, as far as we know, no one can extend it to the whole plane. At least we don’t
know any rigorous proof. How is it possible? Well, this is the “curse of the Extra
Set Paradox”; in fact, the “curse of the Induced Extra Set Paradox.” The Extra Set
Paradox says that:

4. Winning in Positional Games is not monotone. Let us start with a simple
first player win hypergraph; for example, consider a binary tree of (say) 3 levels:
the winning sets are the 4 full-length branches (3-sets, the players take vertices) of
the binary tree. Adding n disjoint 2-element “extra sets” to the hypergraph enables
the second player to postpone his inevitable loss by n moves (of course n can be
infinite like n= �).

n

By the way, the second player can easily postpone his inevitable loss by adding
pairwise disjoint 2-element sets to any first player win hypergraph.

In the previous example the second player can postpone his loss by n moves,
where n can be arbitrarily large, but eventually the second player will lose the play.
The Extra Set Paradox is more sophisticated: it says that we can construct a finite
hypergraph (i.e. a Positional Game) which is a first player win, but adding an extra
winning set turns it into a draw game. What it means is that winning is not monotone!

The simplest example we know is the following: the hypergraph on picture 2
consists of the 8 full branches (4-sets, the players take vertices) of the binary tree
plus a 3-element Extra Set. The 8 4-sets form an economical winner for the first
player; adding the 3-element Extra Set turns it into a draw game.

extra setExtra Set Paradox:

This simple/elegant construction is due to R. Schroeppel.
In Schroeppel’s constructions neither hypergraph was uniform. In 2002, two

former Ph.D. students K. Kruczek and E. Sundberg were able to demonstrate the
Uniform Extra Set Paradox: they constructed a hypergraph of 10 4-sets which is
a draw, but deleting the �a� b� c�d� set, the remaining hypergraph is a first player
win, see figure below.
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c d

b

23 = 8 full branches plus
{b, c, d, e} is a first player
win; adding extra set
{a, b, c, d} to the hypergraph
turns it into a draw

Uniform Extra Set Paradox:

a

e

Later we learned a simpler 3-uniform example from the “colossal book” of Martin
Gardner [2001].

every
3-in-a-row
winsdrawfirst player win

An even smaller 3-uniform example was found very recently by Sujith Vijay
(Ph.D. student at Rutgers); we will discuss this example later.

Yet another kind of example is the Induced Extra Set Paradox: There is a
hypergraph such that the Positional Game on it is a draw, but an induced sub-
hypergraph is a first player win. The picture below shows a hypergraph on 7 points
such that the Positional Game is a draw, but an induced sub-hypergraph on 5
points is a first player win. The board consists of 1�2� � � � �7� the winning sets are
�1�2�3�, �1�3�4�, �1�4�5�, �1�2�5�, �6�7�, �4�5�6�, and �4�5�7�. The induced
sub-hypergraph has the sub-board 1�2�3�4�5� and the 4 winning sets contained by
this sub-board, see the figure below.

Induced
Extra
Set
Paradox:

3

2 5

4

7

6

1
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The first player wins the Positional Game on the sub-hypergraph induced by
the sub-board 1, 2, 3, 4, 5 by taking first 1. On the whole hypergraph, however,
the first player cannot win. Indeed, if his first move is 1, then the second player
subsequently takes 6, 4, 2, forcing the first player to take 7, 5, and it is a draw. If
the first player’s first two moves are (say) 6, 1, then the second player subsequently
takes 7, 4, 2, forcing a draw. Finally, if the first player’s first 3 moves are (say)
6, 4, 1, then the second player subsequently takes 7, 5, 3, forcing a draw. This
construction is due to Fred Galvin; it is about 10 years old.

Galvin’s construction was not uniform; how about the Uniform Induced Extra Set
Paradox? Does there exist a uniform hypergraph such that the Positional Game on it
is a draw, but an induced sub-hypergraph is a first player win? Very recently, Ph.D.
student Sujith Vijay was able to construct such an example; in fact, a 3-uniform
example.
We begin the discussion with a simpler construction: Sujith Vijay was able to

find the smallest possible example of the Uniform Extra Set Paradox: a 3-uniform
hypergraph on 7 points with 7 3-sets. Consider the hypergraph H = �V�E�, where
the vertex-set V = �1�2� � � � �7� and the edge-set E = ��1�2�3�� �1�2�4�� �1�2�5��
�1�3�4�� �1�5�6�� �3�5�7��. Let P1 denote the first player and P2 denote the second
player.

2

3

4

5

1

67

P1 = first player P2 = second player

P1 can force a win on this hypergraph as follows:

Move 1: P1 picks 1. P2 is forced to pick 2, for otherwise P1 will pick 2 and
eventually wins, since at most two 3-sets can be blocked in 2 moves.

Move 2: P1 picks 3. P2 is forced to pick 4 (immediate threat!).
Move 3: P1 picks 5. P2 is forced to pick 6 (immediate threat!).
Move 4: P1 picks 7 and wins.

Now add the extra set: E′ = E∪ ��2�4�6��. We claim that the game played on
H ′ = �V�E′� is a draw (with optimal play).
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In order to have any chance of winning, P1’s opening move has to be 1. P2

responds by picking 2.
If P1 picks 3 (respectively 5) in Move 2, P2 picks 4 (respectively 6). P1 is then

forced to pick 6 (respectively 4) and P2 picks 5 (respectively 3), forcing a draw.
If P1 picks 4 (respectively 6) in Move 2, P2 picks 3 (respectively 5), forcing a

draw.
Picking 7 in Move 2 makes a draw easier for P2.
Thus P2 can always force a draw on H ′.
Furthermore, it is clear that any such 3-uniform example requires at least 7

vertices, since an extra edge cannot prevent a 3-move win.
Now we are ready to discuss the Uniform Induced Extra Set Paradox. Consider

the hypergraph H ′′ = �V ′′�E′′� where the vertex-set V ′′ = �1�2� � � � �9� and the
edge-set E′′ consist of the 7 3-sets ��1�2�3�� �1�2�4�� �1�2�5�� �1�3�4�� �1�5�6��
�3�5�7�� of E above, plus the two new 3-sets �2�4�8� and �2�6�9�� Again P1

denotes the first player and P2 denotes the second player.

3

5

1

6

8

2

7

4

9

As we have already seen, P1 can force a win on the sub-hypergraph induced
by V = �1�2� � � � �7�, i.e. on H = �V�E�. We claim that the game on the entire
hypergraph H ′′ is a draw (with optimal play).

In order to have any chance of winning, P1’s opening move has to be 1. P2

responds by picking 2.
If P1 picks 3 (respectively 5) in Move 2, P2 picks 4 (respectively 6). P1 is

then forced to pick 8 (respectively 9) and P2 picks 5 (respectively 3), forcing a
draw.

If P1 picks 4 (respectively 6) in Move 2, P2 picks 3 (respectively 5), forcing a
draw.

Picking 7, 8, or 9 in Move 2 makes a draw easier for P2.
Thus P2 can always force a draw on H ′′.
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Now something different: let me recall Open Problem 4.1: Is unrestricted 5-in-a-
row a first player win? This is difficult because of the Extra Set Paradox. A related
question is:

Open Problem 5.1 Consider the unrestricted 5-in-a-row; can the first player
always win in a bounded number of moves, say, in less than 1000 moves?

Open Problem 4.1 and 5.1 are two different questions! It is possible (but not very
likely) that the answer to Open Problem 4.1 is a “yes,” and the answer to Open
Problem 5.1 is a “no.”
The Extra Set Paradox shows that (finite) Positional Games can have some rather

surprising properties. Semi-infinite Positional Games provide even more surprises.
The following two constructions are due to Ajtai–Csirmaz–Nagy [1979].

Finite but not time-bounded. The first example is a semi-infinite Positional Game
in which the first player can always win in a finite number of moves, but there is
no finite n such that he can always win in less than n moves. The hypergraph has
8 4-element sets and infinitely many 3-element sets:

n = 1, 2, 3, . . .
T2n+1

1

2′ 3′
n′

1′
4′

n432
0

B15
. . .

The 8 4-element sets are the full-length branches of binary tree B15 of 15 vertices.
To describe the 3-element sets, consider trees T2n+1, n= 1�2�3� � � � as shown on the
figure. Tree T2n+1 has 2n+1 vertices which are labeled by 0�1�1′�2�2′� � � � � n�n′.
The 3-sets are �0�1�1′�, �1�2�2′�, �2�3�3′�� · · · � �n− 1� n�n′� as n = 1�2�3� � � �.
The first player can win by occupying a 4-set from B15. Indeed, his first move is
the root of binary tree B15. If the second player stays in B15, then the first player
occupies a 4-set in his 4th move. If the second player makes a move in a T2n+1

the first time, then first player’s next move is still in B15. When the second player
makes his move in the same T2n+1 the second time, the first player is forced to
stay in this T2n+1 for at most n more moves, before going back to B15 to complete
a 4-set. So the first player can always occupy a 4-set, but the second player may
postpone his defeat for n moves by threatening in T2n+1. In other words, the first
player wins in a finite number of moves but doesn’t have a time-bounded winning
strategy.

Finite but not space-bounded. In the next example the first player wins but doesn’t
have a space-bounded winning strategy: there is no finite subset of the board such
that in every play the first player can win by occupying elements of this finite
subset only.
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Figure 5.1

Let the board be X = �R�
⋃
�Pi�j � 1 ≤ i < ��0 ≤ j ≤ 7�, see Figure 5.1 below.

Let Xn = �R�
⋃
�Pi�j � 1≤ i≤ n�0≤ j ≤ 7��n= 1�2�3� � � � be finite initial segments

of the infinite board.
The winning sets are

�R�Pi�0�Pi�1�� �R�Pi�0�Pi�2�Pi�3�� �R�Pi�0�Pi�2�Pi�4�Pi�5�� �R�Pi�0�Pi�2�Pi�4�Pi�6�

for all 1 ≤ i < �, and �Pi�1�Pi�3�Pi�5�Pk�7� for all 1 ≤ i ≤ k < �. The first player
has a time-bounded winning strategy: he can win in his 5th move. He starts with
occupying root R. The second player’s first move is an element of sub-board Xn.
Then the first player threatens and wins by occupying Pn+1�0�Pn+1�2�Pn+1�4�Pn+1�6

in succession. On the other hand, the first player cannot win by restricting him-
self to any finite sub-board Xn. Indeed, if the first player has to stay in Xn,
then the second player can avoid losing by picking first either R or Pn�7. If the
second player occupies root R, then he controls the play. If he occupies Pn�7,
then he can prevent the first player’s only real threat: Pi�0�Pi�2�Pi�4�Pi�6 in suc-
cession for some i ≤ n (since �Pi�1�Pi�3�Pi�5�Pn�7� is a winning set). So the first
player has a time-bounded winning strategy, but not a space-bounded winning
strategy.

The concept of finite and semi-infinite Positional Games covers game classes
(2)–(4), but how about class (6) (“Hex”) and class (7) (“Bridge-it”)? Hex and
Bridge-it are not Positional Games: the winning sets for the two players are not the
same; in Bridge-it the two players don’t even share the same board: White moves
in the white lattice and Black moves in the black lattice.

5. Weak Win: Maker–Breaker games. A natural way to include Hex and Bridge-
it is the concept of theMaker–Breaker game, which was introduced in Theorem 1.2.
We recall the definition: on a finite hypergraph �V�F� we can play the “symmetric”
Positional Game and also the “one-sided” Maker–Breaker game, where the only
difference is in the goals:
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(1) Maker’s goal is to occupy a whole winning set A ∈F , but not necessarily first,
and

(2) Breaker’s goal is simply to stop Maker (Breaker does not want to occupy any
winning set). The player who achieves his goal is declared the winner – so a
draw is impossible by definition. Of course, there are two versions: Maker can
be the first or second player.

There is a trivial implication: if the first player can force a win in the Positional
Game on �V�F�, then the same play gives him, as Maker, a win in the Maker–
Breaker game on �V�F�. The converse is not true: ordinary Tic-Tac-Toe is a simple
counter-example.
We often refer to Maker’s win as a Weak Win (like Weak Winner in Section 1).

Weak Win is easier than ordinary win in a Positional Game. While playing the
Positional Game on a hypergraph, both players have their own threats, and either of
them, fending off the other’s, may build his own winning set. Therefore, a play is a
delicate balancing between threats and counter-threats and can be of very intricate
structure even if the hypergraph itself is simple.

The Maker–Breaker version is usually somewhat simpler. Maker doesn’t have
to waste valuable moves fending off his opponent’s threats. Maker can simply
concentrate on his own goal of building, and Breaker can concentrate on blocking
the opponent (unlike the positional game in which either player has to build and
block at the same time). Doing one job at a time is definitely simpler.
For “ordinary win” even the most innocent-looking questions are wide open,

such as the following “plausible conjecture.”

Open Problem 5.2 Is it true that, if the nd Tic-Tac-Toe is a first player win, then
the nD game, where D> d, is also a win?

This is again the “curse of the Extra Set Paradox.” In sharp contrast with ordinary
win, there is no Extra Set Paradox for Weak Win! The Weak Win version of
Open Problem 5.2 is trivial: Maker simply uses a Weak Win strategy within a
d-dimensional sub-cube of the nD cube.
The twin brother of Open Problem 5.2 is the following:

Open Problem 5.3 Is it true that, if the nd game is a draw, then the �n+1�d game
is also a draw?

Note that Golomb and Hales [2002] proved a weaker result, that we formulate as
an exercise.

Exercise 5.1 If the nd game is a draw, then the �n+2�d game is also a draw.

The reader is probably wondering: “Why is it easier to go from n to n+2 than from
n to n+ 1?” A good reason is that the nd board is the “interior” of the �n+ 2�d
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board. The lack of any similar simple (geometric) relation between the nd and
�n+1�d games raises the possibility of occasional non-monotonicity here. That is,
it may be, for some n and d, that the nd game is a draw, the �n+ 1�d game is a
first player win, and the �n+2�d game is a draw again.

We believe that in the class of nd Tic-Tac-Toe non-monotonicity never happens.
We are convinced (but cannot prove!) that for each given value of d, there is a
critical value n0�d� of n below which the first player can always force a win, while
at or above this critical value the nd game is a draw.
In contrast, monotonicity is totally trivial for Weak Win.

Weak Win is not easy! As said before, Weak Win is obviously easier than ordinary
win, because Maker doesn’t have to occupy a winning set first (this is why non-
monotonicity never happens), but “easier” does not mean “easy.” Absolutely not!
For example, the notoriously difficult game of Hex is equivalent to a Maker–Breaker
game, but this fact doesn’t help to find an explicit winning strategy. We prove the
equivalence: let WeakHex denote the Maker–Breaker game in which the board is
the n×n Hex board, Maker=White, Breaker=Black, and the winning sets are the
connecting chains of White. We claim that Hex and WeakHex are equivalent. To
show the equivalence, first notice that in Hex (and also in WeakHex) a draw is
impossible. Indeed, in order to prevent the opponent from making a connecting
chain, we must build a “river” separating the opponent’s sides, and the “river” itself
must contain a chain connecting the other pair of opposite sides. (This “topological”
fact seems plausible, but the precise proof is not completely trivial, see Gale [1979].)
This means that Breaker’s goal in WeakHex (i.e. “blocking”) is identical to Black’s
goal in Hex (i.e. “building first”). Here “identical” means that if Breaker has a
winning strategy in WeakHex, then the same strategy works for Black as a winning
strategy in Hex, and vice versa. Since a draw play is impossible in either game,
Hex and WeakHex are equivalent.
The concept of Maker–Breaker game clearly covers class (1) (“S-building game

in the plane”) and class (8) (“Multigraph Connectivity Game”); it has just been
explained why it covers class (6) (“Hex”), and, of course, the same argument
applies for class (7) (“Bridge-it”), which is covered by class (8) anyway. The
concept of finite and semi-infinite Positional Games covers classes (2)–(3)–(4);
but how about class (5): Kaplansky’s n-in-a-line? This is a Shutout Game; we
can play a Shutout Game on an arbitrary hypergraph �V�F�, finite or infinite.
First we choose a goal integer n�≥ 1�; an n-Shutout Game on �V�F� is similar
to the Positional Game in the sense that that the players alternate, but the goal is
different. Instead of “complete occupation” the players want an “n-shutout;” i.e.
if during a play the first time there is a winning set A ∈ F such that one of the
players, we call him player P, owns n elements of A and the other player owns
no element of A, then player P is declared the winner. If V is infinite, the length
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of the play is ≤ �. If an �-play does not have a winner, the play is declared
a draw.
Kaplansky’s n-in-a-line is an n-Shutout Game with hypergraph V =“Euclidean

plane” and F =“the family of all straight lines in the plane.”
If F happens to be an n-uniform hypergraph, then the concepts of n-Shutout

Game and Positional Game become identical.

6. Why does ordinary win lead to combinatorial chaos? We start with a short
answer: exponentially long play and non-monotonicity! Next comes the long,
detailed answer: notice that the three concepts of Positional Game, Maker–Breaker
Game, and n-Shutout Game are all defined for every finite hypergraph. Let A
denote the family of all finite hypergraphs; the concept of Positional Game splits
A into two natural classes. Indeed, for every finite hypergraph F ∈A there are two
options: the Positional Game played on F is a (1) first player win, or a (2) draw
game, that is

A = Awin∪Adraw�

Let A�≥ ThreeChrom� denote the sub-family of all finite hypergraphs with chro-
matic number≥ 3 (for the definition of the well-known concept of chromatic number
see the last paragraph before Theorem 6.1 in Section 6). If F ∈A�≥ ThreeChrom�,
then playing the Positional Game on F there is no drawing terminal position, imply-
ing that the first player (at least) drawing strategy in Theorem 5.1 is automatically
upgraded to a winning strategy. Formally

A�≥ ThreeChrom�⊂ Awin�

A fundamental difference between the two classes is that the class A�≥
ThreeChrom� is monotone increasing and the other class Awin is non-monotonic.
Monotone increasing simply means that, if F ∈ A�≥ ThreeChrom� and F ⊂ G,
then G ∈ A�≥ ThreeChrom�. This property is clearly violated for Awin: the curse
of the Extra Set Paradox.
Class A�≥ ThreeChrom� is the subject of Ramsey Theory, a higly diffi-

cult/respected chapter of Combinatorics. The non-monotonicity of class Awin

indicates that understanding ordinary win is far more difficult than Ramsey Theory
(which is already difficult enough).
Another good reason why ordinary win is so hard is the size of the Move Number.

Theorem 1.3 gives an exponential lower bound for the Move Number of several
games discussed so far:

(1) nd hypercube Tic-Tac-Toe;
(2) Kaplansky’s n-in-a-line game;
(3) S-building game in the plane (see Sections 1–2).
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In games (1)–(2) the family of winning sets is Almost Disjoint, and Theorem 1.3
gives the lower bound ≥ 2�n−1�/2 for the Move Number. Game class (3) defines
a nearly Almost Disjoint hypergraph, and Theorem 1.3 gives the slightly weaker
but still exponential lower bound ≥ 1

n
2n/2 for the Move Number, where �S� = n.

Exponential building time is a far cry from economical winners!
Another example is the class of:

(4) Clique Games.

Class (4) differs from (1)–(3) above in the sense that Theorem 1.3 doesn’t work, but
using Theorem 1.4 (instead of Theorem 1.3) and a simple “embedding trick,” we can
easily show that it takes at least 2q/2 moves to build a Kq . The details go as follows:
the first 2q/2 moves give 2 · 2q/2 edges with at most 4 · 2q/2 endpoints. It follows
that the first 2q/2 moves in every play of the Clique Game can be embedded into
a play in the canonical board KN with vertex set �1�2� � � � �N�, where N = 4 ·2q/2.
The point is that the Clique Game �KN �Kq� with N = 4 ·2q/2 is a draw; this easily
follows from Theorem 1.4. Indeed, the condition of Theorem 1.4 applies if(

N

q

)
< 2�

q
2�−1 where N = 4 ·2q/2� (5.1)

We leave it to the reader to verify that inequality (5.1) holds for all q ≥ 20, proving
that building a Kq takes at least 2q/2 moves.
Note that the mere fact of “exponentially long play” does not necessarily mean

“combinatorial chaos.” Consider, for example, a biased (2:1) play on a family of
2n−2 pairwise disjoint n-sets. Maker is the first player and the “topdog.” Maker
takes 2 points per move; Breaker is the “underdog”: he takes 1 point per move.
Maker can easily occupy a whole given n-set (how?), but it takes him at least
2n−2 moves to do so (if Breaker plays rationally). This is an exponentially long
building strategy for an n-set, but no one would call it difficult. It is a “halving”
strategy which has a transparent self-similar nested structure. The transparency of
the winning strategy comes from “disjointness.”

What makes a hypergraph in Awin such a strong candidate for “combinatorial
chaos” is that for the majority of Positional Games, such as classes (1)–(4) above,
winning takes at least exponentially many moves, and, at the same time, we face
non-monotonicity (of course, the hypergraphs in Awin are completely different
from the “disjoint hypergraph” example above!). Exponential time implies that the
number of relevant positions is (at least) doubly exponential, and non-monotonicity
indicates a lack of order, unpredictable behavior. The analysis of a Positional Game
on a hypergraph from class Awin exhibits a “doubly exponential disorder,” or using
the vague/popular term, “combinatorial chaos.”

Of course, this was not a rigorous proof, just a naive attempt to understand why
ordinary win is so hard. (Another good reason is that every finite game of complete
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information – including Chess and Go – can be simulated by a Positional Game;
see Appendix C at the end of the book.)
Now let’s switch from ordinary win to Weak Win: to achieve a Weak Win (i.e.

to build but not necessarily first) still takes an exponentially long time (at least
for game classes (1)–(4)), but Weak Win is a monotonic property, which makes
it so much easier to handle. And, indeed, in the next chapter we will be able to
describe the exact value of the phase transition from Weak Win to Strong Draw for
several classes of very interesting games (Clique Games, 2-dimensional arithmetic
progression games, etc.). These exact solutions are the main results of the book.
The 2-class decomposition

A = Awin∪Adraw

of all finite hypergraphs can be extended into a natural 6-class decomposition in
the following way.

7. Classification of All Finite Hypergraphs. Let F be an arbitrary finite hyper-
graph, and consider the Positional Game played on F (the board V is the union
set); hypergraph F belongs to one of the following 6 disjoint classes.

(0) Class 0 (“Trivial win”): It contains those hypergraphs F for which every play
is a first player win.
This is a dull class; we can easily characterize the whole class as follows.

Let n be the minimum hyperedge size in F and let V be the board; then
�V � ≥ 2n−1 and every n-element subset of V must be a hyperedge in F . The
reader is challenged to prove this.
The next class is much more interesting.

(1) Class 1 (“Draw is impossible: forced win”): In this class every play has a
winner; in other words, a Draw can never occur.
Every Positional Game in Class 1 is a first player win. Indeed, first player’s
(at least) drawing strategy – see Theorem 5.1 – is automatically upgraded to a
winning strategy (this simple observation is our Theorem 6.1 later). Of course,
we have no clue how first player actually wins.

(2) Class 2 (“Forced win but Drawing Position exists: delicate win”): It contains
those hypergraphs F which have a Drawing Position, but the first player can
nevertheless force a win.

(3) Class 3 (“Delicate Draw”): It contains those hypergraphs F for which the
Positional Game is a Draw but the first player can still force a Weak Win (the
Full Play Convention applies!).

(4) Class 4 (“Strong Draw”): It contains those hypergraphs F for which the
second player has a Strong Draw, but there is no Pairing Strategy Draw.

(5) Class 5 (“Pairing Strategy Draw”): It contains those hypergraphs F for which
the second player has a Pairing Strategy Draw (the simplest kind of draw).
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Note that each class contains an example from nd Tic-Tac-Toe. Indeed, each 2d

Tic-Tac-Toe belongs to the trivial Class 0; 33 Tic-Tac-Toe belongs to Class 1, and,
in general, for every n≥ 3 there is a finite threshold d0 = d0�n� such that, if d≥ d0,
nd Tic-Tac-Toe belongs to Class 1 (“Hales–Jewett Theorem”). Both Classes 0 and
1 contain infinitely many nd Tic-Tac-Toe games, but the 43 is the only Tic-Tac-Toe
game in Class 2 that we know. Similarly, the 32 is the only Tic-Tac-Toe game in
Class 3 that we know. The 42 game belongs to Class 4; then comes a big “gap” in
our knowledge: the next game we know to be in Class 4 is the 16-dimensional 4416

game. By Theorem 3.4 (a) the Point/Line ratio in the nd Tic-Tac-Toe is

nd

��n+2�d−nd�/2
= 2(

1+ 2
n

)d−1
�

which in the special case n= 44, d = 16 equals

2(
1+ 2

44

)16−1
= 2

1�0365
�

a fraction less than 2, proving that 4416 Tic-Tac-Toe cannot have a Pairing Strategy
Draw.

The fact that the 4416 game is a Strong Draw is more complicated (see Part D).
Besides 4416 Tic-Tac-Toe there are infinitely many “high-dimensional” nd games
in Class 4; we prove it in Part D. We don’t know any nd game in Class 4 between
dimensions 5 and 15.

Finally Class 5: it contains all n2 games with n≥ 5 (see Theorem 3.3).

Open Problem 5.4 Is it true that each hypergraph class contains infinitely many
nd games? The unknown cases are Class 2 and Class 3.

What we can prove is that Class 2 and Class 3 together are infinite. For example,
each nd Tic-Tac-Toe with d= n3 and n sufficiently large belongs to either Class 2
or Class 3, but we cannot decide which one; for the details, see Section 12.

Pairing Strategy Draw (see Class 5) is well understood by Matching Theory, and
Class 1 is basically Ramsey Theory. We cannot distinguish Class 2 from Class 3,
but we know a lot about Class 4: Class 4 is a central issue of the book.

We conclude Section 5 with a possible:

Common generalization of Positional and Maker–Breaker Games. On the same
finite hypergraph �V�F� we can play the Positional Game (“generalized Tic-Tac-
Toe”) and the Maker–Breaker game. A common generalization is the concept of
Two-Hypergraph Game �V�F�G�: Let F an G be two hypergraphs on the same
board V ; the first player wins if he can occupy an A ∈ F before the second player
occupyies a B ∈ G; the second player wins if he can occupy a B ∈ G before the first
player occupyies an A ∈ F ; otherwise the play ends in a draw.
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If F and G are different, then it is called an Asymmetric Two-Hypergraph
Game. Hex is clearly an Asymmetric Two-Hypergraph Game. The symmetric case
F = G gives back the class of “Positional Games,” and the other special case
G = Transv�F� gives the class of “Maker–Breaker Games.” We owe the reader the
definition of the transversal hypergraph: For an arbitrary finite hypergraph F write

Transv�F�= �S ⊂ V�F� � S∩A �= ∅ for all A ∈ F��

Transv(F) is called the transversal hypergraph of F .
In the Reverse version of the Two-Hypergraph Game �V�F�G� the player who

loses is the player who occupies a whole winning set from his own hypergraph
first; otherwise the play ends in a draw.
Note that the class of Two-Hypergraph Games is universal(!); every finite game

of complete information can be simulated by a Two-Hypergraph Game, see the part
of “Simulation” in Appendix C.

The class of Two-Hypergraph Games, including the Reverse version, and the
biased versions, is a very large class that covers most of the games discussed in this
book, but not all. Some games will go beyond this framework; for example, the (1)
“Picker–Chooser” and “Chooser–Picker” games, and the (2) “Shutout Games.”

A last remark about Theorem 5.1: in view of Theorem 5.1 the second player
cannot have a winning strategy in a Positional Game. If he cannot win, then what
is the best that the second player can still hope for? This exciting question will
be addressed at the end of Section 12, see “The second player can always avoid
a humiliating defeat!” and “Second player’s Moral Victory.” Theorem 12.7 is the
“moral-victory” result. It has the most difficult proof in the book; this is why we
have to postpone the long proof to the end of the book, see Section 45.



Chapter II
The main result: exact solutions for infinite

classes of games

Winning in “who does it first” games seems to be hopeless. We know nothing other
than exhaustive search, which leads to combinatorial chaos. Weak Win is doable
by the potential technique, see e.g. Sections 1–2. The potential technique is very
flexible, but it gives terribly weak upper bounds for the “Move Number” (such
as ≤ 10500 moves for the regular pentagon or ≤ 1018�000 moves for the 9-element
3×3 Tic-Tac-Toe set S9, see Example 3 in Section 1). It seems that the potential
technique provides very good qualitative but ridiculous quantitative results.

The surprising good news is that, under some special circumstances – namely for
“2-dimensional goal sets in degree-regular hypergraphs” – the potential technique is
capable of giving excellent quantitative results, even exact solutions! This includes
many natural positional games, like Cliques Games and sub-lattice games; for them
we can determine the exact value of the “phase transition” from Strong Draw to
Weak Win. In fact, we can determine these “game numbers” for infinite classes of
games.

The bad news is that the proofs are difficult, and they work only for large values
of the parameters (when the “error terms” become negligible compared to the “main
term”).

As a byproduct of the exact solutions we obtain the unexpected equality

Achievement Number = Avoidance Number

which holds for our “Ramseyish” games, but fails, in general, for arbitrary
hypergraphs.

Another exciting byproduct of the exact solutions is “second player’s moral
victory,” see the end of Section 12.

The Weak Win thresholds in our “Ramseyish” games and the corresponding
Ramsey Theory thresholds turn out to be (typically) very different.
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6
Ramsey Theory and Clique Games

1. Achievement Games and Avoidance Games. At the end of Section 5 a
classification of finite hypergraphs (Classes 0–5) was introduced. Everything known
to the author about Class 1 (“Draw is impossible: forced win”) comes from Ramsey
Theory.
The graph version of Ramsey’s well-known theorem says that, for any q, there

is a (least) finite threshold R�q� such that, for any 2-coloring of the edges of
the complete graph KN with N = R�q� vertices, there is always a monochromatic
copy of Kq.

R�q� is called the Ramsey Number. For example, R�3� = 6 (the goal is a
“triangle”) and R�4�= 18 (the goal is a “tetrahedron”).
Unfortunately the exact value of the next Ramsey Number R�5� is unknown,

but we know the close bounds 43 ≤ R�5� ≤ 49; for R�6� we know much less:
102 ≤ R�6� ≤ 165, and for larger values of q it’s getting much, much worse. For
example, the current record for K10 is 798≤ R�10�≤ 12677.

The close connection between Ramsey Theory and games is clearly illustrated by
the entertaining “Ramseyish” game of Sim, introduced at the end of Section 4. Sim,
denoted by �K6�K3�−�, is in fact a Reverse Positional Game, a Reverse Clique
Game. The notation is clear: K6 is the board, “−” stands for “Reverse,” and K3 is
the “anti-goal.” The “normal” version �K6�K3� is far too easy: the first player can
always have a triangle of his own first in his 4th move (or before).
If the board is K6 and the goal is K3, then a draw is impossible. Similarly, if the

board is K18 and the goal is K4, then again a draw is impossible (18 is the Ramsey
Number for K4). There are two versions: the normal �K18�K4� Clique Game and the
Reverse �K18�K4�−�. In the normal �K18�K4� Clique Game, first player’s (at least)
drawing strategy in Theorem 5.1 is upgraded to a winning strategy. Can you find
an explicit one? This was formulated in Open Problem 4.6. How about replacing
the goal K4 with K5 or K6?

92
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Open Problem 6.1
(a) Find an explicit first player’s winning strategy in the �K49�K5� Clique Game.
(b) Find an explicit first player’s winning strategy in the �K165�K6� Clique Game.

Both seem to be hopeless.
Given an arbitrary finite hypergraph, we can, of course, play the Positional

Game (defined in Section 5), but also we can play the Reverse Positional Game,
which differs from the ordinary Positional Game in one respect only: in the Reverse
Positional Game that player loses who occupies a whole winning set first (otherwise
the play ends in a draw). We already (briefly) mentioned this concept before in
Theorem 5.2.

The Reverse Game is a complete mystery. Who wins? How do you win? What
happens if the anti-goal remains the same, but the board is increasing?

Open Problem 6.2 Which player has a winning strategy in the Reverse Clique
Game �K49�K5�−�? How about the �KN �K5�−� game with N ≥ 49, where N →�?
How about the Reverse Clique Game �K165�K6�−�? How about the �KN �K6�−�

game with N ≥ 165, where N → �? In each case find an explicit winning
strategy.

Since ordinary win (“doing it first”) looks hopeless, we are forced to change the
subject and study Weak Win, i.e. the Maker–Breaker version. We have 4 different
Clique Games:

(1) the “normal” �KN �Kq� Clique Game;
(2) the Reverse Clique Game �KN �Kq�−�;
(3) the Maker–Breaker Clique Game �KN �Kq�, and its
(4) Reverse version �KN �Kq�−�.

Games (1)–(2) are about ordinary win and games (3)–(4) are about Weak Win. We
distinguish the two win concepts by using “(…)” and “[…].”

For each one of these 4 Clique Games, the board is KN , the players alternately
take new edges, and the goal (or anti-goal) is a copy of Kq.

In the Reverse version of the Maker–Breaker Clique Game �KN �Kq�, denoted by
�KN �Kq�−� in (4), the two players are called Avoider (“Anti-Maker”) and Forcer
(“Anti-Breaker”). Avoider loses if at the end of the play he owns a Kq. In other
words, Forcer’s goal is to force Avoider to occupy a whole Kq. If Forcer achieves
his goal, he wins; if he fails to achieve his goal, he loses.

In general, for an arbitrary hypergraph, the Reverse of the Maker–Breaker game
is called the Avoider–Forcer Game. Avoider (“Anti-Maker”) and Forcer (“Anti-
Breaker”) alternate the usual way, and Forcer wins if he can force Avoider to
occupy a whole winning set; otherwise, of course, Avoider wins. So a draw is
impossible by definition.
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If q = q�N� is “small” in terms of N , then Maker (resp. Forcer) wins; if q =
q�N� is “large” in terms of N , then Breaker (resp. Avoider) wins. Where is the
game-theoretic breaking point for Weak Win?
This may seem to be just another hopeless problem, but very surprisingly (at

least for large N ) we know the exact value of the breaking point! Indeed, consider
the “lower integral part”

q = q�N�= �2 log2N −2 log2 log2N +2log2e−3�� (6.1)

where log2 stands for the base 2 logarithm; then Maker (resp. Forcer) has a winning
strategy in the Maker–Breaker Clique Game �KN �Kq� (resp. the Avoider–Forcer
Clique Game �KN �Kq�−�).
On the other hand, if we take the “upper integral part”

q = q�N�= �2 log2N −2 log2 log2N +2log2e−3�� (6.2)

then Breaker (resp. Avoider) has a winning strategy.
(6.1) and (6.2) perfectly complement each other! This is wonderful, but we have

to admit, for the sake of simplicity, we “cheated” a little bit at two points:

(1) the method works only for large N , in the range of N ≥ 210
10
; and

(2) if the logarithmic expression f�N� = 2 log2N − 2 log2 log2N + 2log2e− 3 is
“very close” to an integer, then that single integer value of q is “undecided”:
we don’t know who wins the �KN �Kq� (resp. �KN �Kq�−�) game. But for the
overwhelming majority of N s the function f�N� is not too close to an integer,
meaning that we know exactly who wins.

For example, let N = 210
10

(i.e. N is large enough); then 2 log2N = 2 · 1010,
2 log2 log2N = 66�4385, and 2 log2 e= 2�8854, so

2 log2N −2 log2 log2N +2 log2 e−3=
= 2 ·1010−66�4385+2�8854−3= 19�999�999�933�446�

Since the fractional part .446 is not too close to an integer, Maker can build a copy
of Kq0

with q0 = 19�999�999�933. On the other hand, Breaker can prevent Maker
from building a one larger clique Kq0+1.
Similarly, Forcer can force the reluctant Avoider to build a copy of Kq0

with the
same q0 = 19�999�999�933, but Kq0+1 is “impossible” in the sense that Avoider
can avoid doing it.
We find it very surprising that the “straight” Maker–Breaker and the “reverse”

Avoider–Forcer Clique Games have the same breaking point. We feel this contra-
dicts common sense. Indeed, it is very tempting to expect that the eager Maker
can always outperform the reluctant Avoider, a little bit as economists explain the
superiority of the capitalistic economy over the communist system. With harsh
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anti-communist over-simplification we can argue that the capitalist system is suc-
cessful because the people are eager to work (like Maker does), motivated by the
higher salaries; on the other hand, the communist system fails because the people
are reluctant to work (like Avoider does) for the very low salaries, and the only
motivation, the only reason, why the people still keep working is the fear of the
police (“Forcer”).

Well, this “natural” expectation (eager Maker outperforms reluctant Avoider)
turned out to be plain wrong: eager Maker and reluctant Avoider end up with
exactly the same clique size!

We are sure the reader is wondering about the mysterious function

f�N�= 2 log2N −2 log2 log2N +2log2e−3�

What is this f�N�? An expert in the theory of Random Graphs must know that
2 log2N −2 log2 log2N +2log2e−1 is the “Clique Number” of the symmetric Ran-
dom Graph R�KN �1/2� (1/2 is the “edge probability”). In other words, f�N� is 2
less than the Clique Number of the Random Graph. Recall that the Clique Number
��G� of a graph G is the number of vertices in the largest complete subgraph of G.

How to make the somewhat vague statement “f�N� is 2 less than the Clique
Number of the Random Graph” more precise? First notice that the expected number
of q-cliques in R�KN �1/2� equals

E�q�= EN�q�=
(
N

q

)
2−�

q
2��

The function E�q� drops under 1 around q = �2+o�1�� log2N . The “real solution”
of the equation E�q�= 1 is

g�N�= 2 log2N −2 log2 log2N +2 log2 e−1+o�1�� (6.3)

which is exactly 2 more than the f�N� in (6.1)–(6.2).
Elementary Probability theory – a combination of the first and second moment

methods – shows that the Clique Number ��R�KN �1/2�� of the Random Graph has
an extremely strong concentration. Typically it is concentrated on a single integer,
namely on �g�N�� (with probability tending to 1 as N →�); and even in the worst
case (which is rare) there are at most two values: �g�N�� and �g�N��.
Recovering from the first shock, one has to realize that the strong concentration

of the Clique Number of the Random Graph is not that terribly surprising after all.
Indeed, E�q� is a rapidly changing function

E�q�

E�q+1�
= q+1

N −q
2q = N 1+o�1�

if q = �2+o�1�� log2N� On an intuitive level, it is explained by the trivial fact that,
when q switches to q+1� the goal size

(
q

2

)
switches to

(
q+1
2

)= (
q

2

)+q, which is a
“square-root size” increase.
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We call �g�N�� (see (6.3)) the Majority-Play Clique Number of board KN . What
it refers to is the statistics of all plays with “dumb Maker” and “dumb Breaker”
(resp. “dumb Avoider” and “dumb Forcer”). If the “rational” players are replaced
by two “dumb” random generators, then for the overwhelming majority of all plays
on board KN , at the end of the play the largest clique in dumb Maker’s graph (resp.
dumb Avoider’s graph) is Kq with q = �g�N��.
With two “rational” players – which is the basic assumption of Game Theory –

the largest clique that Maker can build (resp. Forcer can force Avoider to build) is
the 2-less clique Kq−2. We refer to this q−2= �f�N�� as the Clique Achievement
Number on board KN in the Maker–Breaker Game, and the Clique Avoidance
Number in the Avoider–Forcer Game.
Therefore, we can write

Clique Achievement Number= Clique Avoidance Number

=Majority Clique Number−2�

So far the discussion has been a little bit informal; it is time now to switch to a
rigorous treatment. First we return to (6.3), and carry out the calculation.

A routine calculation. We have to show that the real solution of the equation(
N

q

)
= 2�

q
2� (6.4)

is

q = 2log2N −2log2log2N +2log2e−1+o�1�� (6.5)

The deduction of (6.5) from (6.4) is completely routine to people working in areas
such as the Probabilistic Method or Analytic Number Theory, but it may cause
some headache to others. As an illustration we work out the details of this particular
calculation. First take qth root of (6.4), and apply Stirling’s formula q! ≈ �q/e�q�

which gives the following equivalent form of (6.5)

e ·N
q

≤ 2�q−1�/2�

or equivalently, e ·√2 ·N ≤ q ·2q/2. Taking binary logarithm of both sides, we get

q ≥ 2log2N −2log2q+2log2e−1+o�1�� (6.6)

Let q0 be the smallest value of q satisfying (6.6); then trivially q0 = �2+o�1��log2N�
and taking binary logarithm, log2q0 = 1+o�1�+ log2log2N . Substituting this back
to (6.6), we get (6.5).
The rest of the book is full of routine calculations such as this, and in most cases

we skip the boring details (we hope the reader agrees with this).
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2. Game-theoretic thresholds. Next we give a precise definition of natural con-
cepts such as Win Number, Weak Win Number, Achievement Number, and their
Reverse versions.

The Win Number is about ordinary win. Consider the “normal” �KN �Kq� Clique
Game; the Win Number w�Kq� denotes the threshold (least integer) such that the
first player has a winning strategy in the �KN �Kq� Clique Game for all N ≥w�Kq�.

The particular goal graph Kq can be replaced by an arbitrary finite graph G: let
�KN �G� denote the Positional Game where the board is KN , the players take edges,
and the winning sets are the isomorphic copies of G in KN . For every finite graph
G, let Win Number w�G� denote the threshold (least integer) such that the first
player has a winning strategy in the �KN �G� game for all N ≥ w�G�.

The Reverse Win Number w�Kq�−� is the least integer such that for all N ≥
w�Kq�−� one of the players has a winning strategy in the Reverse Clique Game
�KN �Kq�−�.

Similarly, for any finite graphG, one can define theReverseWinNumberw�G�−�.
For an arbitrary finite graph G, let R�G� denote the generalized Ramsey Num-

ber: R�G� is the least N such that any 2-coloring of the edges of KN yields a
monochromatic copy of G.
Observe that w�G� ≤ R�G�, and similarly w�G�−� ≤ R�G� (why? see

Theorem 6.1 below).

Open Problem 6.3

(i) Is it true that w�Kq� < R�q� for all sufficiently large values of q ? Is it true that

w�Kq�

R�q�
−→ 0 as q →�?

(ii) Is it true thatw�Kq�−� < R�q� for all sufficiently large values of q ? Is it true that

w�Kq�−�

R�q�
−→ 0 as q →�?

Note that for G= K3 we have the strict inequality

w�K3�= 5< 6= w�K3�−�= R�3��

on the other hand, for the 4-cycle C4 we have equality

w�C4�= w�C4�−�= R�C4�= 6�

The following old problem goes back to Harary [1982].

Open Problem 6.4 Is it true that w�K4� < w�K4�−� < 18= R�4�?

It is humiliating how little we know about Win Numbers, Reverse Win Numbers,
and their relation to the Ramsey Numbers.
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A quantitative version of Ramsey’s graph theorem is the old Erdős–Szekeres
Theorem from 1935 (still basically the best; no real progress in the last 70 years!).
The Erdős–Szekeres Theorem states that, given any 2-coloring of the edges of the
complete graph KN with N ≥ (2q−2

q−1

)
vertices, there is always a monochromatic copy

of Kq.
Consider the “straight” �KN �Kq� Clique Game: the board is KN and the goal is

to have a copy of Kq first. If

N ≥
(
2q−2
q−1

)
= �1+o�1��

4q−1

√
	q

�

then draw is impossible, so the existing (at least) drawing strategy of the first player
(see Theorem 5.1) is automatically upgraded to a winning strategy! Unfortunately
this argument (“Strategy Stealing”) doesn’t say a word about what first player’s
winning strategy actually looks like. We can generalize Open Problem 6.1 as
follows:

Open Problem 6.5 Consider the �KN �Kq� Clique Game, and assume that the
Erdős–Szekeres bound applies: N ≥ (2q−2

q−1

)
� Find an explicit first player’s winning

strategy.

Let us return to Weak Win: another reason why Weak Win is simpler than ordinary
win is that “strategy stealing” can sometimes be replaced by an explicit strategy, see
the twin theorems Theorems 6.1 and 6.2 below. The first one is about ordinary win
and the second one is about Weak Win. In the latter we have an explicit strategy.
A drawing terminal position in a positional game �V�F� gives a halving

2-coloring of the board V such that no winning set A ∈ F is monochromatic;
We call it a Proper Halving 2-Coloring of hypergraph �V�F�. Of course, halving
2-coloring means to have ��V �/2� of one color and ��V �/2� of the other color.
A slightly more general concept is when we allow arbitrary 2-colorings, not just

halving 2-colorings. This leads to the chromatic number.
The chromatic number 
�F� of hypergraph F is the least integer r ≥ 2 such that

the elements of the board V can be colored with r colors yielding no monochromatic
A ∈F . Ramsey Theory is exactly the theory of hypergraphs with chromatic number
at least 3 (see Graham, Rothschild, and Spencer [1980]).

Theorem 6.1 (“Win by Ramsey Theory”) Suppose that the board V is finite, and
the family F of winning sets has the property that there is no Proper Halving
2-Coloring; this happens, for example, if F has chromatic number at least three.
Then the first player has a winning strategy in the Positional Game on �V�F�.

We already used this several times before: if a draw is impossible, then first player’s
(at least) drawing strategy in Theorem 5.1 is automatically upgraded to a winning
strategy.
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Theorem 6.1 describes a subclass of Positional Games with the remarkable
property that we can easily determine the winner without being able to say how
we win. (In most applications, we will probably never find an explicit winning
strategy!)

Why Ramseyish games? Theorem 6.1 is the reason why we focus on “Ramseyish”
games. Ramsey Theory gives some partial information about ordinary win. We
have a chance, therefore, to compare what we know about ordinary win with that
of Weak Win.

Theorem 6.1 is a “soft” existential criterion about ordinary win. Since the main
objective of Game Theory is to find an explicit winning or drawing strategy, we
have to conclude that ordinary win is far more complex than Ramsey Theory!

For example, it is hugely disappointing that we know only two(!) explicit winning
strategies in the whole class of n× n× · · ·× n = nd Tic-Tac-Toe games (the 33

version, which has an easy winning strategy, and the 43 version, which has an
extremely complicated winning strategy).

In sharp contrast, the Maker–Breaker game exhibits an explicit version of
Theorem 6.1: Weak Win is guaranteed by a simple copycat pairing strategy.

Theorem 6.2 (“Weak Win by Ramsey Theory”) Let �V�F� be a finite hypergraph
of chromatic number ≥ 3� and let �V ′�F ′� be a point-disjoint copy of �V�F�.
Assume Y contains V ∪V ′ and G contains F ∪F ′. Then Maker has an explicit
Weak Win strategy playing on �Y�G�.
Theorem 6.2 seems to be folklore among Ramsey theorists. An interesting infinite
version is published in Baumgartner [1973]; perhaps this is the first publication of
the “copycat strategy” below.

Proof. Let f � V → V ′ be the isomorphism between �V�F� and �V ′�F ′�. We show
that Maker can force a Weak Win by using the following copycat pairing strategy. If
the opponent’s last move was x ∈ V or x′ ∈ V ′, then Maker’s next move is f�x� ∈ V ′

or f−1�x′� ∈ V (unless it was already occupied by Maker before; then Maker’s next
move is arbitrary). Since the chromatic number of �V�F� is at least three, one of
the two players will completely occupy a winning set. If this player is Maker, we
are done. If the opponent occupies some A ∈ F , then Maker occupies f�A� ∈ F ′,
and we are done again.

For example, if N ≥ 2
(2q−2
q−1

)
, then Theorem 6.2 applies to the Maker–Breaker

Clique Game �KN �Kq�: the condition guarantees that the board KN contains two
disjoint copies of Km withm= (2q−2

q−1

)
(“Erdős–Szekeres threshold”), and the copycat

pairing in Theorem 6.2 supplies an explicit Weak Win strategy for either player.
The Weak Win and Reverse Weak Win Numbers are defined in the following

natural way. Let ww�Kq� denote the least threshold such that for every N ≥ww�Kq�
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the first player (as Maker) can force a Weak Win in the �KN �Kq� Clique Game
(“ww” stands for “Weak Win”).
Similarly, let ww�Kq�−� denote the least threshold such that for every N ≥

ww�Kq�−� one of the players can force the other one to occupy a copy of Kq in
the Reverse Clique Game �KN �Kq�−�.
Trivially

ww�Kq�≤ w�Kq�≤ R�q��

and the same for the Reverse version. It is easily seen that ww�K3� = w�K3� =
5< 6= R�3�.

Open Problem 6.6

(a) What is the relation between the Weak Win and Reverse Weak Win Num-
bers ww�Kq� and ww�Kq�−�? Is it true that ww�Kq� ≤ ww�Kq�−� holds for
every q?

(b) Is it true that ww�Kq� < w�Kq� for all sufficiently large values of q? Is it true
that

ww�Kq�

w�Kq�
−→ 0 as q →�?

(c) Is it true that ww�Kq�−� < w�Kq�−� for all sufficiently large values of q? Is
it true that

ww�Kq�−�

w�Kq�−�
−→ 0 as q →�?

(d) Is it true that

ww�Kq�

R�q�
−→ 0 and

ww�Kq�−�

R�q�
−→ 0 as q →�?

Theorem 6.2 combined with the Erdős–Szekeres bound gives the upper bound
ww�Kq� < 4q; that is, if q = 1

2 log2N , then the first player (Maker) can occupy a
copy of Kq.
Besides Theorem 6.2 (“copycat criterion”) we have another Weak Win Criterion:

the “potential criterion” Theorem 1.2. Let us apply Theorem 1.2. It yields the
following: if q < const ·√logN , then the first player can occupy a copy of Kq.
Indeed, Theorem 1.2 implies a Weak Win if(

N

q

)
> 2�

q
2�−3

(
N

2

)
�2�

For this particular family of winning sets the Max Pair-Degree �2 ≤
(

N

q−3

)
� Indeed,

two distinct edges determine at least 3 different vertices. Therefore, we have to
check (

N

q

)
> 2�

q
2�−3

(
N

2

)(
N

q−3

)
�
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which yields N ≥ 2q
2/2, or, in terms of N , q <

√
2 log2N . Unfortunately this is a

very disappointing quantitative result! It is asymptotically much weaker than the
“Ramsey Theory bound” q = 1

2 log2N .

3. Separating the Weak Win Numbers from the higher Ramsey Numbers in
the Clique Games. Theorem 1.2 worked very poorly for ordinary graphs, but it
still gives a very interesting result for p-graphs with p≥ 4. We show that the trivial
implication

draw play is impossible⇒ winning strategy⇒Weak Win strategy

fails to have a converse: the converse is totally false!
First we define the Clique Game for p-graphs where p≥ 3 – this corresponds to

higher Ramsey Numbers, see Appendix A. This means a straightforward general-
ization of the complete graph, where the board is a complete p-uniform hypergraph
instead of KN (and, of course, the players claim p-sets instead of edges).
For every natural number N write �N�= 1�2� � � � �N�. If S is a set, let

(
S

p

)
denote

the family of all p-element subsets of S. Then
(
�N�

2

)
can be interpreted as a complete

graph with N vertices, i.e.
(
�N�

2

)= KN .
Let 2 ≤ p < q < N� I define the �K

p
N �K

p
q � Clique Game as follows: the board of

this Positional Game is Kp
N = (

�N�

p

)
� and the family of winning sets consists of all

possible copies of Kp
q in K

p
N ; i.e. all possible

(
S

k

)
, where S ∈ (

�N�

q

)
. The family of

winning sets is a
(
q

p

)
-uniform hypergraph of size

(
N

q

)
.

The general form of the Ramsey Theorem states that for every p ≥ 2 and
for every q > p, there is a least finite threshold number Rp�q� such that the
family of winning sets of the �K

p
N �K

p
q � Clique Game has a chromatic num-

ber of at least 3 if N ≥ Rp�q�. If N ≥ Rp�q�, then by Theorem 6.1 the first
player has an ordinary win in the �K

p
N �K

p
q � Clique Game (but we don’t know

what the winning strategy looks like), and if N ≥ 2Rp�q�, then by Theorem 6.2
the first player has an explicit “copycat” Weak Win Strategy in the �K

p
N �K

p
q �

Clique Game.
What do we know about the size of the higher Ramsey Numbers Rp�q�? We col-

lect the relevant results in Appendix A. Let towerx�k� denote the k-fold iteration of
the exponential function: towerx�1�= 2x and for k≥ 2, towerx�k�= 2towerx�k−1�� So
towerx�2�= 22

x
, towerx�3�= 22

2x

, and so on; we call the parameter k in towerx�k�

the height.
For graphs (i.e. p = 2), by the Erdős–Szekeres Theorem and by Erdős’s well-

known lower bound

2q/2 < R2�q� < 4q�

For p-graphs with p ≥ 3
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2q
2/6 < R3�q� < 22

4q
� (6.7)

22
q2/24

< R4�q� < 22
24q

� (6.8)

and in general

tower43−pq2/6�p−2� < Rp�q� < tower4q�p−1�� (6.9)

The last two bounds are due to Erdős, Hajnal, and Rado, see Appendix A.
First let p= 3� If q = c1 · log logN , then by (6.7) the first player has an ordinary

Win in the �K3
N �K

3
q� Clique Game (but the winning strategy is not known); on

the other hand, by Theorem 6.2 under the same condition q = c1 · log logN Maker
has an explicit (copycat) Weak Win strategy. Similarly, if q = c2 · log log logN ,
then by (6.8) the first player has an ordinary Win in the �K4

N �K
4
q� Clique Game

(strategy is unknown), and, under the same condition, Maker has an explicit Weak
Win strategy, and so on.
What happens if we replace Theorem 6.2 with Theorem 1.2? The potential Weak

Win Criterion (Theorem 1.2) applies to the �K
p
N �K

p
q � Clique Game when

(
N

q

)
> 2�

q
p�−3

(
N

p

)
�2�

For this particular family of winning sets the Max Pair-Degree �2 satisfies the
obvious inequality �2 ≤

(
N

q−p−1

)
; indeed, two distinct p-sets cover at least p+ 1

points.
This leads to the inequality(

N

q

)
> 2�

q
p�−3

(
N

p

)(
N

q−p−1

)
�

which means N ≥ 2q
p/p!, or in terms of N , q ≤ �p! log2N�1/p� Therefore, if

q = cp�logN�
1/p�

then Maker has a Weak Win in the �K
p
N �K

p
q � Clique Game. This gives:

Theorem 6.3 Consider the �Kp
N �K

p
q � Clique Game for p-graphs with p ≥ 4; then

the Weak Win Number

ww�Kp
q �≤ �p! log2N�1/p� (6.10)

implying that
ww�Kp

q �

Rp�q�
−→ 0 as p ≥ 4 is fixed and q →�� (6.11)

That is, the Weak Win Ramsey Criterion (Theorem 6.2) definitely fails to give the
true order of magnitude of the breaking point for Weak Win, and the same holds
for the Reverse version.
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Proof. By (6.9) the Ramsey Theory threshold Rp�q� is greater than the tower
function towerq2/6�p− 2� of height p− 2, i.e. the height is linearly increasing
with p. On the other hand, Maker can force a Weak Win around N = 2q

p/p!� which
has a constant height independent of p. It is easily seen that towerq2/6�p− 2� is
asymptotically much larger than N = 2q

p/p! if p ≥ 4; in fact, they have completely
different asymptotic behaviors.

(6.11) solves Open Problem 6.6 (d) for p-graphs with p ≥ 4; the cases p = 2
(ordinary graph, the original question) and p= 3 remain open.
Theorem 6.3 is a good illustration of a phenomenon that we call “Weak Win

beyond Ramsey Theory” (we will show many more examples later in Section 14).
A weakness of Theorem 6.3 is that (6.10) fails to give the true order of magnitude.
The good news is that we will be able to determine the true order of magnitude(!),
see Theorems 6.4 (b)–(c) below. Note that Theorem 1.2 is not good enough; we
have to develop a new, more powerful potential technique in Chapter V.

First let’s go back to ordinary graphs. We will prove the following asymptotic
formula

ww�Kq�=
√
2
e

q2q/2 �1+o�1�� � (6.12)

Notice that (6.12) is a precise form of the somewhat vague (6.1)–(6.2). Indeed, by
elementary calculations

N =
√
2
e

q2q/2 �1+o�1��⇐⇒ q = 2 log2N −2 log2 log2N +2log2e−3+o�1��

(6.13)
We have the same asymptotic for the Reverse Weak Win Number

ww�Kq�−�=
√
2
e

q2q/2 �1+o�1�� � (6.14)

i.e. the Weak Win and the Reverse Weak Win Numbers are asymptotically equal.
Can “asymptotically equal” be upgraded to “equal”? Are they equal for every single
q? Are they equal for all but a finite number of qs? Are they equal for infinitely
many qs?

Open Problem 6.7 Is it true that ww�Kq� = ww�Kq�−� for every q? Is it true
that ww�Kq� = ww�Kq�−� for all but a finite number of qs? Is it true that they
are equal for infinitely many qs?

(6.12) is even more impressive if we express q in terms of N ; i.e. if we take the
inverse function. Let KN be the board, and consider the largest value of q such
that the first player (“Maker”) can build a copy of Kq. In view of (6.13), we can
reformulate (6.12) in terms of the inverse of the Weak Win Number

ww−1�KN�= �2 log2N −2 log2 log2N +2log2e−3+o�1��� (6.15)
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where the inverse of the Weak Win Number ww�Kq� is formally defined in the
following natural way

ww−1�KN�= q if ww�Kq�≤ N < ww�Kq+1�� (6.16)

We call ww−1�KN� the Achievement Number for Cliques on board KN , and prefer
to use the alternative notation

A�KN� clique�= ww−1�KN� (6.17)

(A is for “Achievement”). In view of this, (6.12) can be restated in a yet another way

A�KN� clique�= �2 log2N −2 log2 log2N +2log2e−3+o�1�� (6.18)

We can define the inverse of the Reverse Weak Win Number in a similar way

ww−1�KN�−�= q if ww�Kq�−�≤ n < ww�Kq+1�−�� (6.19)

We call ww−1�KN�−� the Avoidance Number for Cliques on board KN , and prefer
to use the alternative notation

A�KN� clique�−�= ww−1�KN�−� (6.20)

(“A” combined with “−” means “Avoidance”).
In view of Theorem 6.1 we have the general lower bound

Clique Achievement Number≥ inverse of the Ramsey Number� (6.21)

4. The First Main Result of the book. The advantage of the new notation is that
the asymptotic equality (6.12) can be restated in the form of an ordinary equality.

Theorem 6.4
(a) For ordinary graphs the Clique Achievement Number

A�KN� clique�= �2 log2N −2 log2 log2N +2log2e−3+o�1���
and similarly, the Avoidance Number

A�KN � clique�−�= �2 log2N −2 log2 log2N +2log2e−3+o�1���
implying the equality A�KN� clique�= A�KN � clique�−� for the overwhelming
majority of N s.

(b) For 3-graphs
A�K3

N � clique�= �√6 log2N +o�1���
and similarly

A�K3
N � clique�−�= �√6 log2N +o�1���

(c) For 4-graphs

A�K4
N � clique�= ��24 log2N�1/3+2/3+o�1���
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and similarly

A�K4
N � clique�−�= ��24 log2N�1/3+2/3+o�1���

In general, for arbitrary p-graphs with p≥ 3 (p is fixed and N tends to infinity)

A�Kp
N � clique�= ��p! log2N�1/�p−1�+p/2−p/�p−1�+o�1���

and similarly

A�Kp
N � clique�−�= ��p! log2N�1/�p−1�+p/2−p/�p−1�+o�1���

Theorem 6.4 is the first exact solution; it is one of the main results of the book.
The proof is long and difficult, see Sections 24, 25, and 38. The eager reader may
jump ahead and start reading Section 24.

Deleting the additive term −p/�p− 1� in the last formula above we obtain the
Majority-Play Clique Number for the complete p-graph.

An analysis of the proof shows that the “o(1)” in Theorem 6.4 (a) becomes
negligible in the range N ≥ 210

10
. We are convinced that the “o(1)” in Theorem 6.4

(a) is uniformly ≤ 3 for all N , including the small N s. (Our choice of constant
“3” was accidental; maybe the uniform error is ≤ 2 or perhaps even ≤ 1.) Can the
reader prove this?



7
Arithmetic progressions

1. Van der Waerden’s Theorem. The well-known motto of Ramsey Theory goes
as follows: Every “irregular” structure, if it is large enough, contains a “regular”
substructure of some given size. In Section 6, we discussed the connection between
Ramsey’s well-known theorem (proved in 1929) and some Clique Games. Ramsey
Theory was named after Ramsey, but the most influential result of Ramsey The-
ory is van der Waerden’s Theorem on arithmetic progressions. It is interesting
to know that van der Waerden’s Theorem was proved in 1927, 2 years before
Ramsey’s work. (It is a very sad fact that Ramsey died at a very young age
of 26, shortly after his combinatorial result was published; van der Waerden,
on the other hand, moved on to Algebra, and never returned to Combinatorics
again.)
Van der Waerden’s famous combinatorial theorem, which solved a decade-old

conjecture of Schur, goes as follows:

Theorem 7.1 (B. L. van der Waerden [1927]) For all positive integers n and k,
there exists an integer W such that, if the set of integers 1�2� � � � �W� is k-colored,
then there exists a monochromatic n-term arithmetic progression.

Let W�n�k� be the least such integer; we call it the van der Waerden threshold.
The size of the van der Waerden threshold turned out to be a central problem in
Combinatorics.
Note that van der Waerden’s Theorem was originally classified as a result in

number theory–see for example the wonderful book of Khintchine titled Three
Pearls of Number Theory–and it was only in the last few decades that van der
Waerden’s theorem, with its several generalizations (such as the Hales–Jewett
theorem in 1963 and the Szemerédi theorem in 1974), became a cornerstone of
Combinatorics.
But what is the connection of van der Waerden’s theorem with our main topic:

Tic-Tac-Toe games? An obvious connection is that every “winning set” in Tic-Tac-
Toe (or in any multidimensional version) is an arithmetic progression on a straight

106
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line. But there is a much deeper reason: the beautiful Hales–Jewett Theorem, which
is, roughly speaking, the “combinatorial content” of the van der Waerden’s proof.

The original van der Waerden’s proof was based on the idea of studying iterated
arithmetic progressions; i.e. progressions of progressions of progressions of � � �

progressions of arithmetic progressions. This is exactly the combinatorial structure
of the family of n-in-a-line’s in the d-dimensional n×n×· · ·×n= nd hypercube.
This observation is precisely formulated in the Hales–Jewett Theorem (see later in
this section).

We feel that the reader must know at least the intuition behind the original proof
of van der Waerden, so we included a brief outline. Watch out for the enormous
constants showing up in the argument!

2. An outline of the original “double induction” proof of van der Waerden.
The basic idea is strikingly simple: the proof is a repeated application of the
pigeonhole principle. First we study the simplest non-trivial case W�3�2�: we show
that given any 2-coloring (say, red and blue) of the integers 1�2� � � � �325� there is
a monochromatic 3-term arithmetic progression. (Of course, 325 is an “accidental”
number; the exact value of the threshold is actually known: it is the much smaller
value of W�3�2�= 9.) The proof is explained by the following picture

a � � � a � � � b ← d→ a � � � a � � � b ← d→ ? � � �? � � �?
a � � � a � � � b ← d→ a � � �a � � � b ← d→ ? � � �? � � �a
a � � � a � � �b ← d→ a � � � a � � �b ← d→ ? � � �? � � �b

What this picture means is the following. It is easy to see that any block of 5
consecutive integers contains a 3-term arithmetic progression of the color code
a � � � a � � � a or a � � � a � � � b. The first case is a monochromatic 3-term arithmetic
progression (A.P.), and we are done. The second case is a 3-term A.P. where the
first two terms have the same color and the third term has the other color. The
pigeonhole principle implies that the same ab-triplet shows up twice

a � � � a � � � b a � � � a � � � b

Indeed, divide the 1� � � � �325� interval into 65 blocks of length 5. Since each
block has 5 numbers, and we have 2 colors, there are 25 = 32 ways to 2-color a
5-block. By the pigeonhole principle, among the first 33 blocks there are two which
are colored in exactly the same way. Assume that the distance between these two
identically colored 5-blocks is d, and consider the third 5-block such that the blocks
form a 3-term A.P.

a � � � a � � � b ← d→ a � � � a � � � b ← d→ ? � � �? � � �?

There are two possibilities. If the last ? has color a, then a forms a monochromatic
3-term A.P.

a � � � a � � � b ← d→ a � � �a � � � b ← d→ ? � � �? � � �a
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If the last ? has color b, then b forms a monochromatic 3-term A.P.

a � � � a � � �b ← d→ a � � � a � � �b ← d→ ? � � �? � � �b

This completes the proof of the case of 2 colors. Note that 325 = 5�2 · 25+ 1�. If
we break up the line

a � � � a � � � b ← d→ a � � � a � � � b ← d→ ? � � �? � � �?

as follows

? � � �? � � �?

a � � � a � � � b

a � � � a � � � b

then the argument above resembles to a play of Tic-Tac-Toe in which someone
wins. Notice that this is a Tic-Tac-Toe with seven winning triplets instead of the
usual eight

�1�3� �2�3� �3�3�

�1�2� �2�2� �3�2�

�1�1� �2�1� �3�1�

where the diagonal �1�3�� �2�2�� �3�1�� does not show up in the argument.
Next consider the case of 3 colors, and again we want a monochromatic 3-term

A.P. Repeating the previous argument, we obtain the ab-configuration as before

a � � � a � � � b a � � � a � � � b ? � � �? � � �?

This time we are not done yet, since the last ? can have the third color

a � � � a � � � b a � � � a � � � b ? � � �? � � � c

However, the pigeonhole principle implies that the same abc-block shows up twice

a � � � a � � � b a � � � a � � � b ? � � �? � � � c a � � � a � � � b a � � � a � � � b ? � � �? � � � c

Consider the third block such that the 3 blocks form a 3-term A.P.

a��a��b a��a��b ?��?��c a��a��b a��a��b ?��?��c ?��?��? ?��?��? ?��?��?

This time there are 3 possibilities. If the last ? has color a, then a forms a
monochromatic 3-term A.P.

a��a��b a��a��b ?��?��c a��a��b a��a��b ?��?��? ?��?��? ?��?��? ?��?��a

If the last ? has color b, then b forms a monochromatic 3-term A.P.

a��a��b a��a��b ?��?��c a��a��b a��a��b ?��?��c ?��?��? ?��?��? ?��?��b
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And, finally, if the last ? has color c, then c forms a monochromatic 3-term A.P.

a��a��b a��a��b ?��?��c a��a��b a��a��b ?��?��c ?��?��? ?��?��? ?��?��c

This is how we can force a monochromatic 3-term A.P. if there are 3 colors. The
argument gives the upper bound

W�3�3�≤ 7�2 ·37+1��2 ·37�2·37+1�+1� < 320�000�

The case of 3 colors resembles to a play of Tic-Tac-Toe on a 3-dimensional
3×3×3= 33 board” (instead of the usual 3×3= 32 board) with three players in
which someone will win.

If there are 4 colors, then we get the same abc-configuration as before, but the
last ? can have the 4th color:

a��a��b a��a��b ?��?��c a��a��b a��a��b ?��?��c ?��?��? ?��?��? ?��?��d

Again by the pigeonhole principle, the following configuration will defi-
nitely show up

a�a�b a�a�b ?�?�c a�a�b a�a�b ?�?�c ?�?�? ?�?�? ?�?�d

a�a�b a�a�b ?�?�c a�a�b a�a�b ?�?�c ?�?�? ?�?�? ?�?�d

?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�?

What it means is that there are two identical abcd-blocks, separated from each
other, and ? � � �? stands for the third block such that the 3 blocks form a 3-term A.P.

There are 4 possibilities. If the last ? has color a, then a forms a monochromatic
3-term A.P.; if the last ? has color b, then b forms a monochromatic 3-term A.P.;
if the last ? has color c, then c forms a monochromatic 3-term A.P.; and, finally, if
the last ? has color d, then d forms a monochromatic 3-term A.P. (we replace the
last ? by •)
a�a�b a�a�b ?�?�c a�a�b a�a�b ?�?�c ?�?�? ?�?�? ?�?�d

a�a�b a�a�b ?�?�c a�a�b a�a�b ?�?�c ?�?�? ?�?�? ?�?�d

?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�? ?�?�•
This is how we can force a monochromatic 3-term A.P. if there are 4 colors. The case
of 4 colors resembles to a play of Tic-Tac-Toe on a 4-dimensional 3×3×3×3= 34

board with four players in which someone will win.
Repeating this argument we get a finite bound for arbitrary number of colors:

W�3� k� <�; the bad news is that the upper bound for W�3� k� is basically a tower
function of height k. But how to get a monochromatic 4-term A.P.? Consider the
simplest case of two colors. We recall the (very clumsy) upper boundW�3�2�≤ 325.
It follows that 2-coloring any block of 500 consecutive integers, there is always a
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configuration a � � � a � � � a � � � a or a � � � a � � � a � � � b. In the first case we are done. In
the second case, we can force the existence of a 3-term A.P. of identical ab-blocks

a � � � a � � � a � � � b a � � � a � � � a � � � b a � � � a � � � a � � � b

Indeed, any 500-block has 2500 possible 2-colorings, so if we takeW�3�2500� consec-
utive 500-blocks, then we get a 3-term A.P. of identical 500-blocks. (Unfortunately
the argument above gives an extremely poor upper bound: W�3�2500� is less than
a tower of height 2500–a truly ridiculous bound!) Consider the 4th block such that
the 4 blocks form a 4-term A.P.

a � � � a � � � a � � � b a � � � a � � � a � � � b a � � � a � � � a � � � b ? � � �? � � �? � � �?

Now there are two cases. If the last ? has color a, then a forms a monochromatic
4-term A.P.

a � � � a � � � a � � � b a � � �a � � � a � � � b a � � � a � � �a � � � b ? � � �? � � �? � � �a

If the last ? has color b, then b forms a monochromatic 4-term A.P.

a � � � a � � � a � � �b a � � � a � � � a � � �b a � � � a � � � a � � �b ? � � �? � � �? � � �b

This is how we can force a monochromatic 4-term A.P. if there are two colors. The
case of 2 colors resembles to a play of Tic-Tac-Toe on a 2-dimensional 4×4= 42

board” (2 players) in which someone wins.
Studying these special cases, it is easy to see how the double induction proof of

van der Waerden’s Theorem goes in the general case. This completes the outline
of the proof.
We challenge the reader to finish van der Waerden’s proof.

3. Hales–Jewett Theorem. Van der Waerden’s double induction proof was adapted
by Hales and Jewett [1963] to find monochromatic n-in-a-line’s in an arbitrary
k-coloring of the d-dimensional n× n× · · · × n = nd hypercube (provided d is
sufficiently large). The Hales–Jewett Theorem has a wonderful application to the
hypercube Tic-Tac-Toe: it implies that the d-dimensional nd Tic-Tac-Toe is a first
player’s win if the dimension d is large enough in terms of the winning size n.
This is a deep qualitative result; unfortunately, the quantitative aspects are truly
dreadful!
Actually the Hales–Jewett proof gives more: it guarantees the existence of a

monochromatic combinatorial line. A combinatorial line is basically a “1-parameter
set”; to explain what it means, let �n�= 1�2� � � � � n�. An x-string is a finite word
a1a2a3 · · ·ad of the symbols ai ∈ �n�∪ x�, where at least one symbol ai is x� An
x-string is denoted by w�x�� For every integer i ∈ �n� and x-string w�x�� let w�x� i�
denote the string obtained from w�x� by replacing each x by i. A combinatorial
line is a set of n strings w�x� i� � i ∈ �n��, where w�x� is an x-string.
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Notice that in the union set ⎛
⎝ ⋃

A∈Fs0 �w0
�disj�

A

⎞
⎠∩V� (45.28)

First Player has a Shutout of size

�q2
1 − s0��Fs0�w0

�disj�� ≥ �q2
1 − s0�N1�s0�

≥ �q2
1 − s0� ·2s0−2m

1
2 −−3 T�F�

q8
1 ·T�G�

� (45.29)

where in the last step we used (45.26)–(45).
Recall that m= q2

2. In order to get a contradiction First Player wants to prevent
any kind of Shutout like (45.28)–(45.29).

What does it mean “any kind of Shutout like (45.28)–(45.29)”? Well, pick an
arbitrary integer s in 1 ≤ s ≤ q2

1 ; let H ⊂ F be an arbitrary sub-family satisfying
the properties:

���
⋂

A∈H A is a single point, the “root” of H, and the sets A ∈ H are pairwise
disjoint apart from the “root”;

��� �H� = N1�s�= 2s−2m
1
2 −−3 T�F�

q8
1 ·T�G�

� (45.30)

For every H ⊂ F satisfying properties (�)–(�) above, consider the union set⋃
A∈H A; the family of all union sets

⋃
A∈H A is denoted by F �s�. The Shutout

Game on hypergraph F �s� with goal size b = b�s� = �q2
1 − s�N1�s� defines a

multi-hypergraph F �s�
� with multiplicity function (45.5). Finally, let

FForb =
q21⋃
s=1

F �s�
� � (45.31)

If a Shutout (45.28)–(45.29) occurs in the ith round of the play, then T�F �
Forb�i��≥ 1,

so by (45.16), (45.9), and (45.11)

T�F ��i��≥ 
1 ·T�F �
Forb�i��≥ 
1 =

T�F�

8T�FForb�
� (45.32)

We are going to see that (45.32) is a contradiction: the right-hand side of (45.32)
is in fact much larger than the left-hand side. This contradiction will show that the
case s0 ≥ 1 is impossible, so s0 = 0, i.e. at the end of the play First Player owns a
whole A ∈ F .

5. Checking the contradiction. Estimate T�FForb� from above: by (45.5), proper-
ties (�) and (�) above, and (45.32) with �2 = �2�F� ≤ (

q21
2

)
and N1 = N1�s� (see
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4. Shelah’s new bound. How large is HJ�n� = HJ�n�2�? This is a famous open
problem. Unfortunately, in spite of all efforts, our present knowledge on the Hales–
Jewett threshold number HJ�n� is still rather disappointing. The best-known upper
bound on HJ�n� was proved by Shelah [1988]. It is a primitive recursive function
(the supertower function), which is much-much better than the original van der
Waerden–Hales–Jewett bound. The original “double-induction” argument gave the
totally ridiculous Ackermann function; the much better Shelah’s bound is still far
too large for “layman combinatorics.”
For a precise discussion, we have to introduce the so-called Grzegorczyk hierar-

chy of primitive recursive functions. In fact, we define the representative function
for each class. (For a more detailed treatment of primitive recursive functions we
refer the reader to any monograph of Mathematical Logic.)

Let g1�n�= 2n� and for i > 1� let gi�n�= gi−1

(
gi−1

(
� � � gi−1�1� � � �

))
, where gi−1

is taken n times. An equivalent definition is gi�n+1�= gi−1

(
gi�n�

)
. For example,

g2�n�= 2n is the exponential function and

g3�n�= 22
2··

·2

is the “tower function” of height n� The next function g4�n+1�= g3
(
g4�n�

)
is what

we call the “Shelah’s supertower function” because this is exactly what shows up
in Shelah’s proof. Note that gk�x� is the representative function of the �k+ 1�st
Grzegorczyk class.
The original van der Waerden–Hales–Jewett proof proceeded by a double induc-

tion on n (“length”) and k (“number of colors”), and yielded an extremely
large upper bound for HJc�n� k�. Actually, the original argument gave the same
upper bound U�n�k� for both HJc�n� k� and W�n�k� (“van der Waerden thresh-
old”). We define U�n�k� as follows. For n = 3: U�3�2� = 1000 and for k ≥ 2�
U�3� k+1�= �k+1�U�3�k�. For n= 4: U�4�2�= U

(
3�2U�3�2�

)
and for k≥ 2

U�4� k+1�= U
(
3� �k+1�U�4�k�

)
�

In general, for n≥ 4: let

U�n�2�= U
(
n−1�2U�n−1�2�

)
and for k≥ 2

U�n�k+1�= U
(
n−1� �k+1�U�n�k�

)
�

It is easy to see that for every n ≥ 3 and k ≥ 2, U�n�k� > gn�k�. It easily
follows that the function U�x�2� (i.e. the case of two colors) eventually majorizes
gn�x� for every n (we recall that gn�x� is the representative function of the �n+
1�th Grzegorczyk class). It follows that U�x�2� is not primitive recursive. In fact,
U�x�2� behaves like the well-known Ackermann functionA�x�= gx�x�, the classical
example of a recursive but not primitive recursive function. In plain language, the
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original Ackermann function upper bound was ENOOOOORMOUSLY LARGE
BEYOND IMAGINATION!!!

In 1988 Shelah proved the following much better upper bound.

Shelah’s primitive recursive upper bound: For every n≥ 1 and k≥ 1

HJc�n� k�≤ 1

�n+1�k
g4�n+k+2��

That is, given any k-coloring of the hypercube �n�d = nd where the dimension
d ≥ 1

�n+1�k g4�n+k+2�, there is always a monochromatic combinatorial line.

Consider HJ�n�=HJ�n�2� and HJc�n�=HJc�n�2�. An easy case study shows
that HJ�3� = HJc�3� = 3, but the numerical value of HJ�4� remains a complete
mystery. We know that it is ≥ 5 (see Golomb and Hales [2002]), and also that it
is finite, but no one can prove a “reasonable” upper bound such as HJ�4� ≤ 1000
or even a much weaker bound such as HJ�4� ≤ 101000. Shelah’s proof gives the
explicit upper bound

HJ�4�≤HJc�4�≤ g3�24�= 22
2··

·2

�

where the “height” of the tower is 24. This upper bound is still absurdly large. It is
rather disappointing that Ramsey Theory is unable to provide a “reasonable” upper
bound even for the first “non-trivial” value HJ�4� of the Hales and Jewett function
HJ�n�.

In general, it is an open problem to decide whether or not HJ�n� is less than the
“plain” tower function g3�n�; perhaps HJ�n� is simply exponential.
It seems to be highly unlikely that the game-theoretic “phase transition” between

win and draw for the nd game is anywhere close to the Hales–Jewett number HJ�n�,
but no method is known for handling this problem.

We have already introduced the Win Number for Clique Games, now we intro-
duce it for the nd game. Let w�n–line� denote the least threshold such that for
every d≥w�n–line� the nd game is a first player win (“w” stands for “win”). The-
orem 6.1 yields the inequality w�n–line� ≤ HJ�n�. By Patashnik’s work we know
that w�4–line�= 3, so luckily we don’t really need to know the value of the diffi-
cult threshold HJ�4�. On the other hand, we are out of luck with w�5–line�, which
remains a complete mystery. The upper bound w�5–line� ≤ HJ�5� is “useless” in
the sense that Shelah’s proof gives a totally ridiculous upper bound for HJ�5�.

Open Problem 7.1 Is it true that w�n–line� < HJ�n� for all sufficiently large
values of n? Is it true that

w�n–line�
HJ�n�

−→ 0 as n→�?
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The winning sets of an nd Tic-Tac-Toe game are n-term arithmetic progressions in
the space. This motivates the “Arithmetic Progression Game”: this is a Positional
Game in which the board is the set of the first N integers �N� = 1�2�3� � � � �N�,
and the winning sets are the n-term arithmetic progressions in �N�. We call this
“Arithmetic Progression Game” the �N�n� van der Waerden Game. An obvious
motivation for the name is the van der Waerden’s Theorem: for every n there
is a (least) threshold W�n� = W�n�2� such that given any 2-coloring of �N� with
N =W�n� there is always a monochromatic n-term arithmetic progression. W�n� is
called the van der Waerden Number. If N ≥W�n�, then Theorem 6.1 applies, and
yields that the first player has a winning strategy in the �N�n� van der Waerden
Game. Actually, in view of Theorem 6.1, W�n� can be replaced by its halving
version W1/2�n�. W1/2�n� is defined as the least integer N such that each halving 2-
coloring of the interval �N� yields a monochromatic n-term arithmetic progression.
Trivially, W1/2�n� ≤W�n�; is there an n with strict inequality? Unfortunately, we
don’t know.
Similarly, let HJ1/2�n� denote the least integer d such that in each halving 2-

coloring of nd there is a monochromatic n-in-a-line (i.e. geometric line). We call
HJ1/2�n� the halving version of the Hales–Jewett number. By definition

HJ1/2�n�≤HJ�n��

Is there an nd game for which strict inequality holds? We don’t know the answer
to this question, but we do know an “almost nd game” for which strict inequality
holds: it is the “33 \ center� game” in which the center of the 33 cube is removed,
and also the 13 3-in-a-line’s going through the center are removed. The “33 \
center� game” – a truncated version of the 33 game – has 33−1= 26 points and
�53−33�/2−13= 49−13= 36 winning triplets.

It is impossible
to find a Proper
Halving 2-Coloring
of 33 \ { center }

PROPER 2-COLORING
OF 33 \ { center }
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The “33 \center� game” has chromatic number two, but every proper 2-coloring
has the type (12,14) meaning that one color class has 12 points and the other one has
14 points; Proper Halving 2-Coloring, therefore, does not exist. (By the way, this
implies, in view of Theorem 6.1, that the “33 \center� game” is a first player win.)

The “33 \center� game” was a kind of “natural game” example. In the family of
all hypergraphs it is easy to find examples distinguishing proper 2-coloring from
Proper Halving 2-Coloring in a much more dramatic fashion. We don’t even need
hypergraphs, it suffices to consider graphs: consider the complete bipartite graph
Ka�b (i.e. let A and B be disjoint sets where A is a-element and B is b-element, and
take the ab point-pairs such that one point is from A and the other one is from B).

Graph Ka�b has chromatic number two, and the only proper 2-coloring of the
�a+b�-element point-set is the �A�B�-coloring. If a= 1 and b is “large,” then the
proper 2-coloring is very far from a halving 2-coloring.
The case a = 1 is the “star.” The “star” easily generalizes to n-uniform hyper-

graphs as follows. Modify a complete �n− 1�-uniform hypergraph by adding the
same new vertex v0 to every hyperedge. Clearly the resulting n-uniform hypergraph
has a proper 2-coloring (make v0 red and everything else blue), but the color class
of v0 cannot have size ≥ n in a proper 2-coloring. (This construction is due to
Wesley Pegden.)

Of course, we can also define the halving version of HJc�n�: HJc
1/2�n� is the

smallest integer d such that in each halving 2-coloring of �n�d = nd there is a
monochromatic combinatorial line. By definition HJc

1/2�n�≤HJc�n�.
After this short detour on halving versions let’s return to the van der Waerden

number; what do we know about W�n�=W�n�2�? First note that

W�n�k�≤ nHJ�n�k��

Indeed, we can embed the d-dimensional cube �n�d into the interval
0�1�2� � � � � nd − 1� by the following natural 1-to-1 mapping: given any string
w = a1a2 · · ·ad ∈ �n�d, let

f�w�= �a1−1�+ �a2−1�n+ �a3−1�n2+ � � �+ �ad−1�nd−1� (7.1)

Observe that f maps any n-in-a-line (“geometric line”) into an n-term arithmetic
progression. It follows that

W�n�k�≤ nHJ�n�k��

Shelah’s Theorem above immediately gives the following primitive recursive upper
bound for the van der Waerden threshold: W�n�k�≤ g4�n+k+3� for all n≥ 3 and
k≥ 2. This is again the supertower function.

5. Gowers’s bound on W(n). The supertower upper bound was enormously
improved by a recent breakthrough of Gowers: he pushedW�n� down well below the
“plain” tower function g3�n� by using analytic techniques instead of combinatorics.
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In fact, Gowers [2001] proved much more: he proved a quantitative Szemerédi
theorem, i.e. a quantitative density version of the van der Waerden’s Theorem.
(Szemerédi’s theorem, which was proved only in 1974, is generally regarded a
very deep result; its known proofs are much more difficult than that of van der
Waerden’s Theorem.) To formulate Gowers’s bound we use the arrow-notation
a ↑ b for ab, with the obvious convention that a ↑ b ↑ c stands for a ↑ �b ↑ c�= abc �

The relevant “two-color” special case (which has game-theoretic consequences) of
Gowers’s more general theorem goes as follows.

Gowers’s analytic upper bound: Let

N ≥ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ �n+9�= 22
22

2n+9

� (7.2)

and let S be an arbitrary subset of 1�2� � � � �N� of size ≥ N/2� Then S contains an
n-term arithmetic progression.

In the general case N/2 is replaced by �N with arbitrary � > 0, and then 1/� shows
up in the tower expression.
Of course, (7.2) implies that W�n�=W�n�2�≤ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ �n+9�. This

bound is a huge improvement to Shelah’s supertower function, but, unfortunately,
this is still far too large for “layman combinatorics” (the best-known lower bound
is plain exponential, see Section 11). Note that Gowers’s paper is extremely com-
plicated: it is 128 pages long and uses deep analytic techniques. Shelah’s proof,
on the other hand, is relatively short and uses only elementary combinatorics (see
Appendix B).
Gowers’s Density Theorem implies that, if

N ≥ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ �n+9��

then the first player has a winning strategy in the �N�n� van der Waerden Game.
This is an application of Theorem 6.1, so we have no idea what first player’s
winning strategy actually looks like.

Open Problem 7.2 Consider the �N�n� van der Waerden Game where N ≥W�n�;
for example, let

N ≥ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ �n+9��

Find an explicit first player’s winning strategy.

It seems to be highly unlikely that the Hales–Jewett numberHJ�n� is anywhere close
to Shelah’s supertower function. Similarly, it seems highly unlikely that the van der
Waerden number W�n� is anywhere close to Gowers’s 5-times iterated exponential
function. Finally, it seems highly unlikely that the “phase transition” between
win and draw for the van der Waerden game is anywhere close to the van der
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Waerden number W�n�. The corresponding Win Number is defined as follows. Let
w�n–term A.P.� denote the least threshold such that for every N ≥w�n–term A.P.�
the �N�n� van der Waerden game is a first player win.

Theorem 6.1 implies w�n–term A.P.�≤W�n�. It is easily seen

w�3–term A.P.�= 5< 9=W�3��

We don’t know the exact value of w�4–term A.P.� but we know that it is less than
W�4�= 35, and similarly, w�5–term A.P.� is unknown but it is definitely less than
W�5�= 178.

Open Problem 7.3 Is it true that w�n–term A.P.� < W�n� for all sufficiently large
values of n? Is it true that

w�n–term A.P.�
W�n�

−→ 0 as n→�?

We conclude Section 7 with a picture.

4
3

2

1

4 3

1 2

(1) 1 2 x x ′
(2) 1 2 1 x

(4) 2 3 x x
(3) x x x x

4 winning lines

1

4

3
2

How to visualize a 4-dimensional game: 34 Tic-Tac-Toe



8
Two-dimensional arithmetic progressions

1. Weak Win: switching to 2-dimensional goal sets. Open Problems 7.1–7.3
are very depressing. There is no hope of solving them, ever. To gain some self-
confidence, we do what we did in Section 6: we switch from ordinary win to Weak
Win.
Consider the nd game with d ≥ HJ�n�+ 1, where HJ�n� is the Hales–Jewett

number. The condition guarantees that the board contains two disjoint copies of
nHJ�n�. The copycat strategy of Theorem 6.2 supplies an explicit Weak Win strategy
for either player. Theorem 6.2 solves the Weak Win version of Open Problem 7.2,
except for the “boundary case” d =HJ�n�.
Next consider the �N�n� van der Waerden Game, and assume that

N ≥ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ �n+9�

(“Gowers’s upper bound” for W�n�; the ↑-notation was defined at the end of
Section 7). If the first player just wants a Weak Win (i.e. to occupy an n-term
arithmetic progression, but not necessarily first), then he does not need to follow
any particular strategy, simply “showing up” is enough. Indeed, at the end of a
play he will certainly occupy half of �N� (N/2 integers), and by Gowers’s Theorem
(which is a density theorem, i.e. a quantitative version of Szemerédi’s Theorem),
he must have an n-term arithmetic progression no matter how he plays.
By contrast, to achieve a Weak Win in the nd game is definitely harder, simply

“showing up” is not enough. The first player must do something special, but
this “special” is not too difficult; a “copycat” pairing strategy does the trick (see
Theorem 6.2).
Weak Win motivates the introduction of the Weak versions of the Win Numbers.

Note that we already introduced this concept for clique Games in Section 6. Let
ww�n–line� denote the least threshold such that for every d ≥ ww�n–line� the
first player can force a Weak Win in the nd Tic-Tac-Toe game (“ww” stands
for “Weak Win”).
The study of ordinary Tic-Tac-Toe yields ww�3–line� = 2 < 3 = w�3–line�.

Patashnik’s well-known computer-assisted study of the 43 game yields
ww�4–line�= w�4–line�= 3 (see Patashnik [1980]).

118
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Open Problem 8.1

(a) Is it true that ww�n–line� < w�n–line� for all sufficiently large values of n? Is
it true that

ww�n–line�
w�n–line�

−→ 0 as n→�?

(b) Is it true that
ww�n–line�

HJ�n�
−→ 0 as n→�?

Note that Open Problem 8.1 (b) has a positive solution; see Section 12.
Next consider the van der Waerden game. Let ww�n–term A.P.� denote the least

threshold such that for every N ≥ ww�n–term A.P.� first player can force a Weak
Win in the �N�n� van der Waerden game.

It is easily seen that

ww�3–term A.P.�= w�3–term A.P.�= 5< 9=W�3��

Open Problem 8.2

(a) Is it true that ww�n–term A.P.� < w�n–term A.P.� for all sufficiently large
values of n? Is it true that

ww�n–term A.P.�

w�n–term A.P.�
−→ 0 as n→�?

(b) Is it true that
ww�n–term A.P.�

W�n�
−→ 0 as n→�?

We summarize the “trivial inequalities”

ww�n–line�≤ w�n–line�≤HJ1/2�n�≤HJ�n��

ww�comb� n–line�≤ w�comb� n–line�≤HJc
1/2�n�≤HJc�n��

and
ww�n–term A.P.�≤ w�n–term A.P.�≤W1/2�n�≤W�n��

The Achievement and Avoidance Numbers for Clique Games were defined
in Section 6, and we stated the exact values in Theorem 6.4. The Achieve-
ment and Avoidance Numbers for A.P.s (“Arithmetic Progression”) on the board
�N�= 1�2�3� � � � �N � are defined in the usual way as the inverse of the Weak Win
and Reverse Weak Win Numbers

A��N��A�P��= n if ww�n–term A.P.�≤ N < ww��n+1�–term A.P.��

A��N��A�P��−�= n if ww�n–term A.P.�−�≤ N < ww��n+1�–term A.P.�−��

What can we prove about these Achievement and Avoidance Numbers?



120 The main result

Theorem 8.1

A��N��A�P��= �1+o�1�� log2N� (8.1)

A��N��A�P��−�= �1+o�1�� log2N� (8.2)

Unfortunately (8.1)–(8.2) is not nearly as striking as (6.1)–(6.2): Theorem 8.1 is
just an asymptotic result (by the way, we guess that the phase transition from Weak
Win to Strong Draw happens at log2N +O�1�, i.e. the uncertainty is O�1� instead
of o�logN�, see formula (9.2) later). Theorem 8.1 is an asymptotic result and
Theorem 6.4 is an exact result – what a big difference! Where does the difference
come from? By comparing the goal-sets of the Van der Waerden Game with the
goal-sets of the Clique Game, it is easy to see the difference:Kq is a rapidly changing
“2-dimensional” (or we may call it “quadratic”) configuration, switching q to q+1
the size

(
q+1
2

) = (
q

2

)+ q makes a “square-root size increase.” The n-term AP, on
the other hand, is a slowly changing linear (“1-dimensional”) configuration. This is
where the difference is: Kq is a quadratic goal and the n-term AP is a linear goal.

Two-dimensional Arithmetic Progressions. A natural way to obtain a
2-dimensional version of an n-term A.P. is to take the Cartesian product (for a
coherent notation we switch from n to q).

4 × 4 Aligned Square
Lattice on a 13 × 13 board

The Cartesian product of two q-term A.P.s with the same gap is a q×q (aligned)
Square Lattice; the Cartesian product of two q-term A.P.s with not necessarily the
same gap is a q×q (aligned) rectangular lattice.
Let �N ×N�q×q Square Lattice� denote the positional game where the board is

the N ×N chessboard, and the winning sets are the q×q (aligned) Square Lattices.
Roughly speaking, �N ×N�q× q Square Lattice� is the “Cartesian square” of the
�N�q� van der Waerden game. The total number of winning sets is (k denotes
the “gap”)
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∑
1≤k≤�N−1�/�q−1�

�N −k�q−1��2 = N 3

3�q−1�
+O�N 2�� (8.3)

Similarly, let �N ×N�q×q rectangle lattice� denote the positional game where
the board is the N ×N chessboard, and the winning sets are the q× q (aligned)
rectangle lattices. The �N ×N�q× q rectangle lattice� game is another type of
“Cartesian product” of the �N�q� van der Waerden game.

4 × 4 Aligned
Rectangle Lattice

The total number of winning sets is (j and k denote the “gaps”)

∑
1≤j≤�N−1�/�q−1�

∑
1≤k≤�N−1�/�q−1�

�N − j�q−1���N −k�q−1��= N 4

4�q−1�2
+O�N 3��

(8.4)
Let A�N × N�Square Lattice� denote the Achievement Number:

q0 = A�N ×N�Square Lattice� is the largest value of q such that Maker (as
the first player) has a Weak Win in the �N ×N�q× q Square Lattice� game. We
shall prove the exact result

A�N ×N�Square Lattice�=
⌊√

log2N +o�1�
⌋
�

and the same for the Avoidance Number

A�N ×N�Square Lattice�−�=
⌊√

log2N +o�1�
⌋
�

What happens if the (aligned) Square Lattice is replaced by the (aligned) rectangle
lattice? The only difference is an extra factor of

√
2

A�N ×N� rectangle lattice�=
⌊√

2 log2N +o�1�
⌋
�

A�N ×N� rectangle lattice�−�=
⌊√

2 log2N +o�1�
⌋
�

What happens if the Aligned Square Lattices are replaced by the tilted Square
Lattices?
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3 × 3 tilted
square lattice

The Achievement Numbers are

A�N ×N� tilted Square Lattice�=
⌊√

2 log2N +o�1�
⌋
�

and the same for the Avoidance Numbers.
The tilted Square Lattice has 3 kinds of generalizations: (a) the tilted rectangle

lattice, (b) the rhombus lattice, and, finally, (c) the parallelogram lattice.

3 × 3 tilted
rectangle lattice

3 × 3 rhombus
lattice

Somewhat surprisingly (a) and (b) have the same threshold as the tilted Square
Lattice.
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A�N ×N� tilted rectangle lattice�=
⌊√

2 log2N +o�1�
⌋
�

A�N ×N� rhombus lattice�=
⌊√

2 log2N +o�1�
⌋
�

and the same for the Avoidance Numbers.
The tilted rectangle lattice and the rhombus lattice are special cases of the class

of parallelogram lattices.

3 × 3 parallelogram
lattice

The corresponding Achievement Number is twice as large as that of the Aligned
Square Lattice and the same for the Avoidance Number.

A�N ×N�parallelogram lattice�=
⌊√

4 log2N +o�1�
⌋
=

⌊
2
√
log2N +o�1�

⌋
�

Area-one lattices: It means the class of parallelogram lattices where the
fundamental parallelogram has area one.

6 × 6 area-one
parallelogram lattice
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An infinite area-one lattice is equivalent to ZZ2: it lists every integral lattice
point. If the integral vectors v = �a� b� and w = �c�d� satisfy ad−bc = ±1, and
u is also integral, then u+ kv+ lw � �k� l� ∈ ZZ2� is an infinite or unrestricted
area-one lattice in ZZ2, and every unrestricted area-one lattice in ZZ2 can be obtained
this way. A q×q (“restricted”) version means

u+kv+ lw � �k� l� ∈ ZZ2�0 ≤ k≤ q−1�0 ≤ l≤ q−1��

Let �N × N�q × q area-one lattice� denote the positional game where the
board is the N ×N chessboard, and the winning sets are the q× q area-one
lattices.
Let A�N ×N� area-one lattice� denote the Achievement Number: q0 = A�N ×N�

area-one lattice) is the largest value of q such that Maker (as the first
player) has a Weak Win in the �N × N�q × q area-one lattice� game. The
Avoidance Number A�N ×N� area-one lattice�−� is defined in the usual way.
We have

A�N ×N� area-one lattice�=
⌊√

2 log2N +o�1�
⌋
�

and, of course, the same for the Avoidance Number

A�N ×N� area-one lattice�−�=
⌊√

2 log2N +o�1�
⌋
�

Note that instead of “area one” we can have “area A” with any fixed integer A in
the range O�N 2/ logN�. Needless to say, this result is “beyond Ramsey Theory”;
in Ramsey Theory we cannot specify the area.
We started with the “squares,” and proceeding in small steps we arrived at

the “parallelograms,” still a close relative. The far side of the spectrum is when
we get rid of geometry completely, and take the Cartesian product of two arbi-
trary q-element subsets of �N� � B×C where B ⊂ �N�, C ⊂ �N�, �B� = �C� = q.
This leads to the case of Complete Bipartite Graphs: the board is the complete
bipartite graph KN�N , and the winning sets are the copies of Kq�q; this is the Bipar-
tite version of the �KN �Kq� Clique Game. We call Kq�q a symmetric bipartite
clique.

K3,3

Not surprisingly, the corresponding Achievement Number is the same as in
Theorem 6.4 (a)
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A�KN�N � sym� bipartite clique�= �2 log2N −2 log2 log2N +2log2e−3+o�1���
and, of course, the same for the Avoidance Number.

2. The Second Main Result of the book. Let me summarize the “lattice results”
in a single statement.

Theorem 8.2 Consider the N ×N board; the following Achievement Numbers are
known

(a) A�N ×N�Square Lattice�=
⌊√

log2N +o�1�
⌋
�

(b) A�N ×N� rectangle lattice�=
⌊√

2 log2N +o�1�
⌋
�

(c) A�N ×N� tilted Square Lattice�=
⌊√

2 log2N +o�1�
⌋
�

(d) A�N ×N� tilted rectangle lattice�=
⌊√

2 log2N +o�1�
⌋
�

(e) A�N ×N� rhombus lattice�=
⌊√

2 log2N +o�1�
⌋
�

(f) A�N ×N�parallelogram lattice�=
⌊
2
√
log2N +o�1�

⌋
�

(g) A�N ×N� area one lattice�=
⌊√

2 log2N +o�1�
⌋
�

(h) A�KN�N � sym� bipartite clique�= �2 log2N−2 log2 log2N+2log2e−3+o�1���

and the same for the corresponding Avoidance Number.

This book is basically about 2 exact solutions: Theorem 6.4 and Theorem 8.2.
They are the main results. To see the proof of Theorem 8.2 the eager reader can
jump ahead to Section 23, and after that to Part D.

3. Generalizations. To solve these particular games we are going to develop some
very general hypergraph techniques, which have many more interesting applica-
tions. We cannot help discussing here an amusing generalization of Theorem 8.2:
we extend Theorem 8.2 from the “shape of square” to any other “lattice polygon”
(alternative name: “lattice animal”). What we mean by this is the following: Theo-
rem 8.2 was about q×q sub-lattices of the N ×N board, a q×q Aligned Square
Lattice (“Case (a)” above) is a homothetic copy of the �q− 1�th member of the
“quadratic sequence”

square: (k + 1)2

1 2 3 4
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triangle: ( )
2

k + 2

Instead of starting with the “unit square,” we could also start with a “triangle,” or
a “pentagon,” or a “hexagon,” or an “octagon.” In general, we could start with an
arbitrary lattice polygon (where each vertex is a lattice point) such as the “arrow,”
the “duck,” the “fish,” or the “dog” (see the 2 figures below).
Let S be an arbitrary lattice polygon (for example the “fish”); let S�1� = S.

How do we define the “quadratic sequence” S�2�, S�3�, � � �, S�k�, � � �? The figures
above are rather self-explanatory: let E be an arbitrary edge of the boundary
of S (edge means that the endpoints of E are consecutive lattice points on a
straight line). Lattice polygon S�k� arises from S by a magnification of k such
that every edge of S is divided into k equal parts by k− 1 consecutive lattice
points on a straight line. For example, the second figure below shows the “fish of
order 3.”
What is the number of lattice points in the magnified lattice polygon S�k� (the

boundary is always included)? By using Pick’s well-known theorem, we can easily
express the answer in terms of the area A of S = S�1� and the number B of lattice
points on the boundary of S. Indeed, the area of S�k� is k2A, and the number of
lattice points on the boundary of S�k� is kB, so by Pick’s Theorem the number I�k�
of lattice points inside S�k� satisfies the equation k2A= I�k�−1+kB/2. Therefore,
the number of lattice points in S�k� (“boundary plus inside”) equals the quadratic
polynomial Ak2 +1+Bk/2. We call Ak2 + 1+Bk/2 the quadratic polynomial of
lattice polygon S.

A note about the lattice-point counting formula Ak2+1+Bk/2: the coefficients
A and B/2 are “half-integers,” so it is not obvious why the polynomial Ak2 +
1+Bk/2 is in fact integer valued. The equivalent form (via Pick’s Theorem)
Ak2+1+Bk/2 = B

(
k+1
2

)+ �I−1�k2+1 takes care of this “formal problem,” and
clearly demonstrates that the polynomial is integer valued (here is I is the number
of lattice points inside S).

pentagon
3k2 + 3k + 1



Two-dimensional arithmetic progressions 127

hexagon
4k2 + 3k + 1

octagon
7k2 + 4k + 1

duck
6k2 + 5k + 1

fish of order 3

fish
28k2

 + 12k + 1
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dog
61k2

 + 18k + 1
arrow
6k2

 + 5k + 1

For example, the “triangle,” the “pentagon,” the “hexagon,” the “octagon,” the
“arrow,” the “duck,” the “fish,” and the “dog” introduced above have quadratic poly-
nomials” respectively

(
k+2
2

)
, 3k2+3k+1, 4k2+3k+1, 7k2+4k+1, 6k2+5k+1,

6k2 + 5k+ 1, 28k2 + 12k+ 1, and 61k2 + 18k+ 1. Different shapes may have the
same quadratic polynomial, see e.g. the “arrow” and the “duck” (or notice that each
“empty triangle” has the same polynomial

(
k+2
2

)
).

What happens in Theorem 8.2 (a) if the “square” is replaced by an arbitrary
lattice polygon S with area A and “boundary” B? What is the largest “order” k such
that by playing on an N ×N board the first player can still achieve a homothetic
copy of S�k�? The largest achievable order k= k�S�N� equals

⌊
1√
A

√
log2N − B

4A
+o�1�

⌋
� (8.5)

which is the perfect generalization of Theorem 8.2 (a).
The similar generalization of Theorem 8.2 (c) (“tilted square”) goes as follows.

What is the largest “order” k such that playing on an N ×N board the first player
can still achieve a similar copy of S�k�? The largest achievable order k= k�S�N�

equals ⌊
1√
A

√
2 log2N − B

4A
+o�1�

⌋
� (8.6)

which is the perfect generalization of Theorem 8.2 (c).
A similar generalization of Theorem 6.4 (a) and Theorem 8.2 (h) goes as follows.

Let G be an arbitrary finite graph with V = V�G� vertices and E = E�G� edges. A
magnification G�q� of order q means a graph where each vertex of G is replaced
by a q-element set and each edge is replaced by a q×q complete bipartite graph.
G�q� has q ·V vertices and q2 ·E edges. Playing the usual (1:1) game on KN , what
is the largest value of q such that Maker can always build an isomorphic copy
of G�q�? Here comes the exact answer: let H ⊆ G be the subgraph of G with
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maximum average degree (of course, H =G is allowed), let A= A�H� denote the
number of vertices of H and let B = B�H� denote the number of edges of H , then

q =
⌊
A

B

(
log2N − log2 log2N − log2

(
A

B

)
+ log2 e

)
− 2

A
+o�1�

⌋
� (8.7)

If the “holes” in G�q� are filled up with Kqs, then the analogue of (8.7) is

q =
⌊

2A
A+2B

(
log2N − log2 log2N − log2

(
2A

A+2B

)
+ log2 e

)
+1−2

A+2B
A2

⌋
�

(8.8)
Finally, let’s go back to ordinary win. We want to define the analogue of the

Achievement Number. If the inverse of theWeakWin Number is called the Achieve-
ment Number, then what do we call the inverse of the Win Number? We suggest
the name Over-Achievement Number. For example, in the van der Waerden Game

OA��N��A�P��= n if w�n−term A�P��≤ N < w��n+1�−term AP��

Unfortunately, we know very little about the Over-Achievement Numbers. For
example, in the van der Waerden Game the following upper and lower bounds are
known

�1+o�1�� log2N ≥OA��N��A�P��≥ log2 log2 log2 log2 log2N�

The huge gap is rather disappointing.
Unfortunately, the situation is even much worse when the goal sets are

2-dimensional arithmetic progressions. Then the Over-Achievement Number is a
total mystery: nobody has the slightest idea of what the true order might be; no one
dares to come up with any kind of conjecture. This is just one more reason why
we should cherish the exact solutions of the Achievement (Avoidance) Numbers in
Theorem 8.2.

Of course, we can define the Over-Achievement Number for the Clique Games
as well. For a play on the (ordinary) complete graph KN let

OA�KN � clique�= q if w�Kq�≤ N < w�Kq+1��

and for a play on the complete p-graph K
p
N with p ≥ 3 let

OA�Kp
N � clique�= q if w�Kp

q �≤ N < w�Kp
q+1��
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We know the following upper and lower bounds

2 log2N ≥OA�KN � clique�≥
1

2
log2N�

√
6 log2N ≥OA�K3

N � clique�≥ c1 log logN�

�24 log2N �1/3 ≥OA�K4
N � clique�≥ c2 log log logN�

�120 log2N �1/4 ≥OA�K5
N � clique�≥ c3 log log log logN�

and so on. The upper bounds come from Theorem 1.4 (Erdős–Selfridge Theorem)
and the lower bounds come from Ramsey Theory (see (6.7)–(6.9)). Again there is
a striking contrast between these huge gaps and the exact values in Theorem 6.4.
We know little about the Ramsey Theory thresholds, we know little about

the Over-Achievement Numbers, but we know a lot about the Achievement and
Avoidance Numbers.
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Explaining the exact solutions: a Meta-Conjecture

1. What is going on here? Theorems 6.4 and 8.2 described the exact values of
infinitely many Achievement and Avoidance Numbers. We are sure the reader is
wondering: “What are these exact values?” “Where did they come from?” The
answer to these questions is surprisingly simple.

Simple Answer: In each one of the “exact solution games” (i.e. games with
quadratic goals) the “phase transition” from Weak Win to Strong Draw happens
when the winning set size equals the binary logarithm of the Set/Point ratio of
the hypergraph, formally, log2��F �/�V ��.

For example, in the �KN �Kq� Clique Game the Set/Point ratio is
(
N

q

)(
N

2

)−1
, and

the equation (
q

2

)
= log2

((
N

q

)(
N

2

)−1
)

has the real solution

q = q�N�= 2 log2N −2 log2 log2N +2log2e−3+o�1��

which is exactly (6.1)–(6.2) (the calculations are similar to (6.4)–(6.6)).
In the Aligned Square Lattice Game on an N ×N board, by (8.3) the equation

q2 = log2

(
N 3

3�q−1�
·N−2

)

has the real solution
q = q�N�=√

log2N +o�1��

which is exactly Theorem 8.2 (a).
In the Aligned Rectangle Lattice Game on an N ×N board, by (8.4) the equation

q2 = log2

(
N 4

4�q−1�2
·N−2

)

has the real solution
q = q�N�=√

2 log2N +o�1��

which is exactly Theorem 8.2 (b).
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We challenge the reader to double-check my Simple Answer above by carrying
out the analogous calculations for the rest of the “exact solution games” (such as
Theorems 6.4 (b)–(c) and 8.2 (c)–(g)).
An alternative way to formulate the Simple Answer above is to consider the

sum

1
�V �

(∑
A∈F

2−�A�
)

(9.1)

associated with hypergraph �V�F�, and to look at (9.1) as a “gauge” for Weak Win:
if sum (9.1) is “large” (meaning “much larger than one”), then the positional game
is a Weak Win, and if sum (9.1) is “small” (meaning “much smaller than one”),
then the positional game is a Strong Draw.
Perhaps sum (9.1) is too crude, and a more delicate sum such as

1
�V �

(∑
A∈F

�A� ·2−�A�
)

(9.2)

reflects the “phase transition” from Weak Win to Strong Draw somewhat better.
For example, consider the following n-uniform hypergraph: the board V is a

�2n−1�-element set w�x1� x2� · · · � xn−1� y1� y2� · · · � yn−1�. The family of winning
sets consists of all possible n-element subsets A of V with the following two
properties: (1) w ∈ A, (2) A contains exactly 1 point from each pair xi� yi�, i =
1�2� � � � � n−1. The number of winning sets is 2n−1, and the first player can occupy
a winning set in the fastest possible way in n turns. Notice that for this hypergraph
sum (9.2) is the “right” gauge to separate Weak Win from Strong Draw.
Notice that (9.2) is exactly the quantitative form of the intuition explained after

formula (3) in our informal introduction (“A summary of the book in a nutshell”).
For the “exact solution hypergraphs” with “quadratic” goal sets, sums (9.1) and

(9.2) are basically the same: the goal size is either n = (
q

2

)
or n = q2, and if q

switches to q+1, then n undergoes a “square-root size increase.” The effect of this
“square-root size increase” in sum (9.1) is much larger than the effect of the extra
factor �A� that distinguishes (9.2) from (9.1).
We should be able to separate (9.2) from (9.1) when the goal sets are “linear.”

Natural examples are the n-term arithmetic progressions in the �N�n� Van der
Waerden Game, and the n-in-a-lines’s in the nd hypercube Tic-Tac-Toe. In the
�N�n� Van der Waerden Game (9.2) is (basically) equivalent to

N 2

n
n2−n

N
= O�1�⇐⇒ n= n�N�= log2N +O�1��

Is it true that in the �N�n� Van der Waerden Game the phase transition from Weak
Win to Strong Draw happens at n= n�N�= log2N +O�1�?
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In the nd hypercube Tic-Tac-Toe, (9.2) is (basically) equivalent to

�n+2�d−nd

2 n2−n

nd
= O�1�⇐⇒ d = d�n�= �log2�n2−n logn

2
+O�n��

Is it true that in the nd hypercube Tic-Tac-Toe the phase transition from Weak Win
to Strong Draw happens at d = d�n�= ��log2�n2−n logn�/2+O�n�?
We believe both questions have a positive answer, but we don’t have a clue how

to prove such delicate bounds (we can prove weaker results). The second conjecture
about the nd Tic-Tac-Toe is particularly risky, because the family of n-in-a-line’s
in the nd hypercube is extremely degree irregular: the maximum degree is much
larger than the average degree (for a degree reduction, see Theorem 12.2; see also
Theorem 12.5).

Next consider the general case of arbitrary hypergraphs. Is it true that for every
uniform hypergraph the “phase transition” from Weak Win to Strong Draw happens
when the winning set size equals the binary logarithm of the Set/Point ratio of the
hypergraph? Is sum (9.1) (or sum (9.2)) the right “gauge” to separate Weak Win
from Strong Draw? A general result like that would settle the whole issue once and
for all, but of course we are not that lucky: the answer to the general question is
an easy “no.” This means that the “exact solution hypergraphs” must have some
special properties.

What are the “special properties” of the “exact solution hypergraphs”? This is a
hard question that requires a longer discussion. We start the discussion by showing
first a large class of hypergraphs for which the Simple Answer above is false in
the strongest possible sense. This is the class of Strictly Even Hypergraphs.

Strictly even hypergraph

The board V of a Strictly Even Hypergraph is an even-size set, say a �2M�-
element set, representing the inhabitants of a little town: M married couples, M
husbands, and M wives. The citizens of this little town have a habit of forming
clubs, small and large. The same citizen may have membership in many different
clubs at the same time, but there is a rule which is strictly enforced: if a citizen
is the member of a club, then his/her spouse is automatically a member, too. Each
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club represents a hyperedge of a Strictly Even Hypergraph (and vice versa). In
technical terms, a Strictly Even Hypergraph has an underlying “pairing,” and if a
hyperedge intersects a “pair,” then the hyperedge must contain the whole “pair.”
Note that in a Strictly even Hypergraph, every winning set has even size, and,

in general, the intersection of an arbitrary family of winning sets has even size too
(explaining the name “strictly even”).

The Positional Game played on an arbitrary Strictly Even Hypergraph is trivial: the
first player cannot occupy a whole winning set. In fact, the first player cannot even
achieve a “lead” by one! Indeed, by using a Pairing Strategy, the second player can
take the exact half from each winning set (preventing any “lead” of the opponent).

The hypergraph of the �KN �Kq� Clique Game is very different from a Strictly
Even Hypergraph. One of the many peculiarities of a Strictly Even Hypergraph is
that its Maximum Pair-Degree equals the Maximum Degree; for the hypergraph of
the �KN �Kq� Clique Game, on the other hand, the Maximum Pair-Degree is much
smaller than the Maximum Degree: the hypergraph of the �KN �Kq� Clique Game
is very “homogeneous.”

Meta-Conjecture Let F be an n-uniform hypergraph, and let V denote the
union set.

(a) Assume that F is “homogeneous,” which vaguely means the “complete opposite
of Strictly Even Hypergraphs.” Is it true that if n < log2��F �/�V ��+??, then the
first player can force a Weak Win?

(b) Assume that F is “reasonable.” Is it true that if n > log2��F �/�V ��+???, then
the second player can force a Strong Draw?

(c) How about the Avoider–Forcer version? Is it true that, under the condition of
(a), if n < log2��F �/�V ��+??, then Forcer can force Avoider to occupy a whole
winning set?

(d) Is it true that, under the condition of (b), if n> log2��F �/�V ��+???, then Avoider
can avoid occupying a whole winning set?

The Meta-Conjecture states that the “phase transition” happens at the same time
for both the Maker–Breaker and the Avoider–Forcer games. In fact, there is a third
game with exactly the same phase transition (the concept is due to W. Pegden
[2005]). We call it the:

Improper–Proper Game: Mr. Improper and Ms. Proper take turns occupying new
points of a finite hypergraph; Mr. Improper colors his points red and Ms. Proper
colors her points blue. Ms. Proper wins if and only if at the end of the play they
produce a proper 2-coloring of the hypergraph (i.e. no hyperedge is monochro-
matic). Mr. Improper wins if at the end they produce an improper 2-coloring of
the hypergraph (there is a monochromatic hyperedge), so draw is impossible by
definition.
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Notice that this new game has a one-sided connection with both the Maker–
Breaker and the Avoider–Forcer Games: a Maker’s winning strategy is automat-
ically a Mr. Improper’s winning strategy (he can force a red hyperedge), and,
similarly, a Forcer’s winning strategy is automatically a Mr. Improper’s winning
strategy (he can force a blue hyperedge).

There is also a fourth game with exactly the same phase transition: the Chooser–
Picker Game; for the definition see Section 22.

Let’s return now to the Meta-Conjecture: it is a very vague statement, and the
reader is justly irritated by its clumsyness. We didn’t define what “homogeneous”
and “complete opposite of Strictly Even Hypergraphs” mean in (a); we didn’t define
what “reasonable” means in (b); and, finally, we didn’t specify the meaning of the
question marks “??” and “???”.

How can we clarify the annoyingly vague Meta-Conjecture? Let us start with
(a): the “Weak Win criterion.” Is there a natural class of hypergraphs which is
a complete opposite of Strictly Even Hypergraphs? The class of Almost Disjoint
hypergraphs is a good candidate: in an Almost Disjoint hypergraph the Max Pair-
Degree is 1, i.e. as small as possible; in a Strictly Even Hypergraph, on the other
hand, the Maximum Pair-Degree equals the Maximum Degree, i.e. as large as
possible. This suggests that Meta-Conjecture (a) has a good chance of being true
for Almost Disjoint hypergraphs. And, indeed, Theorem 1.2 is exactly the result
what we are looking for.

Therefore, in the special case of Almost Disjoint hypergraphs, Theorem 1.2 yields
the following clarification of the Meta-Conjecture (a):

(a) Assume that F is an Almost Disjoint n-uniform hypergraph. If n <

log2��F �/�V ��+3, then the first player can force a Weak Win.

If the hypergraph is “far” from being Almost Disjoint, e.g. the Clique Game
hypergraph, then the clarification of Meta-Conjecture (a) is much more difficult:
this is the main subject of Chapter V.

After this more-or-less successful clarification of Meta-Conjecture (a), we try to
clarify Meta-Conjecture (b): the “Strong Draw criterion.” We conjecture that the
vague requirement to be “reasonable” in (b) simply means to be (nearly) degree-
regular, where degree-regular means that the Maximum Degree is (nearly) equal
to the Average Degree. Note that if F is an n-uniform hypergraph and V is the
board, then

n · �F � = AverDeg�F� · �V ��

implying that the Average Degree equals n-times �F �/�V �, i.e. n-times the Set/Point
ratio. This is how we get back to the Set/Point ratio, the key parameter of the
Meta-Conjecture.
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My vague conjecture that reasonable actually means degree-regular has the
following precise form called the Neighborhood Conjecture (see below). First we
need to introduce the concept of the Maximum Neighborhood Size of a hypergraph.
If F is a hypergraph and A ∈ F is a hyperedge, then the F-neighborhood of A
is FA = B ∈ F � B∩A �= ∅�, i.e. the set of elements of F which intersect A,
including A itself. Now the Maximum Neighborhood Size of F is the maximum of
�FA� = �B ∈ F � B∩A �= ∅��, where A runs over all elements of F .

The Maximum Neighborhood Size is very closely related to the Maximum
Degree. Indeed, if F is n-uniform, its Maximum Degree is D, and its Maximum
Neighborhood Size is S, then D+1≤ S ≤ n�D−1�+1.

Open Problem 9.1 (“Neighborhood Conjecture”) (a) Assume that F is an n-
uniform hypergraph, and its Maximum Neighborhood Size is less than 2n−1. Is it
true that by playing on F the second player has a Strong Draw?

Notice that a positive solution would imply a far-reaching generalization of the
Erdős–Selfridge Theorem.

Maybe the sharp upper bound< 2n−1 is not quite right, and an “accidental” counter-
example disproves it. The weaker version (b) below would be equally interesting.

Open Problem 9.1

(b) If (a) is too difficult (or false), then how about if the upper bound on the
Maximum Neighborhood Size is replaced by an upper bound 2n−c/n on the
Maximum Degree, where c is a sufficiently large positive constant?

(c) If (b) is still too difficult, then how about a polynomially weaker version where
the upper bound on the Maximum Degree is replaced by n−c ·2n, where c > 1
is a positive absolute constant?

(d) If (c) is still too difficult, then how about an exponentially weaker version where
the upper bound on the Maximum Degree is replaced by cn, where 2 > c > 1
is an absolute constant?

(e) How about if we make the extra assumption that the hypergraph is Almost
Disjoint (which holds for the nd Tic-Tac-Toe anyway)?

(f) How about if we just want a Proper Halving 2-Coloring (i.e. Drawing Terminal
Position)?

The Neighborhood Conjecture, which is an elegant clarification of one-half of
the Meta-Conjecture, is a central issue of the book. A good motivation (but not a
proof!) for the Neighborhood Conjecture is the “Probabilistic Method,” in particular
the Erdős–Lovász 2-Coloring Theorem, see Section 11.

Note that part (f) is clearly the easiest problem, and there is a partial result: the
answer is positive if the Maximum Degree is ≤ �3/2−o�1��n, see the very end of
Section 11. So the real question in (f) is whether or not 3/2 can be replaced by 2.
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The board size is (nearly) irrelevant! A good illustration of the Neighborhood
Conjecture is the following extension of Theorem 8.2. First, we fix a lattice type
from (a) to (g) (the complete bipartite graph is excluded!); second, we extend
the board from N ×N to a much larger M ×M board, but we keep the size of
the winning lattices unchanged: the winning lattices are the q× q lattices in the
M×M board that have diameter, say, ≤ 2N . An inspection of the proof of Theo-
rem 8.2 (a)–(g) shows that the new board size M =M�N� can be as large as N 2,
or N 3, or N 4, or N 100, or even superpolynomial like N�logN�c0 with a small constant
c0 = 10−4; if the winning set diameter remains ≤ 2N , then the Lattice Achieve-
ment and Avoidance Numbers remain unchanged. We refer to this phenomenon
as the Irrelevance of the Board Size. We return to this issue at the end of
Section 44.

Of course, Theorem 6.4 (Clique Game) also has a similar extension. Let M be
much larger than N , and let KM denote the clique where the vertex set is the set of
consecutive integers 1�2� � � � �M�. A subclique Kq ⊂ KM is a winning set if and
only if the vertex set i1� i2� � � � � iq� has the Diameter Property that max �ij− il� ≤N

for any two vertices ij, il of Kq. An inspection of the proof of Theorem 6.4 (a)
shows that the new board size parameter M = M�N� can be as large as N 2, or
N 3, or N 4, or N 100, or even superpolynomial like N�logN�c0 with a small positive
absolute constant c0; if the winning set diameter remains ≤ N , then the Clique
Achievement and Avoidance Numbers remain unchanged. This is another example
of the Irrelevance of the Board Size.
Let us return to Open Problem 9.1. Unfortunately it cannot be solved in general,

but we can prove some important partial results. This is how we settle the Strong
Draw parts of the exact solutions; this is the subject of Part D of the book.
Most success is achieved in the Almost Disjoint case. If hypergraph F is (nearly)

uniform, (nearly) degree-regular, (nearly) Almost Disjoint, and the global size �F �
is not extremely large, then the Meta-Conjecture holds. More precisely, we have
the following:

Theorem for Almost Disjoint Hypergraphs: Assume that hypergraph F is
n-uniform and Almost Disjoint; let V denote the union set.

(a) If the Average Degree is sufficiently large

AverDeg�F�= n�F �
�V � > n ·2n−3�

then the first player can occupy a whole A ∈ F (“Weak Win”).
(b) If the global size �F � and the Max Degree satisfy the upper bounds

�F �< 2n
1�1

and MaxDegree�F� < 2n−4n2/5�

then the second player can put his mark in every A ∈ F (“Strong Draw”).
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If the hypergraph is (nearly) degree-regular, then the Average Degree and the Max
Degree are (nearly) equal, see (a) and (b). Observe that part (a) is just a restating
of the simple Theorem 1.2; on the other hand, part (b) is the very difficult “third
ugly theorem,” which will be proved in Chapter VIII.

Breaking the square-root barrier. If we have quadratic goal sets of size n =
n�q�= q2 or

(
q

2

)
, then switching from q to �q+1� means a (roughly)

√
n increase

in the size. This explains why “breaking the square-root barrier,” i.e. proving the
error term o�

√
n� in the exponent of 2, is so crucial. Notice that the error term 4n2/5

in (b) above is clearly o�
√
n�; this is a good indication of why we have a chance

to find the exact solution of infinitely many games, and also why we need large n.
Actually this is an over-simplification, because neither of our main games (Clique

Games or Lattice Games) gives an Almost Disjoint hypergraph. The two Square
Lattice Games, aligned and tilted, come very close to Almost Disjointness: in both
cases the Max Pair-Degree �2 =�2�F� is “negligible” (a superlogarithmic function
of the board parameter N ). More precisely:

(1) the Aligned Square Lattice Game on N ×N : �2 ≤
(
q2

2

)= O��logN�2�;

(2) the Tilted Square Lattice Game on N ×N : �2 ≤
(
q2

2

)= O��logN�2�.

Classes (1)–(2) represent the “easy” lattice games. How about the rest of the lattice
games, such as the aligned rectangle lattice or the parallelogram lattice games?
The most general class is the parallelogram lattice game, and even this one shows
some resemblance to Almost Disjointness: any 3 non-collinear points in the N ×N

board determine ≤ (
q2

3

) = O��logN�3� q× q parallelogram lattices (i.e. a kind of
triplet-degree is negligible).
So why can we find the exact solution for the Lattice Games? Well, a

short/intuitive explanation is that (1) we have the “Almost Disjoint Theorem,”
and (2) the corresponding hypergraph for each Lattice Game is “nearly” Almost
Disjoint.

Unfortunately, the real explanation – the detailed proof – is very long; this is
why we made this extra effort to give some intuition.
Now we more-or-less “understand” the Lattice Games, at least on an intuitive

level. (Notice that the same intuition doesn’t apply to the Clique Games: the clique
hypergraph is a far cry from Almost Disjointness.)

Summary of the main result: If �V�F� is a “homogeneous” hypergraph, which
includes the “uniform,” or at least “nearly uniform,” and also the “nearly degree-
regular,” then a sum such as

1

�V �

(∑
A∈F

2−�A�
)
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(see (9.1)) associated with hypergraph �V�F� is the right gauge to describe Weak
Win: if the sum is larger than one, the Positional Game is expected to be a
Weak Win; if the sum is smaller than one, the Positional Game is expected to be
a Strong Draw.

The same applies for the Reverse (“Avoider–Forcer”) game: if the sum is larger
than one, then Forcer can force Avoider to occupy an whole hyperedge of F , and
if the sum is smaller than 1, then Avoider can avoid accupying any hyperedge.

This is certainly true for the class of “degree regular Ramsey-type games with
quadratic goals” (the main subject of the book). It is an exciting research project to
extend these sporadic results to larger classes of positional games; for more about
this, see Section 46.

The Meta-Conjecture is about “local randomness.” A different way to put it is
the so-called “Phantom Decomposition Hypothesis”; this new viewpoint will be
discussed at the end of Section 19.

2. Extensions of the main result. There are two natural ways to generalize the con-
cept of the Positional Game: one way is the (1) discrepancy version, where Maker
wants (say) 90% of some hyperedge instead of 100%; another way is the (2) biased
version like the (1 : 2) play, where (say) Maker claims 1 point per move and Breaker
claims 2 points per move.

Neither generalization is a perfect success; the discrepancy version generalizes
more smoothly; the biased version, unexpectedly, leads to some tormenting(!)
technical difficulties. We will discuss the details in Chapter VI; here just a summary
is given.

In the �-Discrepancy Game, where Maker wants an �-part from some A ∈ F
(1 > � > 1/2 is a given constant, such as � = �9, meaning that “90% majority
suffices to win”), it is plausible to replace sum (9.1) with

1
�V �

(∑
A∈F

( �A�∑
k=��A�

(�A�
k

))
2−�A�

)
≈ 1

�V �

(∑
A∈F

2−�1−H�����A�
)
� (9.3)

The Shannon’s entropy H��� = −� log2 �− �1− �� log2�1− �� comes from
applying Stirling’s formula to the binomial coefficients.

The first surprise is that we cannot solve the �-Discrepancy problem for the
Clique Game, but we succeed for all Lattice Games. To understand why, the reader
should consult Sections 28–29.

Next consider the biased version. In the (m:b) play Maker takes m new points
and Breaker takes b new points per move. The obvious analogue of (9.1) is the sum

1
�V �

(∑
A∈F

(
m+b

m

)−�A�)
� (9.4)

Here is a short list of “successes” and “failures” in the biased case.
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(1) In the (2:1) Avoidance version of all Lattice Games (Forcer is the underdog),
we have the exact solution, and it is given by formula (9.4).

(2) In the (2:1) Achievement version of the Aligned Square Lattice Game (Breaker
is the underdog), formula (9.4) fails to give the truth.

(3) In the (1:2) Achievement version of the Aligned Square Lattice Game (Maker
is the underdog), we have the exact solution, and it is given by formula (9.4).

(4) In the (1:2) Achievement version of the Aligned Rectangle Lattice Game (Maker
is the underdog), we don’t know the exact solution.

(5) In the (1:2) Chooser–Picker version (in each turn Picker picks 2 new points
from the board and offers them to Chooser, Chooser chooses one of them and
the remaining two go back to Picker; Chooser is the “builder”), we come very
close to the exact solution for all Clique and Lattice Games, and these solutions
are given by formula (9.4).

(6) In the (2:2) and (2:1) Achievement versions, we don’t know the exact solution
for any class of games, but in many cases we can prove the “building part” (the
“blocking part” remains open).

Fact (2) on the list above indicates that the biased version of the Meta-Conjecture
has to be more complicated than formula (9.4) (at least when Maker is the top-
dog). At the end of Section 30 a detailed discussion is given of what we believe
to be the correct form of the Biased Meta-Conjecture. In a nutshell, our conjec-
ture says that the threshold n = log2��F �/�V �� in the Meta-Conjecture has to be
replaced by

n= logm+b
m
��F �/�V ��+ log m

m−b
�V �� (9.5)

when Maker is the topdog and plays the �m � b� achievement version on �V�F�

(i.e. m > b ≥ 1). Threshold (9.5) is motivated by the “Random Play plus Cheap
Building” intuition.
List (1)–(6) above clearly demonstrates that the biased case is work in progress.

There are many non-trivial partial results (see Sections 30–33), but we are very far
from a complete solution. The reader is challenged to participate in this exciting
research project.
Two sporadic results are mentioned as a sample. For every � with 1/2< �≤ 1,

let A�N ×N� Square Lattice��� denote the largest value of q such that Maker can
always occupy ≥ � part of some q×q Aligned Square Lattice in the N ×N board.
We call it the �-Discrepancy Achievement Number. We can similarly define the
�-Discrepancy Achievement Number for the rest of the Lattice Games, and also
for the Avoidance version.

Theorem 9.1 Consider the N × N board; this is what we known about the
�-Discrepancy Achievement Numbers of the Lattice Games:
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(a)
⌈√

log2 N
1−H���

+o�1�
⌉
≥A�N×N� Square Lattice���≥

⌊√
log2 N
1−H���

− c0���−o�1�
⌋

(b)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥A�N ×N� rectangle lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋

(c)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥A�N×N� tilted square latt����≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋

(d)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� tilt� rect� lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋

(e)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� rhombus lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋

(f)
⌈
2
√

log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� parall� lattice���≥

⌊
2
√

log2 N
1−H���

− c0���−o�1�
⌋

(g)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥A�N×N�area−onelattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋

and the same for the corresponding Avoidance Number. Here the function
H���=−� log2 �− �1−�� log2�1−�� is the Shannon’s entropy, and

c0���=
√
log2 ·��1−��

2
log2

( �

1−�

)

is a constant (depending only on �) which tends to 0 as �→ 1.

If � is close to 1, then the additive constant c0��� is small, so the upper and
lower bounds coincide. Thus for the majority of the board size N we know the
exact value of the �-Discrepancy Achievement and Avoidance Numbers; well, at
least for the Lattice Games (when � is close to 1).
Next consider the (a:1) Avoidance Game where a≥ 2; this means Avoider takes

a points and Forcer takes 1 point per move. Let A�N ×N� Square Lattice� a � 1�−�

denote the largest value of q such that Forcer can always force Avoider to
occupy a whole q × q Aligned Square Lattice in the N × N board. This is
called the Avoidance Number of the biased (a:1) game where Forcer is the
underdog.

Theorem 9.2 Consider the N×N board; let a≥ 2 and consider the (a:1) Avoidance
Game where Forcer is the underdog. We know the biased Avoidance Numbers:

(a) A�N ×N� Square Lattice� a � 1�−�=
⌊√

logN
log�1+ 1

a �
+o�1�

⌋
,

(b) A�N ×N� rectangle lattice� a � 1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
,

(c) A�N ×N� tilted Square Lattice� a � 1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
,
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(d) A�N ×N� tilted rectangle lattice� a � 1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
,

(e) A�N ×N� rhombus lattice� a � 1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
,

(f) A�N ×N� parallelogram lattice� a � 1�−�=
⌊
2
√

logN
log�1+ 1

a �
+o�1�

⌋
,

(g) A�N ×N�area-one lattice� a � 1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
.

For the proofs of (1)–(6) and Theorems 9.1–9.2, the reader is referred to
Chapter VI.

3. Some counter-examples. Let us return to the Meta-Conjecture one more time:
a surprising byproduct is the unexpected coincidence of the Achievement and
Avoidance Numbers, at least for “homogeneous” hypergraphs in the usual (1:1)
play. This is interesting because, for arbitrary hypergraphs, we can distinguish
the Maker–Breaker game from the Avoider–Forcer version. A hypergraph example
where Maker can over-perform Avoider is the following 3-uniform hypergraph with
five 3-sets on a 6-element board:

root

1

32

4 6

winning sets: {1, 2, 3},
{1, 2, 4}, {1, 2, 5}
{1, 3, 5}, {1, 3, 6}

5

Here Maker (the first player) has an easy winning strategy. By contrast, in the
Reverse version, Forcer does not have a winning strategy. Indeed, if Forcer is the
second player, then Avoider wins by avoiding the “root.” If Forcer is the first
player, then Avoider can still win – the easy case study is left to the reader.
This simple construction can be easily “amplified” by taking the Cartesian prod-

uct. Let us take 2n copies of the 3-uniform hypergraph, and define a 3n-uniform
hypergraph of

(2n
n

)
5n winning sets as follows: a winning set consists of n 3-sets,

where the 3-sets are from n distinct copies of the 3-uniform hypergraph.

1 2n

2n copies
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It is clear that Maker can occupy a whole 3n-element winning set (no matter he is
the first or second player).

In the Reverse Game, however, Avoider can avoid taking more than 2n elements
from any winning set (no matter whether he is the first or second player). This
means Forcer cannot force 66.7% of what Maker can achieve; a big quantitative
difference between “achievement” and “avoidance.”

How about the other direction? Can Forcer force more than what Maker can
achieve? For a long time we couldn’t find any example for this, and started to
believe that there is a one-sided implication here which is formally expressed as

Forcer′s win⇒Maker′s win�

We pretty much believed in the intuition that “the reluctant Avoider can never have
more than the eager Maker,” which has the following precise form:

Let F be an arbitrary finite hypergraph, and assume that in the Avoider–Forcer game on
F Forcer has a winning strategy (i.e. Forcer can force the reluctant Avoider to occupy
a whole winning set). Is it true that by playing the Maker–Breaker game on the same
hypergraph Maker has a winning strategy (i.e. the eager Maker himself can occupy a
whole winning set)?

The guess, “yes,” turned out to be wrong. Two students, Narin Dickerson (Princeton)
and Brian Cornell (Rutgers), independently of each other, came up with two different
counter-examples. Dickerson’s example is remarkably simple, and goes as follows:
consider a cycle of length 5, the players take vertices, and the winning sets are
the five 3-consecutives. It is easy to see that Breaker can prevent Maker from
occupying 3 consecutive vertices on the 5-cycle; on the other hand, Forcer, as the
second player, can force Avoider to occupy 3 consecutive vertices on the 5-cycle.

Again the construction can be “amplified” by taking the Cartesian product. Let
us take 2n disjoint copies of Dickerson’s 3-uniform hypergraph, and define a 3n-
uniform hypergraph of

(2n
n

)
5n winning sets as follows: a winning set consists of

n 3-sets, where the 3-sets are from n distinct copies of the 3-uniform hypergraph.

2n copies of Dickerson’s construction

3−consecutive

2 2n1
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The point is that in the Reverse Game, Avoider can be forced to be the “first” in at
least n copies, and so he can be forced to occupy a whole 3n-element winning set
(no matter whether Avoider is the first or second player).
In the normal version, however, Maker can be prevented from occupying a

winning triplet from any copy, so Maker can be prevented from taking more than
2n elements from any 3n-element winning set (no matter whether Maker is the first
or second player). This means Forcer can be forced to take a whole winning set,
but Maker cannot even occupy 66.67% of a winning set; a big quantitative (“factor
3/2”) difference between “achievement” and “avoidance” in favor of “avoidance.”
Cornell’s construction is a natural example: it is an arithmetic progression game;

the board is the set of the first 12 integers �12� = 1�2� � � � �12� and the winning
sets are the 4-term arithmetic progressions in �12�. A rather complicated case
study shows that Maker cannot occupy a 4-term arithmetic progression (no matter
whether he is the first or second player); in the Reverse game; however, Avoider,
as the second player, can be forced to occupy a 4-term arithmetic progression.
We challenge the reader to double-check this statement. Needless to say, Cornell’s
construction can be also “amplified” by taking the Cartesian product: it leads to the
slightly weaker “factor 4/3” (instead of 3/2).
This is the short list of hypergraphs for which we know that the Maker–Breaker

and Avoider–Forcer versions differ from each other substantially. Are there other
examples? Can the “factor 3/2” be pushed up to (say) 100?

It is important to see that the Maker–Breaker and Avoider–Forcer games exhibit
very different behavior. The first one is a “hot” game with a possibility for quick
win by Maker; the second one is a “cold” game where Avoider may lose in the last
move. A good illustration is the following “binary tree hypergraph”: the full-length
branches of a binary tree with n levels form an n-uniform family of 2n−1 winning
sets (the players occupy vertices of the binary tree). Playing on this hypergraph
Maker (the first player) can occupy a full branch in n moves (as quick as possible:
Economical Winner). In the Reverse Game Forcer (the second player) wins (by
an easy Pairing Strategy), but Avoider can postpone his loss till the last move (by
taking the “root”), i.e. Forcer’s win is as slow as possible.

The same thing happens for the “triangle” game on a large clique: the first player
can own a K3 in his 4th move (or before); the Reverse “triangle” game, on the
other hand, is very slow, see the next exercise.

Exercise 9.2 Consider Sim on a very large board: the board is a complete graph
KN on N vertices, the players alternately claim a previously unoccupied edge per
move, and that player loses who gets a triangle K3 of his own first.

(a) Show that either player can avoid losing in less than 1
4

(
N

2

)
turns (i.e. when less

than half of the edges are taken).
(b) Every play must have a loser in

(
2
5 +o�1�

) (
N

2

)
turns.
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Here is another question: We know that Sim, the �K6�K3�−� Clique Game, is a
second player win. Is it true that the �KN �K3�−� Clique Game remains a second
player win for every N ≥ 6?
The many sophisticated counter-examples above make it even more interesting

that the Achievement and Avoidance Numbers for Cliques and Sublattices are
equal. More precisely, we can prove that they are equal for the overwhelming
majority of the vertex size N in KN . In fact, much more is true: the equality of
the Achievement and Avoidance Numbers is a typical property. Typical in the
sense that KN can be replaced by a typical graph GN on N vertices, the complete
3-uniform hypergraph K3

N can be replaced by a typical 3-graphG3
N ⊂K3

N , the N×N

grid can be replaced by a typical subset; playing on these new boards the equality
still holds! At the beginning of Section 46 we will return to this far-reaching and
exciting generalization.

It is difficult to know how to explain the (typical) equality of the Achievement
and Avoidance Numbers. All that can be said is that the highly technical and long
proof of the Achievement case can be easily adapted, like maximum is replaced
by minimum, to yield exactly the same “boundary” for the Avoidance game. There
should be a better, shortcut explanation for this coincidence that we happen to
overlook! Can the reader help out here?



10
Potentials and the Erdős–Selfridge Theorem

1. Perfect play vs. random play. Let us go back to Section 6 and consider the
Clique Game on board KN ; what is the largest clique that Maker can build? The
answer is Kq1

with

q1 = q1�N�= �2 log2N −2 log2 log2N +2log2e−3+o�1��� (10.1)

where log2 stands for the base 2 logarithm. In other words, a “perfect” Maker’s best
achievement is Kq1

with (10.1). (“Perfect” Maker means God, or at least a world
champion chess player like Kasparov).
How about a “random” Maker, who chooses among his options in a random

way by uniform distribution? More precisely, what happens if both players play
“randomly,” i.e. if a “random” Maker plays against a “random” Breaker? Then the
answer is a Kq2

with

q2 = q2�N�= �2 log2N −2 log2 log2N +2log2e−1�� (10.2)

The two thresholds are strikingly close to each other: q1 = q2 − 2, i.e. the Clique
Achievement Number is 2 less than the Majority-Play Clique Number.
Note that the Majority-Play Number is a much more accessible, much “easier”

concept than the Achievement Number. Indeed, we can easily simulate a random
play on a computer, but it is impossible to simulate an optimal play (because of the
enormous computational complexity).
We interrupt the discussion with a short detour. There are two more natural com-

binations that are worth mentioning: (1) a perfect Maker plays against a “random”
Breaker, and (2) a “random” Maker plays against a perfect Breaker. What is the
largest clique that Maker can achieve? Case (1) is trivial: Maker just keeps building
one giant clique, and “random” Breaker will not notice it in the first O�N 4/3�moves;
i.e. Maker can build a polynomial(!) clique of N 2/3 vertices.

Case (2) is not trivial, and we simply don’t know what is going on. Perhaps a
“random” Maker can build a clique of size close to (10.1), but we don’t know how
to prove it. A “random strategy” may sound simple, but the best that we can expect

146
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from a “random strategy” is for it to perform well with probability close to 1, and
this is not nearly as satisfying as a deterministic optimal strategy that performs well
all the time. In this book, we always supply an explicit potential strategy.

For an interesting application of “random strategy” see Section 49: Bednarska–
Luczak Theorem.

Even allowing for strong reservations about “random strategies,” it is still quite
interesting to ask the following:

Open Problem 10.1 Is it true that the “Maker’s building” results in the book,
proved by using explicit potentials, can be also achieved by a Random Strategy
(of course, this means the weaker sense that the strategy works with probability
tending to 1 as the board size tends to infinity)?

Let us leave the Clique Games, and switch to the lattice games of Section 8.
Theorem 8.2 describes the Achievement Numbers, but how about the corresponding
Majority-Play Numbers? Are they still close to each other? The answer is “no.”
The negligible additive constant 2 in the Clique Game becomes a substantial
multiplicative constant factor (larger than 1) for the lattice games! Indeed, the
“lattices” are quadratic goal sets, so the Majority-Play Number is the solution of
a simple equation: “the expected number of the monochromatic goal lattices in a
Random 2-Coloring of the N×N board equals 1.” For different types of lattices, we
get different equations; each one is simple (because the expected value is linear).
For example, if the goal is a q×q Aligned Square Lattice, the Achievement Number
is (see Theorem 8.2 (a))

q1 = q1�N�=
⌊√

log2N +o�1�
⌋
� (10.3)

The corresponding Majority-Play Number is the solution of the equation

N 3

3�q−1�
= 2q

2

in q = q�N� (see (8.3)), which gives

q = q2 = q2�N�=
⌊√

3 log2N +o�1�
⌋
� (10.4)

They are not too close: the q2/q1 ratio is
√
3. Next consider the case where the goal

is a q×q aligned rectangle lattice. The Achievement Number is (see Theorem 8.2
(b))

q1 = q1�N�=
⌊√

2 log2N +o�1�
⌋
� (10.5)

The corresponding Majority-Play Number is the solution of the equation

N 4

4�q−1�2
= 2q

2

in q = q�N� (see (8.4)), which gives
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q = q2 = q2�N�=
⌊
2
√
log2N +o�1�

⌋
� (10.6)

This time the ratio is q2/q1 =
√
2, still larger than 1.

In these examples the Achievement Number is always less than the Majority-
Play Number: slightly less in the Clique Game and subtantially less in the Lattice
Games.

What the Erdős–Selfridge Theorem (see Theorem 1.4) really says is the following:
the Achievement Number is always less (or equal) than the Majority-Play Number,
and this is a very general inequality, it holds for every finite hypergraph.
As far as we know the Erdős–Selfridge Theorem (published in 1973) was the

first potential criterion for 2-player games. Of course, potentials were widely used
well before 1973, in both physics and mathematics. First we say a few words about
potentials in general, and discuss the Erdős–Selfridge Theorem later.
The origins of the potential technique goes back to physics. Consider for example

a pendulum, a favorite example of undergraduate Newtonian Mechanics. When a
pendulum is at the top of its swing, it has a certain potential energy, and it will
attain a certain speed by the time it reaches the bottom. Unless it receives extra
energy, it cannot attain more than this speed, and it cannot swing higher than its
starting point.
An even more elementary (highschool-level) example is shown in the figure

below: slightly pushing the ball at the start, it will go up the first hill (we ignore
friction), it will go up the second hill, but how about the third hill? Can the ball go
up the third hill?

Start 1st 2nd 3rd Hill

The answer is an obvious “no”: the third hill is higher than the start, and all that
matters here is the “height” (we ignore friction and air resistance). Please, don’t
laugh about this example: this childishly simple argument with the figure is a perfect
illustration for the core idea of this book!
Now we leave physics and move to mathematics; first we study puzzles (1-player

games). The potential technique is very successful in different versions of Peg
Solitaire. A striking example is Conway’s famous solution of the Solitaire Army.

2. Positions with limited potential: Solitaire Army. The common feature of the
Solitaire puzzles is that each one is played with a board and men (pegs), the board
contains a number of holes each of which can hold 1 man. Each move consists of
a jump by 1 man over 1 or more other men, the men jumped over being removed
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Q
Q

P

P

?

Figure 10.1

from the board. Each move therefore reduces the number of men on the board (for
more, see Beasley [1992], an excellent little book).

The Solitaire Army is played on the infinite plane and the holes are in the lattice
points (see pp. 715–717 in the Winning Ways). The permitted move is to jump a
man horizontally or vertically but not diagonally. Let us draw a horizontal line
across the infinite board and start with all men behind this line. Assume this line is
the horizontal axis, so all men are in the lower half-plane. How many men do we
need to send one man forward 1, 2, 3, 4, or 5 holes into the upper half-plane?

Obviously 2 men are needed to send a man forward 1 hole, and 4 men are needed
to send a man forward 2 holes. Eight men are enough to send a man forward 3
holes. Twenty men are enough to send a man forward 4 holes, see Figure 10.1.

But the really surprising result is the case of 5 holes: it is impossible to send a
man forward 5 holes into the upper half-plane. This striking result was discovered
by Conway in 1961.

The idea behind Conway’s resource count is the following. We assign a weight to
each hole subject, with the condition that ifH1,H2,H3 are any 3 consecutive holes in
a row or in a column, andw�H1�,w�H2�,w�H3� are the corresponding weights, then
w�H1�+w�H2� ≥ w�H3�. We can evaluate a position by the sum of the weights of
those holes that are occupied by men – this sum is called the value of the position,
The meaning of inequality w�H1�+w�H2�≥ w�H3� is very simple. The effect

of a move where a man in H1 jumps over another man in H2 and arrives at H3 is
that we replace men with weights w�H1� and w�H2� by a man with weight w�H3�.
Since w�H1�+w�H2�≥ w�H3�, this change cannot be an increase in the value of
the new position.

Inequality w�H1�+w�H2� ≥ w�H3� guarantees that no play is possible from
an initial position to a target position if the target position has a higher value.
Let w be a positive number satisfying w+w2 = 1 � w equals the golden section√

5−1
2 . Now Conway’s resource counting goes as follows. Assume that one succeeded

in sending a man 5 holes forward into the upper half-plane by starting from a con-
figuration of a finite number of men in the lower half-plane. Write 1 where the man
stands 5 holes forward into the upper half-plane, and extend it in the following way:
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1
w

w2

w3

w4

· · · w9 w8 w7 w6 w5 w6 w7 w8 w9 · · ·
· · · w10 w9 w8 w7 w6 w7 w8 w9 w10 · · ·
· · · w11 w10 w9 w8 w7 w8 w9 w10 w11 · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
The value of the top line of the lower half-plane is

w5+2w6+2w7+2w8+· · · =w5+2
w6

1−w
=w5+2

w6

w2
=w5+2w4 =w3+w4 =w2�

So the value of the whole lower half-plane is

w2�1+w+w2+w3+· · · �= w2 1

1−w
= w2 1

w2
= 1�

which is exactly the value of the target position. So no finite number of men
in the lower half-plane will suffice to send a man forward 5 holes into the upper
half-plane.

We can even show that 8 men are in fact needed to send a man forward 3 holes,
and, similarly, 20 men are needed to send a man forward 4 holes (i.e. the doubling
pattern breaks for 4 holes – the first indication of the big surprise in the case of
“5 holes forward”). Indeed, the fact that 8 men are necessary can be seen from the
resource count of Figure 10.2 below, for the target position has value 21 and the

PP

Q

Q

1

1

1

1

1

1

1

1

2

1

1

1

3

2

2

1

5

3

1

1

3

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

8

13

21

Figure 10.2
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highest value that can be achieved with only 7 men below the line is 20. The 2
possible solutions with 8 men are shown, PP and QQ being alternatives.

To send a man forward 4 holes requires 20 men (not 16). The two possible
solutions are shown in Figure 10.1, PP and QQ being alternatives. The proof that
20 men are necessary is more complicated, and goes as follows.
The resource count on the left side of Figure 10.3 shows that an 18-men solution

is impossible and that a 19-men solution, if one exists, must occupy the 16 holes
marked A in the middle of Figure 10.3 and an additional 3 of the holes marked
B,C,D,E,F,G,H,I,J. The resource count of the right side of Figure 10.3 now shows
that hole B must be occupied, for we need a position with a value of at least 55,
the 16 holes marked A contribute only 48, and no 3 holes from C, D,E,F,G,H,I,J
can contribute the remaining 7. The same argument shows that hole C must also
be occupied, so a 19-men-solution must contain the 16 holes marked by A, and
the 2 holes marked by B and C. Finally, a sophisticated “parity-check” shows
that there is no way of placing a 19th man to get a solution (see Chapter 4 in
Beasley [1992]).

Exercise 10.3 Prove that “to send a man forward 4 holes” does require at least
20 men.

Exercise 10.4 We generalize Solitaire Army in such a way that “to jump a man
diagonally” is permitted. Show that it is impossible to send a man forward 9 holes.

The Solitaire Army puzzle is a wonderful illustration of a problem that, by using
a potential technique, can be solved exactly. The subject of this book is 2-player
games (not puzzles), but the main objective is the same: we try to find exact
solutions.

3. The Erdős–Selfridge Theorem: Theorem 1.4. The pioneering application of
the potential technique for 2-player games is a theorem by Erdős and Selfridge from
1973. This simple Strong Draw criterion in a 2-page paper made a huge impact on
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the subject; it completely changed the outlook: it shifted the emphasis from Ramsey
Theory and Matching Theory to the Probabilistic Method (the meaning of this
will become quite clear soon). In sharp contrast with the pairing strategy (and
other local approaches), the Erdős–Selfridge Theorem is a global criterion. We
have already formulated it at the end of Section 1 as Theorem 1.4; recall the
statement.

Theorem 1.4 (“Erdős–Selfridge Theorem”) Let F be an n-uniform hypergraph,
and assume that �F �+MaxDeg�F� < 2n� whereMaxDeg�F� denotes the maximum
degree of hypergraph F . Then playing the positional game on F the second player
can force a Strong Draw.

Remark. If the second player can force a Strong Draw in a Positional Game, then
the first player can also force a Strong Draw (why?).

Proof. Let F = A1�A2� � � � �AM�. Assume we are at the stage of the play where
the first player already occupies x1� x2� � � � � xi, and the second player occupies
y1� y2� � � � � yi−1. The question is how to choose second player’s next point yi. Those
winning sets which contain at least one yj�j ≤ i− 1� are “harmless” – we call
them “dead sets.” The winning sets which are not “dead” are called “survivors.”
The “survivors” have a chance to be completely occupied by the first player at
the end of the play, so they each represent some “danger.” What is the total
“danger” of the whole position? We evaluate the given position by the following
expression, called “danger-function”: Di =

∑
s∈S 2−us , where us is the number of

unoccupied elements of the “survivor” As (s ∈ Si = “index-set of the survivors”),
and index i indicates that we are at the stage of choosing the ith point yi of the
second player. A natural choice for yi is to minimize the “danger” Di+1 at the
next stage. How to do that? The simple linear structure of the danger-function
Di gives an easy answer to this question. Let yi and xi+1 denote the next two
moves. What is the effect of these two points on Di? How do we get Di+1

from Di? Well, yi “kills” all the “survivors” As � yi, which means we have to
subtract the sum

∑
s∈Si� yi∈As

2−us

from Di. On the other hand, xi+1 doubles the “danger” of each “survivor”
As � xi+1; that is, we have to add the sum

∑
s∈Si� xi+1∈As

2−us back to Di. Warn-
ing: if some “survivor” As contains both yi and xi+1� then we do not have to
give the corresponding term 2−us back because that As was previously “killed”
by yi.
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The natural choice for yi is the unoccupied z for which
∑

s∈Si� z∈As
2−us attains its

maximum. Then what we subtract is at least as large as what we add back

Di+1 ≤Di−
∑

s∈Si� yi∈As

2−us + ∑
s∈Si� xi+1∈As

2−us

≤Di−
∑

s∈Si� yi∈As

2−us + ∑
s∈Si� yi∈As

2−us =Di�

In other words, the second player can force the decreasing property D1 ≥D2 ≥ · · ·
≥Dlast of the danger-function.
The second player’s ultimate goal is to prevent the first player from completely

occupying some Aj ∈ F , i.e. to avoid uj = 0. If uj = 0 for some j, then Dlast ≥
2−uj = 1. By hypothesis

Dstart =D1 =
∑

A� x1∈A∈F
2−n+1+ ∑

A� x1 �∈A∈F
2−n ≤ ��F �+MaxDeg�F��2−n < 1�

so by the decreasing property of the danger function, Dlast < 1. This completes the
proof of the Erdös–Selfridge Theorem.

Remarks.

(1) If F is n-uniform, then multiplying the danger 2−us of a survivor by 2n, the
renormalized danger becomes 2n−us . The exponent, n− us, is the number of
the first player’s marks in a survivor (i.e. second player-free) set (us denotes
the number of unoccupied points). This means the following Power-of-Two
Scoring System. A winning set containing an O (second player’s mark) scores
0, a blank winning set scores 1, a set with a single X (first player’s mark)
and no O scores 2, a set with two Xs and no O scores 4, a set with three Xs
and no O scores 8, and so on (i.e. the “values” are integers rather than small
fractions). Occupying a whole n-element winning set, scores 2n� i.e. due to the
renormalization, the “target value” becomes 2n (instead of 1).

It is just a matter of taste which scoring system is prefered: the first one, where
the “scores” were negative powers of 2 and the “target value” was 1, or the second
one, where the “scores” were positive powers of 2 and the “target value” was 2n.

(2) The most frequently applied special case of the Erdös–Selfridge Theorem is the
following: If F is n-uniform and �F �< 2n or < 2n−1� then playing on �V�F�

the first or second player can force a Strong Draw.
(3) The proofs of Theorems 1.2–1.3 at the end of Section 1 are just an adaptation

of the Erdös–Selfridge proof technique.
(4) To have a better understanding of what is going on here, it is worth to study the

randomized game where both players are “random generators.” The calculation
somewhat simplifies if we study the Random 2-Coloring instead: the points of
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the board are colored (say) red and blue independently of each other with prob-
ability p= 1/2. (This model is a little bit different from considering the halving
2-colorings only: the case which corresponds to the randomized game.) Indeed,
in the Random 2-Coloring model the expected number of monochromatic win-
ning sets is clearly 2−n+1�F �� which is less than 1 (by the hypothesis of the
Erdös–Selfridge Theorem; the case of the second player). So there must exist
a terminal position with no monochromatic winning set: a drawing terminal
position (this is Theorem 11.3 from the next section).

Now the real meaning of the Erdös–Selfridge Theorem becomes clear: it
“upgrades” the existing drawing terminal position to a Drawing Strategy. The
Erdös–Selfridge proof is a “derandomization,” in fact a pioneering application
of the method of conditional probabilities, see Alon–Spencer [1992].

(5) As we mentioned already at the beginning of this section, the Erdös–Selfridge
Theorem gives the “majority outcome” in the randomized game where both
players play randomly. We refer to the “majority outcome” as the Majority-
Play Number; note that the Majority-Play Number usually differs from the
Achievement and Avoidance Numbers.

(6) Theorem 1.4 is tight: the full-length branches of a binary tree with n levels
form an n-uniform family of 2n−1 winning sets such that the first player can
occupy a full branch in n moves (the players take vertices of the tree).

(7) The proof of Theorem 1.4 can be easily extended to Shutout Games. We recall
the concept: we can play a Shutout Game on an arbitrary hypergraph �V�F�,
finite or infinite. First we choose a goal integer n (≥ 1); an n-Shutout Game on
�V�F� is similar to the Positional Game in the sense that the players alternate,
but the goal is different: instead of “complete occupation” the players want an
“n-shutout,” i.e. if during a play the first time there is a winning set A ∈ F
such that one of the players, we call him player P, owns n elements of A and
the other player owns no element of A, then player P is declared the winner.
If V is infinite, the length of the play is ≤ �; if an �-play does not have a
winner, the play is declared a draw. By repeating the proof of Theorem 1.4,
we can easily prove the following shutout result: Let F be a hypergraph with
�F �+MaxDeg�F� < 2n and maxA∈F �A� ≥ n, then, playing on F , the second
player can prevent the first player from achieving an n-shutout in any A ∈ F .

(8) The Reverse version of Theorem 1.4 goes as follows: Let F be an n-uniform
hypergraph with �F �+MaxDeg�F� < 2n, then, playing on F , Avoider, as the
first player, can avoid occupying a whole A ∈ F .

The proof of “Reverse Theorem 1.4” goes exactly the same way as the
original one, except that Avoider chooses a point of minimum value. The
duality between maximum and minimum explains the striking equality

Achievement Number= Avoidance Number
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for our “Ramseyish” games with quadratic goals. We will return to this
interesting issue at the end of the book in Section 47.

Note that “Reverse Theorem 1.4” is also tight. Indeed, consider the
hypergraph for which the board V is the �2n − 1�-element set V =
w�x1� y1� x2� y2� � � � � xn−1� yn−1�, and the winning sets are all possible n-
element subsets A of V satisfying the following two properties: (1) w ∈ A,
(2) A contains exactly one element from each pair xi� yi�, i= 1�2� � � � � n−1.
The number of winning sets is exactly 2n−1, and Forcer can force Avoider (the
first player) to occupy a whole winning set. Forcer’s strategy is very simple: if
Avoider takes an element from a pair xi� yi�, then Forcer takes the other one.

Notice that this example is another extremal system for the original (Maker–
Breaker) Erdös–Selfridge Theorem: playing on this hypergraph, Maker, as the
first player, can always win in n moves.

4. Applications. By using Theorem 1.4 it is easy to give an alternative solution for
the 42 game (which cannot have a Pairing Strategy Draw, see Theorem 3.2), and
also the 3-dimensional 83 = 8×8×8 game, without any case study!

Theorem 10.1 In both of the 42 and 83 Tic-Tac-Toe games the second player can
force a Strong Draw.

Proof. In the 42 game there are 10 winning lines, and the maximum degree is 3.
Since 3+10< 24 = 16, Theorem 1.4 applies, and we are done.
In the 3-dimensional 83 game there are �103 − 83�/2 = 244 winning lines, and

the maximum degree is 23−1= 7 (why?). Since 244+7< 28 = 256, Theorem 1.4
applies, and we are done again.

In the 42 game the Point/Line ratio is less than 2, implying that the 42 game is a draw
but not a Pairing Strategy Draw. In the 83 game, however, there are more than twice
as many points (“cells”) as winning lines (indeed, 83 = 512> 2 ·�103−83�/2= 488),
so there is a chance to find a draw-forcing pairing strategy. And indeed there is one: a
symmetric pairing (strategy draw), due to S. Golomb, is described on pp. 677–678 of
Berlekamp, Conway, and Guy [1982] (volume two) or in Golomb and Hales [2002].

Unfortunately, we don’t know any similar elegant/short proof for ordinary 32

Tic-Tac-Toe; the dull case study proof in Section 3 is the only proof we know.
The situation is much worse for the 3-dimensional n3 games with n= 5�6�7: they
are all conjectured to be draw games, but no proof is known (exhaustive search is
beyond hope).

Next comes another quick application. What happens if we generalize the notion
of cell animal (“polyomino”) in Section 4? We can relax the requirements by which
the cells are connected: we can define pseudo-animals as edge or corner connected,
or using chess terminology: “kingwise” connected.
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For example, the diagonal 3-in-a-row in ordinary Tic-Tac-Toe is a pseudo-animal

diagonal win in Tic-Tac-Toe
is a pseudo-animal

Pseudo-animal Tic-Tac-Toe. There is 1, 1-cell pseudo-animal, there are 2, 2-
cell pseudo-animals; 5, 3-cell pseudo-animals; and 22, 4-cell pseudo-animals (the
analogous numbers for ordinary animals are 1,1,2,5). The pseudo-animal kingdom
is much bigger than the animal kingdom.
What is the largest pseudo-animal Winner? This is a very difficult question

(we couldn’t even solve the analogous problem for ordinary animals: the status
of “Snaky” is undecided yet, see Section 4), but by using the Erdös–Selfridge
Theorem it is easy to give at least some (weak) upper bound on the order of the
largest pseudo-animal Winner.

Theorem 10.2 There are only a finite number of pseudo-animal Winners, and the
largest order is ≤ 72.

Remark. The upper bound ≤ 72 is obviously very weak; the truth is probably less
than 10.

Proof. We partition the plane into infinitely many pairwise disjoint subboards of
size 73×73. Every pseudo-animal of order 73 is contained in a 73×73 “underlying
square.” This “underlying square” is divided by the disjoint subboards into 4 parts;
the “largest part” of the pseudo-animal must have order ≥ 19. Either player’s
strategy is to play on the disjoint subboards independently, and in each subboard
use the Erdös–Selfridge Theorem to block all possible “largest parts” of the pseudo-
animal on the subboard.
The total number of these “largest parts” in a fixed subboard is ≤ 4 · 732 · 8;

indeed, 4 ·732 comes from the number of possibilities for the position of the lower
left corner of the “underlying square”, and “8” is the number of symmetries of the
square. The Erdös–Selfridge Theorem applies if 4 ·732 ·8 < 219−1, which is really
true. Theorem 10.2 follows.

So far we discussed 2 types of blocking: (1) the global Erdös–Selfridge Theorem,
and (2) the local Pairing Strategy. Next we compare the power of these two very
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different methods on a simple example: we give 6 different proofs of the amusing
fact that the Unrestricted n-in-a-row in the plane is a draw game if n is sufficiently
large (different proofs give different values of n).

Unrestricted n-in-a-row game on the plane. We recall from Section 4 that Unre-
stricted means the game is played on an infinite chessboard (infinite in every
direction). In the Unrestricted 5-in-a-row game the players alternately occupy little
squares of an infinite chessboard, the first player marks his squares by X, and the
second player marks his squares by O. That player wins who first gets 5 consecu-
tive marks of his own in a row horizontally, or vertically, or diagonally (of slope
1 or −1). Unrestricted n-in-a-row differs in only one aspect: the winning size is n
instead of 5.

Unrestricted n-in-a-row on the plane is a semi-infinite game (in fact, a semi-
infinite positional game): the board is infinite but the winning sets are all finite.
Since the board is infinite, we have to define the length of the game: we assume the
length of a play is at most �, where � denotes the first countable ordinal number.
Semi-infinite positional games are all determined.
The Unrestricted 4-in-a-row game is an easy first player win. The Unrestricted

5-in-a-row game is conjectured to be a first player win, too, but I don’t know any
rigorous proof.

Does there exist a (finite) n such that the Unrestricted n-in-a-row is a Draw
game? The answer is “yes.”

Theorem 10.3 The unrestricted n-in-a-row on the plane is a draw game for all
sufficiently large n.

We give 6 proofs: 2 proofs use the Erdös–Selfridge Theorem, 2 proofs use Pairing
Strategy, and 2 more use a different decomposition technique.

First Proof: Unrestricted 40-in-a-row is a Strong Draw. It is a straightforward
application of the Erdös–Selfridge Theorem. We divide the plane into n×n squares,
where n will be specified later. The second player plays in the n× n squares
independently of each other: when the first player makes a move in an n× n

squares, the second player responds in the same large square. Every n-in-a-row on
the plane intersects some n×n square in a block of length ≥ n/3.

≥ n
3
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The Erdös–Selfridge Theorem applies if 4n2 < 2�n/3�−1 (note that factor 4 comes
from the 4 winning directions); the inequality holds for all n≥ 40� which completes
the proof.

Second Proof: Unrestricted 13-in-a-row is a Strong Draw. This is a more
sophisticated application of the Erdös–Selfridge Theorem. We employ the non-
uniform version: If

∑
A∈F

2−�A� +max
x∈V

∑
A∈F � x∈A

2−�A� < 1�

then the second player can block every winning set A ∈ F .
This time we divide the plane into 9×9 squares. Again the second player plays

in the 9× 9 squares independently of each other: when the first player makes a
move in a large square, the second player responds in the same large square. Every
13-in-a-row on the plane intersects one of the 9×9 squares in one of the following
“winning sets”:

and also for the vertical and the “other diagonal” (of slope −1) directions.
There are 44 7-sets, 12 6-sets, and 8 5-sets, so

∑
A∈F

2−�A� = 44
27

+ 12
26

+ 8
25

= 25
32

�
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On the other hand, we trivially have

max
x∈V

∑
A∈F � x∈A

2−�A� ≤ 2
25

+ 4
27

= 3
32

�

Since
25+3
32

= 28
32

< 1� we are done.

Third Proof: Unrestricted 12-in-a-row is a Draw. Similarly to the first two
solutions we divide the plane into infinitely many non-interacting games, but this
time we apply a Pairing Strategy for the component games. Each component
game will be “one-dimensional.” The decomposition goes as follows. Extend the
following 4×4 direction marking periodically over the whole plane

n = 4 :

For each move of the first player, the second player replies by taking a similarly
marked square in the direction of the mark, by using a straightforward Pairing
Strategy. The longest possible n-in-a-row occupied by the first player looks like
this (if it is horizontal):

· · · − · · · − · · ·
which is an 11-in-a-row. This proves that 12-in-a-row is a draw. �

Fourth Proof: Unrestricted 9-in-a-row is a Strong Draw. We can improve on
the previous solution by employing the following 8×8 matrix instead of the 4×4
(the rest of the proof goes similarly)

n = 8 :

What this 8 by 8 matrix represents is a direction-marking of the 4 ·8= 32 “torus-
lines” of the 8× 8 torus. The direction-marks −, �, \, and / mean (respectively)
“horizontal,” “vertical,” “diagonal of slope−1,” and “diagonal of slope 1.” Each one
of the 32 torus-lines contains 2 marks of its own direction. The periodic extension
of the 8 by 8 matrix over the whole plane gives a Pairing Strategy Draw for the
unrestricted 9-in-a-row game. Either player responses to the opponent’s last move
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by taking the nearest similarly marked square in the direction indicated by the mark
in the opponent’s last move square.
This solution is taken from the Winning Ways (see p. 677 in vol. 2). What it says

is that the “82 torus Tic-Tac-Toe game” is a Pairing Strategy Draw (the winning
sets are the 32 8-element full-length lines on the torus).

FifthProof:Unrestricted9-in-a-row isaStrongDraw.Tile theplanewithH-shaped
heptominos (“seven-squares”). The second player plays on these heptominos indepen-
dently of each other. In each heptomino second player’s goal is to block a 3-in-a-row
in either diagonal, or the horizontal, or the right vertical, see the figure below.

4 lines
to block

It is easy to see that the second player can achieve his “blocking goal” in every
heptomino, which implies that the first player cannot occupy a 9-in-a-row. This
elegant solution is due to Pollak and Shannon (1954).

Sixth Proof: Unrestricted 8-in-a-row is a Strong Draw. This is the best-known
result, the current record. It is due to a group of Dutch mathematicians, see American
Mathematic Monthly (1980): 575–576.

The idea is the same as in the previous solution, but here one tiles the plane
with congruent zig-zag shaped regions of area 12. Of course, a more complicated
shape leads to a more complicated case study. Again the second player plays on
each 12-square tile independently: on each tile his goal is to prevent the first player
from getting 4-in-a-row horizontally, or 3-in-a-row diagonally, or two in a shaded
column vertically. The forbidden lines are indicated on the figure below.
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If the second player can achieve his goal on each tile, then the first player
cannot get more than 7-in-a-row diagonally, 6-in-a-row horizontally, or 6-in-a-row
vertically, which is more than what we have to prove.

Our 12-square tile is equivalent to a 3× 4 rectangle, where the 3 rows, the 4
columns, and the 2 indicated diagonal pairs are forbidden.

3

2

1

a cb d

It is easier to explain second player’s strategy on the 3×4 rectangle, and it goes
as follows: If the first player starts:

(1) in column a� then the second player replies b3;
(2) in column b� then the second player replies a2;
(3) in the right-hand side of the rectangle, then the second player replies

symmetrically, i.e. by c1 or d2.

Any move which is not a direct threat is answered by taking a point of the
remaining diagonal pair. This leads to a position which, up to isomorphism, equals
one of the following two cases:

or

where columns b and c contain one mark of the second player (X indicates the
first player). The Pairing Strategy indicated on the picture suffices to stop the first
player. (Note that the 2 diagonal pairs have been taken care of, and the indicated
Pairing guarantees that the first player cannot occupy a whole row or column.)

5. Extremal systems of the Erdős–Selfridge Theorem. The simplest form of the
Erdős–Selfridge Theorem goes as follows: if hypergraph F is n-uniform and has
fewer than 2n−1 winning sets, then Breaker (as the second player) can always win
the Maker–Breaker game on F .
An n-uniform hypergraph F is called an Extremal System if �F � = 2n−1 and it is

a Maker’s win (Maker is the first player). The Erdős–Selfridge Theorem is tight in
the sense that there exist Extremal Systems. We have already given two examples.
In the original Erdős–Selfridge construction the board V is the �2n− 1�-element
set V = w�x1� y1� x2� y2� � � � � xn−1� yn−1�, and the winning sets are all possible n-
element subsets A of V satisfying the following two properties: (a) w ∈ A, (b) A
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contains exactly one element from each pair xi� yi�� i= 1�2� � � � � n−1. The second
example is my binary tree construction: the full-length branches of a binary tree with
n levels form an n-uniform family of 2n−1 winning sets such that Maker, as the first
player, can occupy a full branch in n moves (the players take vertices of the tree).
About 15 years ago we asked the following two questions: (1) Can we describe

all possible Extremal Systems? Both examples above were Economical Winners,
so it is natural to ask: (2) Is there an n-uniform Extremal System where Maker (as
the first player) needs more than n turns to win?
We can report major progress for the second question. In 2003 my former

Ph.D. students K. Kruczek and E. Sundberg could construct an n-uniform Extremal
System where Maker (as the first player) needs at least 2n turns to win (the result
is part of their Ph.D. thesis). Later A.J. Sanders (Cambridge, UK) came up with
a startling improvement: there is an n-uniform Extremal System (for every n ≥ 5)
where Maker (as the first player) needs exponential time; namely at least 2n−4 turns
to win! In fact, the maximum is between 2n−4 and 2n−1. For the details of the
construction we refer the interested reader to Sanders [2004].
Unfortunately, the first question remains wide open. At first sight this may

seem rather surprising since the Erdős–Selfridge Theorem has such an easy,
short/transparent proof. On the other hand, Sanders’s startling construction is a
warning: the easy-looking first question is actually very hard.

6. If a positional game played on a (finite) hypergraph is a draw game, then by
definition either player can force a draw. If either player uses his draw-forcing
strategy, the play ends in a drawing position, which is a Proper Halving 2-Coloring.
We know that the converse is not true: the existence of a Proper Halving

2-Coloring does not imply that the positional game is a draw game; see for example
the 43 Tic-Tac-Toe (“Qubic”). Of course, there are many more hypergraph examples
demonstrating the failure of the converse. Both of the Extremal Systems mentioned
above are good examples: (1) In the original Erdős–Selfridge construction, where
the board is the �2n− 1�-element set w�x1� y1� x2� y2� � � � � xn−1� yn−1�, it suffices
to color a pair xi� yi� red and another pair xj� yj� blue; then, independently of the
coloring of the rest of the board, we obtain a Proper 2-Coloring. (2) In the binary
tree construction, it suffices to color the root red and the two neighbors of the
root blue; then, independently of the coloring of the rest of the board, we obtain
a Proper 2-Coloring.
Even if the converse is not true, it is still a very good idea to approach the extremely

complex concept of the Drawing Strategy from the angle of the muchmore accessible
conceptofProper2-Coloring (accessiblevia theProbabilisticMethod). Inotherwords,
when can we “upgrade” a Proper 2-Coloring (existing via the Probabilistic Method)
to a Drawing Strategy? This is the question that we are going to study in the second
half of Section 11 (see Theorems 11.3 and 11.4) and in Section 12.



11
Local vs. Global

The Erdős–Selfridge theorem is a global blocking criterion. The (hypothetical)
Neighborhood Conjecture – see Open Problem 9.1 – is a far-reaching local gen-
eralization of the Erdős–Selfridge Theorem: the global condition is reduced to a
(much weaker) local condition. What supports the Neighborhood Conjecture? We
can give two good reasons.

1. Pairing strategy. The Neighborhood Conjecture states, in a quantitative form,
that when “playing the positional game on a hypergraph the local size is what
really matters, the global size is completely irrelevant,” and there is indeed a
criterion with the same message, though much weaker than the Neighborhood
Conjecture (see Theorem 11.2 below). This weaker result is about the Pairing
Strategy Draw. The Pairing Strategy Draw is the simplest possible way to force a
Strong Draw.

It is fair to say that the pairing strategy is the most common technique in the
whole of Game Theory. We have already used the pairing strategy several times in
the book. For example, the copycat strategy of Theorem 6.2 and Gross’s explicit
winning strategy in Bridge-it (see Section 4) are both pairing strategies.
Pairing strategy is a local strategy: it means a decomposition of the board (or

some part of the board) into disjoint pairs, and when your opponent takes one
member from a pair, you take the other one. It is applied when the opponent cannot
achieve the objective (win or draw) without choosing both points of at least 1 pair.

We recall that a hypergraph is called Almost Disjoint if any two hyperedges have
at most 1 point in common.

If the family of winning sets is Almost Disjoint, then the question “can pairing
strategy work here” becomes a standard perfect matching problem. Indeed, in
an Almost Disjoint family two distinct winning sets cannot share the same pair
of points. So the pairing strategy works if and only if we can find a family of
disjoint 2-element representatives of the hypergraph of winning sets. But to find
a family of disjoint 2-element representatives of a given hypergraph is a well-
characterized, completely solved problem in Matching Theory (“Bigamy version of
Hall’s Marriage Theorem”).
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In general, if the hypergraph of winning sets is not necessarily Almost Disjoint,
then the existence of a family of disjoint 2-element representatives is a sufficient
but not necessary condition for the existence of a pairing strategy. The following
two criterions were (probably) first published in Hales and Jewett [1963] (and
independently rediscovered later in several other papers).

Theorem 11.1 (“Pairing Strategy Draw") Consider the Positional Game on
�V�F �� and assume that for every subfamily G ⊆ F∣∣∣∣∣

⋃
A∈G

A

∣∣∣∣∣≥ 2�G��

Then either player can force a Pairing Strategy Draw.

Theorem 11.2 (“Degree Criterion for Pairing Strategy Draw”) Let F be an
n-uniform hypergraph, i.e. �A� = n for every A ∈ F . Further assume that the
Maximum Degree is at most n/2� every x ∈ V is contained in at most n/2 elements
of F . Then playing the Positional Game on F , either player can force a Pairing
Strategy Draw.

Notice that the two Pairing Strategy Criterions (Theorems 11.1–11.2) are very
general. They are local conditions in the sense that they don’t give any restriction
on the global size of hypergraph F . Both hold for an infinite board as well.

Proof of Theorem 11.1. The well-known Hall’s Theorem (“Marriage Theorem”)
applies here. We can find disjoint 2-element representatives: h�A�⊂A for all A∈F
with �h�A�� = 2, and h�A1�∩h�A2�= ∅ whenever A1 and A2 are different winning
sets from F . There is, however, a little technical twist involved here: we have to
apply the Marriage Theorem to the “double” of F , i.e. every A ∈ F is taken in two
copies. In other words, one applies the Bigamy Corollary of the Marriage Theorem:
“every man needs two wives.” �

Remark. It is important to know that Matching Theory provides several efficient
(“polynomial”) algorithms to actually find a family of disjoint 2-element represen-
tatives. For example, the Augmenting Path Algorithm has running time O(N 5/2),
where N is the size of the board.

Proof of Theorem 11.2. For an arbitrary subfamily G ⊆ F a standard double-
counting argument gives

n�G� ≤ ∑
A∈G

�A� = ∑
x∈⋃A∈G A

∑
A∈G� x∈A

1≤
∣∣∣∣∣
⋃
A∈G

A

∣∣∣∣∣ ·
n

2
�

which means that Theorem 11.1 applies here and completes the proof. �
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Theorem 11.2 is a linear local criterion and the hypothetical Neighborhood Conjec-
ture is an exponential local criterion. Of course there is a major difference between
“linear” and “exponential,” but still the existence of any kind of local criterion is a
good reason to believe in the exponential Neighborhood Conjecture.

2. The Probabilistic Method and the Local Lemma. A second good reason to
believe in the Neighborhood Conjecture is the Erdős–Lovász 2-Coloring Theorem
(see below), which was the original application of the famous Local Lemma (or
“Lovász Local Lemma”), a cornerstone of the Probabilistic Method. The Local
Lemma is an advanced result; it is better to start with the basic result.

The following old theorem of Erdős can be justly considered the starting point
of a long line of research, which culminated in the so-called “Probabilistic Method
in Combinatorics” (see Erdős [1947], [1961], [1963]).

Theorem 11.3 (“Erdős 1947”) Let F be an n-uniform hypergraph, and assume
that �F �< 2n−1. Then:

(a) there is a Proper 2-Coloring; and what is somewhat more,
(b) there also is a Proper Halving 2-Coloring (i.e. Drawing Terminal Position).

Both (a) and (b) can be proved by a simple “counting argument.” The proof of
(a) goes as follows. Let N = �V � denote the size of the union set (“board”) V of
hypergraph F . A simple counting argument shows that under the condition �F �<
2n−1 there exists a Proper 2-Coloring. Indeed, there are 2N 2-colorings of board
V , and for every single winning set A ∈ F there exists 2N−n+1 “bad” 2-colorings
which are monochromatic on A. By hypothesis 2N −�F �2N−n+1 > 0� which implies
throwing out all “bad” 2-colorings, there must remain at least one Proper 2-Coloring
(i.e. no A ∈ F is monochromatic).

To prove Theorem 11.3 (b) we have to find a Drawing Terminal Position (i.e.
a 2-coloring of the board by “colors” X and O such that the 2 color classes have
the same size, and each winning set contains both marks). For notational simplicity
assume that N is even. The idea is exactly the same as that of (a), except that
we restrict ourselves to the

(
N

N/2

)
Halving 2-Colorings instead of the 2N (arbitrary)

2-colorings. The analogue of 2N − �F �2N−n+1 > 0 is the following requirement:(
N

N/2

)−2�F �(N−n

N/2

)
> 0. This holds because

(
N−n

N/2

)
(

N

N/2

) = N/2

N

�N/2�−1
N −1

�N/2�−2
N −2

· · · �N/2�−n+1
N −n+1

≤ 2−n�

and (b) follows. �

The previous argument can be stated in the following slightly different form: the
average number (“expected value” or “first moment”) of winning sets completely
occupied by either player is precisely



166 The main result

2�F �
(
N−n

N/2

)
(

N

N/2

) � which is less than 1�

Since the minimum is less or equal to the average, and the average is less than
1, there must exist a Drawing Terminal Position (i.e. no player owns a whole
winning set).
This kind of “counting argument,” discovered and systematically developed by

Erdős, is in the same category as Euclid’s proof of the existence of infinitely many
primes, or Pythagoras’s proof of the irrationality of

√
2: they are astonishingly

simple and fundamentally important at the same time.
Here is a simple application: a lower bound to the van der Waerden number

W�n�. Since the number of n-term arithmetic progressions in an interval �N� =
1�2� � � � �N� is about N 2

2�n−1� , Theorem 11.3 yields the exponential lower bound

W�n�≥W1/2�n�≥ �1+o�1��
√
n2n� (11.1)

Erdős’s “counting argument” (Theorem 11.3) was later developed in two very
different ways: first by Wolfgang M. Schmidt [1962], and later in a joint work by
Erdős and Lovász [1975].

Notice that the family of winning sets in the nd game has the important additional
feature that the winning sets are on straight lines, and any 2 straight lines have at
most 1 point in common. A hypergraph with the intersection property that any two
hyperedges have at most one point in common is called Almost Disjoint.

Schmidt’s work can be summarized in the following theorem (that we mention
without proof): part (a) is a general hypergraph result; part (b) is the special case of
“arithmetic progressions”; Schmidt’s main goal was to improve on (11.1); Schmidt
basically squared the lower bound in (11.1).

Schmidt’s Theorem [1962]:

(a) Let F be an n-uniform Almost Disjoint hypergraph. Assume that the Maximum

Degree of F is less than 2n−5
√

n logn and the size �F � of the hypergraph is less
than 8n; then F has chromatic number two, i.e. the hypergraph has a Proper
2-Coloring.

(b) W�n�=W�n�2�≥ 2n−5
√

n logn� (11.2)

Note that part (b) is not a corollary of part (a); the family of n-term arithmetic
progressions in an interval �N�= 1�2� � � � �N� is not Almost Disjoint, but it is “close
enough” in the sense that the proof of (a) can be adapted to prove (b). Schmidt’s
method motivated our “game-theoretic decomposition technique” in Part D.
The following result is more general: it is about arbitrary hypergraphs (not just

Almost Disjoint or “nearly” Almost Disjoint Hypergraphs), see Erdős and Lovász
[1975].
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Theorem 11.4 (“Erdős–Lovász 2-Coloring Theorem”) If F is an n-uniform hyper-
graph, and its Maximum Neighborhood Size is at most 2n−3, then the hypergraph
has a Proper 2-Coloring (i.e. the points can be colored by two colors so that no
hyperedge A ∈ F is monochromatic.) In particular, if the Maximum Degree is at
most 2n−3/n, then the hypergraph has a Proper 2-Coloring.

Remark. The very surprising message of the Erdős–Lovász Theorem is that the
“global size” of hypergraph F is irrelevant – it can even be infinite! – all what
matters is the “local size.”

The proof of Theorem 11.4 is strikingly short.

Proof of Theorem 11.4. The usual proof uses the Local Lemma; here we give a
more direct “counting argument” the proof. It can be considered as a sophisticated
generalization of the proof of Theorem 11.3.

Let �F � =M , let F = A1�A2� � � � �AM�, let V denote the board, and let �V � = N .
Let C denote the set of all 2N possible 2-colorings of V . Let I ⊂ �M� be an arbitrary
index-set where �M� = 1�2� � � � �M�; then C�I � proper� ⊂ C denotes the set of
2-colorings of the board V such that no Ai� i ∈ I becomes monochromatic. For
arbitrary I ⊂ �M� and j ∈ �M� with j �∈ I , let C�I � proper∧ j � mono� denote the
set of 2-colorings of the board V such that no Ai, i ∈ I becomes monochromatic
but Aj is monochromatic.

We actually prove a stronger statement; it is often easier to prove a stronger
statement by induction. The proof of Theorem 11.4 is an excellent example of the
principle that “to prove more may be less trouble.”

Proposition: Let I ⊂ �M� and j ∈ �M� with j �∈ I . Then

�C�I � proper∧ j � mono��
�C�I � proper�� ≤ 2 ·2−n+1�

Remark. Note that 2−n+1 is the probability that in a Random 2-Coloring a given
n-set becomes monochromatic.

Proof of the Proposition. We prove this stronger Proposition by induction on �I�.
If �I� = 0 (i.e. I is the empty set), then the Proposition reduces to the following
triviality:

�C�j � mono��
�C� = 2−n+1 < 2 ·2−n+1�

Next assume that index-set I is not empty. For notational convenience write
I = 1�2� � � � � i�, and among the elements of I let 1�2� � � � � d �d ≤ i� denote the
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neighbors of Aj (i.e. A1� � � � �Ad intersect Aj , but Ad+1� � � � �Ai do not intersect Aj).
By hypothesis, d ≤ 2n−3. Since Ad+1� � � � �Ai are disjoint from Aj

�C�d+1�d+2� � � � � i� � proper∧ j � mono��
�C�d+1�d+2� � � � � i� � proper�� = 2−n+1� (11.3)

Furthermore

C�1�2� � � � � i� � proper�=

C�d+1�d+2� � � � � i� � proper�\
d⋃

k=1

C�d+1�d+2� � � � � i� � proper∧k � mono��

(11.4)

and by the induction hypothesis

�C�d+1�d+2� � � � � i� � proper∧k � mono��
�C�d+1�d+2� � � � � i� � proper�� ≤ 2 ·2−n+1� (11.5)

Since d ·2 ·2−n+1 ≤ 2n−3 ·2 ·2−n+1 = 1/2, by (11.4) and (11.5) we obtain

�C�1�2� � � � � i� � proper�� ≥ 1

2
�C�d+1�d+2� � � � � i� � proper��� (11.6)

Now the proof of the Proposition is straightforward: by (11.3) and (11.6)

2−n+1 = �C�d+1�d+2� � � � � i� � proper∧ j � mono��
�C�d+1�d+2� � � � � i� � proper�� ≥

�C�1�2� � � � i� � proper∧ j � mono��
2�C�1�2� � � � i� � proper�� = �C�I � proper∧ j � mono��

2�C�I � proper�� �

which is exactly the Proposition.
The deduction of Theorem 11.4 from the Proposition is obvious: indeed, by an

iterated application of the Proposition

�C�1�2� � � �M� � proper��
�C� ≥ (

1−2−n+2
)�F �

> 0�

which proves the existence of a Proper 2-Coloring of hypergraph F . Since �C� = 2N ,
the total number of Proper 2-Colorings is at least

2N · (1−2−n+2
)�F � ≈ 2N · e−�F �/2n−2

� (11.7)

This completes the proof of Theorem 11.4. �
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3. Concluding remarks
(i) Finding a needle in a haystack!

The proof of the Erdös-Lovász 2-Coloring Theorem is an existence argument.
The only way to find the existing Proper 2-Coloring is to try out all possible
2N 2-colorings of the board, where N is the board size. This is very similar to the
“combinatorial chaos” that we face dealing with the Strategy Stealing argument.
Indeed, to find a winning or drawing strategy guaranteed by the Strategy Stealing
argument, we have to perform a case study of size O�N3N � where N is the board
size. (A systematic way to perform this “case study” is the “backward labeling of
the position graph” – see Appendix C.)

In both cases, we have the same fundamental problem: can the exponential
case study be replaced by a polynomial one? Observe that the proof of the Erdös–
Lovász 2-Coloring Theorem does not even provide a randomized algorithm. Indeed,
in view of (11.7), the probability that a Random 2-Coloring provides a Proper
2-Coloring is

≥ e−�F �/2n−2
� (11.8)

and because in the applications of the Erdös–Lovász 2-Coloring Theorem the
hypergraph-size �F � is much larger than 2n−2, (11.8) is (usually) extremely small!
The Erdős–Lovász 2-Coloring Theorem implies the lower bound

W�n�=W�n�2�≥ 2n

8n
� (11.9)

which is somewhat better than Schmidt’s lower bound, but it is still in the same
range W�n�≥ �2+o�1��n. The elegant/short proof of the Erdős–Lovász 2-Coloring
Theorem was “non-constructive”: it was a pure existence argument, in some
sense similar to Strategy Stealing; Schmidt’s proof, on the other hand, is more
constructive.

We improved on the van der Waerden number (lower bound) for the second
time, but the best-known result belongs to the hard-core constructivists. We start
with an example: the inequality W�4�≥ 35 is established by the following explicit
2-coloring of the interval I = 0�1�2� � � � �33�: the first color-class consists of 0,
11, and the quadratic non-residues (mod 11) in I

0�2�6�7�8�10�11�13�17�18�19�21�24�28�29�30�32�

and, of course, the other color-class is the complement set

1�3�4�5�8�12�14�15�16�20�22�23�25�26�27�31�33�

It is easy to see that no class contains a 4-term arithmetic progression. This algebraic
construction is due to J. Folkman (the inequality is actually an equality:W�4�= 35).
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(ii) Berlekamp’s algebraic construction
A similar but more sophisticated explicit finite field construction was discovered
by Berlekamp in 1968; it gives the lower bound

W�n� > �n−1�2n−1 if �n−1�is a prime� (11.10)

Berlekamp’s construction, just like Folkman’s example above, is a Proper Halving
2-Coloring (see Berlekamp [1968]). It follows that W1/2�n� > �n−1�2n−1 if n−1
is a prime, and because there is always a prime between n and n−n2/3 if n is large
enough, Berlekamp’s construction implies the lower bound W1/2�n� ≥ �2+o�1��n

for every n.

(iii) What is the Local Lemma?
Let us return to Theorem 11.4: it was the motivation and the original application
of the general Local Lemma, see Erdős and Lovász [1975]. The Local Lemma
(or Lovász Local Lemma) is a remarkable probabilistic sieve argument to prove
the existence of certain very complicated structures that we are unable to construct
directly. To be precise, let E1�E2� � � � �Es denote events in a probability space. In
the applications, the Eis are “bad” events, and we want to avoid all of them, i.e. we
wish to show that Prob �∪s

i=1Ei� < 1. A trivial way to guarantee this is to assume∑s
i=1 Prob�Ei� < 1. A completely different way to guarantee Prob �∪s

i=1Ei� < 1 is to
assume that E1�E2� � � � �Es are mutually independent and all Prob�Ei� < 1. Indeed,
we then have Prob �∪s

i=1Ei� = 1−∏s
i=1�1− Prob�Ei�� < 1. The Local Lemma

applies in the very important case when we don’t have mutual independence, but
“independence dominates” in the sense that each event is independent of all but a
small number of other events.

Local Lemma: Let E1�E2� � � � �Es be events in a probability space. If Prob�Ei� ≤
p < 1 holds uniformly for all i, and each event is independent of all but at most 1

4p

other events, then Prob �∪s
i=1Ei� < 1.

Theorem 11.4 is an easy corollary of the Local Lemma: for every Ai ∈ F let Ei

be the event “Ai is monochromatic in a Random 2-Coloring of the points of the
n-uniform hypergraph F ”; then the Local Lemma applies with p= 2−n+1.
On the other hand, the proof of Theorem 11.4 (a special case of the Local Lemma)

can be easily adapted to prove the general result itself.

Exercise 11.1 Prove the Local Lemma.

(iv) More than two colors
We conclude this section with two generalizations of Theorem 11.4, where the
number of colors is more than 2.

(a) Let k≥ 2 be an integer, and let F be an n-uniform hypergraph with Maximum
Degree of at most kn−1/4. Then the chromatic number of F is ≤ k, i.e. there
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is a Proper k-Coloring of the vertex-set (meaning that no A ∈ F becomes
monochromatic).

(b) Let k≥ 2 be an integer, and let F be an n-uniform hypergraph with Maximum
Degree of at most 1

4k

(
k

k−1

)n
. Then there is a Rainbow k-Coloring of hypergraph

F . A Rainbow k-Coloring means that each hyperedge A ∈ F contains all k
colors.

Both (a) and (b) are easy corollaries of the Local Lemma (note that we can
also adapt the counting proof of Theorem 11.4).

The concepts of Proper k-Coloring and Rainbow k-Coloring are identical
for k= 2, but they become very different for k≥ 3.

Finally, an almost trivial, but useful observation:
(c) Let F be an arbitrary finite hypergraph. If F has a Rainbow 3-Coloring, then it

also has a Proper Halving 2-Coloring (i.e. the 2 color classes have equal size).
Indeed, let C1, C2, C3 be the 3 color classes of the vertex-set in a Rainbow
3-Coloring of hypergraph F , and assume that �C1� ≤ �C2� ≤ �C3�. Since C3 is
the largest color class, we can always divide it into 2 parts C3 = C3�1 ∪C3�2

such that the 2 sums �C1�+ �C3�1� and �C2�+ �C3�2� become equal (or differ by
at most 1). Coloring C1 ∪C3�1 red and C2 ∪C3�2 blue gives a Proper Halving
2-Coloring of hypergraph F :
Combining (b) and (c), we obtain:

(d) Let F be an n-uniform hypergraph with Maximum Degree at most 1
12

(
3
2

)n
;

then there is a Proper Halving 2-Coloring of hypergraph F .
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Ramsey Theory and Hypercube Tic-Tac-Toe

1. The Hales–Jewett Number. In Section 11, we discussed three different lower
bounds for the van der Waerden number W�n� (see (11.2) and (11.9)–(11.10));
the arguments were completely different, but they gave basically the same order
of magnitude (around 2n). Unfortunately, there remains an enormous gap between
the plain exponential lower bound and Gowers’s 5-times iterated exponential upper
bound (see (7.2)).
Next we switch from the van der Waerden number W�n� to the Hales–Jewett

Number HJ�n�, where the gap between the best-known upper and lower bounds is
even much larger. The best-known upper bound is Shelah’s super-tower function;
what is the best-known lower bound for HJ�n�? We begin with the first result:
in their pioneering paper Hales and Jewett [1963] proved the linear lower bound
HJ�n�≥ n by an explicit construction.

Theorem 12.1 (“Hales–Jewett linear lower bound”) The Hales–Jewett Number
satisfies the linear lower bound HJ�n�≥ n.

Proof. We can assume that n≥ 5. Indeed, every “reasonable” play of Tic-Tac-Toe
leads to a drawing terminal position (which solves the case n= 3), and even if the
43 game is a first player win, it nevertheless does have a drawing terminal position,
which settles the case n= 4.
For n≥ 5 we are going to define a Proper 2-Coloring of the nn−1 hypergraph by

using an elegant explicit algebraic construction. The idea of Hales and Jewett is to
add up �n− 1� 1-dimensional 2-colorings (i.e. 2-colorings of �n� = 1�2� � � � � n�),
where the addition is taken (mod 2).
Let v1� � � � �vi = �vi�1� � � � � vi�n�� � � � �vd be d n-dimensional 0–1 vectors, i.e. vi�j ∈

0�1� for all 1 ≤ i ≤ d�1 ≤ j ≤ n. Each vi can be viewed as a 2-coloring of
�n� = 1�2� � � � � n�. Now the vector sequence v1� � � � �vd defines a 2-coloring f �

�n�d → 0�1� of the board of the nd game as follows: for every �j1� � � � � jd�∈ �n�d let

f�j1� � � � � jd�≡ v1�j1 +v2�j2 +· · ·+vd�jd �mod 2�� (12.1)

172
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Which vector sequence v1� � � � �vd defines a Proper 2-Coloring of the nd hyper-
graph? To answer this question, consider an arbitrary winning line L. Line L can
be parametrized by an “x-vector” as follows. The first coordinate of the “x-vector”
is either a constant c1, or x, or �n+1−x�; similarly, the second coordinate of the
“x-vector” is either a constant c2, or x, or �n+1−x�, and so on.

L � �either constantc1 orx or�n+1−x�� � � � � either constantcd or x or �n+1−x���

(12.2)

and the kth point Pk on line L is obtained by the substitution x= k in “x-vector”
(12.2) (k= 1�2� � � � � d). What is the f -color – see (12.1) – of point Pk? To answer
this question, for every i= 1�2� � � � � d write

�i =
{
0� if the ith coordinate in �12�2� is a constant ci�

1� otherwise�
(12.3)

For an arbitrary n-dimensional vector a = �a1� a2� � � � � an� define the “reverse”

a�rev� = �an�an−1� � � � � a1�� (12.4)

It follows from (12.1)–(12.4) that the f -color of the kth point Pk on line L is

f�Pk�≡
∑

1≤i≤d� �i=0

vi�ci +
(
kth coordinate of

d∑
i=1

�iwi

)
�mod 2�� (12.5)

where

wi =
{
vi� if the ith coordinate in �12�2� is x�

v�rev�i � if the ith coordinate in �12�2� is�n+1−x��
(12.6)

It follows from (12.5)–(12.6) that line L is monochromatic if and only if

d∑
i=1

�iwi ≡ either 0= �0� � � � �0� or 1= �1� � � � �1� �mod 2��

It suffices therefore to find �n− 1� n-dimensional 0–1 vectors v1� � � � �vn−1

such that for each choice of wi ∈ vi�v
�rev�
i �� �i ∈ 0�1��1 ≤ i ≤ n− 1, where

��1� � � � � �n−1� �= 0, the vector

�1w1+�2w2+ � � �+�n−1wn−1 �mod 2� is neither 0 nor 1� (12.7)
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We give the following explicit construction: For n≥ 5 let (watch out for the 1s)

�1�0�0�0�0�0� ����������0� ���������0�0�0�0�0�0�
�0�1�0�0�0�0� ����������0� ���������0�0�0�0�0�0�
�0�0�1�0�0�0� ����������0� ���������0�0�0�0�0�0�
�0�0�0�1�0�0� ����������0� ���������0�0�0�0�0�0�
�0�0�0�0�1�0� ����������0� ���������0�0�0�0�0�0�
�������������������������������������������������������

�������������������������������������������������������

�������������������������������������������������������

�0�0�0�0�1�0� ����������0� ���������0�1�0�0�0�0�
�0�0�0�1�0�0� ����������0� ���������0�0�1�0�0�0�
�0�0�1�0�0�0� ����������0� ���������0�0�0�1�0�0�
�0�1�0�0�0�0� ����������0� ���������0�0�0�0�1�0�
�1�0�0�0�0�0� ����������0� ���������0�0�0�0�0�1�

That is, the first �n/2� n-dimensional vectors are ei = �0� � � � �0�1�0� � � � �0� such
that the only non-zero coordinate is 1 at the ith place, 1 ≤ i ≤ �n/2�, the
rest are symmetric “self-reversed” vectors, and in each vector the ��n+ 1�/2�th
coordinate is 0.
It remains to show that this construction satisfies the requirement (see (12.7)).

First we show that the vector

�1w1+�2w2+ � � �+�n−1wn−1 �mod 2�

in (12.7) is �= 1= �1� � � � �1�. Indeed, the ��n+1�/2�th coordinate of vector (12.7)
is always 0.
So assume that vector (12.7) equals 0 = �0� � � � �0�. Then from the first and nth

coordinates we see that:

either �1+�n−1 ≡ �n−1 ≡ 0 (mod 2),
or �1+�n−1 ≡ �1 ≡ 0 (mod 2).

In both cases we obtain that �1 = �n−1 = 0. Similarly, we have �2 = �n−2 = 0,
�3 = �n−3 = 0, and so on. We conclude that all coefficients must be 0: �1 = �2 =
· · · = �n−1 = 0, which is impossible. This completes the proof of Theorem 12.1.

2. Improving the linear bound. A natural idea to improve Theorem 12.1 is to apply
the Erdős–Lovász 2-Coloring Theorem. The direct application doesn’t work because
the nd hypergraph is very far from being Degree-Regular. The nd hypergraph is in
fact extremely irregular: the Average Degree of the family of winning sets in nd is

AverageDegree�nd�= n · familysize
boardsize

= n
(
�n+2�d−nd

)
/2

nd
≈ n

2

(
e2d/n−1

)
�
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This is much smaller than the Maximum Degree �3d − 1�/2 (n odd) and 2d − 1
(n even), namely about (roughly speaking) the nth root of the Maximum Degree.
It is natural therefore to ask the following:

Question A: Can we reduce the Maximum Degree of an arbitrary n-uniform
hypergraph close to the order of the Average Degree?
The answer is an easy yes if we are allowed to throw out whole winning sets. But
throwing out a whole winning set means that Breaker loses control over that set,
and Maker might completely occupy it. So we cannot throw out whole sets, but
we may throw out a few points from each winning set. In other words, we can
partially truncate the winning sets, but we cannot throw them out entirely. So the
right question is:
Question B: Can we reduce the Maximum Degree of an arbitrary n-uniform hyper-
graph, by partially truncating the winning sets, close to the order of the Average
Degree?
The answer to Question B is no for general n-uniform hypergraphs (we leave it
to the reader to construct an example), but it is yes for the special case of the
nd hypergraphs.

Theorem 12.2 (“Degree Reduction by Partial Truncation")

(a) Let Fn�d denote the family of n-in-a-lines (i.e. geometric lines) in the nd

board; Fn�d is an n-uniform Almost Disjoint hypergraph. Let 0 < � < 1/2
be an arbitrary real number. Then for each geometric line L ∈ Fn�d there is a

2�� 12 −��n�-element subset L̃ ⊂ L such that the truncated family F̃n�d = L̃ �

L ∈ Fn�d� has Maximum Degree

MaxDegree
(
F̃n�d

)
< d+d�d/�n�−1�

(b) Let F c
n�d denote the family of combinatorial lines in the nd board; F c

n�d is an
n-uniform Almost Disjoint hypergraph. Let 0 < � < 1 be an arbitrary real
number. Then for each combinatorial line L ∈ F c

n�d there is a ��1−��n�-
element subset L̃⊂ L such that the truncated family F̃ c

n�d = L̃ � L ∈ F c
n�d� has

Maximum Degree

MaxDegree
(
F̃ c

n�d

)
< d+d�d/�n�−1�

Remarks.
(1) Let � > c0 > 0, i.e. let � be “separated from 0.” Then the upper bound dO�d/n�

of the Maximum Degree of F̃n�d is not that far from the order of magnitude
of the Average Degree n

2

(
e2d/n−1

)
of Fn�d. Indeed, what really matters is the

exponent, and the 2 exponents const ·d/n and 2d/n are the same, apart from a
constant factor.
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(2) In the applications of (a), we always need that � 12 −��n ≥ 1� or equivalently

�≤ 1
2 − 1

n
� since otherwise the “pseudo-line” L̃ becomes empty.

Proof of Theorem 12.2.

Case (a): We recall that the maximum degree of the family of winning lines
is �3d − 1�/2 if n is odd, and 2d − 1 if n is even. The maximum is achieved
for the center (n is odd), and for the points �c1� c2� � � � � cd� such that there is a
c ∈ 1� � � � � n� with cj ∈ c�n+ 1− c� for every j = 1�2� � � � � d (n is even). This

motivates our basic idea: we define L̃⊂ L by throwing out the points with “large
coordinate-repetition.”
Let P = �a1� a2� a3� � � � � ad�, ai ∈ 1�2� � � � � n�, 1 ≤ i ≤ d be an arbitrary point

of the board of the nd game. We study the coordinate-repetitions of P. Let � =
��n+ 1�/2�� and write ��� = 1�2� � � � � ��� Let b ∈ ��� be arbitrary. Consider the
multiplicity of b and �n+1−b� in P: let

m�P� b�= �M�P� b��� where M�P� b�= 1≤ i ≤ d � ai = b or �n+1−b��

=M�P� n+1−b��

Observe that in the definition of multiplicity we identify b and �n+1−b�.
For example, let

P = �3�7�3�5�1�3�5�4�3�1�5�3�3�5�5�1�4�2�6�5�2�7� ∈ �7�22�

then m�P�1�= 5� m�P�2�= 3� m�P�3�= 12� m�P�4�= 2�
For every n-line L of the nd game we choose one of the two orientations. An

orientation can be described by an x-vector v = v�L� = �v1� v2� v3� � � � � vd�, where
the ith coordinate vi is either a constant ci, or variable x, or variable �n+ 1−x�,
1≤ i ≤ d, and for at least one index i, vi is x or �n+1−x�.

For example, in the ordinary 32 Tic-Tac-Toe

�1�3� �2�3� �3�3�
�1�2� �2�2� �3�2�
�1�1� �2�1� �3�1�

�1�1�� �2�2�� �3�3�� is a winning line defined by the x-vector xx,
�1�2�� �2�2�� �3�2�� is another winning line defined by the x-vector x2, and
finally �1�3�� �2�2�� �3�1�� is a winning line defined by the x-vector xx′ where
x′ = �n+1−x��

The kth point Pk (1≤ k≤ n) of line L is obtained by putting x= k in the x-vector
v = v�L� of the line. The sequence �P1�P2� � � � �Pn� gives an orientation of line L.
The second (i.e. reversed) orientation comes from x-vector v∗, which is obtained
from v = v�L� by switching coordinates x and �n+1−x� that are variables.
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Let b ∈ ��� (�= ��n+1�/2�) be arbitrary, and consider the multiplicity of b and
�n+1−b� in x-vector v = v�L�

m�L�b�= �M�v�L�� b��� where M�v�L�� b�= 1≤ i ≤ d � vi = b or �n+1−b���

Similarly, consider the multiplicity of x and �n+1−x� in x-vector v = v�L�

m�L�x�= �M�v�L�� x��� where M�v�L�� x�= 1≤ i ≤ d � vi = x or �n+1−x���

It follows that m�Pk� k�=m�L�k�+m�L�x�, and m�Pk� b�=m�L�b� if k �∈ b�n+
1−b�, where Pk is the kth point of line L in the orientation v= v�L�� and b ∈ ���.

Let m0 = �d/�n�. For every line L define the “index-set”

BL = k ∈ ��� � m�L�k� < m0��

Then

d >
∑
b∈���

m�L�b�≥ ∑
b∈���\BL

m�L�b�≥ ∑
b∈���\BL

m0 =m0��−�BL���

and so

�BL�> �− d

m0

≥ ��n+1�/2�−�n�

which implies that

�BL� ≥
⌊
�
1

2
−��n

⌋
+ 1 or 0�

depending on the parity of n (1 if n is odd, and 0 if n is even). Let

B∗
L = k � k ∈ BL or �n+1−k� ∈ BL��

then clearly

�B∗
L� ≥ 2

⌊
�
1

2
−��n

⌋
+ 1 or 0�

depending on the parity of n� For every line L, the “index-set” B∗
L defines a subset

L̃⊂ L (we call L̃ a pseudo-line) as follows: let L̃= Pk � k ∈ B∗
L� if n is even, and

L̃ = Pk � k ∈ B∗
L \ ��� if n is odd (i.e. we throw out the “mid-point” when there

is one). Here Pk is the kth point of line L in the chosen orientation.
The above-mentioned definition of the pseudo-line has one trivial formal problem:

L̃ may have too many points, and this indeed happens for lines like the “main
diagonal”; then it is sufficient to throw out arbitrary points to get to the desired size
2
⌊
� 12 −��n

⌋
�

Now fix an arbitrary point P = �c1� c2� � � � � cd� of the nd-board. We have to
estimate the number of pseudo-lines through P. To find a line L such that P = Pk

for some k ∈ B∗
L (i.e. P is the kth point of line L) we must choose a subset

Y of M�P� k� of size y < m0 and for i ∈ M�P� k� \ Y change ci = k to x and
ci = n+1−k to n+1−x (here we use that k �= �n+1−k�; indeed, this follows
from k �= �= ��n+1�/2� when n is odd).
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Let K = k ∈ ��� � m�P� k� �= 0�� Then clearly

�K� ≤ ∑
k∈K

m�P� k�≤ d�

Thus the number of pseudo-lines through P is at most

m0−1∑
y=0

∑
k∈K

(
m�P� k�

y

)
≤ �K�+

m0−1∑
y=1

(∑
k∈K m�P� k�

y

)
< d+dm0−1�

which completes the proof of Theorem 12.2 (a).

Case (b): Combinatorial lines. This case is even simpler than that of case (a); we
leave the details to the reader. �

Now we are ready to improve the Hales–Jewett linear lower bound HJ�n� ≥ n of
the Hales–Jewett number. The improvement comes from combining Theorem 12.2
(a) with the Erdős–Lovász 2-Coloring Theorem.
Applying the Erdős–Lovász Theorem to the truncated hypergraph F̃n�d� we get

a Proper 2-Coloring of the nd-hypergraph if 0< c0 < �< c1 < 1/2 and

dd/�n ≤ 2�1−2��n+O�logn��

Taking logarithms we obtain the requirement dlog2d/�n ≤ �1−2��n+O�logn��
which is equivalent to dlog2d ≤ ��1− 2��n2�1+ o�1��� Since ��1− 2�� attains
its maximum at � = 1/4� we conclude that dlog2d ≤ n2�1+ o�1��/8� which is
equivalent to d ≤ � log216 +o�1��n2/ logn�

How about combinatorial lines? Repeating the same calculations for F̃ c
n�d, we

obtain the similar inequality dlog2d≤ ��1−��n2�1+o�1��� Since ��1−�� attains
its maximum at � = 1/2� we conclude that dlog2d ≤ n2�1+ o�1��/4� which is
equivalent to d ≤ � log28 +o�1��n2/ logn�

This gives the following better lower bounds for the two Hales–Jewett Numbers.

Theorem 12.3 We have the nearly quadratic lower bounds

HJ�n�≥
(
log2

16
+o�1�

)
n2

logn

and

HJc�n�≥
(
log2
8

+o�1�
)

n2

logn
�

where the o�1� in either case is in fact O�log logn/ logn�.

Unlike the proof of the linear lower bound HJ�n�≥ n, which was an explicit alge-
braic construction, here we cannot provide an explicit Proper 2-Coloring. Indeed,
the proof of the Erdős–Lovász 2-Coloring Theorem was an existence argument:
the proof didn’t say a word how to find the existing Proper 2-Coloring. To try out
all possible 2N 2-colorings of the board (where N is the board-size) is intractable.
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A much more efficient “polynomial time algorithmization” was developed in Beck
[1991], but we pay a price for it: the local condition �2+o�1��n of the Erdős–Lovász
Theorem is replaced by some cn, where 1< c < 2 is a smaller constant.
Is the (nearly) quadratic lower bound in Theorem 12.3 the best that we know?

The answer is no: a shockingly simple argument (“lifting colorings”) leads to
exponential lower bounds!

3. Separating the Weak Win Numbers from the Hales–Jewett Numbers. We
show that in hypercube Tic-Tac-Toe the converse of the trivial implication

draw play is impossible ⇒ Winning Strategy ⇒ weak win strategy

is totally false!
We start the discussion with HJc�n� (“combinatorial lines”), which is less inter-

esting from our game-theoretic/geometric viewpoint, but more natural from a purely
combinatorial viewpoint. At the end of Section 7 we applied the one-to-one mapping
(see (7.1))

f�w�= �a1−1�+ �a2−1�n+ �a3−1�n2+ � � �+ �ad−1�nd−1� (12.8)

where w= �a1� a2� · · · � ad� ∈ �n�d. Notice that f maps any n-in-a-line (“geometric
line”) into an n-term arithmetic progression; it follows that

W�n�k�≤ nHJ�n�k�� (12.9)

in particular, W�n�≤ nHJ�n�.
Here comes the surprise: we don’t really need a one-to-one mapping like (12.8),

the simpler “coordinate-sum”

g�w�= �a1−1�+ �a2−1�+ �a3−1�+ � � �+ �ad−1� (12.10)

leads to the new inequality

W�n�k�−1

n−1
≤HJc�n� k�� (12.11)

which turns out to be much more efficient than (12.9).
First we prove inequality (12.11). Let W = HJc�n� k� · �n− 1�, and let 


be an arbitrary k-coloring of the interval �0�W� = 0�1�2� � � � �W�; we want to
show that there is a monochromatic n-term arithmetic progression in �0�W�.
Consider the d-dimensional hypercube �n�d with d = HJc�n�, where, as usual,
�n� = 1�2� · · · � n�. Let w = �a1� a2� · · · � ad� ∈ �n�d be an arbitrary point in the
hypercube. We can define a color of point w as the 
-color of the coordinate-sum
(see (12.10))

g�w�= �a1−1�+ �a2−1�+ �a3−1�+ � � �+ �ad−1��
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We refer to this particular k-coloring of hypercube �n�d as the “lift-up of 
.” Since
the dimension of the hypercube is d=HJc�n�, there is a monochromatic combina-
torial line in �n�d (monochromatic in the “lift-up of 
”). Thus the coordinate sums
of the n points on the line form a 
-monochromatic n-term arithmetic progression
in �0�W�. This completes the proof of (12.11). �
If n is a prime, then Berlekamp’s bound W�n� > �n− 1�2n−1 (see (11.10),

combined with (12.11), gives

HJc�n�≥ 2n−1� (12.12′)

and, in general, for arbitrary n, the Erdős–Lovász boundW�n�≥ 2n−3/n (see (11.9))
implies

HJc�n�≥ 2n−3

n2
� (12.12′ ′)

Lower bounds ((12.12′))–((12.12′ ′)) represent a big improvement on Theorem 12.3.
How about HJ�n�? Can we prove a similar exponential lower bound? The answer

is yes, and we are going to employ the quadratic coordinate sum

Q�w�= �a1−1�2+ �a2−1�2+ �a3−1�2+ � � �+ �ad−1�2� (12.13)

where w= �a1� a2� · · · � ad�∈ �n�d. Notice that the old linear function g (see (12.10))
has a handicap: it may map a whole n-in-a-line (geometric line) into a single
integer (as a “degenerate n-term arithmetic progression”). The quadratic function
Q in (12.13) basically solves this kind of problem, but it leads to a minor technical
difficulty: the Q-image of a geometric line is a quadratic progression (instead of
an arithmetic progression). We pay a small price for this change: the set of n-term
arithmetic progressions is a 2-parameter family, but the set of n-term quadratic
progressions is a 3-parameter family. Also an n-term quadratic progression is a
multiset with maximum multiplicity 2 (since a quadratic equation has 2 roots),
representing at least n/2 distinct integers (another loss of a factor of 2). After this
outline, we can easily work out the details as follows.
Any geometric line can be encoded as a string of length d over the alphabet

� = 1�2� · · · � n� x� x∗� (where x∗ represents “reverse x”) with at least one x or
x∗. The n points P1, P2,� � �, Pn constituting a geometric line can be obtained by
substituting x= 1�2� � � � � n and x∗ = n+1−x= n�n−1� � � � �1. If the encoding of
a geometric line L contains a occurences of symbol x and b occurences of symbol
x∗, and L = P1�P2� � � � � Pn� where Pi arises by the choice x = i, the sequence
Q�P1�, Q�P2�, Q�P3�,� � �, Q�Pn� (see (12.13)) has the form

a�x−1�2+b�n−x�2+c= �a+b�x2−2�a+bn�x+�c+a+bn2� as x= 1�2� � � � � n�
(12.14)
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Let W = HJ�n� · �n− 1�2; the quadratic sequence (12.14) falls into the interval
�0�W�. A quadratic sequence Ax2+Bx+C with x = 1�2� � � � � n is called a n-term
non-degenerate quadratic progression if A�B�C are integers and A �= 0.
Motivated by van der Waerden’s Theorem, we define Wq�n� to be the least inte-

ger such that any 2-coloring of �0�Wq�n�− 1� = 0�1�2� � � � �Wq�n�− 1� yields
a monochromatic n-term non-degenerate quadratic progression. We prove the
following inequality (an analogue of (12.11))

Wq�n�−1

�n−1�2
≤HJ�n�� (12.15)

In order to prove (12.15), let W = Wq�n�− 1 and let 
 be an arbitrary 2-
coloring of the interval �0�W� = 0�1�2� � � � �W�. We want to show that there is
a monochromatic n-term non-degenerate quadratic progression in �0�W�. Consider
the d-dimensional hypercube �n�d with d = HJ�n�, where �n�= 1�2� · · · � n�. Let
w = �a1� a2� · · · � ad� ∈ �n�d be an arbitrary point in the hypercube. We can define
a color of point w as the 
-color of the quadratic coordinate sum (see (12.13))

Q�w�= �a1−1�2+ �a2−1�2+ �a3−1�2+ � � �+ �ad−1�2�

We refer to this particular 2-coloring of hypercube �n�d as the “lift-up of 
.” Since
the dimension of the hypercube is d =HJ�n�, there is a monochromatic geometric
line in �n�d (monochromatic in the “lift-up of 
”). Thus the quadratic coordinate
sums of the n points on the line form a 
-monochromatic n-term non-degenerate
quadratic progression in �0�W�. This completes the proof of (12.15).

Next we need a lower bound for Wq�n�; the following simple bound suffices for
our purposes

Wq�n�≥
2n/4

3n2
� (12.16)

Lower bound (12.16) is an easy application of Theorem 11.4 (“Erdős-Lovász
2-Coloring Theorem”). Indeed, first note that an n-term non-degenerate quadratic
progression Ax2+Bx+C represents at least n/2 different integers (since a quadratic
polynomial has at most 2 real roots). Three different terms “almost” determine
an n-term quadratic progression; they determine less than n3 n-term quadratic
progressions. Thus, any n-term non-degenerate quadratic progression contained in
�1�W�, whereW =Wq�n�, intersects fewer than n

4 ·W 2 other n-term non-degenerate
quadratic progressions in �1�W�. It follows that

8n4 ·W 2 > 2n/2� (12.17)

indeed, otherwise Theorem 11.4 applies, and yields the existence of a 2-coloring of
�1�W� with no monochromatic n-term non-degenerate quadratic progression, which
contradicts the choice W =Wq�n�. (12.17) implies (12.6).
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Combining (12.15) and (12.16) we obtain

HJ�n�≥ 2n/4

3n4
� (12.18)

(12.18) is somewhat weaker than (12.12), but it is still exponential, representing a
big improvement on Theorem 12.3.

Remark.
Inequality (12.11) (using the linear mapping (12.10)) is a short lemma in Shelah’s
paper (is it folklore in Ramsey Theory?). The similar but more complicated (12.15)–
(12.17) (using the quadratic mapping (12.13)) seems to be a new result; it is an
unpublished observation due to me and my Ph.D. student Sujith Vijay (Rutgers
University).

Note that Berlekamp’s explicit algebraic construction – W�n� > �n− 1�2n−1

if n is a prime – was a Proper Halving 2-Coloring. The proof of the Erdős–
Lovász 2-Coloring Theorem, on the other hand, does not provide a Proper Halving
2-Coloring (and it is not clear at all how to modify the original proof to get a
Proper Halving 2-Coloring). This raises the following natural question. Is it true
that HJ1/2�n� (involving halving 2-colorings) is also (at least) exponentially large?
The answer is, once again, “yes.” One possible way to prove it is to repeat the proofs
of (12.12) and (12.18) with rainbow 3-colorings instead of proper 2-colorings, and
to apply the following (almost trivial) general fact (see Remark (c) after the Local
Lemma at the end of Section 11):

Rainbow Fact: If F is an arbitrary finite hypergraph such that it has a rainbow
3-coloring, then it also has a Proper Halving 2-Coloring (i.e. the two color classes
have equal size).
Another (more direct) way to prove an exponential lower bound for the halving

Hales–Jewett number is to apply the following inequality

HJ1/2�n�≥HJ�n−2�� (12.19)

Inequality (12.19), due to W. Pegden, is “hypercube-specific”; it does not extend
to a general hypergraph result like the Rainbow Fact above.
In fact, the following slightly stronger version of (12.19) holds

HJ∗
1/2�n�≥HJ�n−2�� (12.20)

whereHJ ∗
1/2�n� is the largest dimension d0 such that for any d<d0 the n

d hypercube
has a Proper Halving 2-Coloring (proper means that there is no monochromatic
geometric line). We recall that HJ1/2�n� denotes the least integer d such that in each
halving 2-coloring of nd there is a monochromatic geometric line (i.e. n-in-a-line).
Trivially, HJ1/2�n� ≥ HJ ∗

1/2�n�, and we cannot exclude the possibility of a strict
inequality HJ1/2�n� > HJ ∗

1/2�n� for some n. This means the halving Hales–Jewett
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number is possibly(!) a “fuzzy threshold,” unlike the ordinary Hales–Jewett number
HJ�n� (where there is a critical dimension d0 such that for every 2-coloring of nd

with d≥ d0 there is always a monochromatic geometric line, and for every nd with
d < d0 there is a 2-coloring with no monochromatic geometric line; in the halving
case we cannot prove the existence of such a critical dimension).

By adding the trivial upper bound to (12.19)–(12.20) we have

HJ�n�≥HJ1/2�n�≥HJ ∗
1/2�n�≥HJ�n−2�� (12.21)

Here is Pegden’s strikingly simple proof of (12.20). The idea is to divide the
nHJ�n−2�−1 hypercube into subcubes of the form �n− 2�j , j ≤ HJ�n− 2�− 1, and
color them independently. We make use of the Hales–Jewett linear lower bound
(see Theorem 12.1)

HJ�n�≥ n� (12.22)

The “large dimension” (see (12.22)) guarantees that most of the volume of the
hypercube nHJ�n−2�−1 lies on the “boundary”; this is why we can combine the
proper 2-colorings of the subcubes �n−2�j , j ≤ HJ�n−2�−1 to obtain a Proper
Halving 2-Coloring of the whole.
The exact details go as follows. Let H = �n�d where d = HJ�n− 2�− 1 and

�n�= 1�2� � � � � n�; so there is a Proper 2-Coloring for the “center” �n−2�d ⊂ H .
We need to show that there is a Proper Halving 2-Coloring of H . We divide H into
subcubes of the form �n−2�j , 0 ≤ j ≤ d: for each “formal vector”

v = �v1� v2� � � � � vd� ∈ 1� c�n�d

(here “c” stands for “center”) we define the sub-hypercube Hv as the set of of all
�a1� a2� � � � � ad� ∈H satisfying the following two requirements:

(1) ai = 1 if and only if vi = 1;
(2) ai = n if and only if vi = n.

Then Hv is of size �n−2�j , where the dimension j = dim�Hv� is the number of
coordinates of v equal to c, and the Hvs form a partition of H by mimicking the
binomial formula

nd = ��n−2�+2�d = �n−2�d+
(
d

1

)
2 · �n−2�d−1+

(
d

2

)
22 · �n−2�d−2+ � � �+2d�

(12.23)
Notice that H�c�����c� is the “center” of H ; by assumption H�c�����c� has a Proper
2-Coloring.

Call Hv degenerate if its dimension j = 0; these are the 2d “corners” of
hypercube H .

The following fact is readily apparent.
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Simple proposition: For any geometric line L (n-in-a-line) in H = nd, there is
some non-degenerate subhypercube Hv ⊂ H such that the intersection L∩Hv is a
geometric line (�n−2�-in-a-line) in Hv (considering Hv as an �n−2�j hypercube).
The Simple Proposition implies that any 2-coloring of H which is improper (i.e.
there is a monochromatic line) must be improper in its restriction to a non-degenerate
sub-hypercube Hv.

As we said before, the “center” H�c�����c� ⊂ H has a Proper 2-Coloring; we use
the colors X and O (like in an ordinary Tic-Tac-Toe play). Let the proportion of
Xs in the coloring be �0; we can assume that �0 ≥ 1/2. Considering all �d− 1�-
dimensional “slices” of the “center” H�c�����c�, the average proportion of Xs is �0,
so the maximum proportion of Xs, denoted by �1, is greater or equal to �0. It
follows that the �n−2�d−1 sub-hypercubes of H can be properly 2-colored with an
�1 fraction of Xs (or Os; we can always flip a coloring!). Thus, inductively, we
find a non-decreasing sequence

1/2 ≤ �0 ≤ �1 ≤ � � �≤ �d = 1

of “proportions” so that for 0≤ j ≤ d, each �n−2�j sub-hypercube can be properly
2-colored with an �d−j fraction of Xs. For each �n− 2�j sub-hypercube we have
two options: either we keep this proper 2-coloring or we flip. By using this freedom,
we can easily extend the proper 2-coloring of the “center” H�c�����c� ⊂H to a Proper
Halving 2-Coloring of H as follows. Let

Ak =
⋃

dim�Hv�≥d−k

Hv�

By induction on k (as k = 0�1�2� � � � � d), we give a 2-coloring 
 of H , which is
proper on each of the subhypercubes Hv ⊂ Ak and

disc�
�Ak�≤ �2�k−1� · �n−2�d−k� (12.24)

where disc�
�Ak� denotes the discrepancy, i.e. the absolute value of the difference
between the sizes of the color classes. Notice that 2�k − 1 = �k − �1−�k� and
�n−2�j is the volume of a j-dimensional Hv.

At the end, when k= d, coloring 
 will be a Proper Halving 2-Coloring (indeed,
the color classes on all of H will differ by at most �2�d −1� · �n−2�d−d = 1).

(12.24) is trivial for k= 0: on A0 =H�c�����c� (the “center”) our 2-coloring 
 is the
above-mentioned proper 2-coloring of the “center” with X-fraction �0.

Next comes the general induction step: let (12.24) be satisfied for some �k−1�≥
0. The number Nd−k of sub-hypercubes Hv of dimension �d−k� is

(
d

k

)
2k (binomial

theorem: see (12.23)), so by d = HJ�n− 2�− 1 and (12.22), Nd−k ≥ 2d ≥ n− 2.
Thus since �k ≥ �k−1, we have

Nd−k · �2�k−1� · �n−2�d−k ≥ �2�k−1−1� · �n−2�d−�k−1� ≥ disc�
�Ak−1�� (12.25)
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In view of inequality (12.25) we have room enough to extend 
 from Ak−1 to Ak by
coloring a suitable number of the Hv of dimension �d−k� with an �k-fraction of
Xs, and the rest with an �k-fraction of Os (“we flip the coloring”). This completes
the induction proof of (12.24), and (12.20) follows.

We summarize these results in a single theorem (see (12.18) and (12.20).

Theorem 12.4 We have

HJ�n�≥HJ1/2�n�≥HJ ∗
1/2�n�≥HJ�n−2�≥ 2�n−2�/4

3n4
� (12.26)

The line in (12.26) can be extended by the “game numbers”

HJ�n�≥HJ1/2�n�≥HJ ∗
1/2�n�≥ w�n–line�≥ ww�n–line�� (12.27)

(12.27) is trivial, because a Strong Draw strategy of the second player – in fact,
any drawing strategy! – yields the existence of a drawing terminal position, i.e. a
Proper Halving 2-Coloring (indeed, the first player can “steal” the second player’s
strategy).

Here comes the surprise: a trivial application of Theorem 1.2 (Weak Win
criterion) gives the upper bound

log2
2

n2 ≥ ww�n–line� (12.28)

(We challenge the reader to prove this; we give the details at the beginning of
Section 13), so comparing (12.26) and (12.28) we have (assuming n is large)

HJ∗
1/2�n�≥

2�n−2�/4

3n4
>

log2

2
n2 ≥ ww�n–line�� (12.29)

i.e. asymptotically the Ramsey threshold HJ∗
1/2�n� is (at least) exponential and the

Weak Win threshold ww(n–line) is (at most) quadratic. Roughly speaking, Ramsey
Theory has nothing to do with Weak Win!

Inequality (12.29) leads to some extremely interesting problems; the first one
was already briefly mentioned at the end of Section 5.
Delicate win or delicate draw? A wonderful question! In Section 5, we intro-
duced a classification of the family of all finite hypergraphs: we defined Classes
0–5. Perhaps the two most interesting classes are

Class 2 (“Forced win but Drawing Position exists: delicate win”): It contains
those hypergraphs F which have a Drawing Position, but the first player
can nevertheless force a win.

Class 3 (“Delicate Draw”): It contains those hypergraphs F for which the Posi-
tional Game is a Draw but the first player can still force a Weak Win (the
Full Play Convention applies!).
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The 43 Tic-Tac-Toe (“Cubic”) is the only nd game in Class 2 that we know, and
the ordinary 32 Tic-Tac-Toe is the only nd game in Class 3 that we know. Are there
other examples? This is exactly Open Problem 5.4:
Is it true that each hypergraph class contains infinitely many nd games? The
unknown cases are Class 2 and Class 3.

What (12.29) implies is that the union of Class 2 and Class 3 is infinite. Indeed,
each nd Tic-Tac-Toe with dimension

HJ ∗
1/2�n� > d ≥ ww�n–line� (12.30)

belongs to either Class 2 or Class 3: if it is a first player win, the game belongs to
Class 2; if it is a draw game, then it goes to Class 3. Of course, (12.29) implies
that the range (12.30) is non-empty; in fact, it is a very large range (if n is large).
Unfortunately, we cannot decide which class (Class 2 or Class 3) for any single
game in the range (12.30); this is a wonderful open problem!
By (12.27)

HJ ∗
1/2�n�≥ w�n–line�≥ ww�n–line��

and by (12.29) the Ramsey threshold HJ ∗
1/2�n� is (at least) exponential and the

Weak Win threshold ww(n–line) is (at most) quadratic. Where does the ordinary
win threshold w(n–line) fall? Is it (at least) exponential or polynomial? We don’t
have a clue; this is another totally hopeless question.

Open Problem 12.1

(a) Which order is the right order of magnitude for w(n–line): (at least) exponential
or polynomial?

(b) For every nd Tic-Tac-Toe, where the dimension d = d�n� falls into range
(12.30), decide whether it belongs to Class 2 or Class 3.

4. The 3 basic categories of the book: Ramsey Theory, Game Theory (Weak
Win), and Random Structures. Let’s leave inequality (12.29), and compare The-
orems 12.3 and 12.4: the reader is justly wondering: “why did we bother to prove
Theorem 12.3 when Theorem 12.4 (and (12.12) for combinatorial lines) is so much
stronger?” Well, the reason is that the proof of Theorem 12.3 can be adapted to the
Weak Win threshold ww(n–line), and it gives a nearly best possible game-theoretic
result! Theorem 12.5 below is the game-theoretic analogue of Theorem 12.3 (the
lower bounds).

Theorem 12.5 We have:

(a) log2
2 n2 ≥ ww�n–line�≥ ( log2

16 +o�1�
)

n2

logn � �12�31�

(b) �log2�n2 ≥ ww�comb� n–line�≥ ( log2
8 +o�1�

)
n2

logn �
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Theorem 12.5 could not determine the true order of magnitude of the “phase
transition” from Weak Win to Strong Draw, but it came pretty close to that: we
proved an inequality where the upper and lower bounds differ by a mere factor of
logn.

Open Problem 12.2 Which order of magnitude is closer to the truth in
Theorem 12.5, n2/ logn (“the lower bound”) or n2 (“the upper bound”)?

We believe that the upper bound is closer to the truth. In fact, we guess that in the
nd hypercube Tic-Tac-Toe the phase transition from Weak Win to Strong Draw
happens at d = d�n� = ��log2�n2 − n logn�/2+O�n� (see formula (9.2), and its
application after that).

Now let’s return to (12.26): the exponential lower bound

HJ∗
1/2�n�≥

2�n−2�/4

3n4

means that the dimension d = d�n� can be exponentially large (in terms of n)
and it is still possible to have a Draw Play in nd Tic-Tac-Toe (if the two players
cooperate).

On the other hand, by Theorem 12.5 Weak Win can be forced when the dimension
d= d�n� is roughly quadratic. If a player has a Weak Win strategy, then of course
he can prevent a Draw (he can always occupy a winning set: if he does it first, he
has an ordinary win; if the opponent does it first, the opponent has an ordinary win).

The third natural category is the majority outcome: what happens in the over-
whelming majority of the nd Tic-Tac-Toe plays? A very good approximation of the
random play is the Random 2-Coloring. The expected number of monochromatic
n-in-a-lines in a Random 2-Coloring of the nd board is exactly

2 · �n+2�d −nd

2
·
(
1
2

)n

�

which undergoes a rapid change from “much less than 1” to “much larger than 1”
in the sharp range d = �1+ o�1��n/ log2 n. Since a “reasonable” random variable
is “close” to its expected value, it is easy to prove precisely that in the range
d≥ �1+o�1��n/ log2 n the overwhelming majority of nd Tic-Tac-Toe plays have a
winner, and in the range d ≤ �1−o�1��n/ log2 n the overwhelming majority of nd

Tic-Tac-Toe plays end in a draw.
This gives us a clear-cut separation of the 3 basic categories of the book: Ramsey

Theory, Game Theory (Weak Win), and Random Structures. In nd Tic-Tac-Toe

(1) the Ramsey threshold is (at least) exponential;
(2) the Weak Win threshold is roughly quadratic; and, finally,
(3) the phase transition for the Majority Outcome happens in a sublinear range.
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The bottom line is that Weak Win and the Majority Outcome are closely related
but different, and Ramsey Theory has nothing to do with Weak Win. How about
ordinary win? Is ordinary win more related to Ramsey Theory? No one knows!
Let’s return to Theorem 12.5 one more time. Switching to the inverse function,

inequality (12.5) can be expressed in terms of the corresponding Achievement
Number as follows

√
2/ log2

√
d ≤ A�d−dim� cube� line�≤ �1+o�1��

√
32/ log2

√
d logd� (12.32)

and exactly the same bounds for the Avoidance Number A(d–dim. cube; line; –).

5. Winning planes. Inequality (12.32) is not too elegant, certainly not as elegant
as the exact results Theorem 6.4 and Theorem 8.2 about “quadratic” goal-sets.
What is the quadratic version of a “winning line”? Of course, a “winning plane”!
First switch from the nd hypercube to the nd Torus – because we want a degree-
regular hypergraph! – and define the concept of a combinatorial plane, which is
the simplest kind of a “plane.” Intuitively a combinatorial plane, or Comb-Plane
for short, is a “2-parameter set.”
A Comb-Plane S in the nd Torus is formally defined by a point P ∈ S and two

non-zero vectors v = �a1� � � � � ad� and w = �b1� � � � � bd�, where each coordinate is
either 0 or 1, and aibi = 0 for i= 1� � � � � d (i.e. the non-zero coordinates in v and w
form two disjoint non-empty sets); the n2 points of Comb-Plane S are P+kv+ lw,
where k and l independently run through 0�1� � � � � n−1.

In other words, every Comb-Plane S in the nd Torus can be described by a single
vector u = �u1� � � � � ud�, where each ui is either a constant ci, or ci +x, or ci + y,
and the last two cases both occur – x and y are the two defining parameters, which
independently run through 0�1� � � � � n−1, and the “addition” is modulo n (“torus”).
For example, the �3+x�14�2+ y�2511�2+x� Comb-Plane in the 59 Torus means
the following 5× 5 lattice, where in each string the single “asterisk” ∗ means 14
and the “double star” �� means 2511:

3∗2 ��2 3∗3��2 3∗4��2 3∗5��2 3∗1��2
4∗2 ��3 4∗3��3 4∗4��3 4∗5��3 4∗1��3

5∗2 ��4 5∗3��4 5∗4��4 5∗5��4 5∗1��4
1∗2 ��5 1∗3��5 1∗4��5 1∗5��5 1∗1��5

2∗2 ��1 2∗3��1 2∗4��1 2∗5��1 2∗1��1

If P = �c1� � � � � cd� is an arbitrary point of the nd Torus, then the number of
Comb-Planes S containing point P equals half of the number of all 0� x� y�-
strings of length d where both parameters x and y show up (“half” because the
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substitution x= y doesn’t change the plane). A simple application of the Inclusion–
Exclusion principle gives the answer: �3d−2d+1+1�/2. Since the Maximum Degree
is �3d − 2d+1+ 1�/2, the total number of Comb-Planes in the nd Torus is clearly
�3d−2d+1+1�nd−2/2.
Given a fixed dimension d, what is the largest value of n such that Maker can

occupy a whole n×n Comb-Plane in the nd Torus? The largest value of n is, of
course, the Achievement Number A�d−dim� torus� comb� plane�, and A(d–dim.
torus; comb. plane; –) is the Avoidance Number.

Theorem 12.6 We have

A�d−dim� torus� comb� plane�=
⌊√

log23
√
d+o�1�

⌋
�

and the same for the Avoidance Number.

This is another exact result.
Let me return to ordinary win one more time. We gave up on this concept as

completely hopeless (see Sections 3–5, a collection of hopeless open problems),
and switched to Weak Win. The Meta-Conjecture – the main issue of the book – is
about Weak Win. Nevertheless here we discuss a new concept that is about halfway
between ordinary win and Weak Win; we call it second player’s moral victory.
To motivate this new concept, we give first a quick application of Theorem 5.1
(“Strategy Stealing”); this simple but elegant application is the joint effort of my
graduate class (the main credit goes to W. Pegden).

6. The second player can always avoid a humiliating defeat! A soccer score of
5–4 reflects a good, exciting match, but a score of 7–2 indicates a one-sided match,
where one team was much better than the other (“humiliating defeat”). The score of
n-�n−2� (or an even bigger gap) motivates the following concept. For simplicity,
assume that F is an n-uniform hypergraph, and the two players are playing the
usual alternating (1:1) game. We say that the first player has a Humiliating Victory
Strategy if he can always occupy a whole n-element winning set in such a way that,
in the moment of complete occupation, the opponent has at most �n−2� marks in
any other winning set. Let Str denote a first player’s Humiliating Victory Strategy
on a finite n-uniform hypergraph F with board set V ; we are going to derive a
contradiction as follows.

Let x1 be the optimal opening move of the first player by using strategy Str.
Let F \ x1� be the truncated subhypergraph with points V \ x1� and winning sets
A \ x1�, where A ∈ F . Notice that if the first player has a Humiliating Victory
Strategy on F , then he has an ordinary winning strategy in the positional game
on F \ x1� as a second player, which contradicts Theorem 5.1. This contradiction
proves that strategy Str cannot exist.

As usual with Theorem 5.1, the argument above does not say a word about how
to avoid a humiliating defeat.
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Now we are ready to discuss the new concept which is much more than merely
avoiding a humiliating defeat.

7. Second player’s moral-victory. To be concrete, consider an �N�n� Van der
Waerden Game. In view of Theorem 6.1 the second player has no chance to occupy
an n-term A.P. first (if the first player plays rationally); similarly, the second player
has no chance to occupy a longer A.P. than his opponent (hint: Strategy Stealing), so
the natural question arises: “What is the best that the second player can hope for?” A
suggestion for the “best” is the following concept of moral-victory: we say that the
second player has a moral-victory in an �N�n� Van der Waerden Game if (1) he can
occupy an n-term A.P. and at the same time (2) he can prevent the first player from
occupying an �n+1�-term A.P. For example, in the �5�2� Van der Waerden Game
the second player does not have a moral-victory, but he does have one in the �4�2�
Van der Waerden Game. Are there infinitely many examples for moral-victory?
Unfortunately we don’t know the answer; this is another hopeless/depressing open
problem.

Open Problem 12.3 Are there infinitely many pairs �N�n� for which the �N�n�

Van der Waerden Game is a second player’s moral-victory?

How come the Ramsey Theory doesn’t help here? For simplicity assume that N
is even, and also assume that the second player uses the following “reflection”
pairing strategy: if first player’s last move was i, then the second player replies by
�N +1− i� (the board is, as usual, �N�= 1�2� � � � �N�). This way at the end of the
play the longest A.P. of the first player and the longest A.P. of the second player
have the same length (reflected copies!); but what guarantees that this common
length is the given n? Unfortunately, nothing guarantees that; the second player has
no control over the play, since he is just a copycat.
The reader was promised a non-trivial result, and here it is; we can solve the

2-dimensional analogue of Open Problem 12.3. The 2-dimensional �N ×N�n×n�

Van der Waerden Game is defined as follows: the board is an N ×N lattice; the
most natural choice is to take the subset

�N�× �N�= �a� b� ∈ ZZ2 � 1≤ a≤ N�1≤ b ≤ N�

of the integer lattice points ZZ2; the winning sets are the n× n Aligned Square
Lattices in N ×N , so the game is the “Cartesian square” of the �N�n� Van der
Waerden Game.
Second player’smoral-victory in the 2-dimensional �N×N�n×n�Van der Waerden
Game means that (1) the second player can occupy an n× n Aligned Square
Lattice, and at the same time (2) he can prevent the first player from occupying an
�n+1�× �n+1� Aligned Square Lattice.
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Theorem 12.7 Let

n1 =
⌊√

log2N +o�1�
⌋

and n2 =
⌈√

log2N +o�1�
⌉

where the two “error terms” o�1� in n1 and n2 both tend to 0 as N → � (the
two o�1�s are not the same!). Playing on an N ×N board, the second player can
occupy an n1×n1 Aligned Square Lattice, and at the same time he can prevent the
first player from occupying an n2×n2 Aligned Square Lattice.

Notice that second player’s strategy in Theorem 12.7 is a moral-victory (i.e. n1 and
n2 are consecutive integers), unless

√
log2N is “very close to an integer,” so close

that, due to the effect of the two different o�1�s, n1 and n2 are not consecutive. But
this is very rare; for the overwhelming majority of N s, the �N ×N�n×n� Van der
Waerden Game is a second player’s moral-victory!

A big bonus is that the proof of Theorem 12.7 supplies an explicit strategy. It
is a potential strategy, not some kind of a “soft” (strategy stealing type) existential
argument.

A byproduct of Theorem 12.7 is that the second player can always prevent the first
player from occupying a larger lattice. This part alone is easy, and goes exactly like
the 1-dimensional case: by using reflection. The handicap of the reflection strategy
is that it says very little about the size, nothing beyond Ramsey Theory. Of course,
Ramsey Theory never guarantees equality; it just gives an inequality. Unfortu-
nately the quantitative bounds that we currently know about the 2-dimensional van
der Waerden Numbers are ridiculously weak (much worse than Gowers’s 5-times
iterated exponential bound in the 1-dimensional case).

8. Summary. Finally, we summarize what we have done so far. The objective
of Chapter II was to formulate the main results of the book. We concentrated on
three “Ramseyish” games: the Clique Game, nd Tic-Tac-Toe, and the Arithmetic
Progression Game. They are the “natural examples” motivated by Ramsey Theory.
The main results fall into 3 groups:

(1) the exact solutions: Theorem 6.4 (“Clique Games”), Theorem 8.2 (“Lat-
tice Games”), Theorem 12.6 (“winning planes”), and Theorem 12.7 (“second
player’s moral victory”);

(2) the asymptotic Theorem 8.1 (“arithmetic progression game”); and
(3) the “nearly asymptotic” Theorem 12.5 (“nd Tic-Tac-Toe”).

In addition, in Chapters IV and VI, we will discuss the discrepancy and biased
versions of these theorems. We will derive all of these concrete results from gen-
eral hypergraph theorems. These general hypergraph theorems (“ugly but useful
criterions”) represent my best efforts toward the Meta-Conjecture.





Part B

Basic potential technique – game-theoretic
first and second moments

Part B is a practice session for the potential technique, demonstrating the enormous
flexibility of this technique.

We look at about a dozen amusing “little” games (similar to the S-building
game in Section 1). There is a large variety of results, starting with straightforward
applications of Theorem 1.2 (“building”) and Theorem 1.4 (“blocking”), and ending
with sophisticated proofs like the 6-page-long proof of Theorem 20.3 (“Hamiltonian
cycle game”) and the 10-page-long proof of Theorem 15.1 (“Kaplansky’s Game”).

The core idea is the mysterious connection between games and randomness.
By using the terms “game-theoretic first moment” and “game-theoretic second
moment,” we tried to emphasize this connection.

The point is to collect a lot of “easy” proofs. To get a “feel” for the subject
the reader is advised to go through a lot of easy stuff. Reading Part B is an ideal
warmup for the much harder Parts C–D.

A reader in a big rush focusing on the exact solutions may skip Part B entirely,
and jump ahead to Sections 23–24 (where the “hard stuff” begins).





Chapter III
Simple applications

The results formulated in the previous chapter (Chapter II) will be proved in
Chapters V–IX, that is, we will need 5 chapters, more than 250 pages! Chapter III
plays an intermediate role: it is a preparation for the main task, and also it answers
some of the questions raised in Section 4. For example, in Section 15 we discuss
an interesting result related to Kaplansky’s n-in-a-line game.

The main goal of Chapter III is to demonstrate the amazing flexibility of the
potential technique on a wide range of simple applications.
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13
Easy building via Theorem 1.2

Some of the statements formulated in Chapter II have easy proofs. So far we proved
two potential criterions, both simple: (1) the Weak Win criterion Theorem 1.2, and
(2) the Strong Draw criterion Theorem 1.4 (“Erdős–Selfridge”). In a few lucky
cases a direct reference to Theorem 1.2 supplies the optimal result.

1. Weak Win in the Van der Waerden Game. A particularly simple example is
the upper bound in Theorem 8.1 (“arithmetic progression game”). We recall the
�N�n� Van der Waerden Game: the board is �N� = �1�2� � � � �N� and the winning
sets are the n-term A.P.s (“arithmetic progressions”) in �N�. The Weak Win part
of Theorem 8.1 is a straightforward application of Theorem 1.2. Indeed, the Max
Pair-Degree 	2 of the hypergraph is clearly ≤ (

n

2

)
, the size of the hypergraph is

�1/2+o�1��N 2/�n−1�, so if(
1
2 +o�1�

)
N 2

n−1

N
>

(
n

2

)
2n−3� (13.1)

then Theorem 1.2 applies, and yields a first player’s Weak Win. Inequality (13.1)
is equivalent to

N > �1+o�1��n3 ·2n−3� (13.2)

which proves the upper bound in Theorem 8.1.

2. Weak Win in hypercube Tic-Tac-Toe. Another straightforward application is
the nd hypercube Tic-Tac-Toe. By Theorem 1.2 and Theorem 3.4, the first player
has a Weak Win if

�n+2�d−nd

2
> 2n−3nd�

which is equivalent to (
1+ 2

n

)d

> 2n−2+1� (13.3)

Inequality (13.3) holds if d > 1
2 �log2� · n2. This proves the upper bound in

Theorem 12.5 (a).

196
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Consider small values of n. Inequality (13.3) holds for the 33, 44, 57, 610, 714,
819, 925, 1031, � � � games, so in these games the first player can force a Weak Win.
Note that 33 and 44 on the list can be replaced by 32 and 43. Indeed, ordinary
Tic-Tac-Toe has an easy Weak Win, and in view of Patashnik’s computer-assisted
work, the 43 game has an ordinary Win (see Patashnik [1980]).
The list of small Weak Win nd games: 32, 43, 57, 610, 714, 819, � � � is complemented

by the following list of known small Strong Draw games: 42, 83, 144, 205, 246, 267,
� � �. There is a big gap between the two lists, proving that our knowledge of the
small nd games is very unsatisfactory.

The case of combinatorial lines goes similarly; the proof of the upper bound in
Theorem 12.5 (b) is left to the reader.

3. Torus Tic-Tac-Toe. A major difficulty of studying the nd hypercube Tic-
Tac-Toe comes from a technical difficulty: from the highly irregular nature of
the nd-hypergraph. The Average Degree of the nd-hypergraph is about (very
roughly) the nth root of the Maximum Degree. This huge difference between
the Average Degree and the Maximum Degree explains why we needed so desper-
ately Theorem 12.2 (“Degree Reduction by Partial Truncation”). Unfortunately the
application of Theorem 12.2 has an unpleasant byproduct: it leads to an “error
factor” of logn that we cannot get rid of.
If we switch to the nd Torus, and consider the family of all “Torus-Lines”

instead of all “geometric lines” in the nd Hypercube, then we obtain a Degree-
Regular hypergraph, and there is no need for any (“wasteful”) degree reduction.
The Degree-Regular family of “Torus-Lines” forms the family of winning sets of
the nd Torus Tic-Tac-Toe. The 82 Torus Tic-Tac-Toe is particularly interesting
because it yields the amusing fact that the Unrestricted 9-in-a-row on the plane is
a draw game (see the beginning of Section 4 and the end of Section 10). This was
the “Fourth Proof” of Theorem 10.1; we employed the following 8×8 matrix

n = 8 :

This 8 by 8 matrix represents is a direction-marking of the 4 ·8= 32 “torus-lines” of
the 8×8 torus. The direction-marks −, �, \, and / mean (respectively) “horizontal,”
“vertical,” “diagonal of slope −1,” and “diagonal of slope 1.” Each one of the 32
torus-lines contains 2 marks of its own direction. The periodic extension of the 8
by 8 matrix over the whole plane (see the picture at the beginning of Section 4)
gives a Pairing Strategy Draw for the unrestricted 9-in-a-row game. Either player
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replies to the opponent’s last move by taking the nearest similarly marked square
in the direction indicated by the mark in the opponent’s last move square.
Let us return to the general case. The nd Torus is an abelian group, implying that

the nd Torus-hypergraph is translation-invariant: all points look alike. The nd torus-
hypergraph is, therefore, degree-regular where every point has degree �3d−1�/2 –
which is, by the way, the same as the degree of the center in the nd hypergraph when
n is odd. So the total number of winning sets (“Torus-Lines”) is �3d − 1�nd−1/2.
Of course, the board size remains nd.

We owe the reader a formal definition of the concept of “Torus-Line”. A Torus-
Line L is formally defined by a point P ∈ L and a vector v = �a1� � � � � ad�, where
each coordinate ai is either 0, or +1, or −1 (1≤ i≤ d). The n points of line L are
P+kv (mod n), where k= 0�1� � � � � n−1�
The combinatorial line version goes as follows: A Comb-Torus-Line L is formally

defined by a point P ∈ L and a vector v = �a1� � � � � ad�, where each coordinate ai

is either 0 or +1 (1 ≤ i ≤ d). The n points of line L are P+ kv (mod n), where
k= 0�1� � � � � n−1�
The nd Comb-Torus-Hypergraph is degree-regular: every point has degree 2d−1

(which is, by the way, the same as the maximum degree of the family of all
combinatorial lines in the nd hypercube). So the total number of winning sets
(“Comb-Torus-Lines”) is �2d−1�nd−1.

A peculiarity of this new “line-concept” is that two different Torus-Lines may
have more than one point in common! The figure below shows two different
Torus-Lines with two common points in the 42 torus game.

We prove that this “pair-intersection” cannot happen when n is odd, and if n is
even, then it can happen only under very special circumstances.
For Comb-Torus-Lines, however, there is no surprise.

Lemma on Torus-Lines

(a) Any two different Torus-Lines have at most one common point if n is odd, and
at most two common points if n is even. In the second case the distance between
the two common points along either Torus-Line containing both is always n/2.

(b) Any two different Comb-Torus-Lines have at most one common point.
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The proof of (a) goes as follows. Let L1 and L2 be two different Torus-Lines
with (at least) two common points P and Q. Then there exist k� l�v�w with 1 ≤
k� l≤ n−1�v= �a1� � � � � ad��w= �b1� � � � � bd� (where ai and bi are either 0, or +1,
or −1 �1≤ i≤ d�), v �= ±w, such that Q≡ P+kv≡ P+ lw (mod n). It follows that
kv≡ lw (mod n), or equivalently, kai ≡ lbi (mod n) for every i= 1�2� � � � � d. Since
ai and bi are either 0, or +1, or −1 (1 ≤ i ≤ d)), the only solution is k= l = n/2
(no solution if n is odd).
We leave the proof of (b) to the reader. �

What can we say about the two-dimensional n2 torus game? Well, we know a lot;
we just demonstrated that the 82 torus game is a Pairing Strategy Draw, and this is a
sharp result (since the Point/Line ratio of the 72 torus is 49/28= 7/4; i.e. less than 2).
The Erdős–Selfridge Theorem applies if 4n+ 4 < 2n, which gives that the n2

torus game is a Strong Draw for every n ≥ 5. The 42 torus game is also a draw
(mid-size “case study”), but I don’t know any elegant proof. On the other hand, the
32 Torus Game is an easy first player’s win.

Next consider the three-dimensional n3 Torus Game. The Erdős–Selfridge Theo-
rem applies if 13n2+13< 2n, which gives that the n3 torus game is a Strong Draw
for every n ≥ 11. We are convinced that the 103 Torus Game is also a draw, but
we don’t know how to prove it.

We have the following torus version of Theorem 12.5:

Theorem 13.1 We have:

(a) ww�n− line in torus�=
(

log2
log3 +o�1�

)
n�

(b) ww�comb� n− line in torus�= �1+o�1��n�

A quantitative form of lower bound (a) is ww�n−line in torus� ≥
(

log2
log3

)
n−

O�
√
n logn�, and the same error term for (b). This is complemented by the quanti-

tative upper bound ww�n−line in torus�≥
(

log2
log3

)
n+O�logn�, and the same error

term for (b).
The upper bounds (“Weak Win”) in (a) with odd n and (b) immediately follow

from Theorem 1.2 (using “Almost Disjointness”).
In sharp contrast, the remaining case “(a) with even n” is far less easy! Not only

that the nd-Torus-hypergraph is notAlmost Disjoint, but the Max Pair-Degree of this
hypergraph is exponentially large (namely 2d−1), which makes Theorem 1.2 simply
useless for this case. Indeed, let P be an arbitrary point of the nd Torus, and let Q
be another point such that the coordinates of P are all shifted by n/2 (modulo n,
of course): Q= P+n/2 (mod n), where n/2= �n/2� n/2� � � � � n/2�; then there are
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exactly 2d−1 Torus-Lines containing both P andQ. This 2d−1 is in fact the Max Pair-
Degree. An application of Theorem 1.2 gives that, if �F �/�V � = 3d−1/n> 2n−3 ·2d−1,
then the first player can force a Weak Win; that is

d ≥
(

log2
log3− log2

+o�1�
)
n

suffices for Weak Win. This bound is clearly weaker than what we stated in (a);
Theorem 1.2 is grossly insufficient.

4. Advanced Weak Win Criterion with applications. Instead of Theorem 1.2
we need to apply a much more complicated criterion (Beck [2002c]), see below.
We need some new notation. Let F be an arbitrary finite hypergraph; for arbitrary

integer p ≥ 2 define the “big hypergraph” Fp
2 as follows

Fp
2 =

{
p⋃

i=1

Ai 
 �A1� � � � �Ap� ∈
(F
p

)
�

∣∣∣∣∣
p⋂

i=1

Ai

∣∣∣∣∣≥ 2

}
�

Ap

A3

A2

A1

a hyperedge
in � 2

p

In other words, Fp
2 is the family of all union sets

⋃p
i=1Ai, where �A1� � � � �Ap�

runs over all unordered p-tuples of distinct elements of F having at least 2 points
in common. Note that even if F is an ordinary uniform hypergraph, i.e. a set
has multiplicity 0 or 1 only, and every set has the same size, Fp

2 may become a
non-uniform multi-hypergraph (i.e. a “big set” may have arbitrary multiplicity, not
just 0 and 1, and the “big hypergraph” fails to remain uniform). More precisely, if
�A1� � � � �Ap� is an unordered p-tuple of distinct elements of F and �A′

1� � � � �A
′
p� is

another unordered p-tuple of distinct elements of F , �⋂p
i=1Ai� ≥ 2� �⋂p

j=1A
′
j� ≥ 2�

and
⋃p

i=1Ai =
⋃p

j=1A
′
j� i.e.

⋃p
i=1Ai and

⋃p
j=1A

′
j are equal as sets, then they still

represent distinct hyperedges of the “big hypergraph” Fp
2 .

For an arbitrary hypergraph �V�H� write

T�H�= ∑
A∈H

2−�A��

If a set has multiplicity (say) M , then, of course, it shows up M times in the
summation.
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Advanced Weak Win Criterion. If there exists a positive integer p≥ 2 such that

T�F�

�V � > p+4p
(
T�Fp

2 �
)1/p

�

then in the Positional Game on hypergraph �V�F� the first player can force a
Weak Win.

At first sight this criterion is completely “out of the blue,” without any motivation
(“deus ex machina”), hopelessly incomprehensible. The reader is justly wondering:

(i) Where did this criterion come from?
(ii) What was the motivation to conjecture it in the first place?
(iii) How do you prove it?
(iv) Why is this complicated criterion so useful?

One thing is clear though, which gives at least a partial answer to question (ii):
the lower index “2” in Fp

2 is responsible for “controlling the Max Pair-Degree,” and
the hypothesis of the criterion means that a kind of “generalized Max Pair-Degree”
is subtantially less than the Average Degree. This explains why the Advanced Weak
Win Criterion is a kind of “more sophisticated” version of Theorem 1.2.

To get a satisfying answer to questions (i)–(iii) above the reader is referred to
Chapter V; here we answer one question only, namely question (iv), by showing
an application. We apply the Advanced Weak Win Criterion to the the nd-torus-
hypergraph; we denote this hypergraph by F�t� n�d� (n is even). Trivially

T�F�t� n�d��= 3d −1

2
·nd−1 ·2−n and �V � = nd�

To estimate the more complicated sum T
(
�F�t� n�d��

p
2

)
, where p ≥ 2, we begin

with a simple observation (we recommend the reader to study the proof of the
“Lemma on Torus-Lines” again).

Observation: Let P and Q be two arbitrary points of the nd Torus, and let k denote
the number of coordinates of P−Q (mod n), which are different from zero. If these
k coordinates are all equal to n/2, then the number of Torus-Lines containing both
P and Q is exactly 2k−1; otherwise there is at most one Torus-Lines containing both
P and Q.

It follows from this Observation that

T
(
�F�t� n�d��

p
2

)≤ nd

(
d∑

k=1

(
d

k

)(
2k−1

p

)
2−pn+2�p2�

)
<

<
nd

2pn−p2

(
d∑

k=0

(
d

k

)
�2p�k

)
= nd

2pn−p2
�1+2p�d <

3pdnd

2p�n−p�
� (13.4)
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Let d0 be the least integer such that 3d0 ≥ n22n+1; this means d0 = �log2/ log3�n+
O�logn�. By choosing p= p0 = �2/ log3� logn+O�1� and d= d0, in view of (13.4)
we obtain that both inequalities below

T�F�t� n�d��

�V � ≥ n (13.5)

and (
T
(
�F�t� n�d��

p
2

))1/p ≤ 3nd/p

2n−p
< 1 (13.6)

hold at the same time. (13.5) and (13.6) together imply that the Advanced Weak
Win Criterion applies, and guarantees a first player’s Weak Win in the nd0 Torus
game. Finally note that, if d > d0, then the application of the Advanced Weak
Win Criterion is even simpler; the trivial calculations we left to the reader. This
completes the proof of the upper bound in Theorem 13.1 “(a) with even n.”

Square Lattice Games. Next consider the Weak Win part of Theorem 8.2 in the
special cases (a) and (c): “aligned” and “tilted” Square Lattices. These two cases
are exceptionally easy: we don’t need the Advanced Weak Win Criterion, the much
simpler Theorem 1.2 suffices. Indeed, the Max Pair-Degree 	2 of the family of q×q

Aligned Square Lattices in an N×N board has the easy upper bound 	2 ≤
(
q2

2

)
< q4

2 ,
which is independent of N . So Theorem 1.2 and (16.3) imply a Weak Win if

N 3

3�q−1�
> N 2 ·2q2−3 ·	2�

which follows from

N > 2q
2−4 ·3q5� (13.7)

Similarly, the Max Pair-Degree 	2 of the family of q×q tilted Square Lattices
on an N ×N board is less than q4 (“independent of N”). To apply Theorem 1.2 we
need a lower bound on the number of q×q tilted Square Lattices on N ×N

tilte
d

square lattic
e

N × N board

N
4

N
4

N
4(q − 1)
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the lower bound (
N

4

)2

· 1
2

(
N/4
q−1

)2

= N 4

29�q−1�2

is trivial from the picture. So Theorem 1.2 applies if

N 4

29�q−1�2
> N 2 ·2q2−3 ·q4 > N 2 ·2q2−3 ·	2�

which is guaranteed by the inequality

N 2 > q6 ·2q2+6� (13.8)



14
Games beyond Ramsey Theory

We show more applications of Theorem 1.2. Previously we have discussed the
connections and similarities between Ramsey Theory and games such as Tic-Tac-
Toe. Here the differences are studied. One possible interpretation of “games beyond
Ramsey Theory” is to show games for which theWeakWin Number is much smaller
than the corresponding Ramsey Number; we have already done this in Theorem 6.3.
Another possibility, and this is what we are going to do here, is to show games for
which Ramsey Theory fails to give anything, i.e. there is no Ramsey phenomenon
whatsoever, but Theorem 1.2 (or its adaptation) still gives very interesting results.
In other words, we demonstrate that the Weak Win world goes far beyond the
Ramsey world.

a 4−consecutive

1. n-in-a-row with arbitrary slopes. The game of Unrestricted n-in-a-row on
the plane was introduced in Section 4, and was discussed in detail at the end of
Section 10; here we consider the following modification: the players occupy lattice
points instead of “little squares,” and n-in-a-row means n consecutive lattice points
on an arbitrary straight line; the novelty is that every rational slope is allowed,

204
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not just the four Tic-Tac-Toe directions. To prevent confusion “n consecutive
lattice points on an arbitrary straight line” will be called n-consecutive (instead of
n-in-a-row).

First, the reader is challenged to solve the following:

Exercise 14.1 Show that there is no Ramsey phenomenon for n consecutives: it is
possible to 2-color the set of integer lattice points in the plane in such a way that
every 100 consecutive contains both colors.

Of course, “100” is just an accidental large constant. The correct value is actually
known: it is 4; this elegant result is due to Dumitrescu and Radoicic [2004], but it
is easier to solve the exercise with a large constant like 100.

Even if “Ramsey phenomenon” fails here, we can still prove a “game theorem”:
playing on an N ×N board Maker can have a whole n-consecutive with arbitrar-
ily large n up to n = �2− o�1��log2N . The proof is a straightforward application
of Theorem 1.2. Indeed, for simplicity assume that the lower-left corner of the
N ×N board is the origin. The set ��k+ ja� l+ jb� ∈ ZZ2 
 j = 0�1�2� � � � � n− 1�
gives n consecutive lattice points on a line inside the N ×N square if a and
b are coprime, 0 ≤ k ≤ N/2, 0 ≤ l ≤ N/2, 1 ≤ a ≤ N

2n , and 1 ≤ b ≤ N
2n ; we

call this n-set a �k� l� a� b�-set. Let F denote the family of all �k� l� a� b�-sets
defined above. F is an n-uniform hypergraph; the board size �V � = N 2; and
because the hyperedges are “intervals,” the Max Pair-Degree 	2 = 	2�F� is
exactly 2�n− 2�. (Indeed, two “intervals” on the same line may intersect at more
than one point.) To estimate the size �F � of the hypergraph, we recall a well-
known number-theoretic result: Theorem 331 from Hardy–Wright [1979], which
states that the number of fractions r/s with 1 ≤ r ≤ s ≤ m, where r and s are
coprime, is approximately 3�−2m2 (“asymptotic number of Farey fractions”). It
follows that

�F � =
(
N

2

)2

·2 · �1+o�1��
3

�2

(
N

2n

)2

= �1+o�1��
3N 4

8�2n2
�

so Theorem 1.2 applies if

�1+o�1��
3N 4

8�2n2
> 	2 ·N 2 ·2n−3 = 2�n−2� ·N 2 ·2n−3�

which is equivalent to

N 2 >
4�2

3
·n2�n−2� ·2n� (14.2)

Inequality (14.2) is guaranteed by the choice

n= 2log2N −O�log logN�� (14.3)

which completes the Weak Win part of the following:
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Theorem 14.1 Consider the Maker–Breaker game on the N × N board, where
Maker’s goal is to occupy n consecutive lattice points on a line (“n-consecutive”).
The phase transition fromWeakWin to StrongDrawhappens atn= �2+o�1��log2N .

The missing Strong Draw part of Theorem 14.1 can be proved by a minor mod-
ification of the proof technique of Theorem 34.1 (see Section 36); we leave it to
the reader as an exercise. (The reason why we need to slightly modify the proof-
technique of Theorem 34.1 is that the corresponding hypergraph is not Almost
Disjoint: two n-consecutive’s on the same line may intersect in more than one point.)
The two Ramsey Criterions (Theorems 6.1 and 6.2) prove that the “Weak Win

world” is at least as large as the “Ramsey world.” The Unrestricted n-in-a-row with
Arbitrary Slopes was the first example to demonstrate that the “Weak Win world”
is strictly bigger than the “Ramsey world.” Many more examples come from:

2. Games with two-colored goals. Let us begin with two-colored arithmetic pro-
gressions (A.P.s). First a simple observation: let N ≥W�n�, where W�n� is the van
der Waerden number for n-term A.P.s, and consider a play in the twice as long
interval �2N�= �1�2� � � � �2N�. If the second player follows the “copycat strategy”:
for first player’s x he replies by 2N +1−x, then of course at the end of the play
the second player will occupy an n-term A.P., and also the first player will occupy
an n-term A.P. In other words, if the second player is Mr. Red, and the first player
is Mr. Blue, then Mr. Red can force the appearance of both a monochromatic red
and a monochromatic blue n-term A.P. This was trivial; next comes a non-trivial
question.
How about if Mr. Red’s goal is an arbitrary 2-colored n-term A.P.? Of course,

Ramsey Theory cannot help here, but the Potential Technique works very well.
The precise definition of the “2-Colored Goal Game” goes as follows. First fix

an arbitrary Red–Blue sequence of length 100: (say) R�B�R�R�R�B�B�R�B� � � � ;
we call it the “goal sequence.” Mr. Red and Mr. Blue alternately take new integers
from the interval �N� = �1�2� � � � �N�, and color them with their own colors. Mr.
Red wins if at the end of the play there is a 100-term arithmetic progression which
is colored exactly like the given Red–Blue “goal sequence”; otherwise Mr. Blue
wins. We call this the Goal Sequence Game. Is it true that Mr. Red has a winning
strategy in the Goal Sequence Game if N is sufficiently large?
The answer is “yes”; of course, 100 can be replaced by any natural number.

Theorem 14.2 Fix an arbitrary Red–Blue “goal sequence” S of length n, and
consider the Goal Sequence Game on the interval �N� = �1�2� � � � �N�, where the
“goal sequence” is S; the two players are Mr. Red and Mr. Blue. If N ≥ n3 ·2n−2,
then at the end of the play Mr. Red can force the appearance of an n-term arithmetic
progression which is colored exactly the same way as the given Red–Blue “goal
sequence” S goes.
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Proof. For simplicity assume that Mr. Red is the first player. Assume that we are
in the middle of a play: so far Mr. Red colored integers x1� x2� � � � � xi (“red points”)
and Mr. Blue colored integers y1� y2� � � � � yi (“blue points”). This defines a Partial
2-Coloring of �N�.
Let F = F�N�n� be the family of all n-term A.P.s in �N�; clearly �F � > N 2/

4�n−1�. The Partial 2-Coloring of �N� defines a Partial 2-Coloring of every n-term
A.P. A ∈ F . We introduce the following natural adaptation of the Power-of-Two
Scoring System: if the Partial 2-Coloring of an n-term A.P. A ∈ F contradicts
the given “goal sequence” S, then A has zero value, and we call it a “dead set”.
The rest of the elements of F are called “survivors”; the Partial 2-Coloring of a
“survivor” A ∈ F has to be consistent with the given “goal sequence” S. The value
of a “survivor” A ∈ F is 2j if there are j points of A which got color in the Partial
2-Coloring.

We define the “winning chance function” in the standard way

Ci =
∑
A∈F

valuei�A��

As usual, we study how the consecutive moves xi+1 and yi+1 affect the “chance
function.”

For an arbitrary n-term A.P. A ∈F , 2-color the elements of A copying the given
“goal sequence” S. Then let redS�A� denote the set of red elements of A, and let
blueS�A� denote the set of blue elements of A.

We have

Ci+1 =Ci+
∑
A∈F 


xi+1∈redS�A�

valuei�A�−
∑
A∈F 


xi+1∈blueS�A�

valuei�A�

+ ∑
A∈F 


yi+1∈blueS�A�

valuei�A�−
∑
A∈F 


yi+1∈redS�A�

valuei�A�

− ∑
A∈F 


�xi+1�yi+1�∈redS�A�

valuei�A�−
∑
A∈F 


�xi+1�yi+1�∈blueS�A�

valuei�A�

+ ∑
A∈F 


xi+1∈redS�A�
yi+1∈blueS�A�

valuei�A�+
∑
A∈F 


xi+1∈blueS�A�
yi+1∈redS�A�

valuei�A��

How should Mr. Red choose his next move xi+1? Well, Mr. Red’s optimal move is
to compute the numerical value of the function

f�u�= ∑
A∈F 


u∈redS�A�

valuei�A�−
∑
A∈F 


u∈blueS�A�

valuei�A�
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for every unoccupied integer u ∈ �N�, and to choose that u = xi+1 for which the
maximum is attained. This choice implies

Ci+1 ≥ Ci−
(
n

2

)
2n−2�

Indeed, there are at most
(
n

2

)
n-term arithmetic progressions containing both xi+1

and yi+1. Therefore

Cend ≥ Cstart −
N

2

(
n

2

)
2n−2�

Since Cstart = C0 = �F � ≥ N 2/4�n−1�, it suffices to guarantee the inequality

N 2

4�n−1�
>

N

2

(
n

2

)
2n−2�

which is equivalent to N> n�n−1�2 ·2n−2. Under this condition Cend > 0; that is, at
the end of the play there must exist an n-term A.P., which is 2-colored by Mr. Red
and Mr. Blue exactly the same way as the “goal sequence” S goes. Theorem 14.2
follows.

We leave the “clique version” of Theorem 14.2 to the reader as an exercise.

Theorem 14.3 Fix an arbitrary 2-colored clique K100�red�blue� of 100 vertices
(“2-colored goal-graph”). Consider the following game: Mr. Red and Mr. Blue
alternately take edges of a complete graph Kn on n vertices, and color them with
their own colors. Mr. Red wins if at the end of the play there is an isomorphic copy
of K100�red�blue�; otherwise Mr. Blue wins. If n is sufficiently large, then Mr. Red
has a winning strategy.

3. A highly degree-irregular hypergraph: the All-Subset Game. Here the two
players alternately take arbitrary subsets of a ground set. More precisely, there are
two players, Maker and Breaker, who alternately take previously unselected subsets
of the n-element set �n� = �1�2� � � � � n�. Maker (the first player) wins if he has
all 2100 subsets of some 100-element subset of �n�� otherwise Breaker (the second
player) wins.
Can Maker win if n is sufficiently large? One thing is clear: Maker’s opening

move has to be the “empty set” (otherwise he loses immediately).
Observe that there is no Ramsey phenomenon here. Indeed, color the subsets

depending on the parity of the size: “even” means red and “odd” means blue. This
particular 2-coloring kills any chance for an “all-subset Ramsey theorem.” But there
is a “game theorem”: We show that Maker (first player) has a winning strategy if
n is sufficiently large.

How to prove the game theorem? It seems a natural idea to use Theorem 1.2.
Unfortunately a direct application does not work. Indeed, �F � = (

n

100

)
is actually

less than �V � = (
n

0

)+ (
n

1

)+ (
n

2

)+· · ·+ (
n

100

)
, so Theorem 1.2 cannot give anything.
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To get around this difficulty we use a technical trick. The following is proved:

Stronger Statement: There is a 101-element subset S of �n� such that Maker (first
player) can have all �≤ 100�-element subsets of S, assuming n is sufficiently large.

In fact, we can prove it for arbitrary k (not just for 100), and then the Stronger
Statement goes as follows: There is a �k+1�-element subset S of �n� such that Maker
(first player) can have all �≤ k�-element subsets of S, assuming n is sufficiently
large depending on k.

The reason why we switch to the Stronger Statement is that now �F � = (
n

101

)
is roughly n-times greater than �V � = (

n

0

)+ (
n

1

)+ (
n

2

)+ · · · + (
n

100

)
. This makes it

possible to repeat the whole proof of Theorem 1.2. Note that a direct application of
the theorem cannot work for the simple reason that the corresponding hypergraph
is “very degree-irregular,” and it is “bad” to work with the same Max Pair-Degree
during the whole course of the play.

The proof of the Stronger Statement goes as follows. As usual, in each move
Maker makes the “best choice”: he chooses a subset of “maximum value,” using
the usual power-of-two scoring system, and if there are two comparable subsets,
say, U and W with U ⊂ W� having the same “absolute maximum,” then Maker
always chooses the smaller set, i.e. U instead of W . (Note that if U ⊂W� then the
“value” of U is always at least as large as the “value” of W .) Maker’s opening
move is, of course, the “empty set.” Let U�i� be an arbitrary move of Maker: U�i� is
an i-element subset (0≤ i≤ k). Let W be Breaker’s next move right after U�i�. We
know that W cannot be a subset of U�i�–indeed, otherwise Maker would prefer W
instead of U�i�–so �U�i� ∪W � ≥ i+1. There are at most

(
n

k+1−�i+1�

)
�k+1�-element

subsets S containing both U�i� and W : this is the “actual Max Pair-Degree.” Note
that for i = 0�1�2� � � � � k Maker chooses an i-element set at most

(
n

i

)
times, so by

repeating the proof of Theorem 1.2 we obtain

Clast ≥ Cfirst−
k∑

i=0

(
n

i

)(
n

k+1− �i+1�

)
22

k+1−3�

where Cj is the “Chance Function” at the jth turn of the play. Clearly Cfirst = C0 =(
n

k+1

)
� so

Clast ≥
(

n

k+1

)
−

k∑
i=0

(
n

i

)(
n

k+1− �i+1�

)
22

k+1−3�

A trivial calculation shows that(
n

k+1

)
>

k∑
i=0

(
n

i

)(
n

k+1− �i+1�

)
22

k+1−3 if n > �k+1�!22k+1
�

It follows that

Clast > 0 if n > �k+1�!22k+1
�



210 Simple applications

If the “Chance Function” is not zero at the end of a play, then Breaker could not
block every “winning set,” so there must exist a “winning set” completely occupied
by Maker. In other words, there must exist a �k+1�-element subset S of �n� such
that Maker occupied all at-most-k-element subsets of S. This proves the Stronger
Statement.
The last step is trivial: throwing out an arbitrary integer from S we obtain a

k-element subset S′ of �n� such that Maker occupied all 2k subsets of S′� This
solves the “All-Subset Game.”
Notice that inequality

n > �k+1�!22k+1

holds if k= �1+o�1��log2log2n�
In the other direction, we show that with a different o�1� the choice k = �1+

o�1��log2log2n is impossible. Indeed, the Erdős–Selfridge criterion applies if(
n

k

)
< 22

k−1�

This also holds for k= �1+o�1��log2log2n, and we obtain (see Beck [2005]):

Theorem 14.4 The breaking point for Weak Win in the All-Subset Game on
�1�2� � � � � n� is the iterated binary logarithm of n: �1+o�1��log2log2n.

Notice that the Power-Set, the goal of the All-Subset Game, is a “very rapidly
changing configuration”: 2n+1 = 2×2n. Changing the value of n by we double the
size of the Power-Set. This is why such a crude approach–the simplest form of the
Erdős–Selfridge technique–can still give an asymptotically satisfactory answer.

4. Applying the Biased Weak Win Criterion to a Fair Game. Recall the biased
Weak Win criterion Theorem 2.2: If

∑
A∈F

(
p+q

p

)−�A�
> p2 ·q2 · �p+q�−3 ·	2�F� · �V�F���

where 	2�F� is the Max Pair-Degree of hypergraph F� and V�F� is the board,
then the first player can occupy a whole winning set A ∈ F in the biased �p 
 q�

play on F (the first player takes p new points and the second player takes q new
points per move).

We show a rather surprising application of the Biased Weak Win criterion: it is
applied to a fair game; in fact, to a fair tournament game. Recall that a tournament
means a “directed complete graph” such that every edge of a complete graph is
directed by one of the two possible orientations; it represents a tennis tournament
where any two players played with each other, and an arrow points from the winner
to the loser.
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Fix an arbitrary goal tournament Tk on k vertices. The two players are Red and
Blue, who alternately take new edges of a complete graph Kn, and for each new
edge choose one of the two possible orientations (“arrow”). Either player colors
his arrow with his own color. At the end of a play, the players create a 2-colored
tournament on n vertices. Red wins if there is a red copy of Tk� otherwise Blue
wins. Is it true that, if n is sufficiently large compared to k� then Red always has a
winning strategy?

The answer is “yes.”

Theorem 14.5 Given an arbitrary goal tournament Tk, Maker can build a copy of
Tk from his own arrows if the board clique Kn is large enough.

Proof. It is a simple application of the Biased Weak Win Criterion. The idea
is to associate with the Fair Tournament Game a biased (1:3) hypergraph game!
To understand the application, the reader is recommended to study the following
picture

Red Blue Red Blue

The board V = V�F� of the biased �1 
 3� hypergraph game is the set of 2
(
n

2

)
arrows of Kn�↑↓�� where Kn�↑↓� means that every edge of the complete graph
Kn shows up twice with the two orientations. The winning sets A ∈ F are
the arrow-sets of all possible copies of Tk in Kn�↑↓�. So F is a

(
k

2

)
-uniform

hypergraph, and trivially �F � ≥ (
n

k

)
. If the mth move of Red and Blue are, respec-

tively, i1 → j1 and i2 → j2, then these two moves (arrows) automatically exclude
the extra arrows j1 → i1 and j2 → i2 from Kn�↑↓� for the rest of the play.
(There may be some coincidence among i1� j1� i2� j2, but it does not make any
difference.) This means 1 arrow for Maker, and 3 arrows for Breaker in the
hypergraph game on F� which explains how the biased (1:3) play enters the
story.
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All what is left is to apply the biased criterion to the (1:3) hypergraph game on
F 
 If ∑

A∈F
4−�

k
2� >

9
64

·	2�F� · �V�F���

where 	2�F� is the Max Pair-Degree and V�F� is the board, then Red can force a
win in the Tournament Game. We have the trivial equality �V�F�� = 2

(
n

2

)
� and the

less trivial inequality �	2�F�� ≤ (
n−3
k−3

) ·k!. Indeed, a tournament Tk cannot contain
parallel arrows (i.e., both orientations of an edge), so a pair of red and blue arrows
contained by a copy of Tk must span at least 3 vertices, and there are at most(
n−3
k−3

) ·k! ways to extend an unparallel arrow-pair to a copy of Tk.
Combining these facts, it suffices to check that(

n

k

)
>

9

64
·4�k2� ·

(
n−3
k−3

)
·k! ·2

(
n

2

)
�

This inequality is trivial if n ≥ c0 ·kk+3 ·4�k2�. The threshold n0�k� = c0 ·kk+3 ·4�k2�
works uniformly for all goal-tournaments Tk on k vertices.

Next we switch from biased building to biased blocking.

5. Biased version of the Unrestricted n-in-a-row on the plane. Let us start with
the (2:1) version: First Player claims 2 little squares and Second Player claims
1 little square per move. Unlike the Fair (1:1) case where Second Player can
block every 8-in-a-row (see the “Sixth Proof” of Theorem 10.2), in the Biased
case Second Player cannot block. Indeed, First Player can easily occupy n-in-
a-row for arbitrarily large n as follows. In his first 2n−1 moves First Player
marks 2n distinct rows. Second Player can block at most half of the rows,
so at least 2n−1 rows remain Second Player-free. In his next 2n−2 moves first
player can achieve 2n−1 distinct rows with 2 consecutive marks in each. Second
Player can block at most half of them, so there are at least 2n−2 rows which
are all:

(1) Second Player-free, and
(2) contain 2 consecutive marks of First Player.

Repeating this argument, at the end there is at least one row which is:

(1) Second Player-free, and
(2) contains n consecutive marks of First Player.

In this strategy First Player may be forced to place his 2 points per move “very
far” from each other (as far as 2n). To make up for First Player’s (2:1) advantage,
we can make First Player’s job harder by implementing the following Distance
Condition: during the whole play First Player’s 2 marks per move must have a
distance at most (say) 1000. What happens under this Distance Condition? We
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show that in this case First Player cannot have n-in-a-row for arbitrarily large n. In
other words, the Distance Condition can successfully neutralize First Player’s (2:1)
advantage.

(k, 1) lattice

1

k

1

k

In general, consider the Biased �p 
 1� version of the Unrestricted n-in-a-row on
the plane with the following Distance Condition: First Player’s p�≥ 2� marks per
move are always in a circle of radius r�≥ 2�. It doesn’t make any difference if the
players mark integer lattice points instead of little squares, so we work with the
lattice point model.

We give two proofs. The first one, due to P. Csorba, uses the concept of the
tilted infinite Square Lattice, see the picture above. We call the lattice on the picture
above a �k�1�-lattice. We can direction-mark the vertices of the �k�1�-lattice by
the 4×4 matrix used in the Third Proof of Theorem 10.2. We need the following
simple Lemma:

Lattice Lemma: If k is even, then the �k�1�-lattice intersects every horizontal,
vertical, and diagonal (of slopes ±1) lattice-line. The intersection is of course
an infinite arithmetic progression, and the gap between consecutive points is
always ≤ k2.

Exercise 14.2 Prove the Lattice Lemma.

By using the Lattice Lemma, we can repeat the “Third proof” of Theorem 10.2,
and obtain the following statement: In the Biased �p 
 1� version of the Unrestricted
n-in-a-row with Distance Condition r� Second Player can block every n-in-a-row
if n≥ c0r

2 where c0 is an absolute constant.

This proof has an interesting special feature: the value of the bias parameter p is
irrelevant. Since a circle of radius r can contain no more than �r2 +O�r� lattice
points, we clearly have p ≤ �r2+O�r�.

If the value of p is much smaller than r2� then the following alternative proof
gives a much better value for n (this was my original proof).
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Alternative proof using potentials. We shall employ the following biased �p 
 1�
version of the Erdős–Selfridge Theorem (see Beck [1982]): If

∑
A∈F

2−�A�/p < 1� or <
1

2
�

then First Player (or Second Player) can block every winning set A ∈ F in the
biased �1 
 p� (or �p 
 1�) play on F . (The �f 
 s� play means that First Player takes
f points and Second Player takes s points per move.)

This is a special case of a more general result – Theorem 20.1 – which will be
proved at the end of Section 20.
For the application we divide the plane into m×m squares, where m≥ 2r. First

we discuss the following:

Special Case: Assume that during the whole course of the play, in every single
move, the p marks of First Player are always completely inside of some m×m

square.

Then we can repeat the “First Proof” of Theorem 10.2 as follows. Since the p

points per move are always completely inside of some m×m square, Second
Player replies in the same m×m square by using the Biased �p 
 1� version of the
Erdős–Selfridge Theorem. If m ≥ n, then every n-in-a-row intersects some m×m

square in an “interval-piece” of length ≥ n/3. We use the Biased Erdős–Selfridge
Theorem for the �p 
 1� game: it applies if

4m2 <
2n/3�/p

2
� where m≥ max�2r� n�� (14.4)

If m = max�2r� n� and n = c1 ·p · log r� then (14.4) holds for a sufficiently large
absolute constant c1. It follows that Second Player can block every n-in-a-row with
n= c1 ·p · log r. This solves the Special Case.
In the General Case, the p points (of First Player in any single move) are in a

circle of radius r, and, if m≥ 2r, a circle of radius r can intersect as many as four
m×m squares. The question is: which one of the (possibly) four m×m squares
should Second Player pick to reply?

1

3

2

4

circle of radius r

Well, a natural answer is to use a Periodic Rule: if the same situation
repeats itself several times, then Second Player should respond periodically, e.g.
1�2�3�4�1�2�3�4�1�2�3�4� � � �.
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2

4

4-square block

1

Square �

3

Let us see what happens to an arbitrary but fixedm×m square S? S is surrounded
by 8 neighbors, and there are 4 “four-square-blocks” which contain S (S is the center
square in the 3× 3 arrangement). For each one of these “four-square-blocks” we
use a Periodic Rule � � � �1�2�3�4�1�2�3�4�1�2�3�4� � � � which tells Second Player
where to reply. For a fixed “four-square-block” there are at most 3 consecutive
steps in a Periodic Rule � � � �1�2�3�4�1�2�3�4�1�2�3�4� � � � indicating not to reply
in S. Since there are 4 of them, by the Pigeonhole Principle, in every 13= 4 ·3+1
consecutive steps, when First Player puts (at least one) mark in S� at least once, the
Periodic Rule tells Second Player to reply in S.
This means in the General Case we can repeat the proof of the Special Case with

a minor modification: we have to use the �13p 
 1� version of the Biased Erdős–
Selfridge Theorem instead of the �p 
 1� version. The same calculation works, and
gives that Second Player can block every n-in-a-row with n = c2 ·p · log r, where
c2 is an absolute constant (of course, c2 is larger than c1 in the Special Case).

Note that, for small p the logarithmic factor log r is necessary here. Indeed, as
we have explained above, in the Biased �2 
 1� version First Player can occupy
n-in-a-row staying inside of a fixed circle of radius r = 2n.

What we have just proved is summarized below:

Theorem 14.6 In the Biased �p 
 1� version of the Unrestricted n-in-a-row with
Distance Condition r , Second Player can block every n-in-a-row if n≥min�c0r

2� c2 ·
p · log r�, where c0 and c2 are absolute constants.
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A generalization of Kaplansky’s game

1. The Maker-Breaker version. In Section 4 Kaplansky’s k-in-a-line game was
introduced. It is a Shutout Game where the two players alternately occupy new
lattice points in the plane, and that player wins who owns first a k-in-a-line such
that the whole line is opponent-free. Note that even the case of k= 4 is unsolved;
Kleitman and Rothschild conjectured it to be a draw game.
The original version remains wide open, but the Maker–Breaker version was

solved by Kleitman and Rotschild [1972]. They proved that, playing the usual (1:1)
game, for every k Maker can build (in a finite number of moves) a Breaker-free
k-in-a-line. (Needless to say, their proof cannot guarantee that Maker does it first.)
Kleitman and Rotschild [1972] didn’t use any potential function – instead they
applied the Hales–Jewett Theorem in a very clever way. This Hales–Jewett type
approach has two shortcomings:

(1) the upper bound on the Move Number is ridiculous;
(2) they used a “copycat” argument, and copycat doesn’t extend to the biased case

where Maker is the underdog (like the (1:2) game).

In this section, we give a completely different potential proof, which completely
avoids the Hales–Jewett Theorem. This way we get rid of both shortcomings at
once: (1) the new proof gives a nice, plain exponential upper bound on the Move
Number, and (2) it automatically extends to the general biased play, including the
case when Maker is the underdog.
Consider the (1:b) underdog play where the first player takes 1 new lattice point

and the second player takes b (≥ 1) new lattice point(s) per move. The Kaplansky-
�b� k� l� Game is the generalization where the two players are playing the (1:b)
play on the set of lattice points, first player’s goal is an opponent-free k-in-a-line
and second player’s goal is an opponent-free l-in-a-line. Whoever does it first in a
finite number of moves is declared the winner; an -long play without a winner
means a draw.

216
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Theorem 15.1 If

l

k
≥ c0� where the constant c0 is defined as c0 = c0�b�=

64b log�1+2b�

log2
�

then underdog first player has a winning strategy in the Kaplansky-�b� k� l� Game.
In fact, the first player can always win in at most �1+2b�16k moves.

Remark. Theorem 15.1 is about the “restricted” Kaplansky game, but we can also
consider the “unrestricted” game, which has the same rules except that the players
may make their choices from all the points of the plane instead of just from the
lattice points. The only relevant geometric feature is the collinearity of subsets of
points. Thus if one player has a winning strategy in the unrestricted game, then he
can convert his strategy to the restricted game. Therefore, we need only consider
the unrestricted game; this gives us a little extra flexibility in the notation.

Proof. We solve the unrestricted version, i.e. the players may select points any-
where in the plane. The first player uses his 1st, 3rd, 5th, 7th, � � � moves for
“building” and uses his 2nd, 4th, 6th, 8th, � � � moves for “blocking.” In other words,
the first player divides the (1:b) game into a “twice as biased” (1:2b) Building
Part and a (1:2b) Blocking Part; the two parts are handled like two disjoint/non-
interacting games (of course, this is in first player’s mind only). First player’s plan
is to find an integer M such that:

(1) in his first M/2 “odd” moves, the first player can build an opponent-free
k-in-a-line; and

(2) in his first M/2 “even” moves, he can prevent the second player from building
an opponent-free l-in-a-line if l≥ c0 ·k.

2. Building Part. Let V0 denote the �2n+1�× �2n+1� Square Lattice of integer
points centered at the origin

V0 =
{
�u� v� ∈ ZZ2 
 −n≤ u≤ n� −n≤ v ≤ n

}
�

and also consider the following set of rational points

V1 =
{
�u� v� ∈ R2 
 u= p1

q1
� v= p2

q2
�max��u�� �v��≤ n1+��max��q1�� �q2��≤ n�

}
�

(15.1)

where �> 0 will be specified later as a small positive absolute constant. In (15.1) the
equality “u= p1

q1
� v= p2

q2
” means that both u and v are rational numbers, p1� q1� p2� q2

are integers, p1� q1 are relatively prime, and p2� q2 are also relatively prime. Clearly
V0 ⊂ V1.

Let L denote the family of all straight lines in the plane which intersect lattice
V0 in ≥ k lattice points.
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The first player restricts himself to the hypergraph �V1�L∩V1�, i.e. V1 is the
board and L∩V1 = �L∩V1 
 L ∈ L� are the “winning sets.” The second player
may or may not stay in board V1 (note that every line L ∈L can be blocked outside
of V1). Since the first player uses his 1st, 3rd, 5th, 7th, � � � moves for “building”
(and the rest for “blocking”), for the first player the Building Part means a “kind
of” (1:2b) Maker–Breaker Shutout Game (of size k) on hypergraph �V1�L∩V1�,
where the first player is the underdog Maker. Here the term “kind of” refers to the
novelty that Breaker may move (and block!) outside of V1.

In the Building Part, for simplicity, we call the first player Maker and the second
player Breaker.

Assume that we are in the middle of a (1:2b) play. Let X�i�= �x1� � � � � xi� (⊂ V1)
denote Maker’s points and

Y�i�= �y
�1�
1 � y

�2�
1 � � � � � y

�2b�
1 � � � � � y

�1�
i � y

�2�
i � � � � � y

�2b�
i �

denote Breaker’s points selected so far; of course, some of the points of Breaker
may be outside of V1. The key question is how to choose xi+1 ∈ V1. Consider the
potential functions

Ti =
∑

L∈L
 L∩Y�i�=∅
�1+2b��L∩X�i�� and Ti�z�=

∑
z∈L∈L
 L∩Y�i�=∅

�1+2b��L∩X�i��� (15.2)

It is easy to describe the effect of the �i+1�st moves xi+1 and �y
�1�
i+1� y

�2�
i+1� � � � � y

�2b�
i+1 �:

Ti+1 = Ti+2b ·Ti�xi+1�−�i−2b ·�i� (15.3)

where
�i =

∑
L∈L
 L∩Y�i�=∅�L∩Y�i+1�=�=∅

�1+2b��L∩X�i�� (15.4)

and
�i =

∑
xi+1∈L∈L
 L∩Y�i�=∅�L∩Y�i+1�=�=∅

�1+2b��L∩X�i��� (15.5)

Trivially

�i ≤
2b∑
j=1

Ti�y
�j�
i+1��

so by (15.3)

Ti+1 ≥ Ti+2b

(
Ti�xi+1�−

1

2b

2b∑
j=1

Ti�y
�j�
i+1�−�i

)
� (15.6)

Maker selects his �i+1�st point xi+1 as the “best” new point in V1: xi+1 is the new
point z ∈ V1 for which the function f�z�= Ti�z� attains its maximum.

The following inequality may or may not hold

Ti�xi+1�≥ max
1≤j≤2b

Ti�y
�j�
i+1�� (15.7)

and accordingly we distinguish several cases.
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Case 1: Inequality (15.7) holds during the whole course of the play, i.e. until the
two players exhaust board V1

Then by (15.6), Ti+1 ≥ Ti − 2b ·�i holds for every i. We will now see that, at
some stage of the play on V1, Maker owns an opponent-free k-in-a-line. Assume
to the contrary that �L∩X�i�� < k holds whenever L∩Y�i� = ∅ during the whole
play; then by (15.5)

Ti+1 ≥ Ti−2b ·�i ≥ Ti−2b ·2b�1+2b�k−1� (15.8)

where the second factor of “2b” comes from the fact that each one of the 2b point
pairs �xi+1� y

�j�
i+1�, j = 1�2� � � � �2b uniquely determines a straight line. Let d denote

the duration of the play; then by (15.8)

Tend = Td ≥ Tstart −d · �1+2b�k+1� (15.9)

Trivially d ≤ �V1�, and from the definition of V1 (see (15.1))

d ≤ �V1� ≤ 4�n1+3��2 = 4n2+6��

Somewhat less trivial is the lower bound

Tstart = T0 = �L∩V1� ≥ n2 · 3

�2

(n
k

)2
�

The last step follows from the well-known number-theoretic fact that the number of
lattice points in �1�M�×�1�M� which are visible from the origin (i.e. the coordinates
are relatively prime) is about

3

�2
M2 = M2

2��2�
where ��2�=

�∑
s=1

1

s2
= �2

6
�

We already used this fact in the proof of Theorem 19.1. Returning to (15.9) we have

Tend = Td ≥ Tstart −d · �1+2b�k+1 ≥ 3

�2
· n

4

k2
−4n2+6� · �1+2b�k+1� (15.10)

Therefore, if the inequality

�1+2b�k+1 <
3

4�2
· n

2−6�

k2
(15.11)

holds, then by (15.10) Tend > 0, proving that Maker really owns an opponent-free
k-in-a-line.

In the rest of the argument, we can assume that inequality (15.7) fails at some
point of the play. Let i= i0 be the first time the failure occurs

max
1≤j≤2b

Ti0
�y

�j�
i0+1�≥ Ti�xi0+1�� (15.12)

Case 2: After the �i0 + 1�st round the subset V0 (⊂ V1) is already completely
occupied by the two players.

We recall that V0 is a �2n+1�× �2n+1� sub-lattice of ZZ2 centered at the origin
(the formal definition is right before (15.1)).
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Since i= i0 is the first violation of (15.7), we can still save the following analogue
of inequality (15.10) from Case 1

Ti0
≥ Tstart− i0 · �1+2b�k+1 ≥ 3

�2
· n

4

k2
−4n2+6� · �1+2b�k+1� (15.13)

Therefore, if the inequality

�1+2b�k+1 <
3

8�2
· n

2−6�

k2
(15.14)

holds, then by (15.10)

Ti0
≥ 1

2
· 3
�2

· n
4

k2
� (15.15)

(Notice that requirement (15.14) is stronger than that of (15.11).)
Now let L be an arbitrary Breaker-free line after the i0th round; (15.15) implies

that such an L exists. By hypothesis L is completely occupied in the next round.
Thus there are two possibilities:

(1) either L∩V0 is already occupied by Maker;
(2) or L∩V0 contains an unoccupied point, namely one of the ≤ 2b+1 unoccupied

points of V0.

If (1) holds for some L, we are done. Therefore, we can assume that every
Breaker-free line L ∈ L contains one of the ≤ 2b+ 1 unoccupied points of V0.
Combining this with (15.15), we see that there is an unoccupied z0 ∈ V0 with

Ti0
�z0�≥

1
2b+1

· 1
2
· 3
�2

· n
4

k2
� (15.16)

The number of lines L ∈ L with z0 ∈ L is obviously ≤ �V0� = �2n+ 1�2, so by
(15.16) there is a Breaker-free line L0 ∈ L such that z0 ∈ L0 and

�1+2b��L0∩X�i0�� ≥ 1

�2n+1�2
· 3n4

2�2�2b+1�k2
� (15.17)

Comparing (15.14) and (15.17), we obtain �L0∩X�i0�� ≥ k, and we are done again.

Case 3: After the �i0 +1�st round the subset V0 (⊂ V1) still has some unoccupied
point.
Since xi0+1 = z is the point where the function f�z�= Ti0

�z� attains its maximum
in V1, and also because (15.7) is violated

Ti0
�xi0+1� < max

1≤j≤2b
Ti0

�y
�j�
i0+1�� (15.18)

the maximum in the right-hand side of (15.18) is attained outside of V1. Let (say)

Ti0
�y

�1�
i0+1� > Ti0

�xi0+1� and y
�1�
i0+1 �∈ V1�
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then

Ti0
�y

�1�
i0+1� > Ti0

�xi0+1�≥ max
z∈V1
 unselected

Ti0
�z�≥ max

w∈V0
 unselected
Ti0

�w�� (15.19)

where by hypothesis the set �w ∈ V0 
 unselected� is non-empty.
Repeating the argument of Case 2, we obtain (see (15.14)–(15.16)): if the

inequality

�1+2b�k+1 <
3

8�2
· n

2−6�

k2
(15.20)

holds, then

max
w∈V0
 unselected

Ti0
�w�≥ 1

�V0�
· 1
2
· 3
�2

· n
4

k2
≥ n2

4�2k2
� (15.21)

Combining (15.19) and (15.21), under condition (15.20) we have

Ti0
�y

�1�
i0+1� >

n2

4�2k2
� (15.22)

We need:

Lemma 1: If a point u in the plane is outside of V1, then the number of lines L ∈L
passing through u is ≤ 8�V0�n−� = 8�2n+1�2 ·n−�, meaning: “relatively few.”

Proof. Let u= �x� y� be an arbitrary point in the plane. Two distinct lines L1�L2 ∈L
(“rational lines”) always intersect at a rational point, so we can assume that both
coordinates of u are rational; write x = p1/q1 and y = p2/q2, where the fractions
are in the standard form (the numerator and the denominator are relatively prime).
There are 4 reasons why u �∈ V1 (see (15.1)).

Case A: q2 > n�

Write y = �y�+ r
q2

as the sum of the integral part and the fractional part; here
1≤ r < q2 and q2 are relatively prime.

points
lattice

u

d1

d2

q1 = 8, r = 3

d1 : d2 = (q − r) : r

pointslattice
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It follows from the picture that the gaps �q2 − r� (“up”) and r (“down”) are
unavoidable, implying that there are

≤ 1
max�r� q2− r�

�V0� ≤
2
q2

�2n+1�2 ≤ 2
n�

�2n+1�2

lines L ∈ L passing through the given point u (which has a “large” denominator in
the second coordinate).

Case B: q1 > n�

The same bound as in Case A.

Case C: �x�> n1+�

Let u ∈ L ∈ L, and let �a1� b1�, �a2� b2� be 2 arbitrary points in L∩ V0. Then
the slope b2−b1

a2−a1
of line L has absolute value < n−�. Thus there are less than

2 · �2n+1� · �2n+1�n−� different values for the slopes of lines L with u ∈ L ∈ L.
Since different lines u ∈ L ∈ L have different slopes, we obtain the upper bound
2n−��2n+1�2 for the number of lines u ∈ L ∈ L.
Case D: �y�> n1+�

The same bound as in Case C. The proof of Lemma 1 is complete.

Let us return to (15.20)–(15.22). If the inequality

�1+2b�k+1 <
3

8�2
· n

2−6�

k2

holds, then

Ti0
�y

�1�
i0+1� >

n2

4�2k2
�

Since y
�1�
i0+1 �∈ V1, by Lemma 1 the sum

Ti0
�y

�1�
i0+1�=

∑
y
�1�
i0+1∈L∈L
 L∩Y�i0�=∅

�1+2b��L∩X�i0��

contains ≤ 8�2n+ 1�2 ·n−� ≤ 40n2−� terms, so by (15.22) there is a line L0 ∈ L
with y

�1�
i0+1 ∈ L0 such that

�1+2b��L0∩X�i0�� ≥
n2

4�2k2

40n2−�
= n�

160�2k2
� (15.23)

On the other hand, by (15.20)

�1+2b�k+1 <
3

8�2
· n

2−6�

k2
�

which contradicts (15.23) if �= 2−6�, or equivalently, if �= 2/7 (note that k is
small constant times logn).
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Conditions (15.11), (15.14), (15.20) are all satisfied if

�1+2b�k+1 <
3

8�2
· n

2−6�

k2
= 3

8�2
· n

2/7

k2
� (15.24)

Notice that the choice

k= logn
4 log�1+2b�

(15.25)

satisfies (15.24). It follows that, in ≤ �V1� ≤ 4n2+6� ≤ n4−1/7 moves, Maker (“the
first player”) can always build an opponent-free k-in-a-line, where k is defined in
(15.25). By (15.25)

n4−1/7 = �1+2b�4�4−1/7�k < �1+2b�16k� (15.26)

This completes the Building Part.
It remains to discuss the:

3. Blocking Part. The family of all lines in the plane is an (infinite) Almost
Disjoint hypergraph. We have already proved that, playing the usual (1:1) game on
an Almost Disjoint hypergraph, Shutout takes an (at least) exponentially long time
(see Theorem 1.3). What we need here is just the underdog version of this simple
result.

Lemma 2: Let �V�F� be an arbitrary (finite or infinite) Almost Disjoint hyper-
graph: V is the board and F is the family of hyperedges. Maker and Breaker are
playing the (s:1) game, where Maker takes s points per move and Breaker takes
1 point per move. Maker wants to achieve a Shutout of size l, and Breaker simply
wants to stop Maker. Assume that Breaker is the first player; then he can prevent
Maker from achieving a Shutout of size in 1

2s2
l
2s moves.

The proof of Lemma 2 is a simple (underdog) adaptation of the proof of
Theorem 1.3 (“(1:1) game”).

Assume we are in the middle of a play, X�i�= �x1� � � � � xi� is the set of Breaker’s
points and

Y�i�= �y
�1�
1 � y

�2�
1 � � � � � y

�s�
1 � � � � � y

�1�
i � y

�2�
i � � � � � y

�s�
i �

is the set of Maker’s points (Maker is the second player).
Let

F�i�= �A ∈ F 
 A∩X�i� and �A∩Y�i�� ≥ 2�� (15.27)

where the requirement “≥ 2” in (15.27) is motivated by the fact that in an Almost
Disjoint hypergraph 2 points uniquely determine a hyperedge.

Write

Ti =
∑

A∈F�i�

2�A∩Y�i��/s and Ti�z�=
∑

z∈A∈F�i�

2�A∩Y�i��/s� (15.28)



224 Simple applications

Breaker (the first player) selects the unselected xi+1 = z∈ V \�X�i�∪Y�i�� for which
the function f�z�= Ti�z� attains its maximum.

It is claimed that, by using this “best-point” strategy, Breaker can force the
inequality

Ti+1 ≤ Ti+4�s+1� · s2 (15.29)

for the whole play.
Notice that (15.29) implies Lemma 2. Indeed, by a repeated application of (15.29)

we obtain

Ti ≤ T0+4s2�
i∑

j=1

j�= 0+4s2
(
i+1
2

)
= 2s2i�i+1�� (15.30)

If i ≤ 1
2s2

l
2s , then (15.30) gives

Ti ≤ 2i�i+1�s2 < 2
l
s � (15.31)

Now assume that, in the ith turn with i ≤ 1
2s2

l
2s Maker can achieve a Shutout of

size l in some A0 ∈ F , then

Ti ≥ 2�A0∩Y�i��/s = 2l/p�

which contradicts (15.31). This contradiction proves Lemma 2, assuming inequality
(15.29) holds.
To prove (15.29) we describe the effect of the �i+ 1�st moves xi+1 and

�y
�1�
i+1� � � � � y

�s�
i+1�, we have

Ti+1 = Ti−Ti�xi+1�+�i+
∑

A∈F�i+1�\F�i�

2�A∩Y�i+1��/s� (15.32)

where

�i =
∑

A∈F�i�
 ∗

(
2�A∩Y�i+1��/s−2�A∩Y�i��/s

)
(15.33)

and property ∗ means that xi+1 �∈ A and A∩ �Y�i+1�\Y�i�� �= ∅.
First, we have an upper bound on �i: it is claimed that

�i ≤ Ti�xi+1�� (15.34)

To prove (15.34), some notation is introduced: let

Y�i� j�= Y�i�∪ �y
�1�
i+1� � � � � y

�j�
i+1�� j = 0�1� � � � � s�

and

�i�j =
∑

y
�j�
i+1∈A∈F�i�

(
2�A∩Y�i�j��/s−2�A∩Y�i�j−1��/s) �

It is easy to see that �i ≤
∑s

j=1 �i�j .
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Another easy inequality is the following

�i�j =
∑

y
�j�
i+1∈A∈F�i�

(
2�A∩Y�i�j��/s −2��A∩Y�i�j��−1�/s

)≤

≤ ∑
y
�j�
i+1∈A∈F�i�

(
2�j+�A∩Y�i���/s −2�j−1+�A∩Y�i���/s)=

= ∑
y
�j�
i+1∈A∈F�i�

(
2j/s −2�j−1�/s

)
2�A∩Y�i��/s�

Thus we have

�i ≤
s∑

j=1

�i�j ≤
s∑

j=1

∑
y
�j�
i+1∈A∈F�i�

(
2j/s −2�j−1�/s

)
2�A∩Y�i��/s =

=
s∑

j=1

∑
y
�j�
i+1∈A∈F�i�

(
2j/s −2�j−1�/s

)
Ti�y

�j�
i+1��

and because maxj Ti�y
�j�
i+1�≤ Ti�xi+1�, we have

�i ≤
s∑

j=1

(
2j/s −2�j−1�/s

)
Ti�xi+1�

= Ti�xi+1�
s∑

j=1

(
2j/s −2�j−1�/s

)= Ti�xi+1��

proving (15.34).
By (15.32) and (15.34)

Ti+1 = Ti+
∑

A∈F�i+1�\F�i�

2�A∩Y�i+1��/s� (15.35)

We claim the following upper bound for the last term in (15.35)
∑

A∈F�i+1�\F�i�

2�A∩Y�i+1��/s < 4�i+1�s2� (15.36)

If A ∈ F�i+1�\F�i�, then:

(1) either �A∩Y�i�� = 1 and A∩ �Y�i+1�\Y�i�� �= ∅,
(2) or �A∩ �Y�i+1�\Y�i��� ≥ 2.

Since 2 points uniquely determine a hyperedge (F is Almost Disjoint!), we have

�F�i+1�\F�i�� ≤ is · s+
(
s

2

)
�
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If A∈F�i+1�\F�i�, then �A∩Y�i�� ≤ 1, yielding �A∩Y�i+1�� ≤ 1+s. Combining
these facts we have

∑
A∈F�i+1�\F�i�

2�A∩Y�i+1��/s ≤
(
is2+

(
s

2

))
·2�1+s�/s < 4�i+1�s2�

proving (15.36).
Finally, (15.35) and (15.36) yield (15.29), which completes the proof of

Lemma 2. �

Since the first player uses his 2nd, 4th, 6th, 8th, � � � moves for blocking, we apply
Lemma 2 with s = 2b, V = the whole plane, F = the family of all straight lines
in the plane. Combining the Building Part above (see (15.26)) with Lemma 2 we
obtain: if

k= logn

4 log�1+2b�
and n4 = �1+2b�16k ≤ 2

l
2s = 2

l
4b �

then the first player has a winning strategy in the Kaplansky-�b� k� l� Game. The
inequality

�1+2b�16k ≤ 2
l
4b is equivalent to

l

k
≥ 64b log�1+2b�

log2
�

This completes the proof of Theorem 15.1. �

4. Concluding remark: a finite analogue of Theorem 15.1. The hypergraph of
all straight lines in the plane is the most natural example of infinite Almost Disjoint
hypergraphs. The hypergraph of all Lines in a Finite Projective Plane is the most
natural example of finite Almost Disjoint hypergraphs.

In the infinite case we have unbounded Shutout (Theorem 15.1); what is the
largest Shutout in a Finite Projective Plane? Section 15 concludes with an answer
to this question.

Let q be an arbitrary prime power. By using the finite field of order q we can
construct a Finite Projective Plane, which is a finite hypergraph with the following
intersection properties:

(1) there are q2+q+1 points;
(2) there are q2+q+1 Lines where each Line consists of q+1 points;
(3) any two Lines intersect in a unique point;
(4) any two points determine a unique Line.

For simplicity consider the ordinary (1:1) play on this hypergraph: what is the
largest Shutout that (say) the first player can achieve?

It is proved that the first player can always achieve a Shutout of size c · logq,
where c > 0 is an absolute constant (c= 1/3 is a good choice). This is best possible
apart from the value of the constant factor c.
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What makes the proof interesting is that, besides the usual potential technique,
it also uses some linear algebra, in particular Pythagoras Theorem, in a novel way.

We call the first player Maker (“Shutout–Maker”) and the second player Breaker.
Assume that we are in the middle of a play, X�i�= �x1� x2� � � � � xi� denotes the set
of Maker’s points and Y�i� = �y1� y2� � � � � yi� denotes the set of Breaker’s points
selected so far. Maker uses the standard Power-of-Two Scoring System

Ti =
∑

L∈L
 L∩Y�i�=∅
2�L∩X�i�� and Ti�z1� � � � � zm�=

∑
�z1�����zm�⊂L∈L
 L∩Y�i�=∅

2�L∩X�i���

where L is the family of q2+q+1 Lines. Clearly

Ti+1 = Ti+Ti�xi+1�−Ti�yi+1�−Ti�xi+1� yi+1��

If Maker chooses the “best” point in the usual way, then Ti�xi+1�≥ Ti�yi+1� and

Ti+1 = Ti+Ti�xi+1�−Ti�yi+1�−Ti�xi+1� yi+1�≥ Ti−Ti�xi+1� yi+1�� (15.37)

Assume the contrary that Breaker can prevent Maker from achieving a Shutout
of size � · log2 q (constant 0 < � < 1 will be specified later); We want to derive a
contradiction.

Since 2 points uniquely determine a Line, by (15.37) we have

Ti+1 ≥ Ti−Ti�xi+1� yi+1�≥ Ti−2�·log2 q = Ti−q�� (15.38)

By iterated application of (15.38)

Ti ≥ T0− i ·q� = �L�− i ·q� = �q2+q+1�− i ·q� ≥ q2+q+1
2

(15.39)

as long as i ≤ 1
2q

2−�.
Next comes the Linear Algebra part. Let V denote the set of q2+q+1 points of

the Finite Projective Plane. For every Line L ∈ L, let �L denote the characterisctic
function of Line L: it is a 0-1-valued function defined on V , 1 on the Line and
0 outside of the Line. We look at these �V � = q2 + q+ 1 functions �L, L ∈ L as
�V �-dimensional vectors, and construct an orthonormal basis in the �V �-dimensional
Euclidean Space as follows: for every L ∈ L let

vL =
1√
q
��L−� ·u� where u= �1�1� � � � �1� and �= 1

q+√
q+1

�

This is an orthonormal basis because (1) any two different vectors vL1
and vL2

are orthogonal (we can compute the inner product �· · · � by using the intersection
properties)
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�vL1
� vL2

� = 1

q

(��L1
��L2

�−2��u��L�+�2��u��2)=
= 1

q

(
1−2��q+1�+�2�q2+q+1�

)= 0 if �= 1

q+√
q+1

�

furthermore, (2) each vector has norm 1

��vL��2 =
1

q

(���L��2−2��u��L�+�2��u��2)=
= 1

q

(
q+1−2��q+1�+�2�q2+q+1�

)= 1
q
�q+0�= 1�

if �= 1/�q+√
q+1�.

We have an orthonormal basis; the idea is to define a new vector w1 by the play,
and to apply Pythagoras theorem to w1. Vector w1 is motivated by (15.39): let

V1 = V \
(
X

(
1

2
q2−�

)
∪Y

(
1

2
q2−�

))
� (15.40)

That is, V1 denotes the unoccupied part of the board (Finite Projective Plane) after
the 1

2q
2−�-th turn of the play.

Let

L1 =
{
L ∈ L 
 L∩Y

(
1

2
q2−�

)
= ∅

}

denote the Lines where Maker still has a chance for a Shutout after the 1
2q

2−�-th
turn of the play. Then by (15.39)

T 1
2 q

2−� = ∑
L∈L1

2�L∩X�
1
2 q

2−��� ≥ q2+q+1

2
� (15.41)

By hypothesis Breaker can prevent Maker from achieving a Shutout of size
� log2 q, so ∣∣∣∣L∩X

(
1

2
q2−�

)∣∣∣∣≤ � log2 q (15.42)

holds for every L ∈ L1. Thus by (15.41)–(15.42)

�L1� ≥
1

2
q2−�� (15.43)

Now let w1 denote the characteristic function of subset V1 (⊂ V ), see (15.40),
i.e. w1 is 1 on V1 and 0 on V \V1; by Pythagoras Theorem

��w1��2 =
∑
L∈L

��w1� vL��2 � (15.44)

First, we compute the left-hand side of (15.44)

��w1��2 = �V1� = �q2+q+1�−2 · 1
2
q2−�� (15.45)
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Next we estimate the right-hand side of (15.44) from below; we use (15.43)

∑
L∈L

��w1� vL��2 ≥
∑
L∈L1

��w1� vL��2 =
∑
L∈L1

(
�w1�

1√
q
��L−� ·u��

)2

≥

≥ 1

2
q2−�

(
1√
q
��q+1−� log2 q�−��V1��

)2

=

= 1

2
q2−� 1

q

(
�q+1−� log2 q�−

1

q+√
q+1

��q2+q+1�−2 · 1
2
q2−��

)2

=

= 1
2
q1−�

(
�q+1−� log2 q�+ q2−�

q+√
q+1

− �q+1−√
q�

)2

=

= 1
2
q1−�

(√
q−� log2 q+

q1−�

1+q−1/2+q−1

)2

≥

≥ 1

2
q1−� · q

2−2�

2
� (15.46)

Combining (15.44)–(15.46)

q2 ≥ ��w1��2 =
∑
L∈L

��w1� vL��2 ≥
q3−3�

4
�

which is a contradiction if � < 1/3. This proves:

Theorem 15.2 Playing the (1:1) Shutout Game on a Finite Projective Plane of
q2+ q+ 1 points and the same number of Lines (the Lines are the winning sets),
the first player can always achieve a Shutout of size(

1
3
−o�1�

)
log2 q (15.47)

in some Line.

The Erdős–Selfridge Theorem gives an upper bound on the maximum shutout: if
m denotes the maximum Line-Shutout, then

q2+q+1< 2m�or equivalently�m≥ 2 log2 q+O�1�� (15.48)

It seems a difficult problem to find the correct constant factor of log2 q. In view
of (15.47)–(15.48) the truth is between 1/3 and 2.

Exercise 15.1 Generalize Theorem 15.2 to the underdog play (1:s) where the first
player takes one new point and the second player takes s new points per move, and
the first player wants a large Line-Shutout.



Chapter IV
Games and randomness

This chapter gives new insights to the Meta-Conjecture (see the discussion about
the “Phantom Decomposition Hypothesis” at the end of Section 19). Some of the
illustrations are off the main trend, but they are still very instructive and amusing,
and – what is most important – the proofs are relatively short.
The results of the discrepancy sections (16–17) will be applied later in Chapter VI.

Finally, Section 20 answers a question which was raised at the end of Section 4
(“biased connectivity games”).
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16
Discrepancy Games and the variance

1. Balancing. As far is known, the field of Discrepancy Games was initiated by
the following Degree Game problem of Paul Erdős, raised in the early 1970s. Two
players, called Maker and Breaker, alternately take previously unselected edges of a
given complete graph Kn on n vertices. Each player takes 1 edge per move, Maker
colors his edges red and Breaker colors his edges blue. At the end of the play,
Maker will own half of the edges, i.e.

(
n

2

)
/2 red edges, so the average degree in

the red graph is
(
n

2

)
/n= �n−1�/2, implying that the maximum degree in Maker’s

graph is ≥ �n−1�/2.
Maker’s goal in the Degree Game on Kn is to maximize his maximum degree,

i.e. to force a red degree n
2 +� with discrepancy � = ��n� as large as possible.

What is the largest discrepancy � = ��n� that Maker can force? Notice that we
want one-sided, strictly positive discrepancy.

In 1981, L. Székely proved that �=��n�→� as n→�, and gave the following
explicit upper and lower bounds

Breaker can always force �= ��n� < c1
√
n logn� (16.1)

Maker can always force �= ��n� > c2 logn� (16.2)

The upper bound (16.1) immediately follows from the following general discrepancy
theorem (see Lemma 3 in Beck [1981b]).

Theorem 16.1 Let F be an arbitrary finite hypergraph, and let � with 0<�≤ 1 be
an arbitrary real number. There are two players, Balancer and Unbalancer, who
play the (1:1) game on F: they alternate, and each player takes one new point per
move. Unbalancer’s goal is to achieve a majority: he wins if he owns ≥ 1+�

2 part
of some A ∈ F; otherwise Balancer wins. Here is a Balancer’s win criterion: if

∑
A∈F

(
�1+��1+��1−��1−�

)−�A�/2
< 1� (16.3)

then Balancer, as the first player, has a winning strategy.
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It is critical to see that the base �1+��1+��1−��1−� is greater than 1 for every
0< �≤ 1 (why?).

Note that in the special case �= 1, where Unbalancer’s goal is to occupy a whole
set A ∈ F , Theorem 16.1 gives back the Erdős–Selfridge Theorem.
The proof of Theorem 16.1 is very similar to that of the Erdős–Selfridge

Theorem. Assume that we are in the middle of a play: Unbalancer already occu-
pied u1� u2� � � � � ut and Balancer occupied b1� b2� � � � � bt; t is the time parameter.
Write U�t�= �u1� u2� � � � � ut�, B�t�= �b1� b2� � � � � bt�, and consider the “one-sided”
potential function

Pt =
∑
A∈F

�1+���A∩U�t��−
1+�
2 �A��1−���A∩B�t��−

1−�
2 �A�� (16.4)

which is very sensitive (“exponentially sensitive”) to Unbalancer’s lead. The core
idea, which is taken from the Erdős–Selfridge proof, is that Balancer can force the
monotone decreasing property

P0 ≥ P1 ≥ P2 ≥ · · · ≥ Pend�

so Pstart = P0 ≥ Pend.
If Unbalancer wins, then by (16.4) we have Pend ≥ 1; on the other hand, by

hypothesis (16.3), Pstart = P0 < 1, which together imply Balancer’s win. We leave
the details to the reader. �

Let us apply Theorem 16.1 to the star hypergraph of Kn: the hyperedges are the
n stars (each star has n− 1 edges), so F is an �n− 1�-uniform hypergraph with
�F � = n. By choosing

�=
√
c logn

n

with some unspecified (yet) constant c > 0, criterion (16.3), applied to the star
hypergraph of Kn, gives∑
A∈F

(
�1+��1+��1−��1−�

)−�A�/2 = ne−��1+�� log�1+��+�1−�� log�1−��� n−1
2

= ne−��1+����− �2
2 ±··· �+�1−���−�− �2

2 −··· �� n−1
2

= ne−��2+O��3�� n−1
2 = ne−

c logn
2 �1+O���� = n1− c

2 �1+O�����

which is less than 1 if c > 2 and n is sufficiently large. So Theorem 16.1 applies
with

�=
√
�2+o�1�� logn

n
�

and yields (16.1) with the explicit constant c1 =
√
1/2+o�1�.
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In general we have:

Corollary of Theorem 16.1 Let F be an n-uniform hypergraph, and consider the
Balancer–Unbalancer game played on hypergraph F where Unbalancer’s goal is
to own at least n+�

2 points from some A ∈ F . If

�=
(
1+O

(√
log �F �

n

))√
2n log �F ��

then Balancer has a winning strategy.

Proof of the Corollary. Let �= �/n; in view of Theorem 16.1 we have to check
the inequality

�1+���n+��/2 · �1−���n−��/2 ≥ �F ��
Note that

�1+���n+��/2 · �1−���n−��/2 = �1−�2�n/2 ·
(
1+�

1−�

)�/2

≈ e−�2n/2+�� = e�
2/2n�

More precisely, we have

e�1+O��/n�� �
2

2n = �1+���n+��/2 · �1−���n−��/2 ≥ �F � = elog �F ��

which implies

�1+O��/n��
�2

2n
≥ log �F ��

or equivalently,

�≥
(
1+O

(√
log �F �

n

))√
2n log �F ��

which proves the Corollary. �

2. Forcing a Standard Deviation size discrepancy. There is a very large gap
between upper bound (16.1) and lower bound (16.2). In his paper Székely con-
jectured that the logn in (16.2) was the true order of magnitude; he called it
“Problem 2,” see Székely [1981]. In Beck [1993c] this conjecture was disproved
by improving the lower bound logn to

√
n: it was proved that

Maker can always force �= ��n� >

√
n

32
� (16.5)

This result shows that upper bound (16.1) is actually pretty close to the truth, there
is only a factor of logn between the best known upper and lower bounds.
In Beck [1993c] the complete bipartite graph Kn�n was actually worked with

instead of Kn (of course, the proof is the same in both cases), because the Degree
Game on Kn�n is equivalent to an elegant Row–Column Game on an n×n board.



234 Games and randomness

Row–Column Game
on a 9 × 9 board

The two players play on an n× n chessboard, and alternately mark previously
unmarked little squares. Maker uses (say) X and Breaker uses (say) O, like in Tic-
Tac-Toe; Maker’s goal is to achieve a large lead in some line, where a “line” means
either a row or a column. Let n

2 +� denote the maximum number of Xs (“Maker’s
mark”) in some line at the end of a play; then the difference � n2 +��−� n2 −��= 2�
is Maker’s lead; Maker wants to maximize �= ��n�.
Of course, there is hardly any difference between the Degree Game on Kn�n or

on Kn, but we personally find the Row–Column Game the most attractive variant.
Besides his “Problem 2,” that was disproved in (16.5), Székely formulated two

more problems in his paper (Székely [1981]). The first one goes as follows:

Székely’s “Problem 1”: Let G be an arbitrary finite n-regular graph. Is it true
that, playing the Degree Game on G, Maker can always achieve a degree ≥ n

2 +�

with �= ��n�→� as n→�?

Recently this conjecture was proved. In fact, a general hypergraph theorem
was proved, and the solution of “Problem 1” above follows from applying the
hypergraph theorem (see Theorem 16.2 below) in the special case of the “star
hypergraph of G” (the hyperedges are the “stars”). Here is the hypergraph
result:

Theorem 16.2 Let F be a hypergraph which is (1) n-uniform, (2) Almost Disjoint:
�A1∩A2� ≤ 1 for any two different elements of hypergraph F , and (3) the common
degree of F is 2: every point of the hypergraph is contained in exactly two hyper-
edges. Maker and Breaker play the usual (1:1) game on F . Then, at the end of the
play, Maker can occupy at least n

2 + c
√
n points from some A ∈ F .

We are going to give two different proofs for Theorem 16.2. It is very instructive
to compare them. Note that Theorem 16.2 holds with c = 1/15.

Applying Theorem 16.2 to the star hypergraph of an n-regular graph G, we
obtain the following solution to Székely’s “Problem 1”.

Theorem 16.3 Consider the Maker–Breaker Degree Game on an arbitrary finite
n-regular graph G. Maker can force that, at the end of the play, his maximum
degree is ≥ n

2 + c
√
n with c = 1/15.
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Notice that the constant factor c = 1/15 in Theorem 16.3 is better than the earlier
constant factor c = 1/32 was in (16.5) in the special cases G = Kn and G = Kn�n

(the old proof in Beck [1993c] was different).

First proof of Theorem 16.2. Assume we are in the middle of a play, Maker already
occupied x1� x2� � � � � xt (t is the time) and Breaker occupied y1� y2� � � � � yt. The
claimed

√
n discrepancy is familiar from Probability Theory:

√
n is the “standard

deviation” of the n-step random walk. The “standard deviation” is the square-root
of the “variance” – this motivates the introduction of the following “game-theoretic
variance.” Let X�t� = �x1� x2� � � � � xt�, Y�t� = �y1� y2� � � � � yt�, and write (“V” for
“variance”)

Vt =
∑
A∈F

��A∩X�t��− �A∩Y�t���2 � (16.6)

What is the effect of the �t+ 1�st moves xt+1 (by Maker) and yt+1 (by Breaker)?
Well, the answer is easy; by using the trivial fact �u±1�2 = u2±2u+1, we have

Vt+1 = Vt+
∑

A∈F 	 xt+1∈A
�yt+1

(
2��A∩X�t��− �A∩Y�t���+1

)

+ ∑
A∈F 	 yt+1∈A
�xt+1

(
−2��A∩X�t��− �A∩Y�t���+1

)

= Vt+2
∑

A∈F 	 xt+1∈A
��A∩X�t��− �A∩Y�t���−2

∑
A∈F 	 yt+1∈A

��A∩X�t��− �A∩Y�t���+

+ ∑
A∈F 	 xt+1∈A
�yt+1

1+ ∑
A∈F 	 yt+1∈A
�xt+1

1� (16.7)

It follows from the hypothesis of Theorem 16.2 that∑
A∈F 	 xt+1∈A
�yt+1

1+ ∑
A∈F 	 yt+1∈A
�xt+1

1≥ 2� (16.8)

Since Maker chooses his xt+1 before Breaker chooses yt+1, Maker can have the
“best” point: xt+1 is that unoccupied point z for which the sum∑

A∈F 	 z∈A
��A∩X�t��− �A∩Y�t���

attains its maximum. Then∑
A∈F 	 xt+1∈A

��A∩X�t��− �A∩Y�t���≥ ∑
A∈F 	 yt+1∈A

��A∩X�t��− �A∩Y�t����

so by (16.7)–(16.8)

Vt+1 ≥ Vt +2� implying VT ≥ V0+2T� (16.9)
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where T is the “total time,” i.e. T = n�F �/4 is half of the board size. Since trivially
V0 = 0, we conclude

VT ≥ V0+2T = 2T = n�F �
2

� (16.10)

Comparing (16.6) and (16.10), we see that there must exist an A ∈ F such that

��A∩X�T��− �A∩Y�T���2 ≥ n

2
� (16.11)

By taking square-root of (16.11), we obtain

��A∩X�T��− �A∩Y�T��� ≥√
n/2� (16.12)

but (16.12) is not what we want! We want a one-sided estimate with �A∩X�T��>
�A∩Y�T��, but in (16.11) “squaring kills the sign,” and there is no way to guarantee
�A∩X�T��> �A∩Y�T��.
A technical trick. To overcome the difficulty of “squaring kills the sign,” we
modify the “quadratic” variance in (16.6) with an extra “exponential” term as
follows: let

St =
∑
A∈F

(
��A∩X�t��− �A∩Y�t���2−
n�1−���A∩X�t���1+���A∩Y�t��

)
� (16.13)

where parameters 
 with 0 < 
 < 1 and � with 0 < � < 1 will be specified later.
What motivates the introduction of the auxiliary “exponential” term


n�1−���A∩X�t���1+���A∩Y�t�� (16.14)

in (16.13)? We had 2 reasons in mind.

(1) The obvious problem with variance (16.6) is that “squaring kills the sign,” so
it may happen that, there is a “very large” �A∩Y�t��, which is the only reason
why the variance is “large” (this �A∩Y�t�� is useless for us!). But “exponential”
beats “quadratic,” this is how, by using (16.13) instead of (16.6), Maker can
nevertheless guarantee a large one-sided discrepancy.

(2) A second reason is that in the proof of Theorem 16.1 we already used the
exponential potential

∑
A∈F

�1+���A∩U�t��−
1+�
2 �A��1−���A∩B�t��−

1−�
2 �A�� (16.15)

with some 0< � < 1; here B�t� is Balancer’s set and U�t� is Unbalancer’s set.
(16.14) and (16.15) are basically the same; the success of (16.15) is a good
sign, and motivates the modification of (16.6) by (16.14).
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What is the effect of the �t+1�st moves xt+1 (by Maker) and yt+1 (by Breaker)
in the new sum (16.13)? By definition

St+1 =St +2
∑

A∈F 	 xt+1∈A
��A∩X�t��− �A∩Y�t���−2

∑
A∈F 	 yt+1∈A

��A∩X�t��− �A∩Y�t���

+ ∑
A∈F 	 xt+1∈A
�yt+1

1+ ∑
A∈F 	 yt+1∈A
�xt+1

1+
n�
∑

A∈F 	 xt+1∈A
�1−���A∩X�t���1+���A∩Y�t��

−
n�
∑

A∈F 	 yt+1∈A
�1−���A∩X�t���1+���A∩Y�t��

+
n�2 ·��xt+1� yt+1� · �1−���A0∩X�t���1+���A0∩Y�t��� (16.16)

where ��xt+1� yt+1�= 1 if there is an A ∈ F containing both xt+1 and yt+1; Almost
Disjointness yields that, if there is 1, then there is exactly 1: let A0 be this uniquely
determined A ∈F ; finally let ��xt+1� yt+1�= 0 if there is no A ∈F containing both
xt+1 and yt+1.

From the hypothesis of Theorem 16.2∑
A∈F 	 xt+1∈A
�yt+1

1+ ∑
A∈F 	 yt+1∈A
�xt+1

1≥ 2� (16.17)

If Maker chooses that previously unselected xt+1 = z for which the function

gt�z�=
∑

A∈F 	 z∈A

(
2��A∩X�t��− �A∩Y�t���−
n��1−���A∩X�t���1+���A∩Y�t��

)

attains its maximum, then gt�xt+1�≥ gt�yt+1�. So by (16.15) and (16.17)

St+1 ≥ St +2+gt�xt+1�−gt�yt+1�≥ St+2� (16.18)

An iterated application of (16.17) gives that Send = ST ≥ S0+2T , where T = n�F �/4
is the duration of the play (“half of the board size”). By definition S0 = Sblank =
−
n�F �, so we have

Send = ST ≥ n�F �
2

−
n�F � = n�F �
(
1
2
−


)
�

or equivalently

∑
A∈F

(
��A∩X�T��− �A∩Y�T���2−
n�1−�2�n/2

(
1−�

1+�

)�A∩X�T��−n/2
)

≥ n�F �
(
1

2
−


)
� (16.19)

Let �F � =N , and writeF = �A1�A2� � � � �AN � and �Ai∩X�T�� = �Ai∩Xend� = n
2 +�i,

1≤ i ≤ N .
Let 
 = 1/8 and � = √

2/n. Then �1− �2�n/2 ≈ e−1, and by using the easy
inequality

4u2 < 
 · e−1+2
√
2u for all u≥√

5�
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from (16.19) we obtain the following inequality

∑
i	 �i≥−√

5n

4�2
i ≥ n�F �

(
1

2
−


)
= 3nN

8
� (16.20)

Now we are almost done. First note that
∑N

i=1�i = 0, which implies∑
i	 �i>0

�i =
∑

i	 �i≤0

��i� ≥
∑

i	 −√
5n≤�i≤0

��i�� (16.21)

and by (16.21)
√
5n

( ∑
i	 �i>0

�i

)
≥ ∑

i	 −√
5n≤�i≤0

�2
i (16.22)

By (16.20) and (16.22)

∑
i	 �i>0

�2
i +

√
5n

( ∑
i	 �i>0

�i

)
≥ 3nN

32
� (16.23)

i.e. in (16.23) we have positive discrepancy only!
To complete the proof, in sum (16.23) we distinguish 2 cases. Either

√
5n

( ∑
i	 �i>0

�i

)
≥ nN

11
�

which immediately gives the lower bound

max�i ≥
√
n

11
√
5
≥

√
n

25
�

or, by (16.23) ∑
i	 �i>0

�2
i ≥

(
3

32
− 1

11

)
nN�

which immediately gives the better lower bound

max�i ≥
√(

3

32
− 1

11

)
n≥

√
n

19
�

This proves Theorem 16.2 with c = 1/25.

Second proof of Theorem 16.2. In the first proof above we used the “exponential”
expression ∑

A∈F
�1−���A∩X�t���1+���A∩Y�t�� (16.24)

to fix the shortcoming of the variance (“squaring kills the sign”), and the
“exponential” expression (16.24) played a secondary, counter-balancing role only.



Discrepancy Games and the variance 239

The new idea is to work with the “twin brother” of (16.24): consider the single-
term potential function

St =
∑
A∈F

�1+���A∩X�t���1−���A∩Y�t��� (16.25)

The reader may find it surprising that such a simple potential will do the job.
We have the following analogue of (16.16), in fact the new identity is simpler

St+1 = St+�
∑

A∈F 	 xt+1∈A
�1+���A∩X�t���1−���A∩Y�t��

−�
∑

A∈F 	 yt+1∈A
�1+���A∩X�t���1−���A∩Y�t��

−�2 ·��xt+1� yt+1� · �1+���A0∩X�t���1−���A0∩Y�t��� (16.26)

where ��xt+1� yt+1�= 1 if there is an A ∈ F containing both xt+1 and yt+1. Almost
Disjointness yields that, if there is 1, then there is exactly 1: let A0 be this uniquely
determined A ∈ F . Finally, let ��xt+1� yt+1� = 0 if there is no A ∈ F containing
both xt+1 and yt+1.

Since Maker’s xt+1 is selected before Breaker’s yt+1, Maker can select the “best”
point: Maker chooses that xt+1 = z for which the sum

∑
A∈F 	 z∈A

�1+���A∩X�t���1−���A∩Y�t��

attains its maximum. Then by (16.26)

St+1 ≥ St −�2 ·��xt+1� yt+1� · �1+���A0∩X�t���1−���A0∩Y�t��� (16.27)

Let � = ��n� denote the largest positive discrepancy that Maker can achieve; it
means n

2 +� points from some A ∈ F . If � is the maximum discrepancy, then the
inequality �A∩X�t��− �A∩Y�t�� ≤ 2� must hold during the whole play (meaning
every t) and for every A ∈ F . Indeed, if �A∩X�t��− �A∩Y�t�� > 2�, then Maker
can keep this lead for the rest of the play till the end, contradicting the maximum
property of �. Combining this observation with (16.27) we have

St+1 ≥ St −�2 ·��xt+1� yt+1� · �1+��zt+��1−��zt−�� (16.28)

where

zt =
�A0∩X�t��+ �A0∩Y�t��

2
�

Since S0 = Sstart = �F � and “total time”= T = nN/4, from (16.28) we obtain
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Send = ST ≥ S0−�2
nN/4∑
t=1

�1+��zt+��1−��zt−�

= N −�2

(
1+�

1−�

)�
(

nN/4∑
t=1

�1−�2�zt

)

≥ N −�2

(
1+�

1−�

)�
nN

4
� (16.29)

On the other hand, by definition

Send = ST ≤ N�1+��n/2+��1−��n/2−� =

= N

(
1+�

1−�

)�

�1−�2�n/2� (16.30)

Combining (16.29) and (16.30)

N −�2

(
1+�

1−�

)�
nN

4
≤ N

(
1+�

1−�

)�

�1−�2�n/2�

or equivalently (
1+�

1−�

)�

≥ 1
�2n
4 + �1−�2�n/2

� (16.31)

We want to minimize the denominator in the right-hand side of (16.31): we are
looking for an optimal � in the form �=√

2/n, where  is an unspecified constant
(yet); then

�2n

4
+ �1−�2�n/2 ≈ 

2
+ e− = 1+ log2

2

if = log2. With this choice of  (16.31) becomes

e2�� ≈
(
1+�

1−�

)�

≥ 1
�2n
4 + �1−�2�n/2

≥ 1
1+log2

2

�

implying

2
√
2 log2 · �√

n
≥ log

(
2

1+ log2

)
�

that is

�≥
log

(
2

1+log2

)

2
√
2 log2

√
n≥

√
n

15
�

This proves Theorem 16.2 with c = 1/15. �

3. Extensions. Theorem 16.2 is about very special hypergraphs: we assumed that
hypergraph F is (1) n-uniform, (2) Almost Disjoint, and (3) 2-regular (i.e. every
point has degree 2. What happens for a general hypergraph? For example, assume
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that hypergraph F is (1) n-uniform, �3′�D-regular, i.e. every point has degree
D≥ 2 – we skip Almost Disjointness – can we still guarantee any discrepancy? The
answer is an easy “no.” Indeed, let me recall the class of Strictly Even Hypergraphs
from Section 9. A Strictly Even Hypergraph has an underlying “pairing,” and if a
hyperedge intersects a “pair,” then the hyperedge must contain the whole “pair.”

Strictly even hypergraph

In a Strictly Even Hypergraph, every winning set has even size, and, in general,
the intersection of an arbitrary family of winning sets has even size too (explaining
the name “strictly even”).

The Positional Game played on an arbitrary Strictly Even Hypergraph is trivial:
the first player cannot occupy a whole winning set; in fact, the first player cannot
even achieve a “lead” by 1. Indeed, by using a Pairing Strategy, the second player
can take the exact half from each winning set, preventing any “lead” of the opponent.

One of the many peculiarities of a Strictly Even Hypergraph is that its Max
Pair-Degree D2 equals the Max Degree D: D2 =D.

A hypergraph is very different from a Strictly Even Hypergraph; Max Pair-
Degree D2 is subtantially less than the Max Degree D. Under this condition Maker
can always force a large lead.

Theorem 16.4 Let F be an arbitrary n-uniform D-regular hypergraph, and let
D2 = D2�F� denote the Max Pair-Degree of F . Playing the usual (1:1) game on
F , at the end of the play Maker can always occupy at least

n

2
+

log
(

D
D2�1+log�D/D2��

)

2
√
2 log�D/D2�

√
n

points from some A ∈ F .

Remark. If the ratio D/D2 is strictly larger than 1, then the coefficient

log
(

D
D2�1+log�D/D2��

)

2
√
2 log�D/D2�
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of
√
n is positive. Indeed, if log�D/D2�= � > 0, then

D

D2�1+ log�D/D2��
= e�

1+�
= 1+�+�2/2+�3/6+· · ·

1+�
> 1�

so its logarithm is positive.
If D2 is close to D, i.e. if D

D2
−1≈ log�D/D2�= � is small, then

log
(

D
D2�1+log�D/D2��

)

2
√
2 log�D/D2�

≈ �2/2

2
√
2�

= �3/2

25/2
� (16.32)

Theorem16.4 is somewhat“ugly,”but it immediately solvesSzékely’s“Problem3.”
We discuss this application right after the proof.

Proof. Let �F � =N . We repeat the argument of the Second Proof of Theorem 16.2;
we have the following perfect analogue of (16.31)

N −D2 ·�2

(
1+�

1−�

)�
nN

2D
≤ N

(
1+�

1−�

)�

�1−�2�n/2�

or equivalently (
1+�

1−�

)�

≥ 1
D2�

2n

2D + �1−�2�n/2
� (16.33)

We want to minimize the denominator in the right-hand side of (16.33): we are
looking for an optimal � in the form �=√

2/n, where  is an unspecified constant
(yet); then

D2�
2n

2D
+ �1−�2�n/2 ≈ D2

D
+ e− = D2

D
�1+ log�D/D2��

if = log�D/D2�. With this choice of  (16.32) becomes

e2�� ≈
(
1+�

1−�

)�

≥ 1
�2n
4 + �1−�2�n/2

≥ D

D2�1+ log�D/D2��
�

implying

�≥
log

(
D

D2�1+log�D/D2��

)

2
√
2 log�D/D2�

√
n�

which completes the proof of Theorem 16.4.

Theorem 16.3 solved Székely’s “Problem 1.” We already mentioned Székely’s
“Problem 2,” which was about the Degree Game on the complete graph Kn.
Székely’s “Problem 3” is the Degree Game on complete hypergraphs.

Székely’s “Problem 3”: Let r ≥ 2 be a fixed integer, and let Kr
n denote the

r-uniform complete hypergraph on n points ( Kr
n contains

(
n

r

)
r-sets). Consider the
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usual Maker-Breaker game on Kr
n (the players alternate, each player takes one

r-set per move). What is the largest degree that Maker can achieve? Is it true that
Maker can always achieve a degree ≥ 1

2

(
n−1
r−1

)+� with �= ��n�→� as n→�?

Theorem 16.4 immediately solves this problem. Indeed, the corresponding hyper-
graphF is

(
n−1
r−1

)
-uniform, r-regular, and theMaxPair-Degree is r−1.SoTheorem16.4

gives the lower bound

�≥
log

(
r

�r−1��1+log�D/D2��

)

2
√
2 log�r/�r−1��

√(
n−1
r−1

)
� (16.34)

In view of (16.32) the right-hand side of (16.34) is

�≥ 1√
32r3

√(
n−1
r−1

)
�

This gives the following:

Corollary 1 of Theorem 16.4 Székely’s “Problem 3” holds with

�≥ 1√
32r3

√(
n−1
r−1

)
� �

Next we apply Theorem 16.4 to a famous combinatorial structure: the Finite Pro-
jective Plane of order q (it exists if q is a prime-power). The Finite Projective Plane
of order q has q2+q+1 points, q2+q+1 Lines, each Line has q+1 points, and
each point is contained in exactly q+1 Lines. We apply Theorem 16.4: the Lines
are the winning sets, so n= q+1; also D= q+1 and D2 = 1 (since any two Lines
intersect in one point only, so two points uniquely determine a Line); we obtain the
following:

Corollary 2 of Theorem 16.4 Playing on a Finite Projective Plane of order q (the
winning sets are the Lines), Maker can always occupy at least

q

2
+ log�q/ logq�

2
√
2 logq

√
q

points of some Line. �

How good are these lower bounds? To answer the question we apply the Corollary
of Theorem 16.1. This corollary gives the following upper bounds to the game-
theoretic discrepancy:

(i) O�
√
logn�

√(
n−1
r−1

)
for Corollary 1 of Theorem 16.4, and

(ii) O�
√
q logq� for Corollary 2 of Theorem 16.4.
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This means that Corollary 2 is sharp (apart from a constant factor), and Corollary
1 is nearly sharp (apart from a factor of logn).

4. A humiliating problem. How about Theorem 16.3? What upper bound can
we prove? Unfortunately, the Corollary is useless: in the application the factor
log �F � becomes “unbounded,” because the vertex-set of an n-regular graph G can
be arbitrarily large. The sad truth is that we do not know a satisfying upper bound.
Very recently, Tibor Szabó told me the following upper bound result: if the

underlying graph is n-regular, then Breaker can prevent Maker from achieving a
degree greater than 3n/4 (for simplicity assume that n is divisible by 4). Breaker
applies the following simple pairing strategy. The “star hypergraph” has common
degree 2 (since every edge belongs to exactly 2 stars determined by the 2 endpoints),
so by the Bigamy version of the Marriage Theorem every star has an n/2-element
Private Part such that the Private Parts are pairwise disjoint. Whenever Maker takes
an edge from a Private Part, Breaker replies in the same Private Part. This way
Breaker occupies exactly n/4 elements from every Private Part, preventing Maker
from achieving a degree larger than 3n/4.
Note that we don’t even need the Marriage Theorem: if n is even, the n-regular

graph G contains an Euler trail (“the first theorem in Graph Theory”), implying an
orientation of the edges such that every vertex has n/2 in-edges and n/2 out-edges.
The set of (say) out-edges in each vertex define the required Private Parts.
Unfortunately, this is the best that we currently know.

Open Problem 16.1 Can the reader replace the upper bound 3n/4 in the Degree
Game above with some c ·n, where c < 3/4? Is it possible to get c = 1

2 +o�1�?

In view of the Local Lemma (see Exercise 16.1 below) Open Problem 16.1 is even
more frustrating.

Exercise 16.1 Prove, by using the Local Lemma (see the end of Section 11), that it
is possible to 2-color the edges of an n-regular graph such that in every vertex the
difference between the number of red edges and the number of blue edges starting
from that vertex is uniformly less than 2

√
n logn.



17
Biased Discrepancy Games: when the extension

from fair to biased works!

1. Why is the biased case more difficult? In the previous section we discussed
the solution of 3 problems raised by L. Székely in his old paper (Székely [1981]).
Here we discuss a related “biased” problem, which was raised very recently in
2005. It took 25 years to realize that the transition from the usual (1:1) play to the
general �p 	 q� biased play is not obvious!

In the Workshop of “Erdős Magic: Random Structures and Games,” Bertinoro,
Italy (April 23–29, 2005) M. Krivelevich ended his lecture by asking the following
innocent-looking question. The problem is basically an “underdog” version of
Erdős’s Degree Game from the previous section.

Problem 17.1 Two players, called Maker and Breaker, are playing the following
biased game on Kn (complete graph on n vertices). It is a (1:2) play: in each turn
Maker takes 1 new edge of Kn and colors it red, but Breaker takes 2 new edges per
turn and colors them blue. Can Maker guarantee that, at the end of the play, each
degree of the red graph is ≈ n/3? More precisely, can Maker force that every red
degree falls into the short interval n

3 �1−�� <degree< n
3 �1+�� with �= ��n�→ 0

as n→�?

Note that Krivelevich and his co-authors (see Alon, Krivelevich, Spencer, and Szabó
[2005]) could solve the analogous problem for the fair (1:1) play, where both Maker
and Breaker take 1 edge per move. In the (1:1) play Maker can force that, at the
end, every degree in his graph is ≈ n

2 , in fact equals n
2 +O�

√
n logn�. Switching

from the fair (1:1) play to the biased (1:2) play, where Maker is the “under-
dog,” led to some unexpected technical difficulties. This is how Problem 17.1 was
raised.

Our main objective in this section is to solve Problem 17.1, and to extend
the solution from the (1:2) play to an arbitrary biased play. First we have to
understand the “unexpected technical difficulties” caused by the unfair play. The
fair (1:1) play is easy, and it was covered by Theorem 16.1; for convenience it is
recalled here.

245
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Theorem 16.1 Let F be an arbitrary finite hypergraph, and let � with 0 < � < 1
be an arbitrary real number. There are 2 players, Balancer and Unbalancer,
who play the (1:1) game on F: they alternate, and each player takes 1 new
point per move. Unbalancer’s goal is to achieve a majority: he wins if he owns
≥ 1+�

2 part of some A ∈ F; otherwise Balancer wins. Here is a Balancer’s win
criterion: if ∑

A∈F

(
�1+��1+��1−��1−�

)−�A�/2
< 1� (17.1)

then Balancer, as the first player, has a winning strategy.

For later purposes it is necessary to briefly recall the proof. Assume that we are
in the middle of a play: unbalancer already occupied u1� u2� � � � � ut and Balancer
occupied b1� b2� � � � � bt; t is the time parameter. Write U�i�= �u1� u2� � � � � ut�, B�i�=
�b1� b2� � � � � bt�, and consider the “one-sided” potential function

Pt =
∑
A∈F

�1+���A∩U�t��−
1+�
2 �A��1−���A∩B�t��−

1−�
2 �A�� (17.2)

which is very sensitive (“exponentially sensitive”) to Unbalancer’s lead. The core
idea, which is taken from the Erdős–Selfridge proof, is that Balancer can force the
monotone decreasing property

P0 ≥ P1 ≥ P2 ≥ · · · ≥ Pend�

so Pstart = P0 ≥ Pend.
If Unbalancer wins, then by (17.2) we have Pend ≥ 1; on the other hand, by

hypothesis (17.1), Pstart = P0 < 1, which together imply Balancer’s win.
If Balancer works with the “symmetric” potential function

St =
∑
A∈F

(
�1+���A∩U�t��−

1+�
2 �A��1−���A∩B�t��−

1−�
2 �A�+

+ �1+���A∩B�t��−
1+�
2 �A��1−���A∩U�t��−

1−�
2 �A�

)
(17.3)

instead of the “one-sided” Pt in (17.2), then the same proof gives the following
refinement of Theorem 16.1.

Theorem 17.1 Let F be an arbitrary finite hypergraph, and let � with 0 < � < 1
be an arbitrary real number. Balancer and Unbalancer alternate, each player takes
1 new point per move. If

∑
A∈F

(
�1+��1+��1−��1−�

)−�A�/2
<

1
2
� (17.4)

then Balancer, as the first player, can force that, at the end of the play, for every
A ∈ F , Unbalancer’s part in A is between 1−�

2 �A� and 1+�
2 �A�.
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Let us apply Theorem 17.1 to the star hypergraph of Kn: the hyperedges are the
n stars (each star has n− 1 edges), so F is an �n− 1�-uniform hypergraph with
�F � = n. By choosing

�=
√
c logn

n

with some unspecified (yet) constant c > 0, criterion (17.4), applied to the star
hypergraph of Kn, gives∑
A∈F

(
�1+��1+��1−��1−�

)−�A�/2 = ne−��1+�� log�1+��+�1−�� log�1−��� n−1
2

= ne−��1+����− �2
2 ±··· �+�1−���−�− �2

2 −··· �� n−1
2

= ne−��2+O��3�� n−1
2 = ne−

c logn
2 �1+O���� = n1− c

2 �1+O�����

which is less than 1/2 if c > 2 and n is sufficiently large. Thus Theorem 17.1 applies
with

�=
√
�2+o�1�� logn

n
�

and yields the following solution of the fair (1:1) version of Problem 17.1: Maker
(as Balancer) can force that, at the end of the play, every vertex in his red graph has

∣∣∣degree− n

2

∣∣∣≤ �

2
n=

√
n logn
2+o�1�

� (17.5)

Note that the proof of Alon, Krivelevich, Spencer, and Szabó [2005] was somewhat
different, but they also used an Erdős–Selfridge type argument.

Now we explain how to modify my proof of (17.5) (“(1:1) game”) to solve
Problem 17.1 (“(1:2) game”).

Assume that we are in the middle of a play in the (1:2) game played on an
arbitrary finite hypergraph F : Balancer already occupied B�t�= �b1� b2� � � � � bt� and
Unbalancer occupied the twice as large set U�t�= �u

�1�
1 � u

�2�
1 � u

�1�
2 � u

�2�
2 � � � � � u

�1�
t � u

�2�
t �

(t is the time). To compensate for Balancer’s 1:2 handicap, it is natural to introduce
the following “asymmetric” version of potential function (17.3)

Vt =
∑
A∈F

(
�1+ �

3
��A∩U�t��−

2+�
3 �A��1−���A∩B�t��−

1−�
2 �A�+

+ �1+���A∩B�t��−
1+�
3 �A��1− �

2
��A∩U�t��−

2−�
3 �A�

)
� (17.6)

Why did we call potential (17.6) “natural”? Well, because both (17.3) and (17.6)
are motivated by the so-called “Probabilistic Method.” Indeed, assume that the
points of hypergraph F are colored blue and yellow (blue for Balancer and yellow
for Unbalancer) randomly: Pr[a given point is blue]= p and Pr[a given point is



248 Games and randomness

yellow]= q = 1−p; the points are colored independently of each other. Potentials
(17.2) and (17.6) correspond to p = 1/2 and p = 1/3, respectively. Let A ∈ F be
an arbitrary hyperedge; with �A� = n we have

Pr �at least�1+��p part of set A is blue�= ∑
b	 b≥�1+��pn

(
n

b

)
pb�1−p�n−b

≈
(

n

�1+��pn

)
p�1+��pn�1−p�n−�1+��pn

≈
(
n
e

)n ·p�1+��pn�1−p�n−�1+��pn

(
�1+��pn

e

)�1+��pn (
n−�1+��pn

e

)n−�1+��pn

= �1+��−�1+���A�p
(
1−�

p

q

)−�1−�p/q��A�q
�

(17.7)

and similarly

Pr �at most�1−��p part of set A is blue�= ∑
b	 b≤�1−��pn

(
n

b

)
pb�1−p�n−b

≈ �1−��−�1−���A�p
(
1+�

p

q

)−�1+�p/q��A�q
�

(17.8)

Note that in both (17.7) and (17.8) the approximation ≈ is defined in the weak sense
as in the weak form of the Stirling’s formula M! ≈ �M/e�M , where for simplicity
we ignore the logarithmic factors.
Notice that (17.7)–(17.8) with p = 1/2 motivates potential (17.3), and (17.7)–

(17.8) with p= 1/3 motivates potential (17.6).
It has just been explained why potential function (17.6) is a perfect candidate

to work with, but here comes the “unexpected technical difficulty” mentioned at
the beginning: unfortunately, potential (17.6) cannot work! Indeed, a hypothetical
success of potential (17.6) would lead to the following analogue of Theorem 16.1
(“H(?)” stands for hypothetical).

Theorem H(?): Let F be an arbitrary finite hypergraph, and let �, with 0<�< 1,
be an arbitrary real number. Balancer and Unbalancer alternate: Balancer takes
1 new point per move and Unbalancer takes 2 new points per move. If

∑
A∈F

((
1+ �

2

) 2+�
3
�1−��

1−�
3

)−�A�
= O�1�� (17.9)
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then Balancer, as the first player, can force that, at the end of the play, for every
A ∈ F , his part in A is strictly more than 1−�

3 �A�.
Now here comes the bad news: Theorem H(?) is false! Indeed, if F is n-uniform,
and �= 1, then criterion (17.9) simplifies to

�F � = O ��3/2�n� � (17.10)

Here is a counter-example: consider two disjoint copies of hypergraph F ∗.

� 
*

Notice that hypergraph F∗ arises from a binary tree of n/2 levels, where each vertex
is replaced by 2 points. The winning sets of F∗ are the 2n/2 full-length branches.
Playing on 2 disjoint copies of hypergraph F ∗, Unbalancer, as the second player,
can always occupy a full-length branch in 1 of the 2 copies of F∗. This violates
the statement of Theorem H(?) with �= 1. On the other hand, in view of the trivial
inequality

2�F∗� = 2 ·2n/2 < �3/2�n (17.11)

criterion (17.8) applies, which is a contradiction! (Note that inequality (17.11) is
obvious from the numerical fact

√
2= 1�414< 3/2= 1�5.) This contradiction “kills”

Theorem H(?).

2. Forcing the Decreasing Property. The failure of Theorem H(?) is the first
indication of the kind of unpleasant technical difficulties that we face in biased
games (for more examples, see Chapter VI). The collapse of Theorem H(?) forces
us to abandon potential (17.6). We are looking for a “good potential” in the following
more general form

Wt =
∑
A∈F

((
1+ �

2

)�A∩U�t��− 2+�
3 �A�

�1−���A∩B�t��−
1−�
3 �A�+

+
(
1− �

2

)�A∩U�t��− 2−�
3 �A�

�1+���A∩B�t��−
1+�
3 �A�

)
� (17.12)

where both parameters � = ���� and �= ���� will be specified later in terms of �;
note that both are between 0 and 1. “Good potential” precisely means the Decreasing
Property; how can we achieve the Decreasing Property? Balancer’s �t+1�st move



250 Games and randomness

is bt+1 and Unbalancer’s �t+ 1�st move is the point pair u�1�
t+1, u

�2�
t+1; how do they

affect (17.12)? We clearly have

Wt+1 =Wt −� ·W+
t �bt+1�+ �

2
·W+

t �u
�1�
t+1�+

�

2
·W+

t �u
�2�
t+1�

− ��

2
·W+

t �bt+1� u
�1�
t+1�−

��

2
·W+

t �bt+1� u
�2�
t+1�

+� ·W−
t �bt+1�−

�

2
·W−

t �u
�1�
t+1�−

�

2
·W−

t �u
�2�
t+1�

− ��

2
·W−

t �bt+1� u
�1�
t+1�−

��

2
·W−

t �bt+1� u
�2�
t+1�

+ �2

4
·W−

t �bt+1� u
�1�
t+1�+

�2�

4
·W−

t �bt+1� u
�1�
t+1� u

�2�
t+1�� (17.13)

where for an arbitrary point set Z

W+
t �Z�=

∑
A∈F 	 Z⊂A

(
1+ �

2

)�A∩U�t��− 2+�
3 �A�

�1−���A∩B�t��−
1−�
3 �A� (17.14)

and

W−
t �Z�=

∑
A∈F 	 Z⊂A

�1+���A∩B�t��−
1+�
3 �A�

(
1− �

2

)�A∩U�t��− 2−�
3 �A�

� (17.15)

The following inequality is trivial from definitions (17.14)–(17.15)

W±
t �bt+1� u

�1�
t+1� u

�2�
t+1�≤W±

t �u
�1�
t+1� u

�2�
t+1�≤

W±
t �u

�1�
t+1�+W±

t �u
�2�
t+1�

2
�

Applying this trivial inequality in (17.13), we have

Wt+1 ≤Wt −� ·W+
t �bt+1�+

(
�

2
+ �2

8

)
·W+

t �u
�1�
t+1�+

(
�

2
+ �2

8

)
·W+

t �u
�2�
t+1�+

+� ·W−
t �bt+1�−

(
�

2
− �2

8
− �2�

8

)
·W−

t �u
�1�
t+1�−

(
�

2
− �2

8
− �2�

8

)
·W−

t �u
�2�
t+1��

(17.16)

Inequality (17.16) motivates the following choice of parameters � and �: let

� = 2
(
�

2
+ �2

8

)
= �+ �2

4
(17.17)

and

�= 2
(
�

2
− �2

8
− �2�

8

)
= �− �2

4
− �2�

4
�

or equivalently

�= �− �2

4

1+ �2

4

� (17.18)
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In view of (17.17)–(17.18), we can rewrite (17.14) in the following more transparent
form

Wt+1 ≤Wt −gt�bt+1�+ 1
2
gt�u

�1�
t+1�+

1
2
gt�u

�2�
t+1�� (17.19)

where for every unoccupied point z we define the function (see (17.14)–(17.15)
and (17.17)–(17.18))

gt�z�= � ·W+
t �z�−� ·W−

t �z�� (17.20)

Since Balancer chooses his �t+1�st point bt+1 before Unbalancer’s �t+1�st point
pair u�1�

t+1, u
�2�
t+1, Balancer can choose the “best” point as follows: Balancer chooses

that unoccupied bt+1 = z for which the function gt�z�, defined in (17.20), attains its
maximum. Then

gt�bt+1�−
1

2
gt�u

�1�
t+1�−

1

2
gt�u

�2�
t+1�≥ 0�

which, by (17.19), implies the desperately needed decreasing property: Wt+1 ≤Wt,
assuming, of course, that Balancer chooses the “best” point.

Now we are ready to replace the false Theorem H(?) with a correct statement!
The decreasing property gives Wend ≤Wstart, and trivially

Wstart =Wblank =
∑
A∈F

((
�1+ �

2
�2+��1−��1−�

)−�A�/3+
(
�1+��1+��1− �

2
�2−�

)−�A�/3)
�

(17.21)
On the other hand, if at the end of the play (let Bend denote Balancer’s part) either
�A∩Bend� ≥ 1+�

3 �A� or �A∩Bend� ≤ 1−�
3 �A� holds for some set A ∈F , then Wend ≥ 1,

because in sum (17.12) there is a single term ≥ 1.
Therefore, if we assume that the sum in (17.21) is less than 1, then Wend < 1,

proving the following result.

Theorem 17.2 Let F be an arbitrary finite hypergraph, and let � be an arbitrary
real number with 0 < � < 1. Balancer and Unbalancer play the (1:2) game: they
alternate, Balancer takes 1 new point per move and Unbalancer takes 2 new points
per move. If

∑
A∈F

⎛
⎜⎝
((

1+ �

2

) 2+�
3

(
1−�− �2

4

) 1−�
3
)−�A�

+
⎛
⎝(

1− �

2

) 2−�
3

(
1+ �− �2

4

1+ �2

4

) 1+�
3

⎞
⎠

−�A�⎞
⎟⎠< 1�

(17.22)
then Balancer, as the first player, can force that, at the end of the play, for every
A ∈ F , his part in A is strictly between 1−�

3 �A� and 1+�
3 �A�.

The proof argument requires 1− �− �2

4 > 0, so the range for � is 0 < � <

2�
√
2−1�= �828427.
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Theorem 17.2 is an “ugly” result, but it is very useful: it immediately solves Prob-
lem 17.1 (mentioned at the beginning of the section). Indeed, we apply Theorem 17.2
to the “star hypergraph” of Kn with

�=
√
c logn

n
�

where c > 0 is an absolute constant (to be specified later). The “ugly” criterion
(17.22) gives

∑
A∈F

((
�1+ �

2
�

2+�
3

(
1−�− �2

4

) 1−�
3
)−�A�

+
(
�1− �

2
�

2−�
3

(
1+�− �2

4
+O��3�

) 1+�
3
)−�A�)

= ne−��2+�� log�1+�/2�+�1−�� log�1−�−�2/4�� n−1
3

+ne−��2−�� log�1−�/2�+�1+�� log�1+�−�2/4+O��3��� n−1
3

= ne−��2+����/2−�2/8+O��3��+�1−���−�−3�2/4+O��3��� n−1
3

+ne−��2−���−�/2−�2/8+O��3��+�1+����−3�2/4+O��3��� n−1
3

= ne−��2/2+O��3�� n−1
3 +ne−��2/2+O��3�� n−1

3

= n1− c
6 �1+O�����

which is less than 1 if c > 6 and n is sufficiently large. So Theorem 17.2 applies,
with

�=
√
�6+o�1�� logn

n
� (17.23)

and gives the following: in Problem 17.1 underdog Maker (as Balancer) can force
that, at the end of the (1:2) play, every vertex in his red graph has

∣∣∣degree− n

3

∣∣∣≤ �

3
n=

√(
2
3
+o�1�

)
n logn� (17.24)

that is, we get the same strikingly small “error term” O�
√
n logn� as in the fair

(1:1) case (17.5).

Theorem 17.3 Problem 17.1 (formulated at the beginning of this section) holds
with

�= ��n�=
√
�6+o�1�� logn

n
→ 0 as n→��

We will see another application of Theorem 17.2 in Section 33.
In the proof of Theorem 17.2, it was explained why the simpler potential (17.6)

cannot work. Nevertheless, if � is “small,” as in our application (17.23) in the proof
of Theorem 17.3, then by (17.17)–(17.18)
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� = �+ �2

4
≈ � and �= �− �2

4

1+ �2

4

≈ ��

so the successful potential (17.12) is almost the same as the failure (17.6). This
means, the “probabilistic intuition” turned out to be more or less correct after all.

3. Random play. The probabilistic analogue of Problem 17.1 is a routine question
in Probability Theory. An easy calculation gives that, in a Random Graph R�Kn�p�

with edge probability p (let q = 1−p)

Pr �every degree is between �n−1�p± ��+o�1��
√
npq�= 1−o�1��

where �= ��n� comes from the equation e−�2/2 = 1/n, i.e. �=√
2 logn. Of course,

the function e−�2/2 comes from the Central Limit Theorem. With p = 1/2, we get
the bounds

n−1

2
±√

�2+o�1�� logn

√
n · 1

2
· 1
2
= n

2
±
√

n logn

2+o�1�
� (17.25)

and

n−1

3
±√

�2+o�1�� logn

√
n · 1

3
· 2
3
= n

2
±
(
2
3
+o�1�

)√
n logn� (17.26)

Notice that (17.25) is exactly the game-theoretic upper bound (17.5), but (17.26)
is weaker than (17.24) – indeed, 2/3 <

√
2/3 – due to the fact that potential

(17.6) didn’t work, and we had to switch to the slightly different (17.12) with a
“second-order” difference.

In spite of this minor “second-order” difference, we still refer to our potential
technique as a “fake probabilistic method.”

4. Non-uniform case. Let us return to Problem 17.1: it was solved by applying
Theorem 17.2 to the star hypergraph of Kn. The star hypergraph is a particular
�n− 1�-uniform hypergraph F = F�Kn� with �F � = n; what happens in general,
for an arbitrary hypergraph F with �F � = n and maxA∈F �A� ≤ n? Well, in the non-
uniform case we have to be careful: we have to modify the proofs of Theorem 17.1
and Theorem 17.2 in such a way that parameter � is not fixed anymore, the value
�i does depend on the size �Ai� as Ai ∈ F .

First we discuss the non-uniform analogue of Theorem 17.1, i.e. we study the fair
(1:1) case. Let F = �A1�A2� � � � �AN�, and asumme that n ≥ �Ai� ≥ �logn�2 holds
for every Ai ∈ F . The only novelty is to work with

�i =
√
�2+o�1��

logN
�Ai�

� 1≤ i ≤ N
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instead of a fixed �; by repeating the proof of Theorem 17.1 with these �is, we
obtain:

Theorem 17.4 Let F be a hypergraph with �F � = N and n ≥ �A� ≥ �logn�2 for
every Ai ∈ F . Balancer and Unbalancer play the (1:1) game: they alternate, and
each player takes 1 new point per move. Then Balancer, as the first player, can
force that, at the end of the play, his part in every Ai ∈ F is between

1±�i

2
�Ai� =

�Ai�
2

±
√(

1

2
+o�1�

)
�Ai� logN�

In the special case �F � = n and maxA∈F �A� ≤ n, Theorem 17.4 gives the “error
term”

√
n logn/2. Note that Székely [1981] proved a much weaker “error term”

O�n2/3�logn�1/3� – he was not careful.
The “error term” O�

√
n logn� is best possible. To prove this we will give a

hypergraph F with �F � = n and maxA∈F �A� ≤ n such that Unbalancer can force a
lead of size

√
n logn. We need a slight generalization of the “ugly” Theorem 16.4

from the previous section. In Theorem 16.4 we assumed that the hypergraph is D-
regular (i.e. every point has degree D), because this condition automatically holds
in the application (“Székely’s Problem 3”). The same lower bound works under the
more general condition that every degree is ≥D (instead of equality).

Theorem 16.4 ′ Let F be an arbitrary n-uniform hypergraph, let D2 = D2�F�

denote the Max Pair-Degree. and let D denote the minimum degree of F . Playing
the usual (1:1) game on F , at the end of the play Maker can always occupy at
least

n

2
+

log
(

D
D2�1+log�D/D2��

)

2
√
2 log�D/D2�

√
n

points from some A ∈ F .

Assume we have an n-uniform hypergraph F0 with �F0� = n, minimum degree
D= n1/2+o�1�, and Max Pair-Degree D2 = no�1�. An application of Theorem 16.4′ to
this hypergraph gives an Unbalancer’s lead ≥ 1

4

√
n logn, proving the sharpness of

the “error term” O�
√
n logn�.

The existence of the desired hypergraph F0 can be proved by a routine application
of the “Probabilistic Method.” Indeed, let X be a set of size n3/2, and let A1 be
a “random subset” of X where the “inclusion” probability is p = n−1/2 (i.e. every
x ∈ X is included in A1 with probability p, and these decisions are independent).
Repeating this random construction independently n times, we get a hypergraph
F0 = �A1�A2� � � � �An�, where every hyperedge Ai ≈ �X�p = n, every point x ∈
X has F0-degree ≈ np = n1/2, and every point pair x1� x2 (x1 
= x2) has pair-
degree ≈ np2 = 1. It is very easy to make this heuristic argument precise; the
details are left to the reader.



Biased Discrepancy Games 255

5. General Biased Case. Theorems 17.2–17.3 were about a particular underdog
play: the (1:2) play. The proof can be extended to the most general biased case
as follows. Consider an arbitrary (p 	 q) Balancer–Unbalancer play on an arbitrary
finite n-uniform hypergraph F . Assume that we are in the middle of a play, “t” is
the “time,” Balancer owns the point set

B�t�= �b
�1�
1 � � � � � b

�p�
1 � b

�1�
2 � � � � � b

�p�
2 � � � � � b

�1�
t � � � � � b

�p�
t �

and Unbalancer owns the point set

U�t�= �u
�1�
1 � � � � � u

�q�
1 � u

�1�
2 � � � � � u

�q�
2 � � � � � u

�1�
t � � � � � u

�q�
t ��

We are going to work with the following potential function

Wt =
∑
A∈F

(
�1+
��A∩U�t��−

q+�
p+q �A��1−���A∩B�t��−

p−�
p+q �A�

+ �1−��A∩U�t��−
q−�
p+q �A��1+���A∩B�t��−

p+�
p+q �A�

)
�

with 4 unspecified (yet) parameters 
= 
���, = ���, � = ����, �= ���� (they
are all between 0 and 1).

The effect of the �t+ 1�st moves �b
�1�
t+1� � � � � b

�p�
t+1� and �u

�1�
t+1� � � � � u

�q�
t+1� in Wt is

the following

Wt+1 =Wt +

q∑

j=1

W+
t �u

�j�
t+1�+
2

∑
1≤j1<j2≤q

W+
t �u

�j1�
t+1� u

�j2�
t+1�

−�
p∑

i=1

W+
t �b

�i�
t+1�+�2

∑
1≤i1<i2≤p

W+
t �u

�i1�
t+1� u

�i2�
t+1�

−
�
q∑

j=1

p∑
i=1

W+
t �u

�j�
t+1� b

�i�
t+1�±· · ·

−
q∑

j=1

W−
t �u

�j�
t+1�+2

∑
1≤j1<j2≤q

W−
t �u

�j1�
t+1� u

�j2�
t+1�

+�
p∑

i=1

W−
t �b

�i�
t+1�+�2

∑
1≤i1<i2≤p

W−
t �u

�i1�
t+1� u

�i2�
t+1�

−�
q∑

j=1

p∑
i=1

W−
t �u

�j�
t+1� b

�i�
t+1�±· · · � (17.27)

where for an arbitrary point set Z

W+
t �Z�=

∑
A∈F 	 Z⊂A

�1+
��A∩U�t��−
q+�
p+q �A��1−���A∩B�t��−

p−�
p+q �A�
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and

W−
t �Z�=

∑
A∈F 	 Z⊂A

�1−��A∩U�t��−
q−�
p+q �A��1+���A∩B�t��−

p+�
p+q �A��

We delete all the negative terms on the right-hand side of (17.27) except the 2
linear terms with “coefficients” “−�” and “−”

Wt+1 ≤Wt +

q∑

j=1

W+
t �u

�j�
t+1�+
2

∑
1≤j1<j2≤q

W+
t �u

�j1�
t+1� u

�j2�
t+1�

−�
p∑
i=1

W+
t �b

�i�
t+1�+�2

∑
1≤i1<i2≤p

W+
t �u

�i1�
t+1� u

�i2�
t+1�+· · ·

−
q∑

j=1

W−
t �u

�j�
t+1�+2

∑
1≤j1<j2≤q

W−
t �u

�j1�
t+1� u

�j2�
t+1�

+�
p∑

i=1

W−
t �b

�i�
t+1�+�2

∑
1≤i1<i2≤p

W−
t �u

�i1�
t+1� u

�i2�
t+1�+· · · � (17.28)

The following inequalities are trivial from the definition

W±
t �z1� z2�≤

W±
t �z1�+W±

t �z2�

2
�

W±
t �z1� z2� z3�≤

W±
t �z1�+W±

t �z2�+W±
t �z3�

3
�

and so on. Applying these trivial inequalities in (17.28), we obtain

Wt+1 ≤Wt +
q∑

j=1

W+
t �u

�j�
t+1�

(

+ 1

2
�q−1�
2+O�q2�
3+O�p2�
�2

)

−
p∑

i=1

W+
t �b

�i�
t+1�

(
�− 1

2
�p−1��2+O�p3��4+O�pq�
�2

)

−
q∑

j=1

W+
t �u

�j�
t+1�

(
− 1

2
�q−1�2+O�q3�4+O�pq�2�

)

+
p∑

i=1

W+
t �b

�i�
t+1�

(
�+ 1

2
�p−1��2+O�p2��3+O�q2�2�

)
� (17.29)

We require the 2 equalities

q

(

+ 1

2
�q−1�
2+O�q2�
3+O�p2�
�2

)
= �

= p

(
�− 1

2
�p−1��2+O�p3��4+O�pq�
�2

)
(17.30)
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and

q

(
− 1

2
�q−1�2+O�q3�4+O�pq�2�

)
= �

= p

(
�+ 1

2
�p−1��2+O�p2��3+O�q2�2�

)
� (17.31)

notice that the common value in (17.30) is denoted by � and the common value in
(17.31) is denoted by �.

Under the conditions (17.30)–(17.31), we can rewrite (17.29) in a more
transparent form

Wt+1 ≤Wt +
1

q

q∑
j=1

f�u
�j�
t+1�−

1

p

p∑
i=1

f�b
�i�
t+1�� (17.32)

where
f�z�= � ·W+�z�− � ·W−�z��

If Balancer is the first player, then his �t+1�st move �b�1�t+1� � � � � b
�p�
t+1� comes before

Unbalancer’s �t+1�st move �u�1�
t+1� � � � � u

�q�
t+1�. If Balancer first chooses the smallest

value of f�z�, followed by the second smallest, and then the third smallest, and so
on, then

max
i

f�b
�i�
t+1�≤min

j
f�u

�j�
t+1��

implying
1

p

p∑
i=1

f�b
�i�
t+1�≤

1

q

q∑
j=1

f�u
�j�
t+1��

so by (17.32) we obtain the critical decreasing property Wt+1 ≤Wt.
The decreasing property gives Wend ≤Wstart =Wblank, and trivially

Wblank = �F �
((
�1+
�q+��1−��p−�

)−n/�p+q�+ (
�1−�q−��1+��p+�

)−n/�p+q�
)
�

(17.33)
On the other hand, if at the end of the play (let Bend denote Balancer’s part) either
�A∩Bend� ≥ p+�

p+q
n or �A∩Bend� ≤ p−�

p+q
n holds for some set A ∈ F , then Wend ≥ 1

(because there is a term ≥ 1).
Therefore, if we assume that the sum in (17.33) is less than 1, then Wend < 1,

proving that Balancer can guarantee

p+�

p+q
n≥ �A∩Bend� ≥

p−�

p+q
n for all A ∈ F �

It remains to specify parameters 
 = 
���,  = ���, � = ����, � = ����. The
goal is to optimize either base in (17.33)

�1+
�q+��1−��p−� and �1−�q−��1+��p+�� (17.34)
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First we go back to requirements (17.30)–(17.31); an easy calculation shows that
(17.30) is equivalent to


= 1

q

(
�− q−1

2q
�2+O��3�

)
� (17.35)

� = 1

p

(
�+ p−1

2p
�2+O��3�

)
� (17.36)

and (17.31) is equivalent to

= 1

q

(
�+ q−1

2q
�2+O��3�

)
� (17.37)

�= 1

p

(
�− p−1

2p
�2+O��3�

)
� (17.38)

Taking the logarithm of the first terms in (17.34), and applying (17.35)–(17.36) we
have

�q+�� log�1+
�+ �p−�� log�1−��

= �q+�� log�
− 1
2

2+O�
3��− �p−�� log��+ 1

2
�2+O��3��

= �q+��

(
1
q

(
�− q−1

2q
�2+O��3�

)
− 1

2

(
�

q

)2

+O�
3�

)

− �p−��

(
1
p

(
�+ p−1

2p
�2+O��3�

)
+ 1

2

(
�

p

)2

+O��3�

)

=−�2+��

(
p+q

pq

)
+O��3�� (17.39)

The maximum of the quadratic polynomial

g���=−�2+��

(
p+q

pq

)
is attained at � = ��p+q�

2pq
�

and the maximum value itself is

�2 = �2�p+q�2

4p2q2
�

Similar calculations work for the second term in (17.34).
Returning to (17.33) we obtain the following criterion. If

exp
(
�2�p+q�

4p2q2
n+O�

�3�p+q�2

p3q3
�n

)
> 2�F �� (17.40)
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then Balancer can guarantee that, at the end of the play his part in every A ∈ F is
between

p+�

p+q
n and

p−�

p+q
n� (17.41)

This implies:

Theorem 17.5 Let F be an arbitrary finite n-uniform hypergraph. Balancer and
Unbalancer play the (p:q) game: they alternate, Balancer takes p new points and
Unbalancer takes q new points per move. Then Balancer, as the first player, can
force that, at the end of the play, for every A ∈ F , his part in A is strictly between
p+�

p+q
n and p−�

p+q
n, where

�=
(
1+O

(
pq

√
log �F �
�p+q�n

))
2pq

√
log �F �

�p+q� ·n�

Applying Theorem 17.5 to the Degree Game on KN (where the “stars” define an
n-uniform hypergraph with n = N − 1 and �F � = N ), we can immediately extend
Theorem 17.3 for the general case of �p 	 q� biased game (with arbitrary p≥ 1 and
q ≥ 1).

6. A case of unexpected asymmetry: 1 direction is much easier than the other!
In Theorem 17.5 Balancer can force that, for every winning set A ∈ F , at the end
of the play his part in A is strictly between p+�

p+q
�A� and p−�

p+q
�A�. If Balancer just

wants the lower bound ≥ p−�

p+q
�A�, then there is a much simpler proof. We discuss

this simpler argument at the end of Section 20 – see (20.33) in the Remark after
the proof of Theorem 20.1.

The simpler argument does not work for the upper bound.



18
A simple illustration of “randomness” (I)

The subject of the book is to discuss the surprising “randomness” associated with
some classes of games of complete information. The relation is indirect/motiva-
tional; this is why we refer to our proof technique as a “fake probabilistic method.”
The proofs of the main results of the book – the exact solutions – are long and
difficult; it is easy to get lost in the technical details. It is very beneficial, therefore,
to see some other illustrations of “randomness in games,” which have simple (or at
least much simpler) proofs.

1. Picker–Chooser Row Imbalance Games. The board is an n× k chess-board
(k rows, each of length n), a standard board, but the way the two players divide
the board into two parts is not standard. It is not the Maker–Breaker play; the
two players divide the board into two halves in the “Picker–Chooser way,” mean-
ing that in each turn Picker picks two previously unselected little squares on the
board, Chooser chooses one of them, and the other square goes back to Picker.
Chooser marks his squares with letter “C” and Picker marks his squares with
letter “P.”

C C C
P

P

P

P

C k = 7 rows
n = 22 columns

This is a Row Imbalance Game: one player wants a large “discrepancy” in a row.
In other words, one player, called Unbalancer, wants a row where the number of
Ps differs from the number of Cs by a large amount (we take absolute value!). For
example, on the picture above, in the 3rd row we have a discrepancy of 3. The
opponent of Unbalancer is called Balancer: his goal is to minimize the maximum
row discrepancy.

260
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There are two versions: (1) Picker is Balancer, (2) Picker is Unbalancer. Observe
that the first version (1) is trivial. Indeed, if Picker proceeds “row-wise” (i.e. first
taking pairs from the first row, and when the first row is exhausted, taking pairs
from the second row, and when the second row is exhausted, taking pairs from the
third row, and so on), then, at the end of the play, the maximum row discrepancy
is 0 or 1 depending on the parity of n (Chooser’s strategy is irrelevant).

The second version (2) is not trivial; we call it the Picker–Chooser Row Imbalance
Game on an n×k board (k rows), where Picker is Unbalancer. Let D�n�k� denote
the maximum row discrepancy that Picker can achieve against a perfect opponent.
How large is D�n�k�?

First we discuss the case when k is much smaller than n, like k= 10 and n= 1000.
We show a heuristic argument, which seems to prove that Picker can achieve a
row-discrepancy ≥ �k/2� if k is much smaller than n. Here is the argument: if
during the whole play every row has a row-discrepancy < �k/2�, i.e. if every row-
sum (meaning: the number of Ps minus the number of Cs) is between −�k/2�+1
and �k/2�−1, then by the Pigeonhole Principle there is always a pair of rows with
the same row-sum: ri1�j�= ri2�j�. In other words, after the jth turn, the i1st and the
i2nd rows (i1 
= i2) have the same row-sum. Then, assuming the i1st and the i2nd
rows both still have unmarked squares and Picker picks 1 unmarked square from
each, the “game-theoretic variance”

Vj =
k∑

i=1

�ri�j��
2 (18.1)

increases by two

Vj+1−Vj = �ri1�j�±1�2+ �ri2�j�∓1�2− �ri1�j��
2− �ri2�j��

2 = 2�

This way Vend =Vnk/2 = nk, implying that at the end there exists a row with row-sum
r, where r2 ≥ n, i.e. �r� ≥ √

n≥ k/2 if n≥ k2/4.
This argument repeatedly used the assumption that “there are two rows with equal

row-sums such that both rows have unmarked squares.” How can we guarantee this
assumption? A simple way to save the argument is to replace k/2 by k/4: we show
that Picker can always achieve a row-discrepancy ≥ �k/4� if k is much smaller
than n. Indeed, if during the whole play every row-sum (the number of Ps minus
the number of Cs) is between −�k/4�+ 1 and �k/4�− 1, then by the Pigeonhole
Principle there are always less than k/2 rows with multiplicity-one row-sum value.
Assume there are l distinct row-sum values, and let m1 ≤ m2 ≤ · · · ≤ ml denote
the multiplicities in increasing order. Let mj = 1 < 2 ≤ mj+1; then j < k/2 and
mj+1 + · · ·+ml > k/2. The only reason why the “game-theoretic variance” does
not increase by 2 is that there are at least

�mj+1−1�+· · ·+ �ml−1�≥ mj+1+· · ·+ml

2
>

k/2
2

= k

4
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“full rows,” meaning at least nk/4 marked cells. It follows Vnk/8 = nk/4, implying
that at this stage of the play there exists a row with row-sum r, where r2 ≥ n/4,
i.e. �r� ≥ √

n/2 ≥ k/4 if n≥ k2/4. We have just proved:

Theorem 18.1 (a) The maximum row-discrepancy D�n�k�≥ �k/4� if n≥ k2/4.

Next consider the opposite direction: How well can Chooser balance the rows? Here
is a very simple balancing strategy. If the pair of squares that Picker picks to choose
from are in the same row, then Chooser’s move is irrelevant. The relevant moves are
those where the 2 squares are from 2 different rows, say, from the ith row and the
jth row where 1≤ i < j ≤ k. For every pair �i� j� with 1≤ i < j ≤ k Chooser follows
a fixed alternating +�−�+�−� · · · pattern in the sense that, whenever Picker’s last
move gives the �i� j� pair, Chooser acts according to the next sign in the alternating
± sequence: + means Chooser chooses the ith row and − means Chooser chooses
the jth row. This way the discrepancy in a fixed row, say, the i0th row, is estimated
from above by the number of pairs �i0� j�, which is clearly k−1. Thus we get:

Theorem 18.1 (b) The maximum row-discrepancy D�n�k� < k.

Theorem 18.1 (a)–(b) shows that the discrepancy function D�n�k� is basically linear
if k is very small compared to n. If n is fixed/large and k increases beyond

√
n, then

the function D�n�k� “slows down” and picks up a completely different “square-root
like behavior” – this is the message of the following result.

Theorem 18.2 The maximum row-discrepancy D�n�k� <
√
�2+o�1��n logk.

(Notice that we can assume k >
√
n, since otherwise Theorem 18.1 (b) beats

Theorem 18.2.)

Comparing Theorem 18.2 with Theorem 18.1 (b) we see a “phase transition” in
the evolution of the Row Imbalane Game as k goes beyond

√
n: a simple “linear”

game becomes more complex.
Theorem 18.2 is a very simple special case of the much more general:

Theorem 18.3 Let F be an arbitrary finite hypergraph, and let � with 0 < � < 1
be an arbitrary real number. Consider the Picker–Chooser play on F (i.e. in each
turn Picker picks two previously unselected points, Chooser chooses one of them,
and the other one goes back to Picker). Assume that Chooser is Balancer. If

∑
A∈F

(
�1+��1+��1−��1−�

)−�A�/2
<

1

2
� (18.2)

then Chooser (as Balancer) can force that, at the end of the play, for every A ∈ F ,
his part in A is between 1−�

2 �A� and 1+�
2 �A�.

Notice that Theorem 18.3 is the perfect analogue of the Maker–Breaker Theo-
rem 17.1. The proof is basically the same: Chooser always chooses the “better
point” (from the pair offered to him by Picker to choose from) according to the
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potential function defined in the proof of Theorem 17.1. The reader is challenged
to check the details.

Let us apply Theorem 18.3 to the row hypergraph of the n× k board: the
hyperedges are the k rows, F is an n-uniform hypergraph with �F � = k. By choosing

�=
√
c logk
n

with some unspecified (yet) constant c > 0, criterion (18.2), applied to the row
hypergraph of the n×k board, gives
∑
A∈F

(
�1+��1+��1−��1−�

)−�A�/2 = ke−��1+�� log�1+��+�1−�� log�1−��� n2=

= ke−��1+����− �2
2 ±··· �+�1−���−�− �2

2 −··· �� n2=

= ke−��2+O��3�� n2 = ke−
c logk

2 �1+O���� = k1−
c
2 �1+O�����

which is less than 1/2 if c > 2 and k is sufficiently large (we can assume that
k >

√
n, since otherwise Theorem 18.1 (b) beats Theorem 18.2). So Theorem 18.3

applies with

�=
√
�2+o�1�� logk

n
�

and yields the following row-balancing: Chooser (as Balancer) can force that, at
the end of the play, every row-sum has absolute value ≤√

�2+o�1��n logk. This
proves Theorem 18.2.

In the symmetric case k= n Theorem 18.2 gives the upper bound

D�n�=D�n�n�≤√
�2+o�1��n logn�

How good is this upper bound? Well, we are going to see that
√
n logn is the correct

order of magnitude (but not the correct constant factor). In fact, the following three
results will now be proved:

Theorem 18.4 In the n×n Picker–Chooser Row Imbalance Game:

(a) the maximum lead that Picker (as Unbalancer) can force is around
√
n logn;

(b) the L2-norm of the leads over the n rows is around
√
n;

(c) the maximum shutout that Picker can force in a row is exactly �log2 n�.
Of course, we have to define the concept of shutout (see (c)). The maximum
shutout is the largest lead that Picker (as Unbalancer) can achieve in a row in such
a way that Chooser has not yet put any mark into that row. Moreover, the vague
term of “around” in (a)–(b) means “apart from a constant factor.”

Let us return to the shutout. On the diagram below, Picker has a shutout of 3 in
the 5th row: Picker has 3 marks and Chooser has none.
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= Chooser

Notice that the “3” comes from the exponent 8= 23 of the board size. In general, if
n≥ 2s, then Picker can force a shutout of s as follows: first Picker picks 2s−1 pairs
from the first column, and throws out the rows with “C”; he then picks 2s−2 pairs
from the second column, and throws out the rows with “C”; he then picks 2s−3 pairs
from the third column, and throws out the rows with “C”; and so on. This proves
one direction of (c); the other direction is left to the reader as an easy exercise.
Theorem 18.4 (a) shows that the max-lead is much larger than the max-shutout.
Before proving Theorem 18.4 (a) and (b), we will formulate another result (see

Theorem 18.5 below) and compare it with Theorem 18.4. This new result is about
the first variant where Picker is the Balancer. The first variant is trivial for the Row
Game (Picker can force row-discrepancy ≤ 1), but the Row–Column version is far
from trivial: the maximum discrepancy jumps from 1 to

√
n. We are going to prove

the following precise result.

Theorem 18.5 In the n×n Picker–Chooser Row–Column Imbalance Game where
Chooser is the Unbalancer

(a) the maximum lead that Chooser (as Unbalancer) can force is around
√
n;

(b) the L2-norm of the leads over the n rows and n columns is around
√
n;

(c) the maximum shutout that Chooser can force over the 2n lines (n rows and n

columns) is ≤ 3.

2. Phantom Decomposition. What kind of intuitive explanation can we give for
Theorems 18.4 and 18.5? Well, the case of Theorem 18.4 is self-explanatory: a
standard “random model” predicts the 3 statements (a)–(b)–(c) surprisingly well.
What we mean by a “random model” is the Random 2-Coloring of the n2 little
squares of the n×n board. Of course, the little squares are 2-colored independently
of each other, and each color has probability 1/2. In view of the Central Limit
Theorem, the maximum row-discrepancy is around

√
n logn (see (a)), and the

L2-norm of the n row-discrepancies is around the standard deviation
√
n (see (b)).

Notice that in (a) the extra factor
√
logn comes from the inverse

√
logx of the

familiar function e−x2 in the integral form of the normal distribution.
These “explain” (a) and (b), but (c) is even simpler. Indeed, if we color the little

squares sequentially, then the “pure heads” equation n · 2−x = 1 has the solution
x= log2 n, which “explains” (c). (The precise proof of (c) is trivial anyway.)

Thus we can say: the standard “random model” successfully predicts Theo-
rem 18.4, but what kind of “randomness” predicts Theorem 18.5? This is a



An illustration of “randomness” (I) 265

non-standard randomness that we call “local randomness.” What does “local
randomness” mean? It requires a longer explanation.

The hypergraph of n rows in the n×n board consists of disjoint hyperedges,
but the hypergraph of 2n “lines” (n rows and n columns) has degree 2: every
cell is covered by 2 “lines.” The Row–Column hypergraph does not fall apart
into disjoint hyperedges; nevertheless, my interpretation of “local randomness”
assumes an imaginary “phantom decomposition,” where the hypergraph falls apart
into n disjoint row–column pairs (see the diagram below), and Theorem 18.5 is
“explained” by the randomization of a single row–column pair.

Phantom Decomposition of 5 × 5

Indeed, if we randomly 2-color a row–column pair consisting of �2n− 1�
little squares, then the row–column discrepancy is typically around the standard
deviation

√
n (see Theorem 18.5 (a)–(b)); also if we color the little squares

sequentially, then the longest “pure heads” sequence starting at the corner has
typical length O�1� (see (c)).
In other words, my interpretation of Theorem 18.5 involves a non-existing “phan-

tom decomposition,” meaning that the hypergraph of winning sets “pretends to fall
apart into disjoint neighborhoods,” and we predict the game-theoretic outcome by
“randomizing the largest neighborhood” (meaning: two random players are playing
in the largest neighborhood, ignoring the rest of the hypergraph).

Of course, this “Phantom Decomposition Hypothesis” is just an alternative
interpretation of the Meta-Conjecture, but we find this new form very instructive.

We have the symbolic equality:

Local Randomness in Games= Phantom Decomposition Hypothesis=MetaConjecture

3. The proofs. This concludes my interpretation of “local randomness”; we return
to this issue later at the end of Section 19. It remains to prove Theorems 18.4–18.5.

Proof of Theorem 18.4 (a). We now prove one-sided discrepancy, namely that
Picker can force a lead of c

√
n logn in some row (c > 0 is an absolute constant).

Notice that once a lead is established in the middle of a play, Picker can sustain
it till the end of the play – by picking pairs from that row so long as he can –
except of a possible loss of 1 due to “parity reasons.”

The obvious problem with game-theoretic variance (let Pi�j� denote the number
of Picker’s marks and Ci�j� denote the number of Chooser’s marks in the ith row
after the j turn)
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Vj =
n∑

i=1

�ri�j��
2� where ri�j�= Pi�j�−Ci�j�

is that “squaring kills the sign,” and a large row-discrepancy is not necessarily
Picker’s lead. We can overcome this technical difficulty by applying a trick: we
replace variance Vj above with the modified sum

V ∗
j =

n∑
i=1

((
ri�j�+

√
n

8

)+)2

� where �x�+ =max�x�0��

Write �i�j� =
(
ri�j�+

√
n

8

)+
; we refer to �i�j� as the modified ith row-sum (after

the jth turn).
One new idea is to work with the modified variance V ∗

j instead of Vj; the second

new idea is iteration: this is how we supply the extra factor
√
logn next to the

standard deviation
√
n.

The iteration requires a more general setting: instead of the square-shaped n×n

board we switch to a general rectangle shape m×k, meaning k rows of length m

each. The corresponding “modified variance” is

V ∗
j =

k∑
i=1

((
ri�j�+

√
m

8

)+)2

�

we write �i�j�=
(
ri�j�+

√
m

8

)+
for the modified ith row-sum (after the jth turn).

The idea is the following: we divide the n×n board into logn sub-boards of size
�n/ logn�×n each, and accordingly the play is divided into logn stages.

1 2 3 log n
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At the end of the first stage we find ≥ n/2 rows in the first (left-most) sub-board,
where Picker=Unbalancer has a lead≈√

n/ logn in each. In the second stage Picker
moves to the second (left-most) sub-board; among the ≥ n/2 “good” rows he finds
≥ n/4 for which he can force an additional ≈ √

n/ logn lead in each (altogether
≈ 2

√
n/ logn). In the third stage, Picker moves to the third (left-most) sub-board;

among the ≥ n/4 “good” rows he finds ≥ n/8 for which he can force an additional
≈√

n/ logn lead in each (altogether ≈ 3
√
n/ logn), and so on. We keep repeating

this c logn times, which gives a total lead of

c logn ·√n/ logn= c
√
n logn�

How to handle a typical stage; that is, what is Picker’s strategy in a sub-board?
Consider a sub-board of size m×k, where m= n/ logn.

Case 1: There are ≥ 2
√
m logm different values among the modified row-sums

�i�j�=
(
ri�j�+

√
m

8

)+
, i= 1�2� � � � � k.

Then maxi ri�j�≥ 2
√
m logm−√

m/8≥√
m logm, and we are done.

Case 2: There are ≥ k/10 rows with �i�j�= 0.
Then ∣∣∣∣∣

∑
i	ri�j�<0

ri�j�

∣∣∣∣∣≥
k

10
·
√
m

8
�

and combining this with the trivial fact
∑k

i=1 ri�j�= 0, we conclude∣∣∣∣∣
∑

i	ri�j�>0

ri�j�

∣∣∣∣∣≥
k

10
·
√
m

8
�

Then there is an integer r ≥ 2 such that the lower bound ri�j� ≥ r
√
m holds for

at least
k

r2
values of i.

Case 3: There are ≥ k/10 rows which are fully occupied.
Then, of course, j ≥ km/20.

Case 4: Neither one of Cases 1 and 2 and j < km/20.
Then there are k− k/10 = 9k/10 rows with �i�j� ≥ 1. Assume that there are
exactly l different row-sum values, and the l values show up with multiplicities
�1��2� � � � ��l. We have �1+�2+· · ·+�l ≥ 9k/10 and l ≤ 2

√
m logm; for nota-

tional convenience let �1 ≤ �2 ≤ � � �≤ �l. If k≥ 10
√
m logm and j < km/20, then

we can always find two rows with the same non-zero modified row-sum such that
neither row is fully occupied yet. If Picker picks 1 new square from each one of
these two rows, the modified variance V ∗

j increases by 2 in the usual way

V ∗
j+1 = V ∗

j + ��±1�2+ ��∓1�2−2�2 = V ∗
j +2�
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so

km

10
= V ∗

km/20 =
k∑

i=1

((
ri�j�+

√
m

8

)+)2

�

which implies that there is an integer r ≥ 2 such that the lower bound ri�j�≥ r
√
m

holds for at least
k

r2
values of i.

We summarize Cases 1–4 in a single statement:

Lemma 1: Playing on an m× k board (k rows of length m each), where k ≥
10

√
m logm, Picker can force that, at some stage of the play:

(1) either there is a row where Picker has a lead ≥√
m logm,

(2) or there is an integer r with logm≥ r ≥ 2 such that Picker has a lead ≥ r
√
m

in at least
k

r2
rows.

Theorem 18.4 (a) follows from an iterated application of Lemma 1. Indeed, let
m= n/ logn; in the first stage, played on the left-most sub-board, we have k= n.
By Lemma 1 there are two cases: (1) or (2). If (1) holds, we are done. If (2) holds,
there is an integer r1 with logm≥ r1 ≥ 2 such that Picker has a lead ≥ r1

√
m in at

least
k

r2
rows, say, in the i1st row, in the i2nd row, in the i3rd row, � � �, in the ik1 th

row, where k1 ≥
k

r2
.

In the second stage we move to the second sub-board; we keep the “good” rows
i1� i2� i3� � � � � ik1 , and throw out the rest of the rows. This means we apply Lemma 1

to an m×k1 board where k1 ≥
k

r2
and again m= n/ logn. By Lemma 1 there are

two cases: (1) or (2). If (1) holds, we are done. If (2) holds, there is an integer r2
with logm≥ r2 ≥ 2 such that Picker has a lead ≥ r2

√
m in at least k1

r22
rows, say, in

the j1st row, in the j2nd row, in the j3rd row, � � �, in the jk2 th row, where k2 ≥ k1
r22
.

In the third stage we move to the third sub-board; we keep the “good” rows
j1� j2� j3� � � � � jk2 , and throw out the rest of the rows. This means we apply Lemma 1
to an m×k2 board where k2 ≥ k1

r22
and again m = n/ logn. By Lemma 1 there are

two cases: (1) or (2), and so on. Repeating this argument, at the end of the sth stage
we have

≥ n

r21 r
2
2 · · · r2s

rows with Picker′s lead ≥ �r1+ r2+· · ·+ rs�
√
m

in each. Lemma 1 applies so long as

n

r21 r
2
2 · · · r2s

< 10
√
m logm where m= n/ logn�
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An easy calculation shows that the minimum occurs when 2= r1 = r2 = r3 = · · · ,
implying a Picker’s lead

≥ c1
√
m logn= c1

√
n/ logn logn= c1

√
n logn�

This completes the proof of Theorem 18.4 (a). �

The proof of Theorem 18.4 (b) is easy now: Chooser can trivially guarantee the
upper bound

Vj =
n∑

i=1

�ri�j��
2 ≤ 2j� j = 1�2� � � � � n/2�

Indeed, if Picker’s two little squares are in the same row, then always Vj+1 = Vj. If
Picker’s two little squares are in two different rows i1 and i2, and the row-sums are
equal: ri1�j�= ri2�j�, then there is always an increase by 2: Vj+1 = 2+Vj. Finally,
if Picker’s two little squares are in two different rows i1 and i2 and the row-sums
are different: ri1�j� 
= ri2�j�, then Chooser can force Vj+1 ≤ Vj . So the L2-norm is
bounded from above by(

1
n

n∑
i=1

�ri�j��
2

)1/2

≤√
n2/n=√

n

if Chooser plays rationally.
The other direction is trivial from the proof argument of Lemma 1. Indeed,

repeating the proof of Lemma 1 we can prove the following:

Proposition: Playing on an n×n board, Picker can force that, at some stage of
the play:

(1) either there are at least n/10 different positive row-sum values,
(2) or there is an integer r ≥ 2 such that Picker has a lead ≥ r

√
n in at least n

r2

rows.

In both cases we have
√

1
n
Vj ≥ c2

√
n, and Theorem 18.4 (b) follows. �

Since we already proved Theorem 18.4 (c) (which was trivial anyway), the proof
of Theorem 18.4 is complete.
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A simple illustration of “randomness” (II)

1. Proof of Theorem 18.5 (a). The easy part of (a) is to show that Chooser=
Unbalancer can force a lead of c

√
n.

Lemma 1: Let F be a hypergraph which is (1) n-uniform, (2) Almost Disjoint: �A1∩
A2� ≤ 1 for any two different elements of hypergraph F , and (3) the common degree
of F is 2: every point of the hypergraph is contained in exactly two hyperedges.
Playing the Picker–Chooser game on F where Chooser=Unbalancer, at the end of
the play Chooser can occupy at least n

2 + c
√
n points from some A ∈ F (c = 1/15

is a good choice).

Lemma 1 is the perfect analogue of Theorem 18.2 in the “Discrepancy Section.”
Two proofs were given for Theorem 18.2, and both can be trivially adapted to
get Lemma 1 (Chooser chooses the “better” point by applying the same potential
function).
The hard part is the converse: Picker=Balancer can force the upper bound≤ c ·√n

for the line-discrepancy (“line” means row or column). Picker’s strategy consists
of several phases.

1st Phase: Picker picks his cell-pairs by employing a potential function F1; function
F1 will be specified later. A line (row or column) becomes “dangerous” in a play
when the absolute value of the line-discrepancy equals 10

√
n. The unoccupied part

of a “dangerous” line, called an emergency set, becomes part of the Emergency
Room, or simply the E.R. The E.R., a “growing” set, is exactly the union of all
emergency sets arising in the course of the 1st Phase. In the 1st Phase Picker
completely avoids the E.R.; the 1st Phase is over when the complement of the E.R.
is completely exhausted by Picker.
The board of the 2nd Phase is the E.R. The key step in the proof is to confirm:

Lemma 2: In the 1st Phase, Picker can force that there are less than n/2 emergency
sets in the 2nd Phase.

270
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Proof of Lemma 2. Let �L1�L2� � � � �Ln/4� be an arbitrary set of n/4 lines (rows
and columns). Since the hypergraph of all 2n lines has degree 2, we have the formal
equality

L1+L2+ � � �+Ln/4 =H0+H2�

where H0 = H1 ∪H2, H1 is the set of degree-one elements and H2 is the set of
degree-two elements of the union set L1∪L2∪ � � �∪Ln/4.
We define an auxiliary hypergraph H: the hyperedges are the sets

H0 = H0�L1�L2� � � � �Ln/4� and H2 = H2�L1�L2� � � � �Ln/4� for all possible sets
�L1�L2� � � � �Ln/4� of n/4 lines. Clearly �H� = 2

( 2n
n/4

)
.

Picker’s goal in the 1st Phase: Picker’s goal is to guarantee that, during the whole
phase, every H ∈ H has discrepancy of absolute value < 1/2 ·n/4 ·10√n.
Notice that, if Picker can achieve this goal in the 1st Phase, then Lemma 2 holds.

Indeed, assume that in the 1st Phase there are ≥ n/2 emergency sets; then there
are n/4 emergency sets where the discrepancy has the same sign (all positive or all
negative); let �L1�L2� � � � �Ln/4� denote the super-sets of these n/4 emergency sets,
and write

L1+L2+ � � �+Ln/4 =H0+H2�

where H0 = H1 ∪H2, H1 is the set of degree-one elements and H2 is the set of
degree-two elements of the union set L1 ∪L2 ∪ � � �∪Ln/4. Then either H0 ∈ H or
H2 ∈ H has a discrepancy ≥ 1/2 ·n/4 ·10√n= 5n3/2/4, which contradicts Picker’s
goal.

As said before, Picker achieves his goal by applying a potential function F1

(to be defined below in (19.1)). Assume that we are in the middle of the 1st
Phase, X�i�= �x1� � � � � xi� denotes Picker’s squares and Y�i�= �y1� � � � � yi� denotes
Chooser’s squares selected so far. The question is what new pair �xi+1� yi+1� should
Picker pick in his �i+ 1�st move (of course, Picker does not know in advance
which element of the pair will be chosen by Chooser as yi+1). For every previously
unselected square z write

F1�i� z�=
∑
z∈L

(
�1+���X�i�∩L��1−���Y�i�∩L� − �1+���Y�i�∩L��1−���X�i�∩L�

)
� (19.1)

where parameter ��1 > � > 0� will be specified later. Since z is contained by 1
row and 1 column, F1�z� is the sum of 4 terms only. Picker picks that unselected
pair �z1� z2�= �xi+1� yi+1� outside of the E.R. for which the difference �F1�i� z1�−
F1�i� z2�� attains its minimum.
Let

F1�i�=
∑

L	 2n lines

(
�1+���X�i�∩L��1−���Y�i�∩L� + �1+���Y�i�∩L��1−���X�i�∩L�

)
� (19.2)



272 Games and randomness

Then, after Chooser made his �i+1�st move, we have

F1�i+1�= F1�i�+�F1�i� xi+1�−�F1�i� yi+1�

−�2
∑

�xi+1�yi+1�⊂L

(
�1+���X�i�∩L��1−���Y�i�∩L� + �1+���Y�i�∩L��1−���X�i�∩L�

)

≤ F1�i�+��F1�i� xi+1�−F1�i� yi+1��

≤ F1�i�+�min
z1 
=z2

�F1�i� z1�−F1�i� z2��� (19.3)

Let U�i� denote the set of unselected squares outside of the E.R. From the trivial
inequality

�F1�i� z1�� ≤ F1�i� for all z ∈ U�i��

by the Pigeonhole Principle we have

min
z1 
=z2

�F1�i� z1�−F1�i� z2�� ≤
F1�i�

�U �−1
�

Returning to (19.3)

F1�i+1�≤ F1�i�+
�

�U�i��−1
F1�i�=

(
1+ �

�U�i��−1

)
F1�i�≤ e

�
�U�i��−1F1�i��

and by iterated application, we have

F1�i�≤ F1�start� · e�
∑

i
1

�U�i��−1 ≤ F1�start� · e�
∑n2

i=1
1
i

≤ F1�start� · e�·2 logn holds for all i�

Since

F1�start�= �H� = 2
(
2n
n/4

)
�

we have

F1�i�≤ 2
(
2n
n/4

)
e�·2 logn

holds for the whole course of the 1st Phase. Assume that, at some point in the
1st Phase, one player leads by 5n3/2/4 in some H ∈ H. Then for some i and
t�5n3/2/4≤ t ≤ n2/8�

�1+��t+5n3/2/4�1−��t−5n3/2/4 ≤ F1�i�≤ 2
(
2n
n/4

)
e�·2 logn� (19.4)
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We have

�1+��t+5n3/2/4�1−��t−5n3/2/4 =
(
1+�

1−�

)5n3/2/4

· �1−�2�t

≥
(
1+�

1−�

)5n3/2/4

· �1−�2�n
2/8

=e�2�+O��2��5n3/2/4−�2n2/8+O��4�n2 � (19.5)

where the inequality t ≤ n2/8 follows from the fact that n/4 lines cover at most
n2/4 cells.
By choosing �= 10/

√
n in (19.5), we obtain

�1+��t+5n3/2/4�1−��t−5n3/2/4 ≥ e�25/2−o�1��n�

and returning to (19.4)

e�25/2−o�1��n ≤ 2
(
2n
n/4

)
e10/

√
n·2 logn� (19.6)

Finally, (19.6) is an obvious contradiction, since(
2n
n/4

)
≤

(
2n
n

)
≤ 22n < e25n/2�

This completes the proof of Lemma 2. �

Now we are ready to discuss the:

2nd Phase. The board is the E.R. at the end of the 1st Phase; from Lemma 2 we
know that there are n1 ≤ n/2 emergency sets. Of course, there may exist a large
number of lines which are not dangerous yet and intersect the E.R.: we call these
intersections secondary sets. Since the E.R. is the union of the emergency sets and
any two lines intersect in ≤ 1 cell, every secondary set has size ≤ n1 ≤ n/2.

At the end of the 1st Phase, a similar “halving” cannot be guaranteed for the
emergency sets; the size of an emergency set may remain very close to n. The
objective of the 2nd Phase is exactly to achieve a size-reduction in every single
emergency set (close to “halving”).

Let E1�E2� � � � �En1
denote the n1�≤ n/2� emergency sets, and consider the sub-

hypergraph �E1�E2� � � � �En1
�. Every Ej has a “private part,” meaning: the degree-

one cells of Ej in the sub-hypergrap, we denote the “private part” by PR�Ej�,
j = 1�2� � � � � n1. If Picker always picks a pair from a some “private part” PR�Ej�,
then there is no change in the discrepancy of any emergency set, but, of course, the
discrepancy of a secondary set may change (in fact, may increase).

This is exactly what Picker does: in the 2nd Phase he exhausts every “private part”
PR�Ej�, j = 1�2� � � � � n1 by picking pairs from them so long as he can “legally”
do it. In the 2nd Phase the discrepancy of an emergency set doesn’t change; a
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secondary set becomes “dangerous” when its discrepancy (restricted to the board
of the 2nd Phase) has absolute value 10 · log�6n/n1� ·√n1. The unoccupied part of
a “dangerous” secondary set, called a new emergency set, becomes part of the 2nd
E.R. The 2nd E.R., a growing set, is exactly the union of the new emergency sets
arising during the 2nd Phase:

Lemma 3: In the 2nd Phase Picker can force that, the number of new emergency
sets is less than n1/10.

Proof of Lemma 3. We proceed somewhat similarly to Lemma 2. Let
�S1� S2� � � � � Sn1/20� be an arbitrary set of n1/20 secondary sets. Again we have
the formal equality

S1+S2+ � � �+Sn1/20 =H0+H2�

where H0 = H1 ∪H2, H1 is the set of degree-one elements and H2 is the set of
degree-two elements of the union set S1∪S2∪ � � �∪Sn1/20.
We define an auxiliary hypergraph H: the hyperedges are the sets H0 =

H0�S1� S2� � � � � Sn1/20� and H2 = H2�S1� S2� � � � � Sn1/20� for all possible sets
�S1� S2� � � � � Sn1/20� of n1/20 secondary sets. Clearly �H� = 2

( 2n
n1/20

)
.

Picker’s goal in the 2nd Phase: Picker’s goal is to guarantee that, during the
whole phase, every H ∈ H has discrepancy of absolute value < 1/2 · n1/20 ·
10 log�6n/n1�

√
n1.

Notice that, if Picker can achieve this goal in the 2nd Phase, then Lemma 3
holds. Indeed, assume that in the 2nd Phase there are ≥ n1/10 new emergency sets;
then there are n1/20 new emergency sets, where the discrepancy has the same sign
(all positive or all negative); let �S1� S2� � � � � Sn1/20� denote the super-sets of these
n1/20 emergency sets, and write

S1+S2+ � � �+Sn1/20 =H0+H2�

whereH0 =H1∪H2,H1 is the set of degree-one elements andH2 is the set of degree-
two elements of the union set S1∪S2∪ � � �∪Sn1/20. Then either H0 ∈H or H2 ∈H has
a discrepancy ≥ 1/2 ·n1/20 ·10 log�6n/n1�

√
n1, which contradicts Picker’s goal.

Picker achieves his goal by applying a potential function F2. Function F2 is the
perfect analogue of F1 in Lemma 2: for every previously unselected square z write

F2�i� z�=
∑
z∈S

(
�1+���X�i�∩S��1−���Y�i�∩S� − �1+���Y�i�∩S��1−���X�i�∩S�

)
�

where S runs over the secondary sets, and parameter � (1> �> 0) will be specified
later (it will have a different value than in Lemma 2). Since z is contained by 1
row and 1 column, F2�z� is the sum of 4 terms only.

The only novelty is that here Picker picks his pairs from the “private parts”
PR�Ej�, j = 1�2� � � � � n1 of the old emergency sets. Picker exhausts PR�Ej� as long
as he can; the only restriction is that he must avoid the 2nd E.R. If the “private
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parts” PR�Ej� contains at least 2 unselected cells outside of the 2nd E.R., then
Picker picks that unselected pair �z1� z2�= �xi+1� yi+1� from PR�Ej� outside of the
new E.R. for which the difference �F2�i� z1�−F2�i� z2�� attains its minimum.

Picker keeps doing this for every “private part” PR�Ej� until he has no legal
move left. The analogue of (19.4) goes as follows

�1+��t+n
3/2
1 log�6n/n1�/4�1−��t−n

3/2
1 log�6n/n1�/4 ≤ F2�i�≤ 2

(
2n

n1/20

)(
e�·logn

)n1 � (19.7)

We have

�1+��t+n
3/2
1 log�6n/n1�/4�1−��t−n

3/2
1 log�6n/n1�/4 =

(
1+�

1−�

)n
3/2
1 log�6n/n1�/4

· �1−�2�t

≥
(
1+�

1−�

)n
3/2
1 log�6n/n1�/4

· �1−�2�n
2
1/40

= e�2�+O��2��n
3/2
1 log�6n/n1�/4−��2+O��4��n21�

(19.8)

where the inequality t ≤ n2
1/40 follows from the fact that n1/20 lines cover at most

n2
1/20 cells.
By choosing �= 10 log�6n/n1�/

√
n1 in (19.8), we obtain

�1+��t+n
3/2
1 log�6n/n1�/4�1−��t−n

3/2
1 log�6n/n1�/4 ≥ e�5/2−o�1��n1 log�6n/n1��

and returning to (19.7)

e�5/2−o�1��n1 log�6n/n1� ≤ 2
(
2n
n1

)
e10 log�6n/n1�/

√
n1·logn·n1 � (19.9)

Finally, (19.9) is a contradiction; indeed

e�5/2−o�1��n1 log�6n/n1� =
(
6n

n1

)�5/2−o�1��n1

and (
2n
n1

)
e10 log�6n/n1�/

√
n1·logn·n1

≤
(
2en

n1

)n1
(
n

n1

)10
√
n1·logn

�

This contradiction proves Lemma 3. �

The 2nd Phase terminates when every “private part” PR�Ej�, j = 1�2� � � � � n1 has
≤ 1 unselected square outside of the 2nd E.R.. By Lemma 3, the 2nd E.R. consists
of less than n1/10 new emergency sets. It follows that, at the end of the 2nd Phase,
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every new emergency set has unoccupied part

≤ n1+
n1

10
= 11n1

10
≤ 11n

20
�

We already know that every new emergency set has size ≤ n1 ≤ n/2 (a byproduct
of Lemma 2). Summarizing, at the end of the 2nd Phase, every emergency set, old
and new, has an unoccupied part of size ≤ 11n/20, and, so far in the play, every
line has discrepancy

≤ 10
√
n+10 log�6n/n1�

√
n1� (19.10)

coming from the 1st Phase and the 2nd Phase.
The board of the 3rd Phase is the union of the emergency sets (old and new).

Of course, there may exist a large number of lines which are not “dangerous” yet
and still have an unoccupied part. The (non-empty) unoccupied parts are called
secondary sets; every secondary set has size ≤ 11n/20.
Notice that we already made a big progress: the set-size is reduced from the

original n to ≤ 11n/20 (a 45% reduction), and the maximum total discrepancy so
far is ≤ 30

√
n (see (19.10)). The rest of the argument is plain iteration.

Let n2 denote the number of emergency sets (old and new) at the end of the 2nd
Phase. The argument above gives that:

�
� each emergency set has size ≤ n2 ≤ 11n/20;
�� every secondary set has size ≤ n2;
��� the only bad news is that the total number of sets may remain very close to the

initial 2n.

The 3rd Phase is the analogue of the 1st Phase and the 4th Phase is the analogue
of the 2nd Phase (that is, we have a periodicity in the argument where the length
of the period is 2). Let us focus on the 3rd Phase: a set (emergency or secondary)
becomes “dangerous” when its discrepancy has absolute value 10 log�6n/n2�

√
n2.

Warning: when we speak about discrepancy in a particular phase, the set (row
or column) is restricted to the particular sub-board, in this case to the board of the
3rd Phase, and the discrepancy outside doesn’t count. When “everything counts,”
we will call it the total discrepancy.

We need:

Lemma 4: In the 3rd Phase Picker can force that the number of “dangerous sets”
remains less than n2/2.

The proof is very similar to that of Lemma 2. The critical part is the following
inequality (analogue of (19.6) and (19.9))

e2�·1/2·n2/4·10 log�6n/n2�
√
n2−�2·n22/8 ≤

(
2n
n2

)
� (19.11)
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which provides the necessary contradiction in the reductio ad absurdum proof.
Indeed, choosing � = 10 log�6n/n2�/

√
n2, the left-hand side of (19.11) becomes

much larger than the right-hand side(
6n
n2

)5n2/2

>

(
2n
n2

)
≈

(
2en

n2

)n2

�

The 4th Phase is the perfect analogue of the 2nd Phase. Indeed, let E1�E2� � � � �En3

denote the emergency sets at the end of the 3rd Phase; Lemma 4 yields n3 ≤ n2/2.
Again Picker picks his pairs from the “private parts” PR�Ej�, j = 1�2� � � � � n3.
This way the discrepancy of the emergency sets doesn’t change. A secondary set
becomes “dangerous” in the 4th Phase when its discrepancy has absolute value
10 log�6n/n3�

√
n3.

We need:

Lemma 5: In the 4th Phase Picker can force that the number of “dangerous sets”
remains less than n3/10.

The proof is exactly the same as that of Lemma 3.
Let me summarize the progress we have made at the end of the 4th Phase:

(
) every emergency set has size ≤ n3+n3/10 ≤ 11n2/20= �11/20�2n;
() every secondary set has size ≤ �11/20�2n;
(�) the maximum total discrepancy so far is

≤ 30
√
n+30 log�6n/n2�

√
n2�

(�) the only bad news is that the total number of sets may remain very close to the
initial 2n.

A k-times iteration of this argument gives that the set-size is reduced to ≤
�11/20�kn, and the maximum total discrepancy so is estimated from above by
the sum

≤ 30
√
n+30 log�6n/n2�

√
n2+30 log�6n/n4�

√
n4+30 log�6n/n6�

√
n6+ � � � �

(19.12)

where n > n2 > n4 > n6 > · · · and n2j ≤ �11/20�jn, j = 1�2�3� � � � . Sum (19.13)
represents a rapidly convergent series (like a geometric series) where the sum
is less than constant times the first term O�

√
n�. This completes the proof of

Theorem 18.5 (a). �

Lemma 1 (at the beginning of this section) was a Picker–Chooser version, where
Chooser=Unbalancer, of the Maker–Breaker result Theorem 16.2. Two proofs were
given for Theorem 16.2, and a straightforward adaptation of the first proof solves
one-half of Theorem 16.5 (b). Indeed, let �i, i= 1�2� � � � �2n denote Chooser’s lead
in the 2n lines at the end (n rows and n columns;�i > 0 means that Chooser has more
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marks in that line). The first proof of Theorem 16.2 gives the alternative result that
(1) either the L1-norm is “large”; (2) or the L2-norm is “large.” Formally, (1) either

1

2n

∑
i	 �i>0

�i > c
√
n�

(2) or (
1

2n

∑
i	 �i>0

�2
i

)1/2

> c
√
n�

Since L2-norm ≥ L1-norm, in both cases the L2-norm of Chooser’s lead is > c
√
n

(if Chooser plays rationally).
The converse is trivial from (a); indeed, L�-norm ≥ L2-norm. This

completes (b). �

Finally, Theorem 18.5 (c) is very easy. Every domino in the picture represents a
Picker’s move. Each row and each column contains a whole domino.

Picker’s strategy to prevent
a shutout ≥ 4

It follows that the largest shutout that Chooser can force is ≤ 3. The proof of
Theorem 18.5 is complete.

Note that Theorem 18.5 (c) has the following far-reaching generalization. Let G be
an arbitrary d-regular graph; for simplicity assume that the common degree d is even.
Then by a classical theorem of Petersen, G is the union of d/2 perfect 2-factors. A
perfect 2-factormeans a sub-graphwhich contains every vertex ofG and every degree
is exactly 2; it is the union of vertex-disjoint cycles. Picker takes two perfect 2-factors
from G, and gives an orientation to each cycle. Then every vertex of G has two out-
edges. In each turn Picker offers to Chooser 2 out-edgeswith a common starting point.
Then, of course, Chooser cannot make a Shutout larger than 2.
Theorem 18.5 (c) is the special case when G is the n× n complete bipartite

graph.
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2. Explaining games with probabilistic models. We recall that
√
n is the standard

deviation of the n-step random walk (with steps ±1), and the quadratic sum Vj

defined above can be interpreted as a “game-theoretic variance” (and V ∗
j is a

“modified variance”). How far can we go with this kind of probabilistic analogy?
Consider a random process where for each one of the n2 little squares of the board
we toss a fair coin: Heads means we write a “P” and Tails means we write a “C”
in the little square. This random process gives a “Random 2-Coloring” of the n×n

board; what is the largest lead that Picker can achieve in the family of all rows?Well,
with probability tending to 1 as n→�, the maximum lead is

√
�2+o�1�� logn

√
n.

Indeed, let �=√
�2+�� logn with � > 0; then by the Central Limit Theorem

Pr�max lead ≥ �
√
n�≤ n

1√
2�

∫ �

�
e−u2/2du≤ n

n1+�
= n−� → 0�

Next let �=√
�2−�� logn with � > 0; then

Pr�max lead ≤ �
√
n�≤

(
1− 1√

2�

∫ �

�
e−u2/2du

)n

≤ �1−n−1+��n ≤ e−n� → 0�

proving what we wanted.
How far can we go with the probabilistic analogy? Is it true that that the largest

lead that Picker can force in the n×n Picker–Chooser Row Discrepancy Game is the
same

√
�2+o�1�� logn

√
n (as n→�)? In one direction we could really prove this:

Chooser can always prevent Picker from achieving a lead of
√
�2+o�1�� logn

√
n;

in the other direction we missed by a constant factor: Picker can always achieve
a lead of c

√
logn

√
n, where c > 0 is an absolute constant. Even if the upper and

lower bounds differ by a constant factor, the appearance of the same (strange!)
quantity

√
logn

√
n is a remarkable coincidence.

The extra factor
√
logn – the solution of the equation e−x2 = 1/n – next to√

n (“standard deviation”) is an unmistakable sign of Randomness (Central Limit
Theorem).

Notice that, inspecting the n rows in the “Random 2-Coloring,” the longest “pure
P sequence” at the beginning of the n rows (like PP � � � P) has length log2 n+O�1�
with probability tending to 1 as n → � (why?). A “pure P sequence” at the
beginning of a row corresponds to a “shutout”; the appearance of the same log2 n
is another interesting sign of a deeper analogy between the Picker–Chooser game
and the “Random 2-Coloring.”

Actually, the analogy went deeper: it was converted into the proofs! For exam-
ple, to prove that Chooser can always prevent Picker from achieving a lead of√
�2+o�1�� logn

√
n, we employed a Potential Function, which was clearly moti-

vated by the probabilistic analogy as follows. Restricting the “Random 2-Coloring”
to a fixed row (say, the first row), we have
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Pr �Picker has a lead ≥ l in the first row�=
n∑

j=�n+l�/2

(
n

j

)
2−n�

The dominant term on the right-hand side is the first term; by using the weak form
k! ≈ �k/e�k of Stirling’s formula we get the approximation(

n

�n+ l�/2

)
2−n = n!

n+l
2 ! n−l

2 !2n ≈ �n/e�n

��n+ l�/2e��n+l�/2��n− l�/2e��n−l�/22n

=
(
1+ l

n

)−�n+l�/2

·
(
1− l

n

)−�n−l�/2

�

The approximation

Pr �Picker has a lead ≥ l in the first row�≈
(
1+ l

n

)−�n+l�/2

·
(
1− l

n

)−�n−l�/2

of the “large deviation probability” motivates the introduction of the following
Potential Function: let l=√

�2+o�1�� logn
√
n, and consider the sum

Ti =
n∑

j=1

(
1+ l

n

)#Pj−�n+l�/2

·
(
1− l

n

)#Cj−�n−l�/2

�

We now see what this means: we are right after the ith turn where Picker has i

marks “P” and Chooser has i marks “C”; #Pj is the number of marks of Picker in
the jth row; #Cj is the number of marks of Chooser in the jth row; the present
danger of the event “at the end of the play Picker achieves a lead ≥ l in the jth
row” is measured by the product(

1+ l

n

)#Pj−�n+l�/2

·
(
1− l

n

)#Cj−�n−l�/2

�

the sum Ti above, extended over all rows, measures the “total danger.”

3. Picker–Chooser is a “global” game and Chooser–Picker is a “local” game.
We tried to “explain” the Chooser–Picker game with the “randomized neighbor-
hood” model, but where does the concept of “neighborhood” come from? Why is
it so important? Well, the Chooser–Picker game (similarly to the Maker–Breaker
game) is a local game in the following sense. Assume that a particular Chooser–
Picker game falls apart into components C1, C2, C3, � � � with disjoint sub-boards; then
Chooser cannot take advantage of the (possibly) large number of components: the
best that he can achieve in the whole game is the same that he can achieve in the
“largest” component. Indeed, Picker can proceed component-wise by exhausting
first (say) the first component, next the second component, next then the third com-
ponent, and so on. This means Chooser’s best play is to focus on one component,
preferably on the “largest” component, and to ignore the rest. My way of under-
standing a Chooser–Picker game is to visualize a Phantom Decomposition where
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the game falls apart into disjoint components; a component is a “neighborhood”
in the narrow sense: it is the family of all winning sets containing a fixed element
of the board. Once we have the components, we pick the “largest one” – because
this is all what Chooser can do: namely to pick 1 component and focus on it – and
randomize the “largest component” exactly as in the Picker–Chooser game. This
particular probabilistic model that we call the “randomized neighborhood” is our
guide to understanding the Chooser–Picker game.

It is important to emphasize that the Phantom Decomposition mentioned above
is an “imaginary” decomposition: it is not real; in fact the game remains a coherent
entity during the whole course of the play.

The Phantom Decomposition is not real, but in the last part (Part D) of the book we
are going to discuss several (real!) decomposition techniques; these decomposition
techniques support my Phantom Decomposition “philosophy.”

Note that the “emergency room” idea in the proof of Theorem 18.5 (a) was
already a decomposition technique.

Theorems 18.4 and 18.5 illustrate that the Picker–Chooser game and the
Chooser–Picker game can both be explained by some probabilistic models: the
Picker–Chooser game is explained by the “randomized game” model and the
Chooser–Picker game is explained by the “randomized neighborhood” model. The
bounds in Theorems 18.4–18.5 were not exact (with the lucky exception of The-
orem 18.4 (c)), so most likely the reader has his/her strong reservations about my
“probabilistic model explanation,” finding the results presented so far less than
convincing. The most natural objection against a probabilistic model is that it has
a built-in “fluctuation,” raising the question of how on earth can it predict an
exact/deterministic outcome, namely the outcome of an optimal play between per-
fect players? For example, the standard deviation of an n-step symmetric random
walk is exactly

√
n, but what is a “typical” deviation? A deviation of

√
n/2 is

just as “typical” as that of
√
n; in fact, a deviation of

√
n/2 is more likely than a

deviation of
√
n, and the most likely deviation is in fact the zero(!) deviation.

Then we would probably say: “Let us take an average of the deviations!”; but
which average is the “natural” average? The linear average and the quadratic
average are equally “natural”; from the Central Limit Theorem and the 2 integrals
below

1√
2�

∫ �

−�
�u�e−u2/2du=√

2/� and
1√
2�

∫ �

−�
u2e−u2/2du= 1

we see that the linear average of the deviations is
√
2/�

√
n and the quadratic

average of the deviations is
√
n. There is a slightly more than 20 percent difference

between the 2 averages; which one (if any) predicts the truth in the Chooser–Picker
game? Unfortunately we cannot decide on the question, because we don’t know the
right constant factor in the solution of the game.
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It seems that a probabilistic model cannot predict an exact value at all, but here
comes the surprise: there are some “natural” probabilistic models in which the key
parameter – a random variable! – happens to be almost single-valued (i.e. almost
deterministic, so the problem of “which average is the right one” disappears). For
example, in a Random Graph on KN with edge probability 1/2 (which means that
for each one of the

(
N

2

)
edges of the complete graph KN on N vertices we toss a

fair coin; we keep the edge if the outcome is Heads and discard the edge if the
outcome is Tails) the largest clique Kq has size

q = �2 log2N −2 log2 log2N +2log2e−1�
with probability tending to 1 as N → �. Here the probabilistic model gives a
(basically) deterministic prediction, which leads to the following precise question:
is it true that, in the Picker–Chooser game played on the edges of KN , the largest
clique Kq that Picker can occupy has q = �2 log2N − 2 log2 log2N + 2log2e− 1�
vertices? The answer is “yes” (at least for the overwhelming majority of the values
of N ) – this is proved in Section 22.
Now how about the Chooser–Picker version? What the “randomized neighbor-

hood” model suggests is the following: fix an (arbitrary) edge �u� v� of KN , and find
the largest clique in the Random Graph with edge probability 1/2 which contains
edge �u� v�; let this largest clique be a copy of Ks. The value of s is again a random
variable, and, similarly to q, s is also concentrated on a single value: this time the
value is

�2 log2N −2 log2 log2N +2log2e−3�
with probability tending to 1 as N →� (for clarity this was over-simplified a little
bit). Because the probabilistic model gave a (basically) deterministic value, it is
natural to ask the following question: is it true that, in the Chooser–Picker game
played on the edges of KN , the largest clique Kq that Chooser can occupy has
q = �2 log2N −2 log2 log2N +2log2e−3� vertices? Again the answer is “yes”! (At
least for the overwhelming majority of the values of N .)
Next switch to the lattices games introduced in Section 8: consider a Random

2-Coloring of the N ×N board with marks “P” and “C” (involving N 2 coin tosses);
what is the size of the largest Aligned Square Lattice which is exclusively marked
“P” (the gap of the lattice is arbitrary)? Let the largest Square Lattice be of size
q×q; parameter q is a random variable (depending on the N 2 coin tosses). A simple
calculation shows that it is concentrated on the single value

�√3 log2N�
with probability tending to 1 as N →�. We ask the usual question: is it true that,
in the Picker–Chooser game played on the N ×N board, the largest Aligned Square
Lattice that Picker can occupy has size q×q with
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q = �√3 log2N�
Again the answer is “yes” (at least for the overwhelming majority of the values
of N ).
How about the Chooser–Picker version? What the “randomized neighborhood”

model suggests here is the following: fix a little square of the N ×N chess-board
(say, the lower left corner), and find the largest Aligned Square Lattice in the
random P-C coloring which contains the fixed little square and is exclusively
marked “C”; let this lattice be of size s× s. The value of s is again a random
variable, and, similarly to q, s is also concentrated on a single value: this time the
value is

�√log2N�
with probability tending to 1 as N →� (again for clarity this was over-simplified
a little bit). Because the probabilistic model gave a (basically) deterministic value,
it is natural to ask: Is it true that, in the Chooser–Picker game played on the N ×N

chess-board, the largest Aligned Square Lattice that Chooser can occupy has size
s×s with s=�√log2N�? Again the answer is “yes”! (At least for the overwhelming
majority of the values of N .)
Comparing the “Clique Game” with the “Square Lattice game” we can see a

major difference: in the “Clique Game” r differs from s by an additive constant
only; in the “aligned square game” r is

√
3= 1�732 times larger than s.

There is also a big difference in the difficulty of the proofs: the “extreme
concentration” of the random variables can be proved in 1 page; the Picker–
Chooser results can be proved on 5–6 pages; but the proof of the Chooser–Picker
results needs about 80 pages! This justifies our intuition that the probabilistic
model is “easy,” the Picker–Chooser game is “more difficult,” and the Chooser–
Picker game is “very difficult” (because Chooser has much less control than Picker
does).

These sporadic results can be extended to a whole scale of results; 1 extension is
the discrepancy version. Let 
 be an arbitrary fixed real in the interval 1/2<
≤ 1;
what happens if the goal is relaxed in such a way that it suffices to occupy a given
majority, say the 
 part of the original goal (instead of complete occupation)?
For simplicity we just discuss the “Square Lattice game”; in the 
 version of the
“Square Lattice game” the goal is to occupy the 
 part of a large Aligned Square
Lattice in the N ×N board; given 
 and N , what is the largest size q× q that is
still 
-achievable?
First, as usual, consider a Random 2-Coloring of the N ×N board with marks

“P” and “C” (involving N 2 coin tosses); what is the size of the largest Aligned
Square Lattice which has at least 
-part “P”? Let the largest such Square Lattice be
of size q×q. Parameter q is a random variable (depending on the N 2 coin tosses);
it is concentrated on the single value
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⌊√
3

1−H�
�
log2N

⌋

with probability tending to 1 as N →�. Here the novelty is the appearance of the
Shannon entropy H�
�=−
 log
−�1−
� log�1−
�, which is a positive constant
less than 1. We ask the usual question: Is it true that, in the Picker–Chooser game
played on the N ×N board, the largest Aligned Square Lattice that Picker can
“
-occupy” has size q×q with

q =
⌊√

3

1−H�
�
log2N

⌋

Again the answer is “yes” (at least for the overwhelming majority of the values
of N ).
How about the Chooser–Picker version? What the “randomized neighborhood”

model suggests here is the following: fix a little square of the N ×N chess-board
(say, the lower left corner), and find the largest Aligned Square Lattice in the
random P-C coloring which contains the fixed little square and has at least 
-part
“C”; let this lattice be of size s× s. The value of s is again a random variable, and,
similarly to q, s is also concentrated on a single value: the value is⌊√

1
1−H�
�

log2N

⌋

with probability tending to 1 as N →� (again for clarity this was over-simplified
a little bit). Again the usual question: is it true that, in the Chooser–Picker game
played on the N ×N chess-board, the largest Aligned Square Lattice that Chooser
can 
-occupy has size s× s with

s =
⌊√

1
1−H�
�

log2N

⌋

The answer is, one more time, “yes”! (At least for the overwhelming majority of
the values of N .)
These exact results – holding for all real numbers 
 in 1/2 < 
 ≤ 1 and for all

large enough N – represent strong evidence in favor of the “probabilistic model
explanation.”
Changing q to q+ 1, the clique Kq increases by q edges and the q× q lattice

increases by 2q+1 elements. This square-root size increase provides a comfortable
“safety cushion” for our (rather complicated) potential calculations.
Note that the Maker–Breaker game has a striking similarity to the Chooser–Picker

game – we can prove (almost) identical(!) results – but we cannot give any a priori
explanation for this coincidence (except the complicated proof itself).
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The basic philosophy is repeated. The probabilistic model is “easy” to work
with; it is easy to compute (or estimate) the relevant probabilities. This is why
we are using the probabilistic model as a guide. The Picker–Chooser game is
“more difficult.” This is why we are using it as a “warmup” and a motivation. The
Chooser–Picker game is “very difficult”; and the same goes for the Maker–Breaker
game; and, finally, the “who-does-it-first” games are hopeless.



20
Another illustration of “randomness” in games

1. When Achievement and Avoidance are very different. We recall Lehman’s
remarkable theorem from Section 4. Consider the (1:1) Maker–Breaker Connectivity
Game on a finite multi-graph G where Maker’s goal is to own a spanning tree in G.
When can Maker win? The shockingly simple answer goes as follows: Maker, as
the second player, has a winning strategy if and only if G contains 2 edge-disjoint
spanning trees.
What happens in the (1:b) underdog play with b ≥ 2 if Maker is the underdog?

Of course, the (1:b) play with b ≥ 2 means that Maker takes 1 new edge and
Breaker takes b new edges per move. It is very tempting to believe in the following
generalization of Lehman’s theorem:

Question 20.1 Is it true that, if multi-graph G contains b+1 edge-disjoint spanning
trees, then at the end of the (1:b) play underdog Maker can own a whole spanning
tree?

For example, the complete graph Kn contains �n/2� edge-disjoint spanning trees
(hint: if n is even, Kn is the union of n/2 edge-disjoint Hamiltonian paths – see
the very end of the section). Is it true that, playing the (1:b) game on Kn with
b = �n/2�− 1, underdog Maker can own a whole spanning tree? Well, it is very
tempting to say “yes,” especially since the answer is really “yes” for the Avoidance
version, see Theorem 4.2.

In spite of this, the correct answer for the Achievement game is “no.” What is
more, even if b is o�n�, such as b = �1+ o�1��n/ logn, Breaker can still prevent
Maker from occupying a whole spanning tree. This result, due to Erdős and Chvátal
[1978], completely “kills” Question 20.1.
Breaker’s strategy goes as follows: if b = �1+��n/ logn with some � > 0, then

Breaker can occupy a star of �n−1� edges; a Breaker’s star means an isolated point
in Maker’s graph, and an isolated point trivially prevents a spanning tree.
A good motivation for the “isolated point” is:

286
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Erdős’s RandomGraph intuition. The game-theoretic result of Erdős and Chvátal
shows a striking similarity with the following well-known Random Graph result.
The duration of a (1:b) play allows for approximately n2/2�b+1� Maker’s edges.
In particular, if b = cn/ logn, then Maker will have the time to create a graph
with n logn/2c edges. It is well known that a Random Graph with n vertices and
n logn/2c edges is almost certainly disconnected for c > 1; in fact, it has many
isolated vertices(!). This is an old result of Erdős and Rényi.
By using this “Random Graph intuition” Erdős suspected that the “breaking

point” for the Connectivity Game (and also for the Hamilton Cycle Game, where
Maker wants to own a whole Hamiltonian cycle, see below) should come around
b = n/ logn.
Erdős’s “Random Graph intuition,” together with the Erdős–Selfridge Theorem,

are the two pioneering results of the “fake probabilistic method.”
After this short detour, we return to Breaker’s “isolated-point-forcing” strategy

mentioned above: if b= �1+��n/ logn with some � > 0, then Breaker can occupy
a star of �n−1� edges, forcing an isolated point in Maker’s graph. How can Breaker
do it? Well, Breaker proceeds in two stages. In the First Stage, Breaker claims a
Km with m≤ b/2 in the strong sense that no Maker’s edge has a common endpoint
with this Km. In the Second Stage, Breaker turns one of the m vertices of Km into
an isolated vertex in Maker’s graph.

First Stage. It goes by a simple induction in (at most) m moves. Assume that, at
some point in the first �i−1� moves, Breaker has created a Ki−1 such that none of
Maker’s edges has an endpoint in V�Ki−1� (“vertex set of Ki−1”). At that point of
the play, Maker owns ≤ �i−1� edges, so if i < n/2, there are at least two vertices
u, v in the complement of V�Ki−1� that are incident with none of Maker’s edges.
If i≤ b/2, then in his next move Breaker can take the �u� v� edge plus the 2�i−1�
edges joining �u� v� to V�Ki−1�, thereby enlarging Ki−1 by 2 vertices. In his next
move, Maker can kill 1 vertex from this V�Ki+1� (by claiming an edge incident with
that vertex), but a clique Ki of i vertices will certainly survive. This completes the
induction step.

Second Stage.At the end of the First Stage the vertices ofKm definem edge-disjoint
stars; each star consists of n−m edges, which are as yet completely unoccupied.
Breaker’s goal in the Second Stage is to own one of these m stars. In terms of
hypergraphs, this is the “disjoint game,” where the hyperedges are pairwise disjoint.
The “disjoint game” represents the simplest possible case; the analysis of the game
is almost trivial.

If Maker takes an edge from a star, the star becomes “dead” (Breaker cannot own
it), and it is removed from the game. In each move Breaker divides his b edges
among the “survivor” stars as evenly as possible. After i moves Breaker’s part in a
“survivor” star is
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By choosing

m= b

logn
= �1+o�1��

n

�logn�2
and i=m−1�

the right-hand side of (20.1) becomes b logm−O�b� ≥ n ≥ n−m, proving that
Breaker can completely occupy a star. This proves the Erdős–Chvátal Theorem
(see [1978]) that, if b = �1+��n/ logn with some � > 0, then, playing the (1:b)
game on Kn, where n is large enough, Breaker can force an isolated point in Maker’s
graph (Maker is the underdog).
In the other direction, Erdős and Chvátal proved the following: if b = 1

4n/ logn,
then, playing the (1:b) game on Kn, underdog Maker can build a spanning tree in Kn.
The “weakness” of this result is the constant factor 1

4 ; indeed, the Random Graph
intuition mentioned above suggests 1−o�1� instead of 1

4 . Can we replace 1
4 with

1−o�1�? Unfortunately, this innocent-looking problem has remained unsolved for
nearly 30 years.

Open Problem 20.1 Consider the (1:b) Connectivity Game on the complete graph
Kn. Is it true that, if b = �1−o�1��n/ logn and n is large enough, then underdog
Maker can build a spanning tree?

The constant factor log2 = 0�693 (see see Beck [1982]) is somewhat better than
the Erdős–Chvátal constant 1/4 mentioned above. The main reason to include this
proof (instead of the Erdős–Chvátal proof) is to illustrate a new idea: the so-
called “Transversal Hypergraph Method.” In the Erdős–Chvátal proof, Maker is
directly building a spanning tree; this proof is indirect: Maker prevents Breaker
from occupying a whole “cut.” This proof applies the following biased version of
the Erdős–Selfridge Theorem (see Beck [1982]).

Theorem 20.1 Playing the (p:q) game on a finite hypergraph F , where Maker
takes p new points and Breaker takes q new points per move, if

∑
A∈F

�1+q�−�A�/p <
1

1+q
� (20.2)

then Breaker, as the second player, can put his mark in every A ∈ F .

The proof of Theorem 20.1 is postponed to the end of this section.

2. Building via blocking: the Transversal Hypergraph Method. (20.2) is a
“blocking” criterion, and we use it to build a spanning tree. How is it possible?
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Building and Blocking are complementary properties; to use one to achieve the other
sounds like a paradox. But, of course, there is no paradox here; the explanation is
that connectivity is a simple graph property: it has a “good characterization,” which
means that both connectivity and its complement, disconnectivity, can be desribed
in simple terms.

Indeed, connectivity means to have a spanning tree, and disconnectivity means to
have a cut (i.e. a partition of the vertex set into 2 parts such that there is no edge
between the parts).

The early developments of Graph Theory focused on the graph properties which
have a good characterization (e.g. planarity, 1-factor). Unfortunately, the list is very
short; the overwhelming majority of the interesting graph properties do not have
a “good characterization” (e.g., to decide whether a graph contains a Hamiltonian
cycle).

Let us return to connectivity; as said before, disconnectivity of a graph means
the existence of a cut, where a cut means the absence of a complete bipartite graph
Ka�b with 1≤ a�b ≤ n−1, a+b = n.
By using hypergraph terminology, we can say the following: the complete bipar-

tite graphs Ka�b with 1≤ a�b ≤ n−1, a+b = n are exactly the minimal elements
of the transversal of the hypergraph of all spanning trees in Kn.

This statement doesn’t make any sense unless the reader knows the definition of
the transversal hypergraph. For an arbitrary finite hypergraph F write

Transv�F�= �S ⊂ V�F� 	 S∩A 
= ∅ for all A ∈ F��

Transv�F� is called the transversal hypergraph of F .
Consider a Maker–Breaker play on hypergraph F . At the end of a play the two

players split the board

V = V�F�=M ∪B�

where M is the set of Maker’s points and B is the set of Breaker’s points. If Maker
doesn’t win, then B ∈ Transv�F�. It follows that, if Maker can block Transv�F�,
then at the end Maker owns a whole A ∈ F . This is how Maker can build via
blocking. This is referred to as the Transversal Hypergraph Method.

This is a very general method; the Connectivity Game is a good example – for
a few more instances (see Beck [1993c]).

In the Connectivity Game, Maker wants to prevent Breaker from occupying a
cut. Here are the details. Let Hn denote the family of all spanning complete bipartite
sub-graphs Kt�n−t, 1≤ t ≤ �n−1�/2 of Kn. As said before, Hn is the set of minimal
elements of the transversal of the hypergraph of all spanning trees in Kn. Maker
applies the Transversal Hypergraph Method: it suffices to block hypergraph Hn.
By the underdog blocking criterion (20.2) with p = b and q = 1, where Maker is
the second player, we just have to check the inequality
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∑
Kt�n−t∈Hn

2−�Kt�n−t �/b =
�n−1�/2∑
t=1

2−t�n−t�/b <
1

2
(20.3)

with b = �log2−��n/ logn and n > n0��� (“n is large enough”).
Inequality (20.3) is just a routine calculation. Indeed, by using the easy fact(

n

t

)≤ �en/t�t (“Stirling formula”), we have

�n−1�/2∑
t=1

2−t�n−t�/b ≤
�n−1�/2∑
t=1

(en
t
2−�n−t�/b

)t

� (20.4)

To evaluate the right-hand side of (20.4) we distinguish 2 cases. If t is in the range
1≤ t ≤√

n and n > n1���, then

n− t

b
≥ n−√

n

�log2−��n/ logn
≥ �1+�� logn

log2
�

and so
en

t
2−�n−t�/b ≤ en ·2−�1+�� logn/ log2 = en

n1+�
≤ 1

5

holds for n > n2���. Therefore, if n >max�n1����n2����, then by (20.4)
√
n∑
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(en
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)t

≤
√
n∑

t=1

5−t <
�∑
t=1

5−t = 1

4
�

(20.5)

Next consider the range
√
n≤ t ≤ �n−1�/2; then
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= n
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2 log2
�
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holds for n > n3���. Thus for n > n3���,
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4
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(20.6)

(20.5) and (20.6) imply (20.3) for n > max�n1����n2����n3����. This completes
the proof of part (2) in the following (see Erdős and Chvátal [1978] and Beck
[1982]):
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Theorem 20.2 Consider the (1:b) Connectivity Game on Kn, where Maker is the
underdog:

(1) If b = �1+o�1��n/ logn, then Breaker has a winning strategy.
(2) If b = �log2−o�1��n/ logn, then Maker has a winning strategy.

It is rather disappointing that the constant factors in (1) and (2) do not coincide,
especially that connectivity is an “easy” property.

How about a typical “hard” property like to have a Hamiltonian cycle? In other
words, what happens if Maker wants a Hamiltonian cycle (“round-trip”) instead of
a spanning tree (of course, a Hamiltonian cycle contains a spanning tree)? Where
is the game-theoretic breaking point? Erdős’s Random Graph intuition suggests the
game-theoretic breaking point to be around the very same b = n/ logn. Indeed,
a Random Graph with n vertices and � 12 + o�1��n logn edges almost certainly
contains a Hamiltonian cycle. This is a famous theorem in the theory of Random
Graphs, due to the joint effort of several mathematicians like Pósa, Korshunov,
Komlós–Szemerédi, and Bollobás. The main difficulty is that we cannot describe
the non-existence of a Hamiltonian cycle in simple terms.

The best that we can prove is a constant factor weaker than the conjectured
truth. Unfortunately, the constant factor c= log2

27 = �02567 is rather weak (see Beck
[1985]).

Theorem 20.3 If b = � log227 −o�1��n/ logn= ��02567−o�1��n/ logn, then playing
the (1:b) Hamiltonian Cycle Game on Kn, underdog Maker can build a Hamiltonian
cycle.

Proof. We need 4 ideas: (1) the so-called Pósa Lemma, (2) the Longer-Path
Argument, (3) the Transversal Hypergraph Method, and (4) the Trick of Fake
Moves.

The first two ideas, the Pósa Lemma and the Longer-Path Argument, are simply
borrowed from Graph Theory; the other two – the Transversal Hypergraph Method
and the Trick of Fake Moves – are the new, game-specific ideas. The Transversal
Hypergraph Method guarantees that Maker’s graph possesses some fundamental
properties of Random Graphs, like “expander” type properties (provided Maker
plays rationally). The Trick of Fake Moves is the real novelty here; the price that
we pay for it is the poor constant factor c = log2

27 = �02567.
We begin with the so-called Pósa Lemma: it says (roughly speaking) that every

expander graph has a long path. We need a notation: given a simple and undirected
graph G, and an arbitrary subset S of the vertex-set V�G� of G, denote by �G�S�

the set of vertices in G adjacent to at least 1 vertex of S� Let �S� denote the number
of elements of a set S�
The following lemma is in fact a technical refinement of the Pósa Lemma, see

Pósa [1976]. The figure below illustrates the “Pósa deformation.”
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new endpoint

Pósa-deformation

Lemma 1: Let G be a non-empty graph, v0 ∈ V�G� and consider a path P =
�v0� v1� � � � � vm� of maximum length, which starts from vertex v0. If �vi� vm� ∈ G

�1≤ i≤m−1�, then we say that the path �v0� � � � � vi� vm� vm−1� � � � � vi+1� arises by
a Pósa-deformation from P. Let End�G�P� v0� denote the set of all endpoints of
paths arising by repeated Pósa-deformations from P, keeping the starting point v0
fixed. Assume that for every vertex-set S ⊂ V�G� with �S� ≤ k, ��G�S� \S� ≥ 2�S�.
Then �End�G�P� v0�� ≥ k+1.

Proof of Lemma 1 (due to Pósa). Let X = End�G�P� v0� = �vi1� vi2� � � � � vir � vm�

where 0 ≤ i1 < i2 < � � � < ir < m. The main difficulty is to show that

�G�X�⊂ �vm−1� vil±1 	 l= 1�2� � � � � r�∪X� (20.7)

To prove (20.7), let y ∈ �G�X� but y 
∈ X. Then y is adjacent to a point v ∈ X. By
definition v is an endpoint of a maximum path whose points are the points of P (in
different order), so y must belong to P; let y = v�.
By the definition of vertex v, there is a sequence of paths P0 = P�P1�P2� � � � � Ps

such that Pi+1 arises from Pi by a Pósa-deformation (i = 0�1� � � � � s− 1) and v is
an endpoint of Ps.

Case 1: If both edges �v�� v�−1� and �v�� v�+1� belong to path Ps, then let (say)
�v�� v�+1� be the first edge on the �y = v�� v�-arc of Ps. Then v�+1 is an endpoint
of a path arising from Ps by a Pósa-deformation, implying v�+1 ∈ X. This proves
(20.7) in Case 1.

Case 2: Suppose that (say) edge �v�� v�+1� does not belong to path Ps. Then there
is a largest index j in 0 ≤ j ≤ s− 1 such that edge �v�� v�+1� belongs to path Pj.
Since Pj+1 arises from Pj by a Pósa-deformation, this can only happen if one of
the two vertices y = v� , v�+1� is the endpoint of Pj+1. Since by hypothesis y 
∈ X,
we must have v�+1 ∈ X, which proves (20.7) in Case 2 as well.
Now by (20.7)

��G�X�\X�< 2�X��
which implies that �X� = �End�G�P� v0�� ≥ k+1, and Lemma 1 follows. �
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It is worth while mentioning the following nice corollary of (the rather technical)
Lemma 1: If Maker’s graph is expanding by a factor of 2 up to size k, then the
longest path has length ≥ 3k.
Now we are ready to discuss the:

Basic idea of the proof: the Longer-Path Argument. Assume that we are in
the middle of a play, let G denote Maker’s graph (G is “growing”), and let P =
�v0� v1� � � � � vm� be a maximum length path in G. Also assume that Maker’s graph
G satisfies the following two properties:

(
) for every vertex-set S ⊂ V�G� with �S� ≤ k, ��G�S�\S� ≥ 2�S�;
() G is connected on n vertices.

The common idea in most Hamiltonian cycle proofs is to produce a new path
longer than P. Repeating this argument several times Maker will end up with a
Hamiltonian cycle.

How can Maker produce a longer path? Well, let End�G�P� v0� =
�x1� x2� � � � � xq�, where q ≥ k+ 1 (see Lemma 1), and denote by P�xi� a path
such that (1) P�xi� arises from P by a sequence of Pósa-deformations, and (2) xi
is an endpoint of P�xi�. Again by Lemma 1 �End�G�P�xi�� xi�� ≥ k+1 for every
xi ∈ End�G�P� v0�.

Consider the following critical sub-graph:

Close�G�P�=
{
�xi� y� 	 xi ∈End�G�P� v0�� y ∈End�G�P�xi�� xi�� i= 1�2� � � � � q

}
�

trivially �Close�G�P�� ≥ �k+1�2/2.
Notice that sub-graph Close�G�P� consists of the “closing edges”: the edges

which turn a maximum path into a cycle on the same set of vertices.

Case 1: Maker already owns an edge from Close�G�P�.
Then Maker’s graph contains a cycle C of m+ 1 edges, where m = �P� is the
number of edges in the longest path P in G. If m+1= n, then C is a Hamiltonian
cycle, and Maker wins the play. If m+ 1 < n, then there is a vertex w outside of
C, and by the connectivity of G (see property ()), there is a path P∗ outside of C
joining vertex w to C. Let v be the endpoint of path P∗ on C; deleting an edge of
C with endpoint v and adding path P∗ to C, we obtain a new path in G, which is
longer than P, a contradiction.

⇒

a path longer
than P

v

ww

C

v
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This contradiction proves that in Case 1 Maker’s graph already contains a
Hamiltonian cycle.

Case 2: There is an edge in Close�G�P�, which is unoccupied in the play yet.
Let e ∈ Close�G�P� be an unoccupied edge; Maker’s next move is to take edge e.
Then, repeating the argument of Case 1, we obtain a path longer than P.
There are exactly 2 reasons why this Making-a-Longer-Path procedure may stop:

either (1) Maker’s graph already contains a Hamiltonian cycle (and Maker wins!),
or (2) Case 3 (see below) holds.

Case 3: Every edge in Close�G�P� is already occupied by Breaker.
Then, of course, Breaker owns at least �Close�G�P�� ≥ �k+1�2/2 edges, requesting
at least �k+1�2

2b moves.
This way we have proved:

Lemma 2: If Maker can guarantee that after the tth move with t =
(

�k+1�2

2b −n
)

his graph satisfies properties (
) and (), then with at most n extra moves he will
always own a Hamiltonian cycle. �

Notice that Lemmas 1–2 are pure graph-theoretic results; the rest of the proof is
the game-specific argument.
Maker is going to force properties (
) and () by using the Transversal

Hypergraph Method, i.e. Maker builds via blocking.
Let k ≤ n/3 be a parameter to be specified later, and let Gn�k be the set of all

complete bipartite graphs of type

Kj�n−3j+1 ⊂ Kn where j = 1�2� � � � � k�

Hypergraph Gn�k is clearly motivated by property (
): If Maker can occupy at least
1 edge from each Kj�n−3j+1 ∈ Gn�k during the first t= (

�k+1�2/2b−n
)
moves, then

property (
) is clearly satisfied.
Notice that property (
) implies property (). Indeed, every spanning complete

bipartite sub-graph Kl�n−l with 1≤ l≤ �n−1�/2 clearly contains a whole Kj�n−3j+1 ∈
Gn�k, and disconnectivity means the absence of a Kl�n−l.

Maker’s goal is, therefore, to block hypergraph Gn�k during the first t =(
�k+1�2/2b−n

)
moves (with an appropriate choice of parameter k ≤ n/3). Of

course, Maker can try applying the underdog blocking criterion (20.2), but there is
a novel technical difficulty with the application: the potential technique guarantees
blocking at the end only, but what Maker needs is blocking at a relatively early
stage of the play, namely after the tth move with t = (

�k+1�2/2b−n
)
.

We overcome this technical difficulty by using a trick: We employ a large number
of “fake moves.” The auxiliary “fake moves” speed up the time, and turn the early
stage into the end stage. This way we can successfully apply the underdog blocking
criterion (20.2).



Another illustration of “randomness” in games 295

The Trick of Fake Moves. We discuss the trick in a general setup: let G be an
arbitrary finite hypergraph with board V = V�G�. Consider the (1:b) play on G,
where the first player takes 1 new point and the second player takes b new points
per move. Let q > 1; the first player wants to block every A ∈ G at an early stage
of the play, say when the (topdog) second player owns ≤ �V �/q points of board
V . When can the first player achieve this early stage blocking? Here is a sufficient
criterion: if ∑

A∈G
2−

�A�
bq < 1� (20.8)

then the first player can block every A ∈ G at an early stage of the play when the
(topdog) second player owns ≤ �V �/q points of board V .

The proof of criterion (20.8) goes as follows. The first player defines a fake
(1:bq) play, and uses the ordinary potential function blocking strategy Str (see
(20.2)) for this (1:bq) play on hypergraph G.

Let x1 and Y�1�=
{
y
�1�
1 � y

�2�
1 � � � � � y

�b�
1

}
denote the first moves of the two players;

these are “real” moves. To define the fake (1:bq) play, the first player selects an
arbitrary �q−1�b-element subset Z�1� from V \��x1�∪Y�1��, and adds Z�1� to Y�1�

W�1�= Y�1�∪Z�1��

Of course, the second player does not know about set Z�1�, it is in first player’s
mind only. W�1� is a qb-element set, so the first player can apply potential strategy
Str. Strategy Str gives first player’s second move x2 = Str��x1��W�1��; in other
words, the “real” game is a (1:b) game, but the first player pretends to play a (1:bq)
game, and chooses his next moves accordingly.

Let Y�2� =
{
y
�1�
2 � y

�2�
2 � � � � � y

�b�
2

}
denote second player’s second move; the set

Y�2� may or may not intersect W�1�; in any case the first player selects an arbitrary
�qb−�W�1�∩Y�2���-element subset Z�2� from V \��x1� x2�∪Y�1�∪Y�2��, and adds
Z�2� to Y�2�

W�2�= Y�2�∪Z�2��

W�2� is a qb-element set, disjoint from �x1� x2�∪W�1�, so the first player can
apply potential strategy Str. Strategy Str gives first player’s third move x3 =
Str��x1� x2��W�1��W�2��; in other words, the first player pretends to play a (1:bq)
game, and chooses his next moves accordingly.

Let Y�3� =
{
y
�1�
3 � y

�2�
3 � � � � � y

�b�
3

}
denote second player’s third move; the set Y�3�

may or may not intersectW�1�∪W�2�. In any case the first player selects an arbitrary
�qb−��W�1�∪W�2��∩Y�3���-element subset Z�3� from V \ ��x1� x2� x3�∪Y�1�∪
Y�2�∪Y�3��, and adds Z�3� to Y�3�

W�3�= Y�3�∪Z�3��
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W�3� is a qb-element set, disjoint from �x1� x2� x3�∪W�1�∪W�2�, so the first player
can apply potential strategy Str, and so on.

The whole point is that, because of the artificially constructed fake sets
Z�1��Z�2�� � � �, the fake (1:bq) play will end at the early stage of the real (1:b) play,
where the second player owns ≤ �V �/q points. An application of criterion (20.2)
proves criterion (20.8).

Conclusion of the proof. Before applying criterion (20.8) it is worth while
noticing that parameter q is not necessarily an integer; all what we need in the
proof is that qb is an integer.
Now we are ready for the application: let � > 0 be arbitrarily small but fixed; let

k=
⌊(

1

3
−�

)
n

⌋
and b =

⌊(
log2
27

−�

)
n

logn

⌋

(lower integral part), and define integer qb as the upper integral part

qb =
⌈(

n

2

)
/t

⌉
where t = �k+1�2

2b
−n�

Then t ≥ 1/qb
(
n

2

)
, and in view of Lemma 2 and criterion (20.8), it suffices to check

the inequality ∑
Kj�n−3j+1∈Gn�k	 1≤j≤k

2−�Kj�n−3j+1�/qb < 1� (20.9)

The proof of (20.9) is just a routine calculation. Indeed, the left-hand side of (20.9)
equals

k∑
j=1

(
n

j

)(
n− j

2j−1

)
2−j�n−3j+1�/r � (20.10)

where

r = qb =
⌈(

n

2

)
/t

⌉
≤ �1−�� log2

3
· n

logn
�

By using the elementary fact
(
n

j

)≤ �en/j�j , we can estimate (20.10) from above as
follows

k∑
j=1

(
n

j

)(
n

2j

)
2−j�n−3j+1�/r ≤ ∑

1≤j≤�1/3−��n

((
en

j

)
·
(
en

2j

)2

·2−�n−3j+1�/r

)j

≤ ∑
1≤j≤�1/3−��n

(
e3n3

2j3
·n−�3−9j/n�/�1−��

)j

� (20.11)

A trivial calculation shows that

max
1≤j≤�1/3−��n

n3

j3
·n−�3−9j/n�/�1−�� ≤ 1

100
if n > n0���� (20.12)
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Thus by (20.11)–(20.12)

k∑
j=1

(
n

j

)(
n

2j

)
2−j�n−3j+1�/r ≤

k∑
j=1

5−j ≤
�∑
j=1

5−j = 1
4
� (20.13)

if n > n0���. Finally, (20.13) and (20.10) trivially imply (20.9), which completes
the proof of Theorem 20.3. �

Concluding remark. The basic idea of the proof of Theorem 20.3 was the
Longer-Path Argument: taking an unoccupied edge from the sub-graph Close�G�P�

produced a longer path. Of course, Maker is eager to take an edge from Close�G�P�,
but how about the Reverse Hamiltonian Game? Reluctant Avoider may want to
stay away from Close�G�P� as long as he can, and then the argument above
seems to collapse. Can the reader still save the proof for the Reverse Hamiltonian
Game?

Open Problem 20.2 Consider the Reverse Hamiltonian Game, played onKn, where
Avoider takes 1 and Forcer takes f new edges per move; Forcer wins if, at the
end, Avoider’s graph contains a Hamiltonian cycle. Is it true that, if f = c0n/ logn
for some positive absolute constant and n is large enough, then Forcer can force
Avoider to own a Hamiltonian cycle?

By the way, apart from the “Random Graph intuition” we don’t know any a priore
reason why the Achievement and the Avoidance (i.e. Reverse) Hamiltonian Games
should have the same breaking point. Is it true that they have exactly the same
breaking point?

Recently Hefetz, Krivelevich, and Szabó [2007] came very close to solving Open
Problem 20.2: they could prove the weaker version with

f = c0
n

�logn��log logn�
� (20.14)

i.e. it falls short of a factor of log logn. Very recently Hefetz, Krivelevich, and
Szabó announced a positive solution of Open Problem 20.2.

3. Proofs of the biased criterions. As promised at the beginning of the section,
there follows a proof of:

Theorem 20.1 Playing the (p:q) Achievement game on a finite hypergraph F ,
where Maker takes p new points and Breaker takes q new points per move, if

∑
A∈F

�1+q�−�A�/p <
1

1+q
�

then Breaker, as the second player, can put his mark in every A ∈ F .

Note in advance that the proof of Theorem 20.1 can be easily adapted in the �a	1�
Avoidance version (the general Avoidance case, however, remains a mystery!).
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Theorem 20.4 Let a ≥ 2 be an arbitrary integer, and let F be an n-uniform
hypergraph with size

�F �<
(
a+1

a

)n

�

Then, playing the �a 	 1� Avoidance Game on F , where Forcer is the underdog,
Avoider (as the first player) has a winning strategy.

Remark. We learned very recently that Theorem 20.4 was independently discov-
ered and proved in Hefetz, Krivelevich, and Szabó [2007]. They used it to prove
bound (20.14) for the Reverse Hamiltonian cycle game. We are going to use it to
prove the exact solution for the �a 	 1� Avoidance versions of the Lattice Games
(see Theorem 9.2).

Exercise 20.1 By using the proof technique of Theorem 20.1 prove Theorem 20.4.

We will return to Theorem 20.4 in Section 30, where 2 proofs are included and
some applications are shown.
Now I give a:

Proof of Theorem 20.1. We basically repeat the proof of the Erdős–Selfridge
Theorem, but we work with the powers of a suitable �1+�� where parameter
� > 0 will be specified later. It is also very important to have a good notation.

Given a hypergraph G and two disjoint subsets X and Y of the board V = V�G�,
write

��X�Y�G�= ∑
A∈G	 A∩Y=∅

�1+��−�A\X�� (20.15)

For an arbitrary z ∈ V�G�, write
��X�Y�G� z�= ∑

z∈A∈G	 A∩Y=∅
�1+��−�A\X�� (20.16)

We are going to repeatedly use the following two completely trivial inequalities

��X�Y ∪ �y1��G� y2�≤ ��X�Y�G� y2�� (20.17)

��X∪ �x1�� Y�G� x2�≤ �1+����X�Y�G� x2�� (20.18)

Assume we are in the middle of a �p 	 q� play, Maker (the first player) already
occupied

Xi =
{
x
�1�
1 � � � � � x

�p�
1 � x

�1�
2 � � � � � x

�p�
2 � � � � � x

�1�
i � � � � � x

�p�
i

}
(20.19)

and Breaker (the second player) occupied

Yi =
{
y
�1�
1 � � � � � y

�q�
1 � y

�1�
2 � � � � � y

�q�
2 � � � � � y

�1�
i � � � � � y

�q�
i

}
� (20.20)

Let
Xi�j = Xi∪ �x

�1�
i+1� � � � � x

�j�
i+1� and Yi�j = Yi∪ �y

�1�
i+1� � � � � y

�j�
i+1��
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After the ith move of the first player the actual play defines a truncation of our
hypergraph F as follows

Fi = �A\Xi 	 A ∈ F and A∩Yi−1 = ∅��
That is, we throw away the winning sets A ∈ F , which are blocked by the second
player, and from the unblocked winning sets we remove the first player’s points.
Write

��Fi�= ��Xi� Yi−1�F�= ∑
B∈Fi

�1+��−�B��

First player’s Weak Win is equivalent to the fact that for some i the truncated
hypergraph Fi contains the empty-set; in this case the contribution of the empty-set
alone is �1+��0 = 1, so if the second player can enforce the inequality ��Fi� < 1
for the whole course of the play, then at the end of the play the second player
blocks ever A ∈ F .
Here is second player’s blocking strategy: at his ith move for every k= 1� � � � � q

he computes the value of ��Xi� Yi−1�F� y� for each unoccupied y ∈ V = V�F�, and
picks that y = y

�k�
i for which the maximum is attained.

Let � be defined by the equality �1+��= �1+q�1/p. We claim that by making
this choice of parameter � the inequality below holds

��Fi+1�≤ ��Fi�� (20.21)

independently of first player’s �i+1�th move. As usual, decreasing property (20.21)
is the key step, the rest is standard.

To prove (20.21) note that

��Fi+1�= ��Fi�−
q∑

k=1

��Xi� Yi−1�k−1�F� y
�k�
i �+�

p∑
j=1

��Xi�j−1� Yi�F� x
�j�
i+1��

(20.22)
By (20.17) for k= 1� � � � � q−1

��Xi� Yi−1�k�F� y
�k+1�
i �≤ ��Xi� Yi−1�k−1�F� y

�k+1�
i ��

and by the maximum property of y�k�i

��Xi� Yi−1�k−1�F� y
�k+1�
i �≤ ��Xi� Yi−1�k−1�F� y

�k
i ��

so combining the last 2 inequalities we obtain

��Xi� Yi−1�k�F� y
�k+1�
i �≤ ��Xi� Yi−1�k−1�F� y

�k�
i � (20.23)

for k= 1� � � � � q−1. Similarly, for j = 0� � � � � p−1

��Xi� Yi�F� x
�j+1�
i+1 �≤ ��Xi� Yi−1�q−1�F� y

�q�
i �� (20.24)
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and by (20.18), for j = 1� � � � � p and for any z

��Xi�j� Yi�F� z�≤ �1+����Xi�j−1� Yi�F� z�� (20.25)

By repeated application of (20.23), for j = 1� � � � � q

��Xi� Yi−1�q−1�F� y
�q�
i �≤ ��Xi� Yi−1�j−1�F� y

�j�
i �� (20.26)

By (20.24) and (20.25), for every j = 0� � � � � p−1

��Xi�j� Yi�F� x
�j+1�
i+1 �≤ �1+��j��Xi� Yi−1�q−1�F� y

�q�
i �� (20.27)

Returning to (20.22), by (20.26) and (20.27) we conclude

��Fi+1�≤ ��Fi�−
(
q−

p−1∑
j=0

��1+��j

)
��Xi� Yi−1�q−1�F� y

�q�
i �� (20.28)

The choice �1+��= �1+q�1/p gives

p−1∑
j=0

��1+��j = �
�1+��p−1

�1+��−1
= q�

i.e. (20.28) yields (20.21). The proof of Theorem 20.1 is complete. �

Remark. An adaptation of the last proof works for the one-sided discrepancy case
where Breaker wants more than just 1 point from every winning set: Breaker =
Balancer in fact wants “his proportional share” from every winning set (it is not
a problem if he has more than his share). This nice adaptation is due to András
Pluhar; the details go as follows.

Let F be a finite n-uniform hypergraph. There are 2 players, Balancer and
Unbalancer, who play a general �b 	 u� game on F : Balancer takes b points per
move and Unbalancer takes u points per move. Balancer’s goal is to force that,
at the end of the play, he owns at least b−�/b+u part from every winning set
A ∈ F . Here � > 0 is, of course, “small” – the smaller, the better.
Assume we are in the middle of a �b 	 u� play: Balancer – for simplicity assume

that he is the first player – already occupied

Yi = �y
�1�
1 � � � � � y

�b�
1 � y

�1�
2 � � � � � y

�b�
2 � � � � � y

�1�
i � � � � � y

�b�
i ��

and Unbalancer (the second player) occupied

Xi = �x
�1�
1 � � � � � x

�u�
1 � x

�1�
2 � � � � � x

�u�
2 � � � � � x

�1�
i � � � � � x

�u�
i ��

At this stage of the play, for every winning set A ∈ F define the “weight”

wi�A�= �1−���Yi∩A�−
bn
b+u · �1+ ���Xi∩A�− un

b+u �

and define the “total weight”
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Ti�F�= ∑
A∈F

wi�A��

Note that � and � are unspecified (yet) parameters; we will optimize them later.
We just note that 0< � < 1 and � > 0.

By repeating the proof of Theorem 20.1, we obtain the following perfect analogue
of inequality (20.28): Balancer can force that

Ti+1�F�≤ Ti�F�−
(
b ·�− (

�1+��u−1
))· ∑

A	 y
�b�
i+1∈A∈F

�1−���Yi�b−1∩A�− bn
b+u · �1+���Xi∩A�− un

b+u �

where Yi�b−1 = Yi∪ �y
�1�
i+1� � � � � y

�b−1�
i+1 �. It follows that, by choosing

b ·�= �1+ ��u−1� (20.29)

we can enforce the critical “decreasing property” Ti+1�F�≤ Ti�F�.
Therefore

Tend�F�≤ Tstart�F�= �F � · �1−��−
bn
b+u · �1+ ��−

un
b+u � (20.30)

If at the end of the play Unbalancer can own ≥ un/b+u+� points from some
A0 ∈ F , then, of course

�1−��−� · �1+ ��� ≤ Tend�F�� (20.31)

Combining (20.30)–(20.31) we obtain

�≤ log �F �− n
b+u

�b log�1−��+u log�1+ ���

log�1+ ��− log�1−��
� (20.32)

The last (routine!) step is to minimize the right-hand side of (20.32) under the side
condition (20.29); this gives an upper bound on the one-sided discrepancy �.

To minimize the right-hand side of (20.32), we can use the approximations
log�1±��=±�− ��2�/2+O��3� and �1+��u−1= u�+ (

u

2

)
�2+O��3�, where �

is “small,” and after some long but routine calculations (that is left to the reader)
we obtain the following upper bound: at the end of the play Balancer can own
≥ bn/b+u−� points from all A ∈ F with

�= 3
√
n log �F � b+u

�b+u�3/2
� (20.33)

This result can be interpreted as the “easy direction” of Theorem 17.5.
Finally, we include a detailed proof of the “biased building criterion” Theorem 2.2

(which was introduced at the end of Section 2). The notation applied in the previous
proof of Theorem 20.1 comes very handy here.

Theorem 2.2 (“biased building”) If

∑
A∈F

(
p+q

p

)−�A�
> p2 ·q2 · �p+q�−3 ·�2�F� · �V�F���
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where �2�F� is the Max Pair-Degree of hypergraph F� and V�F� is the board,
then the first player can occupy a whole winning set A ∈ F in the biased �p 	 q�

play on F (the first player takes p new points and the second player takes q new
points per move).

Proof of Theorem 2.2. We use the notation x
�j�
i , y�k�i , Xi, Yi, � introduced at the

beginning of the previous proof (see (20.15)–(20.16) and (20.19)–(20.20)). Let
X0 = Y0 = ∅. Here is first player’s building strategy: at his �i+1�st move �i ≥ 0�
the first player computes the value of ��Xi� Yi�F� x� for each unoccupied point
x ∈V \�Xi∪Yi�, and sequentially picks x

�1�
i+1, x

�2�
i+1, � � �, x

�p�
i+1 which have the maximum

value.
Now let �i =��Xi� Yi�F�. We want to show that �end > 0, which clearly implies

a Weak Win.
To prove �end > 0 we estimate �i+1−�i from below, i.e. we want to control the

decrease. We have

�i+1−�i =
∑

A∈F 	 A∩Yi+1=∅

{
�1+��−�A\Xi+1� − �1+��−�A\Xi�}− ∗∑

A

�1+��−�A\Xi��

(20.34)
where the summation

∑∗ is taken over all A ∈ F for which A∩ Yi+1 
= ∅ but
A∩Yi = ∅.
The first sum on the right-hand side of (20.34) equals

F =
p∑

j=1

{
�1+��j −1

} �j�∑
A

�1+��−�A\Xi��

where the summation
∑�j� is taken over all A ∈ F for which A∩ Yi+1 = ∅ but

�A∩ �Xi+1 \Xi�� = j. Using the trivial fact �1+��j ≥ 1+ j�, we have

F ≥
p∑

j=1

j�
�j�∑
A

�1+��−�A\Xi � = �
p∑

l=1

��Xi� Yi+1�F� x
�l�
i+1�� (20.35)

Let us introduce the sub-hypergraph F j
i ⊂ F

F j
i =

{
A ∈ F 	 x

�j�
i+1 ∈ A�A∩Yi = ∅ but A∩ �Yi+1 \Yi� 
= ∅

}
�

Obviously �F j
i � ≤ �Yi+1 \Yi��2 = q ·�2, and by definition

��Xi� Yi+1�F� x
�j�
i+1�= ��Xi� Yi�F� x

�j�
i+1�−

∑
A∈F j

i

�1+��−�A\Xi�

≥ ��Xi� Yi�F� x
�j�
i+1�−�F j

i ��1+��−2

≥ ��Xi� Yi�F� x
�j�
i+1�−q ·�2 · �1+��−2�
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Therefore, by (20.35)

F ≥ �
p∑

j=1

��Xi� Yi�F� x
�j�
i+1�−pq ·�2 ·��1+��−2� (20.36)

On the other hand, the second sum on the right-hand side of (20.34) is less or equal
to

q∑
k=1

��Xi� Yi�F� y
�k�
i+1��

Thus by (20.36) we have

�i+1−�i ≥ �
p∑

j=1

��Xi� Yi�F� x
�j�
i+1�

−
q∑

k=1

��Xi� Yi�F� y
�k�
i+1�−pq ·�2 ·��1+��−2� (20.37)

Since x
�j�
i+1 was picked before y

�k�
i+1, we have

��Xi� Yi�F� x
�j�
i+1�≥ ��Xi� Yi�F� y

�k�
i+1� for every 1≤ j ≤ p� 1≤ k≤ q�

It follows that

q

p

p∑
j=1

��Xi� Yi�F� x
�j�
i+1�≥

q∑
k=1

��Xi� Yi�F� y
�k�
i+1��

so by choosing �= p/q in (20.37), we obtain

�i+1−�i ≥−
(

pq

p+q

)2

�2� (20.38)

By repeated application of (20.38) we get the following lower bound for �i

�i ≥ �0− i ·
(

pq

p+q

)2

�2� (20.39)

Since

�0 = �blank =
∑
A∈F

�1+��−�A� = ∑
A∈F

(
1+ p

q

)−�A�
�

and the length of the play is ≤ �V �
p+q

, by (20.39)

�end ≥
∑
A∈F

(
p+q

p

)−�A�
− �V �

p+q
·
(

pq

p+q

)2

�2 > 0� (20.40)

where the positivity of the right-hand side of (20.40) is exactly the hypothesis of
Theorem 2.2. This completes the proof. �





Part C

Advanced Weak Win – game-theoretic higher
moment

Here is a nutshell summary of what we did in Part A: the goal of the first chapter
was to introduce the basic concepts such as Positional Game, Weak Win, Strong
Draw, and to demonstrate the power of the potential technique on several amusing
examples. The goal of the second chapter was to formulate the main results such as
Theorem 6.4 and Theorem 8.2 (“exact solutions”), and also the Meta-Conjecture,
the main issue of the book.

Part B was a practice session for the potential technique.
In the forthcoming Parts C–D, we discuss the most difficult proofs, in particular

the exact solutions of our Ramseyish games with 2-dimensional goals. Part C is the
building part and Part D is (mainly) the blocking part.

In Part A, we introduced two simple “linear” criterions (Theorem 1.2 and The-
orem 1.4), and gave a large number of applications. Here, in Part C, we develop
some more sophisticated “higher moment” criterions. The motivation for “higher
moment” comes from Probability Theory. The “higher moment” criterions are
applied in a way very similar to how some of the main results of classical Probabil-
ity Theory – such as the central limit theorem and the law of the iterated logarithm –
are all based on higher moment techniques.

Note in advance that the last part of the book (Part D) also has a strong probabilis-
tic flavor: Part D is about how to “sequentialize” the global concept of statistical
independence.

A common technical feature of Parts C–D is to involve big auxiliary hypergraphs.
The big auxiliary hypergraphs explain the “higher moment” in Part C, and explain
why it is possible to find the exact solutions for large board size.

Parts C–D (together with Chapter IV) justify the name fake probabilistic method.
The word “fake” refers to the fact that, when we actually define an optimal strat-
egy, the “probabilistic” part completely disappears. The probabilistic argument is
converted into a perfectly deterministic potential strategy such as – metaphorically
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speaking – how a caterpillar turns into a butterfly. This “metamorphosis” is a regular
feature of the proofs.
The deep connection with Probability Theory is definitely surprising, but the

most surprising fact is that the upper and lower bound techniques often coincide,
supplying exact solutions for infinitely many natural games. This is why we dared to
use the term “theory” in the title of the book. The author discovered this coincidence
quite recently, only a couple of years ago. (The original, pre-exact-solution version
of the book had the less of imposing title “Positional Games”; without the exact
solutions it didn’t deserve to be called a “theory.”)



Chapter V
Self-improving potentials

In Chapter IV, we start to explore the connection between randomness and games.
A more systematic study is made of the probabilistic approach, that is actually
refered to as a “fake probabilistic method.”

The main ingredients of the “fake probabilistic method” are:

(1) the two linear criterions (“Part A”) – for some applications see Part B;

(2) the advanced Weak Win criterion together with the ad hocmethod of Section 23
(“Part C”);

(3) the BigGame–SmallGame Decomposition and its variants (“Part D”).

The main result in Chapter V is (2): the Advanced Weak Win Criterion, a
complicated “higher moment” criterion. It is complicated in many different ways:

(i) the form of the criterion is already rather complicated;

(ii) the proof of the criterion is long and complicated;

(iii) the application to the Clique Game requires complicated calculations.

This criterion basically solves the building part of the Meta-Conjecture (see
Section 9).
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21
Motivating the probabilistic approach

Let us return to Section 6: consider the Maker–Breaker version of the �KN �Kq�

Clique Game (we don’t use the notation �KN �Kq� any more). How do we prove
lower bound (6.1)? How can Maker build such a large clique?

1. Halving Argument. The Ramsey criterion Theorem 6.2, combined with the
Erdős–Szekeres bound, gives the size q = 1

2 log2N , which is roughly 1
4 of the

truth. We can easily obtain a factor of 2 improvement by using the Ramsey proof
technique (“ramification”) instead of the theorem itself. “Ramification” is an iterated
“halving process,” which has the natural limitation of the binary logarithm of N .
In other words, a ramification strategy cannot build a clique Kq with q larger than
log2N +O�1�. In the following theorem we achieve the bound log2N +O�1�, the
natural limitation of the Ramsey technique. (The second “factor of 2 improvement”
will be accomplished later in Sections 24–25.)

Theorem 21.1 Consider the �KN �Kq� Clique Game. If N ≥ 2q+2, then Maker can
force a Weak Win; in fact, Maker can build a Kq of his own in less than 2

q+2 moves.

Remark. This result was discovered by Beck, and independently, by Pekec and
Tuza. The following proof is due to Beck [2002a]. As a byproduct, Theorem 21.1
happens to give the best-known upper bound on the following “Move Number”
question: “How long does it take to build a clique?” We will return to this question
at the end of Section 25.

Proof. The trick is to combine the standard “Ramification” argument with the
following “Sparse Subgraph Lemma.”

Lemma 1: Let G = �V�E� be a simple graph (i.e. no loops and there is at most
1 edge between 2 vertices). Two players, We call them First Player and Second
Player, alternately occupy the vertices of G� at the end of the play they split
the vertex-set V into 2 parts V ′ (First Player’s points) and V ′′ (Second Player’s
points). Let G�V ′′� denote the restriction of G to the vertex-set V ′′ (i.e. the induced
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sub-graph). First Player can always force that the number of edges of G�V ′� is at
most 1/4 of the number of edges of G.

Proof of Lemma 1. Actually the following much more general statement is true.

Lemma 2: Let V be a finite set, and let F be an n-uniform family of subsets
of V . Two players, First Player and Second Player, alternately occupy the points of
V . First Player can force that, at the end of the play, the number of sets A ∈ F
completely occupied by him is at most �F �2−n.

The proof of Lemma 2 is almost identical to the proof of the Erdős–Selfridge
Theorem. The only difference is that instead of picking a point of maximum weight,
First Player picks his next point as a point of minimum weight. �

Lemma 1 is the special case of Lemma 2 with n= 2. �

Consider the complete graph K2q , and let V0 be its vertex set: �V0� = 2q. Let u1 ∈ V0

be an arbitrary vertex. Then playing on K2q Maker (as the first player) can pick 2q−1

edges incident with u1. Let V1 (⊂ V0) denote the set of other endpoints of these 2
q−1

edges of Maker: �V1� = 2q−1. Consider the complete graph KV1
on vertex-set V1.

The graph KV1
doesn’t have any edge of Maker, but it may contain some edges of

Breaker: let E1 denote the set of edges of Breaker in KV1
. Clearly �E1� ≤ �V1� = 2q−1.

Let G1 be the graph �V1�E1�. The average degree d1 of G1 is

d1 =
2�E1�
�V1�

≤ 2 · 2
q−1

2q−1
= 2�

Let u2 ∈ V1 be a point with minimum degree in G1. So the degree of u2 in G1

is ≤ 2.
By playing on KV1

and choosing edges from point u2 Maker (as the first player)
can trivially pick ⌈

�V1�−d1

2

⌉
�upper integral part�

edges. These edges are all incident with u2 ∈ V1, and let V2 (⊂ V1) denote the set
of other endpoints. Clearly

�V2� =
⌈
�V1�−d1

2

⌉
�

So

2q−2 ≥ �V2� ≥
⌈
2q−1−2

2

⌉
= 2q−2−1�

The complete graph KV2
with vertex-set V2 doesn’t have any edge of Maker, but it

may contain some edges of Breaker: let E2 denote the set of edges of Breaker in
KV2

. Clearly
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�E2� ≤ �E1�+ �V2��
But this trivial upper bound can be substantially improved if Maker picks his⌈

�V1�−d1

2

⌉

edges incident with u2 ∈ V1 (i.e. the set V2) in a clever way, namely by using First
Player’s strategy in Lemma 1. Then Maker can guarantee the stronger inequality

�E2� ≤
�E1�
4

+�V2�
instead of the trivial one

�E2� ≤ �E1�+ �V2��
So Maker can force the upper bound

�E2� ≤
�E1�
4

+�V2� ≤
�V1�
4

+�V2��
Let G2 be the graph �V2�E2�. The average degree d2 of G2 is

d2 =
2�E2�
�V2�

≤ 2
( �V1�
4�V2�

+ �V2�
�V2�

)
≤ 2+ 2q−1

2 �2q−2−1�
≤ 4

if q ≥ 3. Let u3 ∈ V2 be a point with minimum degree in G2. So the degree of u3

in G2 is ≤ 4.
By playing on KV2

and choosing edges from point u3 Maker (as the first player)
can trivially pick ⌈

�V2�−d2

2

⌉

edges. Let V3 (⊂ V2) denote the set of other endpoints of these edges of Maker

�V3� =
⌈
�V2�−d2

2

⌉
�

So

2q−3 ≥ �V3� ≥
⌈
2q−2−4

2

⌉
= 2q−3−2�

The complete graph KV3
doesn’t have any edge of Maker, but it may contain some

edges of Breaker: let E3 denote the set of edges of Breaker in KV3
. Clearly

�E3� ≤ �E2�+ �V3��
But again this trivial upper bound can be substantially improved if Maker picks his⌈

�V2�−d2

2

⌉
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edges incident with u3 ∈ V2 (i.e. the set V3) by using First Player’s strategy in
Lemma 1. Then Maker can guarantee the stronger inequality

�E3� ≤
�E2�
4

+�V3�
instead of the trivial one

�E3� ≤ �E2�+ �V3��
So Maker can force the upper bound

�E3� ≤
�E2�
4

+�V3� ≤
�V1�
42

+ �V2�
4

+�V3��

Let G3 be the graph �V3�E3�. The average degree d3 of G3 is

d3 = 2�E3�
�V3�

≤ 2
( �V1�
42�V3�

+ �V2�
4�V3�

+ �V3�
�V3�

)
�

and so on. By iterating this argument, we have the following inequalities in general

�Vi� ≥
�Vi−1�−di−1

2
�

and

di =
2�Ei�
�Vi�

≤ 2
( �V1�
4i−1�Vi�

+ �V2�
4i−2�Vi�

+ �V3�
4i−3�Vi�

+ · · ·+ �Vi�
�Vi�

)
�

We are going to prove by induction that if 1≤ i≤ q−4, then 2q−i ≥ �Vi� ≥ 2q−i−6
and di ≤ 6.

We have already proved the cases i= 1 and i= 2.
Now assume that the inequalities hold for all 1≤ j ≤ i−1, and want to show that

they hold for j = i as well. But this is just trivial calculations. Indeed, by hypothesis

�Vi� ≥
�Vi−1�−di−1

2
≥ �2q−i+1−6�−6

2
= 2q−i−6�

Note that the upper bound 2q−i ≥ �Vi� is trivial.
On the other hand, we have

di =
2�Ei�
�Vi�

≤ 2
( �V1�
4i−1�Vi�

+ �V2�
4i−2�Vi�

+ �V3�
4i−3�Vi�

+ · · ·+ �Vi�
�Vi�

)

≤ 2+ 2q−i+1

2 �2q−i−6�

(
1+ 1

2
+ 1

22
+ 1

23
+· · ·

)
≤ 4+ 12

2q−i−6
≤ 6

if q− i ≥ 4. This completes the proof of the inequalities 2q−i ≥ �Vi� ≥ 2q−i−6 and
di ≤ 6 if 1≤ i ≤ q−4.
Let uq−3 ∈ Vq−4 be a point with minimum degree in graph Gq−4 = �Vq−4�Eq−4�.

So the degree of uq−3 in Gq−4 is ≤ dq−4 ≤ 6. Now playing on KVq−4
Maker (as the

first player) can trivially pick
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⌈
�Vq−4�−dq−4

2

⌉
≥

(
24−6

)−6

2
= 2

edges incident with uq−3 ∈ Vq−4. Let Vq−3 (⊂ Vq−4) denote the set of other endpoints
of these edges of Maker, and let uq−2 ∈ Vq−3 be an arbitrary point. It follows from
the construction (which is a slight modification of the standard proof of the graph
Ramsey Theorem) that any two of the �q− 2� vertices u1� u2� u3� · · · � uq−2 are
joined by an edge of Maker. This means that playing on K2q Maker can build a
Kq−2 of his own in less than 2q moves. This proves Theorem 21.1. �

2. How to beat the Halving Argument? Approaching the Optimal Play via the
Majority Play. Theorem 21.1 is certainly an improvement, but it is still just “half”
of the truth. With any kind of halving strategy we are hopelessly stuck at log2N .
How can we go beyond log2N , and “double” it? It is very instructive to solve first
a much easier question: “What is the majority outcome of the game?”
In Section 6 “random” players was mentioned, and whole of Chapter IV focused

on the topic of “randomness and games.” Here a more detailed, systematic treatment
of this angle is given.

What the majority outcome means is the following most naive approach to solve
a game. Assume we possess the supernatural power to go through and analyze all
possible plays at once (needless to say most of the plays are hopelessly dull, or even
dumb), and if the overwhelming majority of the plays ends with a Weak Win (or
Strong Draw), then we suspect that the outcome of the game is the same: a Weak
Win Strategy (or a Strong Draw Strategy). The naive intuition is that the outcome
of the game (which is the outcome of the optimal play between two perfect players)
is the same as the majority outcome.
A terminal position of a play in the Clique Game gives a Halving 2-Coloring

of the edges of KN� so we have to study the Random Halving 2-Colorings of KN �

A technical simplification (in fact a slight “cheating”) is to consider the simpler
Random Graph model: we include or exclude each edge of KN with probability
1/2, and we do this inclusion-or-exclusion for all

(
N

2

)
edges of KN independently

of each other. This way we get a Random 2-Coloring of the edges of KN , which is
not exactly Halving, but Nearly Halving (with a “square-root error” by the Central
Limit Theorem).
We want to understand the mysterious relationship between deterministic Graph

Games (of complete information) and Random Graphs. The first step in exploring
this idea is the study of the

Clique Number of the Random Graph. Since Maker occupies half of the edges
of KN , we study the Clique Number of the Random Graph G=R�KN �1/2� where
the edge probability is 1/2. The Clique Number means the number of vertices
in the largest clique. It turns out that the Clique Number of the Random Graph
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has an extremely sharp concentration: “almost all” graphs on N vertices have the
same Clique Number. The common value of the Clique Number is not log2N (the
natural limitation of the “ramification”), but the (almost) twice as large 2log2N −
2log2log2N +O�1�. The point is that the Clique Number of the Random Graph
does go beyond log2N +O�1�, and this gives us a hope for a similar factor 2
improvement in the Clique Game.

The “sharp concentration of the Clique Number,” already mentioned in Section 6,
is one of the most surprising results in the theory of Random Graphs. It is based on
the combined efforts of several authors: Erdős, Rényi, Bollobás, and Matula. The
statement is very surprising, but the proof itself is shockingly simple: it is an almost
routine application of the probabilistic First and Second Moment Method. We use
the standard notation ��G� for the Clique Number of a graph G, and R�KN �1/2�
denotes the Random Graph with N vertices and edge probability 1/2.

Sharp Concentration of the Clique Number: ��R�KN �1/2�� is basically con-
centrated on a single value (depending, of course, on N ) with probability tending
to one as N tends to infinity.

Remark. This is a pure probabilistic statement which seemingly has absolutely
nothing to do with the optimal play. The reason why it was decided to still include
an outline of the proof (see below) was to demonstrate how the critical probabilis-
tic calculations here will unexpectedly show up again later in the game-theoretic
considerations. This is an excellent illustration of how the “Probabilistic Method”
is converted into a “Fake Probabilistic Method” (the method of the book).

The concentration of random variables in general: We start our discussion with
the vague intuition that “a random variable is close to its expected value.” For
example, if one tosses a fair coin N times, the number of Heads is typically in
the range N/2± c

√
N . The typical fluctuation is described by the Central Limit

Theorem: the norming factor is the square root of N (which is “small” compared
to N/2 if N is large).

Square-root-of-N size fluctuation is very typical, but many “natural” random
variables are far more concentrated – exhibit constant-size fluctuation. For example,
instead of counting the number of Heads, we may be interested in the length of
the longest run of consecutive Heads in N trials; let L = L�N� denote the longest
run random variable. As far as is known, it was Erdős and Rényi who made the
first systematic study of the longest run. For simplicity assume that N = 2n where
n is an integer. Erdős and Rényi proved the following elegant result: if c is a fixed
integer and N = 2n tends to infinity, then

Pr�L�N�= log2N + c�→ e−2−c−2 − e−2−c−1
� (21.1)

In (21.1) the choice c=−1 gives the maximum probability e−1/2−e−1 = �2387; the
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other choices c = 0�1�2 give the probabilities, respectively, e−1/4− e−1/2 = �1723,
e−1/8− e−1/4 = �1037, e−1/16− e−1/8 = �057.
(21.1) shows that the longest run random variable is concentrated on a few values

log2N +O�1� (centered at log2N ) with probability nearly one.
The proof of (21.1) is based on the Inclusion–Exclusion Principle combined with

the trick of non-overlapping extensions. The term non-overlapping extensionsmeans
that if H · · ·H is a block of consecutive Heads, then we extend it in both directions
into a block TH · · ·HT (or possibly TH · · ·H�last�, �first�H · · ·HT ). The critical
property of the extended patterns TH · · ·HT , TH · · ·H�last�, �first�H · · ·HT is
that they cannot overlap! Working with the extended patterns, the application of the
Inclusion–Exclusion formula becomes particularly simple, and (21.1) follows easily.
Another example of a “type (21.1) concentration” is the length of the longest

monochromatic arithmetic progression in a Random 2-Coloring of �1�N� =
	1�2� � � � �N
. Then the longest monochromatic length, as a random variable, is
concentrated on a few values 2 log2N − log2 log2N +O�1� with probability nearly
1. The reader is challenged to prove both (21.1) and the last statement.
The third type of concentration is so extreme that there is no fluctuation; the

random variable is deterministic (or almost deterministic). The best illustration is
exactly what we are interested in, namely the clique number of the Random Graph.

Outline of the proof of the sharp concentration of the clique number. Let

f�q�= fN �q�=
(
N

q

)
2−�

q
2�

denote the expected number of q-cliques in the Random Graph R�KN �1/2�. The
function f�q� is monotone decreasing and drops under one around q ≈ 2 log2N .
Let q0 be the last integer q such that f�q� > 1, i.e. f�q0� > 1≥ f�q0+1�� The “real
solution” of the equation f�q� = 1 is q = 2 log2N − 2 log2 log2N + 2 log2 e− 1+
o�1�� and q0 is the lower integral part of this real number. The crucial fact is that
f�q� is a very rapidly changing function

f�q�

f�q+1�
= q+1

N −q
2q = N 1+o�1�

if q ≈ 2 log2N� The reason why f�q� is rapidly changing is pretty simple: the
complete graph Kq has

(
q

2

)
edges, and changing q by one makes a large – in fact,

square-root size – increase in the number of edges:
(
q+1
2

)= (
q

2

)+q.
In view of the rapid change, it is very unlikely that either N� ≥ f�q0� > 1 or

1≥ f�q0+1�≥ N−� occurs, where � > 0 is an arbitrarily small but fixed constant.

Case 1: f�q0� > N� > N−� > f�q0+1� holds for some � > 0
In this “typical” case the Clique Number is concentrated on a single value, namely

Pr
{
��R�KN �1/2��= q0

}
→ 1
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as N →
. Indeed, for each q-element vertex-set S of KN let �S denote the indicator
random variable of the event that “S is the vertex-set of a clique in R�KN �1/2�”,
i.e. �S is 1 if “S spans a clique” and 0 if “not.” Let

=q =
∑
�S�=q

�S�

The expected value E��= f�q�� The variance of  is as follows

Var��= ∑
�S1�=q

∑
�S2�=q

(
E��S1

�S2
�−2−2�q2�

)
�

where
E��S1

�S2
�= Pr	�S1

= 1= �S2

= 2−2�q2�

if �S1∩S2� ≤ 1, and

E��S1
�S2

�= Pr	�S1
= 1= �S2


= 2−2�q2�+�i
2�

if 2 ≤ i= �S1∩S2� ≤ q. It follows that

Var��

E2��
=

q∑
i=2

(
q

i

)(
N−q

q−i

)
(
N

q

) (
2�

i
2�−1

)
=

q∑
i=2

g�i�� (21.2)

where

g�i�= gN�q�i�=
(
q

i

)(
N−q

q−i

)
(
N

q

) (
2�

i
2�−1

)
� (21.3)

If q ≈ 2 log2N , then
∑q

i=2 g�i�≈ g�2�+g�q�� Indeed, g�2�≈ q4

2N 2 = c �logN�4

N 2 � g�3�≈
q6

6N 3 = c �logN�6

N 3 � and, on the other end, g�q�≈ 1
f�q�

� g�q−1�≈ q

Nf�q�
� and so on. For

=q with q = q0 by Chebyshev’s inequality

Pr
{
= 0

}
≤ Pr

{
�−E��� ≥E��

}
≤ Var��

E2��
≈ c

�logN�4

N 2
+ 1

f�q0�
<N−� → 0

as N →
� So Kq0
⊂ R�KN �1/2� with probability tending to 1.

On the other hand, for =q with q = q0+1 Markov’s inequality yields

Pr
{
≥ 1

}
≤ E��= f�q0+1� < N−� → 0

as N →
� Therefore, Kq0+1 ⊂ R�KN �1/2� with probability tending to 0.

Case 2: Either N� ≥ f�q0� > 1 or 1≥ f�q0+1�≥ N−�

Repeating the argument of Case 1, we conclude that either

Pr
{
��R�KN �1/2��= q0+1 or q0

}
→ 1

or
Pr
{
��R�KN �1/2��= q0 or q0−1

}
→ 1
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as N →
. This completes the outline of the proof of the sharp concentration of
the clique number of the Random Graph G= R�KN �1/2�� �

3. How to conjecture the Advanced Weak Win Criterion? As said before, the
main idea is to convert the probabilistic First and Second Moment argument above
into a deterministic game-theoretic proof via potentials. Guessing the right criterion
(“Advanced Weak Win Criterion”) is already a serious challenge; the guess work
is nearly as difficult as the proof itself. We already formulated the Advanced Weak
Win Criterion in Section 13, but here we pretend not to know about it. The point
is to see how the probabilistic considerations give us a strong hint/motivation to
discover the advanced criterion.
Note that the advanced criterion is a “Game-Theoretic Higher Moment Method”;

in fact, a pth Moment Method, where in the (majority of) applications the parameter
p→
.
Let’s start with the first moment; what is the Game-Theoretic First Moment?

This job is already done: “First Moment” means the two linear criterions together,
the Erdős–Selfridge theorem for Strong Draw (Theorem 1.4) and Theorem 1.2 for
Weak Win (explaining the title of Part A). To justify this claim, we recall the
non-uniform version of the Erdős–Selfridge Theorem.

Non-uniform Erdős–Selfridge: If

∑
A∈F

2−�A� < 1 �< 1/2��

then Breaker, as the first (second) player, has an explicit Strong Draw strategy in
the positional game on �V�F�.

Consider the Random 2-Coloring of the points of hypergraph �V�F�, where the
points are colored red and blue independently of each other with probability 1/2.
Then the expected number of monochromatic winning sets is precisely

∑
A∈F 2−�A�+1.

If this expected number is less than 1, then there exists at least one Drawing Terminal
Position. By the non-uniform Erdős–Selfridge Theorem this Drawing Position can
be “upgraded” to a Strong Draw Strategy.
A probabilistic interpretation of the Erdős–Selfridge criterion has just been given:

it is about the “expected number of monochromatic winning sets in a Random
2-Coloring.” (Note that the “expected value” is often called the “first moment” in
probability theory.) But the probabilistic interpretation goes much deeper! It goes
far beyond the criterion alone: the Strong Draw Strategy itself also has a natural
probabilistic interpretation. Indeed, the strategy is to minimize the defeat probability
in the randomized game. To explain what it means, assume that we are in the middle
of a play where Maker (the first player) already occupied x1� x2� � � � � xi, Breaker
(the second player) occupied y1� y2� � � � � yi−1� and the question is how to choose
Breaker’s next point yi. Again we use the concepts of “dead set” (i.e. blocked
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by Breaker) and “survivor.” A “survivor” A ∈ F has a chance to eventually be
completely occupied by Maker, so each one represents some “danger.” What is the
total “danger” of the whole position? Consider the randomized game starting from
this given position, i.e. we color the unoccupied points of the board V red and
blue independently with probability 1/2, red for Maker and blue for Breaker. Let
As ∈ F be a “survivor” winning set, and let Es denote the event that As becomes
monochromaticly red in the randomized game. The probability of Es is clearly 2−us ,
where us is the number of unoccupied points of As� Let 	As � s ∈ Si
 be the family
of all survivor sets at this stage of the play, i.e. Si is the index-set for the “survivor”
winning sets. We are interested in the “defeat-probability” Pr	

⋃
s∈Si Es
� By the

inclusion–exclusion formula

Pr
{⋃
s∈Si

Es

}
= ∑

s∈Si
Pr	Es
−

∑
s<t

Pr	Es ∩Et
+
∑

s<t<v

Pr	Es∩Et ∩Ev
∓· · · �

This expression is obviously far too complicated, so we need to approximate.
A natural choice is the “linear approximation,” i.e. to keep the first term

∑
s∈Si Pr	Es


on the right-hand side and ignore the rest. The first term is nothing else than the
expected number! This convinces us to evaluate the given position by the following
“total danger” Ti =

∑
s∈Si 2

−us , where us is the number of unoccupied points of the
“survivor” As �s ∈ Si� and the index i indicates that we are at the stage of choosing
the ith point yi of Breaker. What is the effect of the next two moves yi and xi+1?
The familiar equality

Ti+1 = Ti−
∑

s∈Si� yi∈As

2−us + ∑
s∈Si� xi+1∈As

2−us − ∑
s∈Si�	yi�xi+1
⊆As

2−us

explains why the natural choice for yi is the “maximum decrease,” which minimizes
the “total danger” Ti+1.
For later application note that hypergraph F can be amulti-hypergraph; a winning

set may have arbitrarily large multiplicity (not just 0 and 1); the proof remains the
same: in every sum a winning set is counted with its own multiplicity.

Random 2-Coloring of a hypergraph. Let � � V → 	red�blue
 be a Random
2-Coloring of the board V of hypergraph F such that the points are colored red and
blue independently of each other with probability 1/2. Let  = ��� denote the
number of red (i.e. monochromatic red) hyperedges A ∈ F in 2-coloring �. Write

T�F�= ∑
A∈F

2−�A�� (21.4)

(Of course, if a hyperedge has multiplicity (say) M , then it shows up M times in
the summation above.) Notice that T�F� is, in fact, the expected value E of the
random variable .

Next we compute the variance Var�� of� Let �A denote the indicator variable
of the event that “A is red,” i.e. �A is 1 if “A is red” and 0 otherwise. Clearly
=∑

A∈F �A� and we have
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Var��= E�2�−E2��= ∑
A∈F

∑
B∈F

(
E��A�B�−E��A�E��B�

)
�

If A and B are disjoint sets, then �A and �B are independent random variables, so
E��A�B�= E��A�E��B�� It follows that

Var��= ∑
A∈F

(
2−�A� −2−2�A�

)
+2

∑
	A�B
∈�F

2���A∩B�≥1

(
2−�A∪B� −2−�A�−�B�

)
�

Here we employed the (standard) notation that, if X is a set, then
(
X

k

)
denotes the

family of k-element subsets of X�
Since �A∪B� = �A�+ �B�− �A∩B� ≤ �A�+ �B�−1� we have

1

2
S ≤ Var��≤ S where S = T�F�+2T�F 2

1 � (21.5)

and

F2
1 =

{
A∪B � 	A�B
 ∈

(F
2

)
� �A∩B� ≥ 1

}
� (21.6)

That is,F2
1 is the family of all union-sets (counted with multiplicity) of the unordered

pairs of distinct non-disjoint elements of F .
By Chebyshev’s inequality, the “red set counting” random variable  falls in the

interval

E��−O�
√
Var��� < < E��+O�

√
Var��� (21.7)

with probability close to 1. We want to guarantee that ≥ 1 holds with probability
close to 1, i.e. the Random 2-Coloring provides a (monochromatic) red winning set
(“Maker wins”) with probability close to 1. To apply the Chebyshev’s inequality we
need the Double Requirement that “E�� is large” and “

√
Var��/E�� is small”

hold at the same time. This kind of Double Requirement (we express (21.5)–(21.7)
in terms of T�F� and T�F 2

1 �):

(1) T�F� is “large” and
(2)

√
T�F 2

1 �/T�F� is “small”,

is that we may expect to be the new Advanced Weak Win Criterion. Well, the
Advanced Weak Win Criterion (“Theorem 24.2”) looks more complicated than
(1)–(2), but there is a variant of the Clique Game in which the “builder’s win”
criterion looks exactly like (1)–(2)! This variant is the Picker–Chooser Game, and
this is what we are going to discuss in the next section. The Picker–Chooser Game
plays an auxiliary role in our study; it is an ideal “warm up” for the real challenge
(Sections 23–24).
We already saw the sharp (“single-valued”) concentration of the Clique Number

of the Random Graph R�KN �1/2� – this justifies the notion of Majority-Play Clique
Number. Similarly, we can talk about the Majority-Play Lattice Number for each
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type listed in Section 8. We know the following Majority-Play Numbers (we use
the notation M�· · · � similarly to the notation A�· · · � for the Achievement Number)

M�KN� clique�= �2 log2N −2 log2 log2N +2log2e−1+o�1���
M�N ×N� square lattice�=

⌊√
3 log2N +o�1�

⌋
�

M�N ×N� rectangle lattice�=
⌊
2
√
log2N +o�1�

⌋
�

M�N ×N� tilted square lattice�=
⌊
2
√
log2N +o�1�

⌋
�

M�N ×N� tilted rectangle lattice�=
⌊
2
√
log2N +o�1�

⌋
�

M�N ×N� rhombus lattice�=
⌊
2
√
log2N +o�1�

⌋
�

M�N ×N� parallelogram lattice�=
⌊√

6 log2N +o�1�
⌋
�

M�N ×N� area one lattice�=
⌊
2
√
log2N +o�1�

⌋
�

Exercise 21.1 By using (21.5)–(21.7) prove the Majority-Play Number formulas
above.



22
Game-theoretic second moment: application to

the Picker–Chooser game

This section is a detour (but an instructive one!); a reader in a rush may skip it.
Here we study the

1. Picker–Chooser and Chooser–Picker games. These games are motivated by
the well-known “I-Cut-You’ll-Choose” way of dividing (say) a piece of cake
between two people (it is, in fact, a sequential variant). We have already studied
the discrepancy version of these games in Sections 18–19.
First, the special case of Clique Game is discussed; the generalization to arbitrary

hypergraphs will be straightforward.
In the Clique Game the board is, as always, the complete graph KN . In each

round of the play Picker picks two previously unselected edges of KN , Chooser
chooses one of them, and the other one goes back to Picker. There are 2 variants.
In the first variant Picker colors his edges blue, Chooser colors his edges red, and
Chooser wins if he can occupy all the

(
q

2

)
edges of some complete sub-graph Kq

of KN ; otherwise Picker wins. In other words, Chooser wins if and only if there
is a red copy of Kq. This is the �KN �Kq� Chooser Picker Clique Game. This is
obviously a Ramsey type game. Indeed, it is a sequential version of the following
1-round game (“Ramsey Theorem in disguise”): Picker divides the edge-set of Kn

into 2 parts, Chooser chooses 1 part, and the other part goes back to Picker; Chooser
wants a Kq in his own part. Chooser has a winning strategy in this 1-round game
if and only if N ≥ R�q�, where is the standard (diagonal) Ramsey Number.

In the second variant Picker wants a Kq; we call it the Picker–Chooser game. In
the �KN �Kq� Picker–Chooser Clique Game the board is the complete graph KN ,
and just like before, in each round of the play Picker picks 2 previously unselected
edges of KN� Chooser chooses one of them, and the other one goes back to Picker.
In this variant Chooser colors his edges blue, Picker colors his edges red, and
Picker wins if he occupies all the

(
q

2

)
edges of some complete sub-graph Kq of KN ;

otherwise Chooser wins. In other words, Picker wins if and only if there is a red
copy of Kq in KN .

320
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There is a surprising similarity between the game-theoretic breaking points of
these Clique Games and the Clique Number of the Random Graph on N vertices
with edge probability 1/2. We show that the game-theoretic threshold for the Picker–
Chooser game is 2 log2N −2 log2 log2N +2log2e−1+o�1�, which is exactly the
Clique Number of the Random Graph on N vertices with edge probability 1/2. (For
the Chooser–Picker game the threshold is two less.)
Of course, one can play the Picker–Chooser and Chooser–Picker games on an

arbitrary finite hypergraphs. Let �V�F� be a finite hypergraph; the rules are the
same: in each round of the play Picker picks two previously unselected points of
the board V , Chooser chooses one of them, and the other one goes back to Picker.
In the Chooser–Picker version Chooser colors his points red and Picker colors his
points blue. Chooser wins if he can occupy all the points of some winning set
A ∈ F ; otherwise Picker wins.

In the Picker–Chooser version Chooser colors his points blue and Picker colors
his points red. Picker wins if he occupies all the points of some winning set A ∈F ;
otherwise Chooser wins.

Observe that in both games there is a builder, who wants to occupy a whole
winning set. It is the builder whose name comes fist: Picker in the Picker–Chooser
game and Chooser in the Chooser–Picker game.

The opponent of builder is a blocker – his name comes second – who simply
wants to prevent builder from occupying a whole winning set.
Builder colors his points red, and blocker colors his points blue. Each play has

two possible outcomes only: either builder wins, or blocker wins.
Let us return to the Clique Game. It is clear that Picker has much more control

in the Picker–Chooser version than Maker does in the Maker–Breaker version (or
Chooser does in the Chooser–Picker version). In view of the next exercise, Picker
can occupy a whole winning set even if the hypergraph is not dense.

Exercise 22.1 Show that, if F contains (at least) 2k pairwise disjoint k-sets, then
Picker can occupy a whole k-set.

We challenge the reader to solve this (really simple) exercise.
The relative simplicity of the Picker–Chooser game explains why it is a good

idea to understand the “building part” in the Picker–Chooser game first, and discuss
the more challenging/interesting Maker–Breaker and Chooser–Picker games later.

Here is a general Picker’s Building Criterion.

Theorem 22.1 Consider the Picker–Chooser game on hypergraph �V�F�.
Assume that

T�F�≥ 1014�F�14
(√

T�F 2
1 �+1

)
�
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where T�F� is defined in (21.4) and ��F �� = max	�A� � A ∈ F
 is the rank of
hypergraph F . Then Picker (i.e. builder) has an explicit winning strategy.

Remark. The hypothesis is a Double Requirement (as we predicted in Section 21):

(1) T�F� has to be “large”; and
(2)

√
T�F 2

1 �/T�F� has to be “small.”

The large factor 1014�F�14 is accidental. It is (almost) irrelevant in the applications;
this is why we do not make an effort to find better constants.
If F consists of pairwise disjoint sets, then F 2

1 is empty. In that trivial case the
large factor can be dropped, and the condition can be reduced to the much simpler
T�F�≥ �F� (we leave the proof to the reader).
First we show how Theorem 22.1 applies to the Picker–Chooser Clique Game,

and postpone the proof of Theorem 22.1 to the end of the section.

2. Application. Let PA�KN � clique� be the largest value of q = q�N� such that
Picker has a winning strategy in the �KN �Kq� Picker–Chooser Clique Game. I call
it the Clique Picker-Achievement Number.

Exercise 22.2 If F is n-uniform and �F � < 2n, then Chooser can always prevent
Picker from occupying a whole A ∈ F in the Picker-Chooser Game.

In particular, if the inequality (
N

q

)
2−�

q
2� < 1 (22.1)

holds, then Chooser (i.e. “blocker”) has a winning strategy in the �KN �Kq� Picker–
Chooser Clique Game.

Next we apply Picker’s win criterion: Theorem 22.1. Let �N�= 	1�2� � � � �N
 be the
vertex-set of KN� and define

F = 	KS � S ⊂ �N�� �S� = q
�

We have

F 2
1 = 	KS1

∪KS2
� Si ⊂ �N�� �Si� = q� �KS1

∩KS2
� ≥ 1
�

where 	S1� S2
 runs over the unordered pairs of distinct q-element subsets of �N�.
We have to check that

T�F�≥ 1014�F�14 (�T�F 2
1 ��

1/2+1
)
�

Clearly �F� = (
q

2

)
� T�F�= (

N

q

)
2−�

q
2�� and

T�F 2
1 �=

q−1∑
j=2

1
2

(
N

q

)(
q

j

)(
N −q

q− j

)
2−2�q2�+�j2��
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where j = �S1∩S2�. Therefore
T�F 2

1 �

�T�F��2
= 1

2

q−1∑
j=2

(
q

j

)(
N−q

q−j

)
(
N

q

) 2�
j
2� = 1

2

q−1∑
j=2

g�j��

where

g�j�=
(
q

j

)(
N−q

q−j

)
(
N

q

) 2�
j
2��

Note that this is the same as (21.2)–(21.3) in the calculation of the variance of the
Clique Number of the Random Graph R�KN �1/2� (see Section 21). Thus we have

T�F 2
1 �

�T�F��2
= 1

2

q−1∑
j=2

g�j�≈ g�2�+g�q−1�

2
≈ q4

2N 2
+ q

2NT�F�
�

Therefore, it remains to check that

T�F�=
(
N

q

)
2−�

q
2� > cq28� (22.2)

where c is a sufficiently large absolute constant. By Stirling’s formula the two
different inequalities (see (22.1) and (22.2))(

N

q

)
2−�

q
2� < 1 and

(
N

q

)
2−�

q
2� > cq28

determine the same threshold

2 log2N −2 log2 log2N +2 log2 e−1+o�1�

(with different o�1�’s, but o�1� tends to zero anyway). Thus we obtain:

Theorem 22.2 Consider the Picker–Chooser Clique Game; the Clique Picker-
Achievement Number equals

PA�KN� clique�= �2 log2N −2 log2 log2N +2log2e−1+o�1��� �

It means that for the Clique Game on KN the Picker-Achievement Number equals
the Majority-Play Number (well, at least for the overwhelming majority of N s).
The same holds for the Lattice Games.

Theorem 22.3 Consider the Picker–Chooser Lattice Game on an N ×N board.
The Lattice Picker-Achievement Number equals

(a) PA�N ×N� square lattice�=
⌊√

3 log2N +o�1�
⌋
�

(b) PA�N ×N� rectangle lattice�=
⌊
2
√
log2N +o�1�

⌋
�

(c) PA�N ×N� tilted square lattice�=
⌊
2
√
log2N +o�1�

⌋
�

(d) PA�N ×N� tilted rectangle lattice�=
⌊
2
√
log2N +o�1�

⌋
�
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(e) PA�N ×N� rhombus lattice�=
⌊
2
√
log2N +o�1�

⌋
�

(f) PA�N ×N�parallelogram lattice�=
⌊√

6 log2N +o�1�
⌋
�

(g) PA�N ×N� area one lattice�=
⌊
2
√
log2N +o�1�

⌋
�

Exercise 22.3 Prove Theorem 22.3 above.

3. The proof. An important ingredient of the proof of Theorem 22.1 is the Variance
Lemma below. It will be used as a sort of “game-theoretic Chebyshev’s inequality.”
We begin with the notation: we use (21.4), that is, for an arbitrary hypergraph

�V�H� write

T�H�= ∑
A∈H

2−�A��

and for any point x ∈ V of the board write

T�H� x�= ∑
A∈H� x∈A

2−�A��

(Of course, if a set has multiplicity ≥ 1, then it shows up that many times in the
summations above.)

Variance Lemma. For any point x ∈ V of the board

T�H� x� < 2

((
T�H2

1�
)1/2+1

)
�

We postpone the proof of the Variance Lemma to Section 24 (because the
Variance Lemma is a special case of the more general Theorem 24.1).

Proof of Theorem 22.1. Assume we are at a stage of the play where Picker has
the points x1� x2� � � � � xi, and Chooser has y1� y2� � � � � yi� The question is how to find
Picker’s next 2-element set 	v�w
� from which Chooser will choose yi+1� and the
other one (i.e. xi+1) will go back to Picker.

Let Xi = 	x1� x2� � � � � xi
 and Yi = 	y1� y2� � � � � yi
� Let Vi = V \ �Xi∪Yi� � Clearly
�Vi� = �V �−2i�

Let F�i� be that truncated sub-family of F , which consists of the unoccupied
parts of the “survivors”

F�i�= 	A\Xi � A ∈ F� A∩Yi = ∅
�
If Picker can guarantee that T�F�i�� > 0 during the whole course of the play, in
particular if T�F�end��> 0� then Picker wins. Let xi+1 and yi+1 denote, respectively,
the �i+1�st points of Picker and Chooser. We have
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T�F�i+1��= T�F�i��+T�F�i�� xi+1�−T�F�i�� yi+1�−T�F�i�� xi+1� yi+1�

≥ T�F�i��−�T�F�i�� xi+1�−T�F�i�� yi+1��−T�F�i�� xi+1� yi+1��

(22.3)

and similarly, but in the other direction

T�F2
1 �i+1��≤ T�F2

1 �i��+�T�F2
1 �i�� xi+1�−T�F 2

1 �i�� yi+1��� (22.4)

We want to maximize T�F�i+1�� and minimize T�F 2
1 �i+1�� at the same time. We

are going to apply the following lemma.

Lemma 1: Let rj��� 1≤ j < � ≤m be
(
m

2

)
non-negative reals, let rj� 1≤ j ≤m be

m non-negative reals, and, finally, let tj� 1≤ j ≤m be m non-negative reals, where

∑
1≤j<�≤m

rj�� ≤ z�
m∑
j=1

rj ≤ u�
m∑
j=1

tj ≤ s�

Assume that m ≥ 107� Then there exists a pair 	j1� j2
 with 1 ≤ j1 �= j2 ≤ m such
that

rj1�j2 ≤
6z

m8/7
� �rj1 − rj2 � ≤

2u

m8/7
� �tj1 − tj2 � ≤

3s

m8/7
�

To prove the rather complicated Lemma 1, we need the following much simpler:

Lemma 2: If t1� t2� � � � � tm are non-negative real numbers and t1+ t2+· · ·+ tm ≤ s�

then

min
1≤j<�≤m

�tj − t�� ≤
s(
m

2

) �
Proof. of Lemma 2. We can assume that 0 ≤ t1 < t2 < · · · < tm� Write g =
min1≤j<�≤m �tj − t��� Then tj+1− tj ≥ g for every j� and(

m

2

)
g = g+2g+ � � �+ �m−1�g ≤ t1+ t2+ � � �+ tm ≤ s�

This completes the proof of Lemma 2.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Consider the graph

Gm =
{
	j� �
 ∈

(
�m�

2

)
= Km � rj�� ≥

6z

m8/7

}

on m points. Since
∑

1≤j<�≤m rj�� ≤ z� it follows that the number of edges �Gm� of
graph Gm satisfies �Gm� ≤ m8/7/6� The average degree d = d�Gm� of graph Gm

is 2�Gm�/m=m1/7/3� so by Turán’s well-known theorem there is an independent
point-set J ⊆ 	1�2� � � � �m
 in graph Gm with �J � ≥ m

d+1 ≥m�m1/7/3+1�−1 ≥ 2m6/7�

Let KJ denote the complete graph on point-set J ; then
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rj�� <
6z

m8/7
for all pairs 	j� �
 ∈ KJ =

(
J

2

)
� (22.5)

Next consider the inequality
∑

j∈J rj ≤
∑m

j=1 rj ≤ u� It follows that there is a subset
J1 of J such that �J1� ≥ �J �/2≥m6/7 and rj ≤ um−6/7 for all j ∈ J1� Let c= um−6/7

and m1 = �m2/7� (lower integral part), and divide the interval �0� c� into m1 equal
sub-intervals �0� c�=⋃m1

k=1 Ik, where Ik = ��k−1�c/m1� kc/m1�� By the Pigeonhole
Principle there is a sub-interval Ik containing at least �J1�/m1 ≥ �J1�m−2/7 ≥ m4/7

rj’s. In other words, there is a subset J2 of J1 such that �J2� ≥m4/7 and

�rj − r�� ≤
2u
m8/7

for all pairs 	j� �
⊆ J2� (22.6)

Finally, consider the inequality
∑

j∈J2 tj ≤
∑m

j=1 tj ≤ s� By Lemma 2 there is a
pair 	j1� j2
⊆ J2 with j1 �= j2 such that

�tj1 − tj2 � ≤
s(�J2�
2

) ≤ 3s

�J2�2
≤ 3s

m8/7
� (22.7)

Since 	j1� j2
⊆ J2 ⊆ J� Lemma 1 follows from (22.5), (22.6), and (22.7). �

Clearly

∑
	v�w
⊂Vi�v �=w

T�F�i�� v�w�≤
(�F�

2

)
T�F�i���

∑
v∈Vi

T�F�i�� v�≤ �F�T�F�i���

∑
v∈Vi

T�F 2
1 �i�� v�≤ 2�F�T�F 2

1 �i���

If �Vi� ≥ 107, then by Lemma 2 there is a pair 	v0�w0
⊂ Vi (v0 �=w0) of previously
unselected points such that

T�F�i�� v0�w0�≤
6

�Vi�8/7
(�F�

2

)
T�F�i���

�T�F�i�� v0�−T�F�i��w0�� ≤ 2
�Vi�8/7

�F�T�F�i���

�T�F 2
1 �i�� v0�−T�F2

1 �i��w0�� ≤
6

�Vi�8/7
�F�T�F 2

1 �i���

It follows that if Picker offers the pair 	v0�w0
 ⊂ Vi for Chooser to choose from,
then by (22.3) and (22.4)

T�F�i+1��≥ T�F�i��

{
1− 3�F�2+2�F�

�Vi�8/7
}
� (22.8)
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and

T�F 2
1 �i+1��≤ T�F 2

1 �i��

{
1+ 6�F�

�Vi�8/7
}
� (22.9)

Since �Vi� = �V �−2i� for any M> 0 we have

∑
i��Vi�>M

1
�Vi�8/7

≤
∫ 


M
x−8/7dx= 7

M1/7
� (22.10)

We use the trivial inequalities 1+x≤ ex and 1−x≥ e−2x for 0≤ x≤ 1/2; then by
iterated applications of (22.8) and (22.9), and also by (22.10) it follows that

T�F�i+1��≥ 1

2
T�F� and T�F 2

1 �i+1��≤ 2T�F 2
1 �

for all i with �Vi� > M = �70�F�2�7� Let i0 be the last index with �Vi� > M =
�70�F�2�7� Then

�Vi0+1� ≤M� T�F�i0+1��≥ 1

2
T�F� and T�F 2

1 �i0+1��≤ 2T�F 2
1 ��

Note that B ∈ F�i0+1� implies B ⊆ Vi0+1� We distinguish two cases.

Case 1: The empty set is an element of F�i0+1�.
Then Picker already completed a winning set, and wins the play.

Case 2: B ∈ F�i0+1� implies �B� ≥ 1
We show that Case 2 is impossible. Indeed, in Case 2

∑
v∈Vi0+1

T�F�i0+1�� v�≥ T�F�i0+1��≥ 1

2
T�F��

so by the Pigeonhole Principle there is a point x ∈ Vi0+1 such that

T�F�i0+1�� x�≥ T�F�

2�Vi0+1�
≥ T�F�

2M
� (22.11)

On the other hand, by the Variance Lemma (mentioned above) we obtain the
following inequality

T�F�i0+1�� x�≤ 2
(
T
((F�i0+1�

)2
1

))1/2+2�

By using the trivial fact
(F�i�

)2
1
⊆ F2

1 �i�� we conclude that

T�F�i0+1�� x�≤ 2
(
T�F 2

1 �i0+1��
)1/2+2� (22.12)

Comparing (22.11) and (22.12)

T�F�≤ 2�70�F�2�7
(
2
(
2T�F 2

1 �
)1/2+2

)
�

which contradicts the hypothesis of Theorem 22.1. Theorem 22.1 follows. �
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A brief summary of Sections 21–22 goes as follows

Majority Play Number = Picker Achievement Number�

which holds for our “Ramseyish” games with quadratic goal sets (for the
overwhelming majority of the board size parameter N ).



23
Weak Win in the Lattice Games

In this section the “board” is very restricted: it always means the N ×N lattice in
the plane. Weak Win in the Square Lattice Games, both aligned and tilted, are easy:
Theorem 1.2 applies and gives the correct lower bounds

A�N ×N� square lattice�≥
⌊√

log2N +o�1�
⌋

A�N ×N� tilted square lattice�≥
⌊√

2 log2N +o�1�
⌋

for the Achievement Numbers, see Section 8. The reason why the simple
Theorem 1.2 can give the truth is that any 2 given points “nearly” determine a
q× q Square Lattice; in fact, 2 points determine at most

(
q2

2

)
q× q Square Lat-

tices. This ≤ (
q2

2

)
is polylogarithmic in terms of N ; of course, “polylogarithmic” is

asymptotically negligible because the goal set size is a rapidly changing quadratic
function. We refer to this property as 2-determinedness.

1. An ad hoc Higher Moment technique. Next we discuss the much more chal-
lenging case of q×q parallelogram lattices. The family F of all q×q parallelogram
lattices in an N×N board is 3-determined: 3 non-collinear points “nearly” determine
a q×q parallelogram lattice: the multiplicity is ≤ (

q2

3

)
, which is again polylogarith-

mic in terms of N . Here we develop an ad hoc Higher Moment technique, which
works for 3-determined hypergraphs (unlike Theorem 1.2, which heavily requires
2-determinedness).

Assume we are in the middle of a Parallelogram Lattice Game on an N ×N

board, Maker owns the points X�i� = 	x1� � � � � xi
 and Breaker owns the points
Y�i� = 	y1� � � � � yi
. The main question is how to choose Maker’s next move xi+1.
Let F�i� be a truncated sub-family of F , namely the family of the unoccupied parts
of the “survivors”

F�i�= 	A\X�i� � A ∈ F� A∩Y�i�= ∅
�

329



330 Self-improving potentials

F�i� is a multi-hypergraph: if A and A′ are distinct elements of F and A\X�i�=
A′ \X�i�, then A\X�i� and A′ \X�i� are considered different elements of F�i�� Note
that the empty set can be an element of F�i�; it simply means that Maker already
occupied a winning set, and wins the play in the ith round or before.
As usual, for an arbitrary hypergraph �V�H� write

T�H�= ∑
A∈H

2−�A��

and for any m-element subset of points 	x1� � � � � xm
⊆ V (m≥ 1) write

T�H� x1� � � � � xm�=
∑

A∈H� 	x1�����xm
⊆A

2−�A��

Of course, if a set has multiplicity (say) M , then it shows up M times in every
summation.
We call T�F�i�� the Winning Chance Function; note that the Chance Function

can be much larger than 1 (it is not a probability!), but it is always non-negative. If
Maker can guarantee that the Chance Function remains non-zero during the whole
play, i.e. T�F�i�� > 0 for all i, then Maker obviously wins. Let xi+1 and yi+1 denote
the �i+1�st moves of the 2 players; they affect the Chance Function as follows

T�F�i+1��= T�F�i��+T�F�i�� xi+1�−T�F�i�� yi+1�−T�F�i�� xi+1� yi+1��

Indeed, xi+1 doubles the value of each B ∈ F�i� with xi+1 ∈ B; on the other hand,
yi+1 “kills” all B ∈F�i� with yi+1 ∈ B� Of course, we have to make a correction due
to those B ∈ F�i� which contain both xi+1 and yi+1: these B ∈ F�i� were “doubled"
first and “killed” second, so we have to subtract their values one more time.
“Optimizing the Chance Function” was the basic idea of the proof of the Linear

Weak Win Criterion Theorem 1.2. Unfortunately, Theorem 1.2 gave very poor
result for the �KN �Kq� Clique Game: it applies and yields a Weak Win if

(
N

q

)
> 2�

q
2�−3

(
N

2

)
�2�

For this particular family of winning sets the Max Pair-Degree �2 ≤
(

N

q−3

)
(indeed,

two distinct edges determine at least 3 different vertices); therefore, we have(
N

q

)
> 2�

q
2�−3

(
N

2

)(
N

q−3

)
�

This yields N ≥ 2q
2/2, or taking the inverse, q <

√
2 log2N , which is roughly

square-root of the truth. A very disappointing bound!
From this example we learn that optimizing the Chance Function alone is not

enough. The new idea is to maximize the Chance Function T�F�i��, and, at the
same time, minimize the “one-sided discrepancy” T�F�i�� xi+1� yi+1�� How do we
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handle these two jobs at the same time? Well, we are going to introduce a sin-
gle Potential Function, which is a linear combination of the Chance Function
T�F�i�� (with positive weight 1), and an “auxiliary part” related to the “discrepancy”
T�F�i�� xi+1� yi+1�. The “auxiliary part” requires some preparations.

The plan is to involve a key inequality, which estimates the “one-sided dis-
crepancy” T�F�i�� xi+1� yi+1� from above (see inequality (23.7) below). Select an
arbitrary A1 ∈ F with 	xi+1� yi+1
 ⊂ A1 and A1 ∩ Y�i� = ∅ (which means a “sur-
vivor” q×q parallelogram lattice in the N ×N board such that the lattice contains
the given point pair 	xi+1� yi+1
; such an A1 ∈ F has a non-zero contribution in the
sum T�F�i�� xi+1� yi+1�), and select an arbitrary point z ∈ A1, which is not on the
xi+1yi+1-line (the xi+1yi+1-line means the straight line joining the two lattice points

xi+1� yi+1). The property of 3-determinedness gives that there are ≤ (
q2

3

) ≤ q6/6
winning sets A2 ∈ F , which contain the non-collinear triplet 	xi+1� yi+1� z
; as z

runs, we obtain that there are ≤ q8/6 winning sets A2 ∈ F , which contain the pair
	xi+1� yi+1
 such that the intersection A1∩A2 is not contained by the xi+1yi+1-line.
For k= 0�1�2� � � � write

F�xi+1� yi+1� k�= 	A ∈ F � 	xi+1� yi+1
⊂ A�A∩Y�i�= ∅� �A∩X�i�� = k


and �F�xi+1� yi+1� k�� =Mk. Clearly

T�F�i�� xi+1� yi+1�=
q2∑
k=0

T�F�xi+1� yi+1� k�� (23.1)

and

T�F�xi+1� yi+1� k��=Mk ·2k−q2 � (23.2)

Assume that Mk ≥ 3q8; then there are at least

Mk · �Mk−q8/6� · �Mk−2q8/6� · �Mk−3q8/6� · �Mk−4q8/6�

5! ≥ M5
k

35
= M5

k

243
(23.3)

5-tuples

	A1�A2�A3�A4�A5
 ∈
(F�xi+1� yi+1� k�

5

)

such that, deleting the points of the xi+1yi+1-line, the remaining parts of the 5 sets
A1� � � � �A5 become disjoint. This motivates the following auxiliary “big hypergraph”
(we apply it with p = 5) on N ×N : given a finite hypergraph H on N ×N , for
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arbitrary integer p ≥ 2 write

Hp
2∗ =

{ p⋃
i=1

Ai � 	A1� � � � �Ap
 ∈
(H
p

)
�

p⋂
i=1

Ai is a collinear set of cardinality ≥ 2�

the truncated sets Aj \ �
p⋂

i=1

Ai− line�� j = 1� � � � � p are disjoint
}
�

(23.4)

where “
⋂p

i=1Ai− line” means the uniquely determined straight line containing the
�≥ 2�-element collinear set

⋂p
i=1Ai.

Hp
2∗ is the family of all union sets

⋃p
i=1Ai, where 	A1� � � � �Ap
 runs over all

unordered p-tuples of distinct elements of H having a collinear intersection of
at least 2 points such that deleting this common part from the sets they become
disjoint.
Trivially ∣∣∣∣∣

(
p⋃

i=1

Ai

)
u�o�p�

∣∣∣∣∣≤
p∑
i=1

��Ai�u�o�p��

where “u.o.p.” stands for unoccupied part. By using this trivial inequality and
(23.3)–(23.4), we have

T�F5
2∗�i��≥

M5
k

35
·25�k−q2� if Mk ≥ 3q8� (23.5)

(23.5) implies

3
(
T�F5

2∗�i��
)1/5+3q8 ·2k−q2 ≥Mk ·2k−q2� (23.6)

so by (23.1)–(23.2) and (23.6) we obtain the:

Key inequality

6q8+3q2
(
T�F5

2∗�i��
)1/5 ≥ q2∑

k=0

Mk ·2k−q2 = T�F�i�� xi+1� yi+1�� (23.7)

We are sure the reader is wondering “Why did we pick p = 5 in (23.4)?” This
natural question will be answered later.
After this preparation we are ready to define our Potential Function

Li = T�F�i��−� ·T�F5
2∗�i��� (23.8)

where the positive constant � is specified by the side condition

L0 =
1
2
T�F�� that is��= T�F�

2T�F 5
2∗�

� (23.9)
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By definition

Li+1 = T�F�i+1��−� ·T�F 5
2∗�i+1��=

= T�F�i��+T�F�i�� xi+1�−T�F�i�� yi+1�−T�F�i�� xi+1� yi+1�

−�
(
T�F5

2∗�i��+T�F 5
2∗�i�� xi+1�−T�F5

2∗�i�� yi+1�−T�F5
2∗�i�� xi+1� yi+1�

)

= Li+Li�xi+1�−Li�yi+1�−T�F�i�� xi+1� yi+1�+� ·T�F 5
2∗�i�� xi+1� yi+1��

(23.10)

where
Li�z�= T�F�i�� z�−� ·T�F 5

2∗�i�� z�

for any z ∈ V \ �X�i�∪Y�i���

A natural choice for xi+1 is to maximize the Potential Li+1. The best choice for
xi+1 is that unoccupied z ∈ V \ �X�i�∪Y�i�� for which Li�z� attains its maximum.
Then clearly Li�xi+1�≥ Li�yi+1�, so by (23.10)

Li+1 ≥ Li−T�F�i�� xi+1� yi+1��

By using the key inequality (23.7) we have

Li+1 ≥ Li−
(
6q8+3q2

(
T�F5

2∗�i��
)1/5)

� (23.11)

or equivalently

T�F�i+1��−� ·T�F5
2∗�i+1��= Li+1 ≥ Li−

(
6q8+3q2

(
T�F5

2∗�i��
)1/5)

� (23.11′)

that we will call the Critical Inequality.
Before applying the Critical Inequality, we need an upper bound for T�F 5

2∗�; this
is estimated it in a trivial way

T�F5
2∗�≤ �N 2�2 · �N 2�5 ·2−5�q2−q� = N 14 ·2−5q2+5q� (23.12)

We also need a lower bound for T�F�; the picture below

N × N board

N
4(q − 1)

N
4

N
4



334 Self-improving potentials

explains the easy lower bound

�F � ≥
(
N

4

)2

·
(
1

2

(
N/4
q−1

)2
)2

= N 6

214�q−1�4
�

which implies

T�F�≥ N 6

214�q−1�4
2−q2 � (23.13)

2. Conclusion of the proof. We distinguish two cases: either there is or there is
not an index i such that

T�F 5
2∗�i�� > N 5�5 ·T�F5

2∗�� (23.14)

Case 1: There is no index i such that (23.14) holds.
Then we finish the proof exactly like in Theorem 1.2. Indeed, by (23.9), the Critical
Inequality (23.11), and (23.14)

Lend = LN 2/2 ≥ L0−
N2
2 −1∑
i=0

(
6q8+3q2

(
T�F5

2∗�i��
)1/5)

≥ L0−
N 2

2
·
(
6q8+3q2 ·N 1�1 · (T�F 5

2∗�i��
)1/5)

= 1
2
T�F�− N 2

2
·
(
6q8+3q2 ·N 1�1 · (T�F 5

2∗�
)1/5)

� (23.15)

By (23.12), (23.13), and (23.15)

Lend ≥
1

2
· N 6

214�q−1�4
2−q2 − N 2

2
·
(
6q8+3q2 ·N 1�1 ·N 14/5 ·2−q2+q

)
� (23.16)

By choosing q = �2+o�1��
√
log2N we have 2q

2 = N 4+o�1�, so by (23.16)

Lend ≥ N 6

215�q−1�4
2−q2 −3N 2q8−N 1�9+o�1�� (23.17)

The right-hand side of (23.17) is strictly positive if q = �2√log2N − o�1�� (with
an appropriate o�1�) and N is large enough.

If Lend > 0, then T�F�end��≥ Lend > 0 implies the existence of a “survivor” (i.e.
Breaker-free) A0 ∈ F at the end of the play. This A0 ∈ F is completely occupied
by Maker, proving the Weak Win.

Case 2: There is an index i such that (23.14) holds.
We will prove that Case 2 is impossible! Indeed, let i= j1 denote the first index such
that (23.14) holds. Then we can save the argument of (23.15)–(23.17) in Case 1,
and obtain the inequality Lj1

> 0 if q = �2√log2N − o�1�� (with an appropriate
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o�1�) and N is large enough. By definition (see (23.8))

Lj1
= T�F�j1��−� ·T�F 5

2∗�j1�� > 0�

implying

T�F�j1�� > � ·T�F5
2∗�j1�� > � ·N 5�5 ·T�F5

2∗�

= T�F�

2T�F5
2∗�

·N 5�5 ·T�F5
2∗�=

1

2
N 5�5 ·T�F�� (23.18)

By (23.13) and (23.18)

T�F�j1�� > N 5�5 · N 6

215�q−1�4
2−q2 = N 7�5−o�1�� (23.19)

which is clearly false! Indeed, a corner point and its two neighbors uniquely
determine a q×q parallelogram lattice, implying the trivial upper bound

T�F�j1��≤ �F�j1�� ≤ �F � ≤ �N 2�2 = N 6�

which contradicts (23.19). This contradiction proves that Case 2 is impossible. This
completes the proof of the following lower bound on the Achievement Number
(“Weak Win” part).

Theorem 23.1 We have

A�N ×N� parallelogram lattice�≥
⌊
2
√
log2N −o�1�

⌋

with an appropriate o(1) tending to zero as N →
. �

Notice that the proof technique works if �2− 4
p
�p+ 2 > 6 holds, i.e. if p > 4,

explaining the (at first sight) accidental choice p= 5 in (23.4).

3. Another illustration. The argument applies, with minor modifications, for all
lattices in Section 8 (see Theorem 8.2). Just one more example will be discussed,
the aligned rectangle lattice, and the rest left to the reader.
An obvious novelty is that in the aligned rectangle lattice the horizontal and

vertical directions play a special role, which leads to some natural changes in the
argument.

Assume we are in the middle of an Aligned Rectangle Lattice Game on an
N ×N board, Maker owns the points X�i� = 	x1� � � � � xi
 and Breaker owns the
points Y�i�= 	y1� � � � � yi
. The main question is how to choose Maker’s next move
xi+1. Again we have the equality

T�F�i+1��= T�F�i��+T�F�i�� xi+1�−T�F�i�� yi+1�−T�F�i�� xi+1� yi+1��

and again the plan is to involve a key inequality, which estimates the “one-sided
discrepancy” T�F�i�� xi+1� yi+1� from above.
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Case a: the xi+1yi+1-line is neither horizontal, nor vertical.
Then trivially

T�F�i�� xi+1� yi+1�≤ �	A ∈ F � 	xi+1� yi+1
⊂ A
� ≤
(
q2

2

)
≤ q4

2
� (23.20)

Case b: the xi+1yi+1-line is (say) horizontal (the vertical case goes similarly).
Select an arbitrary A1 ∈ F with 	xi+1� yi+1
⊂ A1 and A1∩Y�i�= ∅ (which means
a “survivor” q×q aligned rectangle lattice in the N ×N board such that the lattice
contains the given point pair 	xi+1� yi+1
; such an A1 ∈F has a non-zero contribution
in the sum T�F�i�� xi+1� yi+1�). Again there are ≤ q8/6 winning sets A2 ∈ F which
contain the pair 	xi+1� yi+1
 such that the intersection A1∩A2 is not contained by
the xi+1yi+1-line.
For k= 0�1�2� � � � write

F�xi+1� yi+1� k�= 	A ∈ F � 	xi+1� yi+1
⊂ A�A∩Y�i�= ∅� �A∩X�i�� = k


and �F�xi+1� yi+1� k�� =Mk. Clearly

T�F�i�� xi+1� yi+1�=
q2∑
k=0

T�F�xi+1� yi+1� k�� (23.21)

and

T�F�xi+1� yi+1� k��=Mk ·2k−q2 � (23.22)

The first change is that we need 6-tuples (instead of 5-tuples): assume thatMk ≥ 4q8;
then there are at least

Mk · �Mk−q8/6� · �Mk−2q8/6� · · · �Mk−5q8/6�

6! ≥ M6
k

46
(23.23)

6-tuples

	A1� � � � �A6
 ∈
(F�xi+1� yi+1� k�

6

)

such that, deleting the points of the xi+1yi+1-line, the remaining parts of the 6 sets
A1� � � � �A6 become disjoint. This motivates the following auxiliary “big hypergraph”
(we apply it with p = 6); notice the change that here “line” means horizontal or
vertical only: given an finite hypergraph H on N ×N , for arbitrary integer p ≥ 2
write

Hp
2∗∗ =

{ p⋃
i=1

Ai � 	A1� � � � �Ap
 ∈
(H
p

)
�

p⋂
i=1

Ai is a collinear set of cardinality≥ 2�

where the supporting line is either horizontal or vertical

and the truncated sets Aj \ �
p⋂

i=1

Ai− line�� j = 1� � � � � p are disjoint
}
� (23.24)
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where “
⋂p

i=1Ai − line” means the uniquely determined horizontal or vertical line
containing the �≥ 2�-element collinear set

⋂p
i=1Ai.

Trivially ∣∣∣∣∣
(

p⋃
i=1

Ai

)
u�o�p�

∣∣∣∣∣≤
p∑
i=1

��Ai�u�o�p��

where “u.o.p.” stands for unoccupied part. By using this trivial inequality and
(23.23)–(23.24), we have

T�F6
2∗∗�i��≥

M6
k

46
·26�k−q2� if Mk ≥ 4q8� (23.25)

(23.25) implies

4
(
T�F6

2∗∗�i��
)1/6+4q8 ·2k−q2 ≥Mk ·2k−q2� (23.26)

so by (23.21)–(23.22) and (23.26) we obtain the new:

Key inequality

8q8+4q2
(
T�F6

2∗�i��
)1/6 ≥ q2∑

k=0

Mk ·2k−q2 = T�F�i�� xi+1� yi+1�� (23.27)

In view of (23.20), inequality (23.27) holds in both cases (a) and (b).
After this preparation we are ready to define our Potential Function

Li = T�F�i��−� ·T�F6
2∗∗�i��� (23.28)

where the positive constant � is specified by the side condition

L0 =
1

2
T�F�� i�e� �= T�F�

2T�F6
2∗∗�

� (23.29)

Let
Li�z�= T�F�i�� z�−� ·T�F 6

2∗∗�i�� z�

for any z ∈ V \ �X�i�∪ Y�i��� The best choice for xi+1 is that unoccupied z ∈
V \ �X�i�∪Y�i�� for which Li�z� attains its maximum; then we get

Li+1 ≥ Li−T�F�i�� xi+1� yi+1�� (23.30)

By using the key inequality (23.27) in (23.30), we obtain

Li+1 ≥ Li−
(
8q8+4q2

(
T�F6

2∗∗�i��
)1/6)

� (23.31)

or equivalently

T�F�i+1��−� ·T�F 6
2∗∗�i+1��= Li+1 ≥ Li−

(
8q8+4q2

(
T�F6

2∗∗�i��
)1/6)

�

(23.31′)
that we call the (new) Critical Inequality.
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Before applying the Critical Inequality, we need an upper bound for T�F6
2∗∗�;

this is estimated it in a most trivial way

T�F6
2∗∗�≤ �N 2� ·N ·N 6 ·2−6�q2−q� = N 9 ·2−6q2+6q� (23.32)

We also need a lower bound for T�F�; clearly

T�F�≈ N 4

4�q−1�2
2−q2 � (23.33)

Conclusion. We distinguish two cases: either there is or there is not an index i such
that

T�F6
2∗∗�i�� > N 2�5 ·T�F6

2∗∗�� (23.34)

Case 1: There is no index i such that (23.34) holds.
Then we have the following analogue of (23.16)

Lend ≥
1

2
· N 4

4�q−1�2
2−q2 − N 2

2
·
(
8q8+4q2 ·N 5/12 ·N 9/6 ·2−q2+q

)
� (23.35)

By choosing q = �1+o�1��
√
2 log2N , we have 2q

2 = N 2+o�1�, so by (23.35)

Lend ≥
N 4

8�q−1�2
2−q2 −4N 2q8−N 23/12+o�1�� (23.36)

The right-hand side of (23.36) is strictly positive if q = �√2 log2N −o�1�� (with
an appropriate o(1)) and N is large enough.

If Lend > 0, then T�F�end��≥ Lend > 0 implies Maker’s Weak Win.

Case 2: There is an index i such that (23.34) holds.
Again we will prove that Case 2 is impossible! Indeed, let i = j1 denote the first
index such that (23.14) holds. Then we can save the argument of Case 1 and obtain
the inequality Lj1

> 0 if q = �√2 log2N −o�1�� (with an appropriate o�1�) and N

is large enough. By definition

Lj1
= T�F�j1��−� ·T�F 6

2∗∗�j1�� > 0�

implying

T�F�j1�� >� ·T�F6
2∗∗�j1�� > � ·N 2�5 ·T�F6

2∗∗�

= T�F�

2T�F 6
2∗∗�

·N 2�5 ·T�F 6
2∗∗�=

1

2
N 2�5 ·T�F�� (23.37)

By (23.33) and (23.37)

T�F�j1�� > N 2�5 · N 4

8�q−1�2
2−q2 = N 4�5−o�1�� (23.38)

which is clearly false! Indeed, a corner point and its two non-collinear neighbors
uniquely determine a q× q aligned rectangular lattice, implying the trivial upper
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bound
T�F�j1��≤ �F�j1�� ≤ �F � ≤ �N 2� ·N ·N = N 4�

which contradicts (23.38). This contradiction proves that Case 2 is impossible. This
completes the proof of the following lower bound on the Achievement Number
(“Weak Win” part).

Theorem 23.2 We have

A�N ×N� aligned rectangular lattice�≥
⌊√

2 log2N −o�1�
⌋
�

with an appropriate o(1) tending to zero as N →
. �

Again the reader is wondering “Why did we pick p= 6 in (23.24)?” The reader is
challenged to explain why the (at first sight) accidental choice p = 6 is the right
choice.
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The proof technique of the last section does not apply for the Clique Game. Indeed,
3 non-collinear points nearly determine a q×q parallelogram lattice, but 3 edges
determine at most 6 vertices, and the remaining �q−6� vertices of a clique Kq (i.e.
the overwhelming majority!) remain completely “free.”
A straightforward application of Section 23 doesn’t work, but we can develop

the proof technique one step further. This is exactly what we are going to do here.

1. Big auxiliary hypergraphs. The basic idea of Section 23 was to work with a
Potential Function

Li = T�F�i��−� ·T�Fp
2∗�i��

with p= 5 for the parallelogramm lattice, and

Li = T�F�i��−� ·T�Fp
2∗∗�i��

with p = 6 for the aligned rectangle lattice, involving big “auxiliary” hypergraphs
Hp

2∗ (see (23.4)) and Hp
2∗∗ (see (23.24)). These auxiliary hypergraphs are defined for

the N ×N board only: the definitions included geometric concepts like “collinear,”
“horizontal,” “vertical”; these concepts do not generalize for arbitrary hypergraphs.
What we use in this section is a simpler concept: a straightforward generalization
of the “second moment” hypergraph H2

1 (see Sections 21–22) to a “higher moment”
hypergraph Hp

2 (to be defined below). Note in advance that, for an optimal result in
the Clique Game, parameter p has to tend to infinity! (In Section 23 it was enough
to work with finite constants like p= 5 and p= 6.)
In general, for an arbitrary finite board (not just N × N ), for an arbitrary

finite hypergraph H, and for arbitrary integers p ≥ 2 and m ≥ 1 define the “big”
hypergraph Hp

m as follows

Hp
m =

{
p⋃
i=1

Ai � 	A1� � � � �Ap
 ∈
(H
p

)
�

∣∣∣∣∣
p⋂

i=1

Ai

∣∣∣∣∣≥m

}
�

340
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In other words, Hp
m is the family of all union sets

⋃p
i=1Ai, where 	A1� � � � �Ap
 runs

over all unordered p-tuples of distinct elements of H having at least m points in
common. Note that even if H is an ordinary hypergraph, i.e. a set has multiplicity
0 or 1 only, Hp

m can become a multi-hypergraph (i.e. a set may have arbitrary
multiplicity, not just 0 and 1). More precisely, if 	A1� � � � �Ap
 is an unordered
p-tuple of distinct elements of H and 	A′

1� � � � �A
′
p
 is another unordered p-tuple of

distinct elements of H, �⋂p
i=1Ai� ≥ m, �⋂p

j=1A
′
j� ≥ m, and

⋃p
i=1Ai =

⋃p
j=1A

′
j , i.e.⋃p

i=1Ai and
⋃p

j=1A
′
j are equal as sets, then they still represent distinct hyperedges

of hypergraph Hp
m.

As usual, for an arbitrary hypergraph �V�H� (where V is the union set), write

T�H�= ∑
A∈H

2−�A��

and for any m-element subset of points 	x1� � � � � xm
⊆ V (m≥ 1), write

T�H� x1� � � � � xm�=
∑

A∈H� 	x1�����xm
⊆A

2−�A��

Of course, if a set has multiplicity (say) M� then it shows up M times in every
summation.

We shall employ the following generalization of the Variance Lemma (see Sec-
tion 22). We shall apply Theorem 24.1 below in the special cases of m = 1 and
m= 2 only, but we formulate it for arbitrary m anyway.

Theorem 24.1 (“Generalized Variance Lemma”) For arbitrary integers p≥ 2 and
m≥ 1, and for arbitrary points x1� � � � � xm of the board

T�H� x1� � � � � xm� < p

((
T�Hp

m�
)1/p+1

)
�

Proof. Let � � V → 	red�blue
 be a Random 2-Coloring of the board V . Let
=��� denote the number of red hyperedges A ∈H with 	x1� � � � � xm
⊆A. The
expected value of  is equal to E��= T�H� x1� � � � � xm�.
On the other hand, the expected number of (monochromatic) red unordered

p-tuples 	A1�A2� � � � �Ap
 such that Ai� i = 1�2� � � � � p are distinct elements of H
and

⋂p
i=1Ai ⊇ 	x1� � � � � xm
, is equal to

E
((



p

))
=

∗∑
	A1�����Ap


2−�∪p
i=1Ai��

where ∗ indicates that Ai ∈ H� i = 1� � � � � p are distinct elements and
⋂p

i=1Ai ⊇
	x1� � � � � xm
. It follows that

T�Hp
m�≥ E

((


p

))
�
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We distinguish 2 cases.

Case 1: p= 2 and m= 1, i.e. the Variance Lemma in Section 22.
Note that g�x�= (

x

2

)
is a convex function for every x. By using the general inequality

E
(
g��

)
≥ g

(
E��

)

which holds for any convex g�x�, we conclude

T�H2
1�≥

(
T�H� x�

2

)
�

and Case 1 (i.e. the Variance Lemma) easily follows:

Case 2: The general case.
The general case is technically a little bit more complicated because for p ≥ 3 the
function g�x� = (

x

p

) = x�x− 1� · · · �x− p+ 1�/p! is not convex for every x. But
luckily g�x� is convex if x > p− 1, which implies the following inequality for
conditional expectations

E
[(



p

)
�≥ p

]
≥
(
E ��≥ p�

p

)
�

Since (
x

p

)
≥
(
x

p

)p

if x ≥ p� we obtain

p

(
E
[(



p

)
�≥ p

])1/p

≥ E ��≥ p� �

By definition

T�Hp
m�≥ E

((


p

))
= E

[(


p

)
�≥ p

]
Pr	≥ p
+E

[(


p

)
�< p

]
Pr	 < p


= E
[(



p

)
�≥ p

]
Pr	≥ p
�

since random variable  has integer values ≥ 0 and
(


p

)= 0 if < p� Therefore

p
(
T�Hp

m�
)1/p(

Pr	≥ p

)− 1

p ≥ E ��≥ p� �

Summarizing, we have

T�H� x1� � � � � xm�= E��= E ��≥ p�Pr	≥ p
+E ��< p�Pr	 < p


≤ p
(
T�Hp

m�
)1/p(

Pr	≥ p

)1− 1

p +p ·Pr	 < p
 < p
(
T�Hp

m�
)1/p+p�

completing the proof of Theorem 24.1. �
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2. Advanced Weak Win Criterion. The main objective of this section is to prove:

Theorem 24.2 [“Advanced Weak Win Criterion”] If there exists a positive integer
p ≥ 2 such that

T�F�

�V � > p+4p
(
T�Fp

2 �
)1/p

�

then the first player has an explicit Weak Win strategy in the positional game on
hypergraph �V�F�.

Remarks

(a) Note that under the same condition Chooser (i.e. “builder”) has an explicit
winning strategy in the Chooser–Picker Game on hypergraph �V�F�.

(b) Observe that Theorem 24.2 means a Double Requirement that (1) T�F�/�V � is
“large”; and (2)

(
T�Fp

2 �
)1/p

/T�F� is “small” (in fact, less than 1/�V �, where
�V � is the duration of the play).

(c) If F is n-uniform, then T�F�/�V � equals AverDeg�F� ·2−n/n.
(d) If F is Almost Disjoint, then Fp

2 is empty. In this special case Theorem 24.2 is
essentially equivalent to the old Linear Weak Win Criterion Theorem 1.2.

In both Weak Win Criterions – Theorems 1.2 and 24.2 – the Average Degree
is the key parameter; on the other hand, in the “Neighborhood Conjecture” about
Strong Draw (see Open Problem 9.1) the Maximum Degree is the key parameter.
If the hypergraph is degree-regular, then the Maximum Degree equals the Average
Degree. This is the reason why for degree-regular hypergraphs, like the clique-
hypergraph and the lattice-hypergraphs (the latter are nearly degree-regular), we
can prove exact results.

Unfortunately, the nd-hypergraph (“multidimensional nd Tic-Tac-Toe”) is very
far from being degree-regular.

3. Technique of self-improving potentials. An alternative (very instructive!) name
for this proof technique is “sliding potentials,” see Figure on p. 346.

Proof of Theorem 24.2. Assume we are at a stage of the play where Maker, as
the first player, already occupied x1� x2� � � � � xi, and Breaker, the second player,
occupied y1� y2� � � � � yi. The question is how to choose Maker’s next point xi+1.

Let Xi = 	x1� x2� � � � � xi
 and Yi = 	y1� y2� � � � � yi
. Let F�i� be a truncated sub-
family of F , namely the family of the unoccupied parts of the “survivors”

F�i�= 	A\Xi � A ∈ F� A∩Yi = ∅
�
F�i� is a multi-hypergraph: if A and A′ are distinct elements of F and A \Xi =
A′ \Xi, then A \Xi and A′ \Xi are considered different elements of F�i�. Note
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that the empty set can be an element of F�i�: it simply means that Maker already
occupied a winning set, and wins the play in the ith round or before.
We call T�F�i�� the Winning Chance Function; note that the Chance Function

can be much larger than 1 (it is not a probability!), but it is always non-negative. If
Maker can guarantee that the Chance Function remains non-zero during the whole
play, i.e. T�F�i�� > 0 for all i, then Maker obviously wins. Let xi+1 and yi+1 denote
the �i+1�st moves of the two players; it is easy to describe their effect

T�F�i+1��= T�F�i��+T�F�i�� xi+1�−T�F�i�� yi+1�−T�F�i�� xi+1� yi+1��

(24.1)

Indeed, xi+1 doubles the value of each B ∈ F�i� with xi+1 ∈ B; on the other hand,
yi+1 “kills” all B ∈F�i� with yi+1 ∈ B. Of course, we have to make a correction due
to those B ∈ F�i� that contain both xi+1 and yi+1: these B ∈ F�i� were “doubled”
first and “killed” second, so we have to subtract their values one more time.
Following Section 23, the new idea is to maximize the Chance Function T�F�i��,

and, at the same time, minimize the “one-sided discrepancy” T�F�i�� xi+1� yi+1�. To
handle these two jobs at the same time we introduce a single Potential Function,
which is a linear combination of the Chance Function T�F�i�� (with positive weight
1) and an “auxiliary part” T�Fp

2 �i�� related to the “discrepancy” T�F�i�� xi+1� yi+1�

via Theorem 24.1 with negative weight. Naturally

Fp
2 �i�= 	A\Xi � A ∈ Fp

2 � A∩Yi = ∅
� (24.2)

Note that the relation �F�i��
p
2 ⊆ Fp

2 �i� is trivial; it will be used repeatedly in the
proof.
The Potential Function is defined as follows:

Li = T�F�i��−� ·T�Fp
2 �i��� (24.3)

where the positive constant � is specified by the side condition L0 = 1
2T�F�. In

other words

1
2
T�F�= � ·T�Fp

2 �� (24.4)

Note that the Potential Function Li is less than the Chance Function T�F�i��.
If the Chance Function is 0, then every winning set is blocked by Breaker, and
Breaker wins. If the Chance Function is positive, then Maker hasn’t lost yet (he
still has a “chance” to win). Therefore, if the Potential Function is positive, then
Maker still has a“chance” to win; if the Potential Function is negative, then we call
it “inconclusive.”
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By (24.2)–(24.3)

Li+1 = T�F�i+1��−� ·T�Fp
2 �i+1��

= T�F�i��+T�F�i�� xi+1�−T�F�i�� yi+1�−T�F�i�� xi+1� yi+1�

−�
(
T�Fp

2 �i��+T�Fp
2 �i�� xi+1�−T�Fp

2 �i�� yi+1�−T�Fp
2 �i�� xi+1� yi+1�

)

= Li+Li�xi+1�−Li�yi+1�−T�F�i�� xi+1� yi+1�+� ·T�Fp
2 �i�� xi+1� yi+1��

(24.5a)

where

Li�z�= T�F�i�� z�−� ·T�Fp
2 �i�� z� (24.5b)

for any z ∈ V \ �Xi∪Yi�.
A natural choice for xi+1 is to maximize the Potential Li+1. The best choice for

xi+1 is that unoccupied z ∈ V \ �Xi∪Yi� for which Li�z� attains its maximum. Then
clearly Li�xi+1�≥ Li�yi+1�, so by (24.5a)

Li+1 ≥ Li−T�F�i�� xi+1� yi+1��

Since �F�i��
p
2 ⊆Fp

2 �i�, by Theorem 24.1 we obtain the following critical inequality

Li+1 ≥ Li−p
(
T�Fp

2 �i��
)1/p−p�

The last step was a kind of “Chebyshev’s inequality”: we estimated the “one-

sided discrepancy” T�F�i�� xi+1� yi+1� with a “standard deviation”
(
T�Fp

2 �i��
)1/p

(“Theorem 24.1”).
In view of (24.3), we can rewrite the critical inequality as follows

T�F�i+1��−� ·T�Fp
2 �i+1��= Li+1 ≥ Li−p

(
T�Fp

2 �i��
)1/p−p� (24.6)

The reason why the proof (to be described below) works is that the “consecutive”
terms T�Fp

2 �i+ 1�� and T�Fp
2 �i�� show up in different powers at the two ends of

inequality (24.6).
We divide the whole course of the play into several phases. In each phase we use

a new Potential Function, which will lead to a surprising “self-improvement.” Right
before the old Potential Function turns into negative (“inconclusive”), we switch to
a new Potential Function which will be “large positive” again. At the end of each
phase we employ formula (24.6), and as a result we gain a multiplicative factor: a
“p-power.” In other words, the more phases we have, the better for Maker; this is
how we increase Maker’s “chances” to win.
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Chance function

j2 j3

Maker’s
chances
to win

j1

1st
Potential

2nd
Potential

3rd
Potential

4th
Potential

The picture above should help the reader to visualize the machinery of the proof.
The first phase of the play is 0≤ i < j1, i.e. the “time index” i runs in an interval

0 ≤ i < j1, where j1 is defined by

T�Fp
2 �i�� < 4pT�Fp

2 � for 0 ≤ i < j1 (24.7)

and

T�Fp
2 �j1��≥ 4pT�Fp

2 �� (24.8)

That is, inequality T�Fp
2 �i��≥ 4pT�Fp

2 � happens for first time at i= j1.
We claim that, for every i with 0 ≤ i < j1, Li+1 > 0. Indeed, by (24.4) and

(24.6)–(24.7)

Li+1 ≥ L0−
j1−1∑
�=0

p

((
T�Fp

2 ����
)1/p+1

)

≥ 1
2
T�F�− �V �

2
p

(
4
(
T�Fp

2 �
)1/p+1

)

= 1
2

(
T�F�−4p�V �

((
T�Fp

2 �
)1/p+ 1

4

))
> 0

by the hypothesis of Theorem 24.2.
In particular, we get the inequality Lj1

> 0. If the first phase is the whole play,
then we are clearly done. Indeed, Li > 0 implies T�F�i��≥ Li > 0, i.e. the Chance
Function is always positive, and Maker wins. The idea is to show that, if there is a
next phase, that just helps Maker, i.e. Maker has a better “chance” to win!
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By (24.8) there is a real number t1 ≥ 1 such that we have the equality

T�Fp
2 �j1��= �4t1�

pT�Fp
2 �� (24.9)

Since Lj1
= T�F�j1��−� ·T�Fp

2 �j1�� > 0, it follows by (24.4) and (24.9) that

T�F�j1�� > �T�Fp
2 �j1��= �4t1�

p�T�Fp
2 �=

4p

2
t
p
1T�F�� (24.10)

“Time index” j1 is the beginning of the second phase j1 ≤ i < j2, where the
“endpoint” j2 will be defined by (24.13)–(24.14) below. In the second phase j1 ≤
i < j2 we modify the Potential Function Li by halving the value of �: let

L
�2�
i = T�F�i��− �

2
T�Fp

2 �i��� (24.11)

Comparing (24.10) and (24.11), we see that in (24.11) we “lost” a factor of 2, but in
(24.10) we “gained” much more: we gained a factor of 4p/2, meaning that Maker’s
“chance” to win is definitely improved.
Since Lj1

> 0, we have

L
�2�
j1

= 1

2
T�F�j1��+

1

2
Lj1

>
1

2
T�F�j1��� (24.12)

The second phase of the play is the “time interval” j1 ≤ i < j2, where j2 is defined by

T�Fp
2 �i�� <

(
4p

2

)p

T�Fp
2 �j1�� for j1 ≤ i < j2 (24.13)

and

T�Fp
2 �j2��≥

(
4p

2

)p

T�Fp
2 �j1��� (24.14)

By (24.9) and (24.13), for every i with j1 ≤ i < j2(
T�Fp

2 �i��
)1/p

< 4
(
4p

2

)
t1

(
T�Fp

2 �
)1/p

� (24.15)

In the second phase we use the new Potential Function L
�2�
i , so the analogue of

(24.5a) goes like this

L
�2�
i+1 = L

�2�
i +L

�2�
i �xi+1�−L

�2�
i �yi+1�

−T�F�i�� xi+1� yi+1�+
�

2
T�Fp

2 �i�� xi+1� yi+1�� (24.5a′)

where

L
�2�
i �z�= T�F�i�� z�− �

2
T�Fp

2 �i�� z� (24.5b′)

for any z ∈ V \ �Xi∪Yi�.
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In the second phase Maker’s �i+1�st move xi+1 is that unoccupied z∈V \�Xi∪Yi�

for which L
�2�
i �z� attains its maximum. Then clearly L

�2�
i �xi+1� ≥ L

�2�
i �yi+1�, so by

(24.5a′)

L
�2�
i+1 ≥ L

�2�
i −T�F�i�� xi+1� yi+1��

By Theorem 24.1 we obtain the analogue of 24.6

L
�2�
i+1 ≥ L

�2�
i −p

(
T�Fp

2 �i��
)1/p−p� (24.6′)

We claim that for every i with j1 ≤ i < j2, L
�2�
i+1 > 0. Indeed, by (24.4), (24.6′),

(24.10), (24.12) and (24.15)

L
�2�
i+1 ≥ L

�2�
j1

−
j2−1∑
�=j1

p

((
T�Fp

2 ����
)1/p+1

)

≥ 1

2
T�F�j1��−

�V �
2

p

(
4
(
4p

2

)
t1

(
T�Fp

2 �
)1/p+1

)

≥ 4p−1t1

(
t
p−1
1 T�F�−4p�V �

((
T�Fp

2 �
)1/p+ 1

4
(
4p

2

)
t1

))

≥ 4p−1t1

(
T�F�−4p�V �

((
T�Fp

2 �
)1/p+ 1

4

))
> 0

by the hypothesis of Theorem 24.2. In particular, L�2�
j2

> 0. If the second phase is

the last one then we are done again. Indeed, L�2�
i > 0 implies T�F�i�� ≥ L

�2�
i > 0,

and Maker wins. We show that if there is a next phase, then again Maker’s chances
to win are improving.
By (24.14) there is a real number t2 ≥ 1 such that

T�Fp
2 �j2��=

(
4p

2
t2

)p

T�Fp
2 �j1��� (24.16)

Since L
�2�
j2

= T�F�j2��− �
2T�Fp

2 �j2�� > 0, it follows by (24.4), (24.9), and (24.16)
that

T�F�j2�� >
�

2
T�Fp

2 �j2��=
4p

2

(
4p

2

)p
2

�t1t2�
pT�F�� (24.17)

The general step of this “self-refining procedure” goes exactly the same way. Let

�0 = 4��1 =
4p

2
= �

p
0

2
��2 =

�
p
1

2
� � � � ��k+1 =

�
p
k

2
� � � � �

We have

�k = 22p
k−�pk−1�/�p−1� > 2p

k

� (24.18)
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i.e., �k, k = 1�2�3� � � � is a very rapidly increasing sequence. This is how rapidly
Maker’s chances are improving – see (24.20) below.

We are going to prove by induction on the “phase-index” k (k ≥ 1) that there
are positive integers jk (j0 = 0) and real numbers tk ≥ 1 such that for every i with
jk−1 ≤ i < jk (“kth phase”)

L
�k�
i+1 = T�F�i+1��− �

2k−1
T�Fp

2 �i+1�� > 0� (24.19)

and if the play is not over in the kth phase yet, then

T�F�jk�� > �1�2 · · ·�k�t1t2 · · · tk�pT�F�� (24.20)

and
T�Fp

2 �jk��=
(
�0�1 · · ·�k−1t1t2 · · · tk

)p
T�Fp

2 �� (24.21)

Statements (24.19)–(24.21) are true for k= 1 and 2. Assume that they hold for k,
and we prove them for k+1.
If the play is over in the kth phase, i.e. jk = �V �/2, then let jk+1 = jk and tk+1 = tk.

Otherwise “time index” jk is the beginning of the �k+ 1�th phase jk ≤ i < jk+1,
where the “endpoint” jk+1 will be defined by (24.24)–(24.25) below. In the �k+1�st
phase jk ≤ i < jk+1 we modify the kth potential function L

�k�
i by halving �

L
�k+1�
i = T�F�i��− �

2k
T�Fp

2 �i��� (24.22)

By induction L
�k�
jk

> 0, so

L
�k+1�
jk

= 1

2
T�F�jk��+

1

2
L
�k�
jk

>
1

2
T�F�jk��� (24.23)

The �k+ 1�st phase of the play is the “time interval” jk ≤ i < jk+1, where jk+1 is
defined by

T�Fp
2 �i�� < �

p
kT�Fp

2 �jk�� for jk ≤ i < jk+1 (24.24)

and
T�Fp

2 �jk+1��≥ �
p
kT�Fp

2 �jk��� (24.25)

If there is no jk+1 satisfying (24.25), then the play is over in the �k+ 1�st phase
and we write jk+1 = �V �/2. By (24.21) and (24.24), for every i with jk ≤ i < jk+1(

T�Fp
2 �i��

)1/p
< �0�1 · · ·�kt1t2 · · · tk

(
T�Fp

2 �
)1/p

� (24.26)

In the �k+1�st phase we use the new Potential Function L
�k+1�
i , so the analogue

of (24.5a) goes like this

L
�k+1�
i+1 = L

�k+1�
i +L

�k+1�
i �xi+1�−L

�k+1�
i �yi+1�

−T�F�i�� xi+1� yi+1�+
�

2k
T�Fp

2 �i�� xi+1� yi+1�� (24.5a′ ′)
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where

L
�k+1�
i �z�= T�F�i�� z�− �

2k
T�Fp

2 �i�� z� (24.5b′ ′)

for any z ∈ V \ �Xi∪Yi�.
In the �k+1�st phase, Maker’s �i+1�st move xi+1 is that unoccupied z∈ V \�Xi∪

Yi� for which L
�k+1�
i �z� attains its maximum. Then clearly L�k+1�

i �xi+1�≥L
�k+1�
i �yi+1�,

so by (24.5a′ ′)
L
�k+1�
i+1 ≥ L

�k+1�
i −T�F�i�� xi+1� yi+1��

By Theorem 24.1 we obtain the analogue of (24.6)

L
�k+1�
i+1 ≥ L

�k+1�
i −p

(
T�Fp

2 �i��
)1/p−p� (24.6′ ′)

We claim that, for every i with jk ≤ i < jk+1� L
�k+1�
i+1 > 0� Indeed, by (24.4),

(24.6′ ′), (24.20), (24.23), and (24.26)

L
�k+1�
i+1 ≥ L

�k+1�
jk

−
jk+1−1∑
�=jk

p

((
T�Fp

2 ����
)1/p+1

)

≥ 1

2
T�F�jk��− �V �

2
p

(
�0�1 · · ·�kt1t2 · · · tk

(
T�Fp

2 �
)1/p+1

)

≥ 1
2
�1 · · ·�kt1t2 · · · tk

(
�t1 · · · tk�p−1T�F�−4p�V �

((
T�Fp

2 �
)1/p+ 1

4

))

≥ 1
2
�1 · · ·�kt1t2 · · · tk

(
T�F�−4p�V �

((
T�Fp

2 �
)1/p+ 1

4

))
> 0

by the hypothesis of Theorem 24.2. This proves (24.19) for k+1. In particular, we
have L

�k+1�
jk+1

> 0�
Now assume that the play is not over in the �k+1�st phase yet, i.e. jk+1 < �V �/2�

By (24.25) there is a real number tk+1 ≥ 1 such that

T�Fp
2 �jk+1��= ��ktk+1�

p T�Fp
2 �jk��� (24.27)

Combining (24.21) and (24.27), we obtain (24.21) for k+1�
Since L

�k+1�
jk+1

> 0� it follows by (24.4), and by (24.21) for k+1� that

T�F�jk+1�� >
�

2k
T�Fp

2 �jk+1��

= 2−k−1
(
�0�1 · · ·�kt1t2 · · · tk+1

)p
T�F�

= �1�2 · · ·�k+1

(
t1t2 · · · tk+1

)p
T�F��

since �i+1 = �
p
i

2 � This proves (24.20) for k+1� and the induction step is complete.
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In view of (24.19), T�F�i�� > 0 during the whole course of the play, and Maker
wins. This completes the proof of Theorem 24.2. �

The proof of the Chooser–Picker version of Theorem 24.2 is exactly the same except
one natural change: instead of choosing a point of maximum value (as Maker does),
Chooser chooses the one from the two points offered to him (by Picker) that has
the larger value.



25
Exact solution of the Clique Game (I)

We recall that A�KN� clique� denotes the largest value of q = q�N� such that
Maker has a winning strategy in the �KN �Kq� Clique Game (“Weak Win”). The
Erdős–Selfridge Strong Draw Criterion gives that if(

N

q

)
2−�

q
2� <

1
2
� (25.1)

then Breaker can force a Strong Draw in the �KN �Kq� Clique Game. By Stirling’s
formula this means N< e−1q2�q−1�/2. Let q0 be the smallest integer q for which this
inequality holds; q0 is the upper integral part

q0 = �2 log2N −2 log2 log2N +2 log2 e−1+o�1��� (25.2)

and so the Clique Achievement Number has the upper bound

A�KN� clique�≤ q0−1= �2 log2N −2 log2 log2N +2 log2 e−1+o�1��� (25.3)

Upper bound (25.3) is a good starting point: it is not optimal, but it is very close to
that. Next comes:

1. The lower bound. It is a direct application of Theorem 24.2. Unfortunately, the
calculations are rather tiresome. Let �N� = 	1�2� � � � �N
 be the vertex-set of KN �

Define the hypergraph

F =
{
KS � S ⊂ �N�� �S� = q

}
�

where KS denotes the complete graph on vertex-set S. We have to check that

T�F� > 4p
(
N

2

)((
T�Fp

2 �
)1/p+ 1

4

)

holds for some integer p ≥ 2� For simplicity consider the first “useful choice” of
parameter p: let p= 4 (later it will be explained why p≤ 3 doesn’t give anything).

352
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We clearly have

T�F�=
(
N

q

)
2−�

q
2��

Technically it is much more complicated to find a similar exact formula for T�F4
2 ��

but luckily we don’t need that: we are perfectly satisfied with a “reasonably good”
upper bound. By definition

F4
2 =

{
4⋃

i=1

KSi
� 	KS1

� � � � �KS4

 ∈

(F
4

)
�

∣∣∣∣∣
4⋂

i=1

KSi

∣∣∣∣∣≥ 2

}
�

What it means is that F 4
2 is the family of all clique-unions

⋃4
i=1KSi

, where
	S1� � � � � S4
 runs over the unordered 4-tuples of distinct q-element subsets of �N�
for which

∣∣⋂4
i=1KSi

∣∣≥ 2� Two edges of a graph are either vertex-disjoint or have a
common vertex, i.e. two edges span either 4 or 3 vertices. It is easy to guess that
the main contribution of T�F 4

2 � comes from the two extreme cases: (1) from the
“3-core sunflowers,” which represent the most sparse case, and (2) from the most
crowded case.

sparse

S1
S2

S3
S4

q − 3

q − 3
q − 3

q − 3

crowded

q + 1

missing
from S1

missing
from S2

missing
from S3

missing
from S4

(1) The “3-core sunflowers” are those elements
⋃4

i=1KSi
of family F 4

2 for which⋂4
i=1 Si is a 3-element set and the sets S� \

(⋂4
i=1 Si

)
, � = 1� � � � �4 are pairwise

disjoint.
The corresponding contribution in T�F 4

2 � is that we call the first main term; it is
precisely

f�N�q�= 1

4!
(
N

3

)(
N −3
q−3

)(
N −q

q−3

)(
N −2q+3

q−3

)(
N −3q+6

q−3

)
2−4�q2�+9�

It is easily seen

f�N�q�≈ 29

4!3!
q12

N 9

((
N

q

)
2−�

q
2�
)4

= 29

4!3!
q12

N 9
�T�F��4 � (25.4)

so

�f�N�q��1/4 < T�F�N−9/4+o�1��

The critical fact is that 9/4> 2: this is why we need p ≥ 4 (see later).
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(2) The most crowded elements of F 4
2 are those elements

⋃4
i=1KSi

for which
⋃4

i=1 Si

is a �q+1�-element set. The corresponding contribution in T�F4
2 � is what we call

the second main term; it is precisely

h�N�q�=
(

N

q+1

)(
q+1
4

)
2−�

q
2�−q�

It is easily seen

h�N�q�≈ q3

4! T�F�
N

2q
= T�F�

N 1+o�1�

if q = �2+o�1�� log2N . Clearly

T�F 4
2 �≥ f�N�q�+h�N�q��

and assume that
T�F4

2 �≈ f�N�q�+h�N�q�� (25.5)

Then (
T�F4

2 �
)1/4 ≤ (

f�N�q�
)1/4+ (

h�N�q�
)1/4

≤ T�F�N−9/4+o�1�+ (
T�F�N−1+o�1�

)1/4
� (25.6)

To apply Theorem 24.2 with p= 4 we have to check

T�F� > 16
(
N

2

)((
T�F 4

2 �
)1/4+ 1

4

)
� (25.7)

Inequality (25.7) follows from

T�F� > O
(
N 2q3N−9/4T�F�

)+O
(
N 2N− 1

4+��T�F��1/4
)+2N 2 =

= O
(
N−1/4+o�1�T�F�

)+O
(
N 7/4+o�1��T�F��1/4

)+2N 2� (25.8)

(see (25.6)) where N ≥ e−1q2�q−1�/2 and q = �2+o�1�� log2N .
The first part

T�F� > O
(
N−1/4+o�1�T�F�

)
of (25.8) is trivial. The second part of (25.8)

T�F� > O
(
N 7/4+o�1��T�F��1/4

)
holds if T�F� > N 7/3+o�1�, which, of course, implies the entire (25.8). The condition

T�F�=
(
N

q

)
2−�

q
2� > N 7/3+o�1�

is equivalent to (Stirling’s formula)

q ≤ 2 log2N −2 log2 log2N +2 log2 e−
10
3

+o�1�� (25.9)
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If q is the lower integral part of the right-hand side of (25.9), then (25.7) holds, and
Theorem 24.2 yields a Maker’s win (“Weak Win”) in the Clique Game �KN �Kq�.
Looking back to the calculations of the proof, now we see why it works: two edges
determine at least 3 vertices, and N 3 is much larger than

(
N

2

)
, the duration of a play.

Of course, we are not done yet: we have to justify the vague assumption (25.5).
Also we hope that working with Fp

2 , where p → 
, instead of F 4
2 , will lead to

an improvement; note that the “3-core sunflowers” (the most sparse case) have the
following contribution in Fp

2

fp�N�q�=
1
p!
(
N

3

)(
N −3
q−3

)(
N −q

q−3

)
· · ·

(
N − �p−1�q+3�p−2�

q−3

)
2−p�q2�+3�p−1��

and

hp�N�q�=
(

N

q+1

)(
q+1
p

)
2−�

q
2�−q

represents the most crowded case (we assume p≤ q−2). The analogue of (25.5) is

T�Fp
2 �≈ fp�N�q�+hp�N�q�� (25.10)

Under what condition can we prove (25.10)? To answer this question we divide Fp
2

into 3 parts

Fp
2 = G1∪G2∪G3�

where (parameter A= A�q� below will be specified later):

(1) G1 is the family of those
⋃p

i=1KSi
∈Fp

2 for which there is a pair i1� i2 of indices
with 1≤ i1 < i2 ≤ p such that A < �Si1 ∩Si2 �< q−A (“irrelevant case”);

(2) G2 is the family of those
⋃p

i=1KSi
∈ Fp

2 for which �Si∩Sj� ≤ A for all 1 ≤ i <

j ≤ p (“sparse case,” the main contribution is expected to be fp�N�q�); and,
finally,

(3) G3 is the family of those
⋃p

i=1KSi
∈ Fp

2 for which �Si ∩ Sj� ≥ q−A for all
1≤ i < j≤A (“crowded case,” the main contribution is expected to be hp�N�q�).

To estimate T�G1� from above, let i1� i2� � � � � ip be a permutation of 1�2� � � � � p
such that �Si1 ∩Si2 � =m1 with A <m1 < q−A

∣∣∣∣∣�
2⋃

j=1

Sij �∩Si3

∣∣∣∣∣=m2� � � � �

∣∣∣∣∣�
p−1⋃
j=1

Sij �∩Sip

∣∣∣∣∣=mp−1�

and let G1�m1�m2� � � � �mp� denote the corresponding part of G1.
We have

G1 =
q−A⋃
m1=A

q⋃
m2=3

· · ·
q⋃

mp−1=3

G1�m1�m2� � � � �mp−1��
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so

T�G1�≤
q−A∑
m1=A

q∑
m2=3

· · ·
q∑

mp−1=3

T�G1�m1�m2� � � � �mp−1���

It is easy to see that

T�G1�m1�m2� � � � �mp−1��≤
(
N

3

)(
N −3
q−3

)(
q−3
m1−3

)(
N −q

q−m1

)(
2q−m1−3

m2−3

)

·
(
N −2q+m1

q−m2

)
· · ·

(
�p−1�q−m1−· · ·−mp−2−3

mp−1−3

)

·
(
N − �p−1�q+m1+· · ·+mp−2

q−mp−1

)
·2−p�q2�+�m1

2 �+�m2
2 �+···+�mp−1

2 ��

Comparing this upper bound of T�G1�m1�m2� � � � �mp−1�� to the main term fp�N�q�,
after some easy computations we have

T�G1�m1�m2� � � � �mp−1��

fp�N�q�
<

(
p!
(

q

m1−3

)(
q

N −q

)m1−3

2�
m1
2 �+3

)

·
p−1∏
j=2

((
jq

mj −3

)(
q

N − jq

)mj−3

2�
mj
2 �+3

)
�

Therefore
T�G1�

fp�N�q�
≤ p!S1S2 · · ·Sp−1�

where

S1 =
q−A∑
m=A

(
q

m−3

)(
q

N −q

)m−3

2�
m
2�+3

and

Sj =
q∑

m=3

(
jq

m−3

)(
q

N − jq

)m−3

2�
m
2�+3

with 2 ≤ j ≤ p−1. Let j ∈ 	2�3� � � � � p−1
; then by N ≥ e−1q2�q−1�/2 we have

Sj ≤ 2
(

jq

q−3

)(
q

N − jq

)q−3

2�
q
2�+3

(indeed, the sum behaves like a rapidly convergent geometric series, and it roughly
equals the last term), so

Sj ≤ 2
(

jq

q−3

)(
q

N − jq

)q−3

2�
q
2�+3

≤ 27
(
ejq22q/2+1

�q−3�N

)q−3

≤ 27
(
2
√
2e2j

)q−3 ≤ 25q+7jq�
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and so

S2S3 · · ·Sp−1 ≤
p−1∏
j=2

25q+7jq

≤ 27p+5pq�p!�q ≤ (
27/q32p

)pq
�

On the other hand

p!S1 ≤ 2p!
((

q

A−3

)(
q

N −q

)A−3

2�
A
2�+3+

(
q

q−A−3

)(
q

N −q

)q−A−3

2�
q−A
2 �+3

)

≤ p!2−qA/4�

It follows that T�G1�≤ fp�N�q� if

p! (27/q32p)pq ≤ 2qA/4�

which follows from
(
27/qp1/q32p

)p ≤ 2A/4� (25.11)

Next we estimate T�G2�; in this case
∣∣∣∣∣�

j⋃
i=1

Si�∩Sj+1

∣∣∣∣∣≤ jA�

for j = 1�2� � � � � p−1, so, exactly the same way as we estimated T�G1�� we obtain
(we separate the suspected main term fp�N�q� from the sum)

T�G2�−fp�N�q�

fp�N�q�
≤ p!

∗∏
1≤j≤p−1

(
jA∑

mj=3

(
jq

mj −3

)(
q

N − jq

)mj−3

2�
mj
2 �+3

)
�

where the asterisk ∗ indicates that in the expansion of the product at least one
mj ≥ 4 (due to the fact that fp�N�q� is separated from T�G2�). It follows that

T�G2�−fp�N�q�

fp�N�q�
≤ p!26p 1√

N
�

noting that in the argument above we used the inequality pA≤ q/4, i.e. A≤ q/4p.
Finally, consider T�G3�� If

⋃p
i=1KSi

∈ Fp
2 , then �Si ∩Sj� ≥ q−A for all 1 ≤ i <

j ≤ p. Write

�S1∩S2� =m1�

∣∣∣∣∣�
2⋃

i=1

Si�∩S3

∣∣∣∣∣=m2� · · · �
∣∣∣∣∣�

p−1⋃
i=1

Si�∩Sp

∣∣∣∣∣=mp−1�
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Clearly

q−A≤m1 ≤q−1� q−A≤mi ≤ q for i= 2� � � � � p−1� and

q+1≤
∣∣∣∣∣

p⋃
i=1

Si

∣∣∣∣∣≤ q+ �p−1�A�

Let G3�m1�m2� � � � �mp−1� denote the corresponding part of G3. Since mi is almost
equal to q, it is a good idea to introduce a new variable: let di = q−mi, 1≤ i≤ p−1.
Clearly, 1 ≤ d1 ≤ A and 0 ≤ di ≤ A for i = 2� � � � � p−1. If hp�N�q� is subtracted
from T�G3�, then d2+ � � �+dp−1 ≥ 1 (we already know d1 ≥ 1). We have

T�G3�−hp�N�q�≤
A∑

d1=1

A∑
d2=0

· · ·
∗∑

0≤mp−1≤A

T�G3�q−d1� q−d2� � � � � q−dp−1��

where the ∗ indicates the above-mentioned restriction d2+ � � �+dp−1 ≥ 1.
It is easy to see that

T�G3�q−d1� q−d2� � � � � q−dp−1�≤
(
N

3

)(
N −3
q−3

)(
q−3
d1

)(
N −q

d1

)(
q+d1−3
q−d2−3

)

·
(
N −q−d1

d2

)(
q+d1+d2−3
q−d3−3

)(
N −q−d1−d2

d3

)
· · ·

(
q+d1+· · ·+dp−2−3

q−dp−1−3

)

·
(
N −q−d1−· · ·−dp−2

dp−1

)
2−�

q
2�−d1�q−d1�−d2�q−d2�−···−dp−1�q−dp−1��

Since (
q+d1+· · ·+dk−1−3

q−dk−3

)
=
(
q+d1+· · ·+dk−1−3

d1+· · ·+dk

)
�

we obtain

T�G3�−hp�N�q�≤
A∑

d1=1

A∑
d2=0

· · ·
∗∑

0≤mp−1≤A

(
N

3

)(
N

q−3

)
2−�

q
2��

(
N

d1

)
qd12−d1�q−d1� ·

(
N

d2

)
qd1+d22−d1�q−d1� · · ·

(
N

dp−1

)
qd1+d2+···+dp−12−dp−1�q−dp−1� ≤ T�F�N−2+o�1�

(noting that ∗ indicates the above-mentioned restriction d2+ � � �+dp−1 ≥ 1).
Summarizing, we have just proved the following:

Key Technical Lemma. If p= 1
4

√
q

logq ≥ 4, then

T�Fp
2 �≤ 2fp�N�q�+2hp�N�q��
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Remark. The condition p = 1
4

√
q

logq ≥ 4 comes from (25.11). The Key Technical

Lemma is the precise form of the vague (25.10).
Repeating steps (25.7)–(25.9) we conclude: if q is the lower integral part of

2 log2N −2 log2 log2N +2 log2 e−3+o�1�� (25.12)

then Maker can force a Weak Win in the �KN �Kq� Clique Game. This proves the
Weak Win part of Theorem 6.4 (a).

We already have a remarkable result: the gap between the Strong Draw bound
(25.2)–(25.3) and the Weak Win bound (25.12) is an additive constant, namely 2,
which is independent of N . The last step is to eliminate constant 2; this will be
done in Section 38 (first we need to develop the technique of BigGame–SmallGame
Decomposition).

Note that the implicit error term “o�1�” in (25.12) is in fact less than the explicit
bound 10/�logN�1/6 if N ≥ 21000 – we challenge the reader to prove this technical
fact by inspecting the proofs here and in Section 38.

2. Game-theoretic law of large numbers – is it an accidental phenomenon? The

condition p = 1
4

√
q

logq ≥ 4 in the Key Technical Lemma holds for q/ logq ≥ 256,

i.e. when q is in the range q ≥ 2000. Since q ≈ 2log2N , Theorem 24.2 works and
gives a very good Weak Win result in the range N ≥ 21000. For small N s such as
in the range N ≤ 2100 the proof technique of Theorem 24.2 does not seem to work.
Then the only result we can use is Theorem 21.1, which leads to a large amount of
uncertainty.

For example, if N = 20, then the Erdős–Selfridge Theorem implies that
A�K20� clique� < 7, so A�K20� clique� = 4 or 5 or 6, and we do not know the
truth.

If N = 100, then the Erdős–Selfridge Theorem implies that A�K100� clique� < 10,
so A�K20� clique�= 5 or 6 or 7 or 8 or 9, and we do not know the truth.
If N = 2100, then Theorem 21.1 yields a Weak Win if q ≤ 98; on the other hand,

the Erdős–Selfridge Theorem (see (25.1)–(25.2)) implies that the �KN �K189� Clique
Game is a Strong Draw (this is the best that we know in this range). This means,
in the �KN �Kq� Clique Game with N = 2100 and q = 99�100� � � � �187�188 that
we don’t know whether the game is a Weak Win or a Strong Draw; i.e. with this
particular “mid-size” N there are 90 values of q for which we don’t know whether
Maker or Breaker can force a win.

In the range N ≥ 21000, Theorem 24.2 begins to work well: for a fixed N there
are at most 3 values of q = q�N� for which we don’t know the outcome of the
Clique Game (“Weak Win or Strong Draw”).

Finally, in the range N ≥ 21000000, we (typically) know the exact threshold
between Weak Win and Strong Draw, or – very rarely – there is (at most) one
value of q = q�N� which we don’t know. In other words, the larger the N , the
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smaller the uncertainty. This sounds like a “paradox,” since larger N means “larger
complexity.” We refer to this “paradox” as a “game-theoretic law of large numbers.”
Of course, there is no real paradox here; the “game-theoretic law of large num-

bers” is simply the shortcoming of this proof technique. This is why it is called an
“accidental phenomenon.” We are convinced that (25.12) holds with an error term
o(1), which is actually uniformly ≤ 2 for all N , including small N s. For example,
if N = 2100, then

2 log2N −2 log2 log2N +2 log2 e−3= 200−13�29+2�88−3= 186�59�

and we are convinced that the Achievement (Avoidance) Number is equal to one
of the following four consecutive integers: 185, 186, 187, 188. Of course, these are
the closest neighbors of 186.59 in (25.13). Can anyone prove this?

3. How long does it take to build a clique? Bound (25.12) is sharp (see Theo-
rem 6.4 (a)), but it does not mean that every question about cliques is solved. Far
from it! For example, the Move Number remains a big mystery.
What can we say about the Move Number of Kq? Well, an equivalent form of

(25.12) is the following (see also (6.11)): playing onKN withN =
√
2
e
q2q/2�1+o�1��,

Maker can build a clique Kq. This way it takes at most

1
2

(
N

2

)
= 1+o�1�

2e2
q22q

moves for Maker to get a Kq.
Now here comes the surprise: (the otherwise weak) Theorem 21.1 gives the

slightly better bound ≤ 2q+2 for the Clique Move Number. This is in fact the best
known to the author. Can the reader improve on the bound O�2q�?

Open Problem 25.1 For simplicity assume that the board is the infinite complete
graph K
 (or at least a “very large” finite KN ); playing the usual (1:1) game, how
long does it take to build a Kq?

In the other direction the best known to the author is formulated in:

Exercise 25.1 Show that, playing the usual (1:1) game on K
, Breaker can prevent
Maker from building a Kq in 2q/2 moves (let q ≥ 20).

Which one is closer to the truth, upper bound 2q or lower bound 2q/2?
Next we replace the usual board KN with a “typical” graph on N vertices. What

is the largest achievable clique? We can adapt the proof above, and obtain:

Exercise 25.2 Show that, playing the usual (1:1) game on the symmetric Random
Graph R�KN �1/2�, with probability tending to 1 as N tends to infinity, Maker can
occupy a clique Kq with
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q = �log2N − log2 log2N + log2 e−1+o�1�� � (25.13)

Note that (25.13) is the best possible (this follows from the technique of Section 38).
Another adaptation is:

Exercise 25.3 Prove the Maker’s part in formulas (8.7) and (8.8).

Exercise 25.4 What is the Avoidance version of Theorem 21.1? That is, what is
the largest clique that Forcer can force Avoider to build in KN , assuming N is not
too large (i.e. N is in the range before Theorem 24.2 begins to work)?



26
More applications

1. The Weak Win part of Theorem 6.4 (b)–(c)–(d). The good thing about
Theorem 24.2 is that it extends from (ordinary) graphs to k-graphs (k≥ 3) without
any problem. We illustrate this briefly in the case k= 3.

First an easy Strong Draw bound: the Erdős–Selfridge Theorem applies and
yields a Strong Draw if (

N

q

)
2−�

q
3� <

1

2
�

the upper integral part of
√
6 log2N +o�1� is a good choice for q.

Next the other direction: to get a Weak Win we apply Theorem 24.2 to the
hypergraph

F =
{(

S

3

)
� S ⊂ �N�� �S� = q

}
�

noting that
(
S

3

)
denotes a set – in fact a “complete 3-uniform hypergraph” – and not

a binomial coefficient. We have to check that

T�F� > 4p
(
N

3

)((
T�Fp

2 �
) 1

p + 1

4

)

holds for some integer p ≥ 2. We clearly have

T�F�=
(
N

q

)
2−�

q
3��

Let p= 5; we need a good upper bound for T�F5
2 �. By definition

F 5
2 =

{
5⋃

i=1

(
Si
3

)
� Si ⊂ �N�� �Si� = q� 1≤ i ≤ 5�

∣∣∣∣∣
5⋂

i=1

(
Si
3

)∣∣∣∣∣≥ 2

}
�

where 	S1� � � � � S5
 runs over the unordered 5-tuples of distinct q-element subsets
of �n�.

Two 3-edges of
(
N

3

)
span either 4, or 5, or 6 points. It is easy to guess that the

main contribution of T�F 5
2 � The most sparse case is the “4-core sunflowers": the

362
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elements
⋃5

i=1

(
Si
3

)
of family F5

2 for which
⋂5

i=1 Si is a 4-element set and the sets
S� \

(⋂5
i=1 Si

)
, �= 1� � � � �5 are pairwise disjoint. The corresponding contribution of

T�F 5
2 � is what we call the first main term; it is precisely

f �3��N�q�= 1
5!
(
N

4

)(
N −4
q−4

)(
N −q

q−4

)(
N −2q+4

q−4

)(
N −3q+8

q−4

)

·
(
N −4q+12

q−4

)
2−4�q3�+16�

We have

f �3��N�q�≈ 216

5!4!
( q

N

)16
((

N

q

)
2−�

q
3�
)5

= 216

5!4!
( q

N

)16
�T�F��5 �

So (
f �3��N�q�

) 1
5 <

T�F�

N 16/5+o�1�
�

The critical fact is that N 16/5 is much larger than
(
N

3

)
, the duration of a play.

The second main term comes from the “most crowded” configurations

h�3��N�q�=
(

N

q+1

)(
q+1
5

)
2−�

q+1
3 ��

Clearly

h�3��N�q�≈ T�F�

N 1+o�1�
if q ≈√

6log2N�

Again we have to show that

T�F 5
2 �≈ f �3��N�q�+h�3��N�q��

The choice p= 5 was just an illustration; it is good enough to approach the truth by
an additive error O�1�. Again the optimal result comes from applying Theorem 24.2
with p→
. The technical details are very much the same as in the case of ordinary
graphs. We stop here and leave the rest of the proof to the reader.

2. Weak Win part of Theorem 12.6. Let F�n�d� denote the family of all Comb-
Planes (“2-parameter sets”) of the nd Torus. F�n�d� is an n2-uniform hypergraph
of size 3d−2d+1+1

2 nd−2, and its board size is, of course, nd. Assume that

T�F�n�d��

�V � =
3d−2d+1+1

2 nd−2 ·2−n2

nd
= 3d−2d+1+1

2n2
2−n2 > 2p� (26.1)

To apply Theorem 24.2 we have to estimate T��F�n�d��
p
2� from above (p ≥ 2).

Fix 2 points P and Q, and consider the difference vector P−Q (mod n). If the
coordinates of the vector P−Q (mod n) have at least two different non-zero values,
then there is exactly one Comb-Plane containing both P and Q. This case, therefore,
has no contribution to the sum T��F�n�d��

p
2�.
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It remains to study the case when the coordinates of the vector P−Q (mod n)
have precisely one non-zero value; let j denote the multiplicity of the non-zero
value, and let J denote the set of places where the non-zero coordinate shows up in
vector P−Q (mod n). Clearly �J � = j ≥ 1. If S is a Comb-Plane containing both P
and Q, then S has the form P+ku+ lw and the equation Q= P+ku+ lw has an
integral solution �k� l�. Let U denote the set of places where vector u has coordinate
1, and let W denote the set of places where vector w has coordinate 1 (U and W

are disjoint non-empty sets). It is easily seen that there are three alternatives only:

(a) either J = U ,
(b) or J =W ,
(c) or J = U ∪W .

This explains the following upper bound

T��F�n�d��
p
2�≤

d∑
j=1

nd ·
(
d

j

)
n ·

(
2j +2d−j

p

)
·2−pn2+�p−1�n�

indeed, nd is the number of ways to choose P,
(
d

j

)
n is the number of ways to choose

Q;
(2j+2d−j

p

)
is an upper bound on the number of ways to choose p Comb-Planes

each, containing P and Q; and, finally, the exponent −�pn2 − �p− 1�n� of 2 is
motivated by the fact that the p Comb-Planes, all containing the PQ-line, are in
fact disjoint apart from the PQ-line (“n points”).
Taking pth root (

T��F�n�d��p2�
)1/p ≤ n2d/p ·2d ·2−n2+�1−1/p�n�

By choosing p around constant times logn, the critical term(
T��F�n�d��

p
2�
)1/p

becomes much smaller than T�F�n�d��/�V �, i.e. Theorem 24.2 applies and yields
a Weak Win if (26.1) holds. �
We already settled the issue of “Weak Win in the Lattice Games” in Section 23 by

using an ad hoc Higher Moment technique. It is worth knowing that our Advanced
Weak Win Criterion (Theorem 24.2) applies, too. In the next two applications we
give alternative proofs for the aligned rectangle lattice and the parallelogram lattice
games (they were covered in Theorems 23.1–23.2).

3. Weak Win part of Theorem 8.2: case (b). The case of aligned rectangle lattices
follows from Theorem 24.2; luckily the calculations are much simpler than in the
Clique Game (Theorem 6.4 (a), see Section 25). Let P1 and P2 be two points of the
N×N board. The typical case is when P1 and P2 are neither on the same horizontal,
nor on the same vertical line; then the number of q× q aligned rectangle lattices
containing both P1 and P2 is estimated from above by the same bound

(
q2

2

)
< q4

2
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(“logN -power”) as in Case (a) (“Square Lattices”). However, if P1 and P2 are on
the same horizontal or vertical line – non-typical case! – then we may have much
more, namely (around) N q× q aligned rectangle lattices containing both P1 and
P2. This is why Theorem 24.2 works better than Theorem 1.2: in Theorem 24.2 the
non-typical case has a very small “weight.” The actual application of Theorem 24.2
goes as follows: by (8.4)

T�F�

�V � ≈
N 4

4�q−1�2 2
−q2

N 2
= N 2

�q−1�22q2+2
�

where, of course, F denotes the family of all q×q aligned rectangle lattices in the
N ×N board. Next we estimate the more complicated T�Fp

2 � from above. We have
the typical and the non-typical parts

T�Fp
2 �= Ttyp�Fp

2 �+Tno−typ�Fp
2 ��

Here is an easy upper bound for the typical part

Ttyp�Fp
2 �≤ N 2 · �N 2−2N +1� ·

(
q4/2
p

)
·2−q2�

where N 2 is the number of ways to choose P1 and N 2−2N +1 is the number of
ways to choose P2 (they are in “general position”).

To estimate the non-typical part Tno−typ�Fp
2 �, assume that P1 and P2 are on the

same (say) horizontal line, and consider p distinct q×q aligned rectangle lattices
L1, L2, � � �, Lp, each containing both P1 and P2. The projection of an aligned q×q

rectangle lattice on the vertical axis is a q-term A.P. (“arithmetic progression”);
I call it the vertical A.P. of the lattice. Consider now the vertical A.P.s of the p

lattices L1, L2, � � �, Lp; they all have a common element: the projection of the
P1P2-line. Throwing out this common element, we obtain p �q− 1�-element sets
(“almost A.P.s”). Here comes a key concept: how many pairwise disjoint sets can
be selected from this collection of p �q− 1�-element sets (“almost A.P.s”)? The
answer is denoted by k; it is a key parameter – note that k can be anything between
1≤ k≤ p.
Parameter k is a key concept, but we also need the following simple fact. Let

P3 be a point of the N ×N board which is not on the (horizontal) P1P2-line; then
the number of q× q aligned rectangle lattices containing the non-collinear triplet
	P1�P2�P3
 is at most

(
q

2

)2 ≤ q4/4.
Now we are ready to estimate. For a fixed point pair P1, P2 on the same

(say) horizontal line, and for a fixed value of parameter k introduced above, the
corresponding contribution Tno−typ�P1�P2�k

�Fp
2 � in Tno−typ�Fp

2 � is at most

Tno−typ�P1�P2�k
�Fp

2 �≤
(
N ·

(
q

2

))k

·
(

kq2

p−k

)
·
(
q4

4

)p−k

·2−kq2+�k−1�q� (26.2)
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Since there are N 2 ways to choose P1 and �2N −1� ways to choose P2, by (26.2),
we have

Tno−typ�Fp
2 �≤ N 2�2N −1�

p∑
k=1

(
N ·

(
q

2

))k

·
(

kq2

p−k

)
·
(
q4

4

)p−k

·2−kq2+�k−1�q�

Using the trivial fact

�a1+a2+ � � �+ap�
1/p ≤ a

1/p
1 +a

1/p
2 + � � �+a1/p

p �

we have
(
Tno−typ�Fp

2 �
)1/p ≤ 2 ·N 3/p

p∑
k=1

(
N · (q2)
2q2−q

)k/p

·kq2 · q
4

4
�

Summarizing, if

T�F�

�V � ≈ N 2

�q−1�22q2+2
≥ 100q20 and p= q2� (26.3)

then Theorem 24.2 applies, and yields a Weak Win. Indeed, by (26.3)

(
Tno−typ�Fp

2 �
)1/p ≤ N 3/p ·q8

p∑
k=1

N− k
2p

and (
Ttyp�Fp

2 �
)1/p ≤ N 2/p · q

4

2
·
(
N 2

2q2

)1/p

�

implying the desired inequality

(
T�Fp

2 �
)1/p ≤ (

Ttyp�Fp
2 �
)1/p+ (

Tno−typ�Fp
2 �
)1/p

<
1

8p
T�F�

�V � �

4. Weak Win part of Theorem 8.2: case (f). The case of parallelogram lat-
tices is similar to case (b) discussed above. Let F denote the family of all q× q

parallelogram lattices in the N ×N board. The figure below

N × N board

N
4

N
4(q − 1)

N
4

explains the easy lower bound

�F � ≥
(
N

4

)2

·
(
1
2

(
N/4
q−1

)2
)2

= N 6

214�q−1�4
�
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Therefore
T�F�

�V � ≥ N 6

N 2 ·214�q−1�4 ·2q2 = N 4

214�q−1�42q2
�

Next we estimate the more complicated T�Fp
2 � from above. We begin with an easy

observation: if P1 and P2 are two different points in the N ×N board, and L1, L2

are two different q×q paralelogram lattices, each containing both P1 and P2, then
the intersection L1∩L2 is either the P1P2-line alone (“collinear intersection”), or it
is a larger non-collinear set.

Let L1, L2, � � �, Lp be a collection of p q×q parallelogram lattices, each containing
both P1 and P2. Here comes a key concept: select the maximum number of members
among L1, L2, � � �, Lp such that any two intersect in the P1P2-line only (“collinear
intersection”). Let k denote the maximum; it is a key parameter – note that k can
be anything between 1≤ k≤ p.

We use the following simple fact: given 3 non-collinear points P1�P2�P3 of the
N×N board, the total number of q×q parallelogram lattices each containing triplet
P1�P2�P3 is less than �q2�3�

Since there are N 2 ways to choose P1 and N 2−1 ways to choose P2, we have

T�Fp
2 �≤

p∑
k=1

N 2�N 2−1�
(
N 2 · �q2�3

)k ·
(

kq2

p−k

)
· (�q2�3

)p−k ·2−kq2+�k−1�q

≤ N 4
p∑

k=1

(
q6N 2

2q2−q

)k

· �kq8�p−k�

It follows that

(
T�Fp

2 �
)1/p ≤ N 4/p

p∑
k=1

(
q6N 2

2q2−q

)k/p

· �kq8�1−
k
p �

If
T�F�

�V � ≥ N 4

�q−1�42q2+14
≥ 100q20 and p= q2� (26.4)

then Theorem 24.2 applies, and yields a Weak Win. Indeed, by (26.4)

(
T�Fp

2 �
)1/p ≤ N 4/p ·q10

p∑
k=1

N−k/p <
1

8p
T�F�

�V � �

5. Weak Win part of Theorem 8.2: case (g). The case of area one parallelogram
lattices is similar to cases (b) and (f) discussed above. Let F denote the family
of all q×q area one parallelogram lattices in the N ×N board. A q×q area one
(parallelogram) lattice can be parametrized as follows

	u+kv+ lw ∈ �N�× �N� � 0 ≤ k≤ q−1�0 ≤ l≤ q−1
�
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where �N�= 	1�2� � � � �N
, u∈ZZ2, v= �a� b�∈ZZ2,w= �c�d�∈ZZ2 with ad−bc=
±1. To estimate �F � from below, let u ∈ �N/2�× �N/2�, and let 1≤ a≤ b ≤ N

2�q−1�

be coprime integers: there are

3

�2

(
N

2�q−1�

)2

integral vectors v = �a� b� with this property. Since a and b are coprime, the
equation ax−by = 1 has an integral solution �x� y�= �c�d� with the same bounds
1≤ x ≤ y ≤ N

2�q−1� as for a and b above. It follows that

�F � ≥
(
N

2

)2

· 3

�2

(
N

2�q−1�

)2

= 3N 4

16�2�q−1�2
�

and so
T�F�

�V � ≥ N 2

16�2�q−1�22q2
�

Next we estimate the more complicated T�Fp
2 � from above. Fix two distinct points

P1 and P2 in the N ×N board, and let L ∈ F be a q× q area one paralelogram
lattice containing both P1 and P2. Let P3 be a third point of lattice L which is not
on the P1P2-line; then the area of the P1P2P3 triangle is between 1/2 and q2/2. It
follows that P3 has to be in a strip around the P1P2-line of height h = q2/�P1P2�,
where �P1P2� is the distance of the two points.
Since every lattice triangle has area ≥ 1/2, this strip contains at most

O�Nq2/�P1P2��

strip

h

h = height

lattice points of the N ×N board; i.e. there are at most O�Nq2/�P1P2�� options for
a third point P3 ∈ L.

The rest of the argument is similar to case (f). Let L1, L2, � � �, Lp be a collection
of p q× q area one lattices, each containing both P1 and P2. Here comes a key
concept: select the maximum number of members among L1, L2, � � �, Lp such that
any two intersect in the P1P2-line only (“collinear intersection”). Let k denote the
maximum; it is a key parameter – note that k can be anything between 1≤ k≤ p.

We use the following simple fact: given 3 non-collinear points P1�P2�P3 of the
N×N board, the total number of q×q parallelogram lattices each containing triplet
P1�P2�P3 is less than �q2�3 = q6. Now we are ready to estimate T�Fp

2 � from above.
Assume that �P1P2� is around 2j ; then there are N 2 ways to choose P1 and O�4j�
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ways to choose P2, so we have

T�Fp
2 �≤

p∑
k=1

N 2
log2 N∑
j=1

O�4j�
(
q2N

2j
·q6

)k

·
(

kq2

p−k

)
· (q6

)p−k ·2−kq2+�k−1�q

≤ N 4
p∑

k=1

(
q8N

2q2−q

)k

· �kq8�p−k�

It follows that
(
T�Fp

2 �
)1/p ≤ N 4/p

p∑
k=1

(
q8N

2q2−q

)k/p

· �kq8�1−
k
p �

If
T�F�

�V � ≥ 3N 2

16�2�q−1�22q2
≥ 100q20 and p= q2� (26.5)

then Theorem 24.2 applies, and yields a Weak Win. Indeed, by (26.4)

(
T�Fp

2 �
)1/p ≤ N 4/p ·q10

p∑
k=1

N
−k
2p <

1

8p
T�F�

�V � �

and the hypothesis of Theorem 24.2 is satisfied.

6. Concluding remarks. The reader must be wondering, “Why did we skip cases
(d) and (e)?”. Recall that case (d): tilted rectangle lattices and case (e): rhombus
lattices give two different kinds of extensions of case (c): tilted Square Lattices,
but these extensions are negligible. What does negligible mean? These extensions
are very minor in the quantitative sense that the Max Degree of the hypergraph
hardly increases. To justify the point, we are going to discuss the following three
questions:

Question I: What is the Max Degree of the family of all q× q tilted Square
Lattices in the N ×N board?

Question II: What is the Max Degree of the family of all q× q tilted rectangle
lattices in the N ×N board?

Question III: What is the Max Degree of the family of all q×q rhombus lattices
in the N ×N board?

2N
q − 1one of the

q × q points

In view of the picture above the answer to Question I is

q2O��N/�q−1�2�= O�N 2�� (26.6)
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The answer to Question II is

O�q2�
∗∑

0≤a≤N/�q−1��0≤b≤N/�q−1�

O�N/�q−1��
g�c�d��a� b�

a+b
� (26.7)

where the asterisk ∗ in the summation indicates that �0�0� is excluded, and
g�c�d��a� b� denotes, as usual, the greatest common divisor of integers a and b.
If g�c�d��a� b�= d, then a= kd and b = ld with some integers k� l, and (26.7) can
be estimated from above by the sum

O�q ·N�
N/�q−1�∑
d=1

∗∑
0≤k≤N/d�q−1��0≤l≤N/d�q−1�

1
k+ l

� (26.8)

Since
1

k+ l
≤ 2√

1+k

2√
1+ l

�

(26.8) can be estimated from above by

O�q ·N�
n/�q−1�∑
d=1

( ∑
1≤j≤2N/dq

2√
j

)2

�

which gives the following answer to Question II

O�q ·N�
N∑

d=1

O�N�

qd
= O�N 2�

N∑
d=1

= O�N 2 logN�� (26.9)

Comparing (26.6) and (26.9) we see that case (d) (“tilted rectangle lattices”) repre-
sents a larger hypergraph than case (c) (“tilted Square Lattices”), but the increase
in the Max Degree is a small factor of logN , which has a “negligible” effect in
the “advanced Strong Draw criterion” later. This explains why the Achievement
Number is the same for cases (c) and (d) (well, almost the same: the same apart
from o�1�).

The answer to Question III is estimated from above by

O�q2�
N/�q−1�∑
d=1

∗∑
0≤a≤N/�q−1��0≤b≤N/�q−1�

��a2+b2�� (26.10)

where again the asterisk ∗ in the summation indicates that �0�0� is excluded, and
��a� b� denotes, as usual, the divisor function; ��m� denotes the number of divisors
of integer m. In the upper bound (26.10) we used the well-known number-theoretic
fact that the number of solutions of the equation m= a2+b2 is at most 4��m�.

Sum (26.10) is estimated from above by

O�q2�
∑

1≤m≤2�N/�q−1��2

�2�m�� (26.11)
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A theorem of Ramanujan states that∑
1≤m≤M

�2�m�= O�M�logM�3�� (26.12)

see e.g. in Section 18.2 of Hardy-Wright: An introduction to the theory of numbers.
Formulas (26.10)–(26.12) lead to the following upper bound in Question III

O�q2� ·O�N 2/�q−1�2�� · �logN�3 = O�N 2 · �logN�3�� (26.13)

This time the increase in the Max Degree is a factor of �logN�3, which is still
“negligible.”



27
Who-scores-more games

There are two large classes of sports and games: the class of who-does-it-first and
the class of who-scores-more. Every race sport (running, swimming, cycling, etc.)
belongs to the class of who-does-it-first, and most of the team sports (basketball,
soccer, ice-hockey, etc.) belong to the class of who-scores-more. The same applies
for games: Chess is a who-does-it-first game (who gives the first checkmate) and Go
is clearly a who-scores-more type of game (who captures more of the opponent’s
stones). Tic-Tac-Toe, and every other Positional Game, belongs to the class of
who-does-it-first (the winner is the one who occupies a whole winning set first).
Unfortunately, we know almost nothing about ordinary win; this is why we had
to shift our attention from ordinary win to Weak Win. So far everything (well,
nearly everything) was about Weak Win (and its complementary concept: Strong
Draw) – it is time now to expand our horizons and do something different. A
natural extension of the class of Positional Games is the class of “who-scores-more
games.” As usual, the players alternately occupy new points, but we have to clarify
the notion of “scoring.” In a Positional Game the most natural way of “scoring” is
to occupy a whole winning set, so “who-scores-more” actually means “which player
owns more winning sets at the end of the play.” The symmetric version, when the
two players share the same hypergraph, seems to be hopelessly complicated (just
like “ordinary win,” i.e. the “who-does-it-first” version); what we discuss in this
section is:

1. The asymmetric version. Here the two players have two different hypergraphs –
say, First Player has hypergraph F and Second Player has hypergraph G (the board
is the same!) – and each player wants to occupy as many hyperedges of his own
hypergraph as possible. The player who owns the most hyperedges is declared the
winner; equality means a draw.
Here is an illustration. Two players are playing on the N×N board, First Player’s

goal is to occupy a maximum number of q1×q1 Aligned Square Lattices and Second
Player’s goal is to occupy a maximum number of q2×q2 aligned rectangle lattices.

372
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In view of Theorem 8.2, the case

q1 >
⌊√

log2N +o�1�
⌋

and q2 >
⌊√

2 log2N +o�1�
⌋

(27.1)

is a boring scoreless draw (if the players play rationally); to have some action we
assume that

q1 ≤
⌊√

log2N +o�1�
⌋

and q2 ≤
⌊√

2 log2N +o�1�
⌋
� (27.2)

How about the first interesting case itself

q1 =
⌊√

log2N +o�1�
⌋

and q2 =
⌊√

2 log2N +o�1�
⌋
� (27.3)

Which player ends up with more copies of his own? More precisely, which player
has a winning strategy in the “square-lattice vs. rectangle-lattice who-scores-more
game with (27.3)”?

Before answering this question, let me briefly recall where the “critical values”
in (27.3) come from. Let F = FN�s denote the family of all s× s Aligned Square
Lattices in the N ×N board, and let G = GN�r denote the family of all r× r aligned
rectangle lattices in the same N×N board. In FN�s we keep the value of N fixed and

s is a variable; then s =
⌊√

log2N +o�1�
⌋
is the largest value of integral variable

s such that
1

�V �

( ∑
A∈FN�s

2−�A�
)
= 1

N 2
�FN�s�2−s2 > 1� (27.4)

Similarly, if N is fixed, then r =
⌊√

2 log2N +o�1�
⌋
is the largest value of integral

variable r such that

1
�V �

( ∑
B∈GN�r

2−�B�
)
= 1

N 2
�GN�r �2−r2 > 1� (27.5)

Looking at (27.4) and (27.5), we see that the factor 1/N 2 is the same, so it is
natural to come up with the conjecture that what really matters in the �FN�s�GN�r�

who-scores-more game is the relation of the two sums

T�FN�s�=
( ∑

A∈FN�s

2−�A�
)

and T�GN�r�=
( ∑

B∈GN�r

2−�B�
)
�

We would guess that if T�FN�s� > T�GN�r�, then First Player (“Square Lattice guy”)
should have more copies of his own goal, and if T�FN�s� < T�GN�r�, then Second
Player (“rectangle lattice guy”) should have more copies of his own goal. This
vague conjecture can be justified by the following variant of Theorem 24.2.

Theorem 27.1 ((“Who-Scores-More Criterion”)) Let F and G be two finite
hypergraphs sharing the same board set V .
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(a) If the inequality
T�F�−100T�G�

�V � > p+4p
(
T�Fp

2 �
)1/p

holds for some integer p ≥ 2, then First Player can force the following: at the
end of the play the number of As with A ∈ F completely occupied by him (i.e.
First Player) is more than 100 times the number of Bs, with B ∈ G completely
occupied by Second Player.

(b) Assume that G is m-uniform; if

T�G�−MaxDeg�G�2−m−100T�F�

�V � > p+4p
(
T�Gp

2 �
)1/p

holds for some integer p ≥ 2, then Second Player can force the following: at
the end of the play the number of Bs with B ∈ G completely occupied by him
(i.e. Second Player) is more than 100 times the number of As, with A ∈ F
completely occupied by First Player.

Remarks. The factor of “100” in (a) and (b) was accidental: we just wanted to
make sure that 1 player overwhelmingly dominates. Of course, “100” and “100
times” can be replaced by any constant (like “2” and “twice”).
The proof of the Who-Scores-More Criterion above is exactly the same as that

of Theorem 24.2; we leave it to the reader as an exercise.
Let’s return to the the “square-lattice vs. rectangle-lattice who-scores-more game

with (27.1).” How large is

T�FN�q1
�

�V � = 1
N 2

�FN�q1
� ·2−q21 �

where q1 =
⌊√

log2N
⌋
? Writing (	x
 is the fractional part of x)

q1 =
⌊√

log2N
⌋
=√

log2N −
{√

log2N
}

we have
q2
1 = log2N −2

{√
log2N

}√
log2N +O�1��

Since

�FN�q1
� ≈ N 3

3�q1−1�
�

we obtain
1

N 2
�FN�q1

�2−q21 ≈ N

3�q1−1�
2−log2N+2

{√
log2 N

}√
log2 N+O�1�

= O�1�

q1
22

{√
log2 N

}√
log2 N � (27.6)

Similarly
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1

N 2
�GN�q1

�2−q21 = O�1�

q2
22

{√
2 log2 N

}√
2 log2 N

= O�1�

q2
22

√
2
{√

2
√

log2 N
}√

log2 N � (27.7)

Combining the Who-Scores-More Criterion with (27.6)–(27.7), the “Square Lattice
vs. rectangle lattice who-scores-more game with (27.3)” converts into an easy
fractional part problem.

2. Fractional Part Problem.

(a) Which fractional part is larger{√
log2N

}
or

√
2
{√

2
√
log2N

}
?

Another natural question is:
(b) If we “randomly select” a positive integer N , then what is the “chance” that{√

log2N
}
>

√
2
{√

2
√
log2N

}
?

For typical N the fractional parts
{√

log2N
}
and

√
2
{√

2
√
log2N

}
are not too

close, implying that the ratio

T�FN�q1
�

T�GN�q2
�
= �FN�q1

�2−q21

�GN�q2
�2−q22

= O�1�2
({√

log2 N
}
−√

2
{√

2
√

log2 N
})√

log2 N

is typically either very large (much larger than 100) or very small (much smaller
than 1/100). Therefore, by the Who-Scores-More Criterion, for a typical N one
player overwhelmingly dominates the “who-scores-more” game.

Randomly choosing an N , what is the chance that the “Square Lattice over-scores
the rectangle lattice”? By the Who-Scores-More Criterion this question is equivalent
to part (b) of the Fractional Part Problem. Notice that the problem is not well-stated
(what does “randomly chosen” mean) unless we introduce a density concept for
integers. To guarantee that 	

√
log2N
 is uniformly distributed in the unit interval,

the simple fact √
log2�N +1�−√

log2N ≈ 1

2N
√
log2N

makes it plausible to work with the following sub-logarithmic density: given an
infinite subset A ⊂ N of the natural numbers, we say that A has density � if the
limit below

lim
x→


∑
a∈A� a≤x

1

a
√

loga∑
n≤x

1

n
√

logn

(27.8)
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exists and equals to �. Working with density (27.8) the following facts are clear:

(1)
{√

log2N
}
is uniformly distributed in the unit interval;

(2)
{√

2
√
log2N

}
is also uniformly distributed in the unit interval;

(3)
{√

log2N
}
and

{√
2
√
log2N

}
form independent random variables.

Statement (3) easily follows from the well-known fact that the “n� sequence”
��2��3�� � � � (mod 1) is uniformly distributed in the unit interval if � is irrational
(we apply it with �=√

2).
(1)–(3) imply that part (b) of the Fractional Part Problem above is equivalent to

the following elementary problem in Probability Theory: if X and Y are indepen-
dent, uniformly distributed random variables in the unit interval, then what is the
probability of X >

√
2Y ?

1

1

X = √2Y
–

–
√2

–
Pr [X > √2Y ] = 

1
–

2√2

X and Y are independent

Since X and Y are independent, we can visualize the problem on the product
space �0�1�× �0�1� (see figure), which is, of course, the unit square, and then the
answer is simply the area of the shaded triangle: 1/2

√
2= �35355.

Theorem 27.2 (a) Consider the “aligned square-lattice vs. aligned rectangle lattice
who-scores-more game” on the N ×N board with the largest achievable sizes
(27.3). If we randomly select the board-size parameter N – we work with the sub-
logarithmic density (27.8) – then the “Square Lattice” over-scores the “rectangle
lattice” with probability 1/2

√
2.

2

1
2
– 2

3
– 1

Pr [X > 2{2X}] = 
6
–1
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3. More Fractional Part Problems. What happens if “Aligned Square Lattice
vs. aligned rectangle lattice” is replaced by the “Aligned Square Lattice vs. par-
allelogram lattice”? This case is even simpler. A straightforward application of
the Who-Scores-More Criterion reduces the problem to the following very simple
fractional part question: If X is a uniformly distributed random variable in the unit
interval, then what is the probability of the event X> 2	2X
? Comparing the graphs
of the two functions y = x and y = 2	2x
 in 0 ≤ x ≤ 1, the answer is clear: the
probability is 1/6.

Theorem 27.2 (b) Consider the “Aligned Square Lattice vs. parallelogram lattice
who-scores-more game” on the N ×N board with the largest achievable sizes:
q1 × q1 Aligned Square Lattice with q1 = �√log2N� and q2 × q2 parallelogram
lattice with q2 = �2√log2N�. If we randomly select the board-size parameter
N – we work with the sub-logarithmic density (27.6) – then the “Square Lattice”
over-scores the “parallelogram lattice” with probability 1/6.

What happens if the “square shape” is replaced by arbitrary lattice polygons (see
Section 8 around formula (8.5))? For example, how about the “aligned pentagon
vs. aligned triangle who-scores-more game” on the N ×N board if from each shape
we take the largest achievable size? In view of (8.5) the largest achievable size is⌊

1√
A

√
log2N − B

4A
+o�1�

⌋
� (27.9)

where A is the area of the initial shape S = S�1� and B is the number of lattice
points on the boundary of S. The Who-Scores-More Criterion reduces this problem
to the following fractional part question: Given two lattice polygons S1 and S2,
which one is larger{

1√
A1

√
log2N − B1

4A1

}(
1√
A1

√
log2N − B1

4A1

)

or {
1√
A2

√
log2N − B2

4A2

}(
1√
A2

√
log2N − B2

4A2

)
?

Here A1 is the area of the initial shape S1 = S1�1�, B1 is the number of lattice
points on the boundary of S1, and, similarly, A2 is the area of the initial shape
S2 = S2�1�, and B2 is the number of lattice points on the boundary of S2. If A1/A2

is not a rational square number – this happens, for example, if S1 is the “pentagon”
of area 3 and S2 is the “triangle” of area 1/2 – then we can repeat the argument of
Theorem 27.2, and obtain the following simple answer to the “probability question”
(notice that the probability is irrational).

Theorem 27.2 (c) Consider the “aligned lattice polygon S1 vs. aligned lattice
polygon S2 who-scores-more game” on the N×N board with the largest achievable
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sizes (27.9). Assume that the ratio A1/A2 of the areas is not a rational square
number. Let A1 >A2; if we randomly select the board-size parameter N – we work
with the sub-logarithmic density (27.8) – then shape S1 over-scores shape S2 with
probability

√
A2/2

√
A1.

Theorem 27.2 does not cover the case when A1/A2 is a rational square number.
The simplest way to make A1/A2 a rational square number is to assume A1 = A2;
then we can repeat the argument of Theorem 27.2, and get the following simple
result (notice that the probability is rational).

Theorem 27.2 (d) Consider the “aligned lattice polygon S1 vs. aligned lattice
polygon S2 who-scores-more game” on the N×N board with the largest achievable
sizes (27.9). Assume that the areas are equal: A1 = A2 = A, and B1 > B2 (i.e. the
boundary of S1 contains more lattice points). If we randomly select the board-size
parameter N – we work with the sub-logarithmic density (27.8) – then shape S1
over-scores shape S2 with probability �B1−B2�/4A.

Of course, cases (c) and (d) do not cover everything; for example, in the “fish vs.
octagon who-scores-more game” the ratio 28/7 = 4 = 22 of the areas is a square
number, so case (c) doesn’t apply. We discussed cases (c) and (d) because the
answer to the probability question was particularly simple. By the way, the “fish”
over-scores the “octagon” with probability 13/84 (why?).
The last example is a graph game played on KN . First Player’s goal is to occupy

a maximum number of copies of Kb�b (“complete bipartite graph”) and Second
Player’s goal is to occupy a maximum number of copies of Kt�t�t (“complete
tripartite graph”).

K 3, 3 K2, 2, 2

Let
b = b�N�= �2log2N −2 log2 log2N +2 log2 e−3� (27.10)

and

t = t�N�=
⌊
log2N − log2 log2N + log2 e−

2

3

⌋
� (27.11)

note that taking the upper integral part in (27.10)–(27.11) would lead to a boring
scoreless game: (27.10)–(27.11) represent the largest achievable values (see (8.7)).
Which player wins the who-scores-more game? A straightforward application of
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the Who-Scores-More Criterion reduces the problem to the following elementary
question: consider the expression (	y
 denotes, as usual, the fractional part of real
number y)

2 	2log2N −2 log2 log2N +2 log2 e−3
−3 	log2N − log2 log2N + log2 e−2/3


= 3
(
2
3
	2��N�+1/3
− 	��N�


)

where
��N�= log2N − log2 log2N + log2 e−2/3� (27.12)

is 2
3	2�+1/3
− 	�
 positive or negative? If 2

3 	2�+1/3
− 	�
 is positive, where
�= ��N�, then First Player has more bipartite graphs Kb�b; if

2
3	2�+1/3
− 	�
 is

negative, then Second Player has more tripartite graphs Kt�t�t.
Note that working with the usual logarithmic density

lim
x→


∑
a∈A� a≤x

1
a∑

n≤x
1
n

(27.13)

the following fact is clear: 	��N�
 is uniformly distributed in the unit interval as
N →
.
It follows that the fractional part problem above is equivalent to the following

elementary problem in Probability Theory: if X is a uniformly distributed random
variable in the unit interval, what is the probability of

X >
2
3

{
2X+ 1

3

}
?

Comparing the graphs of the two functions y = x and y = 2
3 	2x+ 1/3
 in 0 ≤

x ≤ 1, the answer is clear: the probability is 2/3.

1

1

2–
3

–

5
6
–

2
9

–1
3

Theorem 27.2 (e) Consider the “bipartite vs. tripartite who-scores-more game”
on the complete graph KN with the largest achievable sizes (27.10) and (27.11).
If we randomly select the vertex-size parameter N – we work with the logarithmic
density (27.13) – then Kb�b over-scores Kt�t�t with probability 2/3.



Chapter VI
What is the Biased Meta-Conjecture, and why is it

so difficult?

There are two natural ways to generalize the concept of Positional Game: one way
is the (1) discrepancy version, where Maker wants (say) 90% of some hyperedge
instead of 100%. Another way is the (2) biased version like the �1 � 2� play, where
underdog Maker claims 1 point per move and Breaker claims 2 points per move.
Chapter VI is devoted to the discussion of these generalizations.
Neither generalization is a perfect success, but there is a big difference. The

discrepancy version generalizes rather smoothly; the biased version, on the other
hand, leads to some unexpected tormenting(!) technical difficulties.
The main issue here is to formulate and prove the Biased Meta-Conjecture. The

biased case is work in progress; what we currently know is a bunch of (very
interesting!) sporadic results, but the general case remains wide open.
We don’t see any a priori reason why the biased case should be more difficult

than the fair (1:1) case. No one understands why the general biased case is still
unsolved.
The Biased Meta-Conjecture is the most exciting research project that the book

can offer. We challenge the reader to participate in the final solution.
The biased Maker–Breaker and Avoider–Forcer games remain mostly unsolved,

but we are surprisingly successful with the biased �1�s� Chooser–Picker game where
Chooser is the underdog (in each turn Picker picks �s+ 1� new points, Chooser
chooses one of them, and the rest goes back to Picker). In this case we come very
close to the perfect analogue of Theorem 6.4 (“Clique Games”) and Theorem 8.2
(“Lattice Games”) with the natural change that the base 2 logarithm log2 is replaced
by the base �s+1� logarithm logs+1 (see Theorem 33.4).
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28
Discrepancy games (I)

1. What is the right conjecture? Recall that the Clique Achievement Number
A�KN� clique� is the largest integer q = q�N� such that Maker can always occupy a
whole sub-cliqueKq in the usual (1:1) play onKN . The exact value ofA�KN� clique�

is the lower integral part of the function

f�N�= 2 log2N −2 log2 log2N +2 log2 e−3� (28.1)

more precisely, this is true for the overwhelming majority of N s, and to cover
every N we usually add an extra o�1� (which tends to 0 as N →�) to (28.1) (see
Theorem 6.4 (a)).

Function (28.1) is explained by the Phantom Decomposition Hypothesis (“Neigh-
borhood Conjecture” and “local randomness” are alternative names for the same
thing, see Sections 8, 18, and 19). The Phantom Decomposition Hypothesis says
that there is a virtual decomposition into “neighborhoods”: for a fixed edge e0 ∈KN ,
there are

(
N−2
q−2

)
copies of Kq in KN containing edge e0, and (28.1) is the (“real”)

solution of the equation (
N −2
q−2

)
2−�

q
2� = 1 (28.2)

in variable q = q�N�. Here the term
(
N−2
q−2

)
2−�

q
2� has a probabilistic interpretation:

it is the expected number of monochromatic red copies of Kq with e0 ∈ Kq in a
Random 2-Coloring of the edges of KN (using colors red and blue).

Next we modify Maker’s goal: instead of owning a whole Kq, Maker just wants
a given majority, (say) ≥ 90% of the edges from some Kq , or, in general, he wants
≥�

(
q

2

)
edges from some Kq , where

1
2 <�≤ 1 is a given constant. Fix an 1

2 <�≤ 1;
the largest q = q�N� such that, playing the usual (1:1) game on KN , Maker can
always own at least �

(
q

2

)
edges from some Kq in KN , is called the �-Clique Achieve-

ment Number, denoted by A�KN� clique���. How large is A�KN� clique���? The
Phantom Decomposition Hypothesis suggests to solve the equation

(
N −2
q−2

)⎛⎝ ∑
m≥��q2�

((q
2

)
m

)
2−�

q
2�

⎞
⎠= 1 (28.3)
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in variable q = q�N���; observe that (28.3) is the perfect discrepancy version of
(28.3): the left-hand side of (28.3) is the expected number of �≥��-red copies of Kq

with e0 ∈ Kq in a Random 2-Coloring of the edges of KN (using red and blue). Of
course, “�≥��-red” means that at least � part is red and at most �1−�� part is blue.

To find a “real” solution of (28.3) we use the weak form k! ≈ �k/e�k of the Stirling
formula (the ignored factor

√
2�k gives a negligible contribution in q = q�N���

anyway)

1=
(
N −2
q−2

)⎛⎝ ∑
m≥��q2�

((q
2

)
2

)
2−�

q
2�

⎞
⎠≈

(
N −2
q−2

)( (
q

2

)
�
(
q

2

)
)
2−�

q
2�

≈
(
N −2
q−2

)(
2���1−��1−�

)−�q2� ≈
(
N −2
q−2

)
2−�1−H�����q2�� (28.4)

whereH���=−� log2�−�1−�� log2�1−�� is the well-known Shannon’s entropy.
Notice that, if � goes from 1/2 to 1, the term �1−H���� goes from 0 to 1.

Returning to (28.3)–(28.4), we have

1=
(
N −2
q−2

)
2−�1−H�����q2��

which is equivalent to

�1−H����

(
q

2

)
= log2

(
N −2
q−2

)
= log2

(
eN

q

)q−2

= �q−2� log2�eN/q��

which is equivalent to

�1−H����
q

2
=
(
1− 1

q−1

)
�log2N − log2 q+ log2 e�=

= log2N − log2 q−
log2N

q−1
+ log2 e+o�1��

which is equivalent to

q = 2

1−H���

(
log2N − log2 q−

log2N
q−1

+ log2 e+o�1�
)
=

= 2

1−H���

(
log2N − log2

(
2

1−H���
log2N

)
− log2N

2
1−H���

log2N
+ log2 e+o�1�

)
=

= 2

1−H���

(
log2N − log2 log2N + log2�1−H����+ log2 e−1

)
−1+o�1��
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That is, the real solution of the Phantom Decomposition Hypothesis equation (28.3)
is (� and N are fixed)

q= q�N�= 2
1−H���

(
log2N−log2 log2N+log2�1−H����+log2 e−1

)
−1+o�1��

(28.5)
Notice that choosing �= 1 in (28.5) we get back (28.1).
Is it true that A�KN� clique��� is the lower integral part of (28.5)? Let’s see how

far we can go by adapting the proof of the case � = 1. In the proof of the case
�= 1 we used the self-improving Potential Function

Li = T�F�i��−	 ·T�Fp
2 �i��

with an appropriate positive constant 	, where T indicates the usual Power-of-Two
Scoring System

T�H�= ∑
A∈H

2−�A� and T�H� u1� � � � � um�=
∑

A∈H� 
u1�����um�⊆A

2−�A�� (28.6)

Switching from � = 1 to a general 1
2 < � ≤ 1 we have to change scoring system

(28.6). Assume we are in the middle of a play where Maker already occupies
X�i� = 
x1� � � � � xi� and Breaker already occupies Y�i� = 
y1� � � � � yi�, and with
�= �1+��/2 define

Ti���H�= ∑
A∈H

�1+���A∩X�i��−�1+���A�/2�1−���A∩Y�i��−�1−���A�/2� (28.7)

we use the special cases H = F and H = Fp
2 . We employ the Potential Function

Li = Ti���F�i��−	 ·Ti���Fp
2 �i��

with the usual side condition L0 = 1
2T0���F�, or equivalently

	= T0���F�

2T0���Fp
2 �

�

If Maker chooses that unoccupied z= xi+1 for which the function

Li�z�= Ti���F�i�� z�−	 ·Ti���Fp
2 �i�� z�

attains its maximum, then we obtain the usual inequality

Li+1 ≥Li+� ·Li�xi+1�−� ·Li�yi+1�−�2 ·Ti���F�i�� xi+1� yi+1�≥
≥Li−�2 ·Ti���F�i�� xi+1� yi+1�� (28.8)
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So far so good! Next we need a discrepancy analogue of the Generalized Variance
Lemma (Theorem 24.1). A straightforward adaptation of the proof of Theorem 24.1
would require an inequality such as

�1+��
∑p

j=1��Aj∩X�i��−�1+���Aj �/2��1−��
∑p

j=1��Aj∩Y�i��−�1−���Aj �/2� ≤
≤ �1+���

⋃p
j=1 Aj∩X�i��−�1+���⋃p

j=1 Aj �/2�1−���
⋃p

j=1 Aj∩Y�i��−�1−���⋃p
j=1 Aj �/2� (28.9)

Unfortunately, we get stuck here: inequality (28.9) is false in general! Here is a
counter-example: assume that:

(1) �Aj� = n, j = 1� � � � � p;

(2) the p intersections Aj ∩X�i�, j = 1� � � � � p are equal to the same set B with
�B� = �1+��n/2;

(3) the p intersections Aj ∩Y�i�, j = 1� � � � � p are pairwise disjoint;

(4) �Aj ∩Y�i�� = �1−��n/2, j = 1� � � � � p.

Then (28.9) simplifies to

�1+���1+����⋃p
j=1 Aj �−�A1��

(
1

1−�

)�1−���
∑p

j=1 �Aj �−�⋃p
j=1 Aj ��

≤ 1� (28.10)

which is clearly non-sense. Indeed, inequality (28.10) cannot hold in general,
because both bases, �1+ �� and 1/�1− ��, are > 1, and their exponents can be
arbitrarily large, so the left-hand side of (28.10) can be arbitrarily large.
The failure of (28.9) explains why we cannot solve the following:

Open Problem 28.1 Is it true that the �-Clique Achievement Number
A�KN� clique��� is the lower integral part of

q = q�N���= 2

1−H���

(
log2N − log2 log2N + log2�1−H����+ log2 e−1

)

−1+o�1��

or at least the distance between the two quantities is O�1�? Here the function
H���=−� log2 �− �1−�� log2�1−�� is the well-known Shannon’s entropy.

2. Nearly perfect solutions. Inequality (28.9) is false in general, but it holds (with
equality!) for any family of disjointAjs. This is very good news, because the auxiliary
big hypergraphs Fp

2∗ and Fp
2∗∗ in Section 23 (“ad hoc argument”) had some “near-

disjointness.” This gives us a hope to solve the analogue of Open Problem 28.1 for
at least the Lattice Games; and, indeed, we are going to prove the following precise
statement (see Theorem 9.1 below, which was already formulated in Section 9). For
every �with 1/2< �≤ 1, letA�N ×N� square lattice��� denote the largest value of
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q such that Maker can always occupy≥ � part of some q×q Aligned Square Lattice
in the N ×N board. We will call it the �-Discrepancy Achievement Number. We can
similarly define the �-Discrepancy Achievement Number for the rest of the Lattice
Games in Section 8, and also for the Avoidance version.

Theorem 9.1 Consider the N × N board; this is what we know about the
�-Discrepancy Achievement Numbers of the Lattice Games:

(a)
⌈√

log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� square lattice���≥

⌊√
log2 N
1−H���

− c0���−o�1�
⌋
�

(b)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� rectangle lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋
�

(c)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥A�N ×N� tilted square latt����≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋
�

(d)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� tilt� rect� lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋
�

(e)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� rhombus lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋
�

(f)
⌈
2
√

log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� parall� lattice���≥

⌊
2
√

log2 N
1−H���

− c0���−o�1�
⌋
�

(g)
⌈√

2 log2 N
1−H���

+o�1�
⌉
≥ A�N ×N� area one lattice���≥

⌊√
2 log2 N
1−H���

− c0���−o�1�
⌋
�

and the same for the corresponding Avoidance Number. Here the function H���=
−� log2 �− �1−�� log2�1−�� is the Shannon’s entropy, and

c0���=
√
log2 ·��1−��

2
log2

( �

1−�

)

is a constant (depending only on �) which tends to 0 as �→ 1.

If � is close to 1, then the additive constant c0��� is small, so the upper and lower
bounds coincide. Thus for the majority of the board size N we know the exact
value of the �-Discrepancy Achievement (and Avoidance) Numbers for the Lattice
Games.

Here and in the next section we prove the lower bounds; the upper bounds require
the techniques of Part D.

We begin the lower bound proof with cases (a) and (c), i.e. the two:

3. Simplest lattice games: the Aligned and the Tilted Square Lattice Games.
For these two games the Weak Win part of the special case � = 1 was solved
by a trivial application of the “linear” criterion Theorem 1.2 (see Section 13); we
didn’t need any sophisticated “higher moment hypergraph.” The most natural idea
is to try to develop an �-Discrepancy version of Theorem 1.2. Is the extension
trivial? The answer is “no”; at some point we need a technical trick. To understand
the necessary modifications, first we briefly recall the proof of Theorem 1.2. The
simple basic idea was to study the Opportunity Function
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Ti�F�= ∑
A∈F � A∩Y�i�=∅

2�A∩X�i��−�A�� i= 0�1�2� � � � (28.11)

and to guarantee that Tend�F� > 0. If Tend�F� > 0, then at the end of play there still
exists an A0 ∈ F which is not blocked by Breaker – this A0 is clearly occupied by
Maker, and the Weak Win is confirmed.
Let �= �1+��/2; the natural analogue of (28.11) is the sum (see (28.7))

Ti���F�= ∑
A∈F

�1+���A∩X�i��−�1+���A�/2�1−���A∩Y�i��−�1−���A�/2� (28.12)

Notice that if �= 1, (28.12) simplifies to (28.11).
Now assume Tend���F� > 0; does this imply that at the end of play there exists

an A0 ∈F from which Maker owns ≥ � part? Well, not necessarily! Even if Maker
can force a “large” lower bound such as

Tend���F�≥ 1

2
Tstart���F�= large�

that still implies nothing. Unfortunately, the sum Tend���F� can be large for the
“wrong reason”: that there are an unusually large number of sets A ∈F from which
Maker owns  part with some  < �, and � part may not occur at all! We refer to
this “wrong reason” as the “concentration on small discrepancy.”

4. A technical trick. We can prevent the “concentration on small discrepancy” by a
technical trick that is very similar to what we did in the first proof of Theorem 16.2
(see formula (16.13)). We modify (28.12) as follows, let

Ri =Ti���F�−∑
j≥0

Ti�j
�F�=

=∑
A∈F

(
�1+���A∩X�i��−��A��1−���A∩Y�i��−��A�−

∑
j≥0

�j · �1+j�
�A∩X�i��−�j �A��1−j�

�A∩Y�i��−�j �A�
)
� (28.13)

where �= �1+��/2

�=�0 =
1+0

2
� �j =

1+j

2
and j =0−

2jc�
q

for j= 1�2�3� � � � � �=0+
2c�
q

�

(28.14)
Here c� is a positive constant, depending only on �, and �j → 0 very rapidly; both
will be specified later.
It will be enough to show that Rend > 0 (the explanation comes later). The proof

argument of Theorem 1.2 gives the usual inequality (the analogue of (1.18)–(1.19))
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Rend ≥ Rstart−�2 · �V �
2

·�2� (28.15)

where �V � = N 2 is the board size, and �2 = �2�F� is the Max Pair-Degree of the
q2-uniform hypergraph F ; here F is either the family of all q×q Aligned Square
Lattices, or the family of all q×q tilted Square Lattices in N ×N . Clearly

Rstart = R0 = �F �
(
2−�1−H����q2 −∑

j≥0

�j ·2−�1−H��j��q
2

)
� (28.16)

In view of (28.15) we want Rstart to be “large.”
We claim that the choice of parameters

�0 =
(
1−�

1+�

)��−��q2

=
(
1−�

1+�

)c�q

� (28.17)

and, in general

�j =
(
1−�

1+�

)��−�j�q
2

=
(
1−�

1+�

)c��j+1�q

� (28.18)

where �j , j ≥ 0 will prevent the “concentration on small discrepancy” (the proof
comes later).

By (28.16)–(28.18)

Rstart = �F �
(
2−�1−H����q2 −∑

j≥0

2−��1−H��j�+��−�j� log2��1+��/�1−����q2

)
� (28.19)

In order to guarantee that Rstart is “large,” by (28.19) we certainly need the inequality

1−H��� < 1−H��j�+ ��−�j� log2

(
1+�

1−�

)
�

which is equivalent to

�1−H����− �1−H��j��

�−�j

< log2

(
1+�

1−�

)
= log2

(
�

1−�

)

= g′���� where g�x�= 1−H�x��

(28.20)

In (28.20) g′�x� denotes, of course, the derivative of function g�x�= 1−H�x�.
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Inequality (28.20) follows from convexity: in the figure below the chord is below
the tangent line

αj
1
2
– η

tangent at η

chord

1

y = g (x) = 1 − H(x) where

H (x) = −x log2 (x) − (1 − x) log2(1 − x)

By Taylor’s formula

g�x−��≈ g�x�−� ·g′�x�+ �2

2
·g′′�x��

so by computing the two derivatives

g′�x�= �1−H�x��′ = log2
( x

1−x

)
and g′′�x�=

(
logx− log�1−x�

log2

)′
= 1

log2 ·x�1−x�

we get

�1−H��j��≈ �1−H����− ��−�j� log2

(
�

1−�

)
+ ��−�j�

2

2
· 1
log2 ·��1−��

�

or equivalently, by (28.14)

�1−H��j��− ��−�j� log2

(
�

1−�

)
− �1−H����≈ ��−�j�

2

2
· 1
log2 ·��1−��

=

= c2� · �j+1�2

2 log2 ·��1−��q2
�

(28.21)

By (28.21) and (28.19)

Rstart ≈ �F � ·2−�1−H����q2

(
1−∑

j≥0

2−
c2� ·�j+1�2

2 log2·��1−��

)
� (28.22)

so by choosing
c� =

√
2 log2 ·��1−�� (28.23)

in (28.22) we have

Rstart ≈ �F � ·2−�1−H����q2

(
1−∑

j≥0

2−�j+1�2

)
≥ 1

3
�F � ·2−�1−H����q2 � (28.24)



Discrepancy games (I) 389

Now let’s return to (28.13). Assume that

Rstart > �2�V ��2 = �2N 2�2 (28.25)

holds; then by (28.13) and (28.24)

Rend ≥
1

2
Rstart ≈

1

2
Rstart ≥

1

6
�F � ·2−�1−H����q2 > 0� (28.26)

We claim that (28.26) implies �-Discrepancy, i.e. We are going to derive from
(28.26) the existence of an A0 ∈ F such that Maker owns at least � part from A0.
Indeed, if there is no �-Discrepancy, then from every A ∈ F Maker owns less than
� part. In other words, �A∩X�end��<�q2, implying that �j+1q

2 ≤ �A∩X�end��<
�jq

2 holds for some j = j�A�≥ 0. Then trivially (see (28.17)–(28.18) and (28.14))

�1+���A∩X�end��−�q2 · �1−���A∩Y�end��−�1−��q2 =
= �1+���A∩X�end��−�jq

2−��−�j�q
2 · �1−���A∩Y�end��−�1−�j�q

2+��−�j�q
2 =

= �j · �1+���A∩X�end��−�jq
2 · �1−���A∩Y�end��−�1−�j�q

2 ≤
≤ �j · �1+j�

�A∩X�end��−�jq
2 · �1−j�

�A∩Y�end��−�1−�j�q
2
� (28.27)

(28.27) immediately gives that

�1+���A∩X�end��−�q2 · �1−���A∩Y�end��−�1−��q2 ≤
≤∑

j≥0

�j · �1+j�
�A∩X�end��−�jq

2 · �1−j�
�A∩Y�end��−�1−�j�q

2
� (28.28)

holds for every A ∈ F . Combining (28.28) and (28.13) we conclude that Rend ≤ 0,
which contradicts (28.26). This contradiction proves that, if (28.25) holds, then
Maker forces an �-Discrepancy.
It remains to guarantee inequality (28.5)

Rstart > �2�V ��2 = �2N 2�2�

We recall (28.24)

Rstart ≥
1

3
�F � ·2−�1−H����q2�

so it suffices to check
1

3
�F � ·2−�1−H����q2 ≥ N 2�2� (28.29)

where by (28.13) and (28.23)

�= �+ c�
q

= �+
√
2 log2 ·��1−��

q
� (28.30)
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Let g�x�= 1−H�x�; by using (28.30) and the linear approximation

g���≈ g���+ ��−��g′���= g���+
√
2 log2 ·��1−��

q
· log2

( �

1−�

)
� (28.31)

in (28.29), we have

�F �
N 2

≥3�2 ·2�1−H����q2 =

= 3�2 ·2
q2
(√

2 log2·��1−��
q ·log2� �

1−� �
)
=

= 3�2 ·2q2+2q·c0���� (28.32)

where

c0���=
√
log2 ·��1−��

2
log2

( �

1−�

)
� (28.33)

(28.32) clearly follows from the (slightly stronger) inequality

�F �
N 2

≥ 3�2 ·2�q+c0����
2
� (28.34)

(28.34) is equivalent to the key inequality√
1

1−H���
log2

( �F �
3�2 ·N 2

)
− c0���≥ q� (28.35)

Now we are ready to prove the lower bounds in Theorem 9.1 for the two Square
Lattices.

5. Case (a) in Theorem 9.1: Here F is the family of all q× q Aligned Square
Lattices in N ×N

Then

�F � ≈ N 3

3q
and �2�F�≤

(
q2

2

)
≤ q4

2
�

so (28.35) is equivalent to√
1

1−H���
log2

(
2N 3

9q5 ·N 2

)
− c0���=

√
1

1−H���
log2N − c0���−o�1�≥ q�

(28.36)
Therefore, if q is the lower integral part of√

1
1−H���

log2N − c0���−o�1��

then Maker can always force an �-Discrepancy in the Aligned Square Lattice Game.
This proves the lower bound in Theorem 9.1 (a).
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6. Case (c) in Theorem 9.1: F is the family of all q×q tilted Square Lattices in
N ×N

Then

�F � ≈ N 4 and �2�F�≤
(
q2

2

)
≤ q4

2
�

so (28.35) is equivalent to√
1

1−H���
log2

(
N 2

N 2

)
− c0���−o�1�=

√
2

1−H���
log2N − c0���−o�1�≥ q�

(28.36)
Therefore, if q is the lower integral part of√

2

1−H���
log2N − c0���−o�1��

then Maker can always force an �-Discrepancy in the Tilted Square Lattice Game.
This proves the lower bound in Theorem 9.1 (c).



29
Discrepancy games (II)

In the last section we proved Theorem 9.1 for the two Square Lattice games; how
about the rest? We consider next:

1. Case (f) in Theorem 9.1: F is the family of all q×q parallelogram lattices in
N ×N .
Then the Max Pair-Degree �2 = �2�F� = N 2−o�1� is very large, so Theorem 1.2
becomes inefficient. We can save the day by developing a discrepancy version of
the ad hoc Higher Moment method of Section 23; in fact, we are going to combine
the techniques of Sections 28 (preventing the “concentration on small discrepancy”)
and Sections 23 (involving the auxiliary hypergraphs Fp

2∗ and Fp
2∗∗).

Assume that we are in the middle of a play where Maker owns X�i�= 
x1� � � � � xi�

and Breaker owns Y�i� = 
y1� � � � � xi�. We want to prevent the “concentration on
small discrepancy” by a technical trick of Section 28; by using the notation of
Section 28, let

Li =
(
Ti���F�−∑

j≥0

Ti�j
�F�

)
−	 ·Ti���Fp

2∗�� (29.1)

where parameter p will be specified later (note in advance that p= 9 will be a good
choice) and 	 is determined by the natural side condition

L0 =
1
2

(
T0���F�−∑

j≥0

T0�j
�F�

)
�

which is equivalent to

	= T0���F�−∑
j≥0 T0�j

�F�

2T0���Fp
2∗�

� (29.2)

Similarly to Section 28, it will be enough to show that Lend > 0.

392
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If Maker chooses that unoccupied xi+1 = z for which the function

Li�z�=
(
Ti���F� z�−∑

j≥0

Ti�j
�F� z�

)
−	 ·� ·Ti���Fp

2∗� z�

attains its maximum, then

Li+1 ≥ Li+Li�xi+1�−Li�yi+1�−�2 ·Ti���F� xi+1� yi+1�=
≥ Li−�2 ·Ti���F� xi+1� yi+1�� (29.3)

The plan is to estimate Ti���F� xi+1� yi+1� from above. We follow the ad hoc
technique of Section 23.

For k= 0�1�2� � � � � q2 and l= 0�1�2� � � � � q2 write

F�xi+1� yi+1� k� l�= 
A ∈ F � 
xi+1� yi+1�⊂ A�A∩Y�i�

= ∅� �A∩X�i�� = k� �A∩Y�i�� = l�

and �F�xi+1� yi+1� k� l�� =Mk�l.
We develop a key inequality (see (29.5) below), which estimates the “one-

sided discrepancy” T�F�i�� xi+1� yi+1� from above. Select an arbitrary A1 ∈
F�xi+1� yi+1� k� l� and an arbitrary point z ∈ A1 which is not on the xi+1yi+1-line
(the xi+1yi+1-line means the straight line joining the two lattice points xi+1� yi+1).

The property of 3-determinedness gives that there are ≤ (
q2

3

) ≤ q6/6 winning sets
A2 ∈ F , which contain the non-collinear triplet 
xi+1� yi+1� z�; as z runs, we obtain
that there are ≤ q8/6 winning sets A2 ∈ F , which contain the pair 
xi+1� yi+1� such
that the intersection A1∩A2 is not contained by the xi+1yi+1-line.

Assume that Mk�l ≥ p2q8; then there are at least

Mk�l · �Mk�l−q8/6� · �Mk�l−2q8/6� · · · �Mk�l− �p−1�q8/6�

p! ≥
(
Mk�l

p

)p

p-tuples


A1� � � � �Ap� ∈
(F�xi+1� yi+1� k� l�

p

)

such that, deleting the points of the xi+1yi+1-line, the remaining parts of the p sets
A1� � � � �Ap become disjoint.
It follows that, if Mk�l ≥ p2q8, then

Ti���Fp
2∗�≥

(
Mk�l

p

)p

· �1+��p�k−�1+��q2/2�−�p−1�q · �1−��p�l−�1−��q2/2�+�p−1�q� (29.4)

where the extra factors �1+��−�p−1�q and �1−���p−1�q are due to a possible over-
lapping on the xi+1yi+1-line (note that a straight line intersects a given q× q

parallelogram lattice in at most q points). By (29.4)
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p2q8+p

(
1+�

1−�

)q

· (Ti���Fp
2∗�
)1/p

≥Mk�l · �1+���k−�1+��q2/2� · �1−���l−�1−��q2/2��

which implies the Key inequality

Ti���F� xi+1� yi+1�=
∑

k+l≤q2� k≥0�l≥0

Mk�l · �1+���k−�1+��q2/2� · �1−���l−�1−��q2/2�

≤ p2q12+pq4

(
1+�

1−�

)q

· (Ti���Fp
2∗�
)1/p

� (29.5)

By (29.3) and (29.5)

Li+1 ≤ Li−�2 ·
(
p2q12+pq4

(
1+�

1−�

)q

· (Ti���Fp
2∗�
)1/p)

� (29.6)

2. Distinguishing two cases. Similarly to Section 23 we distinguish 2 cases: either
there is or there is no index i such that

Ti���Fp
2∗� > N 2p−5 ·T0���Fp

2∗�� (29.7)

Case 1: There is no index i such that (29.7) holds.
Then by (29.6)–(29.7)

Lend = LN 2/2 ≥ L0−
(
p2q12+pq4

(
Ti���Fp

2∗�
)1/p)

≥ L0−p2q12N
2

2
+pq4N

2

2

(
1+�

1−�

)q

·N 2− 5
p
(
Ti���Fp

2∗�
)1/p

� (29.8)

By (29.1)–(29.2)

L0 = 1
2
�F �

(
�1+��−�1+��q2/2�1−��−�1−��q2/2−∑

j≥0

�j · �1+j�
−�1+j �q

2/2�1−j�
−�1−j �q

2/2

)

=1
2
�F �

(
2−�1−H����q2 −∑

j≥0

�j ·2−�1−H��j��q
2
)
�

where �= �1+��/2

�= �0� �j =
1+j

2
and �j = �− jc�

q
for j = 1�2�3� � � � � �= �+ c�

q
� (29.9)

here c� =
√
2 log2 ·��1−��, and �j → 0 very rapidly as follows

�j =
(
1−�

1+�

)��−�j�q
2

=
(
1−�

1+�

)c��j+1�q

� (29.10)

j = 0�1�2� � � �.
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By repeating the calculations in Section 28 we obtain the analogue of (28.24)

Lstart = L0 =
1

2
�F �

(
2−�1−H����q2 −∑

j≥0

�j ·2−�1−H��j��q
2

)

≥1
6
�F � ·2−�1−H����q2 � (29.11)

Trivially

T0���Fp
2∗�≤ �N 2�2 · �N 2�p · �1+��−p�q2+p�q · �1−��−p�1−��q2�

where the extra factor �1+ ��p�q comes from the possible overlappings on the
intersection line

⋂p
i=1Ai-line (see (23.4)), which means the uniquely determined

straight line containing the �≥ 2�-element collinear set
⋂p

i=1Ai. Thus we have
(
T0���Fp

2∗�
)1/p ≤ N 2+ 4

p · �1+��−�q2+�q · �1−��−�1−��q2

= N 2+ 4
p · �1+���q ·2−�1−H����q2 � (29.12)

We have the analogue of (23.13)

T�F�≥ N 6

214�q−1�4
2−�1−H����q2�

so by (29.8), (29.11), and (29.12)

Lend ≥
N 6

214�q−1�4
2−�1−H����q2 − p2

2
q12 ·N 2

−pq4N
2

2

(
1+�

1−�

)q

·N 2− 5
p N 2+ 4

p · �1+���q ·2−�1−H����q2

=
(

N 6

3 ·215�q−1�4
− pq4

2
N 6− 1

p
�1+��2q

�1−��q

)
·2−�1−H����q2 − p2

2
q12 ·N 2� (29.13)

By choosing 2�1−H����q2 = N 4+o�1�, that is

q = �2+o�1��

√
1

1−H���
log2N� (29.14)

(29.13) simplifies to

Lend ≥
N 6

217�q−1�4
2−�1−H����q2 − p2

2
q12 ·N 2� (29.15)

Assume that Lend > 0. Then the choice of parameters �j , j ≥ 0 prevents the
“concentration on small discrepancy” exactly the same way as in Section 28, and
implies the existence of an �-Discrepancy.
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It remains to guarantee Lend > 0. By (29.15) and (29.10) we have to check

N 6

217�q−1�4
2−�1−H����q2 >

p2

2
q12 ·N 2�

which is equivalent to

N 4

3 ·216�q−1�4q12
> 2−�1−H����q2� (29.16)

where �= �+ c�
q
with c� =

√
2 log2 ·��1−��.

Repeating the calculations at the end of Section 28 we see that (29.16) follows
from

2

√
1

1−H���
log2N − c0���−o�1�≥ q� (29.17)

where

c0���=
√
log2 ·��1−��

2
log2

( �

1−�

)
� (29.18)

This completes Case 1. It remains to study Case 2.

Case 2: There is an index i such that (29.7) holds.
Again we show that Case 2 is impossible. Let i = j1 be the first index such that
(29.7) holds. Repeating the argument of Case 1 we can still save the following
weaker version of (29.15): Lj1

> 0. By definition (see (29.1))

Tj1��
�F�−	 ·Tj1��

�Fp
2∗�≥ Lj1

> 0�

so by (29.2) and (29.7)

Tj1��
�F� > 	 ·Tj1��

�Fp
2∗� > N 2p−5 ·	 ·T0���Fp

2∗��

which by the side condition (29.2) equals

= N 2p−5 · 1
2

(
T0���F�−∑

j≥0

T0�j
�F�

)
= N 2p−5 ·L0� (29.19)

Combining this with (29.11) we have

Tj1��
�F� >N 2p−5 ·L0 ≥ N 2p−5 · 1

6
�F � ·2−�1−H����q2

= N 2p−5 · �F � ·N−4+o�1� = N 2p−9+o�1� · �F �� (29.20)

By definition

Tj1��
�F�= ∑

A∈F
�1+���A∩X�j1��−��A��1−���A∩Y�j1��−�1−���A�� (29.21)

We can assume that

�A∩X�j1��− �A∩Y�j1�� ≤ 2��A��
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indeed, otherwise there is a lead > 2��A0� > 2�A0� in some A0 ∈ F that Maker
can keep for the rest of the play, and ends up with

>
1+�

2
�A0�>

1+

2
�A0� = ��A0�

points in some A0 ∈ F . That is, Maker can achieve an �-Discrepancy.
We can assume, therefore, that

�A∩X�j1��−
(
1+�

1−�

)
�A∩Y�j1�� ≤ 2��A� holds for every A ∈ F�

which implies the inequality

�1+���A∩X�j1��−�1+���A�/2�1−���A∩Y�j1��−�1−���A�/2

= �1+���A∩X�j1��−
1+�
1−� �A∩Y�j1�� · (�1+��−�1+��/2�1−��−�1−��/2

)�A�− 2
1−� �A∩Y�j1��

≤ �1+��2��A� ·2−�1−H������A�− 2
1−� �A∩Y�j1���� (29.22)

We distinguish two cases:

(1) If �A∩Y�j1��> �1−���A�/2, then �A∩X�j1��< �1+���A�/2, and so

�1+���A∩X�j1��−�1+���A�/2�1−���A∩Y�j1��−�1−���A�/2 ≤ 1�

(2) If �A∩ Y�j1�� ≤ �1− ���A�/2, then �A� ≥ 2
1−�

�A∩ Y�j1��, and so by (29.22)
�A∩X�j1��< �1+���A�/2, and so

�1+���A∩X�j1��−�1+���A�/2�1−���A∩Y�j1��−�1−���A�/2 ≤ �1+��2��A��

Summarizing, in both cases we have

�1+���A∩X�j1��−�1+���A�/2�1−���A∩Y�j1��−�1−���A�/2 ≤ �1+��2��A�� (29.23)

We need the following elementary inequality.

Lemma 1: For every 1/2 ≤ x ≤ 1

�2x�2x−1 ≤ 22�1−H�x��

where H�x�=−x log2 x− �1−x� log2�1−x�.

To prove Lemma 1 we take binary logarithm of both sides

�2x−1� log2�2x�≤ 2�1+x log2 x+ �1−x� log2�1−x���

which is equivalent to

2x− log2 x−2�1−x� log2�1−x�≤ 3� (29.24)

Substituting y = 1−x in (29.24), we have to check that

2y+2y log2 y+ log2�1−y�≥−1 holds for all 0 ≤ y ≤ 1/2� (29.25)
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But (29.25) is trivial from the fact that in the interval 0 ≤ y ≤ 1/2 the function
f�y�= 2y+2y log2 y+ log2�1− y� is monotone decreasing. Indeed, computing the
first two derivatives

f ′�y�=2+ 2 logy
log2

+ 2
log2

− 1
log2�1−y�

�

f ′′�y�= 2

log2y
− 1

log2�1−y�2
= 1

log2
2−5y+2y2

y�1−y�2
≥ 0

if 0 ≤ y ≤ 1/2. So f ′�y� is monotone increasing, and

max
0≤y≤1/2

f ′�y�= f ′�1/2�= 0�

completing the proof of Lemma 1. �

By choosing 2�1−H����q2 = N 4+o�1�, that is

q = �2+o�1��

√
1

1−H���
log2N�

and applying Lemma 1, we have

�1+��2��A� = �1+��2�q
2 ≤ 22�1−H��1+��/2��q2

= 22�1−H����q2 = N 8+o�1��

so by (29.21) and (29.23)

Tj1��
�F�≤ �F � ·N 8+o�1�� (29.26)

On the other hand, by (29.20)

Tj1��
�F� > N 2p−9+o�1� · �F ��

which contradicts (29.26) if p = 9. This contradiction proves that Case 2 is
impossible with p= 9.
Returning to Case 1, we have just proved the following result: if q is the lower

integral part of

2

√
1

1−H���
log2N − c0���−o�1��

then Maker can always force an �-Discrepancy in the Parallelogram Lattice Game.
This proves the lower bound in Theorem 9.1 (f).

3. Case (b) in Theorem 9.1: F is the family of all q×q aligned rectangle lattices
in N ×N

We proceed similarly to Case (f) (“Parallelogram Lattice Game”), the only minor
difference is to work with the other auxiliary hypergraph Fp

2∗∗, defined in (23.24)
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(instead of Fp
2∗, defined in (23.4)). This way we obtain the following result: if q is

the lower integral part of√
2

1−H���
log2N − c0���−o�1��

then Maker can always force an �-Discrepancy in the Parallelogram Lattice Game.
This proves the lower bound in Theorem 9.1 (b).

The rest of the lattice games go similarly.
Summarizing, the Discrepancy Problem remains unsolved for the Clique Game,

but has an almost perfect solution for the Lattice Games (see Theorem 9.1), where
the only minor “defect” is the appearance of an extra additive constant c0���,
which – luckily(!) – tends to zero as �→ 1.



30
Biased Games (I): Biased Meta-Conjecture

Section 17 was a triumph for the biased case: we could successfully generalize a
fair (1:1) game (Theorem 17.1) to the general �p � q� biased game (Theorem 17.5).
This kind of a “triumph” is very rare; the following Sections 30–33 are more like
“defeats”; we discuss sporadic results where the upper and lower bounds rarely
coincide.

1. When do we have a chance for an exact solution? We begin our discussion
of the biased games with recalling the two simplest – but still fundamentally
important – results in the book: the two “linear” criterions.

Linear WeakWin criterion (Theorem 1.2): If hypergraph F is n-uniform, Almost
Disjoint, and

�F �
�V �

(
1
2

)n

>
1

8
� (30.1)

then playing the (1:1) game on F Maker, as the first player, can force a Weak Win.

Linear Strong Draw criterion (special case of Theorem 1.4): If hypergraph F is
n-uniform and

�F �
(
1

2

)n

<
1

2
� (30.2)

then playing the (1:1) game on F Breaker, as the second player, can force a Strong
Draw. Both criterions contain the same factor “

(
1
2

)n
”; the ratio 1

2 = 1
1+1 is clearly

explained by the (1:1) play.
Next consider the �m � b� play, where Maker (as the first player) takes m points
and Breaker (the second player) takes b points per move. We know the following
biased versions of (30.1)–(30.2).

Biased Weak Win criterion (Theorem 2.2): If hypergraph F is n-uniform, Almost
Disjoint, and

�F �
�V �

(
m

m+b

)n

>
m2b2

�m+b�3
� (30.3)

400
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then playing the �m � b� game on F Maker (the first player) can force a Weak Win.

Biased Strong Draw criterion (Theorem 20.1): If hypergraph F is n-uniform and

�F � (�1+b�−1/m
)n

<
1

1+b
� (30.4)

then playing the �m � b� game on F Breaker (the second player) can force a Strong
Draw.

Notice that (30.2) and (30.4) are sharp. Indeed, for simplicity, assume that n is
divisible by m, and consider the regular “tree” of n/m levels, where every vertex
represents m points, and the out-degree is b+1 (except at the bottom level):

b + 1

m points

· · ·

· · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·· · ·

· · ·

· · ·

· · · · · ·· · ·

· · · · · ·

· · ·

· · ·

· · ·· · · · · ·· · ·· · ·· · ·

The full-length branches of the “tree” represent the winning sets of hypergraph
F ; F is clearly m · �n/m� = n-uniform and has �1+ b��n/m�−1 winning sets. By
“stepping down” on the tree the first player can always occupy a full-length branch,
proving that this F is an Economical Winner.
It is good to know that this Economical system is the only extremal system for

Theorem (30.4) with b ≥ 2. This result was proved by Kruczek and Sundberg; the
proof is long and complicated.

In sharp contrast with the biased case b ≥ 2, in the fair (1:1) game Theorem
(30.2) has many other extremal systems. Here is an extremal system which is not
an Economical Winner: it is a 4-uniform hypergraph with 23 = 8 winning sets,
where Maker (the first player) needs at least 5 turns to win

deficit one
hypergraph

The players take vertices, and the winning sets are the 8 full-length branches. The
reader is challenged to check that this is not an Economical Winner.
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Comparing the pair (30.1)–(30.2) with (30.3)–(30.4) we see a major difference:
in (30.3)–(30.4) the critical factors(

m

m+b

)n

and
(
�1+b�−1/m

)n

are different. In fact, we have a strict inequality

m

m+b
< �1+b�−1/m�which holds for all pairs �m�b� except the special case �1�b�

when we have equality. Indeed, if m≥ 2, then by the binomial theorem
(
m+b

m

)m

=
(
1+ b

m

)m

= 1+
(
m

1

)
b

m
+
(
m

2

)(
b

m

)2

+· · ·> 1+b�

The ultimate reason why we can determine the exact value of the Achievement and
Avoidance Numbers for the usual (1:1) play is the appearance of the same factor
“
(
1
2

)n
” (where the fraction 1

2 = 1
1+1 comes from the (1:1) play).

The exponentially large difference between(
m

m+b

)n

and
(
�1+b�−1/m

)n
when m≥ 2

prevents us from doing any kind of straightforward adaptation of the machinery of
the (1:1) case to the general �m�b� biased case. The �1�s� case is the only solution
of the equation m

m+b
= �1+b�−1/m. The importance of the ratio m

m+b
is obvious: it is

the probability that a given point of the board is taken by the first player (Maker).
With the available tools (30.3)–(30.4), the best that we can hope for is to find the

exact solution for the �1�b� play (i.e. when Maker, the first player, takes 1 point and
Breaker, the second player, takes b points per move; b≥ 2 can be arbitrarily large).

Question 30.1 Can we prove exact results for the underdog �1 �b� Achievement
Game �b ≥ 2� where Breaker is the topdog?

For the Avoidance version the “hopeful” biased case is the �a�1� play, where Avoider
takes a�≥ 2� points and Forcer takes 1 point per move. To justify this claim,
we formulate first the simplest (1:1) Avoidance version of the Erdős–Selfridge
Theorem.

(1:1) Avoidance Erdős–Selfridge: If hypergraph F is n-uniform and �F � < 2n,
then playing the (1:1) game on F , Avoider, as the first player, can always avoid
occupying a whole winning set A ∈ F .

The proof of the “(1:1) Avoidance Erdős–Selfridge” is exactly the same as that
of the Erdős–Selfridge Theorem itself, the only minor difference is that Avoider
minimizes the potential function (where in Section 10 Breaker was maximizing the
potential function).
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2. Avoidance Erdős–Selfridge: the (a:1) play (the rest is hopeless!). It is not too
difficult to extend the “(1:1) Avoidance Erdős–Selfridge” for the �a�1� play with
arbitrary a≥ 2 (Forcer is the underdog), but to find a useful criterion for the general
�a � f� case with f ≥ 2 remains unsolved! Why is the general case so hard?
The “�a�1�Avoidance Erdős–Selfridge” for the a≥ 2 case was already formulated

at the end of Section 20 without proof, see Theorem 20.4. Here we recall the
statement and give two different proofs. The second proof is longer, but it supplies
an extra information that we need later (to prove Theorem 30.1).

Theorem 20.4 Let a ≥ 2 be an arbitrary integer, and let F be an n-uniform
hypergraph with size

�F �<
(
a+1
a

)n

�

Then, playing the �a �1� Avoidance Game on F , where Forcer is the underdog,
Avoider (as the first player) has a winning strategy.

First Proof. This is the “natural” proof: a straightforward adaptation of the proof
technique of Theorem 20.1. Assume we are in the middle of a play, Avoider (the
first player) owns the points

X�i�=
{
x
�1�
1 � � � � � x

�a�
1 � x

�1�
2 � � � � � x

�a�
2 � � � � � x

�1�
i � � � � � x

�a�
i

}
� and Y�i�= 
y1� y2� � � � � yi�

is the set of Forcer’s points. The question is how to choose Avoider’s �i+ 1�st
move x

�1�
i+1� � � � � x

�a�
i+1. Write

F�i�= 
A\X�i� � A ∈ F� A∩Y�i�= ∅��
i.e. F�i� is the family of the unoccupied parts of the “survivors.” In the �a � 1� play,
it is natural to switch from the Power-of-Two Scoring System to the Power-of-� a+1

a
�

Scoring System (since the �a � 1� play gives the ratio a+1
a
)

T�H�= ∑
B∈H

(
a+1
a

)−�B�
and T�H� u1� � � � � um�=

∑
B∈H�
u1�����um�⊂B

(
a+1
a

)−�B�
�

For every 1≤ j ≤ a, write

X�i� j�= X�i�∪ 
x
�1�
i+1� � � � � x

�j�
i+1�

and

F�i� j�= 
A\X�i� j� � A ∈ F� A∩Y�i�= ∅��
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The effect of the �i+ 1�st moves x
�1�
i+1� � � � � x

�a�
i+1 and yi+1 can be described by an

inequality as follows

T�F�i+1��≤ T�F�i��+ 1
a
T�F�i�� x

�1�
i+1�+

1
a
T�F�i�1�� x�2�i+1�+

+ 1
a
T�F�i�2�� x�3�i+1�+· · ·+ 1

a
T�F�i� a−1�� x�a�i+1�−T�F�i� a�� yi+1��

(30.5)

Notice that (30.5) is an inequality due to the effect of the sets B ∈ F�i�,
which (1) contain yi+1 and also (2) have a non-empty intersection with the set

x

�1�
i+1� x

�2�
i+1� � � � � x

�a�
i+1�.

Let x�1�i+1 be defined as the z ∈ V \ �X�i�∪ Y�i�� (where V is the union set of
hypergraph F) for which the function T�F�i�� z� attains its minimum; let x�2�i+1 be
defined as the z ∈ V \�X�i�1�∪Y�i�� for which the function T�F�i�1�� z� attains its
minimum; let x�3�

i+1 be defined as the z ∈ V \ �X�i�2�∪Y�i�� for which the function
T�F�i�2�� z� attains its minimum; and so on. We have the inequality

T�F�i�� x
�1�
i+1�≤ T�F�i�� yi+1�≤ T�F�i� a�� yi+1��

where the first half is due to the minimum property of x�1�i+1, and the second half is
trivial from the definition. Similarly we have

T�F�i�1�� x�2�i+1�≤ T�F�i�1�� yi+1�≤ T�F�i� a�� yi+1��

T�F�i�2�� x�3�i+1�≤ T�F�i�2�� yi+1�≤ T�F�i� a�� yi+1��

and so on. Substituting these inequalities back to (30.5), we obtain

T�F�i+1��≤ T�F�i��+ 1

a
T�F�i� a�� yi+1�+

1

a
T�F�i� a�� yi+1�

+ 1

a
T�F�i� a�� yi+1�+· · ·+ 1

a
T�F�i� a�� yi+1�−T�F�i� a�� yi+1�

= T�F�i���

which is the key decreasing property. The rest of the proof is standard. �

Second Proof. The starting point of the first proof was inequality (30.5); here the
starting point is an equality (see (30.6) below).

To illustrate the idea on the simplest case, we begin with the �2�1� play, i.e.
a= 2. Assume that Avoider (the first player) owns the points

X�i�=
{
x
�1�
1 � x

�2�
1 � x

�1�
2 � x

�2�
2 � � � � � x

�1�
i � x

�2�
i

}
� and Y�i�= 
y1� y2� � � � � yi�
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is the set of Forcer’s points. The question is how to choose Avoider’s �i+ 1�st
move x

�1�
i+1� x

�2�
i+1. As usual write

F�i�= 
A\X�i� � A ∈ F� A∩Y�i�= ∅��
In the (2:1) play it is natural to switch from the Power-of-Two Scoring System to
the Power-of-� 32 � Scoring System

T�H�= ∑
B∈H

(
3
2

)−�B�
and T�H� u1� � � � � um�=

∑
B∈H� 
u1�����um�⊂B

(
3
2

)−�B�
�

Let Ti = T�F�i��; the effect of the �i+1�st moves x�1�i+1� x
�2�
i+1 and yi+1 goes as follows

Ti+1 =Ti+
1

2
T�F�i�� x

�1�
i+1�+

1

2
T�F�i�� x

�2�
i+1�

+ 1

4
T�F�i�� x

�1�
i+1� x

�2�
i+1�−T�F�i�� yi+1�−

1

2
T�F�i�� x

�1�
i+1� yi+1�

− 1
2
T�F�i�� x

�2�
i+1� yi+1�−

1
4
T�F�i�� x

�1�
i+1� x

�2�
i+1� yi+1�� (30.6)

Identity (30.6) is rather long, but the underlying pattern is very simple: it is described
by the expansion of the product(

1+ 1
2
x�1�

)(
1+ 1

2
x�2�

)
�1−y�−1= 1

2
x�1�+ 1

2
x�2�

+ 1
4
x�1�x�2�−y− 1

2
x�1�y− 1

2
x�2�y− 1

4
x�1�x�2�y� (30.7)

For every unoccupied pair 
u1� u2� ∈ V \ �X�i�∪Y�i�� (where V is the union set of
hypergraph F), define the sum

f�u1� u2�= T�F�i�� u1�+T�F�i�� u2�+T�F�i�� u1� u2�� (30.8)

By using function (30.8) we are ready to explain how Avoider chooses his �i+1�st
move x

�1�
i+1� x

�2�
i+1. Let 
x

�1�
i+1� x

�2�
i+1� be that unoccupied pair 
u1� u2� for which the the

function f�u1� u2� attains its minimum. Since yi+1 is selected after 
x�1�i+1� x
�2�
i+1�, we

have

f�x
�1�
i+1� x

�2�
i+1�≤ f�x

�1�
i+1� yi+1� and f�x

�1�
i+1� x

�2�
i+1�≤ f�x

�2�
i+1� yi+1�� (30.9)

By using notation (30.8) we can rewrite equality (30.6) as follows

Ti+1 = Ti+f�x
�1�
i+1� x

�2�
i+1�−

1

2
f�x

�1�
i+1� yi+1�−

1

2
f�x

�2�
i+1� yi+1�

− 3
4
T�F�i�� x

�1�
i+1� x

�2�
i+1�−

1
4
T�F�i�� x

�1�
i+1� x

�2�
i+1� yi+1�� (30.10)

Combining (30.9) and (30.10) we obtain the decreasing property Ti+1 ≤ Ti, which
implies Tend ≤ Tstart. By hypothesis Tstart = T�F� < 1, so Tend < 1. This proves that
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at the end of the play Avoider cannot own a whole winning set; indeed, otherwise
Tend ≥ �3/2�0 = 1, a contradiction. This solves the special case a= 2.
A similar idea works for every a ≥ 2. We apply the Power-of-� a+1

a
� Scoring

System (since the (a:1) play gives the ratio a+1
a
)

T�H�= ∑
B∈H

(
a+1

a

)−�B�
and T�H� u1� � � � � um�=

∑
B∈H�
u1�����um�⊂B

(
a+1

a

)−�B�
�

Let Ti = T�F�i��. The analogue of (30.7) is the expansion(
1+ 1

a
x�1�

)(
1+ 1

a
x�2�

)
· · ·

(
1+ 1

a
x�a�

)
�1−y�−1= 1

a

a∑
j=1

x�j�

+ 1

a2

∑
1≤j1<j2≤a

x�j1�x�j2�+ 1

a3

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�+· · ·

−y− y

a

a∑
j=1

x�j�− y

a2

∑
1≤j1<j2≤a

x�j1�x�j2�

− y

a3

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�+· · · � (30.11)

We are ready to explain how Avoider chooses his �i+1�st move x
�1�
i+1� � � � � x

�a�
i+1.

For every unoccupied a-tuple 
u1� � � � � ua� ∈ V \ �X�i�∪Y�i��, define the sum

f�u1� � � � � ua�=1
a

a∑
j=1

T�F�i�� uj�+ 1
a�a−1�

∑
1≤j1<j2≤a

T�F�i�� uj1
� uj2

�

+ 1
a2�a−2�

∑
1≤j1<j2<j3≤a

T�F�i�� uj1
� uj2

� uj3
�

+ 1
a3�a−3�

∑
1≤j1<j2<j3<j4≤a

T�F�i�� uj1
� uj2

� uj3
� uj4

�+· · · � (30.12)

Let 
x�1�i+1� � � � � x
�a�
i+1� be that unoccupied a-tuple 
u1� � � � � ua� for which the the func-

tion f�u1� � � � � ua� attains its minimum. Since yi+1 is selected after 
x�1�i+1� � � � � x
�a�
i+1�,

we have

f�x
�1�
i+1� � � � � x

�a�
i+1�≤ f�yi+1� x

�2�
i+1� � � � � x

�a�
i+1��

f�x
�1�
i+1� � � � � x

�a�
i+1�≤ f�x

�1�
i+1� yi+1� x

�3�
i+1� � � � � x

�a�
i+1��

f�x
�1�
i+1� � � � � x

�a�
i+1�≤ f�x

�1�
i+1� x

�2�
i+1� yi+1� x

�4�
i+1� � � � � x

�a�
i+1��

and so on, where the last one is

f�x
�1�
i+1� � � � � x

�a�
i+1�≤ f�x

�1�
i+1� � � � � x

�a−1�
i+1 � yi+1��
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Adding up these inequalities, we get a new inequality, which has the “short form”

a∑
j=1

x�j�+ 1

a−1

∑
1≤j1<j2≤a

x�j1�x�j2�+ 1

a�a−2�

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�+· · ·

≤ a−1
a

a∑
j=1

x�j�+y+ a−2
a�a−1�

∑
1≤j1<j2≤a

x�j1�x�j2�+ a−1
a�a−1�

y
a∑

j=1

x�j�

+ a−3

a2�a−2�

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�+ a−2

a2�a−2�
y

∑
1≤j1<j2≤a

x�j1�x�j2�+· · · �

which is equivalent to

f�x
�1�
i+1� � � � � x

�a�
i+1�−

1
a
f�yi+1� x

�2�
i+1� � � � � x

�a�
i+1�

− 1
a
f�x

�1�
i+1� yi+1� x

�3�
i+1� � � � � x

�a�
i+1�−

1

a
f�x

�1�
i+1� x

�2�
i+1� yi+1� x

�4�
i+1� � � � � x

�a�
i+1�−· · ·

− 1

a
f�x

�1�
i+1� � � � � x

�a−1�
i+1 � yi+1�

= 1

a

a∑
j=1

x�j�−y+ 2

a�a−1�

∑
1≤j1<j2≤a

x�j1�x�j2�− y

a

a∑
j=1

x�j�+

+ 3
a2�a−2�

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�− y

a2

∑
1≤j1<j2≤a

x�j1�x�j2�±· · · ≤ 0�

(30.13)

Combining (30.11)–(30.13) we obtain an equality that will be used later (in the
proof of Theorem 30.1)

T�F�i+1��=T�F�i��+f�x
�1�
i+1� � � � � x

�a�
i+1�−

1
a
f�yi+1� x

�2�
i+1� � � � � x

�a�
i+1�

− 1
a
f�x

�1�
i+1� yi+1� x

�3�
i+1� � � � � x

�a�
i+1�−

1
a
f�x

�1�
i+1� x

�2�
i+1� yi+1� x

�4�
i+1� � � � � x

�a�
i+1�−· · ·

− 1

a
f�x

�1�
i+1� � � � � x

�a−1�
i+1 � yi+1�−

(
2

a�a−1�
− 1

a2

) ∑
1≤j1<j2≤a

T�F�i�� x
�j1�
i+1� x

�j2�
i+1�

−
(

3

a2�a−2�
− 1

a3

) ∑
1≤j1<j2<j3≤a

T�F�i�� x
�j1�
i+1� x

�j2�
i+1� x

�j3�
i+1�

−
(

4

a3�a−3�
− 1

a4

) ∑
1≤j1<j2<j3<j4≤a

T�F�i�� x
�j1�
i+1� x

�j2�
i+1� x

�j3�
i+1� x

�j4�
i+1�−· · ·

− 1

aa
T�F�i�� x

�1�
i+1� � � � � x

�a�
i+1� yi+1�� (30.14)
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Notice that the following coefficients in (30.14) are all positive
(

2
a�a−1�

− 1
a2

)
> 0�

(
3

a2�a−2�
− 1

a3

)
> 0�

(
4

a3�a−3�
− 1

a4

)
> 0� � � � �

Combining (30.13)–(30.14) we obtain the crucial decreasing property Ti+1 ≤ Ti,
and Theorem 20.4 follows. �

Theorem 20.4 is complemented by the Avoidance analogue of (30.3).
Biased Forcer’s Win criterion: If hypergraph F is n-uniform, Almost Disjoint,
and

�F �
�V �

(
a

a+f

)n

>
a2f 2

�a+f�3
� (30.15)

then playing the �a�f� Avoidance game on F , Forcer (the second player) can force
Avoider to occupy a whole A ∈ F .

The proof of (30.15) is very similar to that of (30.3), the only minor difference
is that Forcer minimizes the potential function (where Maker was maximizing the
potential function).
In the �a�1� Avoidance Game (where Avoider takes a points and Forcer takes 1

point per move) both Theorem 20.4 and the Biased Forcer’s Win criterion (30.15)
have the same critical factor � a

a+1�
n, where a

a+1 is the probability that a given point
is taken by Avoider. This coincidence gives us a hope to answer the following:

Question 30.2 Can we prove exact results for the �a�1� Avoidance Game (a≥ 2),
where Avoider is the topdog?

Questions 30.1 and 30.2 lead to sporadic cases when we have exact solutions in the
biased game. We will return to these questions later in Sections 32–33, but first we
make a detour and study the opposite case

3. When the exact solution seems to be out of reach. How about the (2:1)
Achievement Game (where Breaker is the underdog)? The ratio (2:1) does not
belong to the class �1�b� mentioned in Question 30.1 (see the beginning of this
section), due to the fact that we cannot prove the “blocking part” of the Biased
Meta-Conjecture. Can we at least do the “building part” of the Biased Meta-
Conjecture? The answer is “yes,” but it doesn’t make us perfectly happy. Why is
that? The good news is that for the (2:1) play we can prove the perfect analogue
of the Advanced Weak Win Criterion (Theorem 24.2), which implies one direction
of the (2:1) Meta-Conjecture; the bad news is that the (2:1) Meta-Conjecture may
fail to give the truth! Indeed, in the (2:1) play (where Maker is the topdog) there
is a trivial, alternative way for Maker to occupy a whole winning set, and this
trivial way – described by the Cheap Halving Lemma below – can occasionally
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beat the sophisticated (2:1) Advanced Weak Win Criterion, disproving the (2:1)
Meta-Conjecture.

Cheap Halving Lemma: LetH be an n-uniform hypergraph which contains≥ 2n−2

pairwise disjoint sets. Then playing the (2:1) game on H, topdog Maker (as the
first player) can occupy a whole A ∈ H in ≤ 2n−2 moves.

We leave the easy proof of the Cheap Halving Lemma to the reader.
We will discuss the applications of the Cheap Halving Lemma later. First we

prove the (2:1) Advanced Weak Win Criterion. The proof is a combination of the
proof technique of Section 24 with identitities (3.10) (the special case a = 2) and
(30.14) (“the general case”).

Assume we are in the middle of a play, Maker (the first player) owns the points

X�i�=
{
x
�1�
1 � x

�2�
1 � x

�1�
2 � x

�2�
2 � � � � � x

�1�
i � x

�2�
i

}
� and Y�i�= 
y1� y2� � � � � yi�

is the set of Breaker’s points. The question is how to choose Maker’s �i+1�st move
x
�1�
i+1� x

�2�
i+1. Write

F�i�= 
A\X�i� � A ∈ F� A∩Y�i�= ∅��
i.e. F�i� is the family of the unoccupied parts of the “survivors.” We use the usual
Potential Function (see the proof of Theorem 24.2)

Li = T�F�i��−	 ·T�Fp
2 �i���

and also

Li�u1� � � � � um�= T�F�i�� u1� � � � � um�−	 ·T�Fp
2 �i�� u1� � � � � um��

where the Power-of-Two Scoring System is replaced by the Power-of-�3/2� Scoring
System

T�H�= ∑
B∈H

(
3

2

)−�B�
and T�H� u1� � � � � um�=

∑
B∈H� 
u1�����um�⊂B

(
3

2

)−�B�
�

The effect of the �i+1�st moves x�1�i+1� x
�2�
i+1 and yi+1 is described by the following

perfect analogue of (30.10) (in the application we take H = F and H = F p
2 )

T�H�i+1��=T�H�i��+fH�x
�1�
i+1� x

�2�
i+1�

− 1

2
fH�x

�1�
i+1� yi+1�−

1

2
fH�x

�2�
i+1� yi+1�

− 3
4
T�H�i�� x

�1�
i+1� x

�2�
i+1�−

1
4
T�H�i�� x

�1�
i+1� x

�2�
i+1� yi+1��

where (see (30.7))

fH�u1� u2�= T�H�i�� u1�+T�H�i�� u2�+T�H�i�� u1� u2��
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Combining these facts, and using the notation

g�u1� u2�= fF�u1� u2�−	 ·fFp
2
�u1� u2��

we obtain

Li+1 ≥ Li+g�x
�1�
i+1� x

�2�
i+1�−

1

2
g�x

�1�
i+1� yi+1�−

1

2
g�x

�2�
i+1� yi+1�

− 3

4
T�F�i�� x

�1�
i+1� x

�2�
i+1�−

1

4
T�F�i�� x

�1�
i+1� x

�2�
i+1� yi+1�

≥ Li+g�x
�1�
i+1� x

�2�
i+1�−

1
2
g�x

�1�
i+1� yi+1�−

1
2
g�x

�2�
i+1� yi+1�

−T�F�i�� x
�1�
i+1� x

�2�
i+1�� (30.16)

Following the second proof of Theorem 20.4, Maker chooses his �i+ 1�st move
x
�1�
i+1� x

�2�
i+1 to be that unoccupied pair 
u1� u2� for which the the function g�u1� u2�

attains its maximum. Since yi+1 is selected after 
x�1�i+1� x
�2�
i+1�, by (30.16) we have

Li+1 ≥ Li−T�F�i�� x
�1�
i+1� x

�2�
i+1��

which guarantees the success of the technique of self-improving potentials (see
section 24). Just like in the second proof of Theorem 20.4, we can extend the
argument from the (2:1) game to every �m � 1� game where m≥ 2 by replacing the
analogue of equality (30.10) with the analogue of equality (30.14). This way we
obtain the following biased version of Theorem 24.2.

Theorem 30.1 (“(m � 1) Advanced Weak Win Criterion”) Let m≥ 2 be an integer,
and for every finite hypergraph H we use the notation

T�H�= ∑
B∈H

(
m+1

m

)−�B�
�

If there exists a positive integer p ≥ 2 such that

T�F�

�V � > p+4p
(
T�Fp

2 �
)1/p

�

then, playing the (m:1) Achievement Game on hypergraph F with board V , topdog
Maker (the first player) can occupy a whole A ∈ F . �

Let’s apply Theorem 30.1 to the (2:1) Aligned Square Lattice Game. Playing on an
N ×N board topdog Maker can always build a q×q Aligned Square Lattice with
(c = 3/2)

q =
⌊√

logc N +o�1�
⌋
=
⌊√

logN
log�3/2�

+o�1�

⌋
� (30.17)

Next apply the trivial Cheap Halving Lemma mentioned above. There are N 2/q2

pairwise disjoint winning sets, so, by the Cheap Halving Lemma, Maker can trivially
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ocupy a q×q Aligned Square Lattice with

q2 = log2

(
N 2

q2

)
�

which is equivalent to

q =
√
2 logN

log2
−o�1�� (30.18)

The surprising fact is that bound (30.17) (which was proved by a sophisticated
potential technique) is weaker(!) than (30.18) (which has a trivial proof). Indeed

2�885= 2
log2

>
1

log�3/2�
= 2�466�

demonstrating the failure of the Biased Meta-Conjecture for a (2:1) Achievement
Lattice Game (Maker is the topdog).

Open Problem 30.1 Playing the (2:1) game in an N×N board, what is the largest
q×q Aligned Square Lattice that topdog Maker can always build?

4. The correct form of the Biased Meta-Conjecture. Open Problem 30.1 is a
special case of a much more general question: “What is the correct form of the
Biased Meta-Conjecture in the achievement case �m � b� with m> b?” The unique
feature of the biased case �m � b� with m > b is that topdog Maker has a “cheap”
way of building. The following lemma is a straightforward generalization of the
Cheap Halving Lemma above.

Maker’sCheapBuildingLemma. Consider the (m:b) achievement playwithm> b

on an n-uniform hypergraph F , which contains at least � m
m−b

�n−m pairwise disjoint
winning sets. Then Maker (the first player) can always occupy a wholeA ∈ F .

Proof. Let G ⊂F be a family of � m
m−b

�n−m pairwise disjoint winning sets. Maker’s
opening move is to put m marks into m different elements of G (1 in each). Breaker
may block as many as b of them, but at least m−b remain unblocked. Repeating
this step several times with new sets, at the end we obtain a sub-family G1 ⊂ G
such that

(1) �G1� ≥
(

m
m−b

)n−m−1
,

(2) Maker has 1 mark in every element of G1,
(3) Breaker has no mark in any element of G1.

Next working with G1 instead of G, we obtain a sub-family G2 ⊂ G1 such that

(1) �G2� ≥
(

m
m−b

)n−m−2
,

(2) Maker has 2 marks in every element of G2,
(3) Breaker has no mark in any element of G2.
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We keep doing this; at the end of the process we obtain a sub-family Gn−m such
that

(1) �Gn−m� ≥
(

m
m−b

)n−m−�n−m� = 1,
(2) Maker has n−m marks in every element of Gn−m,
(3) Breaker has no mark in any element of Gn−m.

Finally, Maker selects an arbitrary elementA∈Gn−m, and marks the lastm unmarked
points of A.

In the fair (1:1) play the Meta-Conjecture (see Section 9) says that, if F is a “nice”
n-uniform hypergraph and V is the board, then n > log2��F �/�V �� yields a Strong
Draw, and n < log2��F �/�V �� yields a Weak Win.

An intuitive explanation for the threshold n = log2��F �/�V �� is the following
“Random Play plus Pairing Strategy” heuristic. Consider the inequality

n · �F � ·
(
1

2

)n−2

≤ �V �� (30.19)

which is “almost” the same as n ≥ log2��F �/�V ��. In (30.19) the factor �1/2�n−2

means the probability that in a random play �n− 2� points of a fixed n-set are
occupied, and they are all taken by Maker (none by Breaker; 2 points remain
unmarked). Such an n-set represents a “mortal danger” for Breaker; the product
�F � ·�1/2�n−2 is the expected number of winning sets in “mortal danger.” Inequality
(30.19) means that there is room for the winning sets in “mortal danger” to be
pairwise disjoint. Assuming that they are really pairwise disjoint – we refer to it as
the Disjointness Condition – Breaker can easily block the unmarked point-pairs of
the winning sets in “mortal danger” by a Pairing Strategy. The crucial point here
is that, even if there are a huge number of winning sets in mortal danger, Breaker
can still block them in the last minute!
In the biased �a�f� avoidance game (Avoider takes a and Forcer takes f points

per move) the corresponding threshold is

n= log a+f
a

( �F �
�V �

)
�

Similarly, in the biased �m�b� achievement game (Maker takesm points and Breaker
takes b points per move) with m≤ b (i.e. Maker is not a topdog), the corresponding
threshold is the “same”

n= logm+b
m

( �F �
�V �

)
�

i.e. there is no surprise.
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The surprise comes in the �m�b� achievement game with m> b, i.e. when Maker
is the topdog: in this case we conjecture that the corresponding threshold is

n= log m+b
m

( �F �
�V �

)
+ log m

m−b
�V �� (30.20)

The best intuitive explanation for (30.20) is the following “Random Play plus Cheap
Building” heuristic. We divide the whole play into two stages. In the First Stage
we assume that Maker and Breaker play randomly. The First Stage ends when the
number of Breaker-free winning sets (“survivors”) becomes less than 1

n
�V �. The

equation (
m

m+b

)y

· �F � = 1

n
�V � (30.21)

tells us that at the end of the First Stage there are about 1
n
�V � Breaker-free winning

sets such that Maker has y marks in each. The number 1
n
�V � of these n-element

survivors leaves enough room for disjointness: it seems perfectly reasonable to
assume that the 1

n
�V � n-element survivors are pairwise disjoint. Then the end-play

is obvious: the Second Stage is a straightforward application of Maker’s Cheap
Building Lemma above applied to the (roughly) 1

n
�V � pairwise disjoint n-element

survivors (“Disjointness Condition”). If
( m

m−b

)n−y−m ≥ 1
n
�V �� (30.22)

then Maker can occupy a whole winning set (y points in the First Stage and n− y

points in the Second Stage). Note that (30.21) is equivalent to

y = log m+b
m

( �F �
�V �

)
+O�logn�� (30.23)

and (30.22) is equivalent to

n−y = log m
m−b

�V �+O�logn�� (30.24)

Adding up (30.23) and (30.24), we obtain (30.20) with an additive error term
O�logn�, which is negligible compared to the “legitimate error” o�

√
n�, which

corresponds to the fact that in the exact solutions n = (
q

2

)
or q2, i.e. the goal sets

are 2-dimensional. Two-dimensional goals mean that the crucial step is to “break
the square-root barrier.”

In the �m�1� play, when we have Theorem 30.1, it is surprisingly easy to make
the “Random Play plus Cheap Building” intuition precise; well, at least half of it is
doable: the Maker’s part. The critical step in the proof is to enforce the Disjointness
Condition, which can be done by involving an extra auxiliary hypergraph. This
section is already too long, so we postpone the (somewhat ugly) details to Section 46
(another good reason why it is postponed to the end is that in Section 45 we will use
very similar ideas; in fact, the arguments in Section 45 will be more complicated).
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What we cannot solve is Breaker’s part.
The “correct” form of the Biased Meta-Conjectured, applied in the special case

of the clique-hypergraph, goes as follows:

Open Problem 30.2 (“Biased Clique Game”) Is it true that, in the (m � b) Biased
Clique Achievement Game with m > b, played on KN , the corresponding Clique
Achievement Number is

A�KN� clique�m � b�= �2 logc N −2 logc logc N+2 logc e−2 logc 2−1

+2 log c

log c0
+o�1���

where c = m+b
m

and c0 = m
m−b

?
Is it true that, in the (m � b) Biased Clique Achievement Game with m≤ b, played

on KN , the corresponding Clique Achievement Number is

A�KN� clique�m � b�= �2 logc N −2 logc logc N +2 logc e−2 logc 2−1+o�1���
where c = m+b

m
?

Is it true that the Avoidance Number

A�KN� clique� a � f�−�= �2 logc N −2 logc logc N +2 logc e−2 logc 2−1+o�1���
where the base of logarithm is c = a+f

a
?

Note that the “logarithmic expression” in Open Problem 30.2 comes from the
equation (“Neighborhood Conjecture for the clique-hypergraph”)

(
m+b

m

)�q2�
=
(
N

q

)
(
N

2

) ≈
(

N

q−2

)
� (30.25)

which has the “real” solution

q = 2 logc N −2 logc logc N +2 logc e−2 logc 2−1+o�1�� (30.26)

where the base of the logarithm is c = m+b
m

.
The deduction of (30.26) from (30.25) is easy. First take base c= m+b

m
logarithm

of (30.25) (
q

2

)
= logc

(
N

q−2

)
�

Then apply Stirling’s formula, and divide by �q−1�

q

2
= q−2

q−1
logc

(
eN

q−2

)
= logc N − logc N

q−1
− logc q+ logc e�
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Then multiply by 2, and apply the approximation q ≈ 2 logc N

q = 2 logc N −2
logc N

2 logc N
−2 logc�2 logc N�+2 logc e+o�1��

which gives (30.26).
Open Problem 30.2 remains unsolved; what we can prove is the following lower

bound result.

Theorem 30.2 In the (m:1) case the Biased Clique Achievement Number is at least
as large as the logarithmic expression in Open Problem 30.2.

The proof of Theorem 30.2 applies Theorem 30.1 and the precise version of the
“Random Play plus Cheap Building” intution; for the details see Section 46.

What we cannot prove is whether or not the logarithmic expression in Open
Problem 30.2 is the best possible. In other words, is it true that Breaker can always
prevent Maker from building a clique Kq, where q is the upper integral part of the
logarithmic expression in Open Problem 30.2.

Next consider the Lattice Games of Section 8 (but not the case of “complete
bipartite graph”). The analogue of Open Problem 30.2 (in fact, a generalization of
Open Problem 30.1) goes as follows:

Open Problem 30.3 (“Biased Lattice Games”) Is it true that, in the (m�b) Biased
Lattice Achievement Game withm>b played on an N×N board, the corresponding
Lattice Achievement Number is:

(1a) A�N ×N� square lattice�m � b�= ⌊√
logc N +2 logc0 N +o�1�

⌋
�

(1b) A�N ×N� rectangle lattice�m � b�= ⌊√
2 logc N +2 logc0 N +o�1�

⌋
�

(1c) A�N ×N� tilted square lattice�m � b�= ⌊√
2 logc N +2 logc0 N +o�1�

⌋
�

(1d) A�N ×N� tilted rectangle lattice�m � b�= ⌊√
2 logc N +2 logc0 N +o�1�

⌋
�

(1e) A�N ×N� rhombus lattice�m � b�= ⌊√
2 logc N +2 logc0 N +o�1�

⌋
�

(1f) A�N ×N� parallelogram lattice�m � b�= ⌊
2
√
logc N +2 logc0 N +o�1�

⌋
�

(1g) A�N ×N� area one lattice�m � b�= ⌊√
2 logc N +2 logc0 N +o�1�

⌋
,

where c = m+b
m

and c0 = m
m−b

?
Is it true that, in the (m�b) Biased Lattice Achievement Game with m≤ b played

on an N ×N board, the corresponding Lattice Achievement Number is:

(2a) A�N ×N� square lattice�m � b�=
⌊√

logc N +o�1�
⌋
�

(2b) A�N ×N� rectangle lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2c) A�N ×N� tilted square lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2d) A�N ×N� tilted rectangle lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2e) A�N ×N� rhombus lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�
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(2f) A�N ×N� parallelogram lattice�m � b�=
⌊
2
√
logc N +o�1�

⌋
�

(2g) A�N ×N� area one lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

where c = m+b
m

?
Is it true that the Lattice Avoidance Number in the �a�f� play is the same as in

(2a) – (2g), except that c = a+f

a
?

Applying Theorem 30.1 and the precise version of the “Random Play plus Cheap
Building” intution (see Section 46) we obtain:

Theorem 30.3 In the (m:1) Achievement Game the Biased Lattice Achievement
Number is at least as large as the right-hand sides in Open Problem 30.3.

Theorems 30.1–30.3 were about the �m � 1� Biased Achievement Game (where
Maker was the topdog); we can prove the same results about the �1 � f � Biased
Avoidance Game, where Forcer is the topdog. (Note there is a hidden duality here)

Theorem 30.4 (“Advanced Forcer’win Criterion in the (1 �f ) Avoidance Game”)
Let f ≥ 2 be an integer, and for every finite hypergraph H write

T�H�= ∑
B∈H

�f +1�−�B� �

If there exists a positive integer p ≥ 2 such that

T�F�

�V � > p+4p
(
T�Fp

2 �
)1/p

�

then, playing the (1:f) Avoidance Game on hypergraph F , topdog Forcer (the first
player) can force Avoider to occupy a whole A ∈ F .

Proof. It is similar to the proof of Theorem 30.1. For simplicity we start with the
case f = 2. The analogue of expansion (30.7) is the following

�1+2x��1−y�1���1−y�2��−1 = 2x−y�1�−y�2�

−2xy�1�−2xy�2�+y�1�y�2�+2xy�1�y�2�

= f�x� y�1��+f�x� y�2��−2f�y�1�� y�2��

− 3

2
x�y�1�+y�2��+2xy�1�y�2�� (30.27)

where

f�u1� u2�= u1+u2−
1
2
u1u2� (30.28)
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Equality (30.27) leads to the following analogue of (30.10)

Ti+1 =Ti+f�xi+1� y
�1�
i+1�+f�xi+1� y

�1�
i+1�−2f�y�1�i+1� y

�2�
i+1�

− 3
2

(
T�F�i�� xi+1� y

�1�
i+1�+T�F�i�� xi+1� y

�2�
i+1�

)
+2T�F�i�� xi+1� y

�1�
i+1� y

�2�
i+1��

(30.29)

By using the trivial inequality

T�F�i�� xi+1� y
�1�
i+1�+T�F�i�� xi+1� y

�2�
i+1�≥ 2T�F�i�� xi+1� y

�1�
i+1� y

�2�
i+1�

in (30.29), we obtain the key inequality (“Decreasing Property”)

Ti+1 ≤ Ti+f�xi+1� y
�1�
i+1�+f�xi+1� y

�1�
i+1�−2f�y�1�i+1� y

�2�
i+1��

which, together with (30.29), guarantees the success of the methods of Section 24
(“self-improving potentials”). The rest of the proof of Theorem 30.4 with f = 2 is
standard.

The proof of the general case f ≥ 2 requires more calculations, and goes very
similarly to another proof in Section 33. This is why we postpone the proof of the
general case to Section 33.

Applying Theorem 30.4 to the Clique Avoidance Game, we obtain:

Theorem 30.5 In the (1:f) case the Biased Clique Avoidance Number is at least as
large as the right-hand side in Open Problem 30.2. In other words, playing on KN

topdog Forcer can always force Avoider to build a clique Kq where q is the lower
integral part of

2 logc N −2 logc logc N +2 logc e−2 logc 2−1−o�1�

with c = f +1.

What we cannot prove is that whether or not this lower bound is best possible.
Applying Theorem 30.4 to the Lattice Avoidance Game we obtain:

Theorem 30.6 In the (1:f) Avoidance Game the Biased Lattice Avoidance Number
is at least as large as the right-hand sides in Open Problem 30.3.

Again what we don’t know is whether or not this lower bound is the best possible.
Note that in the Avoidance Game there is no analogue of the Cheap Building

Lemma. However, there is a very good chance that Open Problems 30.2 and 30.3
are all true.



31
Biased games (II): Sacrificing the probabilistic

intuition to force negativity

1. The (2:2) game. The reader is probably wondering: “How come that the (2:2)
game is not included in Questions 30.1-2?” The (2:2) game is a fair game just like
the ordinary (1:1) game, so we would expect exactly the same results as in the (1:1)
game (see e.g. Theorems 6.4 and 8.2). Let’s start with Theorem 6.4: “What is the
largest clique that Maker can always build in the (2:2) game on KN?” Of course,
everyone would expect a Kq with the usual

q = 2 log2N −2 log2 log2N +O�1�� (31.1)

What could be more natural than this! The bad news is that we cannot prove (31.1).

Open Problem 31.1

(a) Is it true that, playing the (2:2) Achievement Game on KN , Maker can always
build a clique Kq with q = 2 log2N −2 log2 log2N +O�1�?

(b) Is it true that, playing the (2:2) Achievement Game on KN , Breaker can always
prevent Maker from building a clique Kq with q = 2 log2N − 2 log2 log2N +
O�1�?

What is the unexpected technical difficulty that prevents us from solving Open
Problem 31.1 (a)? Well, naturally we try to adapt the proof of the Advanced
Weak Win Criterion (Theorem 24.2). Since the (2:2) game is fair, we keep the
Power-of-Two Scoring System: for an arbitrary hypergraph �V�H� (V is the union
set) write

T�H�= ∑
A∈H

2−�A��

and for any m-element subset of points 
u1� � � � � um�⊆ V (m≥ 1) write

T�H� u1� � � � � um�=
∑

A∈H� 
u1�����um�⊆A

2−�A��

of course, counted with multiplicity.

418
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Assume that we are in the middle of a play where Maker, as the first player,
already occupied

X�i�=
{
x
�1�
1 � x

�2�
1 � x

�1�
2 � x

�2�
2 � � � � � x

�1�
i � x

�2�
i

}
�

and Breaker, the second player, occupied

Y�i�=
{
y
�1�
1 � y

�2�
1 � y

�1�
2 � y

�2�
2 � � � � � y

�1�
i � y

�2�
i

}
�

The question is how to choose Maker’s next move x�1�i+1, x
�2�
i+1.

Let

F�i�= 
A\X�i� � A ∈ F� A∩Y�i�= ∅��

F�i� is a multi-hypergraph; the empty set can be an element of F�i�: it simply
means that Maker already occupied a winning set, and wins the play in the ith
round or before.

We can describe the effect of the �i+ 1�st moves x
�1�
i+1, x

�2�
i+1 and y

�1�
i+1, y

�2�
i+1 as

follows

T�F�i+1�� = T�F�i��+T�F�i�� x
�1�
i+1�+T�F�i�� x

�2�
i+1�

+T�F�i�� x
�1�
i+1� x

�2�
i+1�−T�F�i�� y

�1�
i+1�−T�F�i�� y

�2�
i+1�

+T�F�i�� y
�1�
i+1� y

�2�
i+1�−T�F�i�� x

�1�
i+1� y

�1�
i+1�

−T�F�i�� x
�1�
i+1� y

�2�
i+1�−T�F�i�� x

�2�
i+1� y

�1�
i+1�

−T�F�i�� x
�2�
i+1� y

�2�
i+1�−T�F�i�� x

�1�
i+1� x

�2�
i+1� y

�1�
i+1�+T�F�i�� x

�1�
i+1� y

�1�
i+1� y

�2�
i+1�

+T�F�i�� x
�2�
i+1� y

�1�
i+1� y

�2�
i+1�+T�F�i�� x

�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1��

(31.2)

Identity (31.2) is rather long, but the underlying pattern is very simple: it is described
by the expansion of the product

�1+x�1���1+x�2���1−y�1���1−y�2��−1=
2∑

j=1

x�j�−
2∑

j=1

y�j�+

+x�1�x�2�+y�1�y�2�−
2∑

j=1

2∑
k=1

x�j�y�k�

−x�1�x�2�

(
2∑

j=1

y�j�

)
+y�1�y�2�

(
2∑

j=1

x�j�

)

+x�1�x�2�y�1�y�2�� (31.3)
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Maker wants to guarantee that T�F�i�� > 0 for all i. At first sight the positive terms

x�1�x�2�+y�1�y�2�+y�1�y�2�

(
2∑

j=1

x�j�

)
+x�1�x�2�y�1�y�2� (31.4)

in (31.3) seem to help, but the whole Potential Function has the positive-negative
form

Li = T�F�i��−	 ·T�Fp
2 �i��� (31.5)

and the terms which correspond to (31.4) in the “negative Big part” −	 ·T�Fp
2 �i��

are, of course, negative, which makes it extremely difficult to estimate Li from
below. (We want to show that Li > 0 for all i, which implies that T�F�i�� > 0 for
all i.)
In other words, the positive terms in (31.4) become “Big Bad Negative” terms

in (31.5), and consequently the proof technique of Section 24 collapses. We have
to modify the original proof technique: we have to get rid of (most of) the positive
terms in (31.4). We attempt to do it in a surprising way by:

2. Sacrificing the probabilistic intuition. Let H be either F or Fp
2 ; We will

modify the Power-of-Two Scoring System

T�H�= ∑
A∈H

2−�A�� (31.6)

Note that (31.6) has a clear-cut probabilistic motivation. We replace (31.6) with the
following unconventional “one-counts-only” weight

Ti�H�=∑
A∈H

wi�A� and (31.7)

Ti�H� u1� � � � � um�=
∑

A∈H� 
u1�����um�⊂A

wi�A��

where wi�A�= 0 if A∩Y�i� �= ∅ and

wi�A�= 2�
1≤j≤i� A∩
x�1�j �x
�2�
j ��=∅��−�A� (31.8)

if A∩Y�i�= ∅.
Note that the weight of a “survivor” A ∈ F in T�F�i�� (see (31.6)) is

2�A∩X�i��−�A� if A∩Y�i�= ∅� (31.9)

and we have the trivial inequality

�
1≤ j ≤ i � A∩ 
x
�1�
j � x

�2�
j � �= ∅�� ≤ �A∩X�i���

A strict inequality can easily occur here; this explains why we use the phrase
“one-counts-only” for the weight defined in (31.7)–(31.8).
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The switch from (31.6) to (31.7)–(31.8) clearly affects identity (31.2). For
notational simplicity we just write down the new form of (31.3)(

1+x�1�+x�2�−x�1�x�2�
) (
1−y�1�

) (
1−y�2�

)−1

= (
x�1�+x�2�−x�1�x�2�

)
− (

y�1�+y�2�−y�1�y�2�
)

−
2∑

j=1

2∑
k=1

x�j�y�k�+x�1�x�2�

(
2∑

j=1

y�j�

)

+y�1�y�2�

(
2∑

j=1

x�j�

)
−x�1�x�2�y�1�y�2�� (31.10)

Notice that the first 2 rows in (31.10) have the same pattern with opposite signs;
this fact motivates the introduction of the new weight (31.7)–(31.8). This pattern
will define the function that Maker optimizes to get his �i+1�st move (see (31.17)
later).

By using the trivial inequality

Ti�H� x
�1�
i+1� x

�2�
i+1� y

�j�
i+1�≤

2∑
k=1

Ti�H� x
�k�
i+1� y

�j�
i+1� (31.11)

(and also its symmetric version where x and y switch roles) in the “short form”
(31.10), we obtain the “long form” inequality (“Decreasing Property”)

Ti+1�F�=Ti�F�+
(
Ti�F� x

�1�
i+1�+Ti�F� x

�2�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1�

)

−
(
Ti�F� y

�1�
i+1�+Ti�F� y

�2�
i+1�−Ti�F� y

�1�
i+1� y

�2�
i+1�

)

−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�+

2∑
j=1

Ti�F� x
�1�
i+1� x

�2�
i+1� y

�j�
i+1�

+
2∑

j=1

Ti�F� x
�j�
i+1� y

�1�
i+1� y

�2�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�

≤ Ti�F�+
(
Ti�F� x

�1�
i+1�+Ti�F� x

�2�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1�

)

−
(
Ti�F� y

�1�
i+1�+Ti�F� y

�2�
i+1�−Ti�F� y

�1�
i+1� y

�2�
i+1�

)
� (31.12)

Inequality (31.12) represents the desired “Negativity” mentioned in the title of the
section.

We define our Potential Function as follows: let

Li = Ti�F�−	 ·Ti�Fp
2 �� (31.13)
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where the positive constant 	 is specified by the side condition

L0 =
1

2
T�F�� that is�

1
2
T�F�= 	 ·T�Fp

2 �� (31.14)

Clearly

Li+1 = Ti+1�F�−	 ·Ti+1�Fp
2 �≥ Ti�F�i��

+
(
Ti�F� x

�1�
i+1�+Ti�F� x

�2�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1�

)

−
(
Ti�F� y

�1�
i+1�+Ti�F� y

�2�
i+1�−Ti�F� y

�1�
i+1� y

�2�
i+1�

)

−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�

−Ti�F� x
�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�−	 ·Ti+1�Fp

2 ��

and applying (31.12) with the substitution “F = Fp
2 ”

Li+1 ≥ Ti�F�+
(
Ti�F� x

�1�
i+1�+Ti�F� x

�2�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1�

)

−
(
Ti�F� y

�1�
i+1�+Ti�F� y

�2�
i+1�−Ti�F� y

�1�
i+1� y

�2�
i+1�

)

−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�

−Ti�F� x
�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�

−	 ·
(
Ti�Fp

2 �+
(
Ti�Fp

2 � x
�1�
i+1�+Ti�Fp

2 � x
�2�
i+1�−Ti�Fp

2 � x
�1�
i+1� x

�2�
i+1�

)

−
(
Ti�Fp

2 � y
�1�
i+1�+Ti�Fp

2 � y
�2�
i+1�−Ti�Fp

2 � y
�1�
i+1� y

�2�
i+1�

))
�

Thus we have

Li+1 ≥Li+
(
Li�x

�1�
i+1�+Li�x

�2�
i+1�−Li�x

�1�
i+1� x

�2�
i+1�

)

−
(
Li�y

�1�
i+1�+Li�y

�2�
i+1�−Li�y

�1�
i+1� y

�2�
i+1�

)

−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�

−Ti�F� x
�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�� (31.15)

where

Li�u1� � � � � um�= Ti�F� u1� � � � � um�−	 ·Ti�Fp
2 � u1� � � � � um� (31.16)
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for any set of unselected points 
u1� � � � � um�.
Maker’s �i+1�st move is that unoccupied point pair


x
�1�
i+1� x

�1�
i+1�= 
u1� u2�

for which the sum
Li�u1�+Li�u2�−Li�u1� u2� (31.17)

attains its maximum; then

Li�x
�1�
i+1�+Li�x

�2�
i+1�−Li�x

�1�
i+1� x

�2�
i+1�

≥ Li�y
�1�
i+1�+Li�y

�2�
i+1�−Li�y

�1�
i+1� y

�2�
i+1��

so by (31.15)

Li+1 ≥ Li−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�

−Ti�F� x
�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�� (31.18)

HYPOTHESIS: Assume that the following analogue of the Generalized Variance
Lemma (GVL, see Theorem 24.1) holds:

GVL: For arbitrary integers p≥ 2 and m≥ 1, and for arbitrary points u1� � � � � um

of the board

Ti�H� u1� � � � � um� < p

((
Ti�Hp

m�
)1/p+1

)
� (31.19)

An application of GVL in (31.18) would lead to the Critical Inequality

Li+1 ≥ Li−5p
(
Ti�Fp

2 �i��
)1/p−5p� (31.20)

which seems to prove that the technique of self-improving potentials (“Section 24”)
works! It looks like there is no problem with proving Open Problem 31.1 (a), but
here comes the bad news: unfortunately (31.19) is false, and the Hypothesis above
collapses.

How come that the innocent-looking (31.19) is false? Well, this failure is a “side-
effect” of the unconventional “one-counts-only” weight. The proof of Theorem 24.1
(i.e. (31.19) with the standard Power-of-Two Scoring System) is based on the trivial
inequality

2−
∑p

i=1 �Bi� ≤ 2−�⋃p
i=1 Bi�� (31.21)

which follows from the even more elementary fact
∑p

i=1 �Bi� ≥ �⋃p
i=1Bi�. The switch

from the standard Power-of-Two Scoring System to the “one-counts-only” weight
cures one technical problem: it eliminates the “Big Bad Negative” terms in the
Potential Function, but is has a serious “side-effect”: “one-counts-only” means a



424 That is the Biased Meta-Conjecture?

“deficit” in (31.21), and due to the “deficit” the Generalized Variance Lemma
(GVL) is not true any more.

A counter-example to (31.19). Recall the notation that

X�i�=
{
x
�1�
1 � x

�2�
1 � x

�1�
2 � x

�2�
2 � � � � � x

�1�
i � x

�2�
i

}

denotes the set of points of Maker (right after the ith round). Let 
u1� u2� be a
point pair disjoint from X�i�, and assume that i ≥ n. Let H denote the n-uniform
hypergraph satisfying the following properties:

(1) the given point pair 
u1� u2� is contained in every A ∈ H;
(2) every A ∈ H has the form 
u1� u2� z1� z2� � � � � zn−2� where zj ∈ 
x

�1�
j � x

�2�
j �, j =

1�2� � � � � n−2.
X

�1�
1 X

�1�
2 X

�1�
3 X

�1�
n−2

© © © ©
© © …
u1 u2 © © © ©

X
�2�
1 X

�2�
2 X

�2�
3 X

�1�
n−2

There are 2n−2 ways to choose 1 element from each 1 of the n− 2 pairs, so
�H� = 2n−2. By (31.7)–(31.8)

Tn−2�H� u1� u2�= �H� ·2−2 = 2n−4and (31.22)

Tn−2�H2
2�= �H� ·

n−2∑
k=0

(
n−2
k

)
2−k ·2−2� (31.23)

in (31.23) k denotes the number of pairs 
x
�1�
j � x

�2�
j �, where both elements are

contained in a union A1∪A2 with A1�A2 ∈ H (see the definition H2
2). This k leads

to a “deficit” of k – because of “one-counts-only” – explaining the extra factor 2−k

in (31.23).
Returning to (31.23),

Tn−2�H2
2�= �H� ·

n−2∑
k=0

(
n−2
k

)
2−k ·2−2

= 2n−4

(
n−2∑
k=0

(
n−2
k

)(
1

2

)k
)
= 2n−4

(
1+ 1

2

)n−2

= 3n−2

4
�

and so (
Tn−2�H2

2�
)1/2 = 1

2
·3 n

2−1� (31.24)

The point is that
√
3 = 1�732 < 2, so (31.24) is much less (“exponentially less”)

than (31.22), which kills our chances for any general inequality like (31.19).
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The failure of (31.19) is a major roadblock. This is why we have no idea how to
solve the perfectly natural Open Problem 31.1 (a).

The failure of (31.19) is similar to the failure of (28.9) in the Discrepancy Game.
Again we can hope that the ad hoc Higher Moment Method in Section 23 will
save the day, at least for the Lattice Games. We work out the details of this idea
in the next section. We begin with the special case of the most general lattice: the
Parallelogram Lattice.

3. The (2:2) Parallelogram Lattice Game. We adapt the argument of Section 23.
The counter-example to (31.19) (see the end of Section 31) has a very large “deficit,”
and by using the ad hoc method of Section 23 we can avoid the “deficit problem.”

We keep the unconventional “one-counts-only” weight

Ti�H�=∑
A∈H

wi�A� and (31.25)

Ti�H� u1� � � � � um�=
∑

A∈H� 
u1�����um�⊂A

wi�A��

where wi�A�= 0 if A∩Y�i� �= ∅ and

wi�A�= 2�
1≤j≤i� A∩
x�1�j �x
�2�
j ��=∅��−�A� if A∩Y�i�= ∅� (31.26)

first introduced in (31.7)–(31.8). F denotes the family of all q× q parallelogram
lattices in the N ×N board, and the choice of weight (31.25)–(31.26) leads to (see
inequality (31.18))

Li+1 ≥Li−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�

−Ti�F� x
�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�� (31.27)

In view of (31.27) we have to estimate the terms

Ti�F� x
���
i+1� y

���
i+1�� �= 1�2� � = 1�2 (31.28)

from above. Fix a pair 
x���i+1� y
���
i+1�; write

F�x
���
i+1� y

���
i+1�=

{
A1 ∈ F � 
x

���
i+1� y

���
i+1�⊂ A1�A1∩Y�i�= ∅

}
�

and for every A1 ∈ F�x
���
i+1� y

���
i+1� define

I2�A1�= 
1≤ j ≤ i � 
x
�1�
j � x

�2�
j �⊂ A1� �full pairs�

and

I1�A1�= 
1≤ j ≤ i � �
x�1�j � x
�2�
j �∩A1� = 1� �half pairs��
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We have learned from the counter-example to (31.19) that set I2�A1� is “harmless”
but I1�A1� is “dangerous”: I1�A1� may cause the violation of (31.19) in the “big
hypergraph” Fp

2 ; the quantitative measure of the violation is the “deficit.”
Fix an arbitrary A1 ∈ F�x

���
i+1� y

���
i+1�; let

X�i�A1�=
{

x

�1�
j � x

�2�
j �\A1 � i ∈ I1�A1�

}
�

i.e. X�i�A1� denotes the set of other members of the half-occupied pairs 
x�1�j � x
�2�
j �.

This is the set of candidates for the possible “deficit.”
Let z ∈ X�i�A1� be an arbitrary point which is not on the x

���
i+1y

���
i+1-line: if a set

A∗ ∈F�x
���
i+1� y

���
i+1� contains z, then the union A1∪A∗ has a “deficit” caused by z and

its “twin-brother” (i.e. a pair 
x�1�
j � x

�2�
j �) – because of the “one-counts-only” weight

(31.25)–(31.26) – but the good news is that the triplet 
x���i+1� y
���
i+1� z� is non-collinear,

so there are ≤ (
q2

3

)
“deficit-dangerous” sets like A∗. Taking all points z ∈ X�i�A1�

outside of the x
���
i+1y

���
i+1-line, we see that there are ≤ q2

(
q2

3

) ≤ q8/6 winning sets

A2 ∈ F�x
���
i+1� y

���
i+1� such that the union A1∪A2 contains a complete pair 
x�1�j � x

�2�
j �

(representing “deficit”) such that the point pair is not covered by the x
���
i+1y

���
i+1-line.

Exactly the same argument proves that there are ≤ q8/6 winning sets A2 ∈
F�x

���
i+1� y

���
i+1� such that the intersection A1∩A2 is not covered by the x

���
i+1y

���
i+1-line;

the two cases together give ≤ q8/6+q8/6= q8/3.
Write

F�x
���
i+1� y

���
i+1� a� b�=

{
A ∈ F�x

���
i+1� y

���
i+1� � I2�A�= a and I1�A�= b

}

and

�F�x
���
i+1� y

���
i+1� a� b�� =Ma�b�

By (31.25)–(31.26) we have

Ti

(
F�x

���
i+1� y

���
i+1�

)
= ∑

2a+b≤q2� a≥0�b≥0

Ma�b ·2a+b−q2 � (31.29)

For notational simplicity, write F�x
���
i+1� y

���
i+1� a� b�= F�a� b�.

Assume that �F�a� b�� =Ma�b ≥ 10q8; then there are at least

Ma�b · �Ma�b−q8/3� · �Ma�b−2q8/3� · �Ma�b−3q8/3� · �Ma�b−4q8/3�

5! ≥ M5
a�b

35

5-tuples


A1�A2�A3�A4�A5� ∈
(F�a� b�

5

)

such that:
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(1) deleting the points of the x
���
i+1y

���
i+1-line, the remaining parts of the 5 sets

A1� � � � �A5 become disjoint;
(2) there is no “deficit” outside of the x

���
i+1y

���
i+1-line; in other words, there is no

complete pair


x
�1�
j � x

�2�
j �⊂ A1∪A2∪A3∪A4∪A5�

which is disjoint from the x
���
i+1y

���
i+1-line.

It follows from the definition of the auxiliary “big hypergraph” Fp
2∗ (see (23.4))

that

T�F5
2∗�i��≥

M5
a�b

35
·25�a+b−q2�−2q if Ma�b ≥ 10q8� (31.30)

where the “loss factor” 2−2q comes from the possibility that on the x
���
i+1y

���
i+1-line

“deficits” may occur (a straight line intersects a q× q paralleogram lattice in at
most q points).
We reformulate (31.30): if Ma�b ≥ 10q8, then

3 ·22q/5 (T�F5
2∗�i��

)1/5 ≥Ma�b ·2a+b−q2�

which implies

3 ·22q/5 · (T�F5
2∗�i��

)1/5+10q8 ·2a+b−q2 ≥Ma�b ·2a+b−q2 � (31.31)

By (31.29) and (31.31) we obtain the

Ti

(
F�x

���
i+1� y

���
i+1�

)
= ∑

2a+b≤q2� a≥0�b≥0

Ma�b ·2a+b−q2

≤ 20q10+3q4 ·22q/5 · (T�F 5
2∗�i��

)1/5
� (31.32)

We refer to inequality (31.32) as theKey inequality. The point is that Key Inequality
(31.32) can successfully substitute for the (false in general) inequality (31.19)!

We work with the usual Potential Function

Li = Ti�F�−	 ·Ti�F5
2∗�� (31.33)

where the positive constant 	 is specified by the side condition

L0 =
1

2
T�F�� that is�	= T�F�

2T�F5
2∗�

� (31.34)

Then by (31.27) and (31.32)

Li+1 ≥Li−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�

≥Li−5
(
20q10+3q4 ·22q/5 · (T�F 5

2∗�i��
)1/5)

� (31.35)
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In the rest of the argument we simply repeat Section 23. We recall (23.12) and
(23.13)

T�F 5
2∗�≤ N 14 ·2−5q2+5q� (31.36)

T�F�≥ N 6

214�q−1�4
2−q2 � (31.37)

We distinguish two cases: either there is or there is no index i such that

T�F5
2∗�i�� > N 5�5 ·T�F5

2∗�� (31.38)

Case 1: There is no index i such that (31.38) holds.
By (31.34), the Critical Inequality (31.32), and (31.38)

Lend = LN 2/2 ≥ L0−
N2
2 −1∑
i=0

(
100q10+15q422q/5

(
T�F5

2∗�i��
)1/5)

≥ L0−
N 2

2
·
(
100q10+15q422q/5 ·N 1�1 · (T�F 5

2∗�i��
)1/5)

= 1

2
T�F�− N 2

2
·
(
100q10+15q422q/5 ·N 1�1 · (T�F 5

2∗�
)1/5)

� (31.39)

By (31.36), (31.37), and (31.39)

Lend ≥
1

2
· N 6

214�q−1�4
2−q2 − N 2

2
·
(
100q10+15q422q/5 ·N 1�1 ·N 14/5 ·2−q2+q

)
�

(31.40)
By choosing q = �2+o�1��

√
log2N we have 2q

2 = N 4+o�1�, so by (31.40)

Lend ≥ N 6

215�q−1�4
2−q2 −50N 2q10−N 1�9+o�1�� (31.41)

The right-hand side of (31.41) is strictly positive if q = �2√log2N − o�1�� (with
an appropriate o�1�) and N is large enough.

If Lend > 0, then T�F�end��≥ Lend > 0 implying that Maker has a Weak Win in
the (2:2) game.

Case 2: There is an index i such that (31.38) holds.
Again we prove that Case 2 is impossible! Indeed, let i= j1 denote the first index
such that (31.38) holds. Then we can save the argument of (31.29)–(31.41) in Case
1, and obtain the inequality Lj1

> 0 if q = �2√log2N −o�1�� (with an appropriate
o(1)) and N is large enough. By definition (see (31.33))

Lj1
= T�F�j1��−	 ·T�F 5

2∗�j1�� > 0�
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implying

T�F�j1�� >	 ·T�F 5
2∗�j1�� > 	 ·N 5�5 ·T�F5

2∗�

= T�F�

2T�F5
2∗�

·N 5�5 ·T�F5
2∗�=

1

2
N 5�5 ·T�F�� (31.42)

By (31.37) and (31.42)

T�F�j1�� > N 5�5 · N 6

215�q−1�4
2−q2 = N 7�5−o�1�� (31.43)

which is clearly false! Indeed, a corner point and its two neighbors uniquely
determine a q×q parallelogram lattice, implying the trivial upper bound

T�F�j1��≤ �F�j1�� ≤ �F � ≤ �N 2�2 = N 6�

which contradicts (31.43). This contradiction proves that Case 2 is impossible. This
completes the proof of part (1) in the following lower bound result.

Theorem 31.1 In the (2:2) Lattice Achievement Games the Achievement Numbers
are at least as large as the right-hand sides in Open Problem 30.3. For example,
playing the (2:2) game on an N×N board, at the end of the play Maker can always
occupy a

(1) a q×q parallelogram lattice with

q =
⌊
2
√
log2N −o�1�

⌋
�

(2) a q×q aligned rectangle lattice with

q =
⌊√

2 log2N −o�1�
⌋
�

The same holds for the (2:2) Lattice Avoidance Games.

The same argument works, with natural modifications, for all lattices in Section 8
(see Theorem 8.2). For example, in the proof of part (2) an obvious novelty is that
in the aligned rectangle lattice the horizontal and vertical directions play a special
role. We can overcome this by replacing the auxiliary hypergraph Fp

2∗ with Fp
2∗∗,

see (23.24); otherwise the proof is identical.
The big unsolved problem is always the “other direction.”

Open Problem 31.2 Is it true that Theorem 31.1 is best possible? For example, is
it true that, given any constant c > 2, playing the (2:2) game on an N ×N , Breaker
can prevent Maker from building a q×q parallelogram lattice with q = c

√
log2N

if N is large enough?
Is it true that, given any constant c >

√
2, playing the (2:2) game on an N ×N ,

Breaker can prevent Maker from building a q× q aligned rectangle lattice with
q = c

√
log2N if N is large enough?
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Biased games (III): Sporadic results

1. Exact solutions in the biased case. Unfortunately Theorem 31.1 is just a partial
result: one direction is clearly missing; is there any biased play for which we can
prove an exact result? Questions 30.1–30.2 describe the cases where we have a
“chance.” Which one is solvable? We succeeded with Question 30.2: the �a � 1�
Avoidance Game where Avoider is the topdog. We have already formulated this
result in Section 9 as Theorem 9.2.
Let a≥ 2; recall that the (a:1) Avoidance Game means that Avoider takes a points

per move and Forcer takes 1 point per move. A�N ×N� square lattice� a�1�−�

denotes the largest value of q such that Forcer can always force Avoider to occupy
a whole q× q Aligned Square Lattice in the N ×N board. This is called the
Avoidance Number of the biased (a:1) game where Avoider is the topdog.

Theorem 9.2 Consider the N×N board; let a≥ 2 and consider the (a:1) Avoidance
Game where Forcer is the underdog. We know the biased Avoidance Numbers:

(a) A�N ×N� square lattice� a�1�−�=
⌊√

logN
log�1+ 1

a �
+o�1�

⌋
�

(b) A�N ×N� rectangle lattice� a�1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
�

(c) A�N ×N� tilted square lattice� a�1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
�

(d) A�N ×N� tilted rectangle lattice� a�1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
�

(e) A�N ×N� rhombus lattice� a�1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
�

(f) A�N ×N� parallelogram lattice� a�1�−�=
⌊
2
√

logN
log�1+ 1

a �
+o�1�

⌋
�

(g) A�N ×N� area one lattice� a�1�−�=
⌊√

2 logN
log�1+ 1

a �
+o�1�

⌋
�

Of course, this is nothing else other than Open Problem 30.3 in the special case
of the �a�1� avoidance play.

The proof of the upper bounds in Theorem 9.2 combines Theorem 20.4 with the
BigGame–SmallGame Decomposition technique (see Part D). What needs to be

430
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explained here is how to prove the lower bounds in Theorem 9.2. The proof is an
extension of the proof technique of Theorem 31.1. First we briefly recall the basic
idea of the proof of Theorem 31.1.

Using the standard Power-of-Two Scoring System, the effect of the �i+ 1�st
moves x�1�i+1, x

�2�
i+1 and y

�1�
i+1, y

�2�
i+1 is described by a long identity (see (31.2)), which

has the “abstract form”

�1+x�1���1+x�2���1−y�1���1−y�2��−1=
2∑

j=1

x�j�−
2∑

j=1

y�j�

+x�1�x�2�+y�1�y�2�−
2∑

j=1

2∑
k=1

x�j�y�k�

−x�1�x�2�

(
2∑

j=1

y�j�

)
+y�1�y�2�

(
2∑

j=1

x�j�

)

+x�1�x�2�y�1�y�2�� (32.1)

For simplicity consider only the “linear and quadratic” terms in (32.1)

2∑
j=1

x�j�+x�1�x�2�−
2∑

j=1

y�j�+y�1�y�2�� (32.2)

Expression (32.1) is not symmetric, but the expression below

2∑
j=1

x�j�−x�1�x�2�−
2∑

j=1

y�j�+y�1�y�2� (32.3)

is symmetric in the sense that we can rewrite it in the compact form

f�x�1�� x�2��−f�y�1�� y�2�� where f�u1� u2�= u1+u2−u1u2�

We sacrifice the Power-of-Two Scoring System, and switch to the “one-counts-
only” system

Ti�H�=∑
A∈H

wi�A� and (32.4)

Ti�H� u1� � � � � um�=
∑

A∈H� 
u1�����um�⊂A

wi�A��

where wi�A�= 0 if A∩Y�i� �= ∅ and

wi�A�= 2�
1≤j≤i� A∩
x�1�j �x
�2�
j ��=∅��−�A� (32.5)

if A∩Y�i�= ∅.
Switching to (32.4)–(32.5) means that the product �1+x�1���1+x�2�� in (32.1) is

replaced by the quadratic polynomial �1+x�1�+x�2�−x�1�x�2��, which leads to the
following analogue of (32.1)
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(
1+x�1�+x�2�−x�1�x�2�

) (
1−y�1�

) (
1−y�2�

)−1

= (
x�1�+x�2�−x�1�x�2�

)− (
y�1�+y�2�−y�1�y�2�

)

−
2∑

j=1

2∑
k=1

x�j�y�k�+x�1�x�2�

(
2∑

j=1

y�j�

)

+y�1�y�2�

(
2∑

j=1

x�j�

)
−x�1�x�2�y�1�y�2�� (32.6)

Remark. In the (2:2) play, the “trick” was to replace 1+x�1�+x�2�+x�1�x�2� with
1+x�1�+x�2�−x�1�x�2�. In contrast, the (1:2) Achievement play, where Maker is the
underdog, is completely unsolved; we have no “room” for any trick. In the (1:2)
expansion

�1+2x��1−y�1���1−y�2��−1= 2x−y�1�−y�2�

+y�1�y�2�−2x�y�1�+y�2��+2xy�1�y�2�

the product y�1�y�2� is the “troublemaker.” We do not know how to get rid of it. For
example, to prove anything remotely non-trivial about the (1:2) Clique Achieve-
ment Game, we have to go back to “Ramseyish” arguments, see the Corollary
of Theorem 33.7 (we can prove only half of the conjectured truth). For the (1:2)
Lattice Achievement Game we can only use the linear criterion (30.3).
A closely related Coalition Game concept is defined at the end of Section 48,

including a non-trivial result.
Let’s now return to (32.6): we use the “formal inequalities”

x�1�x�2�
2∑

j=1

y�j� ≤ 1

2

2∑
j=1

2∑
k=1

x�j�y�k�

and its “twin brother”

y�1�y�2�
2∑

j=1

x�j� ≤ 1

2

2∑
j=1

2∑
k=1

x�j�y�k��

Of course, these “formal inequalities” have obvious “real” meaning like the trivial
inequality

Ti�H� x
�1�
i+1� x

�2�
i+1� y

�j�
i+1�≤

1

2

2∑
k=1

Ti�H� x
�k�
i+1� y

�j�
i+1��

Now applying the “formal inequalities” in (32.6) we obtain the “formal” upper
bound(

1+x�1�+x�2�−x�1�x�2�
) (
1−y�1�

) (
1−y�2�

)−1

≤ f�x�1�� x�2��−f�y�1�� y�2�� where f�u1� u2�= u1+u2−u1u2� (32.7)
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Consider the Potential Function

Li = Ti�F�−	 ·Ti�Fp
2∗�

(or Ti�Fp
2∗∗�) with the usual side condition

L0 = 1
2
T�F�� that is�

1
2
T�F�= 	 ·T�Fp

2∗��

Then by (32.6)–(32.7) we have the inequality

Li+1 ≥ Li+g�x
�1�
i+1� x

�2�
i+1�−g�y

�1�
i+1� y

�2�
i+1�

−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�−Ti�F� x

�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�

(notice the Negativity of the second line!), where

g�u1� u2�= Li�u1�+Li�u2�−Li�u1� u2� (32.8)

and for m= 1�2

Li�u1� � � � � um�= Ti�F� u1� � � � � um�−	 ·Ti�Fp
2∗� u1� � � � � um�

for any set 
u1� � � � � um� of unselected points.
Maker’s �i+1�st move is that unoccupied point pair


x
�1�
i+1� x

�1�
i+1�= 
u1� u2�

for which the function g�u1� u2� attains its maximum; then from (32.8) we obtain
the critical inequality

Li+1 ≥ Li−
2∑

j=1

2∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�

−Ti�F� x
�1�
i+1� x

�2�
i+1� y

�1�
i+1� y

�2�
i+1�� (32.9)

and the technique of Section 24 works without any difficulty.
Now we leave the (2:2) Achievement Game (Theorem 31.1), and turn to the proof

of Theorem 9.2. In the (a:1) Avoidance Game with a ≥ 2 the “natural” scoring is
the Power-of-� a+1

a
� Scoring System, which is described by the “abstract identity”
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below (the analogue of (32.1))(
1+ 1

a
x�1�

)(
1+ 1

a
x�2�

)
· · ·

(
1+ 1

a
x�a�

)
�1−y�−1= 1

a

a∑
j=1

x�j�

+ 1

a2

∑
1≤j1<j2≤a

x�j1�x�j2�+ 1

a3

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�+· · ·

−y− y

a

a∑
j=1

x�j�− y

a2

∑
1≤j1<j2≤a

x�j1�x�j2�

− y

a3

∑
1≤j1<j2<j3≤a

x�j1�x�j2�x�j3�+· · · � (32.10)

Identity (32.10) is very complicated, there is little hope of obtaining an upper bound
such as (32.7). We make a drastic simplification in (32.10) by replacing the product(

1+ 1
a
x�1�

)(
1+ 1

a
x�2�

)
· · ·

(
1+ 1

a
x�a�

)
(32.11)

with the linear polynomial �1+ 1
a

∑a
j=1 x

�j��

(
1+ 1

a

a∑
j=1

x�j�

)
�1−y�−1= 1

a

a∑
j=1

x�j�−y− y

a

a∑
j=1

x�j�� (32.12)

Replacing product (32.11) with a linear polynomial (see (32.12)) means that the
Power-of-� a+1

a
� Scoring System is replaced by a new “linear” scoring system: if

A∩Y�i�= ∅ then

wi�A�=
∏

1≤j≤i

(
1+ 1

a
�
x�1�j � x

�2�
j � � � � � x

�a�
j �∩A�

)
� (32.13)

and wi�A�= 0 if A∩Y�i� �= ∅.
In view of (32.12) the Potential Function

Li = Ti�F�−	 ·Ti�Fp
2∗�

with the usual side condition

L0 =
1

2
T0�F�� that is�

1

2
T0�F�= 	 ·T0�Fp

2∗��

satisfies the inequality (“Decreasing Property”)

Li+1 ≥ Li+
1

a

a∑
k=1

h�x
�k�
i+1�−h�yi+1�−

1

a

a∑
k=1

Ti�F� x
�k�
i+1� yi+1�� (32.14)

where

h�u�= Ti�F� u�−	 ·Ti�Fp
2 � u�� (32.15)
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Assume that Forcer is the first player, so yi+1 is selected before x
�k�
i+1, k= 1�2� � � � � a.

Forcer’s (i+1)st move is the unoccupied u for which the function h�u� attains its
minimum. Then we obtain the analogue of (32.9)

Li+1 ≥ Li−
1

a

a∑
k=1

Ti�F� x
�k�
i+1� yi+1�� (32.16)

and the technique of Section 24 works without any difficulty.
Again we have a problem with finding an analogue of the Generalized Variance

Lemma with the unusual “linear” weight (32.13). Unfortunately this is a major
roadblock, but we can get around this technical difficulty by working with the
“nearly disjoint” auxiliary hypergraph Fp

2∗ for the parallelogram lattice, working
with Fp

2∗∗ for the aligned rectangle lattice, and so on. By repeating the proof of
Theorem 31.1 we can routinly complete the proof of the Forcer’s win part of
Theorem 9.2.

The missing Avoider’s win part of Theorem 9.2 comes from combining
Theorem 20.4 with the decomposition techniques of Part D.

Theorem 9.2 gives an affirmative answer to Question 30.2 (well, at least for the
Lattice Games). How about Question 30.1? What happens in the (1:b) Achievement
Game with b ≥ 2 where Breaker is the topdog? Unfortunately in this case our
machinery breaks down; the only case we can handle is the case of “easy lattices”:
the aligned and tilted Square Lattices. The corresponding hypergraphs are “nearly”
Almost Disjoint: given 2 points in the N ×N board, there are ≤ (

q2

2

)
q×q Square

Lattices containing the two points;
(
q2

2

)
is polylogarithmic in N . We just need the

following slight generalization of (30.3) involving the Max Pair-Degree.
If hypergraph F is n-uniform and

�F �
�V �

(
f

f + s

)n

>
f 2s2

�f + s�3
·�2� (32.17)

where �2 = �2�F� is the Max Pair-Degree of F , then playing the �m�b� game on
F the first player (Maker) can occupy a whole A ∈ F .
A straightforward application of (32.17) gives the Maker’s win part of:

Theorem 32.1 Consider the N×N board; let b≥ 2 and consider the (1:b) Achieve-
ment Game where Breaker is the topdog. We know the following two biased
Achievement Numbers:

(a) A�N ×N� square lattice�1 � b�=
⌊√

logN
log�1+b�

+o�1�
⌋
�

(b) A�N ×N� tilted square lattice�1 � b�=
⌊√

2 logN
log�1+b�

+o�1�
⌋
�

The missing Breaker’s win part of Theorem 32.1 comes from combining (30.4)
with the decomposition techniques of Part D.
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Theorems 9.2 and 32.1 represent the only known exact solutions in the biased
case. How come that we can solve these cases but cannot solve the rest of the
cases? What has been overlooked here? What an interesting research problem!

We conclude this section with an extension of Theorem 31.1 to the general fair
case �k � k�. We begin with:
2. The (3:3) game. Theorem 31.1 was about the fair (2:2) play, and for the Lattice
Games we could prove exactly the same lower bounds as in the usual (1:1) play.
How about the (3:3) play? There is no surprise: we can prove the perfect analogue
of Theorem 31.1, and the proof works for every other fair (k:k) game. The analogue
of (32.6) is the tricky “formal equality”

�1+x�1�+x�2�+x�3�−x�1�x�2�−x�1�x�3�−x�2�x�3�+x�1�x�2�x�3���1−y�1���1−y�2��

�1−y�3��−1= (
1+ (

1− �1−x�1���1−x�2���1−x�3��
))

(
1− (

1− �1−y�1���1−y�2���1−y�3��
))

−1= f�x�1�� x�2�� x�3��−f�y�1�� y�2�� y�3�� (32.18)

− (
1− �1−x�1���1−x�2���1−x�3��

) (
1− �1−y�1���1−y�2���1−y�3��

)
�

where

f�u1� u2� u3�=1− �1−u1��1−u2��1−u3�

=u1+u2+u3−u1u2−u1u3−u2u3+u1u2u3�

Note that the inequality

1− �1−x�1���1−x�2���1−x�3��≥ 0 (32.19)

holds for for any choice of x�j� ∈ 
0�1�, j = 1�2�3, and the same for

1− �1−y�1���1−y�2���1−y�3��≥ 0� (32.20)

Combining (32.18)–(32.20) we obtain the “formal inequality”

�1+x�1�+x�2�+x�3�−x�1�x�2�−x�1�x�3�−x�2�x�3�+x�1�x�2�x�3���1−y�1���1−y�2��

�1−y�3��−1= (
1+ (

1− �1−x�1���1−x�2���1−x�3��
))

(
1− (

1− �1−y�1���1−y�2���1−y�3��
))−1≤ f�x�1�� x�2�� x�3��−f�y�1�� y�2�� y�3���

(32.21)

Identity (32.18) means that we use the following “one-counts-only” scoring system

Ti�H�= ∑
A∈H

wi�A� and (32.22)

Ti�H� u1� � � � � um�=
∑

A∈H� 
u1�����um�⊂A

wi�A��
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where wi�A�= 0 if A∩Y�i� �= ∅ and

wi�A�= 2�
1≤j≤i� A∩
x�1�j �x
�2�
j �x

�3�
j ��=∅��−�A� (32.23)

if A∩Y�i�= ∅.
The rest of the proof goes exactly like in the proof of Theorem 31.1. For example,

consider the Parallelogram Lattice Game. We use the usual Potential Function

Li = Ti�F�−	 ·Ti�Fp
2∗�

with the side condition

L0 =
1

2
T0�F�� that is� 	= T0�F�

2T0�Fp
2∗�

�

Then by (32.21) we obtain the “Decreasing Property”

Li+1 ≥Li+h�x�1�� x�2�� x�3��−h�y�1�� y�2�� y�3��

−
3∑

j=1

3∑
k=1

Ti�F� x
�j�
i+1� y

�k�
i+1�−

3∑
j=1

Ti�F� x
�1�
i+1� x

�2�
i+1� x

�3�
i+1� y

�j�
i+1�

−
3∑

j=1

Ti�F� x
�j�
i+1� y

�1�
i+1� y

�2�
i+1� y

�3�
i+1�−

∑
1≤j1<j2≤3

∑
1≤k1<k2≤3

Ti�F� x
�j1�
i+1� x

�j2�
i+1� y

�k1�
i+1 � y

�k2�
i+1 �

−Ti�F� x
�1�
i+1� x

�2�
i+1� x

�3�
i+1� y

�1�
i+1� y

�2�
i+1� y

�3�
i+1�

(notice the Negativity of the 2nd, 3rd, and 4th lines!) where

h�z1� z2� z3�=Li�z1�+Li�z2�+Li�z3�−Li�z1�Li�z2�

−Li�z1�Li�z3�−Li�z2�Li�z3�+Li�z1�Li�z2�Li�z3�

and for m= 1�2�3

Li�u1� � � � � um�= Ti�F� u1� � � � � um�−	 ·Ti�Fp
2∗� u1� � � � � um��

Maker chooses that unoccupied triplet 
z1� z2� z3�= 
x
�1�
i+1� x

�2�
i+1� x

�3�
i+1� for which the

function h�z1� z2� z3� attains its maximum. We leave the rest of the proof to the
reader.

Identity (32.18) clearly extends from 3-products to arbitrary k-products, and this
way we get the following extension of Theorem 31.1.

Theorem 31.1 In the fair (k:k) Lattice Achievement Games the Achievement Num-
bers are at least as large as the right-hand sides in Open Problem 30.3. For
example, playing the (k:k) Achievement Lattice Game on an N ×N board (k≥ 2),
at the end of the play:
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(1) Maker can always own a q×q parallelogram lattice with

q =
⌊
2
√
log2N −o�1�

⌋
�

(2) Maker can always own a q×q aligned rectangle lattice with

q =
⌊√

2 log2N −o�1�
⌋
�

The same holds for every fair (k:k) Avoidance Lattice Game.

The same argument works, with minor modifications, for all lattices in Section 8
(see Theorem 8.2). For example, in the proof of part (2) an obvious novelty is that
in the aligned rectangle lattice the horizontal and vertical directions play a special
role. We can overcome this by replacing the auxiliary hypergraph Fp

2∗ with Fp
2∗∗,

see (23.24); otherwise the proof is the same.
The big unsolved problem is always the “other direction.”

Open Problem 32.1 Is it true that Theorem 31.1′ is best possible? For example, is
it true that, given any constant c > 2, playing the (k:k) game on an N ×N , Breaker
can prevent Maker from building a q×q parallelogram lattice with q = c

√
log2N

if N is large enough?



33
Biased games (IV): More sporadic results

1. When Maker (or Avoider) is the topdog. Theorem 31.1′ was a building result,
supporting one direction of the Meta-Conjecture for the general �k �k� fair game.
Its proof technique can be easily extended to all biased Avoidance games where
Avoider is the topdog: the �a �f� play with a > f ≥ 1. For notational simplicity,
we discuss the (3:2) play only, and leave the general case to the reader. The (3:2)
avoidance analogue of (32.18) and (32.21) goes as follows (“Decreasing Property”)(

1+ 1
3

(
1− �1−x�1���1−x�2��

)+ 1

3

(
1− �1−x�1���1−x�3��

)

+ 1

3

(
1− �1−x�2���1−x�3��

)) · �1−y�1���1−y�2��−1

=
(
1+ 1

3

(
1− �1−x�1���1−x�2��

)+ 1

3

(
1− �1−x�1���1−x�3��

)

+ 1

3

(
1− �1−x�2���1−x�3��

)) · (1− (
1− �1−y�1���1−y�2��

))−1

= 1

3
f�x�1�� x�2��+ 1

3
f�x�1�� x�3��+ 1

3
f�x�2�� x�3��−f�y�1�� y�2��

− 1

3
f�y�1�� y�2��

(
f�x�1�� x�2��+f�x�1�� x�3��+f�x�2�� x�3��

)≤
≤ 1

3

(
f�x�1�� x�2��+f�x�1�� x�3��+f�x�2�� x�3��

)−f�y�1�� y�2���

where
f�u1� u2�= 1− �1−u1��1−u2��

We get a strictly positive weight here because(
1− �1−x�1���1−x�2��

)+ (
1− �1−x�1���1−x�3��

)+ (
1− �1−x�2���1−x�3��

)≥ 0

439
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for every choice of x�1� ∈ 
0�1�, x�2� ∈ 
0�1�, x�3� ∈ 
0�1�.
Forcer’s obvious optimal move is to minimize function f�u1� u2�. The rest is

standard.
How about the biased Achievement Game �m�b� with m > b ≥ 1? Again

we just discuss the (3:2) play, and leav e the general case to the reader. The
(3:2) achievement analogue of (32.18) and (32.21) goes as follows (“Decreasing
Property”)(
1
3
�1−x�1��+ 1

3
�1−x�2��+ 1

3
�1−x�3��+ (

1− �1−x�1���1−x�2���1−x�3��
))

· �1−y�1���1−y�2��−1

=
(
1

3
�1−x�1��+ 1

3
�1−x�2��+ 1

3
�1−x�3��+ (

1− �1−x�1���1−x�2���1−x�3��
))

· (1− (
1− �1−y�1���1−y�2��

))−1=

= h�x�1�� x�2�� x�3��− 1

3
h�y�1�� y�2�� x�1��− 1

3
h�y�1�� y�2�� x�2��

− 1

3
h�y�1�� y�2�� x�3��−h�x�1�� x�2�� x�3�� ·g�y�1�� y�2��

≤ h�x�1�� x�2�� x�3��− 1

3

(
h�y�1�� y�2�� x�1��+h�y�1�� y�2�� x�2��+h�y�1�� y�2�� x�3��

)
�

where

h�u1� u2� u3�= 1− �1−u1��1−u2��1−u3�

and

g�u1� u2�= 1− �1−u1��1−u2��

Again we get a strictly positive weight because(
1
3
�1−x�1��+ 1

3
�1−x�2��+ 1

3
�1−x�3��+ (

1− �1−x�1���1−x�2���1−x�3��
))

> 0

for every choice of x�1� ∈ 
0�1�, x�2� ∈ 
0�1�, x�3� ∈ 
0�1�.
Maker’s obvious optimal move is to maximize function h�u1� u2� u3�. The rest is

routine. This way we obtain:

Theorem 33.1 In the (a:f) Avoidance Lattice Games on an N ×N board with
a > f ≥ 1, the Avoidance Numbers are at least as large as the right-hand sides in
Open Problem 30.3. For example, at the end of the play:
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(1) Forcer can always force Avoider to own a q×q parallelogram lattice with

q =
⌊
2

√
logN

log
(
a+f

a

) −o�1�

⌋
�

(2) Forcer can always force Avoider to own a q×q aligned rectangle lattice with

q =
⌊√

2 logN

log
(
a+f

a

) −o�1�

⌋
�

Similarly, in the (m:b) Achievement Lattice Games on an N ×N board with
m> b ≥ 1, the Achievement Numbers are at least as large as the right-hand sides
in Open Problem 30.3. For example, at the end of the play:

(1) Maker can always own a q×q parallelogram lattice with

q =
⌊√

4 logN

log
(
m+b
m

) + 2 logN

log
(

m
m−b

) −o�1�

⌋
�

(2) Maker can always own a q×q aligned rectangle lattice with

q =
⌊√

2 logN

log
(
m+b
m

) + 2 logN

log
(

m
m−b

) −o�1�

⌋
�

To prove the Achievement version of Theorem 33.1, we need the precise version
of the “Random Play plus Cheap Building” intuition (see Section 46).

Next consider the case when Maker is the underdog. Is there a game where we
can prove a building result supporting the underdog Meta-Conjecture? The answer
is “yes”; we demonstrate it with:

2. When Maker is the underdog: the (2:3) game is a partial success. We start
with the following asymmetric analogue of (32.18)(

1+ 3
2
x�1�+ 3

2
x�2�−3x�1�x�2�

)
�1−y�1���1−y�2���1−y�3��−1

=
(
1+ 3

2
�x�1�+x�2�−2x�1�x�2��

)(
1− (

1− �1−y�1���1−y�2���1−y�3��
))−1

= 3

2
f�x�1�� x�2��− 1

2

(
f�y�1�� y�2��+f�y�1�� y�3��+f�y�2�� y�3��

)

− 3

2
�x�1�+x�2�−2x�1�x�2��

(
1− �1−y�1���1−y�2���1−y�3��

)
� (33.1)

where

f�u1� u2�= u1+u2−2u1u2�
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Note that the inequality

x�1�+x�2�−2x�1�x�2� = �x�1�−x�2��2 ≥ 0 (33.2)

is trivial, and

1− �1−y�1���1−y�2���1−y�3��≥ 0 (33.3)

holds for for any choice of y�j� ∈ 
0�1�, j = 1�2�3. Combining (33.1)–(33.3) we
obtain the “formal inequality”

�1+ 3

2
x�1�+ 3

2
x�2�−3x�1�x�2���1−y�1���1−y�2���1−y�3��−1

≤ 3
2
f�x�1�� x�2��− 1

2

(
f�y�1�� y�2��+f�y�1�� y�3��+f�y�2�� y�3��

)
� (33.4)

(33.4) (i.e. the “Decreasing Property”) is the analogue of (32.40), and repeating the
proof of Theorem 31.1′ we obtain:

Theorem 33.2 In the (2:3) Achievement Lattice Games on an N ×N board the
Achievement Numbers are at least as large as the right-hand sides in Open Problem
30.3. For example

A�N ×N� rectangle lattice�2 � 3�≥
⌊√

2 logN

log�5/2�
+o�1�

⌋
�

and

A�N ×N� parallelogram lattice�2 � 3�≥
⌊
2

√
logN

log�5/2�
+o�1�

⌋
�

The role of factor log�5/2� is clear: 2/5 is the probability that a given point will be
picked by Maker.
We have succeeded with the (2:3) achievement game, at least with the “building

part.” What happens if we try the same approach for the (2:4) game?

3. The (2:4) achievement game is a breakdown! The difficulty with the (1:2)
achievement game has already been mentioned in section 32, see the Remark after
(32.6). In the (2:4) game we face the same difficulty. Indeed, consider the equality

1− �1−y�1���1−y�2���1−y�3���1−y�4��= y�1�+y�2�+y�3�+y�4�

−y�1�y�2�−y�1�y�3�−y�1�y�4�−y�2�y�3�−y�2�y�4�−y�3�y�4�± � � �

= 1
3

(
f�y�1�� y�2��+f�y�1�� y�3��

+ f�y�1�� y�4��+f�y�2�� y�3��+f�y�2�� y�4��+f�y�3�� y�4��
)± � � � �
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where f�u1� u2�= u1+u2−3u1u2. This suggests the following starting point

(
1+2x�1�+2x�2�−6x�1�x�2�

)
�1−y�1���1−y�2���1−y�3���1−y�4��−1

= (
1+2f�x�1�� x�2��

)(
1− 1

3

∑
1≤k1<k2≤4

f�y�k1�� y�k2��−∗
)
−1

= 2f�x�1�� x�2��− 1

3

∑
1≤k1<k2≤4

f�y�k1�� y�k2��± � � � �

where

∗ = y�1�y�2�y�3�+y�1�y�2�y�4�+y�1�y�3�y�4�+y�2�y�3�y�4�−y�1�y�2�y�3�y�4��

There are two difficulties with the (2:4) game. The first one is that we need the
inequality

(
1+2x�1�+2x�2�−6x�1�x�2�

)
�1−y�1���1−y�2���1−y�3���1−y�4��−1

≤ 2f�x�1�� x�2��− 1

3

∑
1≤k1<k2≤4

f�y�k1�� y�k2���

but we don’t know how to prove it. But there is a perhaps even bigger problem:
the factor 1+ 2x�1� + 2x�2� − 6x�1�x�2� leads to negative(!) weights. Indeed, the
corresponding weight is the product

wi�A�=
∏

1≤j≤i

g�x
�1�
j � x

�2�
j �� (33.5)

and the polynomial

g�x�1�� x�2��= 1+2x�1�+2x�2�−6x�1�x�2� =−1 if x�1� = x�2� = 1� (33.6)

Here we used the slightly confusing notation x
�l�
j = 1 if x

�l�
j ∈ A and x

�l�
j = 0 if

x
�l�
j �∈ A (i.e. x�l�j denotes a point and a 0-1-function at the same time).
(33.5)–(33.6) allow the appearance of negative weights! Unfortunately, negative

weights “kill” the proof technique, and we don’t know how to prevent it. The (2:4)
achievement game is a breakdown for this approach. Of course, there are infinitely
many similar breakdowns. Can the reader help me out here?

Here is one more sporadic example: another underdog achievement game.
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4. The (4:5) achievement game: a partial success. How should we start? The
equality

1− �1−y�1���1−y�2���1−y�3���1−y�4���1−y�5��=
5∑

k=1

y�k�

− ∑
1≤k1<k2≤5

y�k1�y�k2�+ ∑
1≤k1<k2<k3≤5

y�k1�y�k2�y�k3�

− ∑
1≤k1<k2<k3<k4≤5

y�k1�y�k2�y�k3�y�k4�+y�1�y�2�y�3�y�4�y�5�

= 1

4

(
f�y�1�� y�2�� y�3�� y�4��+f�y�2�� y�3�� y�4�� y�5��+f�y�1�� y�3�� y�4�� y�5��

+f�y�1�� y�2�� y�4�� y�5��+f�y�1�� y�2�� y�3�� y�5��

)
+y�1�y�2�y�3�y�4�y�5��

where

f�u1� u2� u3� u4�=u1+u2+u3+u4

− 4

3
�u1u2+u1u3+u1u4+u2u3+u2u4+u3u4�+

+2�u1u2u3+u2u3u4+u1u3u4+u1u2u4�

−4u1u2u3u4

suggests the following starting point
(
1+ 5

4
f�x�1�� x�2�� x�3�� x�4��

)(
1− 1

4

∑
1≤k1<k2<k3<k4≤5

f�y�k1�� y�k2�� y�k3�� y�k4��−∗
)
−1�

where

∗ = y�1�y�2�y�3�y�4�y�5��

Multiplying out the starting point product above we get

5

4
f�x�1�� x�2�� x�3�� x�4��− 1

4

∑
1≤k1<k2<k3<k4≤5

f�y�k1�� y�k2�� y�k3�� y�k4��

− 5

16
f�x�1�� x�2�� x�3�� x�4��

( ∑
1≤k1<k2<k3<k4≤5

f�y�k1�� y�k2�� y�k3�� y�k4��

)

−
(
1+ 5

4
f�x�1�� x�2�� x�3�� x�4��

)
y�1�y�2�y�3�y�4�y�5� ≤

≤ 5

4
f�x�1�� x�2�� x�3�� x�4��− 1

4

∑
1≤k1<k2<k3<k4≤5

f�y�k1�� y�k2�� y�k3�� y�k4��
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(note that we check the inequality “f ≥ 0” later), which is the critical inequality
(“Decreasing Property”) that we need!

We also have to check that the factor(
1+ 5

4
f�x�1�� x�2�� x�3�� x�4��

)
= 1+ 5

4

(
x�1�+x�2�+x�3�+x�4�

− 4

3
�x�1�x�2�+x�1�x�3�+x�1�x�4�+x�2�x�3�+x�2�x�4�+x�3�x�4��

+2�x�1�x�2�x�3�+x�2�x�3�x�4�+x�1�x�3�x�4�+x�1�x�2�x�4��−4x�1�x�2�x�3�x�4�

)

is strictly positive for every choice of x�j� ∈ 
0�1�, j = 1�2�3�4. Indeed, the
polynomial

g�x�1�� x�2�� x�3�� x�4��=
(
1+ 5

4
f�x�1�� x�2�� x�3�� x�4��

)

shows up in the definition of the weight

wi�A�=
∏

1≤j≤i

g�x
�1�
j � x

�2�
j � x

�3�
j � x

�4�
j ��

Here we used the slightly confusing notation x
�l�
j = 1 if x

�l�
j ∈ A and x

�l�
j = 0 if

x
�l�
j �∈ A, i.e. x�l�j denotes a point and a 0-1-function at the same time. The success

of our proof technique requires strictly positive weights, and in this case we really
have strictly positive weights. Indeed, with x�j� ∈ 
0�1�, j = 1�2�3�4 we have:

(1) if
∑4

k=1 x
�k� = 1 then f�x�1�� x�2�� x�3�� x�4��= 1> 0;

(2) if
∑4

k=1 x
�k� = 2 then f�x�1�� x�2�� x�3�� x�4��= 2− 4

3 > 0;
(3) if

∑4
k=1 x

�k� = 3 then f�x�1�� x�2�� x�3�� x�4��= 3− 4
33+2> 0;

(4) if
∑4

k=1 x
�k� = 4 then f�x�1�� x�2�� x�3�� x�4��= 4− 4

3 6+2 ·4−4= 0.

Thus we are ready to repeat the proof of Theorem 31.1′, and obtain:

Theorem 33.3 In the (4:5) Achievement Lattice Games on an N ×N board the
Achievement Numbers are at least as large as the right-hand sides in Open Problem
30.3. For example

A�N ×N� rectangle lattice�4 � 5�≥
⌊√

2 logN
log�9/4�

+o�1�

⌋
�

and

A�N ×N� parallelogram lattice�4 � 5�≥
⌊
2

√
logN

log�9/4�
+o�1�

⌋
�

The role of factor log�9/4� is clear: 4/9 is the probability that in the (4:5) game a
given point will be picked by Maker.
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We succeeded in the (2:3) and (4:5) games, and failed in the (2:4) game. What
is going on here? Is there a better way to handle the biased achievement games
where Maker is the underdog? We need more ideas!

5. The biased Chooser–Picker Game: a pleasant surprise. In the fair (1:1) play
we have the unexpected equality

Achievement Number = Avoidance Number = Chooser Achievement Number

about the Maker–Breaker, the Avoider–Forcer, and the Chooser–Picker games (well,
at least for our “Ramseyish” games with quadratic goal sets). Among these 3 games
the Chooser–Picker version has the most satisfying “biased theory.” We start the
discussion with:

The (1:2) Chooser–Picker Game. Here, of course, Chooser is the underdog; how
can underdog Chooser build? The simplest Power-of-Three Scoring System works.
Indeed, let

g�x� y�1�� y�2��= �1+2x��1−y�1���1−y�2��−1

= 2x− �y�1�+y�2��+y�1�y�2�−2x�y�1�+y�2��+2xy�1�y�2��

and consider the “complete sum”

g�u1� u2� u3�+g�u2� u3� u1�+g�u3� u1� u2�=
−3�u1u2+u1u3+u2u3�+6u1u2u3� (33.7)

By using the trivial “formal inequality” u1u2u3 ≤ ujuk in (33.7) we obtain

g�u1� u2� u3�+g�u2� u3� u1�+g�u3� u1� u2�≤ 0� (33.8)

The Power-of-Three Scoring System means to work with

T�H�= ∑
B∈H

3−�B� and T�H� v1� � � � � vm�=
∑

B∈H�
v1�����vm�⊂b

3−�B��

Consider the usual Potential Function

Li = T�F�i��−	 ·T�Fp
2 �i���

where

H�i�= 
B \X�i� � B ∈ H�B∩Y�i�= ∅�

with H = F and H = Fp
2 .

In the �i+1�st move Picker offers 3 points u1� u2� u3 to Chooser to choose from.
Chooser has 3 options: xi+1 = u1 or xi+1 = u2 or xi+1 = u3, and accordingly we
have 3 possible values: L�1�

i+1 or L
�2�
i+1 or L

�3�
i+1. By (33.7)–(33.8) we obtain the crucial
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inequality (“Decreasing Property”)

1
3

(
L
�1�
i+1+L

�2�
i+1+L

�3�
i+1

)
≥ Li−T�F�i�� u1� u2�−T�F�i�� u1� u3�−T�F�i�� u2� u3�

+2T�F�i�� u1� u2� u3�

≥ Li−
(
T�F�i�� u1� u2�+T�F�i�� u1� u3�+T�F�i�� u2� u3�

)
�

(33.9)

Chooser chooses that point xi+1 = uj for which L
�j�
i+1, j= 1�2�3 attains its maximum.

Then by (33.8)

Li+1 ≥ Li−
(
T�F�i�� u1� u2�+T�F�i�� u1� u3�+T�F�i�� u2� u3�

)
�

and the rest of the proof is a routine application of Section 24. We obtain, therefore:

Theorem 33.4 (a) In the (1:2) Chooser–Picker game Chooser can achieve at least
as large goal size as the perfect analogue of Theorem 6.4 and Theorem 8.2 with the
natural change that the base 2 logarithm log2N is replaced by the base 3 logarithm
log3N .

We conjecture that Theorem 33.4 (a) is the best possible; what we can prove
is weaker: we can show that Theorem 33.4 (a) is (at least!) asymptotically best
possible. Not a word has been said about Picker’s blocking yet, not even in the
simplest (1:1) game. This section is already far too long, so we postpone the (1:1)
case to the end of Section 38, and the general biased case to the end of Section 47.

The general (1:s) Chooser–Picker game. The (1:2) Chooser–Picker game turned
out to be “easy.” Let s ≥ 2 be an arbitrary integer; how about the general (1:s) play
(Picker picks s+1 points per move and Chooser chooses one of them for himself)?
We want to come up with an analogue of inequality (33.8). Let

g�x� y�1�� � � � � y�s��=�1+ sx��1−y�1�� · · · �1−y�s��−1

=sx− �y�1�+ � � �+y�s��+ ∑
1≤k1<k2≤s

y�k1�y�k2�

− sx�y�1�+ � � �+y�s��− ∑
1≤k1<k2<k3≤s

y�k1�y�k2�y�k3�

+ sx

( ∑
1≤k1<k2≤s

y�k1�y�k2�

)
±· · · � (33.10)
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Then the “complete sum” (in fact its average) equals

1
s+1

(
g�u1� u2� � � � � us+1�+g�u2� u1� u3� � � � � us+1�+· · ·

+ · · ·+g�us+1� u1� � � � � us�

)

=−A2+2A3−3A4+4A5−5A6±· · ·+ �−1�s · sAs+1� (33.11)

where

A2 =
∑

1≤j1<j2≤s+1

uj1
uj2

� A3 =
∑

1≤j1<j2<j3≤s+1

uj1
uj2

uj3
�

A4 =
∑

1≤j1<j2<j3<j4≤s+1

uj1
uj2

uj3
uj4

� · · · � (33.12)

To get the analogue of (33.8), we have to check the Negativity (see (33.11))

−A2+2A3−3A4+4A5−5A6±· · ·+ �−1�s · sAs+1 ≤ 0� (33.13)

The Inclusion–Exclusion Principle gives in a “formal sense”

u1u2 ≥ union of u1u2uk� k= 3�4� � � � � s+1

= u1u2

(
s+1∑
k=3

uk−
∑

3≤k1<k2≤s

uk1
uk2

+ ∑
3≤k1<k2<k3≤s+1

uk1
uk2

uk3
− ∑

3≤k1<k2<k3<k4≤s+1

uk1
uk2

uk3
uk4

±· · ·
)
�

which by (33.12) implies

A2 ≥
(
s+1
2

)
�s+1−2�(

s+1
3

) A3−
(
s+1
2

)(
s+1−2

2

)
(
s+1
4

) A4+

+
(
s+1
2

)(
s+1−2

3

)
(
s+1
5

) A5−
(
s+1
2

)(
s+1−2

4

)
(
s+1
6

) A6±· · ·

= 3A3−
(
4
2

)
A4+

(
5
2

)
A5−

(
6
2

)
A6±· · · � (33.14)
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Similarly

u1u2u3 ≥ union of u1u2u3uk� k= 4�5� � � � � s+1

=u1u2u3

(
s+1∑
k=4

uk−
∑

4≤k1<k2≤s

uk1
uk2

+ ∑
4≤k1<k2<k3≤s+1

uk1
uk2

uk3
− ∑

4≤k1<k2<k3<k4≤s+1

uk1
uk2

uk3
uk4

±· · ·
)
�

which by (33.12) implies

A3 ≥
(
s+1
3

)
�s+1−3�(

s+1
4

) A4−
(
s+1
3

)(
s+1−3

2

)
(
s+1
5

) A5+

+
(
s+1
3

)(
s+1−3

3

)
(
s+1
6

) A6−
(
s+1
3

)(
s+1−3

4

)
(
s+1
7

) A7±· · ·

= 4A4−
(
5
3

)
A5+

(
6
3

)
A6−

(
7
3

)
A7±· · · � (33.15)

We can rewrite (33.14) and (33.15) as follows

−A2+
(
3
2

)
A3−

(
4
2

)
A4+

(
5
2

)
A5−

(
6
2

)
A6±· · ·+ �−1�s−2

(
s+1
2

)
As+1 ≤ 0�

(33.16)

−A3+
(
4
3

)
A4−

(
5
3

)
A5+

(
6
3

)
A6−

(
7
3

)
A7±· · · �−1�s−3

(
s+1
3

)
As+1 ≤ 0�

(33.17)

Similarly, we have

−A4+
(
5
4

)
A5−

(
6
4

)
A6+

(
7
4

)
A7−

(
8
4

)
A8±· · · �−1�s−4

(
s+1
4

)
As+1 ≤ 0�

(33.18)

−A5+
(
6
5

)
A5−

(
7
5

)
A7+

(
8
5

)
A8−

(
9
5

)
A9±· · · �−1�s−5

(
s+1
5

)
As+1 ≤ 0�

(33.19)

and so on.
Adding up inequalities (33.16), (33.17), (33.18), and so on, we obtain exactly

the desired (33.13). Indeed, the coefficient �k−1� of Ak in (33.12) equals the sum(
k

2

)
−
(
k

3

)
+
(
k

4

)
−
(
k

5

)
± � � �+ �−1�k

(
k

k

)
= k−1� (33.20)

due to the binomial formula 0= �1−1�k =∑k
j=0�−1�j

(
k

j

)
.
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Inequality (33.13) is the key ingredient; the rest of the proof is a routine applica-
tion of Section 24, just as in the (1:2) play (Theorem 33.4 (a)). We obtain, therefore,
the following extension of Theorem 33.4 (a).

Theorem 33.4 (b) Let s ≥ 2 be an arbitrary integer. In the (1:s) Chooser–Picker
game Chooser can achieve a goal size at least as large as the perfect analogues of
Theorems 6.4 and 8.2 with the natural change that the base 2 logarithm log2N is
replaced by the base �s+1� logarithm logs+1N .

At the end of Section 47 we will see that Theorem 33.4 is (at least!) asymptotically
best possible.
At the end of Section 30 we formulated Theorem 30.4: it was an advanced

building criterion in the �1 � s� Avoidance Game where Avoider is the underdog.
The special case s= 2 was proved there, and here we complete the missing general
case s ≥ 2.

Proof of Theorem 30.4. We closely follow the proof of Theorem 33.4. The starting
point is the same (see (33.10))

�1+ sx��1−y�1�� · · · �1−y�s��−1

= sx− �y�1�+ � � �+y�s��+ ∑
1≤k1<k2≤s

y�k1�y�k2�

− sx�y�1�+ � � �+y�s��− ∑
1≤k1<k2<k3≤s

y�k1�y�k2�y�k3�+

+ sx

( ∑
1≤k1<k2≤s

y�k1�y�k2�

)
±· · ·

= f�x� y�2�� � � � � y�s��+f�y�1�� x� y�3�� � � � � y�s��+f�y�1�� y�2�� x� y�4�� � � � � y�s��+
+ � � �+f�y�1�� � � � � y�s−1�� x�− s ·f�y�1�� y�2�� � � � � y�s��

−
(
1

2
A1−

2

3
A2+

3

4
A3−

4

5
A4±· · ·+ �−1�s+1 s

s+1
As

)
·x · �s+1�� (33.21)

where

f�u1� � � � � us�=
s∑

j=1

uj −
1

2

( ∑
1≤j1<j2≤s

uj1
uj2

)

+ 1
3

( ∑
1≤j1<j2<j3≤s

uj1
uj2

uj3

)

− 1
4

( ∑
1≤j1<j2<j3<j4≤s

uj1
uj2

uj3
uj4

)
±· · · �
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and

A1 =
s∑

j=1

y�j�� A2 =
∑

1≤j1<j2≤s

y�j1�y�j2��

A3 =
∑

1≤j1<j2<j3≤s

y�j1�y�j2�y�j3��

A4 =
∑

1≤j1<j2<j3<j4≤s

y�j1�y�j2�y�j3�y�j4�� · · · � (33.22)

The critical part of the proof is the inequality (see (33.21))

1
2
A1−

2

3
A2+

3

4
A3−

4

5
A4±· · ·+ �−1�s+1 s

s+1
As ≥ 0� (33.23)

which plays the role of (33.13).
How to prove (33.23)? Well, we have the perfect analogue of (33.16)

A2−
(
3
2

)
A3+

(
4
2

)
A4−

(
5
2

)
A5+

(
6
2

)
A6∓· · ·+ �−1�s−2

(
s

2

)
As ≥ 0� (33.24)

and we have the perfect analogue of (33.17)

A3−
(
4
3

)
A4+

(
5
3

)
A5−

(
6
3

)
A6+

(
7
3

)
A7∓· · ·+ �−1�s−3

(
s

3

)
As ≥ 0� (33.25)

and we have the perfect analogue of (33.18)

A4−
(
5
4

)
A5+

(
6
4

)
A6−

(
7
4

)
A7+

(
8
4

)
A8∓· · ·+ �−1�s−4

(
s

4

)
As ≥ 0� (33.26)

and we have the perfect analogue of (33.19)

A5−
(
6
5

)
A5+

(
7
5

)
A7−

(
8
5

)
A8+

(
9
5

)
A9∓· · ·+ �−1�s−5

(
s

5

)
As ≥ 0� (33.27)

and so on.
The reader is probably wondering about the missing “first” inequality following

the same pattern

A1−2A2+3A3−4A4+5A5∓· · ·+ �−1�s−1sAs ≥ 0� (33.28)

Of course, inequality (33.28) is true, and it can be proved in the same way by using
the Inclusion–Exclusion formula.

Now we are ready to prove inequality (33.23). Indeed, adding up inequality
(33.28) with weight 1

2 , and inequality (33.24) with weight 1
3 , and inequality (33.25)

with weight 1
4 , and inequality (33.26) with weight 1

5 , and so on, at the end the sum
is exactly the desired (33.23). Indeed, this follows from the identity

1

2
k− 1

3

(
k

2

)
+ 1

4

(
k

3

)
− 1

5

(
k

4

)
±· · · = k

k+1
� (33.29)
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Identity (33.29) is equivalent to (33.20). Indeed, multiplying (33.29) with �k+ 1�
we obtain (33.20) with “k= k+1.”
Inequality (33.20) is the key ingredient; the rest of the proof is a routine

application of Section 24. This completes the proof of Theorem 30.4.

6. (1:1) games with extra difficulties. We conclude this section with two (1:1)
games where we face the same kind of technical problem as in the biased games.
The first one is a game about 2-colored goals, and it is a common generalization
of the Clique Achievement and Clique Avoidance Games. The board is the usual
complete graph KN ; the two players are called Red and Blue, who alternately
occupy new edges of KN ; in each turn Red colors his new edge red and Blue colors
his new edge blue. In the old Achievement version, Red=Maker wants to build a
monochromatic (red) sub-clique Kq as large as possible; in the Avoidance version
Red=Forcer wants to force the reluctant Blue=Avoider to build a monochromatic
(blue) sub-clique Kq as large as possible. In the two versions Red has two opposite
goals: (1) a monochromatic red Kq that he builds, and a (2) a monochromatic blue
Kq that the reluctant opponent builds. How about a mixed goal, a 2-colored goal?
What we mean by this is the following: fix an arbitrary 2-colored copy of Kq that
we denote by Kq�red�blue� (of course, the edges are colored red and blue); Red
wins the play on KN if at the end there is a color-isomorphic copy of the given
2-colored Kq�red�blue�; otherwise Blue wins. We call this game the Kq�red�blue�-
building game on KN . Notice that Red acts like a Builder – but he cannot succeed
alone, he needs the opponent’s cooperation(!) – and Blue acts like a Blocker. Is it
true that, given a 2-colored goal graph Kq�red�blue�, Red has a winning strategy in
KN if N is large enough? The answer is “yes”; we already proved it in Section 16
(see Theorems 16.2–16.3). Unfortunately that proof (a straightforward adaptation of
Theorem 1.2) gave a poor quantitative bound (like q=√

logN ). In the two extreme
cases of monochromatic red and monochromatic blue Kq (i.e. the Achievement and
Avoidance Games) we could prove the best possible quantitative bound; namely,
we could find the exact value

q = �2 log2N −2 log2 log2N +2log2e−3+o�1���

This raises the following natural:

Open Problem 33.1 Let Kq�red�blue� be an arbitrary fixed 2-colored goal graph,
and let q = �2− o�1�� log2N . Is it true that, playing on KN , Red has a winning
strategy in the Kq�red�blue�-building game?
Well, this seems plausible; we can try to prove it by using the usual potential
technique

Li = T�F�i��−	 ·T�Fp
2 �i�� (33.30)
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of Section 24. Here comes the bad news: this is a (1:1) game; nevertheless we
face the difficulty of “Big Bad Negative Terms” the same way as we did in the
biased case! Indeed, let xi+1 be Red’s �i+1�st move (a red edge), let yi+1 be Blue’s
�i+1�st move (a blue edge), and consider an arbitrary color-isomorphic copy K∗

N

of the given 2-colored goal graph Kq�red�blue� with the additional property that
the edges xi+1� yi+1 both belong to K∗

N (but not necessarily with the right color!).
Then there are 4 possibilities:

(1) both xi+1 and yi+1 are color-consistent with K∗
N ;

(2) xi+1 is consistent but yi+1 is inconsistent with K∗
N (i.e. yi+1 is red in K∗

N );
(3) yi+1 is consistent but xi+1 is inconsistent with K∗

N (i.e. xi+1 is blue in K∗
N );

(4) both xi+1 and yi+1 are inconsistent with K∗
N .

Notice that Case (1) and Case (4) are “new cases”; they cannot occur in the special
cases of Achievement and Avoidance Games. These two “new cases” contribute
extra positive terms in T�F�i�� and contribute extra negative terms in −T�Fp

2 �i��

(see (33.30)). The appearance of extra negative terms in (33.30) kills the proof
technique exactly the same way as it did in the biased case. This is why we
cannot solve the “plausible” Open Problem 33.1. What we can prove is “half of the
conjectured truth”: Red can force the appearance of a color-isomorphic copy of any
given Kq�red�blue� with �1− o�1�� log2N . The proof is a Ramsey type Halving
Argument, a variant of the proof of Theorem 21.1. In fact, we combine the Ramsey
Halving Argument with the discrepancy result Theorem 17.1, and the proof will
give the stronger statement that, at the end of the play, the 2-colored KN contains
all 2-colored copies of Kq with �1−o�1�� log2N .

Red (as Builder) wants to guarantee the following two graph-theoretic properties:

(�) at the end of the play, for any two disjoint vertex sets V1 and V2 in KN with
�V1� ≥ N� and �V2� ≥ N�, the number of red edges in the complete bipartite
graph V1×V2 is between � 12 −���V1� · �V2� and � 12 +���V1� · �V2�; and also

() at the end of the play, for any vertex set V1 in KN with �V1� ≥ N�, the number
of red edges in the graph KV1

= (
V1
2

)
is between � 12 −��

(�V1�
2

)
and � 12 +��

(�V1�
2

)
.

These two density properties can be easily guaranteed by a routine application of the
discrepancy result Theorem 17.1. Indeed, the criterion of Theorem 17.1 applies if

∑
k≥N��l≥N��k+l≤N

(
N

k

)(
N −k

l

)(
�1+��1+��1−��1−�

)−kl/2 = o�1�� (33.31)
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and (33.31) is trivial with (say) �= �logN�−1/2

∑
k≥N��l≥N��k+l≤N

(
N

k

)(
N −k

l

)(
�1+��1+��1−��1−�

)−kl/2

≤ ∑
k≥N��l≥N��k+l≤N

e−��2+O��3�� kl2 +�k+l� logN

= ∑
k≥N��l≥N��k+l≤N

e−��2+O��3�� kl2 = o�1�

by trivial calculations.
Next we explain how the two graph-theoretic properties (�) and () guarantee

the success of the Ramsey Halving Argument. Fix an arbitrary 2-colored goal graph
Kq�red�blue�; we show that, at the end of the play, the 2-colored KN (colored red
and blue) contains a color-isomorphic copy of Kq�red�blue�

Kq (red, blue)blue Kqred Kq

Let u1� u2� � � � � uq denote the vertices of the goal graph Kq�red�blue�, and let
c�i� j� denote the color of edge uiuj in Kq�red�blue� (1 ≤ i < j ≤ q). We will
construct a color-consistent embedding f of goal graph Kq�red�blue� into the play-
2-colored KN (meaning: 2-colored by Red and Blue during the play). Of course,
color-consistent means that the color of edge f�ui�f�uj� is c�i� j� for all pairs
1≤ i < j ≤ q.

The first step is to find f�u1�. Let V1 be the set of those “bad” vertices in KN

which have red degree ≥ � 12 + 2��N in the play-2-colored KN . Graph-theoretic
properties (�) and () above guarantee that �V1�<N�. Similarly, there are less than
N� vertices which have red degree ≤ � 12 −2��N in the play-2-colored KN . Throwing
out less than 2N� “bad” vertices, the remaining “good” vertices all have the property
that the red degree is between � 12 −2��N and � 12 +2��N in the play-2-colored KN .
Let f�u1� be one of these “good” vertices.
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We proceed by induction: assume that we already defined f�u1�� � � � � f�ui�, and
we have to find a proper f�ui+1�. For every k= i+1� i+2� � � � � q define the set

Wk =Wi�k =
{
u ∈ V�KN �\ 
f�u1�� � � � � f�ui�� � the color of edge f�uj�u

in the play is c�j� k�� j = 1� � � � � i
}
�

Note that the �q− i� sets Wk, k= i+1� i+2� � � � � q have the property that any two
of them are either disjoint or identical. For every k= i+1� i+2� � � � � q we have

�Wk� ≥ N

(
1

2
−2�

)i

�

We are looking for a proper vertex f�ui+1� in set Wi+1.
Let V1 be the set of those “bad” vertices in Wi+1 which have red degree ≥

� 12 + 2���Wi+1� in the complete graph KWi+1
= (

Wi+1
2

)
in the play-2-colored KN .

Graph-theoretic properties (�) and () above guarantee that �V1� < N�. Similarly,
there are less than N� “bad” vertices which have red degree ≤ � 12 − 2���Wi+1� in
the complete graph KWi+1

= (
Wi+1
2

)
in the play-2-colored KN .

Similarly, there are less than N� “bad” vertices which have red degree ≥ � 12 +
2���Wk� in the complete bipartite graphWi+1×Wk in the play-2-coloring (we assume
that Wi+1 and Wk are disjoint); and the same for the red degree ≤ � 12 −2���Wk� in
the complete bipartite graph Wi+1×Wk in the play-2-coloring.

Throwing out altogether ≤ 2�q− i�N� “bad” vertices from Wi+1, the remaining
set of “good” vertices is still non-empty, and let f�ui+1� be one of these “good”
vertices in set Wi+1. The embedding works as long as

N

(
1
2
−2�

)q−1

> 2qN��

and this inequality holds with q = �1−o�1�� log2N . This completes the proof of:

Theorem 33.5 Red and Blue are playing the usual alternating (1:1) game on KN .
Then Red can force that, at the end of the play, the play-2-colored KN contains all
possible 2-colored copies of Kq with q = �1−o�1�� log2N .

Theorem 33.5 was proved more than 20 years ago (it was the subject of a lecture
by the author at the Balatonlelle Graph Theory Conference, Hungary, 1994, where
the proof above was outlined). A special case of the result was published (see
Theorem 3 in Beck [1981b]). Theorem 33.5 was later independently rediscovered
by Alon, Krivelevich, Spencer, and Szabó [2005] (Krivelevich gave a talk about it
in the Bertinoro Workshop, 2005; their proof was somewhat different from mine).

The sad thing about Theorem 33.5 is that (most likely) it is just a mediocre result,
half of the truth. It is humiliating that we cannot solve Open Problem 33.1.
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Let’s go back to Section 25: recall Exercise 25.4: What is the Avoidance version
of Theorem 21.1? The following result is a best effort at an “avoidance” analogue
of Theorem 21.1; it is the special case of Theorem 33.5 where the goal graph is a
monochromatic blue Kq; in fact, it is just a more quantitative form.

Theorem 33.6 If N ≥ q10 ·2q, then playing the Avoidance Clique Game �KN �Kq�

Forcer can force Avoider to build a copy of Kq.

The good thing about Theorem 33.6 is that it holds for every q, not just for
“sufficiently large values” like Theorem 6.4 (a). For example, if N = 2250, then
log2N −10 log2 log2N ≈ 250−80= 170; so, by Theorem 33.6, the Clique Avoid-
ance Number is ≥ 170. In the other direction we have the Erdős–Selfridge bound
2 log2N − 2 log2 log2N + 2 log2 e− 1 ≈ 500− 16+ 2 = 486. (The Erdős–Selfridge
proof has a straightforward adaptation for the avoidance game.)
Summarizing, the Clique Avoidance Number for the board size KN with N = 2250

is between 170 and 486. This is the best that we know, due to the fact that in the
range N = 2250 the machinery of Theorem 6.4 (a) “doesn’t start to work yet.”
Let’s return to Theorem 33.5: what happens in the (1:2) version where Red

(Builder) is the underdog? The only difference in the proof is that the Ram-
sey Halving Argument above is replaced by a Ramsey One-Third Argument, and
Theorem 17.1 is replaced by Theorem 17.2. This way we obtain:

Theorem 33.7 Red and Blue are playing the alternating (1:2) game on KN . Then
Red can force that, at the end of the play, the play-2-colored KN contains all
possible 2-colored copies of Kq with q = �1−o�1�� log3N .

Corollary: Playing the (1:2) Clique Achievement game on KN , underdog Maker
can always build a Kq with q = �1−o�1�� log3N .
This Corollary is the best that we know in the (1:2) Achievement play (where
Maker is the underdog).
It is very surprising that in the (1:2) Avoidance play (where Avoider is the

underdog) Forcer can force Avoider to build a clique Kq with q larger than �1−
o�1�� log3N . Indeed, Theorem 30.5 gives

q = 2 log3N −2 log3 log3N +2 log3 e−2 log3 2−1−o�1��

which is about twice as large as the Corollary above.
Of course, Theorem 33.7 can be easily extended to an arbitrary �r � b� play (r

edges for Red and b edges for Blue per move) The only natural change is to apply
the general Theorem 17.5.
The second (1:1) game with a “biased-like attitude problem” is the Tournament

Game, see Section 14. First we recall that a tournament means a “directed complete
graph” such that every edge of a complete graph is directed by one of the two
possible orientations; it represents a tennis tournament where any two players
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played with each other, and an arrow points from the winner to the loser. Fix an
arbitrary goal tournament Tq on q vertices. The two players are Red and Blue, who
alternately take new edges of a complete graph KN , and for each new edge choose
one of the two possible orientations (“arrow”). Either player colors his arrow with
his own color. At the end of a play, the players create a 2-colored tournament on N

vertices. Red wins if there is a red copy of Tq; otherwise Blue wins. Theorem 14.5
proves that, if N is sufficiently large compared to q, then Red has a winning
strategy. Unfortunately Theorem 14.5 gives a poor quantitative result. An easy
adaptation of the proof of Theorem 33.5 gives the following much better bound
(we need the (1:3) version in Theorem 17.5, and the Halving Argument is replaced
by a One-Fourth Argument).

Theorem 33.8 Red and Blue are playing the (1:1) Tournament Game on KN . Then
Red can force that, at the end of the play, the play-2-colored tournament on N

vertices contains a copy of all possible red Tqs with q = �1−o�1�� log4N .

The reader is challenged to work out the details of the proof of Theorem 33.8.
We are sure that Theorem 33.8 is not optimal. What is the optimal result? How can
it be proved?





Part D

Advanced Strong Draw – game-theoretic
independence

The objective of game-playing is winning, but very often winning is impossible for
the simple reason that the game is a draw game: either player can force a draw.
Blocking the opponent’s winning sets is a solid way to force a draw; this is what
we call a Strong Draw.

The main issue here is the Neighborhood Conjecture. The general case remains
unsolved, but we can prove several useful partial results about blocking (called the
Three Ugly Theorems).

Our treatment of the blocking part has a definite architecture. Metaphorically
speaking, it is like a five-storied building where Theorems 34.1, 37.5, 40.1 represent
the first three floors in this order, and Sections 43 and 44 represent the fourth and
fifth floors; the higher floors are supported by the lower floors (there is no shortcut!).

An alternative way to look at the Neighborhood Conjecture is the Phantom
Decomposition Hypothesis (see the end of Section 19), which is a kind of game-
theoretic independence. In fact, there are two interpretations of game-theoretic
independence: a “trivial” interpretation and a “non-trivial” one.

The “trivial” (but still very useful) interpretation is about disjoint games; Pairing
Strategy is based on this simple observation. Disjointness guarantees that in each
component either player can play independently from the rest of the components.

In the “non-trivial” interpretation the initial game does not fall apart into disjoint
components. Instead Breaker can force – by playing rationally – that eventually, in a
much later stage of the play, the family of unblocked (yet) hyperedges does fall apart
into much smaller (disjoint) components. This is how Breaker can eventually finish
the job of blocking the whole initial hypergraph, namely blocking componentwise
in the small components.

A convincing “intuition” behind the “non-trivial” version is the Erdős–Lovász
2-Coloring Theorem. The proof of the Erdős–Lovász 2-Coloring Theorem was
based on the idea of statistical independence; the proof is a repeated application
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of the simple fact that the two events: “the Random 2-Coloring of hypergraph
�V�F� is proper” and “the Random 2-Coloring of hypergraph �W�G� is proper,”
are independent if the boards V and W are disjoint.

Strategy is a sequential procedure. The basic challenge of the Neighborhood
Conjecture is how to sequentialize the global concept of statistical independence.



Chapter VII
BigGame–SmallGame Decomposition

We focus on the nd board, and study both the hypercube and the torus versions of
multi-dimensional Tic-Tac-Toe. Our main tool is a decomposition technique called
BigGame–SmallGame Decomposition, combined with the Power-of-Two Scoring
System. The key result of the chapter is Theorem 34.1, representing the “first floor”
in the architecture of advanced blocking. By using this theorem (combined with
the degree-reduction result Theorem 12.2) we can prove the so-called Hales–Jewett
Conjecture (well, at least asymptotically).

Our proof technique works best for Degree-Regular hypergraphs. Unfortunately
the nd-hypergraph is very irregular, which leads to serious technical difficulties.
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The Hales–Jewett Conjecture

1. Can we beat the Pairing Strategy? Hales and Jewett [1963] proved, by a
pioneering application of Theorem 11.2, that if

n≥ 3d−1 �n odd� or n≥ 2d+1−2 �n even�� (34.1)

then the nd Tic-Tac-Toe game is a Pairing Strategy Draw. Indeed, by Theorem 3.4
(b)–(c): if n is odd, there are at most �3d −1�/2 winning lines through any point;
if n is even, the maximum degree of the family of geometric lines drops to 2d −1
(which is much smaller than �3d−1�/2 if d is large).
The special case d = 2 in (34.1) gives the bounds

n≥ 3d−1= 8 �n odd� and n≥ 2d+1−2= 6 �n even��

which immediately solve the n2 game for all n ≥ 9, n odd, and n ≥ 6, n even: the
game is a Pairing Strategy Draw (we already proved a slightly stronger result in
Theorem 3.3). The missing case n= 7 can be easily solved by applying a “truncation
trick.” Since the center is the only cell with 4 winning lines passing through it, we
throw out the center from these 4 lines, and also throw out an arbitrary point from
each one of the rest of the lines. Then the size of the winning sets decreases to 6.
Since the new maximum degree is 3, and 6 = 2 · 3, Theorem 11.2 applies to the
“truncated family,” and proves that the 72 game is also a Pairing Strategy Draw.

The following simple observation applies for any Almost Disjoint hypergraph:
if a pairing strategy forces a draw, then there are at least twice as many points as
winning sets. Therefore, if the Point/Line ratio in an nd Tic-Tac-Toe game is less
than 2, then it is not a Pairing Strategy Draw. For example, in the 42 game pairing
strategy cannot exist because the number of points (“cells”) is less than twice the
number of winning lines: 16= 42 < 2�4+4+2�= 20. Note that 42 is nevertheless
a draw game (we gave two proofs: one in Section 3, and an entirely different one
in Section 10).
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Hypercube Tic-Tac-Toe defines an Almost Disjoint hypergraph. Motivated by
this fact and the “Point/Line ratio” observation above, Hales and Jewett [1963]
made the following elegant conjecture:

Open Problem 34.1 (“Hales–Jewett Conjecture”) (a) If there are at least twice as
manypoints (i.e. cells)aswinning lines, then thend Tic-Tac-Toegameisalwaysadraw.

(b) What is more, if there are at least twice as many points as winning lines,
then the draw is actually a Pairing Strategy Draw.

Since the total number of lines is ��n+ 2�d −nd�/2, and the number of points is
nd, the condition “there are at least twice as many points as winning lines” means

nd ≥ �n+2�d−nd�

which is easily seen to be equivalent to

n≥ 2

21/d−1
� (34.2)

Since 21/d−1= log2

d
+O�d−2�, (34.2) is asymptotically equivalent to

n≥ 2d
log2

+O�1�= 2�88539d+O�1�� (34.3)

Remark. Golomb and Hales [2002] made the amusing number-theoretic observa-
tion that the upper integral part⌈

2

21/d−1

⌉
equals the simpler

⌊
2d
log2

⌋
for all integers in 1≤ d ≤ 6�8 ·1010�

(34.4)
(34.4) yields that in the huge range 1 ≤ d ≤ 6�8 · 1010 the Hales–Jewett condition
(34.2) is equivalent to the simpler condition

n≥
⌊

2d
log2

⌋
� (34.5)

The “Bigamy Corollary” of the Hall’s Theorem (Marriage Theorem) gives the
following necessary and sufficient condition for Pairing Strategy Draw: for every
sub-family of winning lines the union set has at least twice as many points as the
number of lines in the sub-family. (The phrase “Bigamy” refers to the fact that
“each man needs 2 wives.”) Consequently, what Open Problem 34.1 (b) really says
is that “the point/line ratio attains its minimum for the family of all lines, and
for any proper sub-family the ratio is greater or equal”. This Ratio Conjecture is
very compelling, not only when Pairing Strategy exists, but in general for arbitrary
nd-game. The Ratio Conjecture, as a generalization of Open Problem 34.1 (b), was
formulated in Patashnik [1980]. Unfortunately, the Ratio Conjecture is false: very
recently Christofides (Cambridge) disproved it.
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Let’s return to Open Problem 34.1. Part (a) is nearly solved: we proved it for all
but a finite number of nd games (the drawing strategy is not a pairing strategy).
Part (b) is in a less satisfying state. R. Schroeppel proved it for all n ≥ 3d− 1

when d ≥ 3 is odd, and for all n ≥ 3d when d ≥ 2 is even. In view of (34.3) the
range 2�88539+o�1� < n/d < 3+o�1� represents infinitely many unsolved cases.

2. The firstUglyTheorem. Notice that theErdős–SelfridgeTheorem(Theorem1.4)
is not powerful enough to settle part (a) of the Hales–Jewett Conjecture (Open
Problem 34.1). Indeed, the Erdős–Selfridge criterion applies to the nd game if

�n+2�d−nd

2
+ �2d−1 or �3d−1�/2� < 2n�

which implies that either player can force a Strong Draw if n> const ·d · logd. This
“superlinear” bound falls short of proving the linear bound n≥ 2d/ log2= 2�885d
(which is asymptotically equivalent to part (a) of the Hales–Jewett Conjecture,
see (34.3)).
Even if the Erdős–Selfridge (Theorem 1.4) is not powerful enough to “beat”

the pairing strategy (in the nd game), it is still the first step in the right direction.
We are going to develop several local generalizations of Theorem 1.4, called the
“Three Ugly Theorems.” The first one, Theorem 34.1 below, will immediately prove
part (a) of the Hales–Jewett Conjecture (at least for large dimensions). Combining
Theorem 34.1 with Theorem 12.2 will lead to further improvements, far superior to
what a pairing strategy can do. We have to warn the reader that Theorem 34.1 is not
as elegant as Theorem 1.4. This “ugly but useful” criterion has a free parameter k,
which can be freely optimized in the applications.

Theorem 34.1 Let F be an m-uniform Almost Disjoint hypergraph. Assume that
the Maximum Degree of F is at most D, i.e. every point of the board is contained in
at most D hyperedges of F (“local size”). Moreover assume that the total number
of winning sets is �F � =M (“global size”). If there is an integer k with 2≤ k≤m/2
such that

M

(
m�D−1�

k

)
< 2km−k�k+1�−�k2�−1� (34.6)

then the second player can force a Strong Draw in the positional game on F .

Remarks. The part “the second player can force a Strong Draw” can be always
upgraded to “either player can force a Strong Draw” (Strategy Stealing).

Theorem 34.1 is rather difficult to understand at first sight; one difficulty is the
role of parameter k. What is the optimal choice for k? To answer this question, take
kth roots of both sides of (34.6): we see that (34.6) holds if

M1/k · �D−1� · 4m
k

< 2m−3k/2−1� (34.7)
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(34.7) is equivalent to

D−1< k ·M−1/k ·2−3k/2 · 2
m−3

m
� (34.8)

The product k ·M−1/k ·2−3k/2 in (34.8) attains its maximum by choosing the integral
parameter k around � 23 log2M�1/2, where log2 is the base two logarithm ( or binary
logarithm) (which assumes, in view of the requirement k ≤m/2, that M< 23m

2/8).
Thus we obtain the following result:

Corollary 1 If F is an m-uniform Almost Disjoint hypergraph with global size
�F �< 23m

2/8, and the maximum degree D of F is less than

2m−
√

6log2�F �−3

m
� (34.9)

then the second player can force a Strong Draw in the positional game played onF .

Theorem 34.1 is a first step toward the Neighborhood Conjecture (Open Prob-
lem 9.1). The term “Neighborhood” emphasizes the fact that what really matters
here is an exponential upper bound on the “neighborhood size,” and the global size
�F � is almost irrelevant (the global size can be super-exponentially large like 2c·m2

,
see (34.9)).

Corollary 1 is a justification of the Neighborhood Conjecture for Almost Disjoint
hypergraphs. It raises some very natural questions such as:

(i) What happens if �F �> 23m
2/8?

(ii) What happens if the hypergraph is not Almost Disjoint?

We are going to return to question (i) in Section 37, and question (ii) will be
discussed much later in the last chapter.

If �F � ≤mm, then Corollary 1 yields:

Corollary 2 Let F be an m-uniform family of Almost Disjoint sets. Assume that

�F � ≤ mm and the Maximum Degree of F is at most 2m−3
√

m logm. If m > c0, i.e.
if m is sufficiently large, then the second player can force a Strong Draw in the
positional game on F .

Corollary 2 is an old result of mine; it follows (fairly) easily from Beck [1981a].
Corollary 2 applies to the nd game if

�n+2�d−nd

2
≤ nn and (34.10)

3d−1
2

≤ 2n−3
√

n logn �n odd�� 2d −1≤ 2n−3
√

n logn �n even�� (34.11)
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Inequalities (34.10)–(34.11) trivially hold if

n≥
(
log3

log2
+�

)
d with d > c0��� �n odd�� (34.12)

n≥ �1+��d with d > c0��� �n even�� (34.13)

Observe that both (34.12) and (34.13) are asymptotically better than (34.3) (note
that log3/ log2 = 1�585). This means that there are infinitely many nd games in
which Pairing Strategy Draw cannot exist, but the game is nevertheless a draw
(in fact a Strong Draw).
According to my calculations, Theorem 34.1 proves part (a) of the Hales–Jewett

Conjecture for all dimensions d ≥ 32. For example, if d = 32, the Hales–Jewett
Conjecture applies for n at least 2/�21/32−1�, which is about 91.3, so it applies for
all n≥ 92. Theorem 34.1 settles both “border line” cases “d= 32 and n= 92” and
“d = 32 and n= 93” with k= 12.
The case n odd is always harder, since the maximum degree is much larger. A low-

dimensional example where Theorem 34.1 “beats” Pairing Strategy is the 4416 game:
the Point/Line ratio is less than 2 (so Pairing Strategy cannot force a draw); on the other
hand, Theorem 34.1 applies with k= 8, and guarantees a Strong Draw.
Now we are ready to discuss Conjectures A and B introduced at the end of

Section 3; we recall them:

Conjecture A (“Gammill”) The nd game is a draw if and only if there are more
points than winning lines.

Conjecture B (“Citrenbaum”) If d> n, then the first player has a winning strategy
in the nd game.

Note that the condition of Conjecture A is nd > ��n+2�d−nd�/2, which is asymp-
totically equivalent to n≥ 2d/ log3= 1�82d. Since 2/ log3= 1�82> log3/ log2=
1�585> 1, in view of (34.12) and (34.13) there are infinitely many nd games which
contradict Conjecture A (infinitely many with n even, and infinitely many with n

odd). This “kills” Conjecture A.
An explicit counterexample is the 14480-game: since �1+2/n�d = �1+1/72�80 =

3�0146 > 3, the 14480-game has more lines than points, but Theorem 34.1 applies
with k= 20, and yields a draw.
How about Conjecture B? Well, (34.12) and (34.13) are not strong enough to

disprove Conjecture B. It seems very hard to find a counter-example to Conjecture B
in low dimensions. In large dimensions, however, Conjecture B – similarly to
Conjecture A – turns out to be completely false. Note in advance that the 214215-
game is the least counterexample that we know. We give a detailed discussion
later.
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3. Hypercube Tic-Tac-Toe. So far we have proved the following:

If n is odd and n > �log3/ log2+��d, or if n is even and n > �1+��d,
then the nd Tic-Tac-Toe game is a Strong Draw.

These are two linear bounds. Can these linear bounds be improved to
(nearly) quadratic? Theorem 12.5 says “yes”: if d ≤ ( log2

16 +o�1�
)

n2

logn , then (by
Theorem 12.5) the nd game is a Draw.
Are we ready to prove Theorem 12.5? A natural idea is to repeat the proof of

Theorem 12.3, and to combine Theorem 12.2 with Theorem 34.1 (as a substitute
of the Erdős–Lovász 2-Coloring Theorem). An application of Theorem 34.1 to the
truncated hypergraph F̃n�d (see Theorem 12.2) leads to the requirement

d
d
�n+O�1� ·23k/2 ·nd/k ≤ 2�1−2��n+O�1�� (34.14)

assuming k= const ·n. Note in advance that d=O�n2/ logn�, so taking logarithms
in both sides of requirement (34.14) gives

d logd
�n log2

+ 3k
2

+ d

k
· logd
2 log2

+O�logn�≤ �1−2��n�

This inequality is satisfied if�= 2/13,k=√
d logd/3 log2+O�1�,n> 5�5

√
d logd,

and n > c0. Note that n > 5�5
√
d logd is asymptotically equivalent to d < n2

60�5 logn .
The analogue of (34.14) for combinatorial lines goes as follows

d
d
	n+O�1� ·23k/2 ·nd/k ≤ 2�1−	�n+O�1�� (34.14′)

This inequality is satisfied if 	 = 3/10, k = √
d logd/3 log2 + O�1�, n >

4�5
√
d logd, and n > c0. Note that n > 4�5

√
d logd is asymptotically equivalent to

d < n2

40�5 logn .
This proves parts (ii) and (iv) in the following:

Theorem 34.2 In the nd hypercube Tic-Tac-Toe game:

(i) if d ≥ “Shelah’s supertower function of n”, then the first player can force an
(ordinary) Win (but we don’t know how he wins);

(ii) if d < n2

60�5 logn and n is sufficiently large, then the second player can force a
Strong Draw;

(iii) if d ≤ n/4 = �25n, then the game is a Pairing Strategy Draw, but for d ≥
�log2�n/2= �34657n Pairing Strategy cannot exist;

(iv) if d < n2

40�5 logn and n is sufficiently large, then the second player can force a
Strong Draw in the “combinatorial lines only” version of the nd game.
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Notice that Theorem 34.2 (iii) easily follows from Theorem 12.2 and Theorem 11.2.
Indeed, if n≥ 4d, then applying Theorem 12.2 (a) with �= 1/4 gives

MaxDegree
(
F̃n�d

)
≤ d ≤ �n/4��

so Theorem 11.2 applies to the 2�n/4�-uniform F̃n�d, and yields a Pairing Strategy
Draw. Note that the bound n≥ 4d is a big step toward part (b) of Open Problem 34.1
(“pairing strategy part of the Hales–Jewett Conjecture”). It is exponentially better
than (34.1), but falls short of (34.3). In Section 48 we will improve the bound
n≥ 4d to n≥ 3d. This is the current record; it is due to Schroeppel.
It follows from parts (ii) and (iii) above that, in the big range �34657n < d <
n2

60�5 logn from linear to nearly quadratic, the nd Tic-Tac-Toe is a draw game (in fact
a Strong Draw) but not a Pairing Strategy Draw.

Part (ii) above immediately disproves Conjecture B. It gives infinitely many
counterexamples. An explicit counterexample is the 214215-game. Indeed, first
taking � = d/7n = 215/1498 = 0�143525 in Theorem 12.2, and then applying
Theorem 34.1 to the truncated hypergraph with k = 34 yields a draw. Dimension
d = 215 is very large; there should be a much smaller counterexample. Our tech-
nique doesn’t work well in “low dimensions”; the case of low dimensions remains
wide open.
Theorem 34.2 (ii) falls short of proving Theorem 12.5 (a) by a constant factor.

The constant 1/60�5= 0�01653 is substantially less than �log2�/16= 0�04332, but
the nearly quadratic order of magnitude n2

logn is the same.
In the next chapter we develop a more sophisticated decomposition technique

(see Theorem 37.5), which will take care of the missing constant factor, and thus
prove Theorem 12.5.

4. How to prove Theorem 34.1? Since it has a rather difficult proof, it helps to
explain the basic idea on a simpler concrete game first. Our choice is a particular
nd torus Tic-Tac-Toe.

We have already introduced nd torus Tic-Tac-Toe in Section 13. Recall that
the 2-dimensional n2 torus Tic-Tac-Toe is completely solved: the Erdős–Selfridge
Theorem applies if 4n+4< 2n, which gives that the n2 torus game is a Strong Draw
for every n ≥ 5; the 42 torus game is also a draw (mid-size case study; we don’t
know any elegant proof); finally, the 32 torus game is an easy first player’s win.

Next consider the 3-dimensional n3 torus game. The Erdős–Selfridge Theorem
applies if 13n2+13< 2n, which gives that the n3 torus game is a Strong Draw for
every n ≥ 11. We are convinced that the 103 torus game is also a draw, but don’t
know how to prove it.
How about the 4-dimensional n4 torus game? The Erdős–Selfridge Theorem

applies if 40n3+40< 2n, which gives that the n4 torus game is a Strong Draw for
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every n ≥ 18. This n = 18 is what we are going to improve to n = 15 (see Beck
[2005]).

Theorem 34.3 The 154 torus game is a Strong Draw.

Theorem 34.3 is (probably) just a mediocre result, not even close to the truth,
but it is a concrete low-dimensional example, the simplest illustration of the tech-
nique “BigGame-SmallGame Decomposition.” We prove Theorem 34.3 first in
Section 35, and prove Theorem 34.1 later in Section 36.

The 154 torus game is the smallest four-dimensional example that we know to
be a Strong Draw. In the other direction, we know that the 54 torus game is a Weak
Win (i.e. the first player can occupy 5 consecutive points on a torus line). This is
a straightforward corollary of Theorem 1.2. There is a big gap between 5 and 15,
and we don’t know anything about the n4 torus game when 6≤ n≤ 14.

In view of Theorem 13.1 we have a very satisfying asymptotic result for the nd

torus Tic-Tac-Toe: if d is a fixed “large” dimension, then the “phase transition” from
Weak Win to Strong Draw happens at n≈ �log3/ log2�d (see Theorem 13.1 (a)).
The unsolved status of the 4-dimensional torus game in the long range 6 ≤ n≤ 14
reflects the fact that dimension 4 is just not large enough.
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Reinforcing the Erdős–Selfridge technique (I)

1. BigGame-SmallGame Decomposition. The first player is called “Maker” and
the second player is called “Breaker.” The basic idea of the proofs of Theorems 34.1
and 34.3 is the same: it is a decomposition of the game into two non-interacting
games. (We are motivated by a 2-coloring theorem of W. M. Schmidt mentioned
in Section 11, see Schmidt [1962].) The two non-interacting games have disjoint
boards: we call them the Big Game played on the big board and the small game
played in the small board. This is in Breaker’s mind only; Maker does not know
anything about the decomposition whatsoever.
Non-interacting games mean that playing the Big Game Breaker has no

knowledge of the happenings in the small game, and, similarly, playing the small
game Breaker has no knowledge of the happenings in the Big Game. In other words,
we assume that Breaker is “schizophrenic”: he has two personalities, one for the
Big Game and one for the small game, and the two personalities know nothing
about each other. We call it the “Iron Curtain Principle.” This, at first sight very
weird, assumption is crucial in the proof!
Whenever Maker picks a point from the big board (“board of the Big Game”),

Breaker responds in the big board, and, similarly, whenever Maker picks a point
from the small board (“board of the small game”), Breaker responds in the small
board. In other words, Breaker follows the “Same Board Rule.”
The small game contains the winning sets that are “dangerous,” where Maker

is close to winning (i.e. the small board is a kind of “Emergency Room”). In the
small game, Breaker’s goal is to block the most dangerous winning sets, and he
uses a straightforward Pairing Strategy.
Breaker’s goal in the Big Game is to prevent too complex winning-set config-

urations from graduating into the small game. This is how the Big Game ensures
that Breaker’s Pairing Strategy in the small game will actually work. In the Big
Game Breaker uses the sophisticated Erdős–Selfridge Power-of-Two Scoring Sys-
tem (more precisely, not the Erdős–Selfridge Theorem itself, but rather its Shutout
version – see Lemma 1 below). The key fact is that the number of big sets

470
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depends primarily on the Maximum Degree D (rather than on the much larger
“global size” M). The (relatively) small Maximum Degree keeps the family of big
sets under control, and this is how Breaker can ensure, by using the Power-of-
Two Scoring System, that the small game remains relatively simple, and a pairing
strategy can indeed block every single “dangerous” winning set.

The board of the Big Game (big board) is going to shrink during a play. Conse-
quently, the board of the small game (small board), which is the complement of the
big board, keeps growing during a play. At the beginning of the play the big board
is equal to the whole board V (i.e. the small game is not born yet). Let VBIG�i� and
Vsmall�i� = V \VBIG�i� denote the big board and the small board after Maker’s ith
move and before Breaker’s ith move. Then we have

V =VBIG�0�⊇ VBIG�1�⊇ VBIG�2�⊇ VBIG�3�⊇ · · · �
∅ =Vsmall�0�⊆ Vsmall�1�⊆ Vsmall�2�⊆ Vsmall�3�⊆ · · · �

The Big Game is played on the family of big sets, and the small game is played
on the family of small sets. What are the big sets and the small sets? Well, it is
much simpler (and natural) to define the small sets first, and to define the big sets
later.

We feel that the proof of Theorem 34.3 is easier to understand than that of
Theorem 34.1. This why we start with the:

Proof of Theorem 34.3. Since n = 15 is odd, the corresponding hypergraph is
Almost Disjoint (see the Lemma on Torus-Lines in Section 13). This fact will
be used repeatedly in the proof. As said before, the basic idea is to artificially
decompose the 154-torus game into two non-interacting games with disjoint boards:
the Big Game and the small game.

The small game deals with the winning sets (“Lines on the Torus”) that are
dangerous, where Maker is very close to winning in the sense that all but 2 points
are occupied by Maker. The small board is a kind of “Emergency Room”: in the
small game, Breaker’s goal is to block the 2-element unoccupied parts of the most
dangerous winning sets by using a trivial Pairing Strategy. The “Emergency Room”
is Breaker’s last chance before it is too late.

Breaker’s goal in the Big Game is to prevent too complex winning-set-
configurations (“Forbidden Configurations”) from graduating into the small game.
For example, Pairing Strategy works in the small game only if the 2-element
unoccupied parts of the dangerous winning sets remain pairwise disjoint. The Big
Game has to enforce, among many other things, this “disjointness property.” This
is how the Big Game guarantees that Breaker’s Pairing Strategy in the small game
will indeed work. This is why we must fully understand the small game first; the
Big Game plays an auxiliary role only.
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In the Big Game Breaker uses the Erdős–Selfridge resource count (not the Erdős–
Selfridge Theorem itself, but its proof-technique) – see Lemma 1 below. The key
numerical fact is that the number of big sets depends primarily on the Maximum
Degree D= �34−1�/2= 40 (rather than on the much larger Total Number 40 ·153
of winning sets). This is why the number of Big Sets is “under control,” and this is
how Breaker can force – by using the power-of-two scoring system – that the small
game remains “trivial”; so simple that even a Pairing Strategy can block every
“dangerous” winning set.
The board of the Big Game is going to shrink during a play (more precisely:

the unoccupied part of the Big Game is going to shrink) due to the fact that the
2-element “emergency sets” are constantly removed from the Big Board and added
to the small board.

BIG BOARD
(“shrinking”)

BIG SETS
What are they?

Power-of-Two Scoring
System

13 2
· · ·

small board
(“growing”)

2-element
“emergency sets”

Breaker blocks them
by using Pairing Strategy 

Let x1� x2� � � � � xi� � � � and y1� y2� � � � � yi� � � � denote, respectively, the points of Maker
and Breaker in a particular play. At the beginning, when the board of the small
game is empty (i.e. the small game is not born yet), Breaker chooses his points
y1� y2� y3� � � � according to an Erdős–Selfridge resource count applied to the family
B of Big Sets (B will be defined later). The hypergraph of the game is the family of
all Lines on the 154-torus; we denote it by F � F is a 15-uniform hypergraph, and
�F � = 40 ·153� In the course of a play in the Big Game an 15-element winning set
A ∈F (i.e. “Line on the Torus”) becomes dead when it contains a mark of Breaker
for the first time. Note that dead winning sets (i.e. elements of F) represent no
danger any more (they are marked by Breaker, so Maker cannot completely occupy
them). At any time in the Big Game, the elements of F which are not dead yet
are called survivors. A survivor A ∈ F becomes dangerous when Maker occupies
its 13th point (all 13 points have to be in the Big Board); then the unoccupied
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2-element part of this dangerous A ∈ F becomes an emergency set. Whenever an
emergency set arises (in the Big Game), it is then removed from the board of the
Big Game and added to the board of the small game. This is why the Big Game
is shrinking. The board of the small game is precisely the union of all 2-element
emergency sets, and, consequently, the board of the Big Game is precisely the
complement of the union of all emergency sets.

If the (growing) family of 2-element emergency sets remains “disjoint” (i.e. the
2-element emergency sets never intersect during the whole course of a play), then
Breaker can easily block them in the small game (on the small board) by using the
following trivial Pairing Strategy: when Maker takes a member of a 2-element emer-
gency set, Breaker then takes the other one. The Big Game is designed exactly to
enforce, among other preperties, the “disjointness of the emergency sets.” Therefore,
Breaker must prevent the appearance of any:

Forbidden Configuration of Type 1: At some stage of the play there exist two
dangerous sets A1 ∈ F and A2 ∈ F such that their 2-element emergency parts
E1�⊂ A1� and E2�⊂ A2� have a common point. (Since F is Almost Disjoint, they
cannot have more than one point in common.) See the picture on the left below
(the picture on the right is a Forbidden Configuration of Type 2):

. . 
.

. . .

13

13

A2

A1

... ...

A0

small boardBIG BOARD

E2

E1

E3

Ek

If there exists a Forbidden Configuration of Type 1, then at some stage of the play
Maker occupied 13+13= 26 points of a “pair-union” A1∪A2 (where A1�A2 ∈ F)
in the Big Board (during the Big Game), and Breaker could not put a single mark
yet in A1∪A2 in the Big Game (perhaps Breaker could do it in the small game, but
that does not count).

Note that the total number of “intersecting pairs” �A1�A2� with �A1 ∩A2� = 1
(A1�A2 ∈ F) is exactly

154 ·
(
40
2

)
� (35.1)

Indeed, the torus has 154 points, and each point has the same degree 40.
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Another “potentially bad configuration” that Breaker is advised to prevent is any
(see the picture on the right above):

Forbidden Configuration of Type 2: There exists a survivor A0 ∈ F :

(a) which never graduates into a dangerous set; and at some stage of the play,
(b) A0’s intersection with the Big Board is completely occupied by Maker, or

possibly empty; and at the same time,
(c) A0’s intersection with the small board is completely covered by pairwise disjoint

2-element emergency sets.

The “danger” of (a)–(c) is obvious: since A0 never graduates into a dangerous
set, A0’s intersection with the small board remains “invisible” for Breaker in the
whole course of the small game, so there is a real chance that A0 will be completely
occupied by Maker.
In (c) let k denote the size of the intersection of A0 with the small board;

(a) implies that the possible values of k are 3�4� � � � �15� Accordingly we can talk
about Forbidden Configuration of Type �2� k� where 3≤ k≤ 15�
Let A0 be a Forbidden Configuration of Type �2� k� (3 ≤ k ≤ 15); then there

are k disjoint 2-element emergency sets E1�E2� � � � �Ek which cover the k-element
intersection of A0 with the small board (see (c)). Let A1�A2� � � � �Ak denote the
super-sets of E1�E2� � � � �Ek: Ei ⊂Ai where every Ai ∈F is a dangerous set (Almost
Disjointness implies that for every Ei there is a unique Ai).

Then, at the particular stage of the play described by (b)–(c), Maker occupied
at least �15−2�+ �15−3�+ � � �+ �15−k�+ �15−k−1�+ �15−k�= �30+25k−
k2�/2 points (“Almost Disjointness”) of a union set

⋃k
i=0Ai in the Big Board (in

the Big Game), and Breaker could not put a single mark yet in
⋃k

i=0Ai in the Big
Game.
Note that the total number of configurations A0� �A1�A2� � � � �Ak� satisfying:

(�) A0�A1� � � � �Ak ∈ F , and
(	) �A0∩Ai� = 1 for 1≤ i ≤ k, and
(
) A0∩Ai with 1≤ i ≤ k are k distinct points

is at most

�40 ·153� ·
(
15
k

)
· �40−1�k� (35.2)

Indeed, first choose A0; then choose the k distinct points A0 ∩Ai with 1 ≤ i ≤ k�

and finally choose the k sets Ai ∈ F (i= 1� � � � � k) (use “Almost Disjointness”).
Note that after an arbitrary move of Maker in the Big Game, the Big Board may

shrink (because of the possible appearances of new dangerous sets; the 2-element
emergency parts are removed from the Big Board), but the Big Board does not
change after any move of Breaker.
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To prevent all Forbidden Configurations (i.e. Type 1 and Type �2� k� where
k = 3�4� � � � �15), Breaker needs the following “shrinking” variant of the Erdős–
Selfridge Theorem.

Lemma 1: LetB1�B2� � � � �Bl bea sequenceof finite hypergraphs.Letm1�m2� � � � �ml

bepositive integers.Consider the following“shrinking”game.LetV be theunionsetof
the lhypergraphs;wecallV the“initial board.”The2players, calledWhiteandBlack,
alternate. A “move” ofWhite is to take a previously unoccupied point of the board and
at the same timeWhite may remove an arbitrary unoccupied part from the board (if he
wantsany). Similarly, a“move”ofBlack is standard:he takesapreviouslyunoccupied
point of theboard.AfterWhite’smove theboardmayshrink, and theplayersarealways
forcedtotakethenextpoint fromthe“availableboard”(whichisa“decreasing”subset
of the initial board). White wins, if at some stage of the play there exist i ∈ �1� � � � � l�
andB ∈ Bi such that White hasmi points fromB and Black has none; otherwise Black
wins (“shutout game”).

Assume that
l∑

i=1

��Bi�+MaxDeg�Bi��2
−mi < 1�

Then Black has a winning strategy, no matter whether Black is the first or second
player.

3. How to apply Lemma 1? To prevent the appearance of any Forbidden Config-
uration of Type 1, we have to control all possible candidates (of course, we don’t
know in advance which winning set will eventually become dangerous), so let

B1 =
{
A1∪A2 � �A1�A2� ∈

(F
2

)
� �A1∩A2� = 1

}
and m1 = 2�15−2�= 26�

To avoid the appearance of any Forbidden Configuration of Type �2�3�, define
hypergraph B2 as follows{

A0∪ � � �∪A3 � �A0� � � � �A3� ∈
(F
4

)
�A0∩Ai�1≤ i ≤ 3 are distinct points

}

and m2 = �15− 2�+ �15− 3�+ �15− 4�+ �15− 3� = 48� In general, to avoid the
appearance of any Forbidden Configuration of Type �2� j+1�, define hypergraph
Bj as follows{

A0∪· · ·∪Aj+1 � �A0� � � � �Aj+1� ∈
( F
j+2

)
�A0∩Ai�1≤ i ≤ j+1

are distinct points
}

(35.3)
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and

mj = �15−2�+ �15−3�+· · ·+ �15− j−1�+ �15− j−2�+ �15− j−1�

= 54+23j− j2

2
� (35.4)

For technical reasons we use definition (35.3)–(35.4) for j = 2�3� � � � �6 only. This
takes care of Forbidden Configurations of Type �2� k� with 3 ≤ k ≤ 7� To prevent
the appearance of any Forbidden Configuration of Type �2� k� where 8 ≤ k ≤ 15�
we use a single extra hypergraph B7: let hypergraph B7 be defined as{
A0∪A1∪· · ·∪A8 � �A0�A1� � � � �A8� ∈

(F
9

)
� A0∩Ai�1≤ i ≤ 8 are distinct points

}

(35.5)
and

mj = �15−2�+ �15−3�+ �15−4�+ �15−5�+ �15−6�+ �15−7�

+ �15−8�+ �15−9�= 76� (35.6)

In the definition of m7 we didn’t include the number of marks of Maker in A0: this
is how we can deal with all Types �2� k� where 8 ≤ k ≤ 15 at once. Indeed, any
Forbidden Configuration of Type �2� k�with 8≤ k≤ 15 contains a sub-configuration
described on the figure below.

...

A1

A2

A3

A8

15 − 4

15 − 9

76

15 − 3

15 − 2

...
...

Next we estimate the sum
7∑

i=1

��Bi�+MaxDeg�Bi��2
−mi �

By (35.1)–(35.2) we have

�B1� = 154 ·
(
40
2

)
� and �Bj� = �40 ·153� ·

(
15
j+1

)
· �40−1�j+1 for 2 ≤ j ≤ 7�

Since the 154-torus is a group, the hypergraphs Bi (1 ≤ i ≤ 7) are all degree-
regular; every point has the same degree, namely the average degree. (This makes
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the calculations simpler.) In B1 every set has the same size 2 · 15− 1 = 29� and
for each j = 2� � � � �7 every B ∈ Bj has size ≥ mj = �15− 2�+ �15− 3�+ · · ·+
�15− j−1�+ �15− j−2�+ �15− j−1�= �54+23j− j2�/2� It follows that

��B1�+MaxDeg�B1��= 154 ·
(
40
2

)(
1+ 29

154

)
�

and for j = 2� � � � �7

(�Bj�+MaxDeg�Bj�
)≤ �40 ·153� ·

(
15
j+1

)
· �40−1�j+1

(
1+ 54+23j− j2

2 ·154
)
�

Therefore, easy calculations give

7∑
i=1

��Bi�+MaxDeg�Bi��2
−mi ≤ 154 ·

(
40
2

)(
1+ 29

154

)
2−26

+
6∑

j=2

≤ �40 ·153� ·
(

15
j+1

)
· �40−1�j+1

(
1+ 54+23j− j2

2 ·154
)
2−�54+23j−j2�/2

+ �40 ·153� ·
(
15
8

)
· �40−1�8

(
1+ 54+23 ·8−82

2 ·154
)
2−76 <

9

10
< 1�

Now we are ready to define the Big Sets (i.e. Forbidden Configurations): Let
B = B1 ∪B2 ∪ · · · ∪B7 be the family of Big Sets. Applying Lemma 1 (Maker is
“White” and Breaker is “Black”) we obtain that, in the Big Game, played on
the family of Big Sets, Breaker can prevent the appearance of any Forbidden
Configuration of Type 1 or Type �2� k� with 3≤ k≤ 15. We claim that, combining
this “Lemma 1 strategy” with the trivial Pairing Strategy in the family of emergency
sets (small game), Breaker can block hypergraph F , i.e. Breaker can put his mark
in every Line in the 154 Torus Game. Indeed, an arbitrary A ∈ F (“Line on the
Torus”):

(1) either eventually becomes dangerous, then its 2-element emergency set will
be blocked by Breaker in the small board (in the small game) by the trivial
Pairing Strategy (“disjointness of the emergence sets” is enforced by preventing
Forbidden Configurations of Type 1);

(2) or A never becomes dangerous, then it will be blocked by Breaker in the Big
Board: indeed, otherwise there is a Forbidden Configuration of Type �2� k� with
some k ∈ �3� � � � �15�.

4. The proof of Lemma 1. We basically repeat the Erdős–Selfridge proof. Black
employs the following Power-of-Two Scoring System. If B ∈Bi is marked by Black,
then it scores 0. If B ∈ Bi is unmarked by Black and has w points of White, then it
scores 2w−mi . The “target value” (i.e. White’s win) is ≥ 20 = 1; the “initial value” is
less than 1 (by hypothesis). Breaker can guarantee the usual “decreasing property,”
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which implies that no play is possible if the “target value” is larger than the “initial
value.”
To be more precise, suppose that we are in the middle of a play, and it is

Black’s turn to choose his ith point yi. What is the “danger" of this particular
position? We evaluate the position by the total sum, over all winning sets, of the
scores; we denote it by Di, and call it the “danger-function” (index i indicates
that we are at the stage of choosing the ith point of Black). The natural choice
for yi is that unoccupied point z which makes the “biggest damage”: for which
the sum of the scores of all “survivors” B ∈ B with z ∈ B attains the maximum.
Loosely speaking: yi is the “biggest damage point,” so xi+1 is at most the “second
biggest damage point.” Then what we subtract from Di is greater or equal to
what we add back to it. In other words, Black can force the decreasing property
Dstart = D1 ≥ D2 ≥ · · · ≥ Di ≥ Di+1 ≥ · · · ≥ Dend of the “danger-function” (the
“shrinking” of the unoccupied part of the board doesn’t change this key property).
White wins the game if he can occupy mi points of some set B ∈ Bi before Black

could put his first mark in this B. Assume this happens right before the jth move
of Breaker. Then this B alone scores 20 = 1, implying Dj ≥ 1; we call 20 = 1 the
“target value.”
On the other hand, the “initial value” (x1 is the first point of White)

Dstart =D1 =
∑
i

∑
B� x1∈B∈Bi

21+∑
i

∑
B� x1 �∈B∈Bi

20 < 1

by the hypothesis of Lemma 1. By the decreasing property of the “danger-function,”
if White wins at his jth move, then

20 = 1≤Dj ≤Dstart < 1�

and we get a contradiction. It follows that Breaker wins; Breaker’s winning strategy
is to keep choosing the “biggest damage point.” This completes the proof of
Lemma 1. �

The proof of Theorem 34.3 is complete. �
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1. Proof of Theorem 34.1. Again we use the BigGame–SmallGame Decomposi-
tion – see the beginning of Section 35. Let x1� x2� � � � � xi� � � � and y1� y2� � � � � yi� � � �

denote, respectively, the points of Maker and Breaker. At the beginning of the play,
when the board of the small game is empty (i.e. the small game is not born yet),
Breaker chooses his points y1� y2� y3� � � � according to the Erdős–Selfridge Power-
of-Two Scoring System (see Lemma 5 below) applied to the family B of big sets
(family B will be defined later). In the course of a play in the Big Game an n-
element winning set A ∈F is dead when it contains some point of Breaker (for the
first time). Note that dead elements of F don’t represent danger any more (they
are marked by Breaker, so Maker cannot completely occupy them). At a given
stage of a play in the Big Game those elements of F which are not dead yet are
called survivors. A survivor A ∈ F becomes dangerous when Maker occupies its
�m−k−1�th point in the Big Game; then the unoccupied �k+1�-element part of
this dangerous A ∈ F becomes an emergency set. This is why the Big Game is
shrinking: whenever an emergency set arises, its points are removed from the big
board, and at the same time they are added to the small board. In other words, the
small board is precisely the union of all emergency sets (and, consequently, the big
board is precisely the complement of the union of all emergency sets). This means
that the small board is a kind of “Emergency Room” where Breaker takes care of
the emergency sets (Breaker’s goal is to put his mark in every emergency set).

What are the small sets, i.e. the winning sets in the small game? Well, a set S is
a small set if it satisfies the following two requirements:

(a) S is the intersection of a survivor A ∈ F and the board of the small game,
(b) �S� ≥ k+1.

The emergency sets are obviously all small sets. Those small sets which are not
emergency sets are called secondary sets. What is the goal of the small game? Well,
Breaker wins the small game if he can prevent Maker from completely occupying a
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small set; otherwise Maker wins. (In other words, Breaker’s goal is to block every
small set – he will in fact employ a simple pairing strategy.)
Now we are ready to define the big sets. The big sets play an auxiliary role in

the proof. We use them to guarantee that, when Breaker follows a winning strategy
in the Big Game, the small game is very simple in the following sense:

(i) a secondary set doesn’t exist – see Lemma 1; and
(ii) Breaker can block every emergency set by a pairing strategy employing the

“private points” – see Lemma 2 below.
. . .

BIG BOARD
(“shrinking”)

BIG SETS

small board
(“growing”)

A1

A2

A3

A4

AkA

Power-of-Two Scoring
System

dangerous set emergency
sets

What is a Big Set?

Pairing strategy

To ensure these two requirements we introduce a key definition: a k-element
sub-family G = �A1�A2� � � � �Ak�⊂F is called F-linked if there is a set A ∈F with
A �∈ G such that A intersects each element of family G, i.e. A∩Ai �= ∅, 1 ≤ i ≤ k.
(Note that parameter k is an integer between 2 and m/2.)
The Big Game is played on the family B of big sets. What are the big sets?

They are the union sets
⋃k

i=1Ai of all possible F-linked k-element subfamilies
G = �A1�A2� � � � �Ak� of F

B = {
B = ⋃

A∈G
A � G ⊂ F� �G� = k� G is F–linked

}
�

The total number of big sets is estimated from above by

�B� ≤M

(
m�D−1�

k

)
� (36.1)

Indeed, there are �F � =M ways to choose “linkage” A, there are at most m�D−1�
other sets intersecting A, and we have to choose k sets A1�A2� � � � �Ak among them.
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Each big set B =⋃k
i=1Ai has cardinality ≥ km− (

k

2

)
. Indeed, since F is almost

Disjoint

�B� = �
k⋃

i=1

Ai� ≥
k∑

i=1

�Ai�−
∑

1≤i<j≤k

�Ai∩Aj� ≥ km−
(
k

2

)
� (36.2)

What is Maker’s goal in the Big Game? Of course, Maker doesn’t know about
the “Big Game” (or the “small game”); this whole “decomposition” is in Breaker’s
mind only, so it is up to Breaker to define “Maker’s goal” in the Big Game. The
definition goes as follows: “Maker wins the Big Game” if he can occupy all but
k�k+1� points of some big set B ∈ B in the big board before Breaker could put his
first mark in this B in the big board; otherwise Breaker wins the Big Game. The
reason why we had to write “in the big board” twice in the previous sentence is
that the big board is shrinking, and so the big board does not necessarily contain all
big sets. The intersection of a big set with the small board (i.e. the part outside of
the big board) is “invisible” in the Big Game: whatever happens in the small game
has no effect in the Big Game. (For example, if Breaker can block a big set in the
small board, that doesn’t count as a “blocking in the Big Game”; this is the curse
of the “Iron Curtain Principle.”)

We are going to show that Breaker can win the Big Game by using the Erdős–
Selfridge Power-of-Two Scoring System if the total number of big sets is not too
large, namely if

�B�< 2km−�k2�−k�k+1�−1� (36.3)

Note that the board of the Big Game is shrinking during a play, but it is not going
to cause any extra difficulty in the argument (see Lemma 5).

Lemma 1: Assume that Breaker has a winning strategy in the Big Game, and he
follows it in a play. Then there is no secondary set in the small game.

Proof. Let S∗ = �z1� z2� z3� � � �� be an arbitrary secondary set. Since the small board
is the union of the emergency sets, by property (a) above every point zi ∈ S∗ is
contained in some emergency set (say) Si, 1≤ i≤ �S∗�. Almost disjointness implies
that different points zi ∈ S∗ are contained in different emergency sets Si. Since Si
is an emergency set, there is a winning set Ai ∈ F such that Si ⊂ Ai and Ai \ Si
was completely occupied by Maker during the play in the Big Game. Note that
Breaker didn’t block Ai in the Big Game, since Si was removed from the big
board (and added to the small board). Again Almost Disjointness implies that the
sets Ai, i = 1�2�3� � � � are all different. The union set

⋃k
i=1Ai is a big set since

�A1�A2� � � � �Ak� is F-linked by A∗ where A∗ ∈ F is defined by S∗ ⊂ A∗ (A∗ is the
ancestor of S∗). Since for every i, Ai \Si was completely occupied by Maker, Maker
was able to occupy all but k�k+ 1� points of the particular big set B = ⋃k

i=1Ai

during a play in the Big Game, and Breaker didn’t block B in the Big Game,
i.e. Maker wins the Big Game. This contradicts the assumption that Breaker has
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a winning strategy in the Big Game and follows it in the play. This contradiction
shows that a secondary set cannot exist.

A similar argument proves:

Lemma 2: If Breaker wins the Big Game, then every emergency set has at least
two “private” points, i.e. two points which are never going to be contained in any
other emergency set during the whole course of the small game. (In other words, a
point of an emergency set is called “private” if it has degree one in the family of
all emergency sets.)

Let S1� S2� S3� � � � be the complete list of emergency sets arising in this order during
the course of a play (when a bunch of two or more emergency sets arise at the
same time, the ordering within the bunch is arbitrary). Let S̃1 = S1� S̃2 = S2 \S1�
S̃3 = S3 \ �S1∪S2� � and in general

S̃j = Sj \
(

j−1⋃
i=1

Si

)
�

We call S̃j the “on-line disjoint part” of Sj . Of course, the “on-line disjoint part”

of Sj contains its “private points,” so by Lemma 2 every “on-line disjoint part” S̃j
has at least 2 elements (exactly what we need for a pairing strategy – see below).
When the first dangerous set A ∈ F arises, say, at the ith move of Maker, the

whole board V splits into two non-empty parts for the first time. The two parts are
the big board VBIG�i� and the small board Vsmall�i�, where V = VBIG�i�∪Vsmall�i��

Whenever Maker picks a point from the big board, Breaker then responds in the
big board; whenever Maker picks a point from the small board, Breaker then
responds in the small board (“Same Board Rule”). This is how the game falls
apart into two non-interacting, disjoint games: the shrinking Big Game and the
growing small game.

During the course of a play in the small game Breaker uses the following trivial
pairing strategy: if Maker occupies a point of the small board which is contained
in the “on-line disjoint part” S̃ of an emergency set S, then Breaker picks another
point of the same S̃ (if he finds one; if he doesn’t, then he makes an arbitrary
move). In view of the remark after Lemma 2, Breaker can block every emergency
set in the small game under the condition that he can win the Big Game. Since a
secondary set cannot exist (see Lemma 1), we obtain:

Lemma 3: If Breaker can win the Big Game, then he can win the small game, i.e.
he can block every small set.

Next we prove:

Lemma 4: If Breaker can win the Big Game, then he can block every winning set
A ∈ F either in the Big Game or in the small game.
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Proof. Indeed, assume that at the end of a play some A0 ∈F is completely occupied
by Maker. We derive a contradiction as follows. We distinguish two cases.

Case 1: During the course of the Big Game Maker occupies �m−k−1� points of
A0, i.e. �A0∩VBIG�j�� =m−k−1 for some j.

Let j be the first index such that �A0∩VBIG�j�� =m−k−1, i.e. in the Big Game
Maker occupied the �m−k−1�th point of A0 at his jth move. Then A0 becomes
a dangerous set, and S0 = A0 \VBIG�j� goes to the small game as an emergency
set. Since Breaker can block every emergency set in the small game by a “pairing
strategy” (see Lemma 3), we have a contradiction.

Case 2: At the end of the Big Game Maker has less than �m−k−1� points of A0.
Then for some j, A0 ∩Vsmall�j� must become a secondary set, which contradicts
Lemma 1.

Therefore, the last step of the proof of Theorem 34.1 is to show that Breaker has a
winning strategy in the Big Game. We recall that Maker wins the Big Game if he
can occupy all but k�k+1� points of some big set B ∈ B before Breaker could put
his first mark in this B� In view of (36.3) this means (at least) km− (

k

2

)−k�k+1�
points of Maker in B (before Breaker could put his first mark in this B). What
we need here is not the Erdős–Selfridge Theorem itself, but the following slightly
modified version (we will apply it to the Big Game with b = km− (

k

2

)−k�k+1�,
where m is from Lemma 5 below).

Lemma 5: Let B be a hypergraph such that every winning set B ∈ B has at least
b points. There are two players, Maker and Breaker, who alternately occupy previ-
ously unoccupiedpoints of theboard (Maker starts). Assume that after eachofMaker’s
moves the unoccupied part of the boardmay shrink, but the board doesn’t change after
Breaker’s moves. Maker wins the game if he can occupy b points of some winning
set B ∈ B before Breaker could put his first mark in this B; otherwise Breaker wins
(“shutout game”). Now if �B�< 2b−1, then Breaker has a winning strategy.

Notice that Lemma 5 is a trivial special case of Lemma 1 in Section 35: it is the
special case of l= 1 and MaxDeg�B�≤ �B�.

By (36.2) each big set B ∈ B has cardinality ≥ km− (
k

2

)
. Therefore, we apply

Lemma 5 to the Big Game with b= km−(
k

2

)−k�k+1�. We recall the upper bound
on the total number of big sets (see (36.1))

�B� ≤M

(
m�D−1�

k

)
�

By Lemma 5 Breaker wins the Big Game if

�B� ≤M

(
m�D−1�

k

)
< 2km−�k2�−k�k+1�−1�
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exactly as we predicted in (36.3). This completes the proof of Theorem 34.1. �

2. A slight generalization. For a later application in the nd Torus Tic-Tac-Toe
with n is even (see the Lemma on Torus-Lines in Section 13) we slightly modify
the intersection hypothesis of Theorem 34.1, and assume that for any two distinct
hyperedges A1 and A2 of hypergraph F the intersection size �A1 ∩A2� is ≤ 2
(instead of Almost Disjointness: �A1 ∩A2� ≤ 1). Under what condition about the
global size M = �F � and the Max Degree D = D�F� can the second player force
a Strong Draw in the positional game played on the m-uniform hypergraph F? To
answer the question we repeat the proof of Theorem 34.1 with the following minor
modifications:

(1) A survivor A ∈F becomes dangerous when Maker (“the first player”) occupies
its �m−2k−1�th point in the Big Game; then the �2k+1�-element part of A
(unoccupied in the Big Game) becomes an emergency set.

(2) If an emergency set E0 does not have a “private point pair,” then at least
2k points of E0 are covered by other emergency sets. Since two hyperedges
intersect in at most two points, there are at least k other emergency sets
E1�E2� � � � �Ek intersecting E0. Let A0�A1�A2� � � � �Ak ∈ F denote the uniquely
determined super-sets of E0�E1�E2� � � � �Ek in this order (i.e. Ei ⊂ Ai for i =
0�1� � � � � k; uniquely determined since 2k+1> 2 for k≥ 1).

(3) If a survivor A0 ∈ F never becomes dangerous, then at some stage of the play
the intersection of A0 with the Big Board is fully occupied by Maker and the
intersection of A0 with the small board contains ≥ 2k+2 points. These ≥ 2k+2
points in the small board are covered by at least k different emergency sets.

It follows that the old definition of the family B of Big Sets works just fine and
covers both cases (2) and (3) above, where the analogue of parameter “b” is b =
km−k�2k+1�−2

(
k

2

)
. This argument yields the following variant of Theorem 34.1,

which will be applied in the next section.

Theorem 36.1 Let F be an m-uniform hypergraph, and assume that �A1∩A2� ≤ 2
holds for any two distinct hyperedges A1 and A2 of hypergraph F (instead of
Almost Disjointness: �A1∩A2� ≤ 1). Let D denote the Maximum Degree of F , and
let M = �F � denote the total number of winning sets. If there is an integer k with
1≤ k≤m/4 such that

M

(
m�D−1�

k

)
< 2km−k�2k+1�−2�k2�−1�

then the second player can force a Strong Draw in the positional game on F .
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Almost Disjoint hypergraphs

1. Almost Disjoint vs. General hypergraphs. In “Tic-Tac-Toe Theory” the concept
of Almost Disjoint hypergraph arises in a most natural way: the winning sets in
hypercube Tic-Tac-Toe are collinear, and two lines intersect in (at most) 1 point.

This is a very lucky situation, because the sub-class of Almost Disjoint hyper-
graphs represents the simplest case for the “fake probabilistic method.” Notice that
the Weak Win Criterion Theorem 1.2 and the Strong Draw Criterion Theorem 34.1
are both about Almost Disjoint hypergraphs.

The general case (i.e. not necessarily Almost Disjoint) is always much more com-
plicated; it is enough to compare Theorem 1.2 with Theorem 24.2 (“Advanced Weak
Win Criterion”). The proof of Theorem 1.2 was less than 1 page; Theorem 24.2
has a 10-page proof.

The Achitecture of Advanced Blocking. The subclass of Almost Disjoint hyper-
graphs represents the starting point of the discussion. We develop our decomposition
technique for Almost Disjoint hypergraphs first – Almost Disjoint hypergraphs are
our guinea pigs! – and relax the intersection conditions later.

The whole of Part D is basically a long line of evolution of the decomposition
idea. The highlights are

Theorem 34�1 ↪→Theorem 37�5 ↪→Theorem 40�1 ↪→ Sections 43–44 �Theorem 8�2�

where the weird notation “A ↪→ B” means that “criterion B is a more advanced
version of criterion A.” It is like a five-storied building where Theorems 34.1, 37.5,
40.1 represent the first three floors in this order, and Sections 43 and 44 are the
two top floors. The three “basic floors” are all about Almost Disjoint hypergraphs,
becoming increasingly difficult, and only the last two “floors” are general enough
to cover the cases of the Winning Planes (Theorem 12.6) and the Lattice Games
(Theorem 8.2). The plane-hypergraph and the different lattice-game hypergraphs
are far from being Almost Disjoint – this is why we need the 3 preliminary steps
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(each one about Almost Disjoint hypergraphs) before being able to prove the Strong
Draw part in Theorem 12.6 and Theorem 8.2.
After these general, introductory remarks about the “architecture of blocking,” it

is time now to prove something. We begin with an easy applications of Theorem 34.1
(and its variant Theorem 36.1). We discuss the:

Proof of Theorem 13.1. The statement of Theorem 13.1 is about the nd torus
Tic-Tac-Toe:

(a) ww�n–line in torus�=
(

log2
log3 +o�1�

)
n� �37�1�

(b) ww�comb� n–line in torus�= �1+o�1��n� �37�2�

A quantitative form of lower bound (a) is ww�n–line in torus� ≥
(

log2
log3

)
n−O�

√
n logn�, and (b) has the same error term. This is complemented by the

quantitative upper bound ww�n–line in torus� ≥
(

log2
log3

)
n+O�logn�, and (b) has

the same error term.
We already proved the upper bounds in Section 13; it remains to prove the

lower bounds. In the two cases “(a) with odd n” and “(b)” the lower bound (i.e.
Strong Draw) immediately follows from Theorem 34.1, because the corresponding
hypergraphs are Almost Disjoint.
In the remaining case “(a) with even n” the nd-torus-hypergraph is not Almost

Disjoint, but we still have the weaker property that any two Torus-Lines have
at most two common points. Thus Theorem 36.1 applies, and completes the
proof. �

Next we answer two natural questions about Almost Disjoint hypergraphs. What is
the smallest n-uniform Almost Disjoint hypergraph in which a player can force a
Weak Win? What is the fastest way to force a Weak Win in an Almost Disjoint
hypergraph? Both questions become trivial if we drop the condition “Almost Dis-
joint.” Indeed, the full-length branches of a binary tree of n levels (the players take
vertices) form an n-uniform hypergraph of size 2n−1 in which the first player can
win in n moves. “In n moves” is obviously the fastest way, and 2n−1 is the smallest
size (by the Erdős–Selfridge Theorem). This hypergraph is very far from being
Almost Disjoint, so for Almost Disjoint hypergraphs we would expect a rather
different answer.
The first difference is that the smallest size jumps from 2n−1 up to �4+o�1��n,

i.e. it is roughly “squared” (see Beck [1981a]).

Theorem 37.1 (“Almost Disjoint version of Erdős–Selfridge”) Let F be an n-
uniform Almost Disjoint family with

�F �< 4n−4
√

n logn�
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If n is sufficiently large, then, playing on F , the second player can force a Draw,
in fact a Strong Draw.

Note that Theorem 37.1 is asymptotically nearly best possible: this follows from
the following result of Erdős and Lovász [1975].

Theorem 37.2 (“Erdős-Lovász Construction”) There is an n-uniform Almost Dis-
joint hypergraph F∗ with at most n4 ·4n n-sets which is 3-chromatic, implying that
the first player can force an ordinary win.

What is the reason behind Theorem 37.1? Why can we replace the 2n−1 in the Erdős–
Selfridge Theorem by its “square” �4+ o�1��n? The reason is that for (relatively
small) Almost Disjoint hypergraphs there is a surprising “Degree Reduction” –
due to Erdős and Lovász – which makes it possible to apply Theorem 34.1.
Before formulating the Erdős–Lovász Degree Reduction theorem (see [1975]), we
make first a simple observation. Let F be an arbitrary n-uniform Almost Disjoint
hypergraph, and let V denote the union set. Since F is Almost Disjoint, counting
point pairs in two different ways gives the inequality �F �(n2)≤ (�V �

2

)
� which implies

�n− 1�
√�F � < �V �. In view of this inequality the Average Degree d of F is less

than 2
√�F �. Indeed

d = 1
�V �

∑
x∈V

dx =
n�F �
�V � <

n�F �
�n−1�

√�F � ≤ 2
√�F ��

Can we prove something like this with the Maximum Degree instead of the
Average Degree? The answer is a yes if we are allowed to throw out 1 point from
each set A ∈F , i.e. by reducing the n-uniform hypergraph F to an �n−1�-uniform
hypergraph (of course, the number of sets doesn’t change).

Theorem 37.3 (“Erdős–Lovász Degree Reduction”) Let F be an arbitrary n-
uniform Almost Disjoint hypergraph (n ≥ 2). Then for every n-element set A ∈ F
there is an �n− 1�-element subset Ã ⊂ A such that the �n− 1�-uniform family
F̃ = �Ã � A ∈ F� has Maximum Degree

MaxDegree
(
F̃
)
≤√

n�F ��
Proof. For each A ∈ F let g�A� ∈ A be that point of A which has the largest
F-degree. From each A ∈ F throw out the corresponding point g�A�� i.e. let
Ã = A \ �g�A��, and let F̃ = �Ã � A ∈ F�. Let d denote the Maximum Degree of
F̃ , and let Ã1, Ã2, Ã3, � � �, Ãd be those sets of F̃ that contain a point (say) y of
Maximum Degree in F̃ � (The F̃-degree of y is d�) The d points g�A1�, g�A2�,
g�A3�, � � �, g�Ad� are all different (because y is a common point and F is Almost
Disjoint), and all have F-degree ≥ d (otherwise we would pick y instead of g�Ai�).
It follows that
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n�F � ≥
d∑
i=1

di ≥ d2�

where di denotes the F-degree of g�Ai�� 1≤ i ≤ d. Theorem 37.3 follows.

Now we are ready to derive Theorem 37.1 from Theorem 34.1.

Proof of Theorem 37.1. If �F �< 4n−4
√

n logn, then by Theorem 37.3 the maximum
degree of the �n−1�-uniform family F̃ is

≤√
n2n−4

√
n logn < 2�n−1�−3

√
�n−1� log�n−1�

if n is sufficiently large. Since

�F̃ � = �F �< 4n−4
√
n < �n−1�n−1�

Corollary 2 of Theorem 34.1 applies to F̃ , and we are done. �

Next we prove the “strong converse” of Theorem 37.1.

Proof of Theorem 37.2. We actually prove more.

Theorem 37.4 Let N = 160n42n,M = 6400n44n, and D= 40n22n. Then there is an
Almost Disjoint n-uniform hypergraph F on 2N points with at most M hyperedges
and with Maximum Degree≤D in which each set of N points contains a hyperedge;
this hypergraph is obviously at least 3-chromatic.

Proof of Theorem 37.4. Let S be an arbitrary set of 2N points: this will be the
union set of our hypergraph. We construct our hypergraph F = �Ai � 1 ≤ i ≤ t�

inductively. Suppose A1� � � � �Ap have already been chosen so that:

(1) they are Almost Disjoint;
(2) no point is contained in more than D of them.

Let S1� S2� � � � � Sf�p� be those N -element subsets of S containing no any of
A1� � � � �Ap. If there is no such Si, then we are done. Suppose f�p� ≥ 1. Choose
now the next n-set Ap+1 in such a way that A1� � � � �Ap�Ap+1 satisfy (1) and (2),
and Ap+1 is contained in as many Si, 1 ≤ i ≤ f�p� as possible. We shall show that
Ap+1 will be contained in at least 1

20f�p�2
−n sets from Si, 1 ≤ i ≤ f�p� as long as

p <M . This will imply:

(3) f�p+1�≤ f�p�
(
1− 1

202
−n
)
�

Suppose we know that, if p <M , then (3) holds. Then

f�M�≤ f�0�
(
1− 1

20
2−n

)M

< 22Ne−M2−n/20 < e2N−M2−n/20 = 1�

Thus our procedure stops before the Mth step, i.e. we get a hypergraph satisfying
the requirements with <M hyperedges.
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It remains to show (3). For every 1≤ j ≤ f�p� we estimate how many n-element
subsets of Sj could be chosen for Ap+1 without violating (1) and (2).
Let x be the number of points of Sj having degree D in hypergraph �A1� � � � �Ap�.

Clearly xD ≤ np ≤ nM , so x ≤ nM/D = N/n. Therefore, the number of points in
Sj having degree ≤ �D−1� in hypergraph �A1� � � � �Ap� is N −x ≥ �1− 1

n
�N . Any

n-element set chosen from these points will satisfy requirement (2), i.e. there are at
least (

�1− 1
n
�N

n

)

n-element subsets of Sj satisfying (2).
Let us see how many n-sets are excluded by requirement (1) (“Almost Disjoint-

ness"). We can describe these n-sets as those not containing any pair of points
common with some Ai, 1 ≤ i ≤ p. Each Ai has

(
n

2

)
pairs, so there are altogether at

most p
(
n

2

)
<Mn2/2 excluded pairs. One excluded pair forbids at most

(
N−2
n−2

)
n-sets

of Sj; thus the total number of n-element subsets of Sj forbidden by requirement
(1) is less than (

N −2
n−2

)
Mn2

2
�

Therefore, the number of n-element subsets of Sj that are candidates for Ap+1,
i.e. satisfy both (1) and (2), is more than(

�1− 1
n
�N

n

)
−
(
N −2
n−2

)
Mn2

2

≈ 1

e

(
N

n

)
− Mn4

2N 2

(
N

n

)
=

(
1

e
− 1

8

)(
N

n

)
>

1
5

(
N

n

)
�

So the number of n-element subsets of Sj that are candidates for Ap+1 is more than
1
10

(
N

n

)
. Counting with multiplicity, there are altogether at least

f�p�

10

(
N

n

)

n-sets of S1� S2� � � � � Sf�p� that can be chosen as Ap+1. Since the total number of
n-sets is

(2N
n

)
, there must be an n-set that is counted in at least

f�p�
(
N

n

)
10

(2N
n

) >
f�p�

20
2−n

different Sjs. This proves (3), and the proof of Theorem 37.4 is complete. �

Notice that the board size �V � of the n-uniform hypergraph F∗ in Theorem 37.2 is
“exponentially large”: �V � = 320n4 ·2n. This is perfectly natural, because for Almost
Disjoint hypergraphs we have the general inequality

(�V �
2

)≥ �F � ·(n2) by counting the
point pairs in two different ways. If F is an n-uniform Almost Disjoint hypergraph
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such that the second player cannot force a strong draw, then by Theorem 37.1

�F � ≥ 4n−4
√

n logn, so the general inequality yields the lower bound �V � ≥ 2n−4
√

n logn

for the board size. This motivates the following:

Question: Is it true that, to achieve a Weak Win in an n-uniform Almost Disjoint
hypergraph, we need at least �2+o�1��n moves?

Note that the weaker (but still exponential) lower bound 2�n−1�/2 was already proved
in Section 1 (see Theorem 1.3). By using the BigGame-SmallGame Decomposition
technique (Sections 35–36) we can easily improve the 2�n−1�/2 to �2+o�1��n. We
challenge the reader to do this.

Exercise 37.1 Let F be an arbitrary n-uniform Almost Disjoint hypergraph. Then
Breaker can avoid losing the Maker–Breaker game on F in �2+o�1��n moves.

2. The second Ugly Theorem. So far (almost) everything was a corollary of the first
Ugly Theorem (Theorem 34.1), but Theorem 34.1 failed to imply Theorem 12.5 (a).
Is it true that, if d ≤ ( log2

16 +o�1�
)

n2

logn , then the nd game is a Draw?
By combining Theorem 12.2 with Theorem 34.1 we could prove only a somewhat

weaker result which fell short by a mere constant factor.
The reason is that in the proof of Theorem 34.1 we applied the technique of

“BigGame-SmallGame Decomposition,” and that technique breaks down in the
range �F �> 23m

2/8 where F is an m-uniform Almost Disjoint hypergraph.
The following result, called the Second Ugly theorem, takes care of this problem

by largely extending the range from �F �> 2c·m
2
to a gigantic(!) doubly exponential

bound (see Corollary 1 below).

Theorem 37.5 If F is an m-uniform Almost Disjoint hypergraph such that

�F �m2·2−k/4 ·max
{
27k/2 ·D�m ·25k/2 ·D1+ 1

k−2

}
≤ 2m

holds for some integer k≥ 8log2m (“binary logarithm”) where D=MaxDegree(F),
then the second player can force a Strong Draw in the positional game on F .

The proof is based on a more sophisticated decomposition technique. We
postpone it to Section 39.

By choosing parameter k around
√
m in Theorem 37.5 (m is sufficiently large),

we obtain the following special case:

Corollary 1 If F is an m-uniform Almost Disjoint hypergraph

MaxDeg�F� < 2m−4
√
m and �F �< 22

√
m/5
�

and m> c0, then the second player can force a Strong Draw in the positional game
on F .
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Combining Theorem 12.2 with Corollary 1 (instead of Theorem 34.1) we imme-
diately obtain Theorem 12.5 (a). This means we can upgrade the existing Proper
2-Coloring of the nd-hypergraph guaranteed by Theorem 12.3 to a Drawing Strategy
(in fact a Strong Draw Strategy). Thus we have:

Corollary 2 We obtain the lower bounds in Theorem 12.5

�a� ww�n−line�≥
(
log2
16

+o�1�
)

n2

logn
�

that is, if

d ≤
(
log2

16
+o�1�

)
n2

logn
�

then the second player can force a Strong Draw in the nd game.

�b� ww�comb� n−line�≥
(
log2
8

+o�1�
)

n2

logn
�

that is, if

d ≤
(
log2
8

+o�1�
)

n2

logn
�

then the second player can force a Strong Draw in the “combinatorial lines only”
version of the nd game.

The next two sections contain two long proofs. First in Section 38 we complete
the proof of Theorem 6.4 (a) (“Clique Game”) by supplying the Strong Draw part
(the Weak Win part has already been discussed in Section 25). We develop a
“clique-specific” adaptation of the methods of Sections 35–36.

In Section 39 we present the nearly 20 pages long proof of the second Ugly
Theorem (Theorem 37.5).



38
Exact solution of the Clique Game (II)

1. The Strong Draw part of Theorem 6.4 (a). We prove that if

q ≥ 2 log2N −2 log2 log2N +2 log2 e−3+o�1�� (38.1)

then Breaker can prevent Maker from occupying a Kq in the �KN �Kq� Clique
Game. In view of (21.2)–(21.3) this means an additive constant 2 improvement on
the Erdős–Selfridge Theorem. (38.1) basically proves the Neighborhood Conjecture
(Open Problem 9.1) for the “clique hypergraph”; the improvement comes from the
fact that the Max Degree

(
N−2
q−2

)
of the “clique hypergraph” differs from the global

size
(
N

q

)
by a factor of ≈ �N/q�2. The “2” in the power of N/q explains the “additive

constant 2” improvement!
The “clique hypergraph” is very special in the sense that the Max Degree is just

a little bit smaller than the global size; in the rest of the “Ramsey type games” –
multidimensional Tic-Tac-Toe, van der Waerden Game, q×q lattice games on an
N ×N board – the Max Degree is much smaller than the global size. Much smaller
roughly means “square-root” or “a power less than 1” (or something like that).
This is why the Erdős–Selfridge Theorem is so strikingly close to the truth for the
Clique Game (differs from the truth only by an additive constant, namely by 2),
but for the rest of the “Ramsey-type games” the Erdős–Selfridge Theorem fails by
a multiplicative constant factor.
This was the good news; the bad news is that the “clique hypergraph” is very

far from Almost Disjointness, in fact two Kqs may have a very large intersection:
as many as

(
q−1
2

)= (
q

2

)− �q−1� common edges from the total
(
q

2

)
. This is why we

need a novel variant of the technique developed in Sections 35–36 (“BigGame–
SmallGame Decomposition”). Unfortunately the details are tiresome.
We assume that the reader is familiar with Sections 35–36. Following the basic

idea of Sections 35–36, we are going to define several classes of Avoidable Configu-
rations. By using the Power-of-Two Scoring System (“Erdős–Selfridge technique”)
Breaker will prevent the appearance of any Avoidable Configuration in the Big

492
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Game; this is how Breaker can guarantee that the small game is so simple that a
trivial Pairing Strategy will complete the “blocking job.”

2. Avoidable Configurations of Kind One: A pair of Kqs such that:

(1∗) both are Breaker-free (“survivors”);
(2∗) Maker owns at least

(
q

2

)−q2/3 edges from each Kq;
(3∗) the intersection size of the 2 (q-element) vertex-sets is in the “middle range”:

4≤m≤ q−2.

Kq Kq

m

Lemma 1: By using the Power-of-Two Scoring System in the Big Game, Breaker
can prevent the appearance of any Avoidable Configuration of Kind One.

Proof. The “target value” is at least

22�
q
2�−�m2�−2q2/3�

and the number of ways to choose a pair of Kqs with m common vertices is(
N

q

)(
q

m

)(
N−q

q−m

)
, so the relevant term is the product

fN�q�m�=
(
N

q

)(
q

m

)(
N −q

q−m

)
2−2�q2�+�m2�+2q2/3 � (38.2)

If q satisfies (38.1), then (
N

q

)
2−�

q
2� = N 2−��

so (38.2) is approximately(
N

q

)
2−�

q
2� ·

(
N

q

)
2−�

q
2� ·

( q

N

)m

2�
m
2� ·

(
q

m

)
22q

2/3 ≈ N 4−�−m (38.3)

as long as m= o�q�. The ratio (see (38.2))

fN�q�m+1�

fN�q�m�
=

(
q

m+1

)(
N−q

q−m+1

)
2�

m+1
2 �

(
q

m

)(
N−q

q−m

)
2�

m
2�

= 2m�q−m�2

�m+1��N −2q+m+1�
(38.4)

decreases up to m ≈ q/2 (since q ≈ 2log2N ), and decreases in the rest: starting
from m≈ q/2 and ending at m= q−1. When m is close to q we write l= q−m;
by using

(
q

2

)− (
m

2

)= l�q− l+1
2 � we have (see (38.2))

fN�q�m�=fN�q�q− l�=
(
N

q

)
2−�

q
2� ·

(
q

l

)(
N −q

l

)
2−l�q− l+1

2 �

=N 2−�−l if l= o�q�� (38.5)
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Combining (38.3)–(38.5) we have

fN�q�2�= N 2−�� fN�q�3�= N 1−�� fN�q�q−1�= N 1−�� (38.6)

fN�q�4�= N−�� fN�q�q−2�= N−�� and fN�q�m�≤ N−1−� (38.7)

for all 5≤m≤ q−3. Lemma 1 follows from (38.6)–(38.7).

We reformulate Lemma 1 as follows:

Corollary of Lemma 1: Assume that Breaker plays rationally in the Big Game
by preventing Avoidable Configurations of Kind One. During such a play, any 2
survivor Kqs with the property that Maker claims at least

(
q

2

)− q2/3 edges from
each in the Big Game, are:

(1) either edge-disjoint;
(2) or “nealy disjoint” having 1 or 3 common edges;
(3) or “almost identical” having

(
q−1
2

)
common edges.

If a survivor Kq has at least
(
q

2

)− q2/3 marks (“marked edges”) of Maker in the
Big Game, then we call it risky. Sections 35–36 were about Almost Disjoint
hypergraphs; the good news is that two risky Kqs are either Almost Disjoint, or very
close to Almost Disjointness (see (1)–(2) in the Corollary), but unfortunately there
is a new case: (3) above, which is the complete opposite of Almost Disjointness.
The possibility of “almost identical” risky Kqs (see (3)) is a new difficulty which
requires a new idea.
Here is the new idea: Let KA, KB, KC be 3 risky Kqs : �A� = �B� = �C� = q, and

assume that KA ≡ ai≡KB, KB ≡ ai≡KC , where the unusual notation≡ ai≡means
the relation “almost identical” defined in (3). It follows that �A∩B� = �B∩C� = q−1.
Now there are two possibilities:

either �A∪B∪C� = q+1� (38.8)

or �A∪B∪C� = q+2� (38.9)

We claim that, by using the Power-of-Two Scoring System in the Big Game,
Breaker can exclude the second alternative (38.9).

Avoidable Configuration of Kind Two: It means alternative (38.9). The “target
value” is

2�
q
2�+�q−1�+�q−1�−2q2/3 �

and the number of ways to choose triplet �A�B�C� is at most
(
N

q

)·
�N −q�q · �N −q�q, so the relevant term is the product
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(
N

q

)
�N −q�2q2 ·2−�q2�−�q−1�+�q−1�+2q2/3

=
(
N

q

)
2−�

q
2� ·

(
�N −q�q

2q−1−q2/3

)2

= N 2−� ·N−2+o�1� = N−�+o�1��

which is “small,” so Breaker can indeed avoid alternative (38.9).
The other alternative (38.8) means that KA ≡ ai≡KC ; in other words, KA ≡ ai≡

KB and KB ≡ ai ≡ KC imply KA ≡ ai ≡ KC , meaning that ≡ ai ≡ turns out to be
an equivalence relation (if Breaker plays rationally); so we have just proved:

Lemma 2: Assume that Breaker plays rationally in the Big Game by preventing
Avoidable Configurations of Kind Two; then in the class of risky Kqs, the relation
“almost identical” – see (3) – is an equivalence relation.

If two risky Kqs are “almost identical,” then we call them twin brothers.
Let k be the nearest integer to 4q1/3; a survivor Kq is called dangerous if Maker

claims
(
q

2

)− k edges in the Big Game. Since k is less than q2/3, every dangerous
Kq is risky, but the converse is not necessarily true: a risky Kq is not necessarily
dangerous (but may become dangerous later).
A novelty of this version of the “BigGame–SmallGame decomposition” technique

is that the k-edge part of a dangerous Kq (unoccupied in the Big Game) is not
necessarily added to the small board as a new emergency set; the answer to this
question (“whether or not it is an emergency set”) depends on the Max Degree and
on the twin brothers as follows.

Let KAi
, i ∈ I , where each �Ai� = q, be a family of dangerous twin brothers: by

definition each KAi
has a k-edge sub-graph Gi ⊂ KAi

which is unoccupied in the
Big Game. We distinguish two cases:

(a) Let KA1
denote the first one among them showing up in the course of a play,

and assume that the Max Degree of G1 is less than k/3. Then G1 is a new
emergency set, and (of course) it is added to the small board.

(b) Assume that the Max Degree of G1 is ≥ k/3; then the corresponding star (see
the picture below) is a new emergency set, and (of course) it is added to the
small board.

degree ≥ k
3
–

star : V
root

Among the rest of KAi
s, there is at most 1 possible j ∈ I \ �1� such that KAj

does
not contain the root of the star in KAi

(vertex v on the picture); then Gj must have
a vertex of degree ≥ k/3 of its own, and this star is a second new emergency set,
and, of course, it is also added to the small board.
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degree ≥ k
3
–

star : W
root

In the small game, played on the small board, Breaker applies the usual reply on
the private edges Pairing Strategy (see Sections 35–36). Breaker can force that a
survivor Kq will never be completely occupied by Maker; this is how he can do it.
Consider a survivor KA (of course, �A� = q); we distinguish several cases.

Case 1: Survivor KA will eventually become dangerous, but it never has a
dangerous twin brother
We claim that Breaker can block KA in the small game. Indeed, KA supplies a

new emergency set E = E�KA�, which, of course, has ≥ k/3 edges. In Case 1 every
other emergency set E∗ intersects E in at most 3 edges (see (1)–(2) in the Corollary
of Lemma 1). By preventing Avoidable Configurations of Kind Three – which
will be defined below – Breaker can force that E has more than k/6 private edges –
we just need 2! – which guarantees the blocking of E by the reply on the private
edges Pairing Strategy (used by Breaker in the small game).

4. Avoidable Configuration of Kind Three: any “tree” formed by s = q1/6 risky
Kqs, which is twin-brother-free; see the figure below.

−

Avoidable Configurations of
Kind Three

+

The sets may have
extra intersection

This is a “spanning tree”

Depth-first search

+ + − + − + − − + + + + − + + − + − + − + − − − + − − −
± sequence of length 2s − 2

+ = forwards
− = backwards

≤ 22−2 = 4s−1 ways
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By using the Power-of-Two Scoring System, the “target value” of a “tree” is at
least

2s��
q
2�−q2/3�−3�s2��

noting that factor “3” comes from (2) in the Corollary of Lemma 1. There are less
than 4s unlabeled trees on s vertices (easy consequence of the “depth-first search”
procedure; see the figure below)

So the number of ways we can build a “tree” (Avoidable Configuration of Kind
Three) following the “depth-first-search” is less than

4s ·
(
N

q

)
·
((

q

2

)(
N −2
q−2

))s−1

�

Breaker can prevent the appearance of any Avoidable Configuration of Kind Three
if the product

4s
(
N

q

)((
q

2

)(
N −2
q−2

))s−1

2−s��q2�−q2/3�+3�s2� (38.10)

is “small” like N−�.
If q satisfies (38.1), then

(
N

q

)
2−�

q
2� = N 2−� and

(
q

2

)(
N−2
q−2

)
2−�

q
2� = N−�, so (38.10)

equals
((

q

2

)(
N−2
q−2

) ·23�s−1�/2 ·4
2�

q
2�−q2/3

)s−1

·
(
N

q

)
2�

q
2�

= �N−��s ·N 2−� ≤ N−�� (38.11)

which is really “small” as we claimed. This proves:

Lemma 3: By using the Power-of-Two Scoring System in the Big Game, Breaker
can prevent the appearance of any Avoidable Configuration of Kind Three.

Now we can complete Case 1: emergency set E = E�KA� must have at least 2
private edges – indeed, otherwise there is an Avoidable Configuration of Kind
Three, which contradicts Lemma 3 – so Breaker can block E by Pairing Strategy.

Case 2: Survivor KA will eventually become dangerous, it also has a dangerous
twin brother, but the MaxDegree of the k-edge graph is less than k/3 (see case (a)
above).

This is very similar to Case 1: again the emergency set must have at least 2 private
edges (otherwise there is an Avoidable Configuration of Kind Three).

Case 3: Survivor KA will eventually become dangerous, it also has a dangerous
twin brother, but the MaxDegree of the k-edge graph is ≥ k/3 (see case (b) above).
Then the emergency set is a star; any other emergency set intersects this star in at
most 3 edges, so the star must have at least 2 private edges (otherwise there is an
Avoidable Configuration of Kind Three).
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Case 4: Survivor KA will never become dangerous, and at some stage of the play
its intersection with the small board is > q2/3.
The assumption “KA’s intersection with the small board is > q2/3” implies that KA

is not risky, so we cannot apply the Corollary of Lemma 1: we cannot guarantee
the strong intersection properties (1)–(3) (“nearly disjoint” or “almost identical”).
To overcome this novel difficulty we introduce

5. Avoidable Configurations of Kind Four. We define them as follows. Consider
the stage of the play when KA’s intersection with the small board is >q2/3; consider
the emergency sets intersecting KA; for each emergency set take its super-set
(“a copy of Kq”); these Kqs fall apart into components (see the figure below); each
component has less than 2s = 2q1/6 sets. The last statement follows from the fact
that Lemma 3 applies for the super-sets of emergency sets, noting that any family of
twin brothers0 supplies at most 2 emergency sets (see (a) and (b)). Taking 1 super-
set (“a copy of Kq”) from each component plus KA together form an Avoidable
Configurations of Kind Four.

Avoidable Configuration of Kind Four

Let r denote the intersection of KA with the small board at the end of a play;
clearly r> q2/3. Each emergency set has at most k= 4q1/3 edges and each component
size is < 2q1/6, so if t denotes the number of components, then the inequality
t > rq−1/6k−1/2 is obvious. By using the Power-of-Two Scoring System, the “target
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value” of an Avoidable Configurations of Kind Four is

2�
q
2�−r ·2t��q2�−k��

The total number of ways to build an Avoidable Configuration of Kind Four with
t+1
sets is at most (

N

q

)((
q

2

)(
N −2
q−2

))t



here we applied the trivial inequality

max
m≥2

(
q

m

)(
N −m

q−m

)
≤
(
q

2

)(
N −2
q−2

)
�

Breaker can prevent Case 4 if the product(
N

q

)((
q

2

)(
N −2
q−2

))t

2−�
q
2�+r−t��q2�−k� (38.12)

is small like N−�. We rewrite and estimate (38.12) as follows (by using the obvious
inequality t > rq−1/6k−1/2 mentioned above)

�38�12�=
(
N

q

)
2−�

q
2� ·

((
q

2

)(
N −2
q−2

)
2−�

q
2�+k

)t

·2r

≤
(
N

q

)
2−�

q
2� ·

((
q

2

)(
N −2
q−2

)
2−�

q
2�+k+2kq1/6

)t

≤ N 2−� · �N−��t < N−��

which is very small as we claimed. Since Breaker can prevent the appearance of
any Avoidable Configuration of Kind Four, Case 4 does not show up at all.
The last 3 cases form the perfect analogue of Cases 1–3.

Case 5: Survivor KA will never become dangerous, at some stage of the play its
intersection with the small board is always at most q2/3, and it never has a dangerous
twin brother.
Assume that Maker can occupy all

(
q

2

)
edges of KA. When Maker owns

(
q

2

)−q2/3

edges of KA in the Big Game, KA becomes risky and Lemmas 1–3 all apply.
We can repeat the argument of Case 1: if Maker can occupy all

(
q

2

)
edges of

KA, then there is an Avoidable Configuration of Kind Three, which contradicts
Lemma 3.

Case 6: Survivor KA will never become dangerous, at some stage of the play its
intersection with the small board is always at most q2/3, it has a dangerous twin
brother and the Max Degree of the k-edge graph is less than k/3 (see (a) above).

Assume that Maker can occupy all
(
q

2

)
edges of KA. When Maker owns

(
q

2

)−q2/3

edges of KA in the Big Game, KA becomes risky, and just as in Case 2 there is an
Avoidable Configuration of Kind Three, which contradicts Lemma 3.
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Case 7: Survivor KA will never become dangerous, at some stage of the play its
intersection with the small board is always at most q2/3, it has a dangerous twin
brother and the Max Degree of the k-edge graph is ≥ k/3 (see (b) above).

Assume that Maker can occupy all
(
q

2

)
edges of KA. When Maker owns

(
q

2

)−q2/3

edges of KA in the Big Game, KA becomes risky, and just as in Case 3 there is an
Avoidable Configuration of Kind Three, which contradicts Lemma 3.
This completes the proof of Theorem 6.4 (a). �

The proofs of Theorem 6.4 (b)–(c)–(d) and Theorem 8.2 (h) are very similar.
Next we switch from the usual board KN to a “typical” graph on N vertices.

Exercise 38.1 Show that, playing the usual (1:1) game on the symmetric random
graph R�KN �1/2�, with probability tending to 1 as N tends to infinity, Breaker can
prevent Maker from occupying a clique Kq with

q = �log2N − log2 log2N + log2 e−1+o�1�� �
Exercise 38.2 Prove the Breaker’s part in formulas (8.7) and (8.8).

6. Chooser–Picker Game. By using Theorem 38.1 below instead of the Erdős–
Selfridge Theorem, we can show, by repeating the argument of this whole section,
that Chooser’s Clique Achievement Number in KN equals the ordinary (Maker’s)
Clique Achievement Number

q = �2 log2N −2 log2 log2N +2 log2 e−3+o�1�� �
To formulate our Blocking Criterion we need the notion of rank: �H� =

maxA∈H �A� is called the rank of hypergraph H. The (1:1) play requests the standard
Power-of-Two Scoring: T�H�=∑

A∈H 2−�A�.

Theorem 38.1 If

T�F�≤ 1
8��F�+1�

� (38.13)

then Picker (“blocker”) has an explicit winning strategy in the Chooser–Picker
game on hypergraph F .

In other words, if (38.13) holds, then Picker can prevent Chooser from completely
occupying a winning set A ∈F . Theorem 38.1 is a “first moment criterion,” a close
relative of the Erdős–Selfridge Theorem (Theorem 1.4).

Proof of Theorem 38.1. Assume we are in the middle of a play where Chooser
already selected x1� x2� � � � � xi, and Picker owns the points y1� y2� � � � � yi� The ques-
tion is how to find Picker’s next 2-element set �v�w�� from which Chooser will
choose his xi+1 (the other one will go back to Picker).

Let Xi = �x1� x2� � � � � xi� and Yi = �y1� y2� � � � � yi�� Let Vi = V \ �Xi∪Yi� � Clearly
�Vi� = �V �−2i�
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Let F�i� be that truncated subfamily of F , which consists of the unoccupied
parts of the “survivors”:

F�i�= �A\Xi � A ∈ F� A∩Yi = ∅��
If Picker can guarantee that T�F�i�� < 1 at the end of the play, i.e. T�F�end�� < 1�
then Picker wins. Let xi+1 and yi+1 denote, respectively, the �i+ 1�st points of
Chooser and Picker. We have

T�F�i+1��= T�F�i��+T�F�i� xi+1�−T�F�i� yi+1�−T�F�i� xi+1� yi+1��

It follows that

T�F�i+1��≤ T�F�i��+�T�F�i� xi+1�−T�F�i� yi+1���
Introduce the function

g�v�w�= g�w�v�= �T�F�i� v�−T�F�i�w��
which is defined for any 2-element subset �v�w� of Vi� Picker’s next move is that
2-element subset �v0�w0� of Vi for which the function g�v�w� achieves its minimum.
Since �v0�w0�= �xi+1� yi+1�� we have

T�F�i+1��≤ T�F�i��+g�i�� (38.14)

where

g�i�= min
v�w�v �=w��v�w�⊆Vi

�T�F�i� v�−T�F�i�w��� (38.15)

We need the following simple:

Lemma 1: If t1� t2� � � � � tm are non-negative real numbers and t1+ t2+· · ·+ tm ≤ s�

then

min
1≤j<�≤m

�tj − t�� ≤ s(
m

2

) �
Proof. We can assume that 0 ≤ t1 < t2 < · · · < tm� Write g = min1≤j<�≤m �tj − t���
Then tj+1− tj ≥ g for every j� and(

m

2

)
g = g+2g+ · · · + �m−1�g ≤ t1+ t2+ � � �+ tm ≤ s�

This completes the proof of Lemma 1.

We distinguish two phases of the play.

Phase 1: �Vi� = �V �−2i > �F�
Then we use the trivial fact∑

v∈Vi
T�F�i� v�≤ �F�T�F�i���
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By Lemma 1 and (38.15)

g�i�≤ �F�(�Vi�
2

)T�F�i���

so by (38.14)

T�F�i+1��≤ T�F�i��

{
1+ �F�(�Vi�

2

)
}
�

Since 1+x ≤ ex = exp�x�� we have

T�F�i+1��≤ T�F� exp

{
�F�

i∑
j=0

1(�Vj �
2

)
}
�

It is easy to see that ∑
i��Vi�>�F�

1(�Vi�
2

) < 2
�F� �

so if i0 denotes the last index of the first phase, then

T�F�i0+1�� < e2T�F� < 8T�F�� (38.16)

Phase 2: �Vi� = �V �−2i ≤ �F�
Then we use the other trivial fact∑

v∈Vi
T�F�i� v�≤ �Vi�T�F�i���

By Lemma 1 and (38.15)

g�i�≤ 2
�Vi�−1

T�F�i���

so by (38.14)

T�F�i+1��≤ �Vi�+1

�Vi�−1
T�F�i��� (38.17)

By repeated application of (38.17) we have

T�F�end��≤T�F�i0+1��
∏

i��Vi�≤�F�

�Vi�+1

�Vi�−1

≤T�F�i0+1�� ��F�+1� < 8T�F� ��F�+1� � (38.18)

In the last step we used (38.16). Combining the hypothesis of the theorem with
(38.18) we conclude that T�F�end�� < 1� so Chooser was unable to completely
occupy a winning set. Theorem 38.1 follows. �

A biased generalization of Theorem 38.1 will be discussed in Section 47.
This section completes the proof of the first main result: Theorem 6.4. It took

us a whole section to replace an additive constant gap O�1� by o�1� which tends
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to 0, i.e. to get the exact solution. Similarly, if we are is satisfied with a weaker
asymptotic form of Theorem 8.2 (lattice games) instead of the exact solution, then
there is a major shortcut. A straightforward adaptation of the proof technique of a
single section (Section 42) suffices to give at least the asymptotic form of the phase
transition in Theorem 8.2.

The asymptotic form describes the truth apart from a multiplicative factor of
�1+o�1��. However, if we insist on having the exact value of the phase transition,
then, unfortunately, we have to go through Chapters VIII and IX: an about 80 pages
long argument.

Needless to say, it would be extremely desirable to reduce this 80-page-long
proof to something much shorter.



Chapter VIII
Advanced decomposition

The main objective of Chapter VIII is to develop a more sophisticated version of the
BigGame–SmallGame Decomposition technique (introduced in Sections 35–36).

We prove the second Ugly Theorem; We formulate and prove the third Ugly
Theorem. Both are about Almost Disjoint hypergraphs. In Section 42 we extend
the decomposition technique from Almost Disjoint to more general hypergraphs.
We call it the RELARIN technique. These tools will be heavily used again in
Chapter IX to complete the proof of Theorem 8.2.
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39
Proof of the second Ugly Theorem

The Neighborhood Conjecture (Open Problem 9.1) is a central issue of the book.
The first result toward Open Problem 9.1 was Theorem 34.1, or as we called it:
the first Ugly Theorem (see Section 36 for the proof). The second Ugly Theorem
(Theorem 37.5) is more powerful. It gives the best-known Strong Draw result for
the nd hypercube Tic-Tac-Toe (Theorem 12.5 (a)), and it is also necessary for the
solution of the Lattice Games (Theorem 8.2).

1. Proof of Theorem 37.5. We assume that the reader is familiar with the proof
of Theorem 34.1. In the proof of Theorem 34.1 Breaker used the Power-of-Two
Scoring System in the Big Game to prevent the appearance of the “Forbidden
Configurations” in the small game, and this way he could ensure the “simplicity”
of the small game. The small game was so simple that Breaker could block every
“emergency set” by a trivial Pairing Strategy. The new idea is very natural: we try
to replace the Pairing Strategy in the small game by the Power-of-Two Scoring
System. The improvement should come from the intuition that the Power-of-Two
Scoring System is “exponential,” far superior to the “linear” Pairing Strategy.

Note that here the “components” of the small game will be “exponentially large,”
so the new Big Sets will be enormous.

To have a clear understanding of the changes in the argument, we first give a
brief summary of the proof of Theorem 34.1, emphasizing the key steps. Let F
be an n-uniform Almost Disjoint hypergraph. Breaker (the second player) wants to
force a Strong Draw. Breaker artificially decomposes the board (i.e. the union set)
into two disjoint parts: the Big Board and the Small Board. The Decomposition
Rules are the following:

(1) The decomposition is dynamic: the Big Board is shrinking, and the small
board is growing in the course of a play.

(2) Breaker replies by the Same Board Principle: if Maker’s last move was in the
Big Board (respectively small board), then Breaker always replies in the Big
Board (respectively small board).

505
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(3) The Big Game and the small game are non-interacting in the following sense:
Breaker’s strategy in the Big Game (small game) does not assume any knowl-
edge of the other game (“Breaker is schizophrenic,” and the “Iron Curtain
Principle” applies).

(4) At the beginning of a play the Big Board is the whole board (and so the
complement, the small board, is empty). In the course of a play in the Big
Game (played in the Big Board) a winning set A ∈F is dead when it contains
a mark of Breaker; an A ∈ F� which is not dead, is called a survivor. (Of
course, survivor is a temporary concept: a survivor A ∈ F may easily become
dead later; dead is permanent.)

(5) A survivor A ∈ F becomes dangerous when Maker occupies its �m−k−1�st

point in the Big Game (in the Big Board, of course). Then the �k+1�-element
part of this A� unoccupied in the Big Game, becomes an emergency set. Every
emergency set is removed from the Big Board, and added to the small board.
The small board is the union of the emergency sets, and the Big Board is the
complement of the small board.

(6) In the Big Board Breaker plays the Big Game. Breaker’s goal in the Big
Game is to prevent Maker from almost completely occupying a Big Set before
Breaker could put his first mark in it (in the Big Board of course). This is
how Breaker prevents “Forbidden Configurations” to graduate into the small
game.

(7) Breaker’s goal in the small game is to block all emergency sets.
(8) Breaker wins the Big Game by using an Erdős–Selfridge type lemma (such as

“Lemma 5” in Section 36).
(9) Fact (8) implies that Breaker can win the small game by a trivial Pairing

Strategy.
(10) Fact (8) implies that “there is no secondary danger,” i.e. there is no survivor

that never graduates into a dangerous set.

2. How to “beat” Theorem 34.1? As we said before, the new idea is to replace
the Pairing Strategy in the small game by a more sophisticated Erdős–Selfridge
type strategy. We expect the “small game” to fall apart into many disjoint
“components”, and the goal of the “Big Game” is to prevent the appearance
of too large “components” (“too large” means exponentially large in some pre-
cise sense). If Breaker follows the Same Component Rule in the “small game”
(if Maker moves to a “component” of the “small game,” then Breaker replies
in the same “component”), and the “components” remain at most “exponentially
large” in the “small game,” then Breaker should be able to block every “dan-
gerous set” in the “small board.” Of course, the “components” in the “small
game” may grow, so we need a “growing version” of the Erdős–Selfridge
Theorem.
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Now we start to work out the details of this “heuristic outline.” Again Breaker
decomposes the board (i.e. the union set) into two disjoint parts: the Big Board and
the small board. What happens to the Decomposition Rules (1)–(10) above? Well,
(1) doesn’t change:

(1) The decomposition is dynamic: the Big Board is shrinking, and the small
board is growing in the course of a play.

(2) Will change; the Same Board Rule may be violated in the small game as
follows:

(2′) if Maker’s last move was in the Big Board, then Breaker always responds in
the Big Board, but if Maker’s last move was in the small board, then it may
happen that Breaker replies in the Big Board.
Breaker is still “schizophrenic,” and the “Iron Curtain Principle” is unchanged.

(3) The Big Game and the small game are non-interacting in the following
sense: Breaker’s strategy in the Big Game (small game) does not assume
any knowledge of the other game.

(4) Remains the same: at the beginning of a play the Big Board is the whole
board (and so the complement, the small board, is empty). In the course of a
play in the Big Game (played in the Big Board) a winning set A ∈ F is dead
when it contains a mark of Breaker; an A ∈ F� which is not dead, is called a
survivor. (Of course, survivor is a temporary concept: a survivor A ∈ F may
easily become dead later; dead is permanent.)

(5) Changes: the “dangerous sets” may double in size, they may have as many as
2k elements instead of k+1; more precisely,

(5′) A survivor A ∈ F becomes dangerous when Maker occupies its �m− 2k�th
point in the Big Game (in the Big Board, of course). Then the 2k-element
part of this A� unoccupied in the Big Game, is removed from the Big Board,
and added to the small board. The “blank” part of this 2k-element set, i.e.
unoccupied in the small game, is called an emergency set. The small board is
exactly the union of the emergency sets, and the Big Board is the complement
of the small board.

(6) Remains the same: In the Big Board Breaker plays the Big Game. Breaker’s
goal in the Big Game is to prevent Maker from almost completely occupying
a Big Set before Breaker could put his first mark in it (in the Big Board of
course). This is how Breaker prevents “Forbidden Configurations” to graduate
into the small game.

(7) Changes as follows:
(7′) Breaker’s goal in the small game is to block all small sets. The small sets are

the emergency sets and the secondary sets.

Here we have to stop and explain what the secondary sets are. Also we have to
clarify the definition of emergency sets. We start with a new concept: a survivor
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A ∈ F becomes visible in the small game when its intersection A∩Vs with the
small board Vs has at least k elements for the first time (and remains visible for
the rest of the play). This stage of the play is called the birthday of a new small
set S (S ⊂ A), which is defined as follows. First of all, from A we remove all
points occupied by Maker in the Big Game up to the birthday (“circumcision”);
what remains from A is denoted by A′. By definition �A′� ≥ 2k. Note that a visible
survivor set A has less than k pre-birth points in the small board; they are all
removed from A′ (“circumcision” is a “security measure”: it may happen that all
pre-birth points are occupied by Maker in the small game). What remains from
A′ is a new small set S (S ⊂ A). So at its birthday a small set S is “blank,” and
has more than �A′� − k ≥ k points. If A′ has exactly 2k points, then S = S�A� is
an emergency set. If A′ has more than 2k points, then S = S�A� is a secondary
set. An emergency set is part of the small board (by definition, see (5′)) but
a secondary set may have a non-empty intersection with the Big Board. Note
that a secondary set may later become an emergency set, but, if a secondary
set is completely contained in the small board, then it will never become an
emergency set.

(8) Remains the same: Breaker wins the Big Game by using “Lemma 5” in
Section 36.

(9) and (10) Undergo a complete change:
(9′) Fact (8) enforces that Breaker can win the small game by using an Erdős–

Selfridge type “Growing Lemma.”
(10′) Breaker cannot prevent the appearance of secondary sets, but (8) and (9′) take

good care of them.

We have to explain what (9′) and (10′) mean.

3. The small game: applying an Erdős–Selfridge type “Growing Lemma.” Let
S denote the “growing” family of small sets, meaning the emergency sets and the
secondary sets together. We have to clearly explain what “growing” means. The
basic rule of decomposition is the following (see (2′)): If Maker’s last move was
in the Big Board, then it is considered a “move in the Big Game,” and Breaker
replies in the Big Board, and his move is considered a “move in the Big Game.” If
Maker’s last move is in the small board, then it is considered a “move in the small
game,” and Breaker replies in the same component of the hypergraph of all small
sets where Maker’s move was, and Breaker’s move is considered a “move in the
small game.”

Warning: Some small sets, in fact secondary sets, are not necessarily contained in
the small board, so it can easily happen that Breaker’s reply in the small game is
outside of the small board.
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small boardBIG BOARD

Maker’s move

Maker’s move

Breaker’s reply

Breaker’s reply

Power-of-Two Scoring System in both sub-boards

This move of Breaker, we call it an “outside move,” is not considered a move in the
Big Game (even if it is literally in the Big Board). Breaker is “schizophrenic”: he
has two personalities like BreakBig, who plays in the Big Game, and Breaksmall, who
plays in the small game, and the two personalities know nothing about each other.
Therefore, BreakBig does not see an “outside move” of Breaksmall as a blocking
move in the Big Game. What BreakBig can “see” here is a decrease in the set of
available (unoccupied) points, i.e. a decrease in the Big Board.

This is how the original hypergraph game played on the n-uniform F decomposes
into two disjoint (“non-interacting”) games: the Big Game and the small game.

This rule of decomposition leads to the following “growing” of the small game.
Assume that we are in the middle of a play. Let x∗ be a move of Maker in the small
board, let y∗ denote Breaker’s reply in the same component of the hypergraph of
all simple sets S (y∗ may be outside of the small board). Next let

x�1�� y�1�� x�2�� y�2�� � � � � x�j�� y�j�

be a possible sequence of moves in the Big Game (in the Big Board, of course),
and let x∗∗ be Maker’s first return to the small board. In the small game x∗� y∗� x∗∗

are consecutive moves, but between y∗ and x∗∗ the hypergraph of small sets may
increase. Indeed, the sequence x�1�� y�1�� x�2�� y�2�� � � � � x�j�� y�j� in the Big Game may
lead to new dangerous sets A ∈F � A new dangerous set A defines a new emergency
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small game:
played on the family
of small sets (emergency
and secondary)

Big Game =
Shutout Game on
the family of Big Sets

Breaker wins by using
the Power-of-Two
Scoring System

falls apart into a
huge number of disjoint
components

Breaker wins in each
component by using the
Power-of-Two Scoring
System

Iron Curtain

Board

sets E ⊂A� which is added to the small board. Larger small board means that some
new survivors B ∈ F have a chance to become “visible” (i.e. have ≥ k points in
ths small board), and give birth to some “newborn baby small sets.” This is how
new emergency and secondary sets may arise between the consecutive moves y∗

and x∗∗ in the small game.
For “security measures” we remove the “pre-birth” points from every “newborn

baby small set.” This way we lose less than k points (they all might be occupied
by Maker in the small game). Each “newborn baby small set” is “blank:” it does
not contain any point of Maker or Breaker in the small game up to that moment
(i.e. before choosing x∗∗).

Warning: It is somewhat confusing to say that the hypergraph S of small sets is
“growing.” It can easily happen that between consecutive moves y∗ and x∗∗ in the
small game some small set in fact “dies.” Indeed, the moves y�1�� y�2�� � � � � y�j� of
Breaker in the Big Game may block some survivor, which is the super-set of a
secondary set, and then there is no reason to keep this secondary set any longer: we
could easily delete it from the hypergraph of small sets. We could, but we decided
not to delete such a “dead secondary set” from the hypergraph of all small sets!
Once a survivor becomes “visible in the small game,” we keep it in hypergraph S
forever even if it becomes blocked (i.e. “killed”) by Breaker later in the Big Game.
Similarly, once a small set arises, we keep it in hypergraph S even if it becomes

blocked later by Breaker in the small game.
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Working with the “keep the small sets anyway” interpretation of S, we can really
claim that the family S of all small sets is “growing” in the course of a play.

4. The Component Condition. We are going to define the family of Big Sets (the
precise definition comes much later) to ensure the:

Component Condition: During the whole course of the small game every
component of hypergraph S (“small sets”) has less than 2k sets.

A key ingredient of the proof is the:

Growing Erdős–Selfridge Lemma: If the Component Condition holds, then
Breaker has a strategy in the small game such that, he can prevent Maker from
occupying k points from a “circumcised small set” (where the “pre-birth” points
are removed) before Breaker could block it in the small game.

Proof. Let x1� y1� x2� y2� � � � be the points of Maker and Breaker, selected in this
order during a play in the small game. (Here we restrict ourselves to the small game;
in other words, the Big Game does not exist, it is behind the “Iron Curtain.”) We
use the standard Power-of-Two Scoring System for the small sets (i.e. the less than
k “pre-birth” points are already removed): if the small set is blocked by Breaker,
then its value is 0; if it is Breaker-free and contains l points of Maker, then its value
is 2l (l= 0�1�2� � � �).

Let’s see what happens at the very beginning. Before x1 every small set is
“blank,” and has value 20 = 1� Between x1 and y1 those small sets which contain
x1 have value 21 = 2� The value of a component of S is, of course, the sum of the
values of the sets in the component. Between x1 and y1 the value of a component
is at most twice the component-size (i.e. the number of sets in the component).
We are going to prove, by induction on the time, that a very similar statement

holds in an arbitrary stage of the play, see the “Overcharge Lemma” below). To
formulate the “Overcharge Lemma” we have to introduce a technical trick: the
concept of “overcharged value.” To explain it, assume that we are in the middle of
a particular play in the small game, and consider an arbitrary component C of the
family S of all small sets. There are two possibilities:

(1) the last mark put in component C was due to Maker;
(2) the last mark put in component C was due to Breaker.

In case (1) Breaker does nothing; however, in case (2) Breaker picks the “best”
unoccupied point in component C and includes it as a “fake move” of Maker. “Best”
of course means that it leads to the maximum increase in the value of component
C). By including a possible “fake move,” Breaker can guarantee that, in every stage
of the play, in every component of S, the last move is always due to Maker. Indeed,
it is either a real move as in case (1), or a “fake move” as in case (2). Note that a
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“fake move” is always temporary: when Maker makes a real move in a component,
the “fake move” is immediately erased.
The value of a component of S, computed including the possible “fake move,”

is called the overcharged value of the component. “Overcharged” in the sense that
a possible “fake move” of Maker doubles the ordinary value of a small set.
Now we are ready to formulate the:

Overcharge Lemma: Breaker can force that, in every stage of the small game, in
every component C of all small sets S, the overcharged value of component C is
≤ 2�C�. In other words, the overcharged value of a component is always at most
twice the component size.

Proof. We prove it by induction on the time. We study the effect of two consecutive
moves yi and xi+1 in the small game: yi is the ith move of Breaker and xi+1 is
the �i+1�st move of Maker. Let C1 denote the component of S which contains yi.
Between the moves yi and xi+1 family S may grow: some “newborn baby small
sets” may arise. Note that the “newborn baby small sets” are always “blank”: they
have value 20 = 1. The “newborn baby small sets” may form “bridges” to glue
together some old components into a bigger one:

� 
*

“new-born baby small sets”

yi

�1

�2

�3

�4

In the figure the old components C1, C2, C3, � � � �Cr are glued together by some
“newborn baby small sets,” and form a big new component C∗.

Following this figure, we distinguish 3 cases.

Case 1: xi+1 ∈ C1, that is, yi and xi+1 are in the same old component of S.
By the induction hypothesis, before choosing yi, the value of component C1 was at
most 2�C1�.

Note that here the overcharged value is the same as the ordinary value. Indeed,
xi−1 had to be in C1, for Breaker’s next move yi is always in the same component,
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and S does not grow between xi−1 and yi, so Maker had a real (not “fake”) last
move in component C1 (namely xi−1).

Since yi comes before xi+1, Breaker can pick the “best” point in the usual sense,
so yi is at least as “good” as xi+1. It follows that, after xi+1

overcharged value�C∗�≤ 2�C1�+2�C2�+ · · ·+2�Cr � (39.1)

+2�number of newborn baby small sets in component C∗�= 2�C∗��
Note that computing the overcharged-value of C∗ we drop the possible “fake
moves” in C2, � � � �Cr , which explains why “inequality” may happen in (39.1)
(instead of “equality”).

Case 2: yi and xi+1 are in different old components of C∗.
Assume that (say) xi+1 ∈ C2. The last real move in component C2 before xi+1 had
to be a move of Breaker, so when we calculated the overcharged value of C2 we
had to include a “fake move” of Maker. The “fake move” is always the“best”
unoccupied point, so xi+1 cannot be better than that. So, replacing the “fake move”
by xi+1 in C2 cannot increase the value, so again we get inequality (39.1).

Case 3: xi+1 is outside of C∗.
We can repeat the proof of Case 2. Again the idea is that a “fake move” is always
the “best” available point in a component, so xi+1 cannot be better than the corre-
sponding “fake move.” This completes the proof of the Overcharge Lemma.

Now we are ready to complete the proof of the Growing Erdős–Selfridge Lemma.
Assume that, at some stage of the small game, Maker has k+ 1 points in some
small set, and Breaker has as yet no marks in it. At this stage of the play, this
particular small set belongs to some component C of all small sets S, and the value
of this small set alone is 2k+1, so

overcharged value�C�= value�C�≥ 2k+1� (39.2)

On the other hand, by the Overcharge Lemma

overcharged value�C�≤ 2�C��
and combining this inequality with (39.2) we conclude that �C� ≥ 2k, which
contradicts the Component Condition. This contradiction proves the Growing
Erdős–Selfridge Lemma. �

Next we prove the:

Last-Step Lemma: Assume that, by properly playing in the Big Game, Breaker can
ensure the Component Condition in the small game. Then Breaker can block the
original hypergraph F , i.e. Breaker can put his mark in every m-element winning
set A ∈ F .
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Proof. If A ∈ F becomes blocked in the Big Game (“dead”), then we are done.
So we can assume that A ∈ F remains a survivor in the whole course of the Big
Game. We recall that in the Big Game Maker cannot occupy more than m− 2k
points from a survivor.

Case 1: survivor A ∈ F eventually becomes “visible” in the small game.
Then A contains a small set S. By the Growing Erdős–Selfridge Lemma, if Breaker
cannot block S, then Maker can have at most k points in S, and “removing the
pre-birth points” means to lose less than k points, which may all belong to Maker.
It follows that Maker can have at most �m− 2k�+ k+ �k− 1� = m− 1 points of
a survivor A ∈ F . (Indeed, ≤ �n− 2k� points in the Big Game, ≤ k points in the
small set, and ≤ �k− 1� “pre-birth” points.) So Maker cannot completely occupy
A ∈ F .

Case 2: survivor A ∈ F never becomes “visible” in the small game.
This case is even simpler: A intersects the small board in less than k points in the
whole course of the play. So Maker has at most �m−2k�+ �k−1� < m points of
A. The Last-Step-Lemma follows.

5. How to define the Big Sets? We have to define the family of Big Sets in such a
way that, by properly playing in the Big Game, Breaker can enforce the Component
Condition in the small game. To motivate the forthcoming definition of Big Sets,
assume that the Component Condition is violated: at some stage of the play there
is a “large” component C of all small sets S: �C� ≥ 2k. Then we can extract a Big
Set from this “large” component C. The precise definition of extraction is going to
be complicated. What we can say in advance is that the “extracted Big Set” is a
union of a sub-family of dangerous sets such that their emergency parts all belong
to “large” component C, and the overwhelming majority of the points in the Big
Set are degree one points in the sub-family (“private points”).
First we define the concept of first, second, third, � � � neighborhood of a hyperdge

(or a set of hyperedges) in an arbitrary hypergraph. Let F = �F1�F2� � � � � FK� be
an arbitrary finite hypergraph. The dependency graph of F is a graph on vertices
1�2� � � � �K, and two vertices i and j (1 ≤ i < j ≤ K) are joined by an edge if and
only if the corresponding hypergedges Fi and Fj have non-empty intersection. Let
G=G�F� denote the dependency graph of hypergraph F . Of course, G=G�F�

is not necessarily connected: it may fall apart into several components. For any
two vertices i and j in the same component of G, the G-distance of i and j is
the number of edges in the shortest path joining i and j. If i and j are in the
different components of G, then their G-distance is 	. For an arbitrary vertex-set
I ⊂ �1�2� � � � �K� and vertex j ∈ �1�2� � � � �K� \ I , the G-distance of I and j is the
following: we compute the G-distance of i ∈ I and j, and take the minimum as i
runs through I .
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The F-distance of hyperedges Fi and Fj is the G-distance of i and j where
G=G�F� is the dependency graph of hypergraph F . Similarly, the F-distance of
�Fi � i ∈ I� and Fj is the G-distance of I and j, where G=G�F� is the dependency
graph.

If this distance happens to be d, then we say “Fj is in the dth neighborhood of
Fi (or �Fi � i ∈ I�).”

first second third neighborhood

How to extract a Big Set from a large component of S? Let C be a component
of S with �C� ≥ 2k. Here S is the family of all small sets (up to that point of
the play), and small sets are emergency sets and secondary sets. Note that every
secondary set has at least k “visible” points, each one covered by emergency sets.
Since the underlying hypergraph F is Almost Disjoint, the first C-neighborhood
of a secondary set must contain at least k distinct emergency sets. As a trivial
byproduct of this argument, we obtain that C must contain an emergency set.

We describe a sequential extraction process finding T = 2k/4/m2 emergency
sets in C such that the union of their super-sets in F form a Big Set. More precisely,
we define a growing family Gj = �E1�E2� � � � �Ej� of emergency sets, and the union
Uj = ∪j

i=1A�Ei� of their super-sets (Ei ⊂ A�Ei� ∈ F) for j = 1�2�3� � � � T , where
T = 2k/4/m2 (“integral part”).

The beginning is trivial: C must contain an emergency set E1. Let G1 = �E1�, and
let U1 = A�E1� be the super-set of E1.
To explain the general step, assume that we just completed the jth step: we have

already selected a family Gg�j� of g�j� distinct emergency sets, and the union of their
emergency sets from F is denoted by Ug�j�. Note that g�j�≥ j � indeed, in each step
we shall find either 1 or �k−2� new emergency sets, i.e. either g�j+1�= g�j�+1
or g�j+1�= g�j�+ �k−2�. By definition �Ug�j�� ≤ g�j� ·m.

Next we describe the �j+ 1�st step. Unfortunately we have to distinguish 8
cases. The case study is going to be very “geometric” in nature, so it is absolutely
necessary to fully understand the corresponding figures.

Note in advance that the family B of Big Sets is defined as follows

B =
{
B = UT � for all possible ways one can grow UT of length T = 2k/4

m2

in terms of F by using Cases 1−8 below
}
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(we shall clarify “grow” and “in terms of F” later).

Case 1: The first A�C�-neighborhood of Ug�j� contains the super-set A�E� of an
emergency set E such that �Ug�j� ∩A�E�� = 1. Then Gg�j+1� = Gg�j� ∪ �E�, and so
Ug�j+1� = Ug�j�∪A�E� satisfies �Ug�j+1�� = �Ug�j��+ �m−1�.

A(E )

�g(  j)
The simplest form of “growth”

We use the notation A�� � �� for the super-set in F , and so “A�C�-neighborhood”
means the family of super-sets of the members of component C; observe that A�C�
is a connected sub-family of F .

Case 2: The second A�C�-neighborhood of Ug�j� contains the super-set A�E� of
an emergency set E such that there is a neighbor A1 of A�E� from the first
A�C�-neighborhood of Ug�j�, which intersects Ug�j� in at least two points.

A1
A(E )

�g(  j)

Then Gg�j+1� = Gg�j�∪ �E�, A1 is an auxiliary bond set, and Ug�j+1� = Ug�j�∪A�E�

satisfies �Ug�j+1�� = �Ug�j��+m.
The name bond set comes from the fact that, in an Almost Disjoint hypergraph,

two points determine a set. Bond sets have little effect in the calculation of the total
number of Big Sets, see the Calculations later. To illustrate what we mean, let’s
calculate the number of different ways we can “grow” to Gg�j+1� from Gg�j� in Case
2. A trivial upper bound on the number of possibilities is

(�Ug�j��
2

)(
m−2
1

)
·D ≤ g2�j� ·m3 ·D

2
�

where D=D�F� is the Maximum Degree of F .
Now we interrupt our case study for a moment, and make an observation about

the secondary sets of C. Let S ∈ S be an arbitrary secondary set. We show that S
can have 4 possible “types.”
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Type 1: A�S� intersects Ug�j� in at least two points.

A(S)

�g(  j)

If Type 1 fails, i.e. if �A�S�∩Ug�j�� ≤ 1, then there are at least �k− 1� “visible”
points of S which are covered by distinct emergency sets of C.
Type 2: There exists an emergency set E such that �A�E�∩A�S�� = 1 and �A�S�∩
Ug�j�� = 1.

A(S)

A(E )
�g(  j)

Observe that “Type 2” is covered by “Case 1,” so without loss of generality we
can assume that there is no Type 2 secondary set in C. Also Type 1 is excluded,
unless, of course, A�S� is in the first A�C�-neighborhood of Ug�j�

Type 3: There exist two emergency sets E1 and E2 such that �A�Ei�∩Ug�j�� ≥ 2 and
�A�Ei�∩A�S�� = 1 for i= 1�2.

A(S)

A(E1 )

A(E2 )

�g(  j)

Type 4: There exist �k− 2� emergency sets E1�E2� � � � �Ek−2 such that �A�Ei�∩
Ug�j�� = 0 and �A�Ei�∩A�S�� = 1 for i= 1�2� � � � � k−2; we call it the “centipede.”

A(E1 ) A(E2 )

A(S )

A(Eκ –2 )

‘‘centipede’’

�g(  j)
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(Note that for Types 2–3–4 �A�S�∩Ug�j�� = 0 or 1.)
After the classification of “types,” we can return to our case study. Assume that

the second A�C�-neighborhood of Ug�j� contains the super-set A�E� of an emergency
set E. Let A1 be a neighbor of A�E� from the first A�C�-neighborhood of Ug�j�. In
view of Case 2 we can assume that A1 intersects Ug�j� in exactly 1 point. By Case
1 we know that A1 = A�S�, i.e. A1 has to be the super-set of a secondary set S.

�g(  j)
A(E )

A1 = A(S )

We have two possibilities: S is of Type 3 or Type 4.

Case 3: S is of Type 3. Then Gg�j+1� = Gg�j�∪�E�, A�E1��A�E2��A�S� are auxiliary
bond sets, and clearly �Ug�j+1�� = �Ug�j��+m.

A(E2 )

A(E1 )

A(S )
A(E )

�g(  j)

Case 4: S is of Type 4. Then Gg�j+1� = Gg�j� ∪ �E1�E2� � � � �Ek−2�, and A�S� is an
auxiliary set, but not a bond set. From Almost Disjointness we have

�Ug�j+1�� ≥ �Ug�j��+ �k−2�m−
(
k−2
2

)
�

�g(  j)

A(E1 )

A(S ) of Type 4

A(E2 ) A(Eκ –2 )

The number of ways we can “grow” to Gg�j+1� from Gg�j� in Case 4 is bounded
from above by

�Ug�j�� ·D ·
(
m−1
k−2

)
·Dk−2�

where D=D�F� is the Maximum Degree.
In the rest of the case study we can assume that the second A�C�-neighborhood

of Ug�j� consists of secondary sets only.
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First assume that the second A�C�-neighborhood of Ug�j� does contain a Type
4 secondary set S. Let A1 be a neighbor of A�S�, which is in the first A�C�-
neighborhood of Ug�j�. Then

(a) either �A1∩Ug�j�� ≥ 2,
(b) or �A1∩Ug�j�� = 1�

Case 5: �A1∩Ug�j�� ≥ 2

...

�g( j)

A(E1 )

A1 

A(E2 )

A(S ) of Type 4

A(Eκ –2 )

Then Gg�j+1� = Gg�j�∪�E1�E2� � � � �Ek−2�. Here A1 and A�S� are auxiliary sets: A1

is a bond set, but A�S� is not a bond set. From Almost Disjointness

�Ug�j+1�� ≥ �Ug�j��+ �k−2�m−
(
k−2
2

)
�

If (a) fails, then we have (b): �A1∩Ug�j�� = 1� In view of Case 1 we can assume
that A1 =A�S∗�, where S∗ is a secondary set. If S∗ is of Type 4, then we have Case
4 again. So we can assume that S∗ is of Type 3.

Case 6: �A1∩Ug�j�� = 1, where A1 = A�S∗� with a Type 3 secondary set S∗.

�g( j)
A(S ) of Type 4

A(E2 )A(E1 )

A(E*
 )

A(S*
 )

A(E**
 ) A(Eκ –2 )

Then Gg�j+1� = Gg�j� ∪ �E1�E2� � � � �Ek−2�. Here A�E∗��A�E∗∗��A�S∗��A�S� are
auxiliary sets: all but A�S� are bond sets. Clearly

�Ug�j+1�� ≥ �Ug�j��+ �k−2�m−
(
k−2
2

)
�

In the rest of the case study we can assume that the second A�C�-neighborhood
of Ug�j� contains Type 3 secondary sets only.
To complete the case study it is enough the discuss the third A�C�-neighborhood

of Ug�j�� This leads to the following last two cases:
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Case 7: The third A�C�-neighborhood of Ug�j� contains the super-set A�E� of
an emergency set E. Let A1 be a neighbor of A�E�, which is in the second A�C�-
neighborhood of Ug�j�. We know that A1 =A�S�, where S is a Type 3 secondary set:

�g( j)

A(E1 )

A(E2 )

A(S)

A(E)

Then Gg�j+1� = Gg�j� ∪ �E�. Here A�E1��A�E2��A�S� are auxiliary bond sets.
Clearly

�Ug�j+1�� ≥ �Ug�j��+m�

From now on we can assume that both the second and third A�C�-neighborhood
of Ug�j� consist of secondary sets only. Let S2 and S3 be secondary sets such
that A�S2� and A�S3� are in the second and third A�C�-neighborhood of Ug�j� and
�A�S2�∩A�S3�� = 1� We claim that S3 cannot be of Type 3. Indeed, by the “triangle
inequality” of the “distance,” a neighbor of a third neighbor cannot be a first
neighbor (i.e. intersecting Ug�j�). Since Types 1 and 2 are out, the only possible type
for S3 is Type 4. Moreover, since the whole second A�C�-neighborhood of Ug�j� is
of Type 3, S2 has to be of Type 3, and we arrive at the last case.

Case 8:

A(S2 )

A(E1 ) A(E2 )

A(S3 ) of Type 4

A(Ek–2 )

�g( j)

A(E*
 )

A(E**
 )

Then Gg�j+1� = Gg�j� ∪ �E1�E2� � � � �Ek−2�. Here A�E∗��A�E∗∗��A�S2��A�S3� are
auxiliary sets: all but A�S3� are bond sets. Clearly

�Ug�j+1�� ≥ �Ug�j��+ �k−2�m−
(
k−2
2

)
�
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6. Calculations: We go through Cases 1–8. The number of ways Gg�j� can grow to
Gg�j+1� is bounded from above by

�Ug�j�� ·D ≤g�j� ·m ·D in Case 1 �(�Ug�j��
2

)
�m−2� ·D ≤g2�j� ·m3 ·D

2
in Case 2�

(�Ug�j��
4

)(
4
2

)
�m−2�2�m−3� ·D ≤g4�j� ·m7 ·D

4
in Case 3�

�Ug�j��D
(
m−1
k−2

)
Dk−2 ≤g�j� ·mk−1 ·Dk−1

2�k−2�! in Case 4�

(�Ug�j��
2

)
�m−2�D

(
n−1
k−2

)
Dk−2 ≤g2�j� ·mk+1 ·Dk−1

2�k−2�! in Case 5�

(�Ug�j��
4

)(
4
2

)
�m−2�2�m−3� ·D

(
n−1
k−2

)
Dk−2 ≤g4�j� ·mk+5 ·Dk−1

4�k−2�! in Case 6�

(�Ug�j��
4

)(
4
2

)
�m−2�3 ·D ≤g4�j� ·m7 ·D

4
in Case 7�

(�Ug�j��
4

)(
4
2

)
�m−2�3 ·D

(
m−1
k−2

)
Dk−2 ≤g4�j� ·mk+5 ·Dk−1

4�k−2�! in Case 8�

where D=D�F� is the Maximum Degree.
We include 1 new set in Cases 1,2,3, and 7; and include �k−2� new sets in Cases

4,5,6, and 8. We have the maximum number of possibilities “per 1 inclusion” in
Cases 3, 7, and in Cases 6, 8 (“centipede”). The maximum is

max

{
g4�j� ·m7 ·D

4
�

(
g4�j� ·mk+5 ·Dk−1

4�k−2�!
)1/�k−2�

}
� (39.3)

It is clear from the case study that

�Ug�j�� ≥
(
m− k

2

)
·g�j�� (39.4)

A review of the case study will prove the following crucial:

Big Set Lemma: If at some stage of the play there is a component C of the family S
of all small sets such that �C� ≥ 2k, then there is a Gg�j� ⊂ C such that g�j�≥ 2k/4/m2.

Remark. We recall that Gg�j� is a family of emergency sets from C such that in each
one of the j steps the “growth” comes from one of the 8 cases described above.

Proof. Assume g�j� < 2k/4/m2� By going through Cases 1–8 we show how we can
still “grow” family Gg�j�.
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If Case 1 applies, i.e. the first A�C�-neighborhood of Ug�j� (“union of the super-
sets of the elements of Ug�j�”) contains the super-set A�E� of an emergency set E
such that �A�E�∩Ug�j�� = 1, then, of course, we can “grow” by adding E. So for
the rest we assume that Case 1 does not apply. This implies, among many other
things, that there is no Type 2 secondary set in C.

Observe that the total number of Type 1 and Type 3 sets A�S� together in A�C�
is at most (

g�j�m

2

)
+
(
m
(
g�j�m

2

)
2

)
<

g2�j�m2

2
+ g4�j�m6

8
� (39.5)

If the first A�C�-neighborhood of Ug�j� contains a Type 4 set A�S�� then there
exists a set A�E� (“super-set of an emergency set E”) in the second A�C�-
neighborhood of Ug�j�� and 1 of Cases 2, 3, 4 applies. Then again we can “grow.” So
for the rest we assume that the first A�C�-neighborhood of Ug�j� does not contain a
Type 4 secondary set A�S�� It follows from (39.5) that the first A�C�-neighborhood
of Ug�j� has less than

(
g�j�m

2

)+ (n�g�j�m2 �
2

)
< g2�j�m2

2 + g4�j�m6

8 sets. Therefore, if
(
g�j�m

2

)
+
(
m
(
g�j�m

2

)
2

)
<

g2�j�m2

2
+ g4�j�m6

8
≤ 2k� (39.6)

then the second A�C�-neighborhood of Ug�j� is not empty. In view of Cases 5, 6 we
can assume that the second A�C�-neighborhood of Ug�j� consists of Type 3 sets A�S�
only. Therefore, by (39.5), if inequality (39.6) holds, the third A�C�-neighborhood
of Ug�j� consists of Type 3 and Type 4 sets A�S� only.
Type 3 is impossible: indeed, by the “triangle inequality,” a Type 3 A�S� from

the third neighborhood cannot have a neighbor in the first neighborhood (in fact
intersecting Ug�j� in at least 2 points). So it remains Type 4, which leads to Case
8. Summarizing, if (39.6) applies, then we can still “grow” Gg�j� inside a large
component C of all small sets with �C� ≥ 2k� It follows that, as long as g�j�< 2k/4/m2�

we can still “grow” Gg�j�� and the proof of the Big Set Lemma is complete.

7. Finishing the proof. Now we are ready to prove:

Theorem 37.5 If F is an m-uniform Almost Disjoint hypergraph such that

�F �m2·2−k/4 ·max
{
27k/2 ·D�m ·25k/2 ·D1+ 1

k−2

}
≤ 2m

holds for for some integer k ≥ 8log2m (“binary logarithm”) where
D=MaxDegree(F), then Breaker has a winning strategy in the weak game on F .

Proof. We have to show that Breaker can block every A ∈ F . By definition, an
emergency set E is part of a dangerous set A�E� ∈F � Maker had to occupy m−2k
points from “survivor” A�E� in the course of the Big Game; and the 2k-element
part (“emergency set E”) is removed from the Big Board (and added to the small
board), so Breaker cannot block A�E� in the rest of the Big Game.
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Now assume that, at some stage of the play, there occurs a component C of
the family S of all small sets with �C� ≥ 2k. Then, by the Big Set Lemma, we
can “extract” from component C a family Gg�j� ⊂ C of emergency sets with g�j� ≥
2k/4/m2. The union Ug�j� of the super-sets of the g�j� emergency sets in Gg�j� has
the following property:

(	) Maker occupies at least �m− 5k
2 �g�j� points of Ug�j� in the Big Game; and

(
) Breaker could not block Ug�j� in the Big Game (“Shutout”).

To prevent the appearance of a Ug�j� with g�j� ≥ 2k/4/m2 satisfying (	), (
), we
define the family B of Big Sets as follows:

B =
{
B = UT � for all possible ways one can grow UT of length T = 2k/4

m2

in terms of F by using Cases 1−8 above
}
�

The meaning of “grow” is clear now. It remains to clarify “in terms of
hypergraph F .”

What we have to clarify here is the following “confusion.” In Cases 1–8 above
we used the concepts of “emergency set” and “secondary set,” which indirectly
assume the knowledge of a particular play of the game. On the other hand, we
have to define the family B of Big Sets in advance, before any playing begins,
when we have no idea which winning set A ∈ F will eventually become a “dead”
or “dangerous” set! In the definition of B we have to control all possible can-
didates, we have to prepare for the worst case scenario. In other words, we
must define B in terms of the original hypergraph F , without ever referring to
the concepts of “emergency” and “secondary sets” (which are meaningless at the
beginning).

Luckily the figures in Cases 1–8 are about super-sets – the elements of F –
anyway. Therefore, a Big Set in the “broad sense” means all possible union sets UT

with T = 2k/4/m2 built from the elements of hypergraph F such that each “growth”
is described by one of the pictures of Cases 1–8. This is how we control all possible
plays at the same time.

On the other hand, the “narrow” interpretaton of Big Sets is play-specific: it
depends on the concepts of “emergency” and “secondary sets,” just as we did in
our case study of Cases 1–8.

Of course, a Big Set in the “narrow sense” is a Big Set in the “broad sense.”
The good news is that the result of the Calculations, carried out for the Big Sets in
the “narrow sense,” works without any modification for the Big Sets in the “broad
sense.” It follows that the total number �B� of Big Sets in the “broad sense” is
estimated from above by (see (39.3))
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�B� ≤ �F �
(
max

{
g4�j� ·m7 ·D

4
�

(
g4�j� ·mk+5 ·Dk−1

4�k−2�!
)1/�k−2�

})T−1

(39.7)

< �F �
(
max

{
2k ·D�m2 ·D1+ 1

k−2

})T−1
�

since T = 2k/4/m2 (we assume that k≥ 8log2m).
To prevent the appearance of any UT with T = 2k/4/m2 satisfying (	), (
) (“Big

Set in the narrow sense”), Breaker uses “Lemma 5” in Section 36 for the family of
all possible “Big Sets in the broad sense”, i.e. for B, in the Big Game. The “target
value” of a “forbidden” UT is 2�m−5k/2�T (see (	)).
On the other hand, the “initial value” is �B�, i.e. the total number of Big Sets

in the “broad sense.” If �B� < 2�m−5k/2�T−1 with T = 2k/4/m2� then, by using the
strategy of “Lemma 5” in Section 36, Breaker can indeed prevent the appearance
of any UT with T = 2k/4/m2 satisfying (	), (
) (“Big Set in the narrow sense”) in
the Big Game. In view of the Big Set Lemma, this forces the Component Condition
in the small game. Then the Last Step Lemma applies, and implies Theorem 37.5.
It remains to check the inequality �B� < 2�m−5k/2�T−1 with T = 2k/4/m2� In view

of (39.7) it suffices to check

�F �
(
max

{
2k ·D�m2 ·D1+ 1

k−2

})T−1 ≤ 2�m− 5k
2 �T−1� (39.8)

Taking the �T − 1�st roots of both sides of (39.8), we obtain the hypothesis of
Theorem 37.5, and the proof is complete.
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In Parts A and B we proved several Weak Win results for “Ramsey type games
with quadratic goal sets” (applying either Theorem 1.2 or Theorem 24.2). The
quadratic goal set size was either n= n�q�= (

q

2

)
, or n= n�q�= q2, or some other

quadratic polynomial in q (see (8.5) and (8.6)); in each case switching the value
of q to q+1 leads to a (roughly) n1/2 increase in the size n= n�q�. This explains
why the following “breaking the square-root barrier” version of the Neighborhood
Conjecture (Open Problem 9.1) would suffice to prove the missing Strong Draw
parts of the Lattice Games (Theorems 8.2). Breaking the “square-root barrier” refers
to the small error term n1/2−� in the exponent of 2, see (40.1) below.

Open Problem 9.1′ Assume that F is an n-uniform hypergraph, and for some fixed
positive constant � > 0 the Max Degree of F is less than

2n−c1n
1/2−�

(40.1)

where c1 = c1��� is an absolute constant. Is it true that playing on F the second
player can force a Strong Draw?

Notice that Open Problem 9�1′ is between Open Problem 9.1 (c) and (d): it
follows from (c), and it implies (d).

Unfortunately we cannot solve Open Problem 9�1′, not even for Almost Disjoint
hypergraphs, but we can prove a weaker version involving an additional condition.

1. The third Ugly Theorem. The additional condition that we need is a weak
upper bound on the global size, which is trivially satisfied in the applications. The
constants 1�1 and 2/5= �4 below are accidental; the main point is that 1�1 is larger
than 1 and 2/5 is less than 1/2 (to break the “square-root barrier”).

Theorem 40.1 If F is an n-uniform Almost Disjoint hypergraph such that

�F � ≤ 2n
1�1

and MaxDeg�F�≤ 2n−4n2/5�

then for n ≥ c0 (i.e. n is sufficiently large) the second player can force a Strong
Draw in the Positional Game on F .

525
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Theorem 40.1 will be proved by a tricky adaptation of the proof technique of
Theorem 37.5 (see the last section). The proof of Theorem 40.1 is long. At the end
of this section we include a detailed outline of the proof. The rest of the proof will
be discussed in the next section.

What we want to explain first is why the third Ugly Theorem (Theorem 40.1)
is relevant in the Lattice Games (Theorem 8.2), i.e. how to prove the missing
Strong Draw parts of Theorem 8.2. Unfortunately Theorem 40.1 itself does not
apply directly: the lattice-game hypergraphs are not Almost Disjoint, but there is
a way out: there is a resemblance to Almost Disjointness, meaning that the proof
technique of Theorem 40.1 can be adapted to complete the proof of Theorem 8.2.

We explain what “resemblance to Almost Disjointness” in Theorem 8.2, and
also in Theorem 12.6, means. The key idea is to involve a “dimension argument,”
namely that “intersections have smaller dimension.” The best way to illustrate this
idea is to introduce a new simpler game where the concept of dimension comes up
naturally. We study the Finite Affine and Projective Geometry as a generalization
of Theorem 12.6.

2. Illustration: planes of the Finite Affine and Projective Geometry. Note that
Theorem 12.6 is about the “planes” of the nd Torus. The nd Torus is nothing else
other than the dth power ZZn×· · ·×ZZn = �ZZn�

d of the additive group (mod n)
ZZn. A combinatorial plane (Comb-Plane in short) is a 2-parameter set (“plane”)
in �ZZn�

d. �ZZn�
d is a nice algebraic structure: it is an abelian group, but the

richest algebraic structure is, of course, a field, so it is a natural idea to consider
a finite field (“Galois field”) Fq, where q is a prime power. The two most natural
“plane” concepts over Fq are the planes of the d-dimensional Affine Geometry
AG�d�Fq� and the planes of the d-dimensional Projective Geometry PG�d�Fq�

(see e.g. Cameron [1994]).
The d-dimensional Affine Geometry AG�d�Fq� has qd points; has qd−1�qd −

1�/�q− 1� lines, where each line contains q points; and has qd−2�qd − 1��qd−1 −
1�/�q2−1��q−1� planes, where each plane contains q2 points.
The d-dimensional Projective Geometry PG�d�Fq�, on the other hand, has

�qd+1−1�/�q−1� points; has �qd+1−1��qd−1�/�q2−1��q−1� lines, where each
line contains q+1 points; has �qd+1−1��qd−1��qd−1−1�/�q3−1��q2−1��q−1�
planes, where each plane contains q2+q+1 points.

If the winning sets are the “affine planes” or the “projective planes,” then we get
two different positional games, and the corresponding Achievement and Avoidance
Numbers are denoted by A�d–dim� affine� plane�, A�d–dim� affine� plane�−�,
and in the projective case A�d–dim� projective� plane�, A�d–dim� projective�
plane�−�; we are looking for the largest prime power q such that playing in
the d-dimensional Affine (resp. Projective) Geometry Maker can occupy a whole
affine (resp. projective) plane – in the Reverse version Avoider is forced to occupy
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a whole plane. Because it is not true that every positive integer is a prime power,
the following result is not as elegant as Theorem 12.6.

Theorem 40.2 The affine plane Achievement Number A�d–dim� affine� plane� is
the largest prime power q = q�d� such that

q+o�1�√
2 log2 q

≤√
d�

and the same for the Avoidance Number A�d–dim� affine� plane�–�.
The projective plane Achievement Number differs by an additive constant 1/2 in

the numerator: A(d–dim. projective; plane) is the largest prime power q = q�d�

such that
q+1/2+o�1�√

2 log2 q
≤√

d�

and the same for the Avoidance Number A�d–dim. projective; plane;−�.

The affine plane has q2 points and the projective plane has q2+q+1= �q+1/2�2+
O�1� points; this extra 1/2 explains the extra 1/2 in the second part of Theorem 40.2.

There are infinitely many values of dimension d when the equations

max
q

�
q+o�1�√
2 log2 q

≤√
d and max

q
�
q+1/2+o�1�√

2 log2 q
≤√

d

have different prime power solutions q, distinguishing the affine case from the
projective case (see Theorem 40.2).

Notice that the “planes” over a finite field do not have the “2-dimensional
arithmetic progression” geometric structure any more. We included Theorem 40.2
mainly for the instructional benefits that its proof is simpler than that of Theorem 8.2
or 12.6. We begin with the easy:

3. Weak Win part of Theorem 40.2.
Case 1: d-dimensional Affine Geometry AG�d�Fq�

The family of all affine planes in AG�d�Fq� is denoted by F�q�d�; it is a q2-uniform
hypergraph, and its board size is �V � = qd. Assume that

T�F�q�d��

�V � ≈ q3d−62−q2

qd
= q2d−62−q2 > 2p� (40.2)

To apply the advanced criterion Theorem 24.2 we have to estimate T��F�q�d��
p
2�

from above. Fix two points P and Q; then a third point R and the fixed P,
Q together determine an affine plane if R lies outside of the PQ-line; this gives
�qd−q�/�q2−q�= �qd−1−1�/�q−1� for the number of affine planes in AG�d�Fq�

containing both P and Q. This gives the exact value
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T��F�q�d��
p
2�=

(
qd

2

)( qd−1−1
q−1

p

)
2−pq2+�p−1�q�

where the exponent −�pq2−�p−1�q� of 2 is explained by the fact that the p affine
planes, all containing the PQ-line, are in fact disjoint apart from the PQ-line (“q
points”). Therefore(

T��F�q�d��
p
2�
)1/p ≤ q2d/p ·2qd−2 ·2−q2+�1−1/p�q�

It follows that Theorem 24.2 applies with p = 3 if (40.2) holds, completing the
Weak Win part of the affine case.

Case 2: d-dimensional Projective Geometry PG�d�Fq�.
The only minor difference is that the plane-size is q2+q+1 instead of q2, the rest
of the calculations are almost identical. Again Theorem 24.2 applies with p= 3.

�

Now let’s go back to Strong Draw. In Theorem 40.2 the winning sets are projective
(or affine) planes, and the intersection of two planes is either a line or a point (always
a lower dimensional sub-space). Two lines intersect in a point (or don’t intersect at
all). That is, by “repeated intersection” we go down from planes to points in two
steps. This is just a little bit more complicated than the “one step way” of Almost
Disjoint hypergraphs (where two hyperedges either intersect in a point or don’t
intersect at all). This is what we mean by a “resemblance” to Almost Disjointness.
The same argument applies for the combinatorial planes (“2-parameter sets”) in

Theorem 12.6. Theorem 8.2 (“Lattice Games”) is a different case: for the q× q

lattices in Theorem 8.2 – regarded as “planes” – the principle of “intersections have
smaller dimension” is clearly violated. Indeed, two different q×q lattices may have
a non-collinear intersection. But there is an escape: the good news is that any set
of 3 non-collinear points of a q× q parallelogram lattice “nearly” determines the
lattice (3-determinedness). Indeed, there are at most

(
q2

3

)
q×q parallelogram lattices

containing a fixed set of 3 non-collinear points of the N ×N board. In Theorem 8.2(
q2

3

)
is “very small” (a polylogarithmic function of N ); thus we can (roughly) say

that “
(
q2

3

)
is (nearly) as good as 1”, where “1” represents the ideal case of planes

(since planes intersect in lines or points).
We are aware that this argument is far too vague (though this is the basic idea),

but at this point we just wanted to convince the reader that Theorem 40.1 is the
critical new step, and the rest is just a long but routine adaptation. We conclude
this section with an:

4. Outline of the proof of Theorem 40.1. First we explain why Theorem 37.5
(second Ugly Theorem) cannot directly prove Theorem 40.1 (i.e. why we need a
new idea). In Theorem 37.5 there is an integral parameter k (k ≥ 8log2n) that can
be freely chosen, but the hypothesis
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25k/2D1+ 1
k−2 ≤ 2n�

where D =MaxDeg�F�, puts a strong limitation on the Max Degree of the
n-uniform hypergraph F : D cannot go beyond 2n−

√
n whatever way we choose

parameter k (the optimal choice is around k=√
n). The term 1

k−2 in the power of
D in the inequality above comes from the “centipedes” (see “Type 4” and formulas
(39.3), (39.7)–(39.8)); we refer to this as the “centipede problem.”

To replace the bound

D ≤ 2n−
√
n with D ≤ 2n−cn1/2−�

�

where � > 0 is a fixed positive constant – i.e. “breaking the square-root barrier,”
which is the key point in Theorem 40.1 – requires a new idea. Formula (34.7) in
Corollary 1 of Theorem 34.1 explains why Theorem 34.1 doesn’t help either. We
abandon Theorem 34.1, and try to modify the proof of Theorem 37.5.

A cure for the “centipede problem”: hazardous sets. What is exactly the “cen-
tipede problem”? Well, the secondary sets may have very few marks of Maker,
representing negligible “target value” – this explains why the proof technique devel-
oped in Section 39 is insufficient to break the “square-root barrier.” We have to
completely change the definition of secondary sets – to emphasize the change we
introduce a new term: hazardous sets, which will play a somewhat similar role to
that of the secondary sets in Section 39. The new notion of hazardous sets will
lead to a new definition of the small board, and the small game in general.

There is only a minor change in the way how the first emergency set arises: when
Maker (i.e. the first player) occupies the �n−k�th point of some survivor winning
set A ∈ F for the first time (survivor means “Breaker-free” where Breaker is the
second player); in that instant A becomes dangerous, and its k-element “blank” part
is called an emergency set. Note in advance that parameter k will be specified as
k= n2/5. The k-element emergency set is removed from the Big Board (which was
the whole board before) and added to the small board (which was empty before).
Note that we may have several dangerous sets arising at the same time; for each

one the k-element “blank” part is a new emergency set, which is removed from the
Big Board and added to the small board.

Since the Big Board is strictly smaller now than it was at the beginning, we
may have an untouched survivor A ∈ F with �A�Big� blank�� ≤ k; in fact, we
may have several of them: Ai ∈ F , where i ∈ I . If �Ai�small�� ≤ k, then A∗

i =
Ai \Ai�Big�Maker� is a new emergency set; if �Ai�small�� ≥ k+ 1, then A∗

i =
Ai \Ai�Big�Maker� is a hazardous set. In both cases A∗

i is removed from the Big
Board and added to the small board; we do this for all i ∈ I .
At the end of this the Big Board becomes smaller, we may have an untouched

survivor A ∈ F with �A�Big� blank�� ≤ k; in fact, we may have several of them:
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Ai ∈ F where i ∈ I . If �Ai�small�� ≤ k then A∗
i = Ai \Ai�Big�Maker� is a new

emergency set; if �Ai�small�� ≥ k+1, then A∗
i =Ai \Ai�Big�Maker� is a hazardous

set. In both cases A∗
i is removed from the Big Board and added to the small board;

we do this for all i ∈ I .
Repeating the previous argument, this extension process – which we call the

“first extension process” – will eventually terminate, meaning that the inequality
�A�Big� blank�� ≥ k+1 holds for every untouched survivor A ∈ F .
It may happen, however, that the inequality k+1≤ �A�Big� blank�� ≤ �A�small��

holds for a family A = Ai, i ∈ I of untouched survivors. Then again A∗
i = Ai \

Ai�Big�Maker� is a new hazardous set, which is removed from the Big Board and
added to the small board.
At the end of this the Big Board is decreased, so we may have an untouched

survivor A ∈ F with k+ 1 ≤ �A�Big� blank�� ≤ �A�small��. Then again A∗ = A \
A�Big�Maker� is a new hazardous set which is removed from the Big Board and
added to the small board, and so on. Repeating this “second extension process,”
it will eventually terminate, meaning that the inequality k+1≤ �A�Big� blank�� ≤
�A�small�� fails to hold for any untouched survivor A ∈ F .

At the end of this there may exist an untouched survivor A ∈ F with
�A�Big� blank�� ≤ k; in fact, we may have several of them: Ai ∈ F , where i ∈ I .
Applying again the “first extension process,” and again the “second extension pro-
cess,” and again the “first extension process,” and again the “second extension
process,” and so on, we eventually reach a stage where this process of alternat-
ing the “first extension” and the “second extension” terminates, meaning that both
properties

�A�Big� blank�� ≥k+1� (40.3)

�A�Big� blank��>�A�small�� (40.4)

hold for every untouched survivor A ∈ F – we refer to this as the Closure Process.
Up to this point the small sets are exactly the emergency sets and the hazardous

sets; at a later stage, however, the small sets will differ from the emergency and
hazardous sets as follows. Assume that, at a later stage the double requirement
(40.3)–(40.4) is violated (due to the fact that the Big Board is shrinking and the
small board is growing); it can be violated (in fact, “violated first”) in two different
ways:

either k= �A�Big� blank��> �A�small�� occurs� (40.5)

or �A�Big� blank�� = �A�small�� ≥ k+1 occurs� (40.6)
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Case (40.5) will produce new emergency sets and case (40.6) will produce new
hazardous sets as follows.

If (40.5) holds, then

S = S�A�= A�blank�= A�Big� blank�∪A�small� blank� (40.7)

is a new small set, which is (as usual) removed from the Big Board and added to
the small board. The (possibly) larger set

E = E�A�= A\A�Big�Maker�= A�Big� blank�∪A�small� (40.8)

is a new emergency set, and we refer to the small set S = S�A� in (40.7) as a
small-em set – meaning the “small-set part of emergency set E = E�A� in (40.8)”;
clearly S ⊆ E.

Next assume that (40.6) holds; then

S = S�A�= A�blank�= A�Big� blank�∪A�small� blank� (40.9)

is a new small set, which is (as usual) removed from the Big Board and added to
the small board. The (possibly) larger set

H = A\A�Big�Maker�= A�Big� blank�∪A�small� (40.10)

is a new hazardous set, and we refer to the small set S = S�A� in (40.9) as a
small-haz set – meaning the “small-set part of hazardous set H =H�A� in (40.10)”;
clearly S ⊆H .
In other words, from now on the new small sets are either small-em sets (“blank

parts of emergency sets”) or small-haz sets (“blank parts of hazardous sets”).
Notice that we returned to the Same Board Principle of Sections 35–36 – which

was (possibly) violated in Section 39 – meaning that if Maker’s last move was in
the Big Board (resp. small board), then Breaker always replies in the Big Board
(resp. small board).

Another new notion: the union of the small-em sets is called the Emergency
Room, or simply the E.R.
Of course, we may have several violators of (40.3)–(40.4) arising at the first time:

we repeat the previous argument for each one. Then again we may have several
violators of (40.3)–(40.4): we repeat the previous argument for each; and so on. In
other words, we apply a straightforward Closure Process – just like before – which
terminates at a stage where again the double requirement (40.3)–(40.4) holds for
every untouched survivor A ∈ F . At a later stage the double requirement (40.3)–
(40.4) may be violated; it can be violated (in fact, “violated first”) in two different
ways: (40.5) and (40.6), and so on.

This completes our description of the necessary changes in the definition of the
small game.
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5. How to solve the “centipede problem”? The main idea is the following lemma,
which plays a key role in the proof of Theorem 40.1.

Hazardous Lemma: Under the condition of Theorem 40.1, Breaker can force that,
during the whole course of the play, every hazardous set H intersects the E.R.
(“Emergency Room”) in at least �H�/4 points.

Remark. In view of (40.6), the Hazardous Lemma holds trivially for the first
hazardous set (in fact holds with �H�/2 instead of �H�/4), but there is no obvious
reason why the Hazardous Lemma should remain true at the later stages of the play
(unless, of course, Breaker forces it by playing rationally).

Proof of the Hazardous Lemma (outline). To understand what Breaker has
to prevent, assume that there is a “violator.” Let H be the first violator of the
Hazardous Lemma: H is the first hazardous set which intersects the E.R. in less
than �H�/4 points. Since �H� ≥ 2k+2 (see (40.6)), H must intersect the difference-
set “smallboard minus E.R.” in ≥ k/2 points; this and Almost Disjointness together
imply the existence of k/2 non-violator hazardous sets H1, H2, � � �, Hk/2 such that
�H∩Hj� = 1, 1≤ j ≤ k/2. Since each Hj is a non-violator of the Hazardous Lemma,
again by Almost Disjointness each Hj must intersect at least �Hj�/4= lj emergency
sets Ej�1, Ej�2, � � �, Ej�lj

(j = 1�2� � � � � k/2). Formally we have 1+ �k/2�+∑k/2
j=1 lj

super-sets

A�H��A�H1�� � � � �A�Hk/2��A�E1�1�� � � � �A�E1�l1
��A�E2�1�� � � � �A�E2�l2

��

A�E3�1�� � � � �A�E3�l3
�� � � � �A�Ek/2�1�� � � � �A�Ek/2�lk/2

�� (40.11)

but there may occur some coincidence among these hyperedges of F , or at least
some “extra intersection” beyond the mandatory one-point intersections (“Almost
Disjointness”). In (40.11) A�� � �� denotes the uniquely determined super-sets
(uniquely determined because of Almost Disjointness).
The first case is when we have neither coincidence nor “extra intersection.”

The Simplest Case: There is no coincidence among the 1+ �k/2�+∑k/2
j=1 lj super-

sets in (40.11), and also there is no “extra intersection” beyond the mandatory
1-point intersections, except (possibly) the k/2 sets A�H1�� � � � �A�Hk/2�, which
may intersect each other (this “minor overlapping” has a negligible effect anyway).
Breaker wants to prevent the appearance of any “tree like configuration” of the
Simplest Case (see figure below).
Breaker uses the Power-of-Two Scoring System (“Erdős–Selfridge technique”):

the target value of a “tree like configuration” is at least

2
∑k/2

j=1�n−�Hj �−j+�n−2k��Hj �/4��
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lj = |Hj|/4, j = 1,       , k/2

1

A(H1)
A(Hk/2)

A(E1,1)        A(E1,l1
) A(E2,1)        A(E2,l2) A(Ek/2,1)        A(Ek/2,lk/2

)

2
A(H)

k/2

A(H2)

How many “tree like configurations” are there? Well, there are �F � ways to
choose A�H� (“the root”), at most �nD�k/2 ways to choose A�H1�� � � � �A�Hk/2�

(“first neighborhood of the root”), and at most

�nD���H1�+�H2 �+���+�Hk/2��/4

ways to choose

A�E1�1�� � � � �A�E1�l1
�� � � � �A�Ek/2�1�� � � � �A�Ek/2�lk/2

�

(“second neighborhood of the root”), where lj = �Hj�/4, 1 ≤ j ≤ k/2. The Erdős–
Selfridge technique works if

2
∑k/2

j=1�n−�Hj �−j+�n−2k��Hj �/4� > �F � · �nD��k/2�+��H1�+�H2�+���+�Hk/2��/4� (40.12)

where D=MaxDeg�F�. Inequality (40.12) is equivalent to

k/2∏
j=1

((
2n−2k

nD

)�Hj �/4
· 2

n−�Hj �−j

nD

)
> �F �� (40.13)

(40.13) follows from the stronger inequality

k/2∏
j=1

(
2n−2k−4

nD

)1+�Hj �/4
> �F �� (40.14)

By hypothesis
�F �< 2n

1�1
and D< 2n−4n2/5�

and also �Hj�/4 ≥ k/2 ≈ n2/5/2, so (40.14) follows from the trivial numerical fact
3 · 2/5 = 6/5 > 1�1. This proves that Breaker can indeed prevent the appearance
of a first violator of the Hazardous Lemma where the corresponding “tree like
configuration” belongs to the Simplest Case.

Now it is easy to see that the Simplest Case is in fact the “worst case scenario,”
the rest of the cases are actually easier to handle. Indeed, if there is a (say) “extra
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intersection,” then a bond set arises (see Section 39), which contains �n−2k� marks
of Maker in the Big Game: a huge “target value” of 2n−2k.

bond set

A(Hi) A(Hj)

A(H)

Every bond set represents, therefore, a “huge gain” for Breaker, explaining why
the Simplest Case (“when there is no bond set”) is the “worst case scenario.” This
completes our outline of the proof of the Hazardous Lemma.
But we didn’t address the main question yet: “Why is the Hazardous Lemma so

important?” It is important because it greatly improves the calculations in “Type
4” (see Section 39). Indeed, if H is a hazardous set, then by the Hazardous Lemma
there exist �H�/4 = l ≥ k/2 ≈ n2/5/2 emergency sets E1, E2, � � �, El such that
A�H�∩A�Ei�, i= 1�2� � � � � l form l distinct points (see figure).

A(H)
“centipede”

A(El)A(E1) A(E2)

We can assume that A�E1�, A�E2�, � � �, A�El� are pairwise disjoint; indeed,
otherwise a bond set arises, which means a “huge gain” for Breaker.
A typical appearance of “Type 4” is in “Case 4” (see Section 39); then the

number of ways we can “grow” to Gg�j+1� from Gg�j� is bounded from above by

�Ug�j�� ·D · �nD�l�

If in the “extraction procedure” (see Section 39) we include the “hazardous super-
set” A�H� and add it to the “emergency super-sets” A�E1�, A�E2�, � � �, A�El� – this
inclusion is a key technical novelty of the proof! – then the “target value” of this
configuration is (“Power-of-Two Scoring System”)

2n−�H�+l�n−2k� = 2n−�S�+�n−2k��H�/4�
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we assume the “worst case scenario”: A�E1�, A�E2�, � � �, A�El� are pairwise disjoint.
The following inequality certainly holds with k= n2/5

�Ug�j�� ·D · �nD�l

2n−l+l�n−2k�
≤ �Ug�j��

(
nD

2n−2k−2

)l+1

≤ 2−kl/2 (40.15)

= extremely small if �Ug�j�� ≤ 2
n4/5
5 �

Inequality (40.15) is more than enough to guarantee the truth of the “Big Set
Lemma” (see Section 39) via the “Calculations” (see Section 39); this is how we
take care of the “centipede problem” and manage to “break the square-root barrier.”

This completes the outline of the proof of Theorem 40.1 (heavily using of course
the technique developed in Section 39).
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Recall Theorem 40.1: If F is an n-uniform Almost Disjoint hypergraph such that

�F � ≤ 2n
1�1

and MaxDeg�F�≤ 2n−4n2/5�

then for n ≥ c0 (“n is sufficiently large”) the second player can force a Strong
Draw in the Positional Game on F .
In Section 40 we looked at an outline of the proof; here we convert the outline

into a precise argument. The reader needs to be warned that the details are rather
tiresome. The key step is to complete the proof of the Hazardous Lemma. Recall
the Hazardous Lemma: Under the condition of Theorem 40.1, Breaker can force
that, during the whole course of the play, every hazardous set H intersects the E.R.
(“Emergency Room”) in at least �H�/4 points.
We assume that the reader is familiar with Sections 39–40.

1. How to reduce the proof of the Hazardous Lemma to the Simplest Case?
The Hazardous Lemma is already verified in the so-called Simplest Case, and the
idea is to reduce the general case to the Simplest Case. We assume that Breaker
is the second player. Again let H be the first violator of the Hazardous Lemma:
H is the first hazardous set that intersects the E.R. in less than �H�/4 points.
Since �H� ≥ 2k+ 2 (see (40.6)), H must intersect the difference-set “smallboard
minus E.R.” in ≥ k/2 points; this and Almost Disjointness together imply the
existence of k/2 non-violator hazardous setsH1,H2, � � �,Hk/2 such that �H∩Hj� = 1,
1 ≤ j ≤ k/2. Since each Hj is a non-violator of the Hazardous Lemma, again by
Almost Disjointness each Hj must intersect at least �Hj�/4= lj emergency sets Ej�1,
Ej�2, � � �, Ej�lj

(j = 1�2� � � � � k/2). Formally we have 1+ �k/2�+∑k/2
j=1 lj super-sets

A�H��A�H1�� � � � �A�Hk/2��A�E1�1�� � � � �A�E1�l1
��A�E2�1�� � � � �A�E2�l2

��

A�E3�1�� � � � �A�E3�l3
�� � � � �A�Ek/2�1�� � � � �A�Ek/2�lk/2

�� (41.1)

but there may occur some coincidence among these hyperedges of F , or at
least some “extra intersection” beyond the mandatory one-point intersections

536
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(“Almost Disjointness”). In (41.1)A�� � �� denotes the uniquely determined super-sets
(uniquely determined because of Almost Disjointness).

The set A�Hj� together with the other sets A�Ej�1�, A�Ej�2�, � � �, A�Ej�lj
� is called

the jth “centipede”; A�Hj� is the “head” and A�Ej�1�, A�Ej�2�, � � �, A�Ej�lj
� are

the “legs.”

Statement 41.1 For every i Breaker can prevent the appearance of M > n4/5

pairwise disjoint sets A�Ei�j1
�, A�Ei�j2

�, � � �, A�Ei�jM
� in the ith “centipede.”

forbidden configuration

A(Ei , jM)

A(Ei,j 1
)

A(Ei,j 2
)

where M > n
4
5

A(Hi)

Proof. Let M denote the maximum number of pairwise disjoint sets among the
“legs.” Breaker uses the Power-of-Two Scoring System; the target value of a
“forbidden configuration” is at least 2�n−2k�M , and the number of ways to form a
“forbidden configuration” is at most �F ��nD�M . Since k = n2/5 and M> n4/5, the
“total danger”

�F ��nD�M2−�n−2k�M = �F �
(

nD

2n−2k

)M

≤ 2n
1�1−n�2+4�/5 = 2n

1�1−n1�2 (41.2)

is “extremely small,” proving that Breaker can indeed prevent the appearance of
any “forbidden configuration” described in Statement 41.1.

Statement 41.2 Consider the ith “centipede” (i is arbitrary)

A(Ei,1) A(Ei,2)

li = 
|Hi|
4

> k
2

= n2/5

2
(i  = 1, 2, 3,       )

A(Ei,li)

A(Hi)

“centipede”

Breaker can force that, among the li super-sets A�Ei�1�, A�Ei�2�, � � �, A�Ei�li
� at

least half (namely ≥ li/2) are pairwise disjoint.

Proof. LetM denote the maximum number of pairwise disjoint sets among A�Ei�1�,
A�Ei�2�, � � �, A�Ei�li

�, and assume that M< li/2. For notational simplicity assume
that A�Ei�j�, 1 ≤ j ≤ M are pairwise disjoint, and each A�Ei��� with M < � ≤ li
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intersects the union set
⋃

1≤j≤M A�Ei�j�.

“bond set”

M2

A(Ei,1) A(Ei,2) A(Ei,M)

ν
A(Hi)

A(Ei,ν)

1

The �li −M� sets A�Ei��� with M < � ≤ li are all bond sets. If Breaker uses the
Power-of-Two Scoring System, the “total danger” is estimated from above by

�F � · �nD�M2−�n−2k�M ·
li−M∏
�=1

(
�M+1�n

2

)
2−�n−2k−M−���

Here the first part �F � · �nD�M2−�n−2k�M of the long product is the contribution of
A�Hi� and A�Ei�1��A�Ei�2�� � � � �A�Ei�M�, and the rest of the long product is the
contribution of A�Ei�M+��� � = 1�2� � � �.
Since li−M ≥ k/4, the “danger” above is at most

≤ �F �2− n
2 · k4 ≤ 2n

1�1−n7/5/8� (41.3)

which is “extremely small,” proving that Breaker can indeed prevent the appearance
of any “forbidden configuration” described in Statement 41.2. In the last step we
used that M = o�n�, which follows from Statement 41.1.

Combining Statements 41.1-41.2 we obtain

max
i

�Hi� ≤ 4n4/5� (41.4)

The next statement excludes the possibility that too many hazardous super-sets
A�Hi� (“heads”) share the same emergency super-set A�E� (“leg”).

Statement 41.3 If Breaker plays rationally, then he can prevent that some A�E�

intersects r ≥ n1/5 distinct sets A�Hi�.

Proof. The “total danger” of the “forbidden configurations” is at most

�F �2 ·
((

2n
2

)
2−�n−4n4/5−n1/5�

)n1/5

≤ 22n
1�1−n6/5/2� (41.5)
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A(Hir)A(Hi1
) A(Hi2)

A(H)

A(E)

iri1 i2

r ≥ n1/5

each has
≥ n−4n4/5

Xs
(see (41.4))

which is “extremely small.” Note that the factor �F �2 on the left side of (41.5)
bounds the number of ways to choose A�H� and A�E�, and the rest of the left side
is the contribution of the bond sets A�Hi1

�, A�Hi2
�� � � �, A�Hi

n1/5
�.

Notice that the term “−n1/5” in 2−�n−4n4/5−n1/5� above comes from the fact that the
sets A�Hi1

�, A�Hi2
�, � � �, A�Hi

n1/5
� may intersect.

Statement 41.4 If Breaker plays rationally, then he can prevent the appearance of
any forbidden configuration described by the picture

forbidden configuration

i ∈ I

A(Hi) :

j ∈ J

A(Ej) :

A(H)

A(H1)

A(E1)
A(E2)

A(E3)

where the requirements are listed as follows:

(1) by dropping A�H�, the rest is still connected;
(2) �I� ≥ 2n1/5;
(3) every A�Ej� intersects at least two A�Hi�, i ∈ I;
(4) every A�Ej� intersects at least one new A�Hi�, i ∈ I .

Proof. In view of Statement 41.3 we can assume that 2n1/5 ≤ �I� ≤ 3n1/5, and want
to show that the “danger” is “extremely small.” For notational simplicity assume
J = �1�2� � � � � J�; then the “danger” is less than the following very long product.
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The first part is

�F � · �nD�2−�n−4n4/5� · �nD�2−�n−2k� ·
((

2n
2

)
2−�n−4n4/5−�I��

)a1−1

(explanation for the first part: here �F � is the number of ways to choose A�H�,
the middle �nD�2−�n−4n4/5� · �nD�2−�n−2k� is the contribution of A�H1� and A�E1�,
a1 is the number of neighbors of A�E1� among A�Hi�, i ∈ I , where “neighbor”
of course means “intersecting,” and the “−1” in a1 − 1 is clear since A�H1� was
already counted); the second part of the very long product is

·�n2D�2−�n−2k−�I�� ·
((

2n
2

)
2−�n−4n4/5−�I��

)a2

(explanation: here �n2D� bounds the number of ways to choose A�E2�); and the
rest of the very long product goes similarly as follows

·�n2D�2−�n−2k−�I�� ·
((

2n
2

)
2−�n−4n4/5−�I��

)a3

· · ·

where aj (j = 1�2� � � � � J ) is the number of new neighbors of A�Ej� among A�Hi�,
i ∈ I (“neighbor” of course means “intersecting”). Note that the term −�I� in
2−�n−4n4/5−�I�� above comes from the fact that the sets A�Hi�, i ∈ I may intersect.

Since a1+a2+· · ·+aJ = �I� ≥ 2n1/5, the very long product above is less than

≤ 2n
1�1− n

2 �2n
1/5−1�� (41.6)

which is “extremely small.”

Statement 41.4 was about the maximum size of a component of A�Hi�s (a compo-
nent arises when A�H� is dropped); the next result is about all components, each
containing at least two A�Hi�s.

Statement 41.5 If Breaker plays rationally, then he can prevent the appearance of
any configuration described by the first picture on the next page,
where there are j “components” with t1+ t2 +· · ·+ tj ≥ 4n1/5, where each ti ≥ 2
(i.e. each “component” has at least two A�Hi�s).

Proof. In view of Statement 41.4 we can assume that 4n1/5 ≤ t1 + t2 +· · ·+ tj ≤
6n1/5, and want to show that the “danger” is “extremely small.” From the proof
of Statement 41.4 we can easily see that the “total danger” of the configurations
described in Statement 41.5 is less than

�F � ·2− n
2 ��t1−1�+�t2−1�+···+�tj−1���

Since each ti ≥ 2, we have �t1−1�+�t2−1�+· · ·+�tj−1�≥ �t1+ t2+· · ·+ tj�/2≥
2n1/5, implying

�F � ·2− n
2 ��t1−1�+�t2−1�+···+�tj−1�� ≤ 2n

1�1− n
2 ·2n1/5� (41.7)
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which is “extremely small,” proving Statement 41.5.

t1

j components

each having ≥ 2 A(Hi)s

1 t1 + 1 t1 + 2 t1 + t2

t1 + t2 +        + tj ≥ 4n1/5

A(H)

t1 + t2 +        + tj

Combining Statements 41.2 and 41.5, and also inequality (41.4), we obtain the
following:

Statement 41.6 If Breaker plays rationally, then he can guarantee the following: if
there is a violator of the Hazardous Lemma, then the first violator A�H� generates
a “tree like configuration”

1 2 r

A(H2)
A(Hr)

l1 ≥
|H1|
8

disjoint sets
l2 ≥

|H2|
8

disjoint sets

lr ≥
|Hr 

|
8

disjoint sets

A(H)

A(H1)

r ≥ �H�
4 > k

2 = n
2
5
2

4n
4
5 > �Hj �> 2k

for every 1≤ j ≤ r

where the l1+ l2+· · ·+ lr emergency super-sets are distinct (though they may have
“extra intersections” among each other).

Next we study the possible “extra intersections” of these l1+ l2+· · ·+ lr emergency
super-sets. Question: Given an emergency super-set, how many other emergency
super-sets can intersect it? The following statement gives an upper bound:

Statement 41.7 Consider the “tree like configuration” in Statement 41.6: let A�E�
be an arbitrary emergency super-set – the neighbor of (say) A�Hi0

� – and assume
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that A�E� has t = y1 + y2 + � � �+ yj “extra intersections” with other emergency
super-sets. If Breaker plays rationally, then he can guarantee the upper bound
t = y1+y2+ � � �+yj < n1/5 uniformly for all A�E�.

Proof. If A�H�, A�Hi0
�, A�Hi1

�, � � �A�Hij
�, A�E� are fixed, then the picture below

shows t = y1+y2+ � � �+yj bond sets

A(Hij 

)A(Hi0
)

A(H)

A(E)

A(Hi1) A(Hi2
)

y1 ≥ 1 yj ≥ 1y2 ≥ 1

y1 + y2 +        + yj ≥ n
1
5
–

where each y� ≥ 1�1≤ � ≤ j.
If the statement fails, then without loss of generality we can assume equality
y1+y2+ � � �+yj = n1/5. We can estimate the “total danger” from above as follows

�F � · �nD�j+12−�n−4n4/5−j−1��j+1� · �nD�2−�n−2k�

·
((

�j+3�n
2

)
2−�n−2k−n1/5�

)n1/5

≤ �F � ·2− n
2 ·n1/5� (41.8)

which is “extremely small.” Explanation for (41.8): the first factor �F � comes from
A�H�, the second factor �nD�j+12−�n−4n4/5−j−1��j+1� comes from A�Hi0

�, A�Hi1
�,

A�Hi2
�� � � � �A�Hij

�, the third factor �nD�2−�n−2k� comes from A�E�, and finally

·
((

�j+3�n
2

)
2−�n−2k−n1/5�

)n1/5

is the contribution of the y1+y2+ � � �+yj = n1/5 bond sets.
We also used the trivial fact that j ≤ y1+y2+ � � �+yj = n1/5.

Statement 41.8 Consider the “tree like configuration” in Statement 41.6. By playing
rationally Breaker can force that among these l1+ l2+ � � �+ lk/2 emergency super-

sets we can always select at least �l1+ l2+ � � �+ lk/2�− n4/5

16 pairwise disjoint sets.

Proof. Let M denote the maximum number of pairwise disjoint sets among the
l1+ l2+ � � �+ lk/2 emergency super-sets, and assume M< �l1+ l2+ � � �+ lk/2�− n4/5

16 .
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This means, fixing the k/2 sets A�H�, A�H1�, A�H2�, � � �, A�Hk/2�, and also the

M disjoint sets among the emergency super-sets, there are at least n4/5

16 emergency
super-sets which are bond sets. So the “total danger” is estimated from above as
follows

�F � · �nD�k/22−�n−4n4/5−k/2� k2 · (n2D2−�n−2k�
)M ·

((
n2

2

)
2−�n−2k−n1/5�

) n4/5
16

� (41.9)

Explanation for (41.9): the factor �F � · �nD�k/22−�n−4n4/5−k/2� k2 is the contribution of
A�H�, A�H1�� � � �, A�Hk/2�, the factor

(
n2D2−�n−2k�

)M
is the contribution of the M

disjoint emergency sets, and finally the “n1/5” in the exponent of 2 comes from
Statement 41.7. It follows that the “total danger” is less than

�F � ·24n4/5· k2− n
2 · n

4/5
16 ≤ 2n

1�1+2n1�2−n1�8/32� (41.10)

which is “extremely small.”

Notice that we basically succeeded to reduce the general case of the Hazardous
Lemma to the Simplest Case: indeed, combining Statements 41.6 and 41.8 we obtain:

Statement 41.9 By playing rationally Breaker can force that, if there is a first
violator of the Hazardous Lemma, then its “tree like configuration” can be truncated
(by throwing out sets if necessary) such that the l1 + l2 + � � �+ lk/4 emergency
super-sets are pairwise disjoint. �

A(H)

A(H1)

l1 ≥
|H1|
8 l2 ≥ 

|H2|
8

l   ≥ 

|H  ||     |
|     |

8k
4

k
4

4n
4
5 > �Hi�> 2k

1≤ i ≤ k
4

2. Conclusion. By using Statement 41.9 we are ready to complete the proof of
the Hazardous Lemma. Indeed, by repeating the proof of the Simplest Case in
Section 40 to the truncated “tree like configuration” in Statement 41.9, we obtain
that Breaker can prevent the appearance of any truncated “tree like configuration,”
i.e. there is no first violator of the Hazardous Lemma. This completes the proof of
the Hazardous Lemma. �
The rest of the proof of Theorem 40.1 goes exactly the same way as was explained
at the end of Section 40. The last technical problem is how to guarantee the “legs”



544 Advanced decomposition

A�E1�, A�E2�, � � �, A�El� of the “centipede” to be pairwise disjoint. In view of
Statement 41.2 the “disjointness” is guaranteed with “l/2” instead of “l,” which is
equally good in the calculations. This completes the proof of Theorem 40.1. �

Theorem 40.1 was about Almost Disjoint hypergraphs; in Theorems 8.2 and 12.6,
however, the winning sets may have large intersections. This is a rather unpleasant
new technical difficulty, which demands a change in the definition of the small sets,
both the emergency and hazardous sets. We refer to this “change” as the RELARIN
technique (named after RElatively LARge INtersections; the name will be justified
later).
The simplest illustration of the RELARIN technique is the following proof of

the Strong Draw part in Theorem 8.1 (Van der Waerden Game), see Section 42.
(The Weak Win part was easy, see Section 13.) The good thing about Section 42 is
that we can entirely focus on the RELARIN technique; we are not distracted by the
(annoyingly complicated) technicalities of the method of “breaking the square-root
barrier” (Sections 40–41).
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Van der Waerden Game and the RELARIN

technique

Recall the �N�n� Van der Waerden Game: the board is N�= �1�2� � � � �N� and the
winning sets are the n-term A.P.s (“arithmetic progressions”) in N�. Note that the
Weak Win part of Theorem 8.1 was a straightforward application of Theorem 1.2
(the “easy” Weak Win criterion); at the begining of Section 13 we already proved
that, if

N > �1+o�1��n3 ·2n−3� (42.1)

then the first player can force a Weak Win in the �N�n� Van der Waerden Game.
Next we prove the upper bound: the Strong Draw part in Theorem 8.1. We employ

the simplest BigGame–SmallGame Decomposition developed in Sections 35–36
(luckily we don’t need the methods of Section 39), and combine it with a new idea
called the RELARIN technique (named after RElatively LARge INtersections).
First we have an:

1. Outline of the proof. Define an “auxiliary” m-uniform hypergraph F – note that
F will be different from the family of all n-term A.P.s in N� – and as usual call
an A ∈ F dangerous when Maker (the first player) occupies its �m−k�th point in
the Big Game. The unoccupied (in the Big Game) k-element part of this dangerous
A ∈ F may or may not become an emergency set as follows: let E1�E2�E3� � � � be
the complete list of the emergency sets arising in this order in the course of a play
(if several emergency sets arise at the same time then we order them arbitrarily).
Let Ẽ1 = E1� Ẽ2 = E2 \E1� Ẽ3 = E3 \ �E1∪E2�, and, in general

Ẽj = Ej \
(

j−1⋃
i=1

Ei

)
�

We call Ẽj the “on-line disjoint part” of Ej .
If A ∈ F is the next dangerous set, and A∗ is the unoccupied (in the Big Game)

k-element part of A, then we distinguish two cases: (1) if A∗ intersects some “on-
line disjoint part” Ẽj in ≥ k� points, then we ignore A saying that “A will be

545
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blocked inside Ẽj” (i.e. A does not contribute a new emergency set); (2) if A∗

intersects every “on-line disjoint part” Ẽj in less than k� points, then A∗ is the next
dangerous set.
Note that 0< �< 1 is a fixed constant to be specified later; the intersection size

k� justifies the name RElatively LARge INtersections (RELARIN).
In the proof of Theorem 34.1 (see Section 36) Breaker (the second player) used

a trivial Pairing Strategy restricted to the “on-line disjoint parts” of the emergency
sets (this was called the small game in Section 36). What we do here is more
complicated. The similarity is that again in the small game Breaker plays many
sub-games simultanously, where the disjoint sub-boards of the sub-games are the
“on-line disjoint parts” Ẽj : if Maker’s last move was in a Ẽj , then Breaker always

replies in the same Ẽj. The difference is that in every Ẽj Breaker replies by the
Power-of-Two Scoring System (instead of making an “arbitrary reply,” which was
sufficient in Section 36).
After the outline, it is time now to discuss:

2. The details of the proof. We begin with the definition of “auxiliary” hypergraph
F : it is m-uniform where m = n− ⌊

n1−�
⌋
; the hyperedges in F are the m-term

A.P.s in N� for which the lower integral part of the Start/Gap ratio is divisible by⌊
n1−�

⌋
. More formally: the m-term A.P. a�a+d�a+2d� � � � � a+ �m−1�d in N�

is a hyperedge of F if and only if
⌊
a
d

⌋
is divisible by

⌊
n1−�

⌋
; we refer to these

A.P.s as special m-term A.P.s.
Notice that every ordinary n-term A.P. in N� contains a special m-term A.P.s.

Indeed, if s� s+d� s+2d� � � � � s+ �n−1�d is an arbitrary n-term A.P. in N�, then
among the first r = ⌊

n1−�
⌋
members x = s� s+d� s+2d� � � � � s+ �r−1�d there is

exactly one for which
⌊
x
d

⌋
is divisible by r; that member s+ jd = a is the starting

point of a special m-term A.P. contained by s� s+ d� s+ 2d� � � � � s+ �n− 1�d.
Breaker’s goal is, therefore, to block the m-uniform hypergraph F .
If two A.P.s of the same length have then same gap, we call them translates.

Notice that in hypergraph F every A ∈ F has at most 2 �n�� translates; this is a
consequence of the definition of special A.P.s.

We need the following simple “selection lemma”:

Lemma 42.1 Let A1�A2� � � � �Al be a family of m-term A.P.’s in the set of natural
numbers such that no two have the same gap (“translates-free”). If l≤m, then we
can always find a sub-family Ai1

�Ai2
� � � � �Air

with r = l1/5 such that

∣∣∣∣∣
r⋃

j=1

Aij

∣∣∣∣∣≥ �r−1�m�
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Proof. The proof uses the Pigeonhole Principle. The intersection Ai1
∩Ai2

of two
A.P.s is always an A.P. itself; assume that the intersection has ≥ 2 elements. Let
Ai1

= �ai1
+jdi1

� j = 0�1�2� � � � �m−1� and Ai2
= �ai2

+jdi2
� j = 0�1�2� � � � �m−

1�. Two-element intersection means that there exist bi1 and bi2 with 1≤ bi1 ≤m−1,
1≤ bi2 ≤m−1 such that bi1 ·di1

= bi2 ·di2
, i.e. di2

= �bi1/bi2� ·di1
.

Notice that we can estimate the intersection in terms of bi1� bi2 as follows

�Ai1
∩Ai2

� ≤ 2m

max�bi1� bi2�
� (42.2)

Now we are ready to select a sub-family Ai1
�Ai2

� � � � �Air
with r = l1/5 from

A1�A2� � � � �Al such that the union is “large.” First pick A1, and study those Ajs
for which �A1 ∩Aj� > 2m

M
(M will be specified later); we call these js “M-bad

with respect to 1.” By (42.2) we have max�b1� bj� ≤ M where dj = �b1/bj� ·d1.
If max�b1� bj� ≤M , then the number of different ratios �b1/bj� is at most M2, so
the total number of indices j which are “M-bad with respect to 1” is ≤M2. We
throw out from �1�2� � � � � l� all indices j which are “M-bad with respect to 1,” and
1 itself, and pick an arbitrary index h1 from the remaining set. We study those Ajs
for which �Ah1

∩Aj�> 2m
M
; we call these js “M-bad with respect to h1.” By (42.2)

we have max�bh1� bj�≤M , where dj = �bh1/bj� ·dh1
. If max�bh1� bj�≤M , then the

number of different ratios �bh1/bj� is at most M2, so the total number of indices j
which are “M-bad with respect to h1” is ≤M2. We throw out all indices j which
are “M-bad with respect to h1,” and h1 itself, and pick an arbitrary index h2 from
the remaining set, and so on. Repeating this argument, we obtain a subsequence
h0 = 1� h1� h2� h3� � � � of �1�2� � � � � l� such that

�Ahi
∩Ahj

� ≤ 2m

M
holds for all 0 ≤ i < j < r = l

M2+1
� (42.3)

By (42.3) ∣∣∣∣∣
r⋃

j=1

Ahj

∣∣∣∣∣≥ r ·m−
(
r

2

)
· 2m
M

≥ �r−1�m

if M = l2/5 and r =√
M . The completes the proof of Lemma 42.1.

A survivor A ∈ F is called a secondary set if (1) A intersects the small board in at
least k points, (2) A intersects every Ẽj (i.e. “on-line disjoint part” of emergency
set Ej) in less than k� points, (3) A is not dangerous.
The following lemma is the perfect analogue of Lemma 1 in Section 36; the

concept of Big Game will be defined within the proof of this lemma.

Secondary Set Lemma: Assume that Breaker has a winning strategy in the Big
Game, and follows it in a play. Then there is no secondary set.
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Proof. Assume that A is a secondary set; from the existence of set A we want to
derive a contradiction. Let Ei1

�Ei2
�Ei3

� � � � be the complete list of emergency sets
intersecting A; assume that 1≤ i1 < i2 < i3 < · · · . We claim that

A∩ �Ei1
∪Ei2

∪Ei3
∪ � � ��= A∩ �Ẽi1

∪ Ẽi2
∪ Ẽi3

∪ � � ��� (42.4)

To prove (42.4) note that, since Ei1
is the “first,” its “on-line disjoint part” Ẽi1

must intersect A. For Ei2
we have two options: either (1) A∩Ei2

⊂ Ẽi1
, or (2) Ẽi2

intersects A. The same two alternatives hold for Ei3
, Ei4

, � � �; let Eij
be the first

one for which option (1) fails (i.e. option (2) holds); for notational convenience
assume that j = 2, i.e. Ẽi2

intersects A. For Ei3
we have two options: either (1)

A∩Ei3
⊂ Ẽi1

∪ Ẽi2
, or (2) Ẽi3

intersects A. The same two alternatives hold for Ei4
,

Ei5
, � � �; let Eij

be the first one for which option (1) fails (i.e. option (2) holds); for

notational convenience assume that j = 3, that is, Ẽi3
intersects A, and so on. This

proves (42.4).
Since each intersection A∩ Ẽj has size less than k� and A intersects the small

board in at least k points, in view of (42.4) there must exist at least k1−� different
“on-line disjoint parts” Ẽjs which all intersect A.

Recall the following consequence of the definition of special A.P.s: in hypergraph
F every A ∈ F has at most 2 �n�� translates. Therefore, there exist an index-set
J with �J � ≥ k1−�/2n� such that (1) the “on-line disjoint part” Ẽj intersects A for
every j ∈ J , (2) the super-sets A�Ej�, j ∈ J form a “translates-free” family (i.e. no
two A.P.s have the same gap).
Now we apply Lemma 42.1: we can select a sub-family A�Ei�, i ∈ I such that

�I� = r ≥
(
k1−�

4n�

)1/5

and

∣∣∣∣∣
⋃
i∈I

A�Ei�

∣∣∣∣∣≥ �r−1�m� (42.5)

The reason why we wrote “4” instead of “2” in the denominator of the first inequality
in (42.5) will become clear in the proof of the On-Line Disjoint Part Lemma below.
This family A�Ei�, i ∈ I defines a Big Set B = ⋃

i∈I A�Ei�. Big Set B has the
following properties:

(1) �B� ≥ �r−1�m;
(2) in the Big Game, Maker occupied at least �B� − rk ≥ �r − 1�m− rk points

from B;
(3) in the Big Game, Breaker couldn’t put his mark in B.

What this means is that, in the Big Game, Maker managed to accomplish a Shutout
of size �r− 1�m− rk in Big Set B. Breaker’s goal in the Big Game is exactly to
prevent every possible Shutout such as this!
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Now we are ready to define the Big Game. Let

r =
(
k1−�

4n�

)1/5

(take the lower integral part); an r-element sub-family

G = �A1�A2� � � � �Ar�⊂ F
is called F-linked if there is a set A ∈ F with A �∈ G such that A intersects each
element of family G, i.e. A∩Ai �= ∅, 1≤ i≤ r. (Note that parameter r is an integer
between 2 and m/2�)

The Big Game is played on the family B of Big Sets. What are the Big Sets?
They are the union sets

⋃r
i=1Ai of all possible F-linked r-element sub-families

G = �A1�A2� � � � �Ar� of F
B = {

B = ⋃
A∈G

A � G ⊂ F� �G� = r� G is F−linked
}
�

The total number of Big Sets is estimated from above by

�B� ≤M

(
m�D−1�

k

)
� (42.6)

Indeed, there are �F � =M ways to choose “linkage" A, there are at most m�D−1�
other sets intersecting A where D = MaxDeg�F�, and we have to choose r sets
A1�A2� � � � �Ar among them.
We are going to show that Breaker can win the Big Game by using the Power-

of-Two Scoring System. It suffices to check that

�B�< 2�r−1�m−rk−1� (42.7)

Note that the board of the Big Game is shrinking during a play, but this does not
cause any extra difficulty.

Now we are ready to complete the proof of the Secondary Set Lemma. If there
exists a secondary set, then, in the Big Game, Maker can certainly achieve a
Shutout of size ≥ �r−1�m− rk in some Big Set, which contradicts the assumption
that Breaker has a winning strategy in the Big Game.

The next lemma is the perfect analogue of Lemma 2 in Section 36.

On-Line Disjoint Part Lemma: Assume that Breaker has a winning strategy in
the Big Game, and follows it in a play. Then every on-line disjoint part Ẽl has
size ≥ k/2.

Proof. Assume �Ẽl�< k/2. Let Ei1
�Ei2

�Ei3
� � � � be the complete list of emergency

sets intersecting El; assume that 1 ≤ i1 < i2 < i3 < · · · . We have the analogue
of (42.4)

El∩ �Ei1
∪Ei2

∪Ei3
∪ � � ��= El∩ �Ẽi1

∪ Ẽi2
∪ Ẽi3

∪ � � ���
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Since each intersection El∩ Ẽij
has size less than k� and �Ẽl�< k/2, there must

exist at least 1
2k

1−� different “on-line disjoint parts” Ẽij
s which all intersect El.

This 1
2k

1−� is half of what we had in the proof of the Secondary Set Lemma,
explaining the factor of “4” (instead of “2”) in (42.5). The rest follows from the
previous proof.

3. Conclusion. The small game falls apart into disjoint sub-games, where each sub-
game is played on some on-line disjoint part Ẽl, and each small set has size ≥ k�.
Every small set is the intersection of Ẽl with an m-term arithmetic progression AP,
implying that every small set in Ẽl is uniquely determined by a 4-tuple �F�L� i� j�,
where f and L are the first and last elements of the m-term arithmetic progression
AP in Ẽl, F is the ith and L is the jth elements of AP with 1 ≤ i < j ≤ m. Thus
the total number of small sets in Ẽl is

≤
(�Ẽl�

2

)(
m

2

)
≤
(
k

2

)(
m

2

)
≤m4�

By using the Power-of-Two Scoring System, Breaker can blocke every possible
small set in every on-line disjoint part Ẽl if

m4 < 2k
�−1� (42.8)

Moreover, by (42.6)–(42.7) Breaker can win the Big Game if

M

(
m�D−1�

k

)
< 2�r−1�m−rk−1� (42.9)

where �F � =M and D=MaxDeg�F�.
Assume that both (42.8)–(42.9) hold; then Breaker can block every A ∈ F ,

i.e. he can force a Strong Draw in F . Assume that there is an A0 ∈ F which
is completely occupied by Maker; we want to derive a contradiction from this
assumption.
If Maker is able to occupy �m− k� points of A0 in the Big Game, then A0

becomes a dangerous set. We have two options: if (1) A0 intersects some Ẽl in
≥ k� points, then A0 will be blocked by Breaker inside Ẽl; if (2) A0 produces an
emergency set E0, then A0 will be blocked inside Ẽ0.

If at the end of the Big Game Maker still couldn’t occupy �m−k� points of A0,
then again we have two options: either (i) at some stage of the play A0 becomes
a secondary set, which contradicts the Secondary Set Lemma, or (ii) A0 intersects
some Ẽl in ≥ k� points, which is case (1) above, i.e. A0 will be blocked by Breaker
inside Ẽl. In each case we get a contradiction as we wanted.
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The last step of the proof is to maximize the value of n under conditions (42.8)–
(42.9). Recall that

m= n−n1−�� r =
(
k1−�

4n�

)1/5

�

on the other hand, trivially M = �F �<N 2 and D=MaxDeg�F� < N . By choosing
�= 1/8= � and k= n7/8, inequalities (42.8)–(42.9) are satisfied with

n= log2N + c0 · �log2N�7/8 =
(
1+ c0

�log2N�1/8

)
log2N�

where c0 is a large positive absolute constant. This completes the proof of the
Strong Draw part of Theorem 8.1. �



Chapter IX
Game-theoretic lattice-numbers

The missing Strong Draw parts of Theorems 8.2, 12.6, and 40.2 will be discussed
here; we prove them in the reverse order. These are the most difficult proofs in
the book. They demand a solid understanding of Chapter VIII. The main technical
challenge is the lack of Almost Disjointness.
Chapters I–VI were about Building and Chapters VII–VIII were about Blocking.

We separated these two tasks because undertaking them at the same time – ordinary
win! – was hopelessly complicated. Now we have a fairly good understanding of
Building (under the name of Weak Win), and have a fairly good understanding of
Blocking (under the name of Strong Draw). We return to an old question one more
time: “Even if ordinary win is hopeless, is there any other way to combine the two
different techniques in a single strategy?” The answer is “yes,” and some interesting
examples will be discussed in Section 45. One of them is the proof of Theorem 12.7:
“second player’s moral-victory.”
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43
Winning planes: exact solution

The objective of this section is to prove the missing Strong Draw part of
Theorems 12.6 and 40.2. The winning sets in these theorems are “planes”; two
“planes” may be disjoint, or intersect in a point, or intersect in a “line.” The third
case – “line-intersection” – is a novelty which cannot happen in Almost Disjoint
hypergraphs; “line-intersection” requires extra considerations.

1. A common generalization. Both Theorems 12.6 and 40.2 will be covered by
the following generalization of Theorem 40.1:

Theorem 43.1 Assume that �F�G� is a pair of hypergraphs which satis-
fies the following Dimension Condition (some kind of generalization of Almost
Disjointness):

(a) F is m-uniform, and the hyperedges A ∈ F are called “planes”;
(b) the hyperedges B ∈ G are called “lines,” and each line has at most 2

√
m points;

(c) the intersection of two “planes” is (1) either empty, (2) or a point, (3) or a
“line”;

(d) G is Almost Disjoint, and F has the weaker property that 3 non-collinear
(meaning “not on a line”) points uniquely determine a “plane”;

(e) the Max Pair-Degree �2 = �2�F� of hypergraph F satisfies an upper bound

�2 ≤ 2�1−��m with some positive constant � > 0�

Then there exists a finite threshold constant c0 = c0��� <� depending on � only
such that, if

�F � ≤ 2m
1�1

and D=MaxDeg�F�≤ 2m−4m2/5

(which means: breaking the square-root barrier), and m ≥ c0, then the second
player can force a Strong Draw in the positional game on hypergraph F .

Before talking about the proof, let me explain how Theorems 12.6 and 40.2 follow
from Theorem 43.1. Note that m is either q2 + q+ 1 (“projective planes”), or
q2 (“affine planes”), or n2 (“comb-planes in the nd torus”). Conditions (a)–(d)
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are trivially satisfied; but how about the Max Degree and the Max Pair-Degree?
We have

D≈ q2d−4 and �2 ≈ qd−2 ≈D�5 �projective geometry��

D≈ q2d and �2 ≈ qd ≈D�5 �affine geometry��

D≈ 3d and �2 ≈ 2d ≈Dlog2/ log3 =D�63 �planes in the nd torus��

which settles condition (e).

2. The proof of Theorem 43.1. It is a combination of the proof of Theorem 40.1
(see Sections 39–41) and the RELARIN technique (see Section 42). The possibility
of relatively large “line-intersections” demands a change in the definition of the
small sets, both the emergency and hazardous sets. Let k=m2/5.
There is no change in the way how the first emergency set arises: when Maker

(the first player) occupies the �m−k�th point of some survivor (meaning “Breaker-
free,” where Breaker is the second player) winning set A ∈ F for the first time;
in that instant A becomes dangerous. Note that we may have several dangerous
sets arising at the same time: they are Ai ∈ F where i ∈ I . For simplicity we may
assume that I = �1�2� � � � � s	, and proceed by induction. The first emergency set is
the “blank” k-element part A∗

1 = A1 \A1�Big�Maker� of A1; A
∗
1 is removed from

the Big Board and added to the small board. Next consider A2; the first novelty
is that set A2 does not necessarily produce a new emergency set, i.e. A2 may be
“ignored.” Indeed, if the “blank” k-element part A∗

2 = A2 \A2�Big�Maker� of A2

intersects an emergency set (at this stage this means the first emergency set A∗
1) in

≥ k
 points, then we ignore A2 by saying that “A2 will be blocked inside of A1,” but
if A∗

2 intersects every emergency set (at this stage this means the first emergency
set A∗

1 only) in less than k
 points, then A∗
2 is the second emergency set; A∗

2 is
removed from the Big Board and added to the small board. (
 will be a positive
absolute constant less than 1; note in advance that 
= 1/2 is a good choice.)

Similarly, let 1< j ≤ s; if the “blank” k-element part A∗
j = Aj \Aj�Big�Maker�

of Aj intersects an emergency set in ≥ k
 points, then we ignore Aj by saying
that “Aj will be blocked inside of some Ai with i < j,” but if A∗

j intersects every
emergency set in less than k
 points, then A∗

j is a new emergency set; A∗
j is removed

from the Big Board and added to the small board.
At the end of this the Big Board becomes smaller, so we may have an untouched

survivor A ∈ F with �A�Big� blank�� ≤ k; in fact, we may have several of them:
Ai ∈F where i ∈ I . For simplicity write I = �1�2� � � � � s	, and proceed by induction.
Each Ai may or may not contribute a new emergency or hazardous set as follows.
First assume that �A1�small�� ≤ k; let A∗

1 = A1 \A1�Big�Maker�; note that �A∗
1� ≥

k. Consider the largest intersection of A∗
1 with an emergency set; if the largest

intersection is ≥ k
, then (as usual) we ignore A1. If the largest intersection is less
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than k
, then A∗
1 is a new emergency set; A∗

1 is removed from the Big Board and
added to the small board.

Next assume that �A1�small�� ≥ k+1, and write A∗
1 =A1 \A1�Big�Maker�; note

that �A∗
1� ≥ k. Consider the largest intersection of A∗

1 with an emergency set; if the
largest intersection is ≥ k
, then we ignore A1. If the largest intersection is less
than k
, then A∗

1 is the first hazardous set; A∗
1 is removed from the Big Board and

added to the small board.
Similarly, let 1 < j ≤ s; write A∗

j = Aj \Aj�Big�Maker�; if Aj intersects an
emergency or hazardous set in ≥ k
 points, then we ignore Aj by saying that “Aj

will be blocked inside of some Ai with i < j,” but if A∗
j intersects every emergency

and hazardous set in less than k
 points, then (1) A∗
j is a new emergency set if

�A�small�� ≤ k, and (2) A∗
j is a new hazardous set if �A�small�� ≥ k+ 1; in both

cases A∗
j is removed from the Big Board and added to the small board.

Repeating the previous argument, this extension process – that we call the
“first extension process” – will eventually terminate, meaning that the inequality
�A�Big� blank�� ≥ k+1 holds for every untouched survivor A ∈ F .
It may happen, however, that the inequality k+1≤ �A�Big� blank�� ≤ �A�small��

holds for a family A = Ai, i ∈ I of untouched survivors. For simplicity write
I = �1�2� � � � � s	; we proceed by induction. Write A∗

i = Ai \Ai�Big�Maker�; if Ai

intersects an emergency or hazardous set in ≥ k
 points, then we ignore Ai, but if
A∗

i intersects every emergency and hazardous set in less than k
 points, then A∗
i is a

new hazardous set; A∗
i is removed from the Big Board and added to the small board.

At the end of this theBigBoard is decreased, sowemay have untouched survivor(s)
A = Ai, i ∈ I with k+ 1 ≤ �A�Big� blank�� ≤ �A�small��, and so on. Repeating this
“second extension process,” it will eventually terminate, meaning that the inequality
k+1≤ �A�Big� blank�� ≤ �A�small�� fails to hold for any untouched survivorA ∈F .
At the end of this we may have an untouched survivor A ∈ F with

�A�Big� blank�� ≤ k; in fact, we may have several of them: Ai ∈ F where i ∈ I .
Applying again the “first extension process,” and again the “second extension
process,” and again the “first extension process,” and again the “second extension
process,” and so on, we eventually reach a stage where this “alternating” terminates,
meaning that both properties

�A�Big� blank�� ≥k+1� (43.1)

�A�Big� blank��>�A�small�� (43.2)

hold for each untouched survivor A ∈ F – we refer to this as the Closure Process.
Up to this point the small sets are exactly the emergency sets and the hazardous sets;

at a later stage, however, the small sets will differ from the emergency and hazardous
sets as follows. Assume that, at a later stage the double requirement (43.1)–(43.2)
is violated; it can be violated (in fact, “violated first”) in two different ways



556 Game-theoretic lattice-numbers

either k= �A�Big� blank��> �A�small�� occurs� (43.3)

or �A�Big� blank�� = �A�small�� ≥ k+1 occurs� (43.4)

Case (43.3) will or will not produce new emergency sets and case (43.4) will or
will not produce new hazardous sets explained as follows.

If (43.3) holds, then write

S = S�A�= A�blank�= A�Big� blank�∪A�small� blank�� (43.5)

and consider the largest intersection of S = S�A� with a small set. If the largest
intersection is ≥ k
, then we ignore A. If the largest intersection is less than k
,
then S = S�A� in (43.5) is a new small set, which is (as usual) removed from the
Big Board and added to the small board; the (possibly) larger set

E = E�A�= A\A�Big�Maker�= A�Big� blank�∪A�small� (43.6)

is a new emergency set, and we refer to the small set S = S�A� in (43.5) as a
small-em set – meaning the “small set part of emergency set E = E�A� in (43.6)”;
clearly S ⊆ E.
Next assume that (43.4) holds. Again write

S = S�A�= A�blank�= A�Big� blank�∪A�small� blank�� (43.7)

and consider the largest intersection of S = S�A� with a small set. If the largest
intersection is ≥ k
, then we ignore A. If the largest intersection is less than k
,
then S = S�A� in (43.7) is a new small set, which is (as usual) removed from the
Big Board and added to the small board; the (possibly) larger set

H =H�A�= A\A�Big�Maker�= A�Big� blank�∪A�small� (43.8)

is a new hazardous set, and we refer to the small set S = S�A� in (43.7) as a
small-haz set – meaning the “small set part of hazardous set H =H�A� in (43.8)”;
clearly S ⊆H .
In other words, from now on the new small sets are either small-em sets (“blank

parts of emergency sets”) or small-haz sets (“blank parts of hazardous sets”).
The union of the small-em sets is called the Emergency Room, or simply the E.R.
Of course, we may have several violators of (43.1)–(43.2) arising at the first time:

we repeat the previous argument for each one of them; then again we may have
several violators of (43.1)–(43.2): we repeat the previous argument for each; and so
on. In other words, we apply a straightforward Closure Process – just as before –
which terminates at a stage where again the double requirement (43.1)–(43.2) holds
for every untouched survivor A ∈F . At a later stage the double requirement (43.1)–
(43.2) may be violated; it can be violated (in fact, “violated first”) in two different
ways: (43.3) and (43.4), and so on.
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Summarizing, the new feature in the definition of the small game is to involve
RElatively LARge INtersections of size≥ k
 (where 
 is a positive absolute constant
less than one) – we refer to this as the RELARIN technique. Roughly speaking, the
proof of Theorem 43.1 is nothing else other than the proof of Theorem 40.1 modified
by the RELARIN technique. The RELARIN technique forces us to modify the
Component Condition (see Section 39): we have to guarantee that every component
of the small game is less than 2const·k
 (instead of the more generous upper bound
2const·k in Sections 39–41).

Again the main difficulty is to prove the Hazardous Lemma.

Hazardous Lemma (II): Under the condition of Theorem 43.1, Breaker can force
that, during the whole course of the play, every hazardous set H intersects the E.R.
in at least �H�/4 points.

Remark. Again Hazardous Lemma (II) holds trivially for the first hazardous set,
but there is no obvious reason why it should remain true at the later stages of the
play – unless, of course, Breaker forces it by playing rationally.

3. Proof of the Hazardous Lemma (II). To understand what Breaker has to
prevent, assume that there is a “violator.” Let H be the first violator of Hazardous
Lemma (II): H is the first hazardous set which intersects the E.R. in less than
�H�/4 points. Since �H� ≥ 2k+ 2 (see (43.4)), H must intersect the difference-
set “smallboard minus E.R.” in ≥ k/2 points. These ≥ k/2 points are covered by
non-violator hazardous sets H1, H2, � � �, Hq, where k1−
/2 ≤ q ≤ k/2; note that
an intersection of size ≥ k
 would prevent the H to be a new hazardous set –
this is a consequence of the RELARIN technique. Since each Hj , 1 ≤ j ≤ q is a
non-violator of Hazardous Lemma (II), each Hj must intersect the E.R. in at least
�Hj�/4 points, which are covered by emergency sets Ej�1, Ej�2, � � �, Ej�lj

. Note that
k−
�Hj�/4≤ lj ≤ �Hj�/4 for every j = 1�2� � � � � q. Formally we have 1+q+∑q

j=1 lj
super-sets

A�H��A�H1�� � � � �A�Hq��A�E1�1�� � � � �A�E1�l1
��A�E2�1�� � � � �A�E2�l2

��

A�E3�1�� � � � �A�E3�l3
�� � � � �A�Eq�1�� � � � �A�Eq�lq

�� (43.9)

but there may occur some coincidence among these hyperedges of F , and also there
may occur some “extra intersection” among these sets. As usual A�� � �� denotes a
super-set (but the super-set is not uniquely determined anymore because we gave
up on Almost Disjointness; the good news is that this ambiguity does not cause any
problem).

In Section 41 we reduced the proof of the Hazardous Lemma to the Simplest
Case; the reduction had 9 steps: Statements 41.1–41.9. Here we do something
very similar: we reduce the proof of Hazardous Lemma (II) to an analogue of the
Simplest Case via Statements 43.1–43.9.
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Again we call A�Hj� together with A�Ej�1�, A�Ej�2�, � � �, A�Ej�lj
� the jth “cen-

tipede”; A�Hj� is the “head” and A�Ej�1�, A�Ej�2�, � � �, A�Ej�lj
� are the “legs.” Also

recall that k=m2/5.
The first statement is the perfect analogue of Statement 41.1.

Statement 43.1 For every possible i Breaker can prevent the appearance of M>

m4/5 pairwise disjoint sets A�Ei�j1
�, A�Ei�j2

�, � � �, A�Ei�jM
� in the ith “centipede.”

A(Ej,1)
A(Ej,2)

A(Ej,M)

A(Hi)

where M ≥ m
4
5
–

Proof. Let M denote the maximum number of pairwise disjoint sets among
the “legs.” Breaker uses the Power-of-Two Scoring System; the target value of
a “forbidden configuration” is at least 2�m−2k�M , and the number of ways to form a
“forbidden configuration” is at most �F ��mD�M . Since k=m2/5 and M>m4/5, the
“total danger”

�F ��mD�M2−�m−2k�M = �F �
(

mD

2m−2k

)M

≤ 2m
1�1−2M·m2/5

(43.10)

is “extremely small” if M = m4/5, proving that Breaker can indeed prevent the
appearance of any “forbidden configuration” described in Statement 43.1.

Next we prove the analogue of Statement 41.2. The extra difficulty is that 2
points do not determine a winning set A ∈ F any more: we need 3 non-collinear
points to determine a winning set A ∈ F (see condition (d) in Theorem 43.1).

Statement 43.2 Consider the ith “centipede” (i is arbitrary)

A(Hi)

A(Ei,1)
A(Ei,2)

A(Ei,li
)

|Hi| /4 ≥ li ≥ k− λ|Hi| /4
(i = 1, 2,       ,)
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Breaker can force that, among the li super-sets A�Ei�1�, A�Ei�2�, � � �, A�Ei�li
� at

least half, namely ≥ li/2, are pairwise disjoint.

Proof. LetM0 denote the maximum number of pairwise disjoint sets among A�Ei�1�,
A�Ei�2�, � � �, A�Ei�li

�, and assume that M0 < li/2. For notational simplicity assume
that A�Ei�j�, 1 ≤ j ≤M0 are pairwise disjoint, and each A�Ei��� with M0 < � ≤ li
intersects the union set

⋃
1≤j≤M0

A�Ei�j�.

M01 2
M1 < ν ≤ li

M0 < ν ≤ M1

collinear intersections

non-collinear intersections

A(Hi)

A(Ei,1) A(Ei,2)

A(Ei 
, li)

By rearranging the �li −M0� sets A�Ei��� with M0 < � ≤ li if necessary, we
can find a threshold M1 such that for every M0 < � ≤ M1 the set A�Ei��� has
a collinear intersection with the union

⋃
1≤j≤�−1A�Ei�j� of the previous ones,

and for every M1 < � ≤ li the set A�Ei��� has a non-collinear intersection with⋃
1≤j≤M1

A�Ei�j�.
First we show that �M1 −M0� = o�li� (“small”). Indeed, the “total danger” is

estimated from above by

�F ��mD�M02−�m−2k�M0 ·
M1−M0∏
�=1

((
�M0+�+1�m

2

)
�22

−�m−2k−2
√
m�

)
� (43.11)

Since
�F � ≤ 2m

1�1
and �2 ≤ 2�1−��m�

(43.11) becomes “extremely small” if �M1−M0�≥m1/5/�.
Next we show that �li−M1�= o�li� (“small”). Note that every non-collinear set

contains 3 points which are already non-collinear; it follows that for every � with
M1 < � ≤ li there are (at most) 3 indices ��1�, ��2�, ��3� such that 1 ≤ ��1� ≤
��2� ≤ ��3� ≤ M1 and A�Ei��� has a non-collinear intersection with A�Ei���1��∪
A�Ei���2��∪A�Ei���3��. Since a non-collinear set uniquely determines an A ∈ F
(see condition (d) in Theorem 43.1), we can estimate the “total danger” from
above by
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�F ��mD�R2−�m−2k�R ·
((

�M1+1�m
2

)
�22

−�m−2k−4
√
m�

)S

·
((

�M1+1�m
3

)
2−�m−2k−2�R+S�

√
m�

)T

� (43.12)

where R+S ≤ 3T , 0 ≤ R, 0 ≤ S, and 1≤ T ≤ �li−M1�. By choosing T ≈m1/5 in
(43.12) we get an “extremely small” upper bound.

Combining Statements 43.1–43.2 we obtain

max
i

�Hi� ≤m4/5� (43.13)

The next statement is the analogue of Statement 41.3.

Statement 43.3 If Breaker plays rationally, then he can prevent that some A�E�

intersects r ≥m1/5 distinct sets A�Hi�.

Proof. The “total danger” of the “forbidden configurations” is at most

�F �2 ·
((

2m
2

)
·�2 ·2−�m−m4/5−2r

√
m�

)r

≤

which is “extremely small.”

The next statement is the perfect analogue of Statement 41.4.

Statement 43.4 If Breaker plays rationally, then he can prevent the appearance of
any forbidden configuration described by the picture

j ∈ J

A(Ej) :

forbidden configuration

i ∈ I

A(Hi) :

A(E1)

A(E3)
A(E2)

A(H1)

A(H)

where the requirements are listed as follows:

(1) by dropping A�H�, the rest is still connected;
(2) �I� ≥ 2m1/5;
(3) every A�Ej� intersects at least two A�Hi�, i ∈ I;
(4) every A�Ej� intersects at least one new A�Hi�, i ∈ I .
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Proof. In view of Statement 43.3 we can assume that 2m1/5 ≤ �I� ≤ 3m1/5, and want
to show that the “danger” is “extremely small.” For notational simplicity assume
J = �1�2� � � � � J	; then the “danger” is less than a very long product which begins
with

�F � · �mD�2−�m−m4/5� · �mD�2−�m−2k� ·
((

2m
2

)
·�2 ·2−�m−m4/5−2

√
m�I��

)a1−1

·

(explanation for this part: �F � comes from choosing A�H�, �mD�2−�m−m4/5� ·
�mD�2−�m−2k� comes from choosing A�H1� and A�E1�, a1 is the number of neigh-
bors of A�E1� among A�Hi�, i∈ I , where “neighbor” of course means “intersecting,”
and the “−1” in a1−1 is clear since A�H1� was already counted)

·�m2D�2−�m−2k−2
√
m�I�� ·

((
2m
2

)
·�2 ·2−�m−m4/5−2

√
m�I��

)a2

·

(explanation: the factor �m2D� comes from choosing A�E2�)

·�m2D�2−�m−2k−2
√
m�I�� ·

((
2m
2

)
·�2 ·2−�m−m4/5−2

√
m�I��

)a3

· · ·

where aj (j = 1�2� � � � � J ) is the number of new neighbors of A�Ej� among A�Hi�,
i ∈ I (“neighbor” of course means “intersecting”). Note that the term −2

√
m�I� in

the exponent of 2 above comes from the fact that the sets A�Hi�, i ∈ I may intersect.
Since a1 + a2 + · · · + aJ = �I� ≥ 2m1/5, the product above is “extremely

small.”

Statement 43.4 was about the maximum size of a component of A�Hi�s (a com-
ponent arises when A�H� is dropped); the next result – the perfect analogue of
Statement 41.5 – is about all components, each containing at least two A�Hi�s.

Statement 43.5 If Breaker plays rationally, then he can prevent the appearance of
any configuration described by the figure

t11 t1 + 2t1 + 1 t1 + t2 t1 + t2 +           + tj

A(H)

1 2 j

j components

each having ≥ 2 A(Hi)s
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where there are j “components” with t1+ t2+· · ·+ tj ≥ 4m1/5, where each ti ≥ 2
(i.e. each “component” has at least two A�Hi�s).

Proof. In view of Statement 43.4 we can assume that 4m1/5 ≤ t1+ t2 +· · ·+ tj ≤
6m1/5, and want to show that the “danger” is “extremely small.” From the proof
of Statement 43.4 we can easily see that the “total danger” of the configurations
described in Statement 43.5 is less than

�F � ·2−�m��t1−1�+�t2−1�+···+�tj−1���

Since each ti ≥ 2, we have �t1−1�+�t2−1�+· · ·+�tj−1�≥ �t1+ t2+· · ·+ tj�/2≥
2m1/5, implying that

�F � ·2−�m��t1−1�+�t2−1�+···+�tj−1��

is “extremely small,” proving Statement 43.5.

Combining Statements 43.2 and 43.5, and also inequality (43.13), we obtain the
following

Statement 43.6 If Breaker plays rationally, then he can guarantee the following:
if there is a violator of the Hazardous Lemma (II), then the first violator A�H�

generates a “tree like configuration”

21 r

A(H2)
A(Hr)

A(H)

A(H1)

≥ l1 ≥ k−λ
8

|H1|
4

|H1|
4

|H2| ≥ l2 ≥ k−λ
8

|H2| ≥ lr ≥ k−λ
8

|Hr|
4

|Hr|

r ≥ K1−r

4

m 4
5 > 1Hj/ > 2k

where the l1+ l2+· · ·+ lr emergency super-sets are distinct (though they may have
“extra intersections” among each other). �

Next we study the possible “extra intersections” of these l1+ l2+· · ·+ lr emergency
super-sets. Question: Given an emergency super-set, how many other emergency
super-sets can intersect it? The following statement – the analogue of Statement
41.7 – gives an upper bound.

Statement 43.7 Consider the “tree like configuration” in Statement 43.6: let A�E�
be an arbitrary emergency super-set – the neighbor of (say) A�Hi0

� – and assume
that A�E� has t = y1 + y2 + � � �+ yj “extra intersections” with other emergency
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super-sets. If Breaker plays rationally, then he can guarantee the upper bound
t = y1+y2+ � � �+yj < m1/5 uniformly for all A�E�.

A(Hi1
) A(Hi2

) A(Hij
)

A(H)

A(Hi0
)

y1 + y2 +        + yj ≥ m

where each yν ≥ 1, 1 ≤ ν ≤ j.

y1 ≥ 1 y2 ≥ 1
yj ≥ 1

A(E)

1
5
–

Proof. If A�H�, A�Hi0
�, A�Hi1

�, � � � A�Hij
�, A�E� are fixed, then the picture shows

t= y1+y2+ � � �+yj 2-bond sets. If the statement fails, then without loss of generality
we can assume equality y1+y2+ � � �+yj =m1/5. We can estimate the “total danger”
from above as follows

�F � ·
(
�mD�2−�m−m4/5−2

√
m�j+1��

)j+1 · �mD�2−�m−2k�

·
((

�j+3�m
2

)
·�2 ·2−�m−2k−m1/5·2√m�

)m1/5

which is “extremely small.” Here the first factor �F � comes from A�H�, the next
factor (

�mD�2−�m−m4/5−2
√
m�j+1��

)j+1

comes from A�Hi0
�, A�Hi1

�, A�Hi2
�� � � �, A�Hij

�, the factor �mD�2−�m−2k� comes
from A�E�, and finally

((
�j+3�m

2

)
·�2 ·2−�m−2k−m1/5·2√m�

)m1/5

is the contribution of the y1+y2+ � � �+yj =m1/5 2-bond sets (see �2).
We also used the trivial fact that j ≤ y1+y2+ � � �+yj =m1/5.

Next we prove the analogue of Statement 41.8.
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Statement 43.8 Consider the “tree like configuration” in Statement 43.6:

21 r

A(H2)
A(Hr)

A(H)

A(H1)

≥ l1 ≥ k−λ
8

|H1|
4

|H1|
4

|H2| ≥ l2 ≥ k−λ
8

|H2| ≥ lr ≥ k−λ
8

|Hr|
4

|Hr|

By playing rationally Breaker can force that among these l1+l2+ � � �+lr emergency
super-sets, where r ≥ k1−
/4, we can always select at least �l1 + l2 + � � �+ lr�−
m4/5−
 pairwise disjoint sets.

Proof. Let M denote the maximum number of pairwise disjoint sets among the
l1+ l2+ � � �+ lr emergency super-sets, and assume M< �l1+ l2+ � � �+ lr�−m4/5−
.
This means, fixing the r+1 sets A�H�, A�H1�, A�H2�, � � �, A�Hr�, and also the M

disjoint sets among the emergency super-sets, there are at least m4/5−
 emergency
super-sets which are 2-bond sets. So the “total danger” is estimated from above as
follows

�F � · �mD�r2−�m−m4/5−r�r · (m2D2−�m−2k�
)M ·

((
m3

2

)
·�2 ·2−�m−2k−m1/5 ·2√m�

)m4/5−


�

Here �F � · �mD�r2−�m−m4/5−r�r is the contribution of A�H�, A�H1�� � � �, A�Hr�, the
factor (

m2D2−�m−2k�
)M

comes from the M disjoint emergency sets

((
m3

2

)
·�2 ·2−�m−2k−m1/5·2√m�

)m4/5−


comes from the 2-bond sets (see �2). Finally, the “m
1/5” in the exponent of 2 comes

from Statement 43.7. It follows that the “total danger” is “extremely small.”

Combining Statements 43.6 and 43.8 we obtain:

Statement 43.9 By playing rationally Breaker can force that, if there is a first
violator of Hazardous Lemma (II), then its “tree like configuration” can be trun-
cated (by throwing out sets if necessary) such that the l1+ l2+ � � �+ lr/2 emergency
super-sets are pairwise disjoint, where r ≥ k1−
/4. �
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1

A(H1)
A(Hr)

2–

A(H) r
2–

≥ l1 ≥ k−λ|H1|
4

|H1|
8 ≥ l1 ≥ k−λ|Hr/2|

4
|Hr/2|

8

Statement 43.9 can be interpreted as an analogue of Simplest Case (II): there
is no coincidence, and also there is no “extra intersection” beyond the mandatory
1-point intersections.

To complete the proof of Hazardous Lemma (II) we show that Breaker can
prevent the appearance of any truncated “tree like configuration” in Statement 43.9.
LetM be the maximum number of pairwise disjoint sets among A�H1�, � � �, A�Hr/2�.
We distinguish two cases:

Case A: M ≥ r/4
Then the originial argument at the end of Section 40 works without modification.

Case B: M< r/4
Then �r/2−M� > r/4 > M . Breaker employs the usual Power-of-Two Scoring
System; the “total danger” is estimated from above by

�F � ·2−∑r/2
j=1�m−�Hj �−2

√
m·j+�m−2k�lj� · �mD�M ·� r

2−M

2 · �mD�l1+���+lr/2

= �F � ·
r/2∏
j=1

((
mD

2m−2k

)lj

·2−�m−�Hj �−2j
√
m� ·√mD ·�2

)
� (43.14)

Note that lj ≥ k−
�Hj�/8, so returning to (43.14)

�43�14�≤ �F � ·
r/2∏
j=1

((
mD

2m−2k

)k−
�Hj �/8
·2−�m/2+�Hj �+2j

√
m

)
�

which is “exponentially small,” i.e. Breaker can indeed prevent it. This completes
the proof of Hazardous Lemma (II).

Since hypergraph F is not Almost Disjoint, we have to slightly modify Cases 1–8
in Section 39.

4. How to extract a Big Set from a large connected family of small sets?
Assume we are in the middle of a play; let S denote the family of all small sets
(up to this point of the play); a small set is either a small-em set (“blank part of
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an emergency set”) or a small-haz set (“blank part of a hazardous set”). The union
of the small sets is the small board; the union of the small-em sets is the E.R.
(Emergency Room).
Let C be a component of S with �C� ≥ 2k


 ·m−2. Of course, a component is a
connected family. It is trivial from Hazardous Lemma (II) that C must contain an
emergency set.
We describe a sequential extraction process finding T = 2k


/9 ·m−2 emergency
sets in C such that the union of their super-sets in F form a Big Set. More precisely,
we define a growing family Gj = �E1�E2� � � � �Ej	 of emergency sets, and the union
Uj = ∪j

i=1A�Ei� of their super-sets (Ei ⊂ A�Ei� ∈ F) for j = 1�2�3� � � � � T where
T = 2k


/9 ·m−2 (“integral part”).
The beginning is trivial: C must contain an emergency set E1� Let G1 = �E1	, and

let U1 = A�E1� be the super-set of E1�

To explain the general step, assume that we just completed the jth step: we have
already selected a family Gg�j� of g�j� distinct emergency sets, and the union of
their emergency sets from F is denoted by Ug�j�� Note that g�j� ≥ j � indeed, in
each step we shall find either 1 or l = k−
�H�/8 new emergency sets (the case of
the “centipede”), i.e. either g�j+1�= g�j�+1 or g�j+1�= g�j�+ l� By definition
�Ug�j�� ≤ g�j� ·m�

Next we describe the �j+1�st step. Unfortunately we have to distinguish several
cases. The case study is going to be very “geometric” in nature, so it is absolutely
necessary to fully understand the corresponding figures.
Note in advance that the family B of Big Sets is defined as follows

B =
{
B = UT � for all possible ways one can grow UT of length T = 2k


/9 ·m−2

in terms of F by using the Case Study below
}

(we shall clarify “grow” and “in terms of F” later).
Case 1A* is the same as Case 1 in Section 39; it is just repeated.

Case 1A*: The first A�C�-neighborhood of Ug�j� contains a super-set A�E� of an
emergency set E such that �Ug�j� ∩A�E�� = 1� Then Gg�j+1� = Gg�j� ∪ �E	� and so
Ug�j+1� = Ug�j�∪A�E� satisfies �Ug�j+1�� = �Ug�j��+ �m−1��

A(E)

�g(j)
The simplest form of “growth”
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We use the notation A�� � �� for a super-set in F , and so “A�C�-neighborhood”
means a family of super-sets of the members of component C; observe that A�C�
is a connected sub-family of F . Here the super-sets are not necessarily uniquely
determined.

Since the hypergraph is not Almost Disjoint, we have a new case which turns
out to be a huge “bonus” in the Calculations later.

Case 1B*: The first A�C�-neighborhood of Ug�j� contains a super-set A of a small set
S such that Ug�j�∩A is collinear. Then Gg�j+1� = Gg�j�∪�S	� and so Ug�j+1� = Ug�j�∪A

satisfies �Ug�j+1�� ≥ �Ug�j��+ �m−2
√
m��

�g(j)
A =

⎧
⎪
⎨
⎪⎩

A(E)
or
A(H)

≥ m − m

–

4
5
–

collinear intersection (≤ 2√m)

Why is Case 1B* a “bonus case”? Well, there are
(�Ug�j��

2

)
ways to choose 2 points

of the collinear intersection Ug�j� ∩A, and the Max Pair-Degree �2 ≤ 2�1−��m; the
product(�Ug�j��

2

)
2�1−��m is negligible compared to the target value 2m−m4/5−2

√
m�

which comes from the fact that in the Big Game Maker has a Shutout of size
≥m−m4/5−2

√
m in set A. Note that “−m4/5” comes from (43.13) and “−2

√
m”

comes from condition (b) in Theorem 43.1.
Next comes Case 2A* which is the analogue of Case 2 in Section 39.

Case 2A*: The second A�C�-neighborhood of Ug�j� contains a super-set A�E� of
an emergency set E such that there is a neighbor A1 of A�E� from the first A�C�-
neighborhood of Ug�j� which intersects Ug�j� in at least three non-collinear points.

�g(j)
A(E)

A1 : bond set

Then Gg�j+1� = Gg�j�∪�E	� A1 is an auxiliary bond set, and Ug�j+1� = Ug�j�∪A�E�

satisfies �Ug�j+1�� = �Ug�j��+m.
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The name bond set comes from the fact that by condition (d) in Theorem 43.1
three non-collinear points determine a plane. Bond sets have little effect in the
calculation of the total number of Big Sets, see the Calculations later. To illus-
trate what we mean, let’s calculate the number of different ways we can “grow”
to Gg�j+1� from Gg�j� in Case 2A*. A trivial upper bound on the number of
possibilities is (�Ug�j��

3

)
�m−3� ·D ≤ g3�j� ·m4 ·D

6
�

where D=D�F� is the Maximum Degree of F �

Next comes another “bonus case.”

Case 2B*: The second A�C�-neighborhood of Ug�j� contains the super-set A�S� of a
small set S such that there is a neighbor A1 of A�S� from the first A�C�-neighborhood
of Ug�j� which (1) intersects Ug�j� in a non-collinear set, and (2) A�S�∩A1 has at
least 2 elements.

�g(j)

or

A(S) =

⎧
⎪
⎨
⎪⎩

A(E)
or
A(H)

Since A1 is a bond set, Case 2B* is a bonus case for the same reason as Case
1B*.
As in Section 39 we interrupt our case study for a moment, and make

an observation about the hazardous sets of C� Let H ∈ S be an arbi-
trary small-haz set. We show that H can have a very limited number of
“types” only. The types listed below form the analogue of Types 1–4 in
Section 39.

Type 1*: A�H� intersects Ug�j� in a non-collinear set.

�g(j)
A(H)

Type 2A*: A�H� intersects Ug�j� in at least 2 elements.
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�g(j)

A(H)

Observe that Type 2A* is covered by Case 1B*, so without loss of generality we
can assume that there is no Type 2A* hazardous set in C� Also Type 1* is excluded,
unless, of course, A�H� is in the first A�C�-neighborhood of Ug�j�.

Type 2B*: There exist an emergency set E such that �A�E�∩A�H�� = 1 and
�A�E�∩Ug�j�� = 1�

�g(j)
A(E)

A(H)

Observe that Type 2B* is covered by Case 1A*, so without loss of generality we
can assume that there is no Type 2B* hazardous set in C�
Type 2C*: There exist an emergency set E such that �A�E�∩A�H�� = 1 and
A�E�∩Ug�j� is a collinear set of size ≥ 2.

�g(j)

A(E)

A(H)

Observe that Type 2C* is covered by Case 1B*, so without loss of generality we
can assume that there is no Type 2* hazardous set in C�
Type 3*: There exist three emergency sets E1, E2, and E3 such that each intersection
A�Ei�∩Ug�j� is non-collinear, �A�Ei�∩A�H�� = 1 for i = 1�2�3, and the 3 points
A�Ei�∩A�H� form a non-collinear set.

�g(j)
A(H)

A(E3)

A(E2)

A(E1)
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Type 4*: There exist l= k−
�H�/8 emergency sets E1�E2� � � � �El such that �A�Ei�∩
Ug�j�� = 0 and �A�Ei�∩A�H�� = 1 for i= 1�2� � � � � l; it is like a “centipede.”

�g(j)

A(E2) A(El)A(E1)

A(H)

Note that for Types 2B*, 2C*, 3*, 4* the intersection size �A�H�∩Ug�j�� is 0
or 1. In view of Statement 43.2 we can assume that the “legs” of the “centipede”
are pairwise disjoint. The last type is another bonus.

Type 5*: �A�H�∩Ug�j�� is 0 or 1, and there exist two emergency sets E1 and E2

such that �A�Ei�∩Ug�j�� ≥ 2 and �A�Ei�∩A�H�� = 1 for i= 1�2�

�g(j)

≥ m − m
4
5
–

A(H)

A(E1)

A(E2)

We have no more types, because the seemingly missing case “A�H�∩Ug�j� is
non-collinear” is already covered by Type 1*.

After the classification of “types,” we can return to our case study. Assume that the
second A�C�-neighborhood of Ug�j� contains a super-set A�E� of an emergency set E�
Let A1 be a neighbor of A�E� from the first A�C�-neighborhood of Ug�j�� In view of
Cases 1B*, 2A*, 2B* we can assume that A1 intersects Ug�j� in exactly one point. By
Case 1A*weknow thatA1 =A�H�� i.e.A1 has to be the super-set of a hazardous setH .

�g(j)

A(E)

A1 = A(H)

We have two possibilities: H is of Type 3* or Type 4*.

Case 3*: H is of Type 3*. Then Gg�j+1� = Gg�j�∪ �E	, A�E1��A�E2��A�E3��A�H�

are auxiliary bond sets, and clearly �Ug�j+1�� = �Ug�j��+m.
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�g(j) A(H)

A(E3)

A(E2)

A(E1)

Case 4*: H is of Type 4*. Then Gg�j+1� = Gg�j�∪ �H�E1�E2� � � � �El	� and A�H� is
an auxiliary set, but not a bond set. We have

�Ug�j+1�� ≥ �Ug�j��+ lm+ �m− l−1��

�g(j)
A(H)

A(El)A(E2)A(El)

The number of ways we can “grow” to Gg�j+1� from Gg�j� in Case 4* is bounded
from above by

�Ug�j�� ·D · �mD�l where l= k−
�H�/8
and D = D�F� is the Maximum Degree. Similarly to the proof of Theorem 40.1,
here in Case 4* we also include set A�H�, so the target value of this configuration
is at least (note that �H� = 8lk
)

2�m−�H��+l�m−2k� = 2�l+1�m−2kl−8k
l ≥ 2�n−2k−8k
��l+1��

It follows that the ratio

�Ug�j�� ·D · �mD�l

2�m−�H��+l�m−2k�
≤ �Ug�j�� ·

(
mD

2m−2k−8k


)l+1

≤ �Ug�j�� ·2−kl (43.15)

is extremely small if �Ug�j�� ≤ 2kl/2. Notice that (43.15) is the perfect analogue of
(40.15).

In the rest of the case study we can assume that the second A�C�-neighborhood
of Ug�j� consists of hazardous sets only.
Let H be a hazardous set in the second A�C�-neighborhood of Ug�j�. Let A1 be a

neighbor of A�H� which is in the first A�C�-neighborhood of Ug�j�� Then:

(a) either A1∩Ug�j� is non-collinear;
(b) or A1∩Ug�j� is a collinear set of size ≥ 2;
(c) or A1∩Ug�j� is a one-element set.

Observe that here the second option (b) is covered by Case 1B*.
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Case 5A*: A1∩Ug�j� is non-collinear and A1∩A�H� is a set of size ≥ 2.

�g(j)
A(H)

A1

Then Gg�j+1� = Gg�j�∪ �H	� Since A1 is a bond set, this case is basically the same
as Case 1B*.

Case 5B*: �A1∩Ug�j�� ≥ 2, �A1∩A�H�� = 1, and H is a Type 4* hazardous set.

�g(j)
A(H)

A(El)A(E2)A(El)
A1

Then Gg�j+1� = Gg�j�∪�E1�E2� � � � �El	 with l= k−
�H�/8. Since A1 is a bond set,
this case is basically the same as Case 4*.
Note that the case “A1 ∩Ug�j� is non-collinear, �A1 ∩A�H�� = 1, and H is a

Type 3* hazardous set” is covered by Case 3*.
Finally, consider the case �A1∩Ug�j�� = 1� Then A1 = A�H1�, where H1 is either

Type 4*, which is covered by Case 4*, or of Type 3*, which is covered by Case 3*.
This completes the case study!

5. Calculations: We go through the cases discussed above; we give an upper bound
to the number of ways one can “grow” to Gg�j+1� from Gg�j�, and also we renormalize
by dividing each with its own target value

�Ug�j�� ·D ·2−�m−2k� ≤g�j� ·m ·D ·2−�m−2k� in Case 1A∗�
(�Ug�j��

2

)
�2 ·2−�m−m4/5� ≤g2�j� ·m2 ·2�1−��m

2
·2−�m−m4/5� in Case 1B∗�

(�Ug�j��
3

)
·mD ·2−�m−2k� ≤g3�j� ·m4 ·D

6
·2−�m−2k� in Case 2A∗�

(�Ug�j��
3

)
·
(
m

2

)
�2 ·2−�m−m4/5� ≤g3�j� ·m5 ·2�1−��m

12
·2−�m−m4/5� in Case 2B∗�
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(�Ug�j��
3

)3

·m3 ·2−�m−m4/5� ≤g�j�9m12

216
·2−�m−m4/5� in Case 3∗�

�Ug�j�� ·D · �mD�l2−�m−�H��−l�m−2k� ≤g�j� ·2−kl in Case 4∗�

where l= k−
�H�/8, and we used (43.15)(�Ug�j��
3

)(
m

2

)
�2 ≤

g3�j� ·m5 ·2�1−��m ·2−�m−m4/5�

12
in Case 5A∗�

(�Ug�j��
3

)
�mD�l+12−�m−�H��−l�m−2k� ≤ g3�j� ·2−kl in Case 5B∗�

where l= k−
�H�/8, and we used (43.15).
Note that the “legs” A�E1�, A�E2�, � � � , A�El� of the “centipede” are pairwise

disjoint. Indeed, in view of Statement 43.2 the “disjointness” is guaranteed with
“l/2” instead of “l,” which is irrelevant in the calculations.

6. Conclusion. In view of the RELARIN technique, the smallest winning set size
in the small game is ≥ k
. If two planes have an intersection of size ≥ 2, then the
intersection is a line. Since 2 points uniquely determine a line (Almost Disjointness,
see condition (d) in Theorem 43.1), every small set contains at most

(
m

2

)
winning

sets of size ≥ k
.
It follows that, if every component of the family of small sets in the small game

has size ≤ 2k

 ·m−2, then Breaker can block every winning set in the small game.

This statement is the perfect analogue of the Growing Erdős–Selfridge Lemma in
Section 39, and the proof is the same.

The next statement is the perfect analogue of the Big Set Lemma in Section 39:
If at some stage of the play there is a component C of the family S of all small sets
such that

�C� ≥ 2k



m2
�

then there is a Gg�j� ⊂ C such that

g�j�≥ 2k

/9

m2
�

Here Gg�j� is a family of small sets selected from C such that in each one of the j

steps the “growth” comes from one of the cases described above.
Indeed, we can clearly repeat the proof of the Big Set Lemma if the inequality

g9�j� ·m12 <
2k




m2

holds, which is certainly the case with g�j� = 2k

/9 ·m−2. The final step in the proof

is to prevent the appearance of the corresponding huge Shutout in a Big Set UT with
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T = 2k

/9

m2
�

Similarly to Section 39, here again Breaker applies Lemma 5 from Section 36 to
the family of all “Big Sets in the broad sense.” By choosing the parameters as


= 1

2
� k=m2/5� g�j�= T = 2m

1/5/9

m2
�

and m ≥ c0 = c0���, every term in the Calculations above becomes less than 1/2
or 2−�l+1�, respectively, where 2−�l+1� corresponds to the “centipedes.” Therefore,
Lemma 5 from Section 36 applies if

�F �
(
1
2

)T−1

<
1

2
�

which is trivially true with

T = 2m
1/5/9

m2
and �F � ≤ 2m

1�1

if m is large enough. This completes the proof of Theorem 43.1.
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1. Taking care of the Translates. In the proof of Theorem 8.2 (we ignore case
(h): complete bipartite graphs, which is basically covered by Theorem 6.4) we face
a new technical difficulty: two q× q lattices may have very large non-collinear
intersections, far beyond the square-root size intersection of “planes” in Section 43 –
translates are particularly bad. Two q×q lattices are called translates of each other
if one can be moved to the other by a translation, where the translation is given by
a vector whose 2 endpoints belong to the q×q lattice.

This means we have to modify the proof of Theorem 43.1; the RELARIN technique
has to be combined with some new, ad hoc arguments – see the two Selection
Lemmas below. The first Selection Lemma says that “a family of emergency
sets arising in a play, where any two are translates of each other, cannot be too
crowded.” The second one, a 2-dimensional generalization of Lemma 42.1, says
that, “if a family of q× q lattices doesn’t contain translates, then we can always
select a relatively large sub-family with a large union set.”

575
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First fix a type from (a) to (g) in Theorem 8.2, and let F denote the family of
all q×q lattices of the fixed type in the N ×N board. Let m= q2, and assume that

�F � ≤ 2m
1+ 

2 = 2q
2+

� (44.1)

Note in advance that = 10−4 will be a good choice – see Theorem 44.1 at the end
of the section – but at this stage we work with  as an unspecified small positive
absolute constant.
The precise form of the First Selection Lemma is the following; note that we

use the notation of the RELARIN technique introduced in Section 43; here each
winning set is a q×q lattice of fixed type (see (a)–(g) in Theorem 8.2).

First Selection Lemma: Let 0 <  ≤ � ≤ 1/100 and k = q1−. Consider a play
in a Lattice Game in the N ×N board where Breaker uses the RELARIN technique
described in the proof of Theorem43.1 up toHazardousLemma (II) in Section 43. (The
value of the critical exponent 0< 
< 1 in the RELARIN technique is unspecified yet.)
LetA�E1�,A�E2�, � � � ,A�El� be l emergency super-sets such that:

(1) any two are translates of each other, and
(2) every A�Ei�, i= 2�3� � � � � l intersects the first super-set A�E1�. If q is sufficiently

large depending on the value of the RELARIN constant 
, then l < q1−�.

Remark. The proof employs an iterated density growth argument.

A(E1)

Proof. Let k= q1− with 0< ≤�≤ 1/100. The hypothesis of the lemma implies
that at the end of the play each A�Ei�, 1 ≤ i ≤ l has at least �q2 − 2k� marks of
Maker in the Big Game. Here Ei denotes the �≤ 2k�-element emergency set. Let Ẽi

denote the �≥ k�-element small-em subset Ẽi ⊂Ei; note that each Ei intersects every
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other small set Ẽj (j = i�1 ≤ j ≤ l) in less than k
 points – this is a consequence
of the RELARIN technique.

Assume that every A�Ei� with i= 2�3�4� � � � � l intersects A�E1�. If l≥ q1−�, then
from this assumption we are going to derive a contradiction. Assumptions (1)–(2)
above guarantee that the l translatesA�Ei�with i= 1�2�3� � � � � l can be all embedded
in an appropriate “underlying lattice” of size 3q×3q, see the figure above.
We divide this 3q× 3q underlying lattice into 100q1+� “boxes,” where each

“box” has the size 3q�1−��/2/10× 3q�1−��/2/10. Every super-set A�Ei� is a q× q

lattice itself; we identify it with its “lower left corner”; we denote the “lower left
corner” by LLCi (1≤ i ≤ l). We distinguish two cases:

Case A: Some “box” contains at least 20 LLCis
Let �LLCi � i ∈ I	 denote the set of �I� ≥ 20 “lower left corners” in the same
“box.” Project the �I� ≥ 20 LLCis on to the horizontal and vertical sides of the
“box”; we get at most 2�I� points (some of the projections may coincide).

hmax

hmaxhmin

Vmin

Let hmax and hmin denote the horizontal maximum and minimum among the projec-
tions, and, similarly, let vmax and vmin denote the vertical maximum and minimum
among the projections. The four projections come from (at most) 4 LLCis, which
determine (at most) 4 supersets: for notational convenience we denote them by
A�E1�, A�E2�, A�E3�, A�E4� (there may occur some coincidence among them).

We study the following geometric question: Let j ∈ I \ �1�2�3�4	; how large is
the difference-set

(⋃4
i=1A�Ei�

)\A�Ej�? Consider, for example, the lower left corner
of A�Ej�, and assume that A�E1� corresponds to hmin and A�E2� corresponds to vmin.

A(Ej)

A(E2)

A(E1)

Then A�E1�∪A�E2� “almost” covers the lower left corner neighborhood of A�Ej�:
the possibly uncovered part (the shaded region on the picture) has area less than
that of the “box,” i.e. less than 9q1−�/100. The same applies for the other 3 corners
of A�Ej�. It follows that



578 Game-theoretic lattice-numbers

Area

((
4⋃

i=1

A�Ei�

)
\A�Ej�

)
≤ 4 · 9

100
q1−� = 9

25
q1−�� (44.2)

Let V�end�Big�Maker� denote the part of board V = N ×N , which is occupied
at the end of the play by Maker in the Big Game. Clearly

A�Ei�\V�end�Big�Maker�= Ei ⊃ Ẽi� (44.3)

Since any 2 distinct Ẽis have intersection ≤ k
, with J = I \ �1�2�3�4	 we have∣∣∣∣∣
⋃
j∈J

Ẽj

∣∣∣∣∣≥
∑
j∈J

∣∣∣Ẽj

∣∣∣− ∑
j1<j2

∣∣∣Ẽj1
∩ Ẽj2

∣∣∣

≥�J �k−
(�J �
2

)
k
 ≥ ��J �−1�k� (44.4)

assuming q is sufficiently large depending on the value of (the unspecified yet)
constant 0< 
 < 1.
By (44.2) and (44.3) ∣∣∣∣∣

4⋃
i=1

Ei

∣∣∣∣∣≥
∣∣∣∣∣
⋃
j∈J

Ẽj

∣∣∣∣∣−�J � · 9

25
q1−�� (44.5)

But (44.5) contradicts (44.4): indeed

8k≥
∣∣∣∣∣

4⋃
i=1

Ei

∣∣∣∣∣≥
∣∣∣∣∣
⋃
j∈J

Ẽj

∣∣∣∣∣−�J � · 9

25
q1−� ≥ ��J �−1�k−�J � · 9

25
q1−� ≥ 9k�

since k= q1− ≥ q1−�. This proves that Case A is impossible.
If Case A fails, then at least l/20 “boxes” are non-empty; since l ≥ q1−� and

the total number of “boxes” is 100q1+�, we have the following:

Start: The density of the non-empty “boxes” among all “boxes” is at least

q1−�/20
100q1+�

= q−2�

2000
�

Let us divide the 3q× 3q underlying lattice into 6× 6 = 36 equal parts, and for
each part apply the 3×3 “Tic-Tac-Toe partition”
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Assume first that there is a 3× 3 “Tic-Tac-Toe partition” such that each one
of the 4 corner squares contains at least one LLCi – let i = 1�2�3�4 – and also
the middle square contains at least 20 LLCjs – let j ∈ J where �J � ≥ 20. Then we
obtain a contradiction the same way as in Case A. Indeed

4⋃
i=1

A�Ei�⊃
⋃
j∈J

A�Ej�� (44.6)

and subtracting V�end�Big�Maker� from both sides of (44.6), we have

4⋃
i=1

Ei ⊃
⋃
j∈J

Ẽj� (44.7)

which is even stronger than (44.5). Now applying the argument in (44.4) we end
up with a contradiction.

We can assume, therefore, that in each one of the 36 q/2× q/2 squares either
one of the 4 small corner squares is empty, or the small middle square has less
than 20 LLCis (“almost empty”). Then in one of the 9 ·36= 324 q/6×q/6 squares
the density of the non-empty “boxes” goes up by at least 10%, i.e. we arrive
at the:

First Step: There is a particular q/6× q/6 square such that the density of the
non-empty “boxes” among its all “boxes” is at least(

1+ 1

10

)
q−2�

2000
�

Let’s divide this q/6× q/6 square into 3× 3 = 9 smaller squares (“Tic-Tac-Toe
partition”).

Assume first that each one of the 4 corner squares contains at least one LLCi –
let i= 1�2�3�4 – and also the middle square contains at least 20 LLCjs – let j ∈ J

where �J � ≥ 20. Then we obtain a contradiction the same way as in the Start.
We can assume, therefore, that either one of the 4 corner squares is empty, or

the middle square has less than 20 LLCis (“almost empty”). Then in one of the
9 q/18× q/18 squares the density of the non-empty “boxes” goes up by at least
10%, i.e. we arrive at the:



580 Game-theoretic lattice-numbers

Second Step: There is a particular q/18×q/18 square such that the density of the
non-empty “boxes” among its all “boxes” is at least(

1+ 1

10

)2
q−2�

2000
�

Iterating this argument, in the rth step we get the:

General Step: There is a particular q3−r/2×q3−r/2 square such that the density
of the non-empty “boxes” among its all “boxes” is at least(

1+ 1

10

)r
q−2�

2000
�

By choosing r = r0 where 3r0 ≈ q1/3 we get a contradiction. Indeed, a density is
always ≤ 1, so (

1+ 1
10

)r0

· 1

2000q2�
≤ 1�

which clearly contradicts the choice 3r0 ≈ q1/3 if �≤ 1/100 and q is large enough.
This contradiction proves the First Selection Lemma.

Second Selection Lemma: Let A1, A2, � � � , Al be l q× q parallelogram lattices
in ZZ2. Assume that this is a translates-free family, i.e. there are no two which
are translates of each other. If l ≤ q4, then we can always select a sub-family Aj1

,
Aj2

, � � � , Aj�
such that � ≥ l1/33 and∣∣∣∣∣

�⋃
i=1

Aji

∣∣∣∣∣≥ ��−1�q2�

Proof. This lemma is a 2-dimensional generalization of Lemma 42.1; not surpris-
ingly the proof is also a generalization of the proof of Lemma 42.1. Again the
idea is to employ the Pigeonhole Principle. What can we say about the intersection
Ai1

∩Ai2
of two q× q parallelogram lattices? The intersection is either collinear

(“small” like O�q�) or non-collinear (“can be very large”). Let

Ai1
= �ui1

+kvi1 + lwi1
� k= 0�1� � � � � q−1� l= 0�1� � � � � q−1	

and
Ai2

= �ui2
+kvi2 + lwi2

� k= 0�1� � � � � q−1� l= 0�1� � � � � q−1	�

If the intersection is non-collinear, then there are integers a1� b1� c1�d1� a2� b2� c2�d2

such that

a1vi1 +b1wi1
= c1vi2 +d1wi2

(44.8)

a2vi1 +b2wi1
= c2vi2 +d2wi2

(44.9)

and the 2 vectors in (44.8) and (44.9) are non-parallel.
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It is easy to see that

�Ai1
∩Ai2

� ≤ 2q2

max��a1�� �b1�� �c1�� �d1�� �a2�� �b2�� �c2�� �d2�	
� (44.10)

If v = �v�1�� v�2�� and w = �w�1��w�2��, then (44.8) and (44.9) together can be
expressed in terms of 2-by-2 matrices as follows

(
a1 b1
a2 b2

)⎛
⎝v

�1�
i1

v
�2�
i1

w
�1�
i1

w
�2�
i1

⎞
⎠=

(
c1 d1

c2 d2

)⎛
⎝v

�1�
i2

v
�2�
i2

w
�1�
i2

w
�2�
i2

⎞
⎠ � (44.11)

where (44.11) is a non-singular matrix.
By (44.11)⎛
⎝v

�1�
i2

v
�2�
i2

w
�1�
i2

w
�2�
i2

⎞
⎠=

(
c1 d1

c2 d2

)−1(
a1 b1
a2 b2

)⎛
⎝v

�1�
i1

v
�2�
i1

w
�1�
i1

w
�2�
i1

⎞
⎠

= �c1d2−d1c2�
−1

(
d2 −d1

−c2 c1

)(
a1 b1

a2 b2

)⎛
⎝v

�1�
i1

v
�2�
i1

w
�1�
i1

w
�2�
i1

⎞
⎠ � (44.12)

So by (44.12) ⎛
⎝v

�1�
i2

v
�2�
i2

w
�1�
i2

w
�2�
i2

⎞
⎠=

(
� �

� �

)⎛
⎝v

�1�
i1

v
�2�
i1

w
�1�
i1

w
�2�
i1

⎞
⎠ � (44.13)

where ������� are four rational numbers such that each numerator and each
denumerator has absolute value ≤ 2M2, where M = max��a1�� �b1�� �c1�� �d1��
�a2�� �b2�� �c2�� �d2�	.
Now we are ready to select a “relatively large sub-family of A1�A2� � � � �Al

which forms a large union set.” First pick A1, and study those Ajs for which

�A1 ∩Aj� > 2q2

M
(M will be specified later as an integral parameter much less

than q); we call these js “M-bad with respect to 1.” By (44.10) we have
max��a1�� �b1�� �c1�� �d1�� �aj�� �bj�� �cj�� �dj�	≤M (see (44.8)–(44.9)).
If max��a1�� �b1�� �c1�� �d1�� �aj�� �bj�� �cj�� �dj�	≤M , then the number of different

matrices
(
� �

� �

)
in (44.13) is at most

((
4M2+1

)2)4
, so the total number of indices

j which are “M-bad with respect to 1” is
(
4M2+1

)8
.

From �1�2� � � � � l	 we throw out all indices j which are “M-bad with respect to 1,”
and 1 itself, and pick an arbitrary index h1 from the remaining set. We study those
Ajs for which �Ah1

∩Aj�> 2q2

M
; we call these js “M-bad with respect to h1.” Just as

before we throw out all indices j which are “M-bad with respect to h1,” and h1 itself,
and pick an arbitrary index h2 from the remaining set, and so on. Repeating this
argument, we obtain a sub-sequence h0 = 1� h1� h2� h3� � � � of �1�2� � � � � l	 such that
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�Ahi
∩Ahj

� ≤ 2q2

M
holds for all 0 ≤ i < j < r = l

�4M2+1�8+1
� (44.14)

By (44.14) ∣∣∣∣∣
r⋃

j=1

Ahj

∣∣∣∣∣≥ r ·q2−
(
r

2

)
· 2q

2

M
≥ �r−1�q2

if M = l2/33 and r = √
M . This completes the proof of the Second Selection

Lemma.

2. How to prove the Hazardous Lemma? Again the main difficulty is how to
prove the analogous Hazardous Lemma.

Hazardous Lemma (III): Consider a play in a Lattice Game in the N ×N board
where Breaker uses the RELARIN technique with k = q1− (where 0 <  ≤ 1/100
will be specified later) developed at the beginning of Section 43 up to Hazardous
Lemma (II). If Breaker extends the Big Game with some additional Forbidden
Configurations, he can force that, during the whole course of the play, every
hazardous set H intersects the E.R. (“Emergency Room”) in at least �H�/4 points.

Proof of the Hazardous Lemma (III). Recall that F denotes the family of all
q×q sub-lattices of a fixed type in N ×N (see types (a)–(g) in Theorem 8.2); F
is an m-uniform hypergraph with m= q2. (If the reader wants a concrete example,
then it is a good idea to pick the most general lattice: the parallelogram lattice.)
The situation here is somewhat similar to Theorem 43.1: we have the following

weaker version of condition (d):

(1) 3 non-collinear points in the N ×N board nearly determine a winning lattice
A ∈F in the sense that there are at most

(
q2

3

)
winning lattices A ∈F containing

an arbitrary fixed non-collinear triplet;
(2) the Max Pair-Degree �2 = �2�F� of hypergraph F satisfies an upper bound

�2 ≤ 2�1−��m = 2�1−��q2

with some positive absolute constant � > 0.

To understand what Breaker has to prevent, assume that there is a “violator.” Let
H be the first violator of Hazardous Lemma (III): H is the first hazardous set which
intersects the E.R. in less than �H�/4 points. Since �H� ≥ 2k+2, H must intersect
the difference-set “smallboard minus E.R.” in ≥ k/2 points. These ≥ k/2 points are
covered by non-violator hazardous sets H1, H2, � � � , Hq where k1−
/2 ≤ q ≤ k/2;
note that an intersection of size ≥ k
 would prevent H to be a new hazardous set –
this is a consequence of the RELARIN technique. Since each Hj, 1 ≤ j ≤ q is a
non-violator of the Hazardous Lemma (III), each Hj must intersect the E.R. in at
least �Hj�/4 points, which are covered by emergency sets Ej�1, Ej�2, � � � , Ej�lj

. Note
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that the inequality k−
�Hj�/4≤ lj ≤ �Hj�/4 holds for every j = 1�2� � � � � q. Formally
we have 1+q+∑q

j=1 lj super-sets

A�H��A�H1�� � � � �A�Hq��A�E1�1�� � � � �A�E1�l1
��A�E2�1�� � � � �A�E2�l2

��

A�E3�1�� � � � �A�E3�l3
�� � � � �A�Eq�1�� � � � �A�Eq�lq

�� (44.15)

but there may occur some coincidence among these hyperedges of F , and also there
may occur some “extra intersection” among these sets. As usual A�� � �� denotes a
super-set (but the super-set is not uniquely determined anymore because we gave
up on Almost Disjointness; this ambiguity doesn’t cause any problem).

Again the idea is to reduce the proof of Hazardous Lemma (III) to an analogue of
the Simplest Case. A novelty in the proof is that we need many more extra classes
of Forbidden Configurations, and have to show that they are all “avoidable” in a
rational play.

Let k=m�1−�/2 = q1− (the value of 0 <  ≤ 1/100 is undefined yet; = 10−4

will be a good choice).
Again we call A�Hi� together with A�Ei�1�, A�Ei�2�, � � � , A�Ei�li

� the ith
“centipede”; A�Hi� is the “head” and A�Ei�1�, A�Ei�2�, � � � , A�Ei�li

� are the “legs.”
A new technical difficulty is that the “legs” may have very large overlappings;

the largest overlappings may come from “translates.”

Step 1: Let A�Ei�j�, j ∈ J be a family of “legs” such that:

(1) �A�Hi�∩A�Ei�j�� ≥ 2, j ∈ J , and
(2) any two A�Ei�j�’s with j ∈ J are translates of each other.

What is the largest possible size �J � under conditions (1)–(2) above?

A(Hi)

A(Ei,j), j  ∈ J

translates

It follows from the First Selection Lemma that there are �J0� ≥ q−1+��J � pair-
wise disjoint “legs” A�Ei�j� with j ∈ J0 ⊂ J . The “target value” of the system
�A�Hi��A�Ei�j�� j ∈ J0	 is at most
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�F �
((

m

2

)
�2 ·2−�m−2k−2�

)�J0 �

≤ �F �
((

m

2

)
·2�1−��m−�m−2k−2�

)�J0�
�

which, in view of (44.1), is “extremely small” if �J0� ≥ 2q/�. Thus the case

�J � ≥ 2
�
q1−�+

is avoidable if Breaker plays rationally in the Big Game.

Step 2: Let A�Ei�p�, p∈P be the family of all “legs” such that �A�Hi�∩A�Ei�p�� ≥ 2,
p ∈ P. It follows from Step 1 that there is a subset P0 ⊂ P with

�P0� ≥
�P�

2
�
q1−�+

such that A�Ei�p�, p ∈ P0 is translates-free. By the Second Selection Lemma there
is a subset P1 ⊂ P0 such that

�P1� ≥ �P0�1/33 and � ⋃
p∈P1

A�Ei�p�� ≥ ��P1�−1�m�

The “target value” of the system �A�Hi��A�Ei�p�� p ∈ P1	 is at most

�F � ·
((

m

2

)
�2

)�P1�
·2−��P1�−1��m−2k−2�

≤ �F � ·2m ·
((

m

2

)
·2�1−��m−�m−2k−2�

)�P1�
�

which is “extremely small” if

�P1� ≥ 2
�
q ⇐⇒ �P0� ≥

(
2
�

)33

q33�

Therefore, the case

�P� ≥
(
2
�

)33

q1−�+34

is avoidable if Breaker plays rationally in the Big Game.
Recall that

li ≥ k−
�Hi�/4≥
1

2
k1−
 = 1

2
q�1−��1−
��

Thus if �1−��1−
�> 1−�+34, then the “legs” with �≥ 2�-element intersection
in A�Hi� form a small minority; we throw them all out. Therefore, in the rest of the
proof we can assume that every “leg” A�Ei�j� intersects A�Hi� in exactly 1 point.
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Step 3: Let A�Ei�s�, s ∈ S be the family of all “legs” with the property that A�Ei�s�

intersects another translate “leg.” Let A�Ei�s�, s ∈ S0 be a maximum size sub-family
of pairwise disjoint “legs”; of course, S0 ⊂ S.

Case a: Among the “legs” A�Ei�s�, s ∈ S0 there is a sub-family of size ≥ 2
�
q such

that any 2 elements are translates of each other.
Let S1 ⊂ S0 with �S1� ≥ 2

�
q the index-set for this family of “pairwise translates.”

By definition each A�Ei�s� with s ∈ S1 intersets another translate “leg”; these 2
intersecting q× q lattices together are contained in a �2q�× �2q� lattice, which
intersets A�Hi� in two points. This means we can repeat the argument of Step 1.
Indeed, we can assume that the Max Pair-Degree for the family of all �2q�× �2q�
lattices is 2�1−��m; furthermore, there are at most 4q2 ways to localize a q×q lattice
inside a �2q�× �2q� lattice. So the “target value” of the system �A�Hi��A�Ei�s�� s ∈
S1	 is at most

�F � ·
((

m

2

)
·2�1−��m ·4m2 ·2−�m−2k−2�

)�S1�
�

which is “extremely small” if �S1� ≥ 2
�
q. This proves that Case a is avoidable if

Breaker plays rationally in the Big Game.

Case b: Among the “legs” A�Ei�s�, s ∈ S0 there is a sub-family of size

≥
(
2
�

)33

·q33 which is translates− free�

Now we can basically repeat the argument of Step 2 (applying the Second Selection
Lemma!), and conclude that Case b is also avoidable by Breaker.

We can assume that

�S0�<
(
2
�

)34

·q34�

Indeed, otherwise either Case a or Case b holds, and both are avoidable. The First
Selection Lemma gives that

�S� ≤ �S0� ·q1−�� thus we have �S�<
(
2

�

)34

·q1−�+34�

If �1−��1−
� > 1−�+34, then the set A�Ei�s�, s ∈ S of “legs” forms a small
minority among all “legs” of A�Hi�; we throw the “legs” A�Ei�s�, s ∈ S all out.
Therefore, in the rest of the proof we can assume the following properties:

(A) any 2 “legs” of A�Hi�, which are translates of each other, are pairwise disjoint;
(B) the total number of “legs” of A�Hi� is ≥ �1− o�1��k−
�Hi�/4; and from the

argument at the end of Step 2:
(C) every “leg” intersects A�Hi� in exactly 1 point (of course different “legs”

intersect in different points).
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Step 4: For notational convenience we can assume that the consecutive indices
A�Ei�1�, A�Ei�2�, A�Ei�3�, � � � , A�Ei�li

� denote the set of “legs” of A�Hi�

satisfying properties (A)–(B)–(C) above. Consider the largest component
of �A�Ei�1��A�Ei�2�� � � � �A�Ei�li

�	; again for simplicity we can assume that
�A�Ei�1��A�Ei�2�� � � � �A�Ei�t�	 is the largest component (the first t “legs”), and also
we can assume that A�Ei�2� intersects A�Ei�1�, A�Ei�3� intersects A�Ei�1�∪A�Ei�2�,
A�Ei�4� intersects A�Ei�1�∪A�Ei�2�∪A�Ei�3�, and so on.

We compute the “target value” of �A�Hi��A�Ei�1��A�Ei�2��A�Ei�3�� � � � �A�Ei�t�	.
The first 2 sets A�Hi��A�Ei�1� represent “target value” at most

�F � ·mD2−�m−2k−2��

where D =MaxDegree�F�. The second “leg” A�Ei�2� intersects A�Hi� in 1 point;
moreover, A�Ei�2� intersects A�Ei�1� either (1) in 1 point, or (2) in a �≥ 2�-element
collinear set, or (3) in a non-collinear set. Accordingly, the contribution of A�Ei�2�

in the total “target value” is:

(1) either ≤ (2m
2

) ·�2 ·2−�m−2k−4�;
(2) or ≤ (

m

2

) ·�2 ·2−�m−2k−3−q�;
(3) or ≤ (

m

3

) ·�3 ·2−M2 ≤ (
m

3

)(
m

3

)
2−M2 ,

whereM2 is the number of Maker’s marks in the difference set A�Ei�2�\A�Ei�1�

in the course of the Big Game, and �3 ≤
(
m

3

)
is a trivial upper bound on the

Non-collinear Triplet-Degree �3.

Similarly, the third “leg” A�Ei�3� intersects A�Hi� in 1 point; moreover, A�Ei�3�

intersects A�Ei�1�∪A�Ei�2� either (1) in 1 point, or (2) in a �≥ 2�-element collinear
set, or (3) in a non-collinear set. Accordingly, the contribution of A�Ei�3� in the
total “target value” is:

(1) either ≤ (3m
2

) ·�2 ·2−�m−2k−5�;
(2) or ≤ (2m

2

) ·�2 ·2−�m−2k−3−2q�;
(3) or ≤ (2m

3

) ·�3 ·2−M3 ≤ (2m
3

)(
m

3

)
2−M3 ,

where M3 is the number of Maker’s marks in the difference set A�Ei�3� \
�A�Ei�1�∪A�Ei�2�� in the course of the Big Game, and so on. Since

�2 ≤ 2�1−��m� m= q2� k= q1−�

both cases (1) and (2) contribute a very small factor ≤ 2−�m/2 for each new “leg,”
which obviously “kills” the big factor

�F � ≤ 2m
1+/2 = 2q

2+

if say t ≥ q2 and cases (1)–(2) are the only options.
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How about case (3)? We begin the discussion with the trivial lower bound: for
any subset I ⊂ �1�2�3� � � � � t	

M2+M3+ � � �+Mt ≥ �⋃
j∈I

A�Ei�j��−m−�I��2k+2�� (44.16)

where the “−m” comes from A�Ei�1� and the “−�I��2k+ 2�” comes from the
condition “in the course of the Big Game.”

Case a: Among the t “legs” A�Ei�j�, j = 1�2� � � � � t there is a subset of size q2

with the property that any two are translates of each other.
Property (A) above implies that this set of �I� = q2 “translates” consists of pairwise
disjoint sets, which gives the trivial lower bound

�⋃
j∈I

A�Ei�j�� ≥ q2m�

Returning to (44.16) we have

M2+M3+ � � �+Mt ≥ q2m−2m−q2�2k+2�≥ �q2−3�m�

This implies that the total contribution of case (3) “kills” the big factor

�F � ≤ 2q
2+

�

which makes Case a “avoidable.”

Case b: Among the t “legs” A�Ei�j�, j = 1�2� � � � � t there is a subset A�Ei�j�, j ∈ J

with �J � ≥ q66 which is translates-free.
Then we can apply the Second Selection Lemma: there is a subset J0 ⊂ J with

�J0� = q2 such that

� ⋃
j∈J0

A�Ei�j�� ≥ ��J0�−1�m= �q2−1�m�

Now we can argue similarly to Case a, and conclude that Case b is also
“avoidable.”

We can assume that t < q68; indeed, otherwise either Case a or Case b holds,
and both are “avoidable.” Keeping one “leg” from every component, we can modify
property (B) above as follows:

�B∗� the total number of “legs” of A�Hi� is ≥ k−
�Hi�q−68/5.

Of course, property (C) remains true (note that property (A) is covered by the
new �B∗�). This way obtain the following picture:
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Step 5:

first violation of
Hazardous Lemma(III)

pairwise disjoint “legs”

A(H1)

A(Hr)

A(H)

A(H2)

The main point here is that, for every “head” A�Hi�, its “legs” A�Ei�j� satisfy
properties �B∗� and (C); in particular, the “legs” A�Hi� are pairwise disjoint.

We can assume that �Hi� ≤ m4/5 for every i. Indeed, �Hi� > m4/5 means at least
k−
�Hi�q−68/5 > m3/4 pairwise disjoint “legs” A�Ei�j�. The “target value” of the
system �A�Hi��A�Ei�1��A�Ei�2�� � � � �A�Ei�m3/4�	 is at most

�F � (m ·D ·2−�m−2k−2�
)m3/4 ≤ �F � ·2−k·m3/4

�

which is extremely small, proving that maxi �Hi�>m4/5 is avoidable.
How about the “top centipede” where A�H� is the “head” and A�H1�, A�H2�,

A�H3�, � � � , A�Hr� with r ≥ k−
�H�/4 are the “legs”? Can we apply Steps 1–5
to the “top centipede”? Well, an obvious technical difficulty is that the “legs”
A�Hi�, i = 1�2� � � � � r of the “top centipede” come from hazardous sets, and the
First Selection Lemma is about emergency sets. Because Hi is a hazardous set, we
cannot directly apply the First Selection Lemma, but we can still adapt its proof.
This is how the adaptation goes.
Recall that at the end of a play each A�Hi�, i= 1�2� � � � � r has �m−�Hi�� marks

of Maker made in the course of the Big Game. Let H̃i denote the �≥ �Hi�/2�-element
small-haz subset of hazardous set Hi. Note that each Hi intersects every other small
set H̃j , j = i, 1≤ j ≤ r in less than k
 points; this is a consequence of the RELARIN
technique. Also �Hi� ≥ 2k+ 2 for every i; this inequality (instead of the equality
for the emergency sets) just helps in the adaptation of the proof technique of the
First Selection Lemma. The only extra condition that we need in the proof is that
the sizes are relatively close to each other (see condition (3) below).

Modified First Selection Lemma: Let 0< ≤ �≤ 1/100 and k= q1−.Consider a
play inaLatticeGame in theN×N boardwhereBreaker uses theRELARIN technique
described in the proof of Theorem43.1 up toHazardousLemma (II) in Section 43. (The
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value of the critical exponent 0< 
< 1 in the RELARIN technique is unspecified yet.)
LetA�H1�,A�H2�, � � � ,A�Hl� be l hazardous super-sets such that:

(1) any two are translates of each other, and
(2) every A�Hi�, i= 2�3� � � � � l intersects the first super-set A�H1�,
(3) the bounds 1

2 ≤ �Hi�/�Hj� ≤ 2 hold for any two sets.

If q is sufficiently large depending on the value of the RELARIN constant 
, then
l < q1−�.

By using the Modified First Selection Lemma (of course, condition (3) requires that
first we put the sizes �Hi� into power-of-two size boxes) instead of the original form,
we can repeat Steps 1–5 for the “top centipede.” The only irrelevant difference is
that the factor

2−�m−�Ei�j �� = 2−�m−2k−2� is replaced by 2−�m−�Hi�� ≤ 2−�m−m4/5��

which is still small enough to “kill” the Max Pair-Degree �2 ≤ 2�1−��m. This way
we get:

Step 6:

first violation of
Hazardous Lemma(III)

disjointdisjoint disjoint

≥ k−λ |H|q−68ε/5 legs

the “legs” of the
top “centipede” are
disjoint, and
 r ≥ k−λ |H|q−68ε/5

A(H)

A(H1) A(Hi) A(Hr)

Of course, we still may have “extra overlappings” between “legs” with different
“heads” like A�Ei1�j1

� and A�Ei2�j2
�, i1 = i2; also between “legs” and “heads” like

A�Ei1�j1
� and A�Hi2

� where i1 = i2; or even a “coincidence” among these sets.
If there is no “extra overlapping” or “coincidence” among these sets, then we

get the Simplest Case, which was already fully discussed at the end of Section 40.
The standard idea that we always use is to reduce the General Case to the Simplest
Case. This plan can be carried out by repeating the proof of Statements 43.3–43.9
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(we already have the analogue of Statement 43.1, Statement 43.2, and inequality
(43.13)).

3. Transference Principle. There is a good reason why can we repeat the proofs
of Statements 43.3–43.9, and we call it a Transference Principle. In Section 43
two Planes intersect either in a Line with intersection size ≤ 2

√
m, or in a point,

or are disjoint. Here in Section 44 the situation is somewhat more complicated:
two q×q lattices intersect either in a non-collinear set, or in a collinear set of size
≤ q = √

m, or in a point, or are disjoint. “Collinear intersection” in Section 44
is the perfect analogue of “line intersection” in Section 43; this part is obvious,
but how about the “non-collinear intersection”? Well, for the Lattice Games the
Non-collinear Triplet-Degree �3 is clearly ≤ (

m

3

)
. Since

(
m

3

) = O��logN�3/2� is
a polylogarithnic function of N (which is far below the “square-root barrier”),
“non-collinear intersection” in Section 44 corresponds to “coincidence of sets” in
Section 43; at least the calculations give essentially the same result. This sim-
ple Transference Principle explains why we can “save” Statements 43.3–43.9 in
Section 44, and can reduce the general case to the Simplest Case essentially the
same way as we did in Section 43. This is how the proof of Hazardous Lemma
(III) goes.
Next comes the BigGame–SmallGame Decomposition (combined with the

RELARIN technique); in particular the step of how to extract a Big Set from
a large component of the family of small sets. Again we can repeat the correspond-
ing argument in Section 43 without any difficulty – of course, we always use the
Transference Principle.
The last step is to specify the parameters. Let �= 1/100; in the arguments above

we assumed the inequalities

68+ �1−�
 <
4
5
− 3

4
= 1

20
�

�1−��1−
� > 1−�+34�

3
(
�1−��1−
�−68

)
> 2+�

where the last inequality is needed in the Simplest Case.
These 3 inequalities are clearly satisfied with the choice of 
 = 1/200 and

= 10−4.
Summarizing, we have just proved the following result.

Theorem 44.1 Fix an arbitrary Lattice Game among types (a)–(g) (see Section 8)
in the N ×N board. Let F denote the corresponding q2-uniform hypergraph. Let
= 10−4; if the global and local sizes are bounded from above as

�F � ≤ 2q
2+

and D=MaxDeg�F�≤ 2q
2−4q1−

�
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and q ≥ q0, i.e. q is sufficiently large, then playing on F the second player can
always force a Strong Draw. �

The “largest” Lattice Game is the Parallelogram Lattice Game, and even then
�F � ≤ N 6, so the global condition

�F � ≤ 2q
2+

is trivially satisfied with q = O�
√
logN�, assuming q is large enough.

The local condition

D=MaxDeg�F�≤ 2q
2−4q1−

with = 10−4

says that in the Lattice Games we succeeded to break the “square-root barrier”!
The application of Theorem 44.1 completes the proof of the Strong Draw part of

Theorem 8.2 (a)–(g). (Note that the Strong Draw part of Theorem 8.2 (h): complete
bipartite graph, is identical with the proof in Section 38.)

Finally, notice that the generous (super-exponential in m= q2) upper bound

�F � ≤ 2q
2+

with = 10−4

on the global size proves the Irrelevance of the Board Size, an interesting feature
mentioned in Section 9 after Open Problem 9.1.



45
I-Can-You-Can’t Games – Second Player’s Moral

Victory

1. Building and Blocking in the same strategy. In Section 27 we introduced the
class of Who-Scores-More Games; here another 2-hypergraph class is introduced:
the class of Who-Scores-First Games. Let F and G be two hypergraphs on the
same underlying set (“board”) V . As usual, the players alternately occupy new
points of the board: First Player’s goal is to occupy an A ∈ F and Second Player’s
goal is to occupy a B ∈ G; the player who achieves his goal first is declared the
winner; otherwise the play ends in a draw. We refer to this game as the �F�G�
Who-Scores-First Game. The symmetric case F = G gives back the old concept
of Positional Game. Just like the Positional Games, the Who-Scores-First Games
in general are completely hopeless, but there is a sub-class for which some success
can be reported: the I-Can-You-Can’t Games, i.e. when one player’s goal is just
doable and the other player’s goal is impossible.

Doable vs. impossible. Consider, for example, the Aligned Square Lattice vs.
Aligned Rectangle Lattice Who-Scores-First Game on the N ×N board where the
square-lattice size is q1×q1 with

q1 =
⌊√

log2N +o�1�
⌋

(45.1)

and the rectangle-lattice size is q2×q2 with

q2 =
⌈√

2 log2N +o�1�
⌉
� (45.2)

In view of Theorem 8.2 (a) q1 =
⌊√

log2N +o�1�
⌋

is the “largest achievable

size,” and in view of Theorem 8.2 (b) q2 =
⌈√

2 log2N +o�1�
⌉
is the “smallest

impossible size.” This suggests that in this particular Aligned square-lattice vs.
Aligned rectangle lattice Who-Scores-First Game the likely winner is First Player
(“the Square Lattice guy”). It seems plausible that First Player’s job is “merely”
putting together a Weak Win Strategy and a Strong Draw Strategy. But this is
exactly where the problem is: “How to put two very different strategies together?”

592
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A simple arithmetic operation like “addition” or“multiplication” of the potential
functions clearly doesn’t work; we cannot expect such an elementary solution in
general. Then what can we do? First of all:

What is the difficulty here? Because of the value of q2 (see (45.2)), First Player has
a Strong Draw strategy Str �s�d��: he can block every q2×q2 aligned rectangle lattice
in N ×N . This Str �s�d�� is an advanced BigGame–SmallGame Decomposition
where the small game falls apart into a huge number of disjoint sub-games with
disjoint sub-boards (“components”) in the course of a play.

Also First Player has a Weak Win Strategy Str �w�w�� (an application of Theo-
rem 1.2): he can occupy a whole q1×q1 aligned Square Lattice (see (45.1)). This
Str �w�w�� does not decompose; it remains a single coherent entity during the whole
course of the play.

Str �s�d�� decomposes into a huge number of components and First Player plays
componentwise, on the other hand, Str �w�w�� does not decompose! How to combine
these two very different strategies into a single one? Even if there is no simple
general recipe, in some special cases we can still succeed. Here one way to do it is
described; call it:

2. The technique of super-polynomial multipliers. Assume that we are in the
middle of a play, where First Player already occupied x1� x2� � � � � xi and Sec-
ond Player occupied y1� y2� � � � � yi from the board V = N × N . The question
is how to choose First Player’s next move xi+1. Write X�i� = �x1� x2� � � � � xi	,
Y�i�= �y1� y2� � � � � yi	, and

F�i�= �A\X�i� � A ∈ F�A∩Y�i�= ∅	� (45.3)

where F is the family of all q1×q1 aligned Square Lattices in N ×N (see (45.1)).
Note that F�i� is the family of the unoccupied parts of the “survivors” in F ; the
truncated F�i� can be a multi-hypergraph even if the original F is not. We use the
Power-of-Two Scoring System

T�M�= ∑
M∈M

2−�M�

where M is a multi-hypergraph, the sum T�F�i�� represents the Opportunity Func-
tion: if First Player can guarantee that the Opportunity Function remains non-zero
during the whole course of the play, then at the end First Player certainly owns a
whole A ∈ F , i.e. a q1×q1 aligned Square Lattice.
This is how Str �w�w�� works: First Player tries to keep T�F�i�� “large”; at the

same time First Player also tries to block hypergraph G where G is the family of
all q2×q2 aligned rectangle lattices in N ×N (see (45.2)), i.e. he tries to employ
strategy Str �s�d��. Str �s�d�� is rather complicated: it involves the concepts of Big
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Game, small game, dangerous sets, emergency sets, hazardous sets, small-em sets,
small-haz sets, the RELARIN technique, and the two Selection Lemmas.

Warning: The Big Game is a Shutout Game, not a Positional Game. This leads to a
minor technical problem: “how to define Shutout Games in terms of hypergraphs.”
The notation

T�H�= ∑
A∈H

2−�A�

was designed to handle Positional Games and Weak Win: if some winning set A0 ∈
F is completely occupied by Maker, i.e. A0 ⊂ X�i� for some i, then A0 \X�i�= ∅
and

T�F�i��≥ 2−�A0\X�i�� = 1 (45.4)

where F�i� is defined in (45.3).

In a Shutout Game Maker’s goal is to put b marks in some B ∈ B before Breaker
could put his first mark in it. Let Bm denote the multi-hypergraph where

every B ∈ B with �B� ≥ b has multiplicity m�B�= 2�B�−b

and every B ∈ B with �B�< b has multiplicity m�B�= 0� (45.5)

If Maker wins the Shutout Game on B and B0 is the “witness” of his win, then

T�Bm�i��≥m�B0�2
−�B0\X�i�� = 1� (45.6)

which is the perfect analogue of (45.4) in terms of the auxiliary multi-
hypergraph Bm.
Let GBIG denote the multi-hypergraph of the Big Sets with multiplicity (45.5);

the Big Sets are defined in the “broad sense” (see the end of Section 39). Let VBIG

denote the Big Board, and, in particular, let VBIG�i� denote the Big Board at the
stage x1� x2� � � � � xi� y1� y2� � � � � yi. Recall that the Big Board is “shrinking” in the
course of a play.
In Section 44 we introduced several Forbidden Configurations; each one was

a Shutout Game. In view of the Warning above each Shutout Game defines a
hypergraph with multiplicity; the union of these multi-hypergraphs is denoted by
GForb (again in the “broad sense”). Write

G��i�= �B \ �Y�i�∩VBIG�i�� � B ∈ G�B∩ �X�i�∩VBIG�i��= ∅	�
G�
BIG�i�= �C \ �Y�i�∩VBIG�i�� � C ∈ GBIG�C∩ �X�i�∩VBIG�i��= ∅	�

G�
Forb�i�= �D \ �Y�i∩VBIG�i�� � D ∈ GForb�D∩ �X�i�∩VBIG�i��= ∅	�

and

F ��i�= �A\ �X�i�∩VBIG�i�� � A ∈ F�A∩ �Y�i�∩VBIG�i��= ∅	� (45.7)
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where the mark � is an abbreviation for the restriction to the actual Big Board
VBIG�i�.
An inspection of the calculations in Sections 39 and 44 immediately gives the

following super-polynomially small upper bound

T�GBIG�+T�GForb�≤ N−�logN�� (45.8)

with some positive absolute constant � > 0.
Now we are ready to choose First Player’s next move xi+1. We distinguish two

cases:

Case 1: yi ∈ VBIG�i�

In other words, Case 1 means that Second Player’s last move was in the small
board Vsmall�i� = V \VBIG�i�. Then First Player replies to yi simply following the
Strong Draw strategy Str �s�d��: First Player replies in the same component of
the hypergraph of all small sets where yi was, and to find the optimal xi+1 he
uses the overcharged version of the Power-of-Two Scoring System to enforce the
Component Condition (see the proof of the Growing Erdős–Selfridge Lemma in
Section 39).

Case 2: yi ∈ VBIG�i�

The main idea is the following: we work with the potential function

Li =T�F ��i��−
1 ·T�F �
Forb�i��−
2 ·T�G�

BIG�i��

−
3 ·T�G�
Forb�i��−
4 ·T�G��i��� (45.9)

in Case 2 First Player’s choice for xi+1 is that unoccupied point z ∈ VBIG�i�\�X�i�∪
Y�i�� of the Big Board for which the function

Li�z�=T�F ��i�� z�−
1 ·T�F �
Forb�i�� z�−
2 ·T�G�

BIG�i�� z�

−
3 ·T�G�
Forb�i�� z�−
4 ·T�G��i�� z� (45.10)

attains its maximum. To understand what (45.9)–(45.10) means we note that

T�M� z�= ∑
z∈M∈M

2−�M��

the families G�
BIG�i�, G�

Forb�i�, G��i� were defined in (45.7), F is the family of all
q1×q1 aligned Square Lattices in N ×N (see (45.1))

F ��i�= �A\ �X�i�∩VBIG�i�� � A ∈ F�A∩Y�i�∩VBIG�i�= ∅	�
the multi-hypergraph FForb will be defined later. Even if we don’t know FForb yet,
we can nevertheless write

F �
Forb�i�= �E \ �X�i�∩VBIG�i�� � E ∈ FForb�A∩Y�i�∩VBIG�i�= ∅	�
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It remains to specify the positive constants 
1�
2�
3�
4. They are calledmultipliers,
and are defined by the side condition


1 ·T�FForb�=
2 ·T�GBIG�= 
3 ·T�GForb�

=
4 ·T�G�=
1

8
T�F�� (45.11)

It is clear from (45.8) that 
2 and 
3 are super-polynomially large. We are going
to see later that 
1 is also super-polynomially large; this explains the name “the
technique of super-polynomial multipliers.”
The auxiliary hypergraph FForb will be defined later as a “technical requirement”;

right now we deal with FForb as an undefined parameter.
In Case 2 we have yi ∈ VBIG�i� and xi+1 ∈ VBIG�i�, where xi+1 is defined by the

maximum property above. Let yi+� be the first move of Second Player in VBIG�i�

with � = ��i�≥ 1. Since the moves after xi+1 and before yi+� are not in VBIG�i�, we
have the following inequality (see (45.9)–(45.10))

Li+� ≥ Li+Li�xi+1�−Li�yi+��−T�F ��i�� xi+1� yi+��� (45.12)

The maximum property of xi+1 implies

Li�xi+1�≥ Li�yi+��� (45.13)

moreover, trivially

T�F ��i�� xi+1� yi+��≤ �2 ≤
(
q2
1

2

)
� (45.14)

where �2 is the Max Pair-Degree of F , where F denotes the family of all q1×q1
aligned Square Lattices in N ×N . Combining (45.12)–(45.14)

Li+� ≥ Li−
(
q2
1

2

)
≥ Li−O

(
�logN�2

)
� (45.15)

Side condition (45.11) implies that L0 = T�F�/2, so by (45.15), (8.3) and (45.1)

Lend ≥L0−
N 2

2
O
(
�logN�2

)

=1
2
T�F�−O

(
N 2�logN�2

)≥
=1
4
T�F�=

(
1
12

+o�1�
)
N 3

q1
2−q21 > 0� (45.16)

Thus by (45.10) and (45.16)

T�F ��end��≥ 1
4
T�F�� (45.17)
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where hypergraph F ��end� is defined by

V� = VBIG�end�=
⋂
i≥0

VBIG�i�

and
F ��end�= �A\V� � A ∈ F�A∩Y�end�∩V � = ∅	�

Since

T�F ��end��=
q21∑
s=0

∑
A∈F � A∩Y�end�∩V�=∅��A\V��=s

2−s�

there must exist an integer s0 in 0 ≤ s0 ≤ q2
1 such that (see (45.16)–(45.17))

∑
A∈F � A∩Y�end�∩V�=∅��A\V��=s0

2−s0 ≥ 1

q2
1

T�F ��end��

≥
(

1

12
+o�1�

)
N 3

q3
1

2−q21 � (45.18)

Note in advance that relation (45.18) will motivate our definition of the auxiliary
hypergraph FForb.

3. How to define FForb? We start with the idea. First Player has two goals: (1)
to completely occupy some A0 ∈ F , and to block every B ∈ G (where B = q2×q2
aligned rectangle lattice in N ×N ). To own some A0 ∈ F is equivalent to A0 ⊆
X�end�. If the integer s0 defined in (45.18) is s0 = 0, then, of course, goal (1) is
achieved. Thus in the rest we can assume s0 ≥ 1.

Here is the key idea about FForb: s0 ≥ 1 means that in a certain sub-family of
F First Player has a “very large” Shutout; on the other hand, working with a
properly defined auxiliary hypergraph FForb, First Player himself can prevent this
“very large” Shutout. Thus the case s0 ≥ 1 will lead to a contradiction, proving that
the “easy case” s0 = 0 is the only possibility. Next we work out the details of this
idea.

How to define FForb: the details. Write (see (45.18))

Fs0
= �A ∈ F � A∩Y�end�∩V� = ∅� �A\V�� = s0	� (45.19)

If there is no A0 ∈ F with A0 ⊆ X�end�, then every A ∈ Fs0
has a non-empty

intersection with Y�end�∩V ∗∗, where V ∗∗ = V \V�.
How large is the small board V ∗∗? Write

m= q2
2 and k=m

1
2− = q1−2

2 � (45.20)

then, by definition the size of the E.R. (the Emergency Room) is estimated from
above by

�E�R�� ≤ �G��end�� ·k= 2kT �G��end�� � ·k� (45.21)
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The Component Condition says that every component has size ≤ 2k


, thus by the

Hazardous Lemma
�V ∗∗� = �small board� ≤ �E�R�� ·2k
 � (45.22)

Combining (45.20)–(45.22) we have

�V ∗∗� = �small board� ≤ T �G��end�� � ·k ·2k+k
 ≤ T �G��end�� � ·22m
1
2 −

� (45.23)

By (45.11)


4 ·T�G�=
1

8
T�F��

so by (45.16), (45.9), and (45.23)

T�F��end��≥
4 ·T�G��end��

= T�F�

8T�F�
·T�G��end��≥ T�F�

8T�F�
· �V ∗∗� ·2−2m

1
2 −

� (45.24)

Combining (45.18), (45.19), and (45.24)

�Fs0
�

�V ∗∗� ≥
2s0

q2
1

· T�F�

8T�G� ·2
−2m

1
2 − = 2s0−2m

1
2 −−3 T�F�

q2
1 ·T�F�

� (45.25)

We need to demonstrate that First Player owns a whole A0 ∈ F . If there is an
A0 ∈ F with A0 ⊆ X�end�, then we are done. We can assume, therefore, that there
is no A0 ∈ F with A0 ⊆ X�end�. Then every A ∈ Fs0

has a non-empty intersection
with Y�end�∩V ∗∗ (where V ∗∗ = V \V �). By (45.19) and (45.25) there exists a
w0 ∈ Y�end�∩V ∗∗ such that

�Fs0�w0
� = ��A ∈ Fs0

� w0 ∈ A	� ≥ N0

where N0 = N0�s0�= 2s0−2m
1
2 −−3 T�F�

q2
1 ·T�G�

� (45.26)

4. Disjointness Argument: forcing a contradiction. Every A ∈ Fs0�w0
contains

point w0; we call w0 the root of hypergraph Fs0�w0
. Note that the Max Pair-Degree

�2�F� of the whole hypergraph F is ≤ (
q21
2

)
, so by using a trivial greedy algorithm

we can select a sub-family Fs0�w0
�disj� of Fs0�w0

satisfying (see (45.26))

(1) the hyperedges in Fs0�w0
�disj� are pairwise disjoint apart from w0, and

(2) �Fs0�w0
�disj�� ≥ �Fs0�w0

�
1+q2

1�2�F�
≥ N0

q6
1

= N1 = N1�s0�� (45.27)

W0

�S0
,W0 (disj)
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Notice that in the union set ⎛
⎝ ⋃

A∈Fs0 �w0
�disj�

A

⎞
⎠∩V� (45.28)

First Player has a Shutout of size

�q2
1 − s0��Fs0�w0

�disj�� ≥ �q2
1 − s0�N1�s0�

≥ �q2
1 − s0� ·2s0−2m

1
2 −−3 T�F�

q8
1 ·T�G�

� (45.29)

where in the last step we used (45.26)–(45).
Recall that m= q2

2. In order to get a contradiction First Player wants to prevent
any kind of Shutout like (45.28)–(45.29).

What does it mean “any kind of Shutout like (45.28)–(45.29)”? Well, pick an
arbitrary integer s in 1 ≤ s ≤ q2

1 ; let H ⊂ F be an arbitrary sub-family satisfying
the properties:

���
⋂

A∈H A is a single point, the “root” of H, and the sets A ∈ H are pairwise
disjoint apart from the “root”;

��� �H� = N1�s�= 2s−2m
1
2 −−3 T�F�

q8
1 ·T�G�

� (45.30)

For every H ⊂ F satisfying properties (�)–(�) above, consider the union set⋃
A∈H A; the family of all union sets

⋃
A∈H A is denoted by F �s�. The Shutout

Game on hypergraph F �s� with goal size b = b�s� = �q2
1 − s�N1�s� defines a

multi-hypergraph F �s�
� with multiplicity function (45.5). Finally, let

FForb =
q21⋃
s=1

F �s�
� � (45.31)

If a Shutout (45.28)–(45.29) occurs in the ith round of the play, then T�F �
Forb�i��≥ 1,

so by (45.16), (45.9), and (45.11)

T�F ��i��≥ 
1 ·T�F �
Forb�i��≥ 
1 =

T�F�

8T�FForb�
� (45.32)

We are going to see that (45.32) is a contradiction: the right-hand side of (45.32)
is in fact much larger than the left-hand side. This contradiction will show that the
case s0 ≥ 1 is impossible, so s0 = 0, i.e. at the end of the play First Player owns a
whole A ∈ F .

5. Checking the contradiction. Estimate T�FForb� from above: by (45.5), proper-
ties (�) and (�) above, and (45.32) with �2 = �2�F� ≤ (

q21
2

)
and N1 = N1�s� (see
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(45))

T�FForb�≤ N 2
q21∑
s=1

(
N ·�2

N1

)
2−N1�q

2
1−1� ·2N1�q

2
1−1�−N1�q

2
1−s�

= N 2
q21∑
s=1

(
N ·�2

N1

)
2−N1�q

2
1−s� ≤ N 2

q21∑
s=1

(
e ·N ·q4

1

N1 ·2q21−s

)N1

� (45.33)

We have

e ·N ·q4
1

N1 ·2q21−s
= e ·N ·q4

1

2s−2m
1
2 −−3 · T�F�

q81 ·T�G�
·2q21−s

=e ·N ·q12
1 ·22m 1

2 −−3 ·T�G�
T�F� ·2q21 �

and because m= q2
2,

T�G�=
(
1

4
+o�1�

)
N 42−q22

q2
2

�

and

T�F�=
(
1
3
+o�1�

)
N 32−q21

q1
�

we obtain
e ·N ·q4

1

N1 ·2q21−s
≤ N 5 ·2q1−

2 ·2−q22

N 3
= N 2 ·2q1−

2 −q22 � (45.34)

We have a closer look at the last term

N 2 ·2q1−
2 −q22

in (45.34). We need to involve the fractional parts{√
log2N

}
= �1 and

{√
2 log2N

}
= �2�

by using the fractional parts we have

q1 =
√
log2N −�1 and q2 =

√
2 log2N +1−�2� (45.35)

Since

q2
2 =

(√
2 log2N +1−�2

)2 = 2 log2N +2�1−�2�
√
2 log2N +O�1��

we have
N 22−q22 = 2−2�1−�2�

√
2 log2 N+O�1� = 2−2�1−�2�q2+O�1�� (45.36)

If the inequality

1−�2 = 1−
{√

2 log2N
}
≥ �log2N�−/2 (45.37)
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is satisfied, which happens for the overwhelming majority of N s, then by (45.36)
the last term in (45.34) can be estimated from above as follows

N 2 ·2q1−
2 −q22 = 2−2�1−�2�q2+q1−

2 +O�1� ≤ 1
2
� (45.38)

Moreover, by (45.32)

N1 =N1�s�= 2s−2m
1
2 −−3 T�F�

q8
1 ·T�G�

≥2−q1−
2 · N

32−q21

N 42−q22

=2−q1−
2 · N 32− log2 N+2�1

√
log2 N+O�1�

N 42−2 log2 N−2�1−�2�
√

2 log2 N+O�1�

=2−q1−
2 +√

2��1+
√
2�1−�2��q2+O�1�� (45.39)

Assumption (45.37) already implies the inequality

−q1−
2 +√

2��1+
√
2�1−�2��q2 ≥ q1−

2 � (45.40)

so by (45.39) and (45.40)

N1 ≥ 2q
1−
2 ≥ 2q

1/2
2 ≥ 2�log2 N�

1/4
� (45.41)

Summarizing, by (45.33), (45.34), (45.38), and (45.41)

T�FForb�≤ N 2 ·2−2�log2 N�
1/4

� (45.42)

Inequality (45.42) shows that T�FForb� is super-polynomially small in terms of N ,
so trivially

T�FForb�≤ N−2� (45.43)

which suffices to get a contradiction.
The contradiction comes from the trivial bounds

T�F��i��≤ �F �< N 3

and

T�F�=
(
1

3
+o�1�

)
N 32−q21

q1

= N 3+o�1�2− log2 N = N 2−o�1��

combined with (45.32) and (45.43)

N 3 > T�F ��i��≥ T�F�

8T�FForb�
≥ N 2−o�1�

8N−2
= N 4−o�1�� (45.44)

which is a contradiction if N is sufficiently large.
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As said before, First Player has two goals that he simultaneously takes care of :
the first goal is: (a) to completely occupy some A ∈F , and the second goal is (b) to
block every B ∈ G. The contradiction in (45.44) settles goal (a); it remains to settle
goal (b).

6. How to block G? Let’s go back to Case 1 above; recall that in the small game
First Player uses the G-blocking Strong Draw strategy Str �s�d��. This strategy
enables First Player to block G as long as (1) he can win the Big Game, and (2) he
can prevent the appearance of any Forbidden Configuration described in Section 44.
A “failure” implies

max �T�G�
BIG�end���T�G�

Forb�end��	≥ 1�

thus by (45.9) and (45.16)

T�F ��end��≥min �
2�
3	 � (45.45)

By (45.8) and (45.11)

min �
2�
3	≥ T�F�

8N−�logN��
> N �logN�� (45.46)

with some positive absolute constant � > 0. By (45.45)–(45.46)

T�F ��end��≥ N�logN�� � (45.47)

Inequality (45.47) is clearly false, since trivially

T�F��end��≤ �F �< N 3�

This contradiction proves that a “failure” cannot occur, i.e. First Player can block
hypergraph G. This completes the proof of:

Theorem 45.1 Consider the q1 × q1 Aligned Square Lattice vs. q2 × q2 Aligned
Rectangle Lattice Who-Scores-First Game on an N ×N board where

q1 =
⌊√

log2N +o�1�
⌋

(the “largest achievable size”) and

q2 =
⌈√

2 log2N +o�1�
⌉

(the “smallest impossible size”). If N is sufficiently large, First Player has a winning
strategy. �

Notice that the term “o(1)” in q2 =
⌈√

2 log2N +o�1�
⌉

takes care of condition

(45.37) about the fractional part of
√
2 log2N .

In the symmetric case, when First Player and Second Player have the same goal,
namely to build a large Aligned Square Lattice, the proof of Theorem 45.1 gives
the following:
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Proposition: Consider the game on the N ×N board where both players want a
large Aligned Square Lattice. For the overwhelming majority of Ns, Second Player
can achieve two goals at the same time: (1) he can occupy a q1×q1 Aligned Square
Lattice with

q1 =
⌊√

log2N
⌋
�

and (2) he can prevent First Player from occupying a q2×q2 Aligned Square Lattice
with q2 = q1+1.

Observe that the Proposition is exactly Theorem 12.7 about Second Player’s Moral-
Victory.

7. Switching goals. Let’s return to Theorem 45.1. What happens if First Player
and Second Player switch their goals: First Player wants an Aligned Rectangle
Lattice and Second Player wants an Aligned Square Lattice? Again assume that
First Player wants the “largest doable size” q1×q1 with

q1 =
⌊√

2 log2N +o�1�
⌋

(45.48)

and Second Player wants the “smallest impossible size” q2×q2 with

q2 =
⌈√

log2N +o�1�
⌉
� (45.49)

Who scores first?
Again it is most natural to expect First Player to have a winning strategy; and,

indeed, we are going to supply a proof (with a minor weakness). Again the proof
uses the technique of “super-polynomial multipliers.”

Let F be the family of all q1 × q1 aligned rectangle lattices in N ×N (see
(45.8)), and let G be the family of all q2×q2 aligned Square Lattices in N ×N (see
(45.9)). Assume that we are in the middle of a play, where First Player already
occupied x1� x2� � � � � xi and Second Player occupied y1� y2� � � � � yi from the board
V = N ×N . The question is how to choose First Player’s next move xi+1. Write
X�i�= �x1� x2� � � � � xi	, Y�i�= �y1� y2� � � � � yi	, and for any hypergraph H

H�i�= �A\X�i� � A ∈ H�A∩Y�i�= ∅	�
The first novelty is that the Max Pair-Degree �2�F� of hypergraph F is not a

polylogarithmic function of N . This is why we have to involve the Advanced Weak
Win Criterion (Theorem 24.2) instead of the much simpler Theorem 1.2. This is
why in “Case 2: yi ∈ VBIG�i�” First Player maximizes a more complicated function
(compare (45.10) with (45.51) below). The new potential function is

Li =
(
T�F ��i��−
0 ·T�Fp�

2 �i��

)
−
1 ·T�F �

Forb�i��−
2 ·T�G�
BIG�i��

−
3 ·T�G�
Forb�i��−
4 ·T�G��i��� (45.50)
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where the new term “−
0 ·T�Fp�
2 �i��” is justified by the technique of Section 24.

First Player’s choice for xi+1 is that unoccupied point z ∈ VBIG�i�\ �X�i�∪Y�i��

of the Big Board for which the function

Li�z�=
(
T�F ��i�� z�−
0 ·T�Fp�

2 �i�� z�

)
−
1 ·T�F �

Forb�i�� z�

−
2 ·T�G�
BIG�i�� z�−
3 ·T�G�

Forb�i�� z�−
4 ·T�G��i�� z� (45.51)

attains its maximum. Again the mark � indicates “restricted to the actual Big Board
VBIG�i�,” the auxiliary hypergraph FForb will be defined later, and the positive
constant factors (“multipliers”) 
0�
1�
2�
3�
4 are defined by the side condition


0 ·T�Fp�
2 �=
1 ·T�FForb�= 
2 ·T�GBIG�

=
3 ·T�GForb�= 
4 ·T�G�=
1
10

T�F�� (45.52)

It is clear from (45.8) that the extra parenthesis �� � �� in (45.50)–(45.51) joining two
terms together indicate that we apply the method of self-improving potentials (see
Section 24). What it means is that we divide the course of the play in the actual
Big Board VBIG�i� into several phases; in each phase we switch to a new potential
function where multiplier 
0 is replaced by 
0/2, 
0/4, 
0/8, and so on, and each
new phase in fact turns out to be a bonus (explaining the term self-improving).
The self-improving part works perfectly well; the first real challenge comes in

the part of the Disjointness Argument (see the proof of Theorem 45.1), due to the
fact that the Max Pair-Degree of F is not “small.” Instead we have the following
weaker property of F : if two lattice points in N ×N are not on the same horizontal
or vertical line, then the pair-degree of this point pair is ≤ (

q21
2

)
. This leads to the

following:

8. Modified Disjointness Argument. The starting point is the same (see (45.26)):
there is a w0 ∈ Y�end�∩V ∗∗ such that

�Fs0�w0
� =��A ∈ Fs0

� w0 ∈ A	� ≥ N0

where N0 =N0�s0�= 2s0−2m
1
2 −−3 · T�F�

q2
1 ·T�G�

(45.53)

and m = q2
2 . Let N1 be the maximum number of elements of Fs0�w0

which are
pairwise disjoint apart from the “root” w0; clearly N1 ≤ N ; let Fs0�w0

�1�⊂ Fs0�w0
be

the sub-family of these N1 sets.
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W0

horizontal and
vertical are
special directions

We extend Fs0�w0
�1� by adding new sets

A1�A2�A3� � � � ∈ Fs0�w0
\Fs0�w0

�1�

with the property that either Aj \ � horizontal w0-line	 or Aj \ � vertical w0-line	 is
disjoint from ⎛

⎝ ⋃
A∈Fs0 �w0

�1�

A

⎞
⎠∪A1∪A2∪· · ·∪Aj−1�

We keep doing this extension of Fs0�w0
�1� as long as we can; let

Fs0�w0
�1�∪Fs0�w0

�2�

denote the maximum extension; write Fs0�w0
�2� = N2. The maximum property

implies the analogue of (45)

N3 = N1+N2 ≥
N0

1+q2
1

(
q21
) ≥ 2s0−2m

1
2 −−3 · T�F�

q8
1 ·T�G�

� (45.54)

Write
Fs0�w0

�3�= Fs0�w0
�1�∪Fs0�w0

�2��

in the union set restricted to the Big Board⎛
⎝ ⋃

A∈Fs0 �w0
�1�

A

⎞
⎠∩V� (45.55)

Maker has a Shutout of size ≥ �q2
1 − s0�N1+ �q2

1 −q1− s0�N2� (45.56)

The “loss” q1 in the factor �q
2
1 −q1− s0� comes from the horizontal or verticalw0-line.

Notice that Shutout (45.55)–(45.56) is the analogue of (45.28)–(45.29). Again
Maker wants to avoid Shutout (45.55)–(45.56); the auxiliary hypergraph FForb

(undefined yet) will be designed exactly for this purpose.
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Fix an arbitrary integer s in 1 ≤ s ≤ q2
1 ; let H ⊂ F be an arbitrary sub-family

satisfying the properties:

(�) H = H�1�∪H�2�, where
⋂

A∈H�1� A is a single point w0 = w0�H�, and the sets
A ∈ H�1� are pairwise disjoint apart from w0;

(�) for every A′ ∈ H�2� either A′ \ �horizontal w0-line	 or A
′ \ �vertical w0-line	 is

disjoint from
⋃

A∈H\�A′	 A;

��� �H� = N1+N2 = N3 = N3�s�= 2s−2m
1
2 −−3 T�F�

q81 ·T�G�
.

Fix an integer N1 in N1 ≤min�N�N3	. For every H ⊂ F satisfying properties (�)–
(�)–(�) and �H�1�� = N1 above, consider the union set

⋃
A∈H A; the family of all

union sets
⋃

A∈H A is denoted by F �s�N1�. The Shutout Game on hypergraph F �s�N1�

with goal size

b = b�s�N1�= �q2
1 − s�N1+ �q2

1 −q1− s�N2 = �q2
1 −q1− s�N3+q1N1 (45.57)

defines a multi-hypergraph F �s�N1�
� with multiplicity function (45.5). Finally, let

FForb =
q21⋃
s=1

min�N�N3	⋃
N1=1

F �s�N1�
� � (45.58)

If a Shutout (45.55)–(45.56) occurs in the ith round of the play, then T�F �
Forb�i��≥ 1,

and we get the analogue of (45.32)

T�F ��i��≥ 
1 ·T�F �
Forb�i��≥ 
1 = T�F�

10T�FForb�
� (45.59)

Again we show that (45.59) is a contradiction: the right-hand side of (45.59) is in
fact much larger than the left-hand side.
Estimate T�FForb� from above: by (45.5), properties (�)–(�)–(�) above, and

(45.58), we obtain the analogue (45.33)

T�FForb�≤ N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

(
N · (q212 )
N1

)
�

(
N1 ·q1 ·�2

N3−N1

)
2−N1�q

2
1−1� ·2N1�q

2
1−1�−�N3−N1��q

2
1−q1−s� (45.60)

Note that �2 = �2�F�≤ N , so returning to (45.60) and using the trivial inequality(
M

r

)≤ �eM/r�r , we have

T�FForb�≤ N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

(
e ·N 2 ·q4

1

2N1 ·2q21−s

)N1
(

e ·N ·N1 ·q1
�N3−N1� ·2q21−q1−s

)N3−N1

(45.61)
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where

N3 =N3�s�= 2s−2q1−2
2 −3 · T�F�

q8
1 ·T�G�

� (45.62)

T�F�=
(
1

4
+o�1�

)
N 42−q21

q2
1

� q1 =
⌊√

2 log2N +o�1�
⌋
� (45.63)

and

T�G�=
(
1
3
+o�1�

)
N 32−q22

q2
� q2 =

⌈√
log2N +o�1�

⌉
� (45.64)

By (45.61), with N2 = N3�s�−N1, and using the fact N1 ≤ N

(
e ·N 2 ·q4

1

2N1 ·2q21−s

)N1
(

e ·N ·N1 ·q1
�N3−N1� ·2q21−q1−s

)N3−N1

≤
(
N 2 ·2s
2q

2
1

·
(
eq4

1/2
N1

)N1/N3

·
(
eN1q12

q1

N ·N2

)N2/N3
)N3

≤
(
N 2 ·2s
2q

2
1

·
(
eq4

1/2

N1

)N1/N3

·
(
eN1q12

q1

N2

)N2/N3
)N3

≤
(
N 2 ·2s
2q

2
1

· e ·q
4
1 ·2q1
N3

)N3

� (45.65)

where in the last step we used the simple fact NN1
1 ·NN2

2 ≥ � N1+N2
2 �N1+N2 . By using

the definition of N3 = N3�s� (see (45.62)) in (45.61) and (45.65)

T�FForb�≤ N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

(
N 2 ·2s
2q

2
1

· e ·q
4
1 ·2q1
N3

)N3

= N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

(
N · eq13

1 ·2q1+2q1−2
2

2q
2
2

)N3

� (45.66)

Consider the fractional part{√
log2N

}
= �2� then q2 =

√
log2N +1−�2�

and

q2
2 = log2N +2�1−�2�

√
log2N +O�1�= log2N +√

2�1−�2� ·q1+O�1��

Therefore, returning to (45.66) we have

T�FForb�≤ N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

(
e ·q13

1 ·2q1�1−
√
2�1−�2��+2q1−2

2

)N3

� (45.67)
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Assume that

1−√
2�1−�2� < 0⇐⇒ �

√
log2N	 < 1− 1√

2
= �293� (45.68)

then by (45.67)

T�FForb�≤ N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

(
1

2

)N3�s�

� (45.69)

Moreover, by (45.62)

N3 = N3�s�= 2s−2q1−2
2 −3 T�F�

q8
1 ·T�G�

≥ 2−q1−
2 · N

42−q21

N 32−q22

= 2−q1−
2 · N 42−2 log2 N+2�1

√
2 log2 N+O�1�

N 32− log2 N−2�1−�2�
√

log2 N+O�1�

= 2−q1−
2 +�2

√
2�1+�1−�2��q2+O�1�� (45.70)

where �1 = �
√
2 log2N	 (fractional part).

Assumption (45.68) already implies the inequality

−q1−
2 + �2

√
2�1+2�1−�2��q2 ≥ q1−

2 � (45.71)

so by (45.70)–(45.71)

N3 = N3�s�=≥ 2q
1−
2 ≥ 2�log2 N�

1/2
� (45.72)

Summarizing, by (45.69) and (45.72)

T�FForb�≤ N 2
q21∑
s=1

min�N�N3�s�	∑
N1=1

2−2�log2 N�
1/2 ≤ N−3� (45.73)

The contradiction comes from the trivial bounds

T�F��i��≤ �F �< N 4

and

T�F�=
(
1
4
+o�1�

)
N 42−q21

q2
1

= N 4+o�1�2−2 log2 N = N 2−o�1��

combined with (45.59) and (45.73)

N 4 > T�F ��i��≥ T�F�

10T�FForb�
≥ N 2−o�1�

10N−3
= N 5−o�1��
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which is a contradiction if N is sufficiently large.
The rest of the proof is the same as that of Theorem 45.1. Thus we obtain:

Theorem 45.2 Consider the q1×q1 Aligned Rectangle Lattice vs. q2×q2 Aligned
Square Lattice Who-Scores-First Game on an N ×N board where

q1 =
⌊√

2 log2N +o�1�
⌋

(the “largest achievable size”) and

q2 =
⌈√

log2N +o�1�
⌉

(the “smallest impossible size”). If N is sufficiently large and the fractional part
�
√
log2N	 < 1− 1√

2
= �293, then First Player has a winning strategy.

If �
√
log2N	≥ 1− 1√

2
= �293, then First Player still has a winning strategy, assuming

we switch the value of q2 to the one larger q2 =
⌈√

log2N +o�1�
⌉
+1.

Comparing Theorem 45.2 with Theorem 45.1 there is an obvious weakness: we
have the extra condition �

√
log2N	< 1− 1√

2
= �293 about the fractional part, which

holds only for a “positive density” sequence of N s (with an appropriate density
concept) instead of the usual “overwhelming majority of N s.”



Chapter X
Conclusion

The reader is owed a few missing details such as (1) how to modify the Achievement
proofs to obtain the Avoidance proofs, (2) the Chooser–Picker game, (3) the best-
known Pairing Strategy Draw in the nd hypercube Tic-Tac-Toe (part (b) in Open
Problem 34.1).
Also we discuss a few new results: generalizations and extensions, such as what

happens if we extend the board from the complete graph KN and the N ×N lattice
to a typical sub-board.
We discuss these generalizations, extensions, and missing details in the last four

sections (Sections 46–49).
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46
More exact solutions and more partial results

1. Extension: from the complete board to a typical sub-board. The book is
basically about two results, Theorems 6.4 and 8.2, and their generalizations (dis-
crepancy, biased, Picker–Chooser, Chooser–Picker, etc.). Here is another, perhaps
the most interesting, way to generalize. In Theorem 6.4 (a) the board is KN , that is,
a very special graph; what happens if we replace KN with a typical graph GN on
N vertices?
Playing the usual (1:1) game on an arbitrary finite graph G, we can define the

Clique Achievement (Avoidance) Number of G in the usual way, namely answering
the question: “What is the largest clique Kq that Maker can build (that Forcer can
force Avoider to build)?”

A typical sub-graph GN ⊂ KN has about half of the edges of KN , i.e.
�1+o�1��N 2/4 edges, and contains �1+ o�1��

(
N

q

)
2−�

q
2� copies of Kq . Of course,

a typical sub-graph GN ⊂ KN is just an alternative name for the Random Graph
R�KN�1/2� with edge probability p= 1/2.

The Meta-Conjecture predicts that the Clique Achievement (Avoidance) Number
of a typical sub-graph GN ⊂ KN is the lower integral part of the real solution
q = q�N � of the equation

(
N

q

)
2−�

q
2�

N 2/4
= 2�

q
2��

which is equivalent to

q = log2N − log2 log2N + log2 e−1+o�1�� (46.1)

And indeed, (46.1) gives the truth. The proof technique of Theorem 6.4 can be
trivially adapted due to the fact that the Random Graph is very homogeneous and
very predictable.

The corresponding Majority-Play Clique Number is the lower integral part of

q = log2N − log2 log2N + log2 e+1+o�1�� (46.2)
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Comparing (46.1) to (46.2) we obtain the remarkable equality

Majority Play Clique Number�G�−2= Clique Achievement Number�G�

= Clique Avoidance Number�G� (46.3)

which holds for the overwhelming majority of all finite graphs G (G is the board)!
By the way, to decide whether or not a graph GN contains a clique of log2N

vertices, and, if it does, to find one, takes about N log2 N steps; on the other hand, the
number of positions in a graph GN with about N 2/4 edges is roughly 3N

2/4. What
a big difference! This rough calculation justifies that the game numbers are much
more difficult concepts than the Majority-Play Number; this makes the (typical)
equality (46.3) even more interesting.
Of course, equality (46.3) is not true for every single graph. For example, if G

consists of a huge number of vertex disjoint copies of KN (say M copies), then the
Clique Achievement Number remains the usual �2+o�1�� log2N for every M , but
the Majority-Play Clique Number becomes N if M is much larger than 2�

N
2�.

What happens if the symmetric Random Graph R�KN�1/2� (meaning the typical
sub-graph GN ⊂ KN ) is replaced by the general Random Graph R�KN�p� with an
arbitrary edge probability 0< p < 1?
The Meta-Conjecture predicts that the Clique Achievement (Avoidance) Number

of R�KN�p� is the lower integral part of the real solution q = q�N � of the equation
(
N

q

)
p�

q
2�

pN 2/2
= 2�

q
2��

which is equivalent to

q = 2

log2�2/p�
�log2N − log2 log2N + log2 e+ log2 log2�2/p��−1+o�1�� (46.4)

And again (46.4) gives the truth; the proof technique of Theorem 6.4 can be trivially
adapted.
The corresponding Majority-Play Clique Number is the lower integral part of

q = 2
log2�2/p�

�log2N − log2 log2N + log2 e+ log2 log2�2/p��+1+o�1�� (46.5)

that is, we have the usual “gap 2” (see (46.3)) independently of the value of
probability 0< p < 1.
Switching from ordinary graphs to 3-graphs “gap 2” becomes “gap 3/2.” Since

3/2 is not an integer, this means that for a typical 3-graph the Majority-Play Clique
Number differs from the Clique Achievement (Avoidance) Number either by 1 or by
2, and the two cases have the same fifty–fifty chance (this is why the average is 3/2).

In general, for k-graphs the “gap” is k/�k−1�; since k/�k−1� is not an integer,
this means that for a typical k-graph the Majority-Play Clique Number differs from



More exact solutions and more partial results 613

the Clique Achievement (Avoidance) Number either by 1 or by 2, and the odds are
�k−2� � 1 (this is why the average is k/�k−1�).

Next consider the Lattice Games. What happens to Theorem 8.2 if the N ×N

grid is replaced by a “random sub-set”? Let 0<p< 1 be the probability of keeping
an arbitrary grid point; we decide independently. This is how we get the Random
Sub-set R(N ×N�p) of the grid N ×N ; the case p= 1/2 gives what is meant by a
“typical sub-board.”

Let us choose a lattice type; for example, consider the Parallelogram Lattice
Game. Playing the usual (1:1) game on a Random Sub-set R(N ×N�p) of the grid
N ×N , what is the largest value of q such that Maker can always occupy a q×q

parallelogram lattice inside the given sub-board?
The Meta-Conjecture predicts that the largest value of the lattice size is the lower

integral part of the real solution q = q�N � of the equation

N 4 =
(
2

p

)q2

�

which is equivalent to

q = 2
√
log�2/p� N � (46.6)

The corresponding Majority-Play Number is

N 6 =
(
2
p

)q2

⇐⇒ q =√
6
√
log�2/p� N � (46.7)

In this case the ratio
√
6/2 =√

3/2 remains the same independently of the value
of probability 0< p ≤ 1.
The “invariance of the gap” in the Clique Games (gap 2 for graphs, gap 3/2 for

3-graphs, and so on) and the “invariance of the ratio” in the Lattice Games (where
invariance means: independent of the value of probability 0 < p ≤ 1) is another
striking property of these game numbers. In the proofs switching from p = 1 to
an arbitrary probability p between 0< p < 1 makes very little difference (because
random structures are very “predictable”).

2. Strategy Stealing vs. explicit strategy. Consider now the “who can build a
larger Square Lattice” game. First assume that the board is the complete N ×N

grid; the two players alternate the usual (1:1) way; that player is declared the
winner who, at the end of the play, owns a larger Aligned Square Lattice (as for
the winner who owns a q× q lattice and the opponent’s largest lattice has size
�q−1�× �q−1�); in case of equality, the play ends in a draw. If N is odd, then the
first player has a simple (at least) drawing strategy: his opening move is the center
of the board, and in the rest of the play he takes the reflection of the opponent’s
moves.
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If the board is an arbitrary sub-set of the N ×N grid, then the first player still can
force (at least) a draw. The reflection strategy above obviously breaks down, but the
Strategy Stealing argument still works! Of course, Strategy Stealing doesn’t say a
word about how to actually force (at least) a draw. Can we find an explicit drawing
strategy here? Well, we can solve this problem at least for a board which is a typical
sub-set of N ×N . Of course, typical means the Random Sub-set R�N ×N�1/2� of
the N ×N grid with inclusion probability 1/2. In view of the Meta-Conjecture the
largest achievable size is

q =
⌊√

log4N +o�1�
⌋
=

⌊√
log2N

2
+o�1�

⌋
� (46.8)

A straightforward adaptation of the proof technique of Section 45 (in particular
Theorem 45.1) gives that the first player can always build an Aligned Square
Lattice of size q×q, and at the same time he can prevent the second player from
occupying a lattice of size �q+1�× �q+1�, where q is defined in (46.8).

The main point here is that this explicit strategy (using the potential technique
of Section 45) is much faster than the “backward labeling algorithm” (the general
recipe to find a drawing strategy guaranteed by the Strategy Stealing argument);
in fact, the running time of the explicit strategy is a logarithmic function of the
running time of the “backward labeling.” This is a huge difference!
The second player can do the same thing: he can also build an Aligned Square

Lattice of size q× q, and at the same time he can prevent the first player from
occupying a lattice of size �q+1�× �q+1�, where q is defined in (46.8).
Note that for the second player the Strategy Stealing argument does not seem to

work; for the second player the potential technique seems to be the only way to
force a draw (playing on a typical sub-board).

The last result of this section is also related to Section 45.

3. Maker’s building when he is the topdog: how to involve the Cheap Building
Lemma? We switch to biased games. The �m�b� achievement version of the Meta-
Conjecture with m > b, i.e. when Maker is the topdog, requires a correction: the
usual threshold

n= log m+b
m

�F �
�V �

is replaced by the more complicated threshold

n= log m+b
m

�F �
�V � + log m

m−b
�V �� (46.9)

due to the effect of the Cheap Building Lemma (see Section 30). In Section 30 we
gave an intuitive explanation for (46.9), we called it the “Random Play plus Cheap
Building” intuition and said “it is surprisingly easy to make this intuition precise
in the �m�1� play by involving an auxiliary hypergraph,” and promised to discuss
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the details in Section 46. What we are going to do is Maker’s part (Breaker’s part,
unfortunately, remains unsolved). The following argument is similar to that of in
Section 45, but the details here are simpler.

The real question is how to enforce the Disjointness Condition in the “Random
Play plus Cheap Building” intuition. We illustrate the idea with a “typical” example:
the (2:1) Parallelogram Lattice Game. Assume that we are in the middle of the First
Stage, where Maker already occupied X�i� = �x

�1�
1 � x

�2�
1 � � x

�1�
2 � x

�2�
2 � � � � � x

�1�
i � x

�2�
i �

and Breaker occupied Y�i� = �y1� y2� � � � � yi� from the board V = N ×N . Let F
denote the family of all q×q Parallelogram Lattices in N ×N , and write

F�i�= �A\X�i� � A ∈ F�A∩Y�i�= ∅��
Note that F�i� is the family of the unoccupied parts of the “survivors” in F ; the
truncated F�i� can be a multi-hypergraph even if the original F is not. We use the
Power-of-(3/2) Scoring System: for an arbitrary finite hypergraph H let

T�H�= ∑
B∈H

(
3

2

)−�B�
and T�H� u1� � � � � um�=

∑
B∈H� �u1�����um�⊂B

(
3

2

)−�B�
�

The new Potential Function is

Li =
(
T�F�i��−	0 ·T�Fp

2 �i��

)
−	1 ·T�G1�i��−	2 ·T�G2�i���

where, of course, T�· · · � refers to the Power-of-�3/2� Scoring System. Here the
part �T�F�i��−	0 ·T�Fp

2 �i��� is clearly justified by the technique of Section 24,
and the auxiliary hypergraphs G1 and G2 (motivated by the Disjointness Condition
in the Second Stage) will be defined later.

The positive constants 	0, 	1, 	2 are defined by the side condition

1

6
T�F�= 	0 ·T�Fp

2 �= 	1 ·T�G1�= 	2 ·T�G2�� (46.10)

The First Stage ends when �F�i�� ≤ N 2, that is, when the number of “survivors”
among the winning sets becomes less than the board size N ×N = N 2.

For notational simplicity, let �F�i0�� = N 2, i.e. i0 is the end of the First Stage.
Note that in the First Stage we apply the method of self-improving potentials (see
Section 24), which means that we divide the play into several phases, in each phase
we switch to a new potential where the multiplier 	0 is replaced by 	0/2, 	0/4,
	0/8, and so on, and each new phase turns out to be a bonus. It follows from the
method that we can assume the following two facts

T�F�i0��≥
1
4
T�F� (46.11)

and

T�F�i0�� > 	1 ·T�G1�i0��+	2 ·T�G2�i0��� (46.12)
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Inequality (46.11) implies that there must exist an integer s0 in 0≤ s0 <q2 such that

∑
B∈F�i0�� �B�=s0

(
3
2

)−s0

≥ 1
4q2

T�F�= 1
4q2

�F �2−q2 � (46.13)

Write Fs0
�i0�= �B ∈ F�i0� � �B� = s0�; for every B ∈ Fs0

�i0� let A�B� ∈ F denote
its ancestor, and write

Fs0
= �A�B� ∈ F � B ∈ Fs0

�i0���

We distinguish two cases:

Case 1: Family Fs0
contains at least

�Fs0
� · e−�logN �1/3

pairwise disjoint sets.
Then Maker applies the Cheap Building Lemma (see Section 30). If the inequality

�Fs0
� · e−�logN �1/3 ≥ 2s0−2 (46.14)

holds, then Maker can occupy a whole A∈Fs0
⊂F . Recall inequality (46.13) above

(
3
2

)q2−s0

≥ 1
4q2

�F �
�Fs0

� �

which is equivalent to

q2− s0 ≥ log 3
2
�F �− log 3

2
�Fs0

�−O�log logN �� (46.15)

On the other hand, if (46.14) fails, then

log2 �Fs0
� ≤ s0+O

(
�logN �1/3

)
� (46.16)

Adding up (46.15) and (46.16), we obtain

q2 ≥ log 3
2
�F �− log 3

2
�Fs0

�+ log2 �Fs0
�−O

(
�logN �1/3

)
� (46.17)

Since �Fs0
� ≤ N 2 = �V �, from (46.17) we conclude that

q2 ≥ log 3
2

�F �
�V � + log2 �V �−O

(
�logN �1/3

)
�

which contradicts the hypothesis

q =
⌊√

log 3
2
��F �/�V ��+ log2 �V �−o�1�

⌋

if o�1� tends to 0 sufficently slowly.
It remains to show that Case 1 is the only alternative (i.e. Case 2 below leads to

a contradiction).
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Case 2: There are at least
e�logN �1/3

q2

sets in family Fs0
which contain the same point.

Let w1 denote the common point, and write

Fs0�w1
= �A\ �w1� � w1 ∈ A ∈ Fs0

��

Let H⊂Fs0�w1
be the maximum size sub-family of Fs0�w1

which consists of pairwise
disjoint sets.

This is the part where we define and use the auxiliary hypergraphs G1 and G2.
Again we distinguish two cases:

Case 2a: We have

�H� ≥ e�logN �1/3/2

For notational simplicity write m= e�logN �1/3/2. We define the auxiliary hypergraph
G1 as follows: B ∈ G1 if and only if

B =
m⋃
i=1

Ai where �
m⋂
i=1

Ai� = 1� and

A1� � � � �Am are m different sets in F such that they are pairwise disjoint apart from
the one-element common part. Then by (46.10)

1
6	1

T�F�= T�G1�≤ N 2 ·
(
N 4

m

)(
3
2

)−m�q2−1�

� (46.18)

In (46.18) the factor N 2 is the number of ways to fix the one-element common
part,

(
N 4

m

)
is an upper bound on the number of ways to choose B = ⋃m

i=1Ai, and
the exponent m�q2−1� is explained by the disjointness apart from the one-element
common part.

It follows from the definition of H that

T�G1�≥
(
3

2

)−m�s0−1�

� (46.19)

On the other hand, by (46.18)

	1 ≥ T�F�

6 ·N 2
·
(
m · �3/2�q2−1

e ·N 4

)m

� (46.20)

By (46.19)–(46.20)

	1 ·T�G1�≥
T�F�

6 ·N 2
·
(
m · �3/2�q2−s0

e ·N 4

)m

� (46.21)
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Recall (46.13) (
3

2

)q2−s0

≥ 1

4q2

�F �
�Fs0

� �

and since �Fs0
� ≤ N 2, we have

(
3

2

)q2−s0

≥ 1

4q2

�F �
N 2

� (46.22)

Trivially

N 6 > �F �>
(
N

2q

)6

� (46.23)

so by (46.22) (
3

2

)q2−s0

≥ �N/2q�6

4q2 ·N 2
= N 4

44 ·q8
� (46.24)

By (46.21) and (46.24) we have

	1 ·T�G1�≥ T�F�

6 ·N 2
·
(

m

e ·44 ·q8

)m

� (46.25)

and since m = e�logN �1/3/2, (46.25) is a huge super-polynomial lower bound in
terms of N (note that T�F�≥ 1). This huge super-polynomial lower bound clearly
contradicts the polynomial upper bound (46.12)

T�F�i0�� > 	1 ·T�G1�i0���

Indeed, T�F�i0�� ≤ �F � < N 6, see (46.23). This contradiction proves that Case 2a
is impossible.
If Case 2a is impossible, then we have

Case 2b: There are at least
e�logN �1/3/2

q4

sets in family Fs0�w1
which contain the same point.

Let w2 denote the common point; it means that there is a sub-family H1 of Fs0
such

that

(1) �H1� ≥ e�logN �1/3/2

q4
, and

(2) every element of H1 contains the point pair �w1�w2�.

Let
H2 = �A\ �w1w2−line� � A ∈ H1��

that is, we throw out the whole w1w2-line, and let H3 ⊂ H2 be the maximum size
sub-family of H2 which consists of pairwise disjoint sets.
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Three non-collinear points in the N × N grid “nearly” determine a q × q

parallelogram lattice: the multiplicity is ≤ (
q2

3

)
. It follows that

�H3� ≥
�H2�

1+ (
q2

3

) ≥ e�logN �1/3/2

q10
� (46.26)

For notational simplicity write

r = e�logN �1/3/2

q10
�

We define the auxiliary hypergraph G2 as follows: B ∈ G2 if and only if

B =
r⋃

i=1

Ai where
r⋂

i=1

Ai is �≥ 2�−element collinear� and

A1� � � � �Ar are r different sets in F such that they are pairwise disjoint apart from
the line spanned by the collinear common part. Then by (46.10)

1

6	2

T�F�= T�G2�≤
(
N 2

2

)
·
(
N 2

r

)(
3
2

)−r�q2−q�

� (46.27)

In (46.27) the factor
(
N 2

2

)
is the number of ways to fix two different points,

(
N 2

r

)
is

an upper bound on the number of ways to choose B =⋃r
i=1Ai, and the exponent

r�q2 − q� is explained by the disjointness apart from the collinear common part
(here we use that a line intersects a q×q parallelogram lattice in at most q points).
It follows from the definition of H3 that

T�G2�≥
(
3
2

)−r·s0
� (46.28)

On the other hand, by (46.27)

	2 ≥
T�F�

3 ·N 4
·
(
r · �3/2�q2−q

e ·N 2

)r

� (46.29)

Notice that (46.27) is similar to (46.28); in fact, Case 2b is simpler than Case 2a,
because in (46.27) (and so in (46.29)) we have the much smaller Pair-Degree ≤ N 2

instead of N 4, implying that the crucial factor
(
N 2

r

)
in (46.29) is much smaller than

the corresponding factor
(
N 4

m

)
in (46.18). This explains why repeating the argument

of Case 2a, we obtain the same kind of contradiction here in Case 2b (in fact, Case
2b is simpler!).

This shows that Case 2 is really impossible, completing the proof of the
Parallelogram Lattice Game.

The argument above is simpler than that of in Section 45; it can be easily extended
to any other lattice game, and also to the Clique Games. Of course, in the Clique
Games we need calculations similar to Section 25, but the idea remains the same.
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Miscellany (I)

1. A duality principle. So far we have focused on the Achievement Games, and it
was often stated that “of course the same holds for the Avoidance version” without
going into the details. Here an honest effort is made to explain the striking equality

Achievement Number = Avoidance Number (47.1)

which holds for our “Ramseyish” games with quadratic goals (see Theorems 6.4,
8.2, and 12.6). We begin the precise discussion of (47.1) by recalling the simplest
Achievement building criterion.

Theorem 1.2 If F is n-uniform and

�F �> 2n−3 ·
2 · �V ��
where 
2 is the Max Pair-Degree and V is the board, then at the end of the play
on F Maker (the first player) can always occupy a whole winning set A ∈ F .

The Reverse version goes as follows:

Reverse Theorem 1.2 If F is n-uniform and

�F �> 2n−3 ·
2 · �V ��
then Forcer (the second player) can always force Avoider to occupy a whole
winning set A ∈ F .

The proof of “Reverse Theorem 1.2” is the same as that of Theorem 1.2, except
that Forcer always chooses a point of minimum value (note that Maker always
chooses a point of maximum value).
Is it true that every Achievement building result in the book can be converted

into a Forcer’s win result in the Avoidance version by simply switching the role of
maximum and minimum? The answer is “no,” and an example is:

620
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Theorem 20.3 If b = � log227 − o�1��n/ logn = ��02567− o�1��n/ logn, then play-
ing the (1:b) Hamiltoninan Cycle Game on Kn, underdog Maker can build a
Hamiltonian cycle.

What is so special about the proof of Theorem 20.3? Well, Maker’s Hamilton
cycle building strategy consists of two phases. In Phase 1 he guarantees that his
graph is an Expander Graph with factor 2 (see property (�) in Section 20), and in
Phase 2 he keeps creating a longer path by choosing an unoccupied Closing Edge
from sub-graph Close�G�P�. Phase 1 is exactly like the proof of Theorem 1.2: every
Maker’s move is a Potential Move, meaning that Maker optimizes an appropriate
potential function by choosing an edge of maximum value. There is no problem
with Phase 1: it can be trivially converted into the Reverse Game by switching the
roles of maximum and minimum.

Maker can guarantee that Phase 1 ends at a relatively early stage of the play,
when the “good” sub-graph Close�G�P� has plenty of unoccupied edges. Of course,
in Phase 2 Maker jumps on the opportunity and picks an unoccupied Closing Edge
from Close�G�P� (creating a longer path, and he keeps repeating this). Now this
is exactly where the problem with Phase 2 is: there is no way to force the reluctant
Avoider to pick an edge from “good” sub-graph Close�G�P� at an early stage;
Avoider can wait until the very end when he has no other moves left, and then the
proof may collapse in the next step (i.e. we may not be able to create a longer path
in the next step)! This is why there is no obvious way to convert Phase 2 into the
Reverse Game, and this leads to Open Problem 20.1.

Theorem 20.3 is a warning: there is no automatic “transference principle” here.
The good news about the exact results is that their building part is proved by
either Theorem 1.2 or Theorem 24.2, and in both strategies every Maker’s move
is a Potential Move (i.e. Maker optimizes a potential function). This fact can
be checked by inspecting the proofs of Theorems 6.4, 8.2, and 12.6. Of course,
Potential Moves are “safe”: they can be trivially converted into the Reverse Game
by switching the roles of maximum and minimum. The same applies for the ad hoc
arguments in Section 23: every Maker’s move is a Potential Move.

How about the blocking part of the exact solutions? The simplest blocking cri-
terion is the Erdős–Selfridge Theorem (Theorem 1.4). It is obviously safe: every
Breaker’s move is a Potential Move. To prove the exact solutions we combined
Theorem 1.4 (in fact its Shutout version) with the BigGame–SmallGame Decompo-
sition technique (see Chapters VII–IX). The Big Game remains a single entity, and
every Breaker’s move in the Big Game is a Potential Move. The small game, on
the other hand, falls apart into a large number of non-interacting components, and
this needs a little bit of extra analysis.

Let us begin with Theorem 34.1 (the first Ugly Theorem). An inspection of
Section 36 shows that the small game is a disjoint game: it is played on the on-line
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disjoint parts S̃j of the emergency sets Sj , j = 1�2�3� � � �, and �S̃j� ≥ 2 holds for
every j. In the small game Breaker follows the trivial Same Set Rule: if Maker’s
last move was in an S̃j , then Breaker always takes another unoccupied point from

the same S̃j as long as he can. In the Reverse version Avoider follows the Same

Set Rule: if Forcer’s last move was in an S̃j, then Avoider always takes another

unoccupied point from the same S̃j as long as he can do it. Avoider can clearly

avoid occupying a whole S̃j if we have the slightly stronger condition: �S̃j� ≥ 3

for every j. The original condition �S̃j� ≥ 2 is not enough as the following simple
counter-example shows.

∼ ∼
S1 S2

If Avoider starts in S̃1, then Forcer takes 2 points from S̃2, and even if Avoider
follows the Same Set Rule, he will end up with both points of S̃1. Of course, this
kind of “cheap” parity problem cannot occur if every �S̃j� ≥ 3.

The new requirement “�S̃j� ≥ 3 for every j” forces a slight change in the proof
of Theorem 34.1: a survivor A ∈ F becomes dangerous when Maker occupies its
��A� − k− 2�th point, and the condition changes as follows: the term k�k+ 1� is
replaced by k�k+ 2�, which is, of course, irrelevant in the asymptotic behavior
(compare (34.6) with (47.2) below).

Reverse Theorem 34.1 Let F be an m-uniform Almost Disjoint hypergraph. The
Maximum Degree of F is denoted by D, and the total number of winning sets is
�F � =M . If there is an integer k with 2 ≤ k≤m/2 such that

M

(
m�D−1�

k

)
< 2km−k�k+2�−�k2�−1� (47.2)

then Avoider can always avoid occupying a whole winning set A ∈ F �

Next consider Theorem 37.5 (the second Ugly Theorem). Here the small game
falls apart into many-many “sub-exponentially” large components (for the details of
the proof, see Section 39). In each component Breaker follows the Same Component
Rule (if Maker moves to a component of the small game, then Breaker replies in
the same component), and chooses an unoccupied point of maximum value. In the
Reverse version Avoider follows the Same Component Rule, and chooses a point
of minimum value. Identical criterions give identical thresholds!

The same applies for the rest of Part D. This completes our explanation for the
equality

Achievement Number = Avoidance Number

in Theorems 6.4, 8.2, and 12.6.
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2. An extention of the duality. The equality above can be extended to a longer
chain of equalities:

Achievement Number = Avoidance Number

= Chooser′s Achievement Number = Picker′s Avoidance Number� (47.3)

(47.3) involves two more games: the Chooser–Picker Game and the Picker–Chooser
Game. These games are very different from the Maker–Breaker and Avoider–Forcer
games: in each turn of the play Picker picks two previously unselected points of
the board V , Chooser chooses one of them, and the other point goes back to Picker.
The “first name” indicates the “builder”: in the Chooser–Picker version Chooser
is the “builder,” he wins if he can occupy a whole winning set A ∈ F ; otherwise
Picker wins. In the Reverse Picker–Chooser Game Picker is the “anti-builder”: he
loses if he occupies a whole winning set A ∈ F ; otherwise Picker wins. In the
Chooser–Picker Game we have the following analogue of Theorem 1.2.

Chooser’s building criterion (“linear”). If F is n-uniform and

�F �> 2n−3 ·
2 · �V ��

then at the end of the play on F Chooser can always occupy a whole winning set
A ∈ F .

The proof of this criterion is exactly the same as that of Theorem 1.2, except
that, from the two points offered to him by Picker, Chooser always chooses a point
of larger value.

In the Reverse Picker–Chooser Game we have:

Chooser’s Picker-is-forced-to-build criterion (“linear”). If F is n-uniform and

�F �> 2n−3 ·
2 · �V ��

then Chooser can always force Picker to occupy a whole winning set A ∈ F .

The proof of this criterion is the same, except that, from the two points offered
to him by Picker, Chooser always chooses a point of smaller value.

Similarly, the Advanced Maker’s Win Criterion (Theorem 24.2) can be converted
into an Advanced Chooser’s building criterion by simply replacing maximum with
larger, and can be converted into an Advanced Chooser’s Picker-is-forced-to-build
criterion by switching to smaller. The same applies for the ad hoc arguments of
Section 23.

In the Chooser–Picker Game we have the following version of the Erdős–
Selfridge theorem (see Section 38).
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Theorem 38.1 (“Picker’s blocking”) If

∑
A∈F

2−�A� ≤ 1
8��F�+1�

�

where �F� =maxA∈F �A� is the rank of hypergraph F , then playing the Chooser–
Picker game on hypergraph F , Picker can always block every winning set A ∈ F .

This criterion is not exactly the same as Theorem 1.4, but it is a similar Power-
of-Two criterion; consequently, in the exact solutions – where the Erdős–Selfridge
Theorem is combined with the BigGame–SmallGame Decomposition – the differ-
ence gives a negligible additive term o�1�, which tends to 0 as the board size N

tends to infinity. Note that Picker can easily enforce the Same Component Rule
in the small game by always picking his point pair from the same component (by
using Theorem 38.1). This explains the equality

Achievement Number = Chooser′s Achievement Number� (47.4)

In the Reverse Picker–Chooser Game we have the perfect analogue of Theorem 38.1.

Picker’s anti-building criterion. If

∑
A∈F

2−�A� ≤ 1

8��F�+1�
�

where �F�=maxA∈F �A� is the rank ofF , then, playing the Reverse Picker–Chooser
game on F , Picker can always avoid occupying a whole winning set A ∈ F .

The proof of this criterion is exactly the same as that of Theorem 38.1. This
explains the equality

Chooser′s Achievement Number = Picker′s Avoidance Number� (47.5)

Combining (47.4)–(47.5) we obtain (47.3).
The Picker–Chooser and the Reverse Chooser–Picker Games have not been

mentioned yet. From Section 22 we know the equality

Majority Play Number = Picker′s Achievement Number� (47.6)

In the Reverse Chooser–Picker Game, Chooser loses if he occupies a whole winning
set A ∈ F ; otherwise Chooser wins.
In the Picker–Chooser Game, we have (for the notation see Section 22)

Picker’s building criterion: Theorem 22.1 Consider the Picker–Chooser Game
on hypergraph �V�F�. Assume that

T�F�≥ 1014�F�14
(√

T�F 2
1 �+1

)
�

Then Picker can always occupy a whole winning set A ∈ F .
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Exactly the same proof gives the following result in the Reverse Chooser–Picker
Game:

Picker’s Chooser-is-forced-to-build criterion. Consider the Reversed Chooser–
Picker Game on hypergraph �V�F�. Assume that

T�F�≥ 1014�F�14
(√

T�F 2
1 �+1

)
�

Then Picker can always force Chooser to occupy a whole winning set A ∈ F .

Next we switch from building to blocking; in the Picker–Chooser Game we have:

Chooser’s blocking criterion. If F is n-uniform and �F �< 2n, then Chooser can
always prevent Picker from occupying a whole A∈F in the Picker–Chooser Game.

The proof of this criterion is totally routine: Chooser uses the Power-of-Two
Scoring System, and in each turn among the two points offered to him by Picker
he chooses a point of larger value.

A similar proof gives the following result in the Reverse Chooser–Picker Game.

Chooser’s avoidance criterion. If F is n-uniform and �F �< 2n, then Chooser can
always avoid occupying a whole A ∈ F in the Reverse Chooser–Picker Game.

The only change in the proof is that Chooser chooses the point of smaller value.
Identical criterions give identical thresholds; this explains why (47.6) can be

extended by the extra equality

Picker′s Achievement Number = Chooser′s Avoidance Number� (47.7)

This concludes our discussion on the “duality” of the game numbers.

3. Balancing in discrepancy games. Let 1/2<�≤ 1; in the �-Discrepancy Game
Maker’s goal is to occupy ≥ � part of some A ∈F (instead of occupying the whole
A ∈ F). The main result was formulated in Theorem 9.1, and the “lead-building”
part was formulated in Sections 28–29. The balancing part is an adaptation of the
BigGame–SmallGame Decomposition, developed for the special case �= 1. In the
Big Game, and also in every component of the small game, Breaker (“balancer”)
applies the Corollary of Theorem 16.1 (see below). We begin by recalling the:

Corollary of Theorem 16.1 Let F be an n- uniform hypergraph, and consider the
Balancer–Unbalancer game (introduced in Theorem 16.1) played on hypergraph
F where Unbalancer’s goal is to own at least n+


2 points from some A ∈ F . If


=
(
1+O

(√
log �F �

n

))√
2n log �F ��

then Balancer has a winning strategy.
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The key question is how to define the emergency sets in the �-Discrepancy Game.
Assume that hypergraph F is n-uniform (i.e. n= q×q; we cannot handle the Clique
Games!). Let 0< �< 1/2 be a fixed constant; when an A ∈ F has the property for
the first time that Maker’s lead in A equals

�2�−1�n−max
{
�A�blank�� 12+�� n

1
2−�

}
� (47.8)

set A becomes dangerous, and its blank part A�blank� is the first emergency set.
The emergency set A�blank� is removed from the Big Board (which was the whole
N ×N board before) and added to the small board (which was empty before).

Note that we may have several dangerous sets arising at the same time: each one
is removed from the Big Board and added to the small board.

The intuitive justification of (47.8) goes as follows. If Maker achieves an
�-Discrepancy, then at the end of the play his lead in some A ∈ F is ≥
�n− �1−��n = �2�− 1�n. This is what Breaker (as balancer) wants to prevent,
so a Maker’s lead close to �2�− 1�n is obviously dangerous. The second term
�A�blank�� 12+� in (47.8) is motivated by the idea that, in each component of the
small game, Breaker uses the Corollary of Theorem 16.1 to prevent a discrepancy
of size �A�blank�� 12+�. Breaker succeeds if each component of the small game is
“not too large,” which component condition is enforced by the Big Game. This
is exactly the basic idea of the BigGame–SmallGame Decomposition technique.
Finally, the term n

1
2−� shows up in (47.8) because it is much less than

√
n; this is

what Breaker needs to break the “square-root barrier.”
The rest of the adaptation is straightforward, see Sections 40–44.

4. Blocking in biased games. In the �m � b� Achievement play the BigGame-
SmallGame Decomposition can work only if m ≤ b (otherwise Breaker cannot
keep up with Maker). If m ≤ b holds, then Breaker must “keep the ratio” in the
Big Game and “keep it fair” in the components of the small game. For example,
consider the (4:5) play; if Maker’s next move is (say) 2+ 1+ 1 in the sense that
2 points in the Big Game and the remaining 2 points split in 2 different components
of the small game, then Breaker should reply the 3+ 1+ 1 way, that is, 3 points
in the Big Game and the remaining 2 points split in the same 2 components of the
small game.
By the way, in both exact biased game results, Theorem 9.2 (the �a�1� Avoidance

game) and Theorem 32.1 (the �1 �b� Achievement game), number “1” cannot be
divided into parts, which makes it even simpler! The decomposition techniques
developed for the (1 : 1) play in Part D can be trivially adapted for the �1 �b�
Achievement games and the �a�1� Avoidance games.

5. Blocking in biased Chooser–Picker games. Theorem 33.4 was about the biased
(1:s) Chooser–Picker game, where s ≥ 2, i.e. Picker is the topdog. It proves what is
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conjectured to be the best possible Chooser’s building criterion. Here we discuss the
missing Picker’s blocking part. The fair (1:1) case is solved in Theorem 38.1. This
is particularly simple; unfortunately its proof does not extend to the biased (1:s)
game, or at least we cannot see any straightforward generalization. The following,
somewhat strange and technical, result is my best effort in the (1:s) case:

Theorem 47.1 Assume that there is an integer t in 1≤ t ≤ �F� such that

�1�
∑
A∈F

�s+1�−�A�+t ≤ 1� and

(2) the restriction of F to any �s24�F�12�-element point-set spans ≤ 2t

8�t+1�

different sets — we refer to this second condition as the Induced Sub-hypergraph
Size Property.

Then, playing the (1:s) Chooser–Picker game on F , topdog Picker can always
block every A ∈ F .

Proof of Theorem 47.1. We are going to apply the Power-of-�s + 1� Scoring
System: for an arbitrary hypergraph �V�H�, where V is the union set (“board”), write

T�H�= ∑
A∈H

�s+1�−�A��

and for any m-element sub-set of points �u1� � � � � um�⊆ V (m≥ 1) write

T�H� u1� � � � � um�=
∑

A∈H� �u1�����um�⊆A

�s+1�−�A��

of course, counted with multiplicity.
Assume that we are in the middle of a (1:s) Chooser–Picker play, where Chooser

already occupied X�i�= �x1� x2� � � � � xi�, and Picker occupied

Y�i�=
{
y
�1�
1 � � � � � y

�s�
1 � y

�1�
2 � � � � � y

�s�
2 � � � � � y

�1�
i � � � � � y

�s�
i

}
�

The question is how to pick Picker’s next move �u1� u2� � � � � us+1�. Of course, this
(s+1)-element set equals �xi+1� y

�1�
i+1� � � � � y

�s�
i+1�, but Picker doesn’t know in advance

which one will be xi+1 =Chooser’s choice.
Let

F�i�= �A\X�i� � A ∈ F� A∩Y�i�= ∅��

F�i� is a multi-hypergraph.
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We can describe the effect of the �i+1�st moves xi+1� y
�1�
i+1� � � � � y

�s�
i+1 as follows:

T�F�i+1��= T�F�i��+ s ·T�F�i�� xi+1�−
s∑

j=1

T�F�i�� y
�j�
i+1�

− s
s∑

j=1

T�F�i�� xi+1� y
�j�
i+1�+

∑
1≤j1<j2≤s

T�F�i�� y
�j1�
i+1 � y

�j2�
i+1�

+ s
∑

1≤j1<j2≤s

T�F�i�� xi+1� y
�j1�
i+1� y

�j2�
i+1�−

∑
1≤j1<j2<j3≤s

T�F�i�� y
�j1�
i+1� y

�j2�
i+1� y

�j3�
i+1�∓· · ·

(47.9)

Identity (47.9) may seem rather complicated at first sight, but the underlying pattern
is very simple: it is described by the expansion of the product

�1+ s ·x��1−y�1���1−y�2�� · · · �1−y�s��−1� (47.10)

It follows from (47.9)–(47.10) that

T�F�i+1��≤ T�F�i��+
s∑

j=1

∣∣∣T�F�i�� xi+1�−T�F�i�� y
�j�
i+1�

∣∣∣

+ s
s∑

j=1

T�F�i�� xi+1� y
�j�
i+1�+

∑
1≤j1<j2≤s

T�F�i�� y
�j1�
i+1� y

�j2�
i+1�

+ s
∑

1≤j1<j2≤s

T�F�i�� xi+1� y
�j1�
i+1� y

�j2�
i+1�+

∑
1≤j1<j2<j3≤s

T�F�i�� y
�j1�
i+1� y

�j2�
i+1� y

�j3�
i+1�+· · ·

(47.11)

As said before, the key question is how to pick Picker’s next move �u1� u2� � � � � us+1�

(= �xi+1� y
�1�
i+1� � � � � y

�s�
i+1�) from the unoccupied part Vi = V \ �X�i�∪ Y�i�� of the

board. To answer this question, list the following trivial inequalities∑
u∈Vi

T�F�i�� u�≤ �F�T�F�i��� (47.12)

∑
�u1�u2�∈�Vi2 �

T�F�i�� u1� u2�≤
(�F�

2

)
T�F�i��� (47.13)

∑
�u1�u2�u3�∈�Vi3 �

T�F�i�� u1� u2� u3�≤
(�F�

3

)
T�F�i��� (47.14)

and so on, where the last one is

∑
�u1�����us�∈�Vis �

T�F�i�� u1� � � � � us�≤
(�F�

s

)
T�F�i��� (47.15)

We need the following:
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Deletion Lemma: Assume that �Vi� ≥ s�F�12, and choose

m= �Vi�3/4
�F� �

Then there exists a sub-set U0 ⊂ Vi such that

�1� �U0� ≥
m

2
= �Vi�3/4

2�F� �

�2� T�F�i�� u1� � � � � uk�≤
s�F�

�Vi�1+�k−1�/4
·T�F�i��

holds for every �u1� � � � � uk� ∈
(
U0
k

)
and every 2 ≤ k≤ s.

The proof of the Deletion Lemma is a routine application of Erdős’s deletion
technique, a standard idea in the Probabilistic Method.

A k-set �u1� � � � � uk� ∈
(
Vi
k

)
with 2≤ k≤ s is called a bad k-set if requirement (2)

above is violated, i.e. if

T�F�i�� u1� � � � � uk� >
s�F�

�Vi�1+�k−1�/4
·T�F�i��� (47.16)

Recall

m= �Vi�3/4
�F� and �Vi� ≥ s�F�12�

Let R be a randomly chosen m-set in Vi, that is, all
(�Vi�
m

)
m-sets are equally likely.

For every 2 ≤ k ≤ s let Bk�R� denote the expected number of bad k-sets in R. In
view of (47.13)–(47.15) we have the trivial inequality(�Vi�

m

)
·Bk�R� ·

s�F�
�Vi�1+�k−1�/4

·T�F�i��≤
(�F�

k

)
T�F�i��

(�Vi�−k

m−k

)
�

which is equivalent to

Bk�R�≤
�Vi�1+�k−1�/4

s�F� ·
(�F�

k

)(�Vi�−k

m−k

)
(�Vi�
m

) � (47.17)

Since (�Vi�−k

m−k

)
(�Vi �
m

) =
(
m

k

)
(�Vi�

k

) �
by (47.17) we have

Bk�R�≤
�Vi�1+�k−1�/4

s�F� ·
(�F�

k

)(
m

k

)
(�Vi�

k

) ≤ �Vi�1+�k−1�/4

s�F� · 1
2

(�F�m
�Vi�

)k

=�Vi�1+�k−1�/4

s�F� · 1
2
�Vi�−k/4 = �Vi�3/4

2s�F� = m

2s
� (47.18)
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(47.18) gives that
s∑

k=2

Bk�R�≤ �s−1�
m

2s
<

m

2
� (47.19)

It follows from inequality (47.19) about the expected value that the poorest m-set
R0 in Vi has the property

s∑
k=2

Bk�R0� <
m

2
�

that is, the total number of bad sets in R0 is less than m/2. Deleting 1 point from
each bad set in R0 we obtain a sub-set U0 ⊂ R0 such that �U0�>m/2 and U0 does
not contain any bad set. This completes the proof of the Deletion Lemma. �

It follows from (47.12) that∑
u∈U0

T�F�i�� u�≤ �F�T�F�i��� (47.20)

where U0 ⊂ Vi is a sub-set satisfying the Deletion Lemma. By (47.20) at least half
of u ∈ U0 satisfy

T�F�i�� u�≤ 2�F�
�U0�

T�F�i���

that is, there is a sub-set �u1� u2� � � � � ul�⊂ U0 with l≥ �U0�/2>m/4= 1
4V

3/4/�F�
such that

T�F�i�� uj�≤
4�F�2
�Vi�3/4

T�F�i��� 1≤ j ≤ l� (47.21)

Divide the interval

I =
[
0�

4�F�2
�Vi�3/4

T�F�i��

]
into

�Vi�3/4
4s�F�

equal sub-intervals. By the Pigeonhole Principle one of the sub-intervals contains
≥ s+1 elements of �u1� u2� � � � � ul�; for notational convenience denote them simply
by �u1� u2� � � � � us+1�. It follows from (47.21) that the inequality

�T�F�i�� up�−T�F�i�� uq�� ≤
4�F�2
�Vi�3/4 T�F�i��

�Vi�3/4
4s�F�

= 16s�F�3
�Vi�3/2

T�F�i�� (47.22)

holds for any 1 ≤ p < q ≤ s+1. Summarizing, there is an �s+1�-element sub-set
�u1� u2� � � � � us+1�⊂ Vi such that (47.22) holds, and also, by the Deletion Lemma

T�F�i�� uj1
� � � � � ujk

�≤ s�F�
�Vi�1+�k−1�/4

T�F�i�� (47.23)

holds for any 1≤ j1 < j2 < · · ·< jk ≤ s+1 and any 2 ≤ k≤ s.
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Let us return to (47.11): by (47.22) and (47.23) we have

T�F�i+1��≤ T�F�i��

(
1+ 16s2�F�3

�Vi�3/2
+ 2s3�F�

�Vi�5/4

+ s4�F�
�Vi�6/4

+ s5�F�
�Vi�7/4

+· · ·
)
� (47.24)

It follows from (47.24) that, if �Vi� ≥ s24�F�12, then

T�F�i+1��≤ T�F�i��

(
1+ 1

�Vi�9/8
)
� (47.25)

Clearly ∑
i� �Vi�≥M

1

�Vi�9/8
≤
∫ �

M
x−9/8 dx= 8

M1/8
� (47.26)

moreover, by using the trivial inequality 1+x ≤ ex, from (47.25) and (47.26) we
obtain that

T�F�i��≤ e ·T�F�0��= e ·T�F� (47.27)

holds for all i with �Vi�>M = s24�F�12.
Now we are ready to complete the proof of Theorem 46.1. Let �Vi0

� = s24�F�12.
It follows from (47.27) that every set in the truncated hypergraph F�i0� has size
≥ t. Indeed, otherwise T�F�i0�� ≥ �s+ 1�−t+1, and we get a contradiction from
the first hypothesis

T�F�≤ �s+1�−t

of Theorem 46.1 and inequality (47.27).
It remains to block F�i0�; call it the endplay. Since F�i0� has less than 2

t/8�t+1�
sets, and each set has size ≥ t, Picker can block F�i0� in a most trivial way by
applying Theorem 38.1. This means Picker can ignore �s− 1� of his marks per
move: the endplay is so simple that a (1:1) play suffices to block F�i0�.

Application to the Clique Game. Consider the biased (1:s) Chooser–Picker
�KN �Kq� game, i.e.KN is the board,Kq is Chooser’s goal (Chooser is the underdog).

How to choose parameter t in Theorem 47.1? An arbitrary set of s24
(
q

2

)12
edges in

KN covers ≤ 2s24
(
q

2

)12
vertices in KN . This gives the following trivial upper bound

on the Induced Sub-hypergraph Size (see the second condition in Theorem 47.1)

Induced Sub-hypergraph Size ≤
q∑

j=1

(
2s24

(
q

2

)12
j

)
�

Thus we have the following 2 requirements for parameter t

q∑
j=1

(
2s24

(
q

2

)12
j

)
<

2t

8�t+1�
and

(
N

q

)
≤ �s+1��

q
2�−t �
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The first requirement is satisfied with the choice t = 24q log2 q; then the second
requirement becomes

eN

q
≤ �s+1�

q
2−O�logq��

It follows that, if q = 2 logs+1N +O�log logN �, then Theorem 47.1 applies and
implies Picker’s win. The value q = 2 logs+1N +O�log logN � comes very close to
the conjectured truth, which is the lower integral part of

2 logs+1N −2 logs+1 logs+1N +2 logs+1 e−2 logs+1 2−1−o�1�� (47.28)

The discrepancy is O�log logN �, which is a logarithmic additive error (logarithmic
in terms of the main term 2 logs+1N ).
Incidently, Theorem 33.4 proves exactly that, in the (1:s) play in KN , Chooser

can build a clique Kq where q is defined in (47.28).

Application to the Lattice Games (Theorem 8.2). We can use an adaptation of
Section 42, i.e. the simplest form of the RELARIN technique. This leads to an error
term O��logN �

1
2−� – note that the main term in Theorem 8.2 is constant times√

logN . The RELARIN technique in Section 42 involves Big Sets
⋃r

i=1Ai, where
each Ai is a q×q lattice of the same type in the N ×N board. The most general
lattice in Theorem 8.2 (a)–(g) is the Parallelogram Lattice. Three non-collinear
points of a q×q parallelogram lattice A nearly determine A: there are at most

(
q2

3

)
A’s containing the same non-collinear triplet.

A Key Property of the family of Big Sets: the Size of the Induced Sub-
hypergraph. Let X be an arbitrary �s24�q2�12�-element sub-set of the N ×N board.
Let B denote the family of all Big Sets B = ⋃r

i=1Ai defined by the RELARIN
technique in Section 42. We need an upper bound on the number of different sets
in the induced sub-hypergraph BX , where BX means the restriction of B to X; let
�BX� denote its size. Let B=⋃r

i=1Ai be arbitrary. If �Ai∩X� ≥ 3 and Ai∩X is non-
collinear, then let A∗

i be an arbitrary non-collinear triplet in Ai∩X; if �Ai∩X� ≥ 3
and Ai∩X is collinear, then let A∗

i be an arbitrary point-pair in Ai∩X; and, finally,
if �Ai ∩X� ≤ 2, then let A∗

i = Ai ∩X. Let B∗ =⋃r
i=1A

∗
i . The total number of sets

B∗ is trivially less than �X�3r . Therefore, the size of the induced hypergraph

�BX� ≤ �X�3r ·
(
q2

3

)r

= �s24q24�3r ·
(
q2

3

)r

≤ �s24 ·q74�r � (47.29)

By using inequality (47.29) it is easy now to apply Theorem 47.1 to the Lattice
Games. The calculations go very similarly to the Clique Game. We stop here, and
the details are left to the reader as an exercise.
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Open Problem 47.1 Formulate and prove a stronger version of Theorem 47.1
(Picker’s blocking) which perfectly complements Theorem 33.4 (Chooser’s build-
ing), i.e. which gives exact solutions in the biased (1:s) Chooser–Picker versions
of the Clique and Lattice Games.
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Miscellany (II)

1. Fractional Pairing. Recall the stronger form of the Hales–Jewett Conjecture
(part (b) in Open Problem 34.1): if there are at least twice as many points as
winning lines in the nd Tic-Tac-Toe board, then the Tic-Tac-Toe game is a Pairing
Strategy Draw.
The “Degree Reduction for the nd-hypergraph” (see Theorem 12.2) immedi-

ately gives the following: the nd game is a Pairing Strategy Draw if n ≥ 4d (see
Theorem 34.2 (iii)). Indeed, applying the “Degree Reduction” Theorem to the
nd-hypergraph with � = 1/4� we obtain a 2�n/4�-uniform hypergraph with max-
imum degree ≤ d� Then “Degree Criterion” Theorem 11.2 applies, and implies a
Pairing Strategy Draw. Here we show how to improve the bound “4d” to “3d”
by using the concept of Fractional Pairing; the result is due to Richard Schroeppel
(Arizona).
What is a Fractional Pairing? Where did it come from? As far as we know, the

very first “fractional” concept was van Neumann’s idea of a mixed strategy. By
extending the concept of ordinary strategy to mixed strategy, he could prove that
every 2-player zero-sum game (i.e. pure conflict situation) has an “equilibrium,”
meaning the best compromise for both players. Mixed strategy means to randomly
play a mixture of strategies according to a certain fixed probability distribution.
The fixed probabilities are the “fractional weights,” so a mixed strategy is nothing
else other than a Fractional Strategy!
The concept of Fractional Matching is widely used with great success in Match-

ing Theory. The Bigamy Version of Fractional Matching is exactly the concept
of Fractional Pairing. It makes it much easier to check the Pairing Criterion
(Theorem 11.1); it gives a lot of extra flexibility. The following result is from
Schroeppel’s unpublished (yet) manuscript (we include it here with his kind
permission).

A Fractional Pairing formally means to fill out the Point-Line Incidence Matrix
of the nd board with real entries aP�L such that:

(1) 0 ≤ aP�L ≤ 1�

634
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(2)
∑

L aP�L ≤ 1 for every point P;
(3)

∑
P aP�L ≥ 2 for every line L.

Schroeppel’s Fractional Pairing Theorem.

(a) If there is a Fractional Pairing, i.e. (1)–(3) are satisfied, then the nd Tic-Tac-Toe
has an ordinary Draw-Forcing Pairing (“0−1 pairing”);

(b) If n= 3d, d is even, or if n= 3d−1, d is odd, then the nd game has a Pairing
Strategy Draw.

Remark. By using Lemma 1 below we obtain the following extension of (b): the
nd game has a Pairing Strategy Draw if n ≥ 3d, d even, and n ≥ 3d− 1, d odd.
This is how close we can get to Open Problem 34.1 (b).

Proof. (a) The Pairing Criterion (Theorem 11.1) applies, since for any sub-family
L of lines

2�L� ≤ ∑
L∈L

∑
P

aP�L =
∑
P

∑
L∈L

aP�L ≤
∑

P∈∪L∈LL
1= �∪L∈L L��

By choosing the common value aP�L = 2/n� this argument gives the exponentially
weak bound (34.1). The obvious advantage here is the extra flexibility that different
entries aP�L may have different values (always between 0 and 1); in �b� below we
will take advantage of this flexibility.

Next we prove �b�. To find the appropriate weights aP�L we define the concepts
of point-type and line-type. It is based on the concept of “coordinate-repetition”
just as in the proof of the “Degree Reduction.” We use the same notation: Let
P = �a1� a2� a3� � � � � ad�, ai ∈ �1�2� � � � � n�, 1 ≤ i ≤ d be an arbitrary point of the
board of the nd-game, let b ∈ �1�2� � � � � ��n+1�/2�� be arbitrary, and consider the
multiplicity of b and �n+1−b� in P

M�P� b�= ��1≤ i ≤ d � ai = b or �n+1−b��� =M�P� n+1−b��

(In the definition of multiplicity we identify b and �n+1−b�.) Let

M�P� b1�≥M�P� b2�≥M�P� b3�≥ · · · ≥M�P� b�� where �= ��n+1�/2��
i.e. pair �b1� n+1−b1� has the largest multiplicity in P, pair �b2� n+1−b2� has the
second largest multiplicity in P, pair �b3� n+1−b3� has the third largest multiplicity
in P, and so on. For notational simplicity, write

M1�P�=M�P� b1�� M2�P�=M�P� b2�� M3�P�=M�P� b3�� · · · �M��P�=M�P� b���

We call the multiplicity vector �M1�P��M2�P��M3�P�� � � � �M��P�� the type of
point P.
For example, the type of point

P = �3�7�3�5�1�3�5�4�3�1�5�3�3�5�5�1�2�6�5�2�7� ∈ �7�21
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is type�P�= �12�5�3�1��
Similarly, an n-line L of the nd-game can be described by an x-vector

v = �v1� v2� v3� � � � � vd� where the ith coordinate vi is either a constant ci, or vari-
able x, or variable �n+ 1− x�, 1 ≤ i ≤ d, and for at least one index i, vi is x or
�n+1−x�.
For example, in the ordinary 32 Tic-Tac-Toe

�1�3� �2�3� �3�3�

�1�2� �2�2� �3�2�

�1�1� �2�1� �3�1�

��1�1�� �2�2�� �3�3�� is a winning line defined by the x-vector xx, ��1�2��
�2�2�� �3�2�� is another winning line defined by the x-vector x2, and finally ��1�3��
�2�2�� �3�1�� is a winning line defined by the x-vector xx′, where x′ = �n+1−x��

The kth point Pk of x-vector v is obtained by specifying x = k, 1 ≤ k ≤ n. The
sequence �P1�P2� � � � �Pn� gives an orientation of line L. Every n-line L has exactly
two orientations: �P1�P2� � � � �Pn� and �Pn�Pn−1� � � � �P1�. The second orientation
comes from x-vector v∗ which is obtained from v by switching coordinates x and
�n+1−x�.
Next we define the type of x-vector v, i.e. of line L� Write �= ��n+1�/2�� and

let b ∈ �1�2� � � � � �� be arbitrary, and consider the multiplicity of b and �n+1−b�

in x-vector v

M�v� b�= ��1≤ i ≤ d � vi = b or �n+1−b��� =M�v� n+1−b��

Similarly, consider the multiplicity of x and �n+1−x� in x-vector v

M�v� x�= ��1≤ i ≤ d � vi = x or �n+1−x��� =M�v� n+1−x��

It follows thatM�Pk� k�=M�v� k�+M�v� x�, andM�Pk� b�=M�v� b� if k �∈ �b�n+
1−b�, where Pk is the kth point of x-vector v (i.e. Pk is the kth point of line L in
one of the two orientations), and b ∈ �1�2� � � � � ��.

Let

M�v� b1�≥M�v� b2�≥M�v� b3�≥ · · · ≥M�v� b�+1� where �= ��n+1�/2��
i.e. pair �b1� n+1−b1� has the largest multiplicity in v (b1 ∈ �x�1�2� � � � � ��), pair
�b2� n+1−b2� has the second largest multiplicity in v (b2 ∈ �x�1�2� � � � � ��), pair
�b3� n+1−b3� has the third largest multiplicity in v (b3 ∈ �x�1�2� � � � � ��), and so
on. For notational simplicity, write

M1�v�=M�v� b1�� M2�v�=M�v� b2�� M3�v�=M�v� b3�� · · · M�+1�v�=M�v� b�+1��

We call the multiplicity vector �M1�v��M2�v��M3�v�� � � � �M�+1�v�� the type of
x-vector v. Observe that it has ��+1� coordinates instead of �= ��n+1�/2�.
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Let M�v� x�=Mq�v�, that is, pair �x�n+1−x� has the qth largest multiplicity
in x-vector v; q is between 1 and ��+1�.

The proof of �b� is somewhat technical. To illustrate the idea in a simpler case,
first we prove a weaker statement:
(c) If n≥ 4d−2, then the nd-game has a Pairing Strategy Draw.
We begin the proof of �c� by recalling a variant of the lexicographic order. Let u=
�k1� k2� k3� � � �� and v= �l1� l2� l3� � � �� be two real vectors such that the coordinates
are decreasing, i.e. k1 ≥ k2 ≥ k3 ≥ · · · and l1 ≥ l2 ≥ l3 ≥ · · · . We introduce a partial
order: u< v if there is a j ≥ 1 such that ui = vi for all 1≤ i < j and uj < vj .

Let P be a point and L be a winning line of the nd-game. If P ∈ L, then clearly
type�P� ≥ type�L�� Let type�L�= �m1�m2� � � � �mq� � � � �mr�; then rearranging the
coordinates we can represent line L as follows

L � c1 � � � c1 �m1 times� c2 � � � c2 �m2 times� � � � x � � � x �mq times� � � � cr � � � cr �mr times��
(48.1)

where m1 ≥ m2 ≥ · · · ≥ mr ≥ 1� and ci actually means “ci or �n+ 1− ci�” and x

actually means “x or �n+1−x�”.
Now we are ready to define the Fractional Pairing: let

aP�L =
{

2
n−2�r−1� � if P ∈ L with type�P�= type�L�� where r is defined in �48�1��

0� otherwise�
(48.2)

Then clearly ∑
P� P∈L

aP�L = �n−2�r−1�� · 2

n−2�r−1�
= 2

for every winning line, since in (48.1) x can be specified as any element of the set

�n�\ �c1� �n+1− c1�� � � � � cq−1� �n+1− cq−1�� cq+1� �n+1− cq+1�� � � � � cr�

�n+1− cr���

It remains to show that for every point P of the nd-board∑
L� P∈L

aP�L ≤ 1�

First assume that n= 4d−2� so n is even.
By rearranging the coordinates we can represent point P as follows (the analogue

of (48.1))

P � c1 � � � c1 �m1 times� c2 � � � c2 �m2 times� � � � ck � � � ck �mk times�� (48.3)

where m1 ≥m2 ≥ · · · ≥mk ≥ 1� and ci actually means “ci or �n+1− ci�.”
There are exactly k winning lines L such that P ∈ L with type�P� = type�L��

Indeed, replacing a whole block ci � � � ci (of length mi) in (48.3) by x � � � x is the
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only way to get a line L satisfying P ∈ L with type�P� = type�L�� Thus we have
(see (48.2)) ∑

L� P∈L
aP�L = k · 2

n−2�k−1�
≤ 1

if 4k− 2 ≤ 4d− 2 = n� This shows that (48.2) defines a Fractional Pairing if
n= 4d−2� so the �4d−2�d-game has a Pairing Draw.
The case “n > 4d−2” follows from “n= 4d−2” and Lemma 1. This completes

the proof of the weaker statement �c�.
It is not difficult to improve on the previous argument; this is how we can prove

the stronger statement �b�; the details are left to the reader as an exercise.

Exercise 48.1 By modifying the proof of (c) above, prove the stronger (b): If
n = 3d, d even, or if n = 3d− 1, d odd, then the nd Tic-Tac-Toe has a Pairing
Strategy Draw.

The following result shows how to extend a Pairing Draw to a larger cube:

Lemma 1 (“Extending Pairing Draws”):
(1) If there is a Pairing Strategy Draw (PSD) for nd� and n is even, then there is

a PSD for �n+1�d�
(2) If there is a PSD for nd, then there is a PSD for �n+2�d�

Remarks. (1) and (2) imply that, if nd has a PSD, and n is even, then md has a
PSD for every m≥ n. Lemma 1 is due to R. Schroeppel.

Proof. We start with (2). First note that:

(3) If there is a Pairing Strategy Draw (PSD) for nd, then there is a PSD for nd−1�

Observe that (3) is completely trivial. Indeed, choose any section nd−1 from the
nd pairing. Dropping any cell which is paired outside of the section, the remaining
pairs form a PSD for the section.
To prove (2) we assemble a pairing for �n+2�d out of various nks for dimensions

k≤ d�

The interior nd of �n+ 2�d is covered with the nd pairing. For the surface of
�n+ 2�d we apply (3): the surface of �n+ 2�d is covered with 2d nd−1 pairings,
22
(
d

2

)
nd−2 pairings, 23

(
d

3

)
nd−3 pairings, � � �, and, finally, the 2d unpaired corners

(which are irrelevant – do not need to be paired). To prove that this pairing is
a PSD, consider an arbitrary winning line in �n+ 2�d� If the line penetrates the
interior of �n+ 2�d� then there are n interior cells, and the pairing of nd blocks
the line in a pair. If the line does not penetrate the interior, then it lies in a lower
dimensional �n+ 2�k on the surface, which has an interior nk� The pairing of nk

intersects the line in a pair.
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To prove (1) we slice out all the middle sections �n+1�d−1 from �n+1�d� Then
join the 2d “octants” �n/2�d into an nd� and apply the nd pairing. For the middle
sections �n+1�d−1 we use (3) just like we did in the proof of (2).

We conclude with a new game concept.

2. Coalition Games. One of the main results of the book is the “perfect solution”
of the (1:1) Clique Game. We could determine the exact value of the Clique
Achievement Number: playing on the complete graph KN Maker can always build
a Kq of his own if and only if

q ≤ �2 log2N −2 log2 log2N +2log2e−3+o�1��� (48.4)

When Maker is the underdog, we know much less. For example, in the (1:2)
version where Maker is the underdog, we conjecture, but cannot prove, that Maker
can always build a Kq of his own if and only if

q ≤ 2 log3N −2 log3 log3N +O�1� (48.5)

(the base of the logarithm is switched from 2 to 3).
Conjecture (48.5) is the best that we can hope for; this follows from the biased

Erdős–Selfridge Blocking Criterion (see Theorem 20.1). Unfortunately we don’t
have a clue about Conjecture (48.5), but if two underdog players form a coalition,
then it is possible to prove that at least one of them can always build a Kq of his
own with

q = 2 log3N −2 log3 log3N +O�1�� (48.6)

This justifies the vague intuition that coalition helps!
The notion of “coalition” is made precise in the following way (the author

learned this concept from Wesley Pegden). We define the (2:1) Coalition Game
on an arbitrary finite hypergraph F with vertex set V . In each turn of the (2:1)
Coalition Game, Maker takes 2 new points from V , and colors them with 2 different
colors, say red and white (the 2 points must have different colors!); Breaker takes
1 new point per move, and colors it blue. Maker’s goal is to produce a red or
white monochromatic A ∈ F (doesn’t matter which color). If Maker succeeds to
achieve his goal, he wins; if he fails to achieve his goal, Breaker wins (so draw is
impossible by definition).

The name (2:1) Coalition Game is explained by the fact that in this game Maker
represents a coalition of 2 players, Red and White, against a third player Blue
(“Breaker”).

In the rest we focus on a particular game: the (2:1) Coalition Clique Game played
on KN . At the end of a play each color class of Maker (red and white) has 1/3 of
the edges of KN ; this indicates a similarity to the Random Graph R�KN �1/3� with
edge probability 1/3. And, indeed, we will prove that Maker (coalition of Red and
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White) can always build a red or white monochromatic Kq with

q = 2 log3N −2 log3 log3N +O�1�� (48.7)

An easy calculation gives that (48.7) is the Clique Number of the Random Graph
R�KN�1/3� apart from an additive constant O�1�.
This means that Maker, as the coalition of Red and White, can achieve the

“Random Graph Clique Size”. What we don’t know is whether or not (48.7) is best
possible. In other words, is it possible that the coalition beats the “Random Graph
Clique Size”?

We are going to derive (48.7) from a (2:1) Coalition version of the Advanced
Weak Win Criterion (Theorem 24.2); of course we rely heavily on the proof
technique of Section 24.

Assume that there are two hypergraphs on the same board V : a “red hypergraph”
R and a “white hypergraph” W . Assume that we are in the middle of a play; Maker,
the first player, owns (“r” indicates red and “w” indicates white)

X�i�= �x
�r�
1 � x

�w�
1 � x

�r�
2 � x

�w�
2 � � � � � x

�r�
i � x

�w�
i ��

and Y�i� = �y1� y2� � � � � yi� is the set of Breaker’s points. The question is how to
choose Maker’s �i+1�st move x�r�i+1, x

�w�
i+1. The following notation is now introduced

X�r��i�= �x
�r�
1 � x

�r�
2 � � � � � x

�r�
i �� X�w��i�= �x

�w�
1 � x

�w�
2 � � � � � x

�w�
i ��

R�i�= �A\X�r��i� � A ∈ R�A∩ �X�w��i�∪Y�i��= ∅��
W�i�= �A\X�w��i� � A ∈ W�A∩ �X�r��i�∪Y�i��= ∅��

We work with the usual potential function of Section 24 (see the proof of
Theorem 24.2)

Li�R�=T3�R�i��−	 ·T3�Rp
2�i��� (48.8)

Li�R� u1� � � � � um�=T3�R�i�� u1� � � � � um�−	 ·T3�Rp
2�i�� u1� � � � � um��

and of course with Li�W� and Li�W� u1� � � � � um�. The index “3” in T3 (see (48.8))
indicates that we use the Power-of-Three Scoring System

T3�H�= ∑
H∈H

3−�H� and T3�H� u1� � � � � um�=
∑

�u1�����um�⊂H∈H
3−�H��

the “3” comes from 2+1 (in the (2:1) Coalition Game).
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First let H�i� = R�i� or Rp
2�i�; the effect of the �i+ 1�st moves x

�r�
i+1, x

�w�
i+1

(“Maker”) and y�i+1� (“Breaker”) is desribed by the following identity

T3�H�i+1��= T3�H�i��+2T3�H�i�� x
�r�
i+1�

−T3�H�i�� x
�w�
i+1�−T3�H�i�� yi+1�−2T3�H�i�� x

�r�
i+1� x

�w�
i+1�

−2T3�H�i�� x
�r�
i+1� yi+1�+T3�H�i�� x

�w�
i+1� yi+1�+2T3�H�i�� x

�r�
i+1� x

�w�
i+1� yi+1��

(48.9)

The underlying pattern of the long (48.9) is rather simple: its terms come from the
expansion of the product

�1+2x�r���1−x�w���1−y�−1= 2x�r�−x�w�−y

−2x�r�x�w�−2x�r�y+x�w�y+2x�r�x�w�y� (48.10)

Identity (48.9) represents the “red case”; of course the “white case” is very similar:
let G�i�= W�i� or Wp

2 �i�; then

T3�G�i+1��= T3�G�i��+2T3�G�i�� x�w�i+1�

−T3�G�i�� x�r�i+1�−T3�G�i�� yi+1�−2T3�G�i�� x�w�i+1� x
�r�
i+1�

−2T3�G�i�� x�w�i+1� yi+1�+T3�G�i�� x�r�i+1� yi+1�+2T3�G�i�� x�w�i+1� x
�r�
i+1� yi+1��

(48.11)

If u1 and u2 are two arbitrary unselected points of the common board V , then write

fi�H�G� u1� u2�= T3�H�i�� u1�+T3�G�i�� u2�−T3�H�i�� u1� u2�−T3�G�i�� u1� u2��

(48.12)

By using notation (48.12) we can rewrite the sum of (48.9) and (48.11) as follows

T3�H�i+1��+T3�G�i+1��= T3�H�i��+T3�G�i��
+2fi�H�G� x�r�i+1� x

�w�
i+1�−fi�H�G� x�w�i+1� yi+1�−fi�H�G� yi+1� x

�r�
i+1�

−3T3�H�i�� x
�r�
i+1� yi+1�−3T3�G�i�� x�w�i+1� yi+1�

+2T3�H�i�� x
�r�
i+1� x

�w�
i+1� yi+1�+2T3�G�i�� x�w�i+1� x

�r�
i+1� yi+1�� (48.13)
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Combining (48.8) with (48.13), we have

Li+1�R�+Li+1�W�= Li�R�+Li�W�

+2
(
fi�R�W� x

�r�
i+1� x

�w�
i+1�−	 ·fi�Rp

2�Wp
2 � x

�r�
i+1� x

�w�
i+1�

)

−
(
fi�R�W� x

�w�
i+1� yi+1�−	 ·fi�Rp

2�Wp
2 � x

�w�
i+1� yi+1�

)

−
(
fi�R�W� yi+1� x

�r�
i+1�−	 ·fi�Rp

2�Wp
2 � yi+1� x

�r�
i+1�

)

−3T3�R�i�� x
�r�
i+1� yi+1�−3T3�W�i�� x

�w�
i+1� yi+1�

+2T3�R�i�� x
�r�
i+1� x

�w�
i+1� yi+1�+2T3�W�i�� x

�w�
i+1� x

�r�
i+1� yi+1�

+	

(
3T3�Rp

2�i�� x
�r�
i+1� yi+1�+3T3�Wp

2 �i�� x
�w�
i+1� yi+1�

−2T3�Rp
2�i�� x

�r�
i+1� x

�w�
i+1� yi+1�−2T3�Wp

2 �i�� x
�w�
i+1� x

�r�
i+1� yi+1�

)
� (48.14)

By using the notation

Fi�u1� u2�= fi�R�W� u1� u2�−	 ·fi�Rp
2�Wp

2 � u1� u2�� (48.15)

and applying the trivial inequality

T3�H� u1� u2� u3�≤ T3�H� u1� u2��

identity (48.14) leads to the “Decreasing Property”

Li+1�R�+Li+1�W�≥ Li�R�+Li�W�+
2Fi�x

�r�
i+1� x

�w�
i+1�−Fi�x

�w�
i+1� yi+1�−Fi�x

�r�
i+1� yi+1�

−3T3�R�i�� x
�r�
i+1� yi+1�−3T3�W�i�� x

�w�
i+1� yi+1�� (48.16)

Here is Maker’s strategy: in his �i+ 1�st move Maker chooses that unoccupied
ordered pair u1 = x

�r�
i+1, u2 = x

�w�
i+1 for which the function Fi�u1� u2� (defined in

(48.15)) attains its maximum. Combining this maximum property with (48.16), we
obtain the key inequality

Li+1�R�+Li+1�W�≥ Li�R�+Li�W�

−3T3�R�i�� x
�r�
i+1� yi+1�−3T3�W�i�� x

�w�
i+1� yi+1�� (48.17)

Inequality (48.17) guarantees that we can apply the technique of self-improving
potentials (Section 24), and obtain the following (2:1) Coalition version of
Theorem 24.2.
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Advanced Weak Win Criterion in the (2:1) Coalition. Let R and W be two hyper-
graphs with the same vertex set V (“board”). If there exists a positive integer p≥ 2
such that

T3�R�+T3�W�

�V � > p+4p
(
T3�Rp

2�
)1/p+4p

(
T3�Wp

2 �
)1/p

�

then playing the (2:1) Coalition Game on R∪W Maker can always produce a red
A ∈ R or a white B ∈ W .
Combining this criterion with the sophisticated calculations in Section 25, (48.17)
follows. The details are left to the reader.

To formulate a question, switch from the complete graph KN to the complete
3-uniform hypergraph K3

N = (
�N�

3

)
(see Theorem 6.4 (b)). By playing the (2:1) Coali-

tion Clique Game on K3
N , Maker can always produce a red or a blue monochromatic

sub-clique K3
q with q =√

6 log3N +O�1� (see Theorem 6.4 (b)). This follows from
an application of the Criterion above.

The question is about the ordinary (1:2) version where Maker is the underdog
(no coalition!). Playing on K3

N , can underdog Maker always occupy a sub-clique
K3

q with q = c ·√logN where c > 0 is some positive constant? We don’t know!
Note that for the ordinary graph case the Ramsey proof technique works, and

guarantees a Kq for underdog Maker with q= c · logN where c > 0 is some positive
constant. (Of course we cannot prove the optimal constant, see Theorem 33.7.)

We have just discussed a single case, the (2:1) coalition version. How about the
general coalition game? This is a most interesting open problem.
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Concluding remarks

1. Is there an easy way to prove the Neighborhood Conjecture? The central
issue of whole Part D was the Neighborhood Conjecture. Many pages were devoted
to this single problem, proving several special cases. Still the general case remains
wide open.
This is particularly embarrassing, because the Neighborhood Conjecture is simply

a game-theoretic variant of the Erdős-Lovász 2-Coloring Theorem, and the latter
has a 2-page proof (see Section 11). There is a fundamental difference, however,
that needs to be emphasized: in Part D an explicit blocking strategy (using potential
functions) was always supplied, but the 2-page proof is just an existential argument.
It is believed that there is no short proof of the Neighborhood Conjecture

that would also supply an explicit blocking strategy, but perhaps there is a short
existential proof that has been overlooked.

What kind of existential proof can we expect here? Here an example is given,
an existential proof using a probabilistic result, which doesn’t supply any explicit
strategy. The example is due to Bednarska and Luczak [2000], whose result shows an
exciting new analogy between the evolution of Random Graphs and biased Maker–
Breaker graph games. The new idea is to use results from the theory of Random
Graphs to show that the “random strategy” is optimal for Maker. Bednarska and
Luczak investigated the following biased Maker–Breaker graph game �KN �1� b�G�.
Here G is a given graph, the board is the complete graph KN , in each round of
the play Maker chooses one edge of KN which has not been claimed before, and
Breaker answers by choosing at most b new edges from KN . The play ends when
all the

(
N

2

)
edges are claimed by either player. If Maker’s graph contains a copy

of G, then Maker wins; otherwise Breaker wins. Bednarska and Luczak considered
only the case when G is fixed, i.e. it doesn’t depend on N . This kind of game,
when G is a clique, was proposed by Erdős and Chvátal [1978], who proved that
the game �KN�1� b�K3� can be won by Maker if b < �2N + 2�1/2 − 5/2, and by
Breaker if b ≥ 2N 1/2� In other words, the “threshold” for the �KN�1� b�K3� game
is of the order N 1/2. It would be nice to know the exact constant factor!

644
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What is the “threshold” for the �KN�1� b�G� game in general? Bednarska and
Luczak completely solved the problem apart from constant factors. For an arbitrary
graph H let v�H� and e�H� denote the number of vertices and the number of edges,
respectively. For a graph G with at least 3 vertices define

��G�= max
H⊆G�v�H�≥3

e�H�−1
v�H�−2

�

Bednarska and Luczak proved that the “threshold” for the �KN�1� b�G� game is of
the order N 1/��G�.

Bednarska–Luczak Theorem. For every graph G which contains at least 3
non-isolated vertices, there exist positive constants c1 = c1�G�, c2 = c2�G�� and
N0 = N0�G� such that for every N ≥ N0 the following holds:

(i) If b ≤ c1 ·N
1

��G� , then Maker wins the �KN�1� b�G� game.
(ii) If b ≥ c2 ·N

1
��G� , then Breaker wins the �KN �1� b�G� game.

Note that the proof of part (ii) uses the biased version of the Erdős–Selfridge
Theorem (Theorem 20.1).

The proof of part (i) is a novel existential argument, which goes like this.
We can assume that G contains a cycle (otherwise the theorem is trivial). Let
�KN�1� b�G�∗� denote the modification of game �KN �1� b�G� in which Breaker
has all the information about Maker’s moves, but Maker cannot see the moves
of Breaker. Thus, if Maker chooses an edge of KN , it might happen that this
edge has been previously claimed by Breaker. In such a case, this edge is marked
as a failure, and Maker loses this move. We say that Maker plays according
to the random strategy if in each move he selects an edge chosen uniformly at
random from all previously unselected edges by him (Maker cannot see the edges
of Breaker). Observe that if Breaker has a winning strategy for the �KN �1� b�G�

game, then the same strategy forces a win in the modified game �KN�1� b�G�∗�
as well. Thus, in order to prove part (i), it is enough to show that if Maker plays
according to the random strategy, there is a positive probability (in fact > 1−)
that he wins the modified game �KN�1� b�G�∗� against any strategy of Breaker.
The proof of this statement is based on certain deep properties of Random Graphs.
Let b = � ·N 1

��G� /10 where � is a sufficiently small constant to be specified later,
and consider the play of the modified game �KN�1� b�G�∗� in which Maker plays
according to the random strategy and Breaker follows an arbitrary strategy Str. Let
us consider the first

M = �

2b

(
N

2

)
< 2N 2−1/��G�

rounds of the play. Let R�KN�M� denote the Random Graph chosen uniformly at
random from the family of all sub-graphs ofKN withN vertices andM edges. Clearly
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Maker’s graph at theMth round can be viewed asR�KN�M�, although some of these
edges may be failures, i.e. they have been already claimed by Breaker (Maker cannot
see Breaker’s moves). Nevertheless, during the first M rounds of the play Breaker
have selected less than �/2 part of the

(
N

2

)
edges of KN . So for every i = 1�2� � � � �M

the probability that Maker’s ith move is a failure is bounded from above by �/2.
Consequently, for large M , by the law of large numbers, with probability > 1− at
most �M ofMaker’s firstM moves are failures. Therefore, by the lemma below, with
probability> 1−2Maker’s graph at hisMth move contains a copy ofG.

Lemma A: For every graph G containing at least one cycle there exist constants
0< �= ��G� < 1 and N1 =N1�G� such that for every N ≥N1 and M = 2N 2−1/��G�

the probability of the event “each sub-graph of R�KN�M� with �1− ��M edges
contains a copy of G” is greater than 1−.

Lemma A easily follows from the following extremely good upper bound on the
probability that a Random Graph contains no copies of a given graph G.

Lemma B (Janson, Luczak and Rucinski [2000]): For every graph G containing
at least one cycle there exist constants c3 = c3�G� and N2 = N2�G� such that for
every N ≥ N2 and M = N 2−1/��G�, the probability of the event “G�N�M� contains
no copy of G” is less than exp�−c3M�. �

This completes the outline of the proof of part (i) of the Bednarska–Luczak Theorem.
The proof shows that if Maker plays randomly, then he is able to build a copy

of G with probabilty > 1−. This  is in fact exponentially small, so the random
strategy succeeds with probability extremely close to 1. Still the proof doesn’t give
a clue of how to actually win!

2. Galvin’s counter-example in the biased game. Theorem 6.1 says that if a finite
hypergraph has chromatic number ≥ 3, then the (1:1) game on the hypergraph is a
first player win, which of course implies Weak Win.
How about the (1:2) Maker–Breaker game where Maker is the underdog? Can

large chromatic number help here? Is it true that, if the chromatic number of the
hypergraph is sufficiently large, then playing the (1:2) game on the hypergraph,
underdog Maker can achieve a Weak Win? Unfortunately, the answer is “no”, even
if the underdog is the first player. The following counter-example is due to Galvin.
Since large chromatic number not necessarily enforces underdog’s Weak Win, for
biased games, Ramsey Theory gives very little help.
First we recall that the rank of a finite hypergraph F is ��F �� =max��A� �A ∈ F�.

A hypergraph consisting of r-element sets is an r-uniform hypergraph: a 2-uniform
hypergraph is a graph, a 3-uniform hypergraph is a triplet system, 4-uniform hyper-
graph is a quadruplet system, and so on. The complete r-uniform hypergraph on a
set V is

(
V

k

)= �A⊂ V � �A� = k�. A subset S ⊂ V�F� of the pointset of hypergraph
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F is independent if it does not contain a hyperedge of F . A hypergraph F is
r-colorable if its pointset V�F� is the union of r independent sets. In other words,
F is r-colorable if we can r-color the points such that there is no monochromatic
hyperedge. The chromatic number of F is ��F�=min�r � F is r−colorable�; F
is r-chromatic if ��F�= r.
Fred Galvin showed that for every r ≥ 4 there is an r-chromatic uniform hyper-

graph such that Breaker wins the biased (1:2) Maker–Breaker game (Maker takes
1 and Breaker takes 2 points per move).

We shall say that a hypergraph F is 2-fragile if Breaker has a winning strategy
in the biased (1:2) Maker–Breaker game on F .

F. Galvin’s counter-example: There are 2-fragile uniform hypergraphs with
arbitrarily high chromatic number.

Proof. The first lemma almost proves the statement except that the constructed
hypergraph is not uniform.

Lemma 1: For each r ≥ 3, there is an r-chromatic hypergraph H such that the
biased (1:2) Maker–Breaker game on H is a win for Breaker.

Proof. We use induction on r. For r = 3, let �V � = 6 and H = (
V

3

)
.

Now let r ≥ 3, and suppose there is an r-chromatic hypergraph G such that
the (1:2) game on G is a win for Breaker. Let k = �V�G��, m = 2k + 1, and let
W = V1 ∪ V2 ∪ · · · ∪ Vm where V1� � � � � Vm are disjoint k-element sets. For each
i ∈ �1� � � � �m�, let Gi be an isomorphic copy of G with pointset V�Gi� = Vi. Let
F = �V1�V2� � � � � Vm�; and let T�F� = ��x1� � � � � xm� � xi ∈ Vi� 1 ≤ i ≤ m� be the
set of all transversals of V1� � � � � Vm. Finally, let

H = T�F�∪G1∪G2∪· · ·∪Gm�

We claim that the chromatic number of H is r+1. First we prove that H is not
r-colorable. Color the points of H with r colors. Since Gi is r-chromatic, the only
way to avoid monochromatic hyperedges in Gi is to have each one of the r colors
in every Vi, 1≤ i≤m. Then T�F� would have monochromatic edges, which proves
that H is not r-colorable. On the other hand, H is �r + 1�-colorable. Indeed, we
can color each Gi with r of the �r+ 1� colors in such a way that each one of the
�r+1� colors is omitted from at least one of the Gis. This is clearly possible since
m≥ r+1: indeed, r ≤ k and m= 2k+1.

Next we need the following simple:

Lemma 2: Let k ≥ 3; let V1�V2� � � � � Vm be disjoint k-element sets; let F =
�V1�V2� � � � � Vm�; and let T�F� = ��x1� � � � � xm�� xi ∈ Vi� 1 ≤ i ≤ m� be the set
of all transversals of V1� � � � � Vm. If m ≥ 2k+1, then the (1:2) game on T�F� is a
win for Breaker.
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Proof. Breaker’s goal is to completely occupy some Vi. A play has k stages. In the
1st stage, at each of his turns Breaker chooses his 2 points from 2 different sets (say)
Vj and V� such that none of them has at any point chosen by either player before.
The first stage ends in 2k−1 turns, when there is an index-set I1 ⊂ �1�2� � � � �m� such
that �I1� = 2k−1 and every Vi, i ∈ I1 contains exactly 1 point of Breaker and none of
Maker. Similarly, the second stage ends in 2k−2 turns, when there is an index-set
I2 ⊂ I1 such that �I2� = 2k−2 and every Vi, i ∈ I2 contains exactly 2 points of Breaker
and none of Maker. Iterating this process, in the last stage there is an index-set
Ik ⊂ Ik−1 such that �Ik� = 1 and Vi, i ∈ Ik contains exactly k points of Breaker and
none of Maker.

Since m= 2k+1, By Lemma 2 the (1:2) game on T�F� is a win for Breaker. We
attempt to combine Breaker’s winning strategy in the (1:2) game on T�F� with
his winning strategies in the (1:2) games on Gi, 1 ≤ i ≤ m to produce a winning
strategy in the (1:2) game on H. As long as Maker chooses points from different
Vis, Breaker responds according to his winning strategy in T�F� (see Lemma 2).
But whenever Maker returns to some Vi second, third, fourth, � � � time, Breaker
responds according his winning strategy in the (1:2) game on Gi. This play doesn’t
hurt his chances of winning the (1:2) game on T�F�. Indeed, by the proof of
Lemma 2, when Maker picks a point from some Vi, Breaker’s winning strategy on
T�F� never requires Breaker to return to that Vi. But there is a minor technical
problem! When Maker returns to some Vi for the second time, Breaker responds to
2 points of Maker, so Maker needs a winning strategy in the modified (1:2) game
on Gi where Maker chooses 2 points at his first turn.

More precisely, the (1+:2) game on hypergraph F is the same as the (1:2) game
on F except that Maker gets an extra point at the start. That is, Maker chooses
2 points at his first turn, but only 1 point at every sub-sequent turn, and Breaker
chooses 2 points at every turn.

To be able to apply induction we have to work with the concept of the (1+:2)
game instead of the (1:2) game. Therefore, in order to prove Lemma 2, we have to
prove the slightly stronger (1+:2) versions of Lemmas 2 and 3.

Lemma 1′: For each r ≥ 3, there is an r-chromatic hypergraph H such that the
biased (1+:2) game on H is a win for Breaker.

Lemma 2′: Let k ≥ 3; let V1�V2� � � � � Vm be disjoint k-element sets; let F =
�V1�V2� � � � � Vm�; and let T�F� = ��x1� � � � � xm� � xi ∈ Vi� 1 ≤ i ≤ m� be the set
of all transversals of V1� � � � � Vm. If m ≥ 2k+2. Then the (1+:2) game on T�F� is
a win for Breaker.

The proof of Lemma 2′ is exactly the same as that of Lemma 2. �
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Proof of Lemma 1′. We use induction on r. For r = 3, let �V � = 7 and H = (
V

4

)
.

The construction in the induction step is exactly the same as that of in Lemma 2.
Let r ≥ 3, and suppose there is an r-chromatic hypergraph G such that the (1+:2)
game on G is a win for Breaker. Let k= �V�G��, m= 2k+2, and let W = V1∪V2∪
· · ·∪Vm where V1� � � � � Vm are disjoint k-element sets. For each i ∈ �1� � � � �m�, let
Gi be an isomorphic copy of G with pointset V�Gi�= Vi. Let F = �V1�V2� � � � � Vm�;
and let T�F�= ��x1� � � � � xm� � xi ∈ Vi� 1≤ i ≤m� be the set of all transversals of
V1� � � � � Vm. Finally, let

H = T�F�∪G1∪G2∪· · ·∪Gm�

Again the chromatic number of H is r+1.
Since m= 2k+2, By Lemma 2′ the (1+:2) game on T�F� is a win for Breaker.

Now Breaker’s winning strategy in the (1+:2) game on T�F� can be combined with
his winning strategies in the (1+:2) games on Gi, 1 ≤ i ≤ m to produce a winning
strategy in the (1+:2) game on H. As long as Maker chooses points from different
Vis, Breaker responds according to his winning strategy in T�F�. But whenever
Maker returns to some Vi second, third, fourth, � � � time, Breaker responds according
his winning strategy in the (1+:2) game on Gi. This is how Breaker wins the (1+:2)
game on H, and the proof of Lemma 1′ is complete.
Finally, Lemma 1′ implies Lemma 2. �

Next we show that the distinction between uniform and non-uniform hypergraphs
is more or less irrelevant to the question of finding 2-fragile hypergraphs. Indeed,
a non-uniform 2-fragile hypergraph can be replaced by a somewhat larger uniform
2-fragile hypergraph with the same rank and chromatic number.

Lemma 3: Suppose there is a 2-fragile hypergraph H0 of rank ��H0�� ≤ k which
has chromatic number ��H0� ≥ r. Then there is a 2-fragile k-uniform hypergraph
H with ��H�= r.

Proof. We use induction on r. If r = 3, then we can take H = (
V

k

)
where

�V � = 2�k−1�+1. Now let H0 be a 2-fragile hypergraph of rank ��H0�� ≤ k which
has chromatic number ��H0� ≥ r ≥ 4. By the induction hypothesis, there is a 2-
fragile k-uniform hypergraph H′ with ��H′�= r−1. Let t=max�k−�H� � H ∈H0�

be the maximum discrepancy from uniformity. Let V = V0 ∪ V1 ∪ V2 ∪ � � �∪ Vt

where V0�V1�V2� � � � � Vt are disjoint sets, V0 = V�H0�, and �V1� = �V2� = � � � =
�Vt� = �V�H′��. For each i ∈ �1�2� � � � � t�, let Hi be an isomorphic copy of H′ with
V�Hi�= Vi. Finally let

H∗ = �A ∈
(
V

k

)
� A∩V0 ∈ H0�∪H1∪H2∪· · ·∪Ht�

The k-uniform hypergraph H∗ is 2-fragile since Breaker can combine his winning
strategies on H0 and on Hi, 1≤ i ≤ t.
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The chromatic number of H∗ is ≥ r. Indeed, consider a coloring of the points of
H∗ with r−1 colors. Since the chromatic number ��Hi�= ��H′�= r−1� the only
way to avoid monochromatic hyperedges in Hi is to have each one of the r − 1
colors in every Vi, 1 ≤ i ≤ t. Since the chromatic number of ��H0� is r, there is a
monochromatic hyperedge, say, H ∈ H0 is red. Let yi ∈ Vi, 1≤ i≤ t be red points.
Since k−�H� = s ≤ t, the red set A=H ∪�y1� � � � � ys� is a hyperedge of H∗, which
proves that the chromatic number of H∗ is ≥ r. Since deleting a hyperedge can
lower the chromatic number by no more than 1, there is a sub-hypergraph H ⊆ H∗

with chromatic number ��H�= r, and Lemma 3 follows.
Lemmas 2 and 3 complete the proof.

3. Compactness–Keisler’s Theorem. In this book we have been focusing on
finite games, but it is impossible to entirely avoid infinity. Here is a nice exam-
ple how infinity enters the story in a most natural way. Consider (say) the
�KN �K5� Clique Game with N ≥ 49. Since the Ramsey Number of K5 is ≤ 49,
by Theorem 6.1 the �KN �K5� Clique Game is a first player win for every N ≥ 49.
How about �K��K5�? (The board is the infinite complete graph.) Can the first
player always win (i.e. build a K5 first) in a finite number of moves? Well, we
don’t know; it is possible that in the �-play the infinite Clique Game �K��K5�

is a draw.
There is one thing, however, that we know: compactness holds, i.e. if the first

player has a finite winning strategy in �K��K5�, then he has a time-bounded
winning strategy. In other words, finite is upgraded to bounded in time: if the first
player can always win, then there is a natural number n0 such that the first player
can always win before his n0th move. The proof is based on the following simple
observation: let G be an arbitrary finite sub-graph of K� and let e ∈ K� be a new
edge; then there are only three possibilities: (1) e is vertex-disjoint from G, (2) e
has exactly one common endpoint with the vertex-set of G, (3) both endpoints of e
are in the vertex-set of G. This means a finite number of options, so the standard
compactness argument works.
Next consider the 5-in-a-row on the infinite chessboard (the whole plane). It is

widely believed (“folklore”) that the first player has a winning strategy, but we
don’t know any strict proof. It is not even known whether a winning strategy for
the first player, if any, can be bounded in time. In other words, is there a natural
number n such that the first player can always win the 5-in-a-row on the infinite
chessboard before his nth move? In this case compactness is not clear because the
distance between two little squares is an arbitrary natural number (an infinite set!).
The best compactness result is due to H. J. Keisler [1969] and goes as follows. If
5-in-a-row is played on countably many infinite chessboards, i.e. at every step the
player chooses one of the boards and occupies a square on it, and if the first player
has a winning strategy, then the first player has a winning strategy bounded in time.
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The proof of this amusing theorem is relatively elementary. All that we need
from set theory is the concept of ordinals.

Let G be a game between players I (the first player) and II (the second player)
moving alternately on infinitely many infinite chessboards. By a position of length
t we mean a sequence of moves P = �p1� � � � � pt� starting with all boards vacant.
G is defined by declaring certain positions to be wins for player I. Say that two
positions P and Q at time t are 0-equivalent if for each i < j ≤ t and direction
d, pj is adjacent to pi in direction d if and only if qj is adjacent to qi in direc-
tion d. Assume that G has the following property: if P is a win for I and Q is
0-equivalent to P, then Q is a win for I; of course, the 5-in-a-row game has this
property.

Notice that if t is even, player I has the next move, and otherwise player II has
the next move.

Let us say that the Move Number of a (finite) positional game is n if the first
player can win in n moves but not sooner.
Next consider a semi-infinite positional game, and assume that the first player

has a winning strategy. The Move Number of this game is an ordinal number and
can be defined as follows. We say that a position is nice if:

(1) it is an even position;
(2) no player has won yet;
(3) the first player still has a winning strategy.

An odd position has Move Number 0 if it is a win for the first player, i.e. if the
first player already owns a whole winning set but the second player does not own
any winning set yet. We assign ordinal Move Numbers b > 0 to the nice positions
by using the following transfinite recursion. The nice predecessors of every position
with Move Number 0 have Move Number 1; these are the maximal elements of
the set S of all nice positions. We emphasize that the notion “maximal” is well-
defined because there is no infinite increasing chain in S (due to the fact that the
winning sets are all finite!). Let S1 denote the set of all nice positions with Move
Number 1.

A nice position has Move Number 2 if and only if the first player can make such
a move that, for the second player’s any move, the new position (with two more
marks) is nice and has Move Number 1; these are the maximal elements of the set
S \S1. Let S2 denote the set of all nice positions with Move Number 2.
In general, a nice position P has Move Number b> 1 if and only if b is

the least ordinal such that starting from position P the first player has such a
move that, for the second player’s any move, the new position (with two more
marks) is nice and has Move Number less than b; these are the maximal ele-
ments of the set S \⋃a<b Sa. Let Sb denote the set of all nice positions with Move
Number b.
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The sets Sb are obviously disjoint, so eventually we decompose S as S =⋃
�Pb �

b < c� for some ordinal c; this defines a Move Number function m�P�= b if and
only if P ∈ Sb.

Note that the Move Number is unique. Indeed, assume that m1 and m2 are two
different Move Number functions; then �P ∈ S � m1�P� �=m2�P�� is non-empty; let
Q be a maximal element of this set. The contradiction comes from the facts that:

(1) �m1�P�� Q �⊆ P� P ∈ S�= �m2�P�� Q �⊆ P� P ∈ S�;
(2) m1�Q�= l�s�u�b��m1�P� � Q �⊆ P� P ∈ S�;
(3) m2�Q�= l�s�u�b��m2�P� � Q �⊆ P� P ∈ S�;
where l�s�u�b� means the least strict upper bound.
The Move Number of the game is, of course, the Move Number of the starting

position (“empty board”). Every semi-infinite positional game, which is a first
player win, has a uniquely determined Move Number.

Lemma 2: A position P has a finite Move Number at most n if and only if player
I has a strategy which wins in at most n moves starting from P.

Proof. An easy induction on n.

Lemma 3: Player I has a winning strategy starting from position P if and only if
the Move Number of P exists (and is an ordinal number).

Proof. Suppose the Move Number of P is an ordinal b. Then player I has a strategy
starting from P which guarantees that the Move Number decreases with each move.
Since any decreasing sequence of ordinals is finite, the play must stop at Move
Number 0 after a finite number of moves, and I wins.
If P does not have a Move Number, then II has a strategy which guarantees that

starting from P no future position has a Move Number, and hence we cannot have
a winning strategy at P.

Lemma 4: Suppose there is a position with infinite Move Number. Then there is a
position with Move Number �.

Proof. Let b be the least infinite ordinal such that there is a position P of Move
Number b. Since there are no positions of infinite Move Number < b, the winning
strategy of I guarantees that the next position has finite Move Number. So P has
Move Number �.

Definition. The distance between two points on the same board is the minimum path
length connecting the points by a sequence of king moves. The distance between
two points on different boards is infinite. Two positions P and Q of length t are
n-equivalent if for each i < j ≤ t� either the distances from pi to pj and from
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qi to qj are both > 2n� or the distances and the directions from pi to pj and from
qi to qj are the same. (This agrees with the previous definition of 0-equivalent).

Lemma 5: If P and Q are �n+ 1�-equivalent, then for every move r there is a
move s such that (Q�s) is n-equivalent to (P� r).

Proof. If r is within 2n of some pi� take s at the same distance and direction from
qi� Otherwise take s at distance > 2n from each qi�

Lemma 6: If P has Move Number n and Q is n-equivalent to P, then Q has Move
Number n.

Proof. By induction on n. The case n= 0 holds by hypothesis, and the step from
n to n+1 follows from Lemma 5.

Keisler’s Theorem. If player I has a winning strategy in G, then there is a finite
n such that player I can always win G in at most n moves.

Proof. By Lemma 2, we must show that the starting position has a finite Move
Number. Suppose not. By Lemmas 3 and 4, there is a position P of Move Number
�, with II to move.

Let r be a move on a vacant board. Then �P� r� has a finite Move Number n. If s is
anymovewhose distance fromP is> 2n� then �P� s� isn-equivalent to �P� r�, so �P� s�
hasMove Number n by Lemma 6. There are only finitely many moves s at distance at
most 2n from P. Thus there is a finite m such that �P� s� has Move Number < m for
every move s. Hence P hasMove Number at mostm, contrary to the hypothesis.

Corollary 1 There are no positions Q of infinite Move Number in G.

The proof is the same as that of the theorem but starting from position Q.

Now let Gk be the game G restricted to k boards.

Corollary 2 If player I has a winning strategy for G in n moves, then he has a
winning strategy for Gk in n moves.

Proof. Lemmas 5 and 6 hold with the same proofs when P is a position for G and
Q is a position for Gk�

The next corollary answers the question of why infinitely many boards forces a
finite bound on the Move Number.

Corollary 3 Suppose P is a position of infinite Move Number in the game Gk� and
r is a move for G on a new board. Then player I cannot have a winning strategy
in G from the position (P� r).

Proof. Use Corollary 1 and the end of the proof of Keisler’s Theorem.

This completes our short detour about Compactness.
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4. Why games such as Tic-Tac-Toe? Why should the reader be interested in the
“fake probabilistic method,” and in games such as Tic-Tac-Toe in general? Besides
the obvious reason that games are great fun and everybody plays Tic-Tac-Toe, or
some grown-up version of it, at some point in his/her life, we are going to present
4 more reasons.
One extremely exciting aspect of studying these games is that it might help

us to understand a little bit better how human intelligence works. It might have
some impact on fundamental questions such as whether human understanding is
a computational or a non-computational process. For example, in Japan there are
several “perfect” players who, as the first player, can consistently win Go-Moku
(the 5-in-a-row on the 19× 19 Go board) but they are unable to explain what
they are actually doing. Similarly, the unrestricted 6-in-a-row game (played on an
infinite chessboard) between two reasonably good players always turns out to be a
long, boring draw-game, but we don’t know any proof. Or what is the reason that
we cannot write good Go-playing computer programs? These are just three of the
many examples where the human mind “knows” something that we are unable to
convert into rigorous mathematical proofs.
It is interesting to know that the human approach to Chess is completely different

from the way computer programs play. Humans search only a small set of positions
in the game-tree, between 10 and 100. Surprisingly grand-masters do not search
the game-tree deeper than less successful players, but consistently select only good
moves for further study. Performance on blitz games, where the players do not
have time to explore the game-tree to any depth, supports this idea. The play is
still at a very high level, suggesting that in human Chess pattern recognition plays
a much more important role than brute force search. What makes a master is the
accumulation of problem-specific knowledge. A player needs at least five years
of very intense chess study to become a grand-master. During this learning period
a grand-master builds up an internal library of patterns, which is estimated to be
around 50,000. Computer programs, on the other hand, typically examine millions
of positions before deciding what to do next. We humans employ knowledge
to compensate for our inherent lack of searching ability. How to “teach” this
human knowledge to a computer is a puzzle that no one has solved yet. Maybe
it is impossible to solve – this is what Roger Penrose, the noted mathematical
physicist, believes. His controversial theory is that human intelligence is a non-
computational process because it exploits physics at the quantum-mechanical level
(see Penrose’s two books, The Emperor’s New Mind and the more recent Shadows of
the Mind).
The second reason why the reader might find our subject interesting is that

the “Tic-Tac-Toe Theory” forms a natural bridge between two well-established
combinatorial theories: Random Graphs and Ramsey Theory.
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Third, games are ideal models for all kinds of research problems. Expressing a
mathematical or social problem in terms of games is “half of the battle.”

Fourth, this theory already has some very interesting applications in combina-
torics, algorithms, and complexity theory.

5. The 7 most humiliating open problems. A central issue of the book is the
Neighborhood Conjecture (Open Problem 9.1). We were able to prove many partial
results, but the general case remains wide open. The most embarassing special case
is the following. Consider the usual (1:1) Maker–Breaker Degree Game played on
an arbitrary n-regular graph (every degree is n). Breaker’s goal is to prevent Maker
from occupying a large star. At the end of Section 16, it was explained how Breaker
can always prevent Maker from occupying a star of degree > 3n/4 (Breaker uses
a simple Pairing Strategy). The problem is to “beat” the Pairing Strategy (it was
asked by Tibor Szabó).

Open Problem 16.1 Can the reader replace the upper bound 3n/4 in the Degree
Game above with some c · n where the constant c < 3/4? Is it possible to get
c = 1

2 +o�1�?

Another major open problem is to extend Theorem 6.4 (“Clique Games”) and
Theorem 8.2 (“lattice games”) to the biased cases (and also the coalition versions).
It is embarrassing that we cannot do it even for the (2:2) play, which seems to be
the easiest case: it is the perfect analogue of the well-understood (1:1) play. The
problem is just formulated in the special case of the Clique Game.

Open Problem 31.1

(a) Is it true that playing the (2:2) Achievement Game on KN , Maker can always
build a clique Kq with q = 2 log2N −2 log2 log2N +O�1�?

(b) Is it true that playing the (2:2) Achievement Game on KN , Breaker can always
prevent Maker from building a clique Kq with q = 2 log2N − 2 log2 log2N +
O�1�?

(c) Is it true that the (2:2) Clique Achievement and Clique Avoidance Numbers are
equal, or at least differ by at most O�1�?

We know the exact solution of the (1:1) Clique Game, but the Tournament
version remains wide open; this is the third problem in the list (see the Tournament
problem below). First, recall that a tournament means a “directed complete graph”
such that every edge of a complete graph is directed by one of the two possible
orientations; it represents a tennis tournament where any two players play with each
other, and an arrow points from the winner to the loser. The Tournament Game
begins with fixing an arbitrary goal tournament Tq on q vertices. The two players
are Red and Blue, who alternately take new edges of a complete graph KN , and
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for each new edge choose one of the two possible orientations (“arrow”). Either
player colors his arrow with his own color. At the end of a play, the players create
a 2-colored tournament on N vertices. Red wins if there is a red copy of the goal
tournament Tq; otherwise Blue wins.
Let KN�↑↓� denote the “complete tournament”: it has 2

(
N

2

)
arrows, meaning that

every edge of the complete graph KN shows up with both orientations. At the end
of a play in the Tournament Game Red owns 1/4 of the arrows in KN�↑↓�. In the
random play (where both Red and Blue play randomly) Red wins the Tournament
Game with q = �2−o�1�� log4N ; Red wins with probability → 1 as N →�.
This motivates the following tournament problem: Is it true that Red can always

win the Tournament Game with q = �2−o�1�� log4N?
First, note that Theorem 33.8 proves only half of the conjectured truth.
Second, observe that the Tournament problem is solved for the Chooser–Picker

version: it follows from Theorem 33.4. The Chooser–Picker version means that in
each turn Picker picks 2 new edges of KN , Chooser (Red) chooses one of them, and
also chooses one of the two orientations; Chooser colors his arrow red. Chooser
wins if there is a red copy of the goal tournament Tq; otherwise Picker wins. The
Chooser–Picker version means a (1:3) play on the “complete tournament” KN�↑↓�
where Chooser is the underdog. It follows that Theorem 33.4 applies with s = 3,
and gives an affirmative answer to the corresponding tournament problem.

The fourth problem is about connectivity, the simplest graph-theoretic property.
In spite of its simplicity, the game-theoretic problem is still unsolved. The Ran-
dom Graph intuition makes the following conjecture (in fact, 3 conjectures) very
plausible.

Open Problem 20.1 Consider the (1:b) Connectivity Game on the complete graph
Kn. Is it true that if b = �1−o�1��n/ logn and n is large enough, then underdog
Maker can always build a spanning tree?
Moreover, is it true that under the same condition Maker can always build a

Hamiltonian cycle?
Finally, is it true that under the same condition Forcer can always force Avoider

to build a Hamiltonian cycle?

The fifth one is the “pentagon problem.” In Sections 1–2 we proved that the regular
pentagon (of any fixed size) is a Weak Winner, and in the (1:1) play a player can
build it in less than 10500 moves. Of course, the upper bound 10500 on the Move
Number seems totally ridiculous. Can we prove a reasonable upper bound like
≤ 1000? Another natural question is whether or not the regular pentagon can be
upgraded from Weak Winner to ordinary Winner, i.e. can the first player build it
first?

The sixth problem is again about ordinary win. Ordinary win is such a difficult
concept that it is unfair to call the following problem “humiliating,” but we still list
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it here. The author tackled this question in 1980, more than 25 years ago, and does
not believe it will be solved in the next 25 years.

Open Problem 4.6 (c) Consider the Clique Game �Kn�Kq� where n is huge
compared to q: is there a uniform upper bound for the Move Number? More
precisely, is there an absolute constant C4<� such that the first player can always
win in less than C4 moves in every �Kn�K4� Clique Game with n≥18?
Is there an absolute constant C5<� such that the first player can always win in

less than C5 moves in every �Kn�K5� Clique Game with n≥49?
In general, is there an absolute constant Cq<� such that the first player can

always win in less than Cq moves in every �Kn�Kq� Clique Game with n ≥ R�q�

where R�q� is the Ramsey Number?

Probably C4 is finite, but it is perfectly possible that C5 or C6 are not finite (a curse
of the Extra Set Paradox, see Section 5)!

Finally, the seventh humiliating problem is how to extend the Erdős–Selfridge
Theorem in the biased �a�f� Avoider-Forcer game. The special case “f = 1 and
a ≥ 1 is arbitrary” has a satisfying solution – see Theorem 20.4 and (30.15) – but
the general case f ≥ 2 remains a mystery. (It was Tibor Szabó who pointed out the
difficulty of the general case.) Why is this innocent-looking problem so hard?

This was the author’s list of the 7 most humiliating open problems. For con-
venience, in pages 716–23 the complete set of the open problems in the book is
given. The reader is encouraged to make his/her own list of the most humiliating
open problems.



Appendix A
Ramsey Numbers

For the sake of completeness we include a brief summary of quantitative Ramsey
Theory.
A well-known puzzle states that in a party of six people there is always a group of

three who either all know each other or are all strangers to each other. This puzzle
illustrates a general theorem proved by Ramsey in 1929. The Ramsey Theorem
is about partitions (colorings) of the edges of complete graphs and partitions of
k-edges of complete k-uniform hypergraphs (k ≥ 2). First consider the case of
edges, i.e. k= 2.
Let R2�s� t�, called Ramsey Number, be the minimum of n for which every

2-coloring (say, red and blue) of the edges of the complete graph Kn on n vertices
yields either a red Ks or a blue Kt. A priori it is not clear that R2�s� t� is finite for
every s and t.
The following result shows that R2�s� t� is finite for every s and t, and at the

same time it gives a good upper bound on R2�s� t�.

Theorem A1 (Erdős and Szekeres) If s ≥ 3 and t ≥ 3, then

R2�s� t�≤ R2�s−1� t�+R2�s� t−1�� (A1)

and

R2�s� t�≤
(
s+ t−2
s−1

)
� (A2)

Proof. Let n=R2�s−1� t�+R2�s� t−1�� and consider an arbitrary 2-coloring (red
and blue) of the edges of Kn. Assume that some vertex v has red degree at least
R2�s− 1� t�. Let X denote the set of other endpoints of these red edges. Since
�X� ≥ R2�s−1� t�, in the complete graph on vertex set X, either there is a blue Kt,
and we are done, or there is a red Ks−1, which extends to a red Ks by adding the
extra vertex v.
Similarly, if a vertex v has blue degree at least R2�s� t−1�, then either there is

a red Ks, and we are done, or there is a blue Kt−1, and this extends to a blue Kt by

658
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adding the extra vertex v. The trivial equality red-degree�v�+blue-degree�v�= n−1
guarantees that one of these possibilities occurs. This proves (A1).

We prove (A2) by induction on s+ t. Inequality (A2) holds if s = 2 or t = 2; in
fact we have equality since R2�s�2�= R2�2� s�= s. Then by (A1) we have

R2�s� t�≤ R2�s−1� t�+R2�s� t−1�≤
(
s+ t−3
s−2

)
+
(
s+ t−3
s−1

)
�

Since
(
s+t−3
s−2

)+ (
s+t−3
s−1

)= (
s+t−2
s−1

)
� (A2) follows.

If s = t = 3, then we get the bound

R2�3�3�≤
(
3+3−2
3−1

)
=

(
4
2

)
= 6�

which is in fact an equality. If s = t = 4, then we get

R2�4�4�≤
(
4+4−2
4−1

)
=

(
6
3

)
= 20�

which is a strict inequality, but it is very close to the truth since we know that
R2�4�4�= 18. If s = t = 5, then we get

R2�5�5�≤
(
5+5−2
5−1

)
=

(
8
4

)
= 70�

which is rather far from the truth since we know that 43≤R2�5�5�≤ 49� The exact
value of R2�5�5� is not known. Erdős once joked that if an alien being threatens
to destroy the Earth unless we provide it the exact value of R2�5�5�, then we
should set all the computers on the Earth to work on this problem. If the alien asks
for R2�6�6�, then Erdős’s advise is to try to destroy the alien. (It is known that
102 ≤ R2�6�6�≤ 165, and the Erdős–Szekeres bound

(6+6−2
6−1

)= (10
5

)
is 252.)

The Erdős–Szekeres upper bound
(2s−2
s−1

)
to the diagonal Ramsey Number R2�s� s�

is asymptotically �1+ o�1��4s−1/
√
�s. An important result of Erdős from 1947

gives an exponential lower bound by using a counting argument, the simplest form
of the probabilistic method.

Theorem A2 (Erdős [1947])
R2�s� s� > 2s/2

Proof. Notice that this is a special case of Theorem 11.3; for the sake of complete-
ness the “counting argument” is repeated. Let n= 2s/2; we are going to show that
there is a simple graph Gn on n vertices (i.e. a sub-graph of Kn) such that neither
Gn nor its complement Gn contains a Ks. Coloring the edges of Gn red and the
edges of its complement blue, we get a 2-coloring of the edges of Kn such that
there is no monochromatic Ks. This will prove the inequality R2�s� s� > 2s/2.

Consider the graphs with n distinguished (labeled) vertices. The total number
of these labeled graphs is easy to compute: it is 2�

n
2�. Each particular s-clique Ks
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occurs in 2�
n
2�−�s2� of these 2�

n
2� labeled graphs. There are

(
n

s

)
ways to choose the set

of s vertices for a Ks. So if for each of the 2�
n
2� labeled simple graphs Gn, either

Gn or its complement Gn contains a Ks, then we have the inequality(
n

s

)
2�

n
2�−�s2� ≥ 1

2
2�

n
2��

Therefore, the reversed inequality(
n

s

)
2�

n
2�−�s2� <

1
2
2�

n
2� (A3)

guarantees that there is a labeled simple graph Gn such that neither Gn nor its
complement contains a Ks. Rough approximations yield that (A3) holds when-
ever n = 2s/2. More careful approximation using Stirling’s formula leads to the
asymptotically stronger lower bound R2�s� s� > const · s2s/2.
Theorems A1–2 imply that

√
2 ≤ lim inf

(
R2�s� s�

)1/s ≤ lim sup
(
R2�s� s�

)1/s ≤ 4�

Determination, of this limit (including whether or not the limit exists) is a famous
open problem in Combinatorics.
Theorem A1 extends to k-uniform complete hypergraphs for every k ≥ 2. Let

Rk�s� t� be the minimum of n for which every 2-coloring (say, red and blue) of the
k-edges of the complete k-uniform hypergraph

(
n

k

)
(i.e. all the k-element subsets

of an n-element set) yields either a red
(
s

k

)
or a blue

(
t

k

)
. For k ≥ 3 the thresholds

Rk�s� t� are called higher Ramsey Numbers. A priori it is not clear that Rk�s� t� is
finite for every k, s and t.
The following result shows that Rk�s� t� is finite for every k, s and t. The proof

is an almost exact replica of that of Theorem A1.

Theorem A3 Let 2 ≤ k <min�s� t�; then

Rk�s� t�≤ Rk−1

(
R2�s−1� t��Rk�s� t−1�

)+1�

Proof. Let
n= Rk−1

(
Rk�s−1� t��Rk�s� t−1�

)+1�

and let X be an n-element set. Given any red-blue 2-coloring C of the complete
k-uniform hypergraph

(
X

k

)
, pick a point x ∈ X and define an induced 2-coloring of

the �k−1�-element subsets of Y = X \ �x� by coloring A ∈ (
Y

k−1

)
with the C-color

of A∪�x� ∈ (
X

k

)
. By the definition of n= �X�, either there is an Rk�s−1� t�-element

subset W of Y such that
(

W

k−1

)
is monochromatically red, or there is an Rk�s� t−1�-

element subset Z of Y such that
(

Z

k−1

)
is monochromatically blue. By symmetry we

may assume that the first case holds, i.e. there is an Rk�s−1� t�-element subset W
of Y such that

(
W

k−1

)
is monochromatically red in the induced 2-coloring.
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Now let us look at the C-colors of the k-element subsets of
(
W

k

)
. Since �W � =

Rk�s−1� t�, there are two alternatives. If W has a t-element subset T such that
(
T

k

)
is monochromatically blue by C, then we are done. If the second alternative holds,
i.e. if W has an �s− 1�-element subset S′ such that

(
S′
k

)
is monochromatically red

by C, then we are done again. Indeed, then every k-element subset of S = S′ ∪ �x�

is monochromatically red by 2-coloring C.

The proof of Theorem A3 easily extends to infinite graphs.

Theorem A4 Let N = �1�2�3� � � �� denote the set of natural numbers. Let k ≥ 1
be an integer, and let

(N
k

)
denote the set of all k-tuples of the set of the natural

numbers N. Let C �
(N
k

)→ �1�2� be an arbitrary 2-coloring of the k-tuples of N.
Then there is an infinite subset of N such that its k-tuples have the same color (we
call it an infinite monochromatic subset of N).

Proof. It goes by induction on k. The result is trivial for k= 1 so assume that k≥ 2
and the theorem holds for k−1.

Pick 1 ∈ N, and write N1 = N \ �1�. As in the proof of Theorem A3, define an
induced 2-coloring C1 �

(
N1

�k−1�

)→ �1�2� of the �k−1�-tuples ofN1 by putting C1�A�=
C�A∪ �1��, whereA is a �k−1�-tuple ofN1. By the induction hypothesis,N1 contains
an infinite set S1 where all the �k− 1�-tuples have the same color, say, c1 ∈ �1�2�.
Let n2 ∈ S1 be arbitrary, and write N2 = S1 \ �n2�. Define an induced 2-coloring C2 �(

N2
�k−1�

)→ �1�2� of the �k−1�-tuples ofN2 by putting C2�A�= C�A∪�n2��whereA is
a �k−1�-tuple ofN2. By the induction hypothesis,N2 contains an infinite set S2 where
all the �k− 1�-tuples have the same color, say, c2 ∈ �1�2�. Let n3 ∈ S2 be arbitrary,
and write N3 = S2 \ �n3�. Define an induced 2-coloring C3 �

(
N3

�k−1�

) → �1�2� of the
�k−1�-tuples ofN3 by putting C3�A�= C�A∪ �n3��, whereA is a �k−1�-tuple ofN3.
By the induction hypothesis,N3 contains an infinite set S3 where all the �k−1�-tuples
have the same color, say, c3 ∈ �1�2�, and so on. Repeating this argument, we obtain an
infinite sequence of numbersn1 = 1� n2� n3� · · · , an infinite nested sequence of infinite
sets N = S0 ⊃ S1 ⊃ S2 ⊃ S3 ⊃ · · · , and an infinite sequence of colors c1� c2� c3� · · · ,
such that ni ∈ Si−1 and ni 
∈ Si, and all k-tuples where the only element outside of Si
is ni have the same C-color ci ∈ �1�2�. The infinite sequence ci must take at least one
of the two values 1�2 infinitely often, say ci1 = 1 for 1 ≤ i1 < i2 < i3 < · · · . Then
by the construction, each k-tuple of the infinite set �ni1

� ni2
� ni3

� � � �� has color 1, i.e.
�ni1

� ni2
� ni3

� · · · � is an infinite monochromatic subset of N. This completes the proof
of Theorem A4.

Theorems A1, A3, and A4 easily extend to colorings with arbitrary finite number
of colors. For example, if we have 3 colors, (say) red, green, and yellow, then we
have the easy upper bound
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Rk�s� s� s�≤ Rk

(
s�Rk�s� s�

)
� (A4)

To prove (A4), we replace the last two colors green and yellow by a new color
(say) blue. Then either there is a red

(
s

k

)
, and we are done, or there is a blue

(
Rk�s�s�

k

)
.

But blue means green or yellow, so the green-blue 2-colored
(
Rk�s�s�

k

)
contains either

a green
(
s

k

)
or a yellow

(
s

k

)
, which proves (A4).

Unfortunately, Theorem A3 provides very poor bounds, even for k= 3. Indeed,
by Theorems A1–A2, R2�x� y� is exponential, so by repeated applications of
Theorem A3 we obtain a tower function-like upper bound

R3�s� s� < 22
2··

·2

� (A5)

where the height of the tower is const · s.
Much better upper bounds come from an inequality of Erdős and Rado. For

example, if k= 3, then the Erdős–Rado argument gives a double-exponential upper
bound like 22

s
instead of the tower function (A5). The proof works for arbitrary

number of colors without any modification, so first we define the multi-color version
of the Ramsey Number Rk�s� t�.

Let Rk�s1� s2� · · · � sc� (c ≥ 2 integer) be the minimum of n such that given any
c-coloring of the k-edges of the complete k-uniform hypergraph

(
n

k

)
(i.e. all the

k-element subsets of an n-element set), there will be an i with 1 ≤ i ≤ c and a
complete k-uniform hypergraph

(
si
k

)
where all the k-edges are colored with the ith

color.
In the diagonal case s1 = s2 = · · · = sc = s we use the short notation Rk�s�c� =

Rk�s� s� · · · � s�. If c = 2, we simply write Rk�s�= Rk�s�2�.
Theorem A5 (Erdős and Rado)

Rk+1�s�c� < c

(
Rk�s�c�

)k

Remark. If k = 1, then trivially R1�s�c� = sc+ 1. So for c = 2 we get R2�s� <

22s+1 = 2 ·4s, which is asymptotically just a little bit weaker than the Erdős–Szekeres
bound

(2s−2
s−1

)≈ const ·4s/√s.

Proof. Let S denote the interval{
1�2� · · · � c

(
Rk�s�c�

)k}
�

and let C be an arbitrary c-coloring of the �k+ 1�-tuples of S. Unlike in the
proof of Theorem 3, where we fixed a point and considered the induced coloring,
here we fix a k-tuple and consider the induced coloring. Consider first the k-tuple
�1�2� · · · � k�, and for any m ∈ S with k<m, define the induced c-coloring C∗�m�=
C��1�2� · · · � k�m��. c-coloring C∗ defines a partition of S\�1�2� · · · � k� into c color
classes. Let S1 denote the biggest color class, and let C∗∗ = C∗∗��1�2� · · · � k�� denote
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the corresponding color. We clearly have the inequality

�S1� ≥
�S�−k

c
�

Next let ik+1 be the smallest number in S1, and let A be an arbitrary k-tuple
of �1�2� · · · � k� ik+1�, which contains ik+1. For this A and for any m ∈ S1 with
ik+1 < m, define the induced c-coloring C∗

A�m� = C�A∪ �m��. Let A1�A2� · · · �Ak

be all k-tuples of �1�2� · · · � k� ik+1� which contain ik+1, and consider the c
k-coloring

C∗

C∗�m�= (C∗
A1
�m��C∗

A2
�m�� · · · �C∗

Ak
�m�

)
�

ck-coloring C∗ defines a partition of S1 \ �ik+1� into ck color classes. Let S2 denote
the biggest color class, and let C∗∗ = C∗∗�A� denote the corresponding color for
each k-tuple A of �1�2� · · · � k� ik+1� with ik+1 ∈ A. We clearly have the inequality

�S2� ≥ �S1�−1
ck

�

Next let ik+2 be the smallest number in S2, and let A be an arbitrary k-tuple of
�1�2� · · · � k� ik+1� ik+2� which contains ik+2� For this A and for any m ∈ S2 with
ik+2 < m, define the induced c-coloring C∗

A�m� = C�A∪ �m��. Let A1�A2� · · · �Ar ,
r = (

k+1
2

)= (
k+1
k−1

)
be all k-tuples of �1�2� · · · � k� ik+1� ik+2� which contains ik+2, and

consider the cr-coloring C∗

C∗�m�= (C∗
A1
�m��C∗

A2
�m�� · · · �C∗

Ar
�m�

)
�

Induced cr-coloring C∗ defines a partition of S2 \ �ik+2� into cr color classes. Let
S3 denote the biggest color class, and let C∗∗ = C∗∗�A� denote the corresponding
color for each k-tuple A of �1�2� · · · � k� ik+1� ik+2� with ik+2 ∈ A. We clearly have
the inequality

�S3� ≥
�S2�−1

c�
k+1
k−1�

�

Repeating this argument, we obtain a sequence of integers

i1 = 1� i2 = 2� · · · � ik = k < ik+1 < ik+2 < · · ·< iq�

and a nested sequence of sets

S ⊃ S1 ⊃ S2 ⊃ S3 ⊃ · · · ⊃ Sq−k

such that ij ∈ Sj−k, k+1≤ j ≤ q

�Sj+1� ≥
�Sj�−1

c�
k+j−1
k−1 �

�

and for any fixed k-tuple �ij1� ij2� · · · � ijk� where 1 ≤ j1 < j2 < · · · < jk < q, the
C-color of the �k+1�-tuple �ij1� ij2� · · · � ijk �m� is the same for any ijk <m∈ Sjk−k+1.
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This common color depends on the k-tuple �ij1� ij2 � · · · � ijk� only, and it is denoted
by C∗∗�ij1� ij2� · · · � ijk �. Since

�S� = c

(
Rk�s�c�

)k
�

and

�Sj+1� ≥
�Sj�−1

c�
k+j−1
k−1 �

�

an easy calculation shows that the length q of the longest sequence i1 = 1� i2 =
2� · · · � ik = k < ik+1 < ik+2 < · · ·< iq can be as big as the Ramsey Number Rk�s�c�.
So we write q = Rk�s�c�.
Now we are ready to complete the proof. Indeed, induced coloring C∗∗ defines a

c-coloring on the set of all k-tuples �ij1� ij2� · · · � ijk� (where 1≤ j1 < j2 < · · ·< jk <

q = Rk�s�c�) of i1 = 1< · · ·< iq . Since q = Rk�s�c�, by hypothesis there is a C∗∗-
monochromatic s-set, i.e. there is an s-element subset Y such that its k-tuples have
the same C∗∗-color. Finally, from the definition of induced coloring C∗∗ it follows
that this Y is a C-monochromatic set, too. In other words, all the �k+1�-tuples of
Y have the same C-color. This completes the proof of Theorem A5.

We introduce the following arrow-notation: if G and H are k-uniform hypergraphs
(graphs if k = 2), then G → H means that given any 2-coloring of the k-edges
of G, there is always a monochromatic copy of H. Of course, G 
→ H means the
opposite statement: there is a 2-coloring of the k-edges of G such that there is no
monochromatic copy of H. In view of this, Theorems A1–A2 can be reformulated
as follows ((2s−2

s−1

)
2

)
→

(
s

2

)

and (
2s/2

2

)

→

(
s

2

)
�

The following result is usually referred as the “Stepping-Up Lemma”:

Theorem A6 (Erdős, Hajnal and Rado) If
(
n

k

) 
→ (
s

k

)
and k≥ 3, then(

2n

k+1

)

→

(
2s+k

k+1

)
�

Proof. We are going to transform an anti-Ramsey 2-coloring of
(
n

k

)
into an anti-

Ramsey 2-coloring of
( 2n

k+1

)
. Let C1 ∪ C2 =

(
n

k

)
be a decomposition of the set of

all k-tuples of 	n
= �0�1� · · · � n−1� into two classes such that no Ci (i = 1 or 2)
contains an

(
s

k

)
, i.e. there is nomonochromatic

(
s

k

)
in
(
n

k

)
. The set of all 0–1 sequences

of length n

S= �a = �a1� a2� · · · � an� � ai = 0 or 1 for 1≤ i ≤ n�
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is a natural choice for a set of cardinality 2n. A string a = �a1� a2� · · · � an�, ai = 0
or 1, corresponds to the binary form of an integer

f�a�= a12
n−1+a22

n−2+· · ·+an−12+an�

We say that a < b if and only if f�a� < f�b�. If a < b, then there is an index i,
1 ≤ i ≤ n, such that a1 = b1, · · · , ai−1 = bi−1, but ai = 0 and bi = 1. We call this
index i the separating index of the pair �a�b�, and denote it by d�a�b�. Note that:

(i) if a < b < c, then d�a�b� 
= d�b� c�, and both cases d�a�b� < d�b� c� and
d�a�b� > d�b� c� are possible;

(ii) if a1 < a2 < · · ·< ar , then d�a1�ar �=min1≤i<r d�ai�ai+1�.

We are going to define a 2-coloring C1 ∪C2 =
( S
k+1

)
of all the �k+ 1�-tuples

of set S which doesn’t contain a monochromatic �2s+ k�-element subset. Let
�a1�a2� · · · �ak+1� be a �k+1�-tuple of S. We can assume that a1 < a2 < · · ·< ak+1.
Let di = d�ai�ai+1�, 1 ≤ i ≤ k. The sequence d1�d2� · · · �dk does not necessarily
means k different numbers. So first assume that the sequence di is monotonically
decreasing or increasing, which automatically guarantees that we have k different
numbers. If d1 > d2 > · · ·> dk or d1 < d2 < · · ·< dk, then color the �k+1�-tuple
�a1�a2� · · · �ak+1� by the color of the k-tuple �d1�d2� · · · �dk�, that is

�a1�a2� · · · �ak+1� ∈ Ci

if and only if �d1�d2� · · · �dk� ∈ Ci, i= 1 or 2.
If the sequence di is not monotonically decreasing or increasing, then the color

of the �k+1�-tuple �a1�a2� · · · �ak+1� will be determined later.
So far we defined only a partial 2-coloring of the �k+1�-tuples of S, but this is

enough to make the following crucial observation:

Lemma 1: Assume that �a1�a2� · · · �am� is a partially monochromatic subset of
S, i.e. all �k+1�-tuples of this m-element set which are colored under the partial
2-coloring have the same color. Without loss of generality, we can assume that
a1 < a2 < · · · < am. Let di = d�ai�ai+1�, 1 ≤ i < m. Then there is no index j such
that the “subinterval” dj�dj+1�dj+2� · · · �dj+s−1 is monotonically increasing or
decreasing.

Proof. Assume that the color class containing all partially colored �k+ 1�-tuples
of �a1�a2� · · · �am� is Ci (i= 1 or 2). We distinguish two cases.

Case 1: dj < dj+1 < dj+2 < · · ·< dj+s−1

Since C1∪C2 =
(
n

k

)
was a 2-coloring satisfying the property

(
n

k

) 
→ (
s

k

)
, the s-element

set �dj�dj+1� · · · �dj+s−1� cannot have all its k-tuples in the same color class Ci.
Therefore, there exists a k-tuple �i1� i2� · · · � ik� with j ≤ i1 < i2 < · · ·< ik ≤ j+s−1
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such that �di1
�di2

� · · · �dik
� is in the other color class: �di1

�di2
� · · · �dik

� ∈ C3−i.
Consider now the �k+1�-tuple

A= �ai1�ai2� · · · �aik �aik+1��

For 1≤ h < k we have
d�aih �aih+1

�= min
ih≤�<ih+1

d��

and because in Case 1 we have dj < dj+1 < dj+2 < · · ·< dj+s−1, it follows that

d�aih �aih+1
�= min

ih≤�<ih+1

d� = dih
�

Therefore

d�ai1�ai2�= di1
< d�ai2�ai3�= di2

< · · ·< d�aik−1
�aik �= dik−1

< d�aik �aik+1�= dik
�

So the partial 2-coloring applies, and the �k+1�-tuple A= �ai1�ai2� · · · �aik �aik+1�

is colored by the color of �di1
�di2

� · · · �dik
�. Since �di1

�di2
� · · · �dik

� ∈ C3−i� we
conclude that A ∈ C3−i, which contradicts the assumption that the color class
containing all �k+1�-tuples of �a1�a2� · · · �am� is Ci.

Case 2: dj > dj+1 > dj+2 > · · ·> dj+s−1

Just as in Case 1 we can assume that there exists a k-tuple �i1� i2� · · · � ik� with
j ≤ i1 < i2 < · · · < ik ≤ j+ s− 1 such that �di1

�di2
� · · · �dik

� ∈ C2. In this case we
consider the slightly different �k+1�-tuple

A= �ai1�ai1+1�ai2+1� · · · �aik+1��

Just as in Case 1 we obtain

d�ai1�ai1+1�= di1
> d�ai1+1�ai2+1�= di2

> · · ·> d�aik−1+1�aik+1�= dik
�

Now we get the contradiction exactly the same way as in Case 1. This completes
the proof of Lemma 1. �

Next we extend the partial 2-coloring of the �k+ 1�-tuples of S to a proper
2-coloring. To do that we need the following elementary:

Lemma 2: Let s ≥ k≥ 3, and let d1�d2�d3� · · · �d2s+k−1 be an arbitrary sequence
of �2s+k−1� integers such that any two consecutive members of the sequence are
different, i.e. di 
= di+1 for 1≤ i < 2s+k−1� Then

(i) either there is subinterval j� j+1� · · · � j+ s−1 of length s such that the
sequence dj�dj+1� · · · �dj+s−1 is monotonically increasing or decreasing;

(ii) or there are j ≤ 2s and �≤ 2s such that dj−1 <dj and dj > dj+1, and d�−1 >d�

and d� < d�+1.

Proof. We call a j a local max if dj−1 < dj and dj > dj+1, and a local min if
dj−1 > dj and dj < dj+1.
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If the sequence d1� · · · �d2s+k−1 has a local max j ≤ 2s and a local min � ≤ 2s,
then we are done.

If the sequence d1� · · · �d2s+k−1 has two local max’s j1 ≤ 2s and j2 ≤ 2s, then
between the two local maxs there is always a local min, so this is the previous case.
Of course, the same argument holds if there are two local mins.

If the sequence d1� · · · �d2s+k−1 has one local max j ≤ 2s and no local min �≤ 2s,
then:

(i) if j < s, the sequence dj�dj+1� · · · �dj+s−1 is monotonically decreasing;
(ii) if j ≥ s, the sequence dj+1−s� dj+2−s� · · · �dj is monotonically increasing.

The same argument holds if there is one local min and no local max. �

Nowwe are ready to extend the partial 2-coloring to a complete 2-coloringC1∪C2 =( S
k+1

)
of all the �k+ 1�-tuples of set S. Let A = �a1�a2� · · · �ak+1� be an arbitrary

�k+1�-tuple of S. We can assume that a1 < a2 < · · · < ak+1. Let di = d�ai�ai+1�,
1 ≤ i ≤ k. The partial 2-coloring was defined for those As for which the sequence
di is monotonically decreasing or increasing. Then the color of A was defined by
“lifting up” the color of �d1�d2� · · · �dk�.

If the sequence di is not monotonically decreasing or increasing, then there is a
local max or a local min (or both). There are three cases. Either 2 is a local max:
d1 <d2 >d3, or 2 is a local min: d1 >d2 <d3, or the first local max is ≥ 3 and the
first local min is ≥ 3. Then 2-color �k+1�-tuple A like this: if 2 is a local max, then
A = �a1�a2� · · · �ak+1� ∈ C1; if 2 is a local min, then A = �a1�a2� · · · �ak+1� ∈ C2.
(This is where we use the assumption that k ≥ 3.) Finally, if the first local max is
≥ 3 and the first local min is ≥ 3, then color A arbitrarily.
Assume that �a1�a2� · · · �a2s+k� is amonochromatic subset of S, i.e. all the �k+1�-

tuples of this �2s+k�-element set have the same color under this 2-coloring. Without
loss of generality we can assume that a1 < a2 < · · · < a2s+k. Let di = d�ai�ai+1�,
1≤ i ≤ 2s+k−1� In view of Lemma A8, there are two possibilities:

(i) There is an index j such that the “sub-interval” dj�dj+1�dj+2� · · · �dj+s−1 is
monotonically increasing or decreasing. But this is impossible by Lemma A7.

(ii) There are j ≤ 2s and �≤ 2s such that j is a local max: dj−1 <dj > dj+1, and � is
a local min: d�−1 >d� < d�+1. Then by definition, �aj−1�aj�aj+1� · · · �aj+k−1� ∈
C1 and �a�−1�a��a�+1� · · · �a�+k−1� ∈ C2, which is a contradiction. This
completes the proof of Theorem A6.

The best lower bound for R3�s� is

R3�s� > 2s
2/6�
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proved by a simple adaptation of the proof of Theorem A2. Indeed, inequality(
n

s

)
2�

n
3�−�s3� <

1
2
2�

n
3� (A3′)

guarantees that there is a labeled simple 3-graph G3�n on n points such that neither
G3�n nor its complement contains an

(
s

3

)
� Rough approximations yield that (A3′)

holds whenever n= 2s
2/6� It is a long-standing open problem to improve this lower

bound to a doubly exponential bound.
Theorems A1–A2 and A5–A6 imply the following upper and lower bounds for

Rk�n�:

Theorem A7 For k≥ 2 we have

2n/2 < R2�n� < 4n�

2n
2/6 < R3�n� < 22

4n
�

22
n2/24

< R4�n� < 22
24n

�

22
2n

2/96

< R5�n� < 22
22

4n

�

and in general, for arbitrary k≥ 3

tower43−kn2/6�k−2� < Rk�n� < tower4n�k−1��

where towerx�1�= 2x� and for j ≥ 2� towerx�j�= 2towerx�j−1�.

For more about the results of Erdős, Rado, and Hajnal, see Erdős and Rado
[1952] and Erdős et al. [1965], and also the monograph Graham et al. [1980].
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Hales–Jewett Theorem: Shelah’s proof

If the chromatic number of the nd-hypergraph is ≥ 3, i.e. if d ≥ HJ�n�, then First
Player has a winning strategy in the nd Tic-Tac-Toe game. This is the only known
“win criterion” – unfortunately it does not give a clue how to actually win.

For the sake of completeness we include a proof of Shelah’s primitive recursive
upper bound for the Hales–Jewett Number HJ�n�.
Note that the original van der Waerden–Hales–Jewett proof led to the notorious

Ackermann function. It was a big step forward, therefore, when in 1988 Shelah
was able to prove that the Hales–Jewett threshold HJ�n�k� (to be defined below)
is primitive recursive (HJ�n� is the special case of k= 2).
We briefly recall the so-called Grzegorczyk hierarchy of recursive functions.

In fact, we define the representative function for each class. For a more detailed
treatment of primitive recursive functions we refer the reader to Mathematical
Logic.

Let g1�n�= 2n, and for i > 1, let gi�n�= gi−1

(
gi−1

(
� � � gi−1�1� � � �

))
, where gi−1

is taken n times. An equivalent definition is gi�n+1�= gi−1

(
gi�n�

)
. For example,

g2�n�= 2n is the exponential function

g3�n�= 22
2··

·2

is the “tower function” of height n. The next function g4�n+1�= g3
(
g4�n�

)
is what

we call the “Shelah’s super-tower function” because this is exactly what shows up
in Shelah’s proof. Note that gk�x� is the representative function of the �k+ 1�st
Grzegorczyk class.

The Hales–Jewett Theorem is about monochromatic n-in-a-line’s of the nd

hypercube. The proof actually gives more: it guarantees the existence of a monochro-
matic combinatorial line. Let �= �0�1�2� � � � � n−1�. An x-string is a finite word
a1a2a3 · · ·ad of the symbols ai ∈ �∪ �x� where at least one symbol ai is x. An
x-string is denoted by w�x�. For every integer i ∈� and x-string w�x�, let w�x� i�

669
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denote the string obtained from w�x� by replacing each x by i. A combinatorial
line is a set of n strings �w�x� i� 	 i ∈�� where w�x� is an x-string.
Every combinatorial line is a geometric line, i.e. n-in-a-line, but the converse is

not true: not every geometric line is a combinatorial line. A geometric lines can be
described as an xx’-string a1a2a3 · · ·ad of the symbols ai ∈ �∪ �x�∪ �x′� where
at least one symbol ai is x or x′. An xx′-string is denoted by w�xx′�. For every
integer i ∈ � and xx′-string w�xx′�, let w�xx′� i� denote the string obtained from
w�xx′� by replacing each x by i and each x′ by �n−1− i�. A directed geometric
line is a sequence w�xx′�0�, w�xx′�1�, w�xx′�2�� � � �, w�xx′�n− 1� of n strings
where w�xx′� is an xx′-string. Note that every geometric line has two orientations.
It is clear from the definition that there are sub-stantially more geometric lines

than combinatorial lines. For example, in ordinary Tic-Tac-Toe

�0�2� �1�2� �2�2�

�0�1� �1�1� �2�1�

�0�0� �1�0� �2�0�

��0�0�� �1�1�� �2�2�� is a combinatorial line defined by the x-string xx,
��0�1�� �1�1�� �2�1�� is another combinatorial line defined by the x-string x1, but
the other diagonal

��0�2�� �1�1�� �2�0��

is a geometric line defined by the xx′-string xx′. So the other diagonal is a geometric
line which is not a combinatorial line.
The Hales–Jewett Number HJ�n�k� is the smallest integer d such that in each

k-coloring of �d there is a monochromatic geometric line. The modified Hales–
Jewett Number HJc�n� k� is the smallest integer d such that in each k-coloring of
�d there is a monochromatic combinatorial line. Clearly HJ�n�k�≤HJc�n� k�.
In 1961 Hales and Jewett proved that HJ�n�k� <� for all positive integers n

and k; in fact, they proved the stronger statement that HJc�n� k� <�. Shelah’s new
proof gives the following explicit bound:

Theorem B1 (Shelah’s upper bound) For every n≥ 1 and k≥ 1

HJc�n� k�≤ 1

�n+1�k
g4�n+k+2��

That is, given any k-coloring of the hypercube �0�1� � � � � n−1�d where the dimen-
sion d ≥ 1

�n+1�k g4�n+ k+ 2�, there is always a monochromatic combinatorial
line.

Proof. For each fixed value of k ≥ 2, we are going to argue by induction on n

that the threshold number HJc�n−1� k� exists. However, when trying the induction
step to show that HJc�n� k� exists, we are only allowed to use the existence of
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HJc�n−1� k�� If we also used the existence of HJk�n−1� k′� for very large values
of k′, then the argument would become a double induction, and this would lead to
Ackermann-like bounds (see Section 7).

For n= 1, the theorem is trivial. Assuming it holds for n−1≥ 1 and k≥ 2� we
prove it for n and for the same k. Let h = HJc�n− 1� k�� Define a very rapidly
increasing sequence mi, i= 1�2� � � � � h as follows. Let

m1 = kn
h = kn

HJc�n−1�k�
�

and for i ≥ 2

mi = kn
h+m1+���+mi−1 �

Let d = m1 +m2 + � � �+mh� We are going to show that HJc�n� k� ≤ d� Let C
be an arbitrary coloring of �d = �0�1�2� � � � � n−1�d by k colors. The idea of
the proof is that in any k-coloring C of the d-dimensional cube �d there is an
HJc�n−1� k�-dimensional sub-cube in which “symbols 0 and 1 cannot be distin-
guished by k-coloring C.” By hypothesis, this HJc�n−1� k�-dimensional sub-cube
contains a monochromatic �n−1�-in-a-row. The �n−1� points are those where the
dynamic coordinates of the line simultaneously run through the values 1�2� � � � � n−
1. This monochromatic �n−1�-in-a-row extends to a combinatorial line of length n

in �d. The new point is that where the dynamic coordinates of the line are all 0. By
using the key property that in the HJc�n−1� k�-dimensional sub-cube “symbols 0
and 1 cannot be distinguished by k-coloring C,” it follows that the C-color of this new
point is the same as the C-color of that point on the monochromatic �n−1�-in-a-row
where the dynamic coordinates of the line are all 1. Therefore, the whole combina-
torial line of length n is monochromatic as well. This will complete the proof.

It is very important to clearly understand what a sub-cube means, so we show an
example of a 3-dimensional sub-cube of a 11-dimensional cube �0�1�2�11

0210�100�2002 1211�100�2002 2212�100�2002

0210�111�2002 1211�111�2002 2212�111�2002

0210�122�2002 1211�122�2002 2212�122�2002

0210�100�2112 1211�100�2112 2212�100�2112

0210�111�2112 1211�111�2112 2212�111�2112

0210�122�2112 1211�122�2112 2212�122�2112

0210�100�2222 1211�100�2222 2212�100�2222

0210�111�2222 1211�111�2222 2212�111�2222

0210�122�2222 1211�122�2222 2212�122�2222
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This particular sub-cube can be described as a 3-parameter string x21x1yy2zz2
where the dynamic symbols x, y, z run through the values 0, 1, 2 independently
of each other. The 1st, 4th, 6th, 7th, 9th, and 10th coordinates are the dynamic
coordinates of this sub-cube. The rest of the coordinates, namely the 2nd, 3rd, 5th,
8th, and 11th coordinates remain fixed for all the 33 = 27 points of this sub-cube.
In this example we can separate symbols x, y, z from each other by using the
comma-notation: x21x,1yy,2zz2. In other words, the string x21x1yy2zz2 can be
decomposed into three sub-intervals x21x, 1yy, and 2zz2. This is why we can call
the sub-cube x21x1yy2zz2 an interval sub-cube.
But this is not necessarily the case for a general sub-cube. For example, the

3-parameter string x21z1yx2zx2, where the symbols x, y, z run through the values
0, 1, 2 independently of each other, defines another 3-dimensional sub-cube of
�0�1�2�11, where the separation of symbols x, y, z by using comma is impossible.
So the sub-cube x21z1yx2zx2 is not an interval sub-cube. But both sub-cubes
x21x1yy2zz2 and x21z1yx2zx2 are isomorphic to the cube xyz (and so to each
other) in a natural way.
As we said before, we are going to find an HJc�n−1� k�-dimensional sub-cube

of �d in which “symbols 0 and 1 cannot be distinguished by k-coloring C”, and this
sub-cube will be an interval sub-cube. In fact, its string of length d will decompose
into h = HJc�n− 1� k� sub-intervals, where the 
th sub-interval will have length
m
� and it will look like 0 � � �0x
 � � � x
1 � � �1 (
 = 1�2� � � � � h). This means, each
sub-interval will have the same form: it begins with a string of 0s, the middle part
consists of a string of x
s where x
 is the 
th independent parameter (“dynamic
coordinates”), and the last part is a string of 1s. The independent parameters
x1� x2� � � � � xh run through the values 0�1� � � � � n− 1 independently of each other;
this is how we get the nh points of the sub-cube.

How to find this special HJc�n− 1� k�-dimensional interval sub-cube of �d?
Well, we are going to construct the string of this interval sub-cube by descending
induction on 
, i.e. 
 = h�h− 1� h− 2� � � � �1� This means first we find the string
0 � � �0xh � � � xh1 � � �1 of the last sub-interval of length mh. The crucial fact is that
mh is much, much larger than d−mh =m1+m2+ � � �+mh−1 (see the definition of
mi), so we have plenty of room for an easy application of the pigeonhole principle.
We claim that there are two strings (“closing strings”) ti = 0 � � �01 � � �1 (where the
first i symbols are 0) and tj = 0 � � �01 � � �1 (where the first j symbols are 0) with
i < j, each of length mh, such that given any string s ∈��d−mh� of length �d−mh�

(“opening string”), the C-color of the union string sti ∈�d is the same as the C-color
of the other union string stj ∈ �d. (Of course, sti means that union which begins
with s and ends with ti.) But this statement is a direct application of the pigeonhole
principle if

mh ≥ kn
d−mh

�
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Indeed, there are kn
d−mh c-colorings of the set of all possible “opening strings”

s ∈��d−mh�. On the other hand, there are mh+1 special strings

1�1�1�1�1�1�1� � � � �1

0�1�1�1�1�1�1� � � � �1

0�0�1�1�1�1�1� � � � �1

0�0�0�1�1�1�1� � � � �1

0�0�0�0�1�1�1� � � � �1

· · · · · · · · · · · · · · · ·
0�0�0�0�0�0�0� � � � �0

of length mh (“closing strings”). Each special string t = 0� � � � �0�1� � � � �1 on this
list defines a k-coloring of the set of all possible “opening strings” s ∈ ��d−mh�

as follows: the color of “opening string” s is the C-color of the union string st.
Therefore, if

mh ≥ cn
d−mh

�

then by the pigeonhole principle there exist two special strings ti = 0 � � �01 � � �1
(where the first i symbols are 0) and tj = 0 � � �01 � � �1 (where the first j symbols
are 0) with i < j, each of length mh, such that the C-color of sti ∈ �d is the same
as the C-color of stj ∈�d for any “opening string” s ∈��d−mh�.

Note that inequality
mh ≥ kn

d−mh = kn
m1+���+mh−1

holds by the definition of the mis.
Now the string w�xh� = 0 � � �0xh � � � xh1 � � �1 of the last sub-interval (of length

mh) of the HJc�n−1� k�-dimensional interval sub-cube of �d is the following: the
first part is a string of i 0s, the middle part is a string of �j− i� xhs (“dynamic
coordinates”), and the last part is a string of �mh− j� 1s.
Clearly w�xh�0� = ti and w�xh�1� = tj , so changing the dynamic coordinates

of the last sub-interval simultaneously from 0 to 1 cannot be distinguished by
c-coloring C.
The general case goes exactly the same way by using the pigeonhole principle.

Suppose we have already defined the strings w�x
+1�, w�x
+2�, � � �, w�xh� of the
last �h−
� sub-intervals of the desired HJc�n−1� k�-dimensional interval sub-cube
of �d.
Again we claim that there are two strings (“middle strings” this time) ti =

0 � � �01 � � �1 (where the first i symbols are 0) and tj = 0 � � �01 � � �1 (where the first
j symbols are 0) with i < j, each of length m
, such that given any “opening
string” s ∈��m1+���+m
−1� of length �m1+ � � �+m
−1� and given any “closing string”
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r = r1r2 · · · rh−
 ∈��h−
� of length �h−
�, the C-color of the union string

stiw�x
+1� r1�w�x
+2� r2� · · ·w�xh� rh−
� ∈�d

is the same as the C-color of the other union string

stjw�x
+1� r1�w�x
+2� r2� · · ·w�xh� rh−
� ∈�d�

(We recall that w�x� i� denotes the string obtained from w�x� by replacing each x

by i.) Again the statement is a trivial application of the pigeonhole principle if

mł ≥ kn
m1+···+mł−1+�h−ł�

�

Indeed, there are kn
m1+���+m
−1+�h−
�

k-colorings of the set of all possible union strings
sr where s ∈ ��d−mh� is an arbitrary “opening string” and r = r1r2 · · · rh−
 ∈ ��h−
�

is an arbitrary “closing string.” On the other hand, there are mł+1 special strings

1�1�1�1�1�1�1� � � � �1

0�1�1�1�1�1�1� � � � �1

0�0�1�1�1�1�1� � � � �1

0�0�0�1�1�1�1� � � � �1

0�0�0�0�1�1�1� � � � �1

· · · · · · · · · · · · · · · ·
0�0�0�0�0�0�0� � � � �0

of length m
 (“middle strings”). Each special string t = 0� � � � �0�1� � � � �1 on this
list defines a c-coloring of the set of all possible union strings sr where s ∈��d−mh�

is an arbitrary “opening string” and r= r1r2 · · · rh−
 ∈��h−
� is an arbitrary “closing
string”: the color of sr is the C-color of

stw�x
+1� r1�w�x
+2� r2� · · ·w�xh� rh−
� ∈�d�

Therefore, if

m
 ≥ kn
m1+���+m
−1+�h−
�

�

then there are two strings (“ middle strings”) ti = 0 � � �01 � � �1 (where the first i
symbols are 0) and tj = 0 � � �01 � � �1 (where the first j symbols are 0) with i < j,
each of length mł, such that the C-color of the union string

stiw�x
+1� r1�w�x
+2� r2� · · ·w�xh� rh−
� ∈�d

is the same as the C-color of the other union string

stjw�x
+1� r1�w�x
+2� r2� · · ·w�xh� rh−
� ∈�d
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for any “opening string” s ∈ ��m1+���+m
−1� of length �m1 + � � �+m
−1� and any
“closing string” r = r1r2 · · · rh−
 ∈��h−
� of length �h−
�.
Note that inequality

m
 ≥ kn
m1+���+m
−1+�h−
�

holds by the definition of the mis.
The string w�x
�= 0 � � �0x
 � � � x
1 � � �1 of the 
th sub-interval (of length m
) of

the HJc�n−1� k�-dimensional interval sub-cube of�d is the following: the first part
is a string of i 0s, the middle part is a string of �j− i� x
s (“dynamic coordinates”),
and the last part is a string of �mh− j� 1s.

Clearly w�x
�0� = ti and w�x
�1� = tj , so changing the dynamic coordinates
of the łth sub-interval simultaneously from 0 to 1 cannot be distinguished by
k-coloring C.

At the end of this procedure we obtain an h-parameter stringw�x1�w�x2� · · ·w�xh�
of length d which defines an h-dimensional interval sub-cube of �d having the fol-
lowing property. Let I be an arbitrary non-empty subset of �1�2� � � � � h�; then
simultaneously changing the dynamic coordinates of all the ith sub-intervals, where
i ∈ I, from 0 to 1 cannot be distinguished by k-coloring C. This is the prop-
erty referred to when we say that “in this sub-cube symbols 0 and 1 cannot be
distinguished by k-coloring C.”

The h-dimensional interval sub-cube defined by string w�x1�w�x2� · · ·w�xh�
is a �0�1�2� � � � � n−1�h sub-cube. Consider that sub-cube of it where � =
�0�1�2� � � � � n− 1� is restricted to its �n− 1�-element subset �\�0� = �1�2� � � � �
n− 1�. This is a �1�2� � � � � n−1�h sub-cube. Since h = HJ∗�n− 1� c�, this
�1�2� � � � � n−1�h sub-cube contains a monochromatic �n− 1�-in-a-row where the
dynamic coordinates of this line simultaneously run through �1�2� � � � � n− 1� =
� \ �0�. This monochromatic �n− 1�-in-a-row extends to a combinatorial line of
length n in �d, where the new point is that where the dynamic coordinates of the
line are all 0.
By using the property that “in this sub-cube symbols 0 and 1 cannot be distin-

guished by k-coloring C,” it follows that the C-color of this new point (i.e. where
the dynamic coordinates of the line are all 0) is the same as the C-color of that point
on the monochromatic �n−1�-in-a-row where the dynamic coordinates of the line
are all 1. Therefore, the whole combinatorial line of length n is monochromatic as
well.

This proves that

HJc�n� k�≤ d =m1+m2+ � � �+mh�

It is trivial from the definition of the mis that

m1+m2+ � � �+mh ≤
1

�n+1�k
g3�knh��
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where g3�x� is the tower function. Since h = HJc�n− 1� k�, by the induction
hypothesis HJk�n−1� k�≤ 1

nk
g4�n+k+1� we conclude that

HJc�n� k�≤ 1

�n+1�k
g3

(
nk

1
kn

g4�n+k+1�
)
= 1

�n+1�k
g3
(
g4�n+k+1�

)
�

By definition g3
(
g4�n+k+1�

)= g4�n+k+2�, so

HJc�n� k�≤ 1

�n+1�k
g3
(
g4�n+k+1�

)= 1

�n+1�k
g4�n+k+2��

This completes Shelah’s proof.



Appendix C
A formal treatment of Positional Games

Everything that we know about ordinary win in a positional game comes from
Strategy Stealing. We owe the reader a truly precise treatment of this remark-
able existence argument. Also we make the vague term “exhaustive search”
precise by introducing a backtracking algorithm called “backward labeling”. We
start the formal treatment with a definite terminology (which is common sense
anyway).

Terminology of Positional Games. There are some fundamental notions of games
which are used in a rather confusing way in everyday language. First, we must
distinguish between the abstract concept of a game, and the individual plays of that
game.

In everyday usage, game and play are often synonyms. Tennis is a good example
for another kind of confusion. To play a game of tennis, we have to win two or three
sets, and to win a set, we must win six (or seven) games; i.e., certain components
of the game are again called “games.” If the score in a set is 6:6 – a “tie” – then,
by a relatively new rule in tennis, the players have to play a “tie-break.” We will
avoid “tie,” and use “draw” instead; “drawing strategy” sounds better than “tie, or
tying, strategy.”

In our terminology a game is simply the set of the rules that describe it. Every par-
ticular instance at which the game is played in a particular way from the beginning
to the end is a play.
The same distinction should be made for the available moves and for the personal

moves. At each stage of a play either player has a set of available moves defined
by the rules of the game. An available move turns the given position of the play
into one of its possible options defined by the rules. A personal move is a choice
among the available moves.
A game can be visualized as a tree of all possible plays, where a particular

play is represented by a full branch of the tree. This is the well-known concept of
“game-tree”; We will return to it later in the section.

677
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In a Positional Game:

1. there are two players: the first player, who starts, and the second player;
2. there are finitely many positions, and a particular starting position;
3. there are clearly defined rules that specify the available moves that either player

can make from a given position to its options;
4. the players choose their personal moves alternately;
5. the rules are such that a sequence of alternating personal moves will always

come to an end in a finite number of moves, and the “ends” are called terminal
positions;

6. a complete sequence of alternating personal moves ending with a terminal
position is called a play;

7. the outcome of a play is specified by the rules: it may be a win for the first
player, or a win for the second player, or a draw;

8. both players know what is going on (“complete information”);
9. there are no chance moves.

A move in a Positional Game simply means to claim a previously unselected point
of the board.
What is a position in a Positional Game? Well, it is not completely obvious,

because there are two natural interpretations of the concept. A position in the
broad sense is called a partial play. It is the sequence of the alternating moves
x1� y1� x2� y2� � � � made by the two players up to that point of the play. In other
words, a linear ordering, namely the “history” of the play, is involved.
The notion used for position throughout this book is the “memoryless” position:

the ordered pair of sets of the moves �x1� x2� � � ��∪�y1� y2� � � ��made by the first and
second player up that point of the play (“position in a narrow sense”). This means
the present configuration only is consided, and we ignore the way the “present”
was developed from the “past” in the course of the play. A position in a Positional
Game can be interpreted as a 3-coloring of the points of the board: the “colors” are
X, O, and ?. X means the point was occupied by the first player, O means the point
was occupied by the second player, and ? means “unoccupied yet.”
In a Positional Game (i.e. such as the “Tic-Tac-Toe game”) the history of a posi-

tion is irrelevant; this is why we can afford working with the simpler “memoryless”
concept of position. Chess is different: it is a game where the history of a play
may become relevant. For example, a well-known “stop rule” says that the play is
a draw if the same position (“in the narrow sense”) occurs for the third time. This
means in Chess we must work with “position in the broader sense.”
Given a partial play x1� y1� x2� y2� � � � � xi (respectively x1� y1� x2� y2� � � � � xi� yi),

we call the position �x1� x2� � � � � xi�� �y1� y2� � � � � yi−1� (resp. �x1� x2� � � � � xi��

�y1� y2� � � � � yi�) the end-position of the partial play. In other words, the end-position
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is the “memoryless” partial play. Note that different partial plays may have the same
end-position.

A terminal position in a Positional Game means a “halving” 2-coloring of the
points of the whole board by X and O (naturally X means the first player and O
means the second player). “Halving” means that the two classes either have the
same size, or the number of X’s is greater by one (depending on the parity of the
size of the board). (A terminal position is the end-position of a complete play.)
A drawing (terminal) position means a position such that every winning set has

at least one X and at least one O, i.e. every winning set is blocked by either player.
Let N = �V � denote the size of the board V . What is the total number of plays?

Well, the answer is simply N ! if we use the Full Play Convention: the players
do not quit and keep playing until the whole board is completely occupied. N ! is
obvious: every play (i.e. “full play”) is a permutation of the board. What is the total
number of partial plays? The answer is

N +N�N −1�+N�N −1��N −2�+ � � �+N ! = �e ·N !��
that is, the lower integral part of e ·N !. What is the total number of positions? The
exact answer is

N∑
m=0

(
N

m

)(
m

�m/2�
)
�

but we don’t really need the exact answer, the easy upper bound 3N is a good
approximation. Notice that 3N is the total number of 3-colorings of the board.

Of course, a hypergraph may have a lot of ad hoc symmetries. Identifying
“isomorphic positions” may lead to reductions in the numbers N !, �e ·N !�, 3N
computed above.

Strategy. The main objective of Game Theory is to solve the strategy problem:
which player has a winning (or drawing) strategy, and how does an optimal strategy
actually look like? So the first question is: “What is a strategy?” Well, strategy is a
rather sophisticated concept. It is based on the assumption that either player, instead
of making each choice of his next personal move as it arises in the course of a play,
makes up his mind in advance for all possible circumstances, meaning that, if there
are more than one legitimate moves which the player can make, then a strategy pre-
scribes unambigiously the next move. That is, a strategy is a complete plan which
specifies what personal moves the player will make in every possible situation.

In the real world, when we are playing a concrete game, we are hardly ever
prepared with a complete plan of behavior for all possible situations, i.e. we usually
do not have a particular strategy (what we usually have instead is some kind of
a vague “tactic”). All that we want is to win a single play, and the concept of
strategy seems unnecessarily “grandiose.” In Game Theory, however, strategy is
the agreed-on primary concept – this idea goes back to J. von Neumann. This
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approach has some great advantages. It dramatically simplifies the mathematical
model of game playing. In the von Neumann model, at the beginning of a play
either player makes a single “ultimate move” by choosing his own strategy. If a
definite strategy has been adapted by either player, then the two strategies together
uniquely determine the entire course of the play, and, consequently, determine the
outcome of the play. In other words, strategy is the primary concept, and the rest,
like play and the outcome of a play, are “derivative concepts.” This explains why
Game Theory is often called the Theory of Strategies.
One more thing: it is important to see that the use of a strategy by no means

restricts either player’s freedom of action. A strategy does not force the player to
make decisions on the basis of less information than there would be available for
him in any instance during an actual play.

In a Positional Game, a strategy for player P (the first or second player) is a
function that associates with every possible play of the opponent a unique counter-
play of player P. This procedure is non-anticipative: at a certain stage of a play a
strategy assigns the “next move” in such a way that it depends on the previously
selected moves only. The precise formal definition is easy, and goes as follows:

Strategy: formal definition. Consider a Positional Game played on a finite hyper-
graph �V�F�. A strategy for the first (resp. second) player formally means a
function Str such that the domain of Str is a set of even (resp. odd) length sub-
sequences of different elements of the board V , and the range is V� If the moves of
the first player are denoted by x1� x2� x3� � � � � and the moves of the second player
are y1� y2� y3� � � � � then the ith move xi (resp. yi) is determined from the “past” by
Str as follows

xi = Str�x1� y1� x2� y2� � � � � yi−1� ∈ V \ �x1� y1� x2� y2� � � � � yi−1�(
resp� yi = Str�x1� y1� x2� y2� � � � � yi−1� xi� ∈ V \ �x1� y1� x2� y2� � � � � yi−1� xi�

)

defines the ith move of the first (second) player.
In other words, a strategy for the first (second) player is a function that assigns

a legal next move to all partial plays of even (odd) length.
A winning (or drawing) strategy Str for the first player means that in all

possible plays where the first player follows Str to find his next move is a win for
him (a win or a draw). Formally, each play

x1 = Str�∅��∀y1� x2 = Str�x1� y1��∀y2� x3 = Str�x1� y1� x2� y2��∀y3� � � � �∀yN/2
(C.1)

if N = �V � is even, and
x1 = Str�∅��∀y1� � � � �∀y�N−1�/2� x�N+1�/2 = Str�x1� y1� x2� y2� � � � � y�N−1�/2� (C.2)

if N is odd, is a win for the first player (a win or a draw).
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Similarly, a winning (or drawing) strategy Str for the second player means that
in all possible plays where the second player uses Str to find his next move is a
win for him (a win or a draw). Formally, each play

∀x1� y1 = Str�x1�� � � � �∀xN/2� yN/2 = Str�x1� y1� x2� y2� � � � � xN/2� (C.3)

if N is even, and

∀x1� y1 = Str�x1��∀x2� y2 = Str�x1� y1� x2��∀x3� � � � �∀x�N+1�/2 (C.4)

if N is odd, is a win for the second player (a win or a draw). In both cases

xi ∈ V \ �x1� y1� x2� y2� � � � � yi−1� and yi ∈ V \ �x1� y1� x2� y2� � � � � yi−1� xi� (C.5)

hold for all i ≥ 1�
The ultimate questions of Game Theory are about strategies, more precisely about

optimal strategies. Optimal strategies are the (1) winning strategies, and the (2)
drawing strategies when winning strategy does not exist. Unfortunately, counting
the number of optimal strategies is hopelessly complicated. To count all possible
strategies is a much easier task; we can do it as follows.

Again we use the Full Play Convention (the players do not quit and keep playing
until the whole board is completely covered, even if the winner is known well
before that). This assumption ensures that the structure of the hypergraph becomes
irrelevant, and the answer depends on the size N=�V � of the board only. The
total number of strategies turns out to be a doubly exponential function of N .
This quantitative result demonstrates the complexity of the concept of strategy; it
justifies the common sense intuition that “strategy is a deep concept.”

We begin the counting with an obvious analogy: play ↔ function and strategy
↔ operator. What this means is that a play is basically a function, and a strategy is
basically an operator. Indeed, like an operator associates a function to a function, a
strategy associates with every possible play of the opponent a counter-play of the
player owning the strategy.

This analogy yields the trivial upper bound NeN ! on the number of all strategies.
Indeed, a strategy associates with every accessible partial play a unique next move.
With a little bit more effort we can even find the exact answer.

Exact number of all strategies. Consider a concrete play x1� y1� x2� y2� x3� y3� � � �;
that is, x1� x2� x3� � � � are the points claimed by the first player, and y1� y2� y3� � � � are
the points claimed by the second player in this order.

Let Str be a strategy of (say) the second player. A strategy for the second
player is a function Str such that the ith move yi is determined from the “past” by
yi = Str�x1� y1� x2� y2� � � � � yi−1� xi� ∈ V \ �x1� y1� x2� y2� � � � � yi−1� xi�.
Therefore, given x1 (the first move of the first player), Str uniquely determines

y1 �
= x1�� the first move of the second player. Similarly, given x1� x2, Str uniquely
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determines y2 �
∈ �x1� y1� x2��� Given x1� x2� x3, Str uniquely determines y3 �
∈
�x1� y1� x2� y2� x3��� and so on. This shows that we can write

yi = Str�x1� y1� x2� y2� � � � � yi−1� xi�= Stri�x1� x2� � � � � xi�

since y1� y2� � � � � yi−1 are already determined by x1� x2� � � � � xi−1� Therefore, Str can
be considered as a vector

Str = �Str1� Str2� Str3� � � ���

and call Stri the ith component of strategy Str. By definition, the total number of
first components Str1 is precisely �N −1�N . Similarly, the total number of Str2s is
�N −3�N�N−2�, the total number of Str3s is �N −5�N�N−2��N−4�, and so on.
Two strategies, str and STR, are different if and only if there is an integer j,

1≤ j ≤ �N +1�/2 and a sequence x1� x2� � � � � xj of length j such that

strj�x1� x2� � � � � xj� 
= STRj�x1� x2� � � � � xj��

It follows that the total number of strategies is the product

�N −1�N · �N −3�N�N−2� · �N −5�N�N−2��N−4� · · ·

=
�N/2�−1∏

i=0

�N −1−2i�
∏i

j=0�N−2j� = ee
N logN/2+O�N�

� (C.6)

This proves that strategy is a genuine doubly exponential concept.
In particular, ordinary 32 Tic-Tac-Toe has 9! ≈ 3�6 · 105 possible plays (“Full

Play Convention”), the total number of partial plays is

e ·9! ≈ 106�

the total number of positions is

9∑
i=0

(
9
i

)(
i

�i/2�
)
≈ 7 ·103�

and finally, the total number of strategies is

89 ·69·7 ·49·7·5 ·29·7·5·3 ≈ 10500�

To try out all possible strategies in order to find an optimal one is extremely
impractical.
The next theorem says that every Positional Game is “determined.” This is a

special case of a more general theorem due to Zermelo [1912].

Theorem C.1 (“Strategy Theorem”) Let �V�F� be an arbitrary finite hypergraph,
and consider a Positional Game (normal or Reverse) on this hypergraph. Then
there are three alternatives only: either the first player has a winning strategy, or
the second player has a winning strategy, or both of them have a drawing strategy.
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Proof. We repeat the argument at the beginning of Section 5 with more rigor. It
is a repeated application of De Morgan’s law. Indeed, we have the following three
possibilities:

(a) either the first player �I� has a winning strategy;
(b) or the second player �II� has a winning strategy;
(c) or the negation of (a)∨(b).
First assume that N = �V � is even. In view of (C.1)–(C.5) case (a) formally means
that

∃x1∀y1∃x2∀y2 · · · ∃xN/2∀yN/2 (C.7)

such that I wins (the sequence in (C.7) has to satisfy (C.5)).
Indeed

Str�x1� y1� x2� y2� ���� yi−1�= xi ∈ V \ �x1� y1� x2� y2� ���� yi−1�

defines a winning strategy Str for I.
By the De Morgan’s law, ¬(a) is equivalent to

∀x1∃y1∀x2∃y2 · · · ∀xN/2∃yN/2 (C.8)

such that I loses or it is a draw (the sequence in (C.8) has to satisfy (C.5)). Therefore,
¬(a) means that II has a drawing strategy.

Similarly, ¬(b) means that I has a drawing strategy.
Case (c) is equivalent to ¬(a)∧¬(b), which means that both players have a

drawing strategy.
Finally, we leave the case “N is odd” to the reader.

The three alternatives of Theorem C.1 are the three possible outcomes of a game.
Note that basically the same proof works for all finite combinatorial Games (to
be defined later). This fact is traditionally expressed in the form that “every finite
combinatorial game is determined”; this is often called Zermelo’s Theorem. For
a constructive proof of Theorem C.1, which gives an algorithm to actually find
an explicit winning or drawing strategy, see Theorem C.3 later in the section
(unfortunately the algorithm is impractical).

In a Positional Game a particular play may end with Second Player’s win, but
only if First Player “made a mistake.” If First Player plays “rationally” (i.e. he uses
an optimal strategy), then he cannot lose a Positional Game (see also Theorem 5.1).

Theorem C.2 (“Strategy Stealing”) Let �V�F� be an arbitrary finite hypergraph.
Then playing the Positional Game on �V�F�, First Player can force at least a
draw, i.e. a draw or possibly a win.

Proof. Assume that Second Player �II� has a winning strategy STR, and we want
to obtain a contradiction. The idea is to see what happens if First Player �I� steals
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and uses STR. A winning strategy for a player is a list of instructions telling the
player that if the opponent does this, then he does that, so if the player follows the
instructions, he will always win. Now I can use II’s winning strategy STR to win
as follows. I takes an arbitrary first move, and pretends to be the second player
(he ignores his first move). After II’s move, I, as a fake second player, reads the
instruction in STR to take action. If I is told to take a move that is still available,
he takes it. If this move was taken by him before as his ignored “arbitrary” first
move, then he takes another “arbitrary move.” The crucial point here is that an
extra move, namely the last “arbitrary move,” only benefits I in a Positional Game.
The precise formal execution of this idea is very simple and goes as follows. We

use the notation x1� x2� x3� � � � for the moves of I, and y1� y2� y3� � � � for the moves
of II. By using II’s moves y1� y2� y3� � � � and II’s winning strategy STR, we are
going to define I’s moves x1� x2� x3� � � � (satisfying (4.5)), and also two auxiliary
sequences z1� z2� z3� � � � and w1�w2�w3� � � � . Let x1 be an “arbitrary” first move of I.
Let w1 = x1 and z1 = STR�y1��We distinguish two cases. If z1 
=w1, then let x2 = z1
and w2 = w1� If z1 = w1, then let x2 be another “arbitrary” move, and let w2 = x2�

Next let z2 = STR�y1� z1� y2�� Again we distinguish two cases. If z2 
= w2, then let
x3 = z2 and w3 = w2� If z2 = w2, then let x3 be another “arbitrary” move, and let
w3 = x3� and so on. In general, let zi = STR�y1� z1� y2� z2� � � � � yi�� We distinguish
two cases: if zi 
= wi, then let xi+1 = zi and wi+1 = wi; and if zi = wi, then let xi+1

be another “arbitrary” move, and let wi+1 = xi+1�

It follows from the construction that

�x1� x2� � � � � xi� xi+1�= �z1� z2� � � � � zi�∪ �wi+1� (C.9)

for each i ≥ 1� In view of (C.9) the “virtual play” y1� z1� y2� z2� y3� z3� � � � is a legal
one, i.e. it satisfies (C.1)–(C.5). We call the two players of this “virtual play” Mr. Y
(who starts) and Mr. Z (of course, Mr. Y is II, and Mr. Z is “almost” I). The only
minor technical difficulty is to see what happens at the end. We consider two cases
according to the parity of the board size. The complete “virtual play” between Mr.
Y and Mr. Z is

y1� z1� y2� z2� y3� z3� � � � � ym� zm�wm+1 (C.10)

if the board size �V � = 2m+1 is odd, and

y1� z1� y2� z2� y3� z3� � � � � ym−1� zm−1� ym�wm (C.11)

if the board size �V � = 2m is even.
We recall that zi = STR�y1� z1� y2� z2� � � � � zi−1� yi� for each i≥ 1� Since STR is a

winning strategy for the second player, it follows that Mr. Z wins the virtual play
(C.10) (i.e. when �V � is odd) even if the last move wm+1 belongs to Mr. Y. In view
of (C.9) this implies a I’s win in the “real play”

x1� y1� x2� y2� x3� y3� � � � � xm� ym� xm+1�
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Similarly, Mr. Z wins the virtual play (C.11) (i.e. when �V � is even) if the last move
wm belongs to him. This implies a I’s win in the “real play”

x1� y1� x2� y2� x3� y3� � � � � xm� ym�

We used the fact that in a positional game an extra point cannot possibly harm I.
This is how I “steals” II’s winning strategy STR.

The conclusion is that if II had a winning strategy, so would I. But it is clearly
impossible that both players have a winning strategy. Indeed, if either player follows
his own winning strategy, then the play has two winners, which is a contradiction.
So the supposed winning strategy for II cannot exist. This implies that I can always
force at least a draw.

The main interest of Game Theory is to solve games, i.e. to determine which player
has a winning or drawing strategy. In terms of plays, it means to predict the outcome
of a play between perfect players.
In Game Theory we always assume that the players are perfect (gods like Pallas

Athena and Apollo); what it means is that either player knows his/her optimal
strategy (or at least one of them if there are several optimal strategies) even if this
knowledge requires “supernatural powers.”

Real world game playing is of course totally different. The players are anything
but perfect, and make “mistakes” all the time. For example, when real world players
are playing a Positional Game, it often happens that Second Player ends up winning
a play by taking advantage of First Player’s mistake(s). But, of course, an incident
like this does not contradict Theorem C.2.

There is an important point that we have to clarify here. When we talk about
“perfect players,” it does not mean that the concept of winning (or drawing) strategy
presupposes “rational” behavior of the opponent. Not at all. A winning (drawing)
strategy for player P simply means that player P can always force a win (a draw or
possibly a win), no matter what his opponent is doing. If player P has a winning
strategy and follows the instructions of his winning strategy, it does not make any
difference that the opponent is perfect or foolish, player P will win anyway. On
the other hand, if player P has a drawing strategy, then the opponent can make a
difference: by “making mistakes” the opponent may lose a potential draw-game,
and player P may have a win after all.

Strategy Stealing may reveal who wins, but it does not give the slightest clue
of how to actually find the existing drawing or winning strategy in a Positional
Game. To find an explicit drawing or winning strategy we often have no choice but
need to make an exhaustive search. For example, consider the �K18�K4�−� Reverse
Clique Game. In the normal version, First Player has a winning strategy (but we
do not know how he wins); in the Reverse version one of the players must have a
winning strategy, but we don’t even know which one. To determine which player
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wins we need to make an exhaustive search. What is an exhaustive search? A trivial
approach is to try out all possible strategies. Since the total number of strategies is
doubly exponential, this is extremely impractical. A much faster way to do it is to
search through all positions (instead of all strategies). A systematic way to search
through all positions is now described. We begin with the concept of:

Game-Tree. EveryPositionalGamecanbevisualized as a “treeof all possible plays”;
we call it the game-tree. The game-tree is a labeled rooted directed tree. The vertices
represent the partial plays, the root is the starting position, and a directed edge goes
from a partial play to one of the options of the end-position. The full branches of
the game-tree represent the plays. The terminal positions (“leaves”) are labeled by
I, II, and D according to the outcome of the concrete play ending at that terminal
position. I if it is a first player win, II if it is a second player win, andD if it is a draw.

Figure C.1 shows the game-tree of the 22-game.

A good way to visualize a strategy is to look at it as a special sub-tree of the game-
tree. Note that every vertex of the game-tree has awell-defined distance from the root.
If this distance is even, then the first player moves next; if the distance is odd, then
the second player moves next. The following is an alternative way to define strategy.

Strategy: an alternative definition. A strategy for the first (second) player is a
sub-tree T′ of the game-tree T such that:

(1) the root belongs to T′;
(2) in T′ each even-distance (odd-distance) vertex has out-degree 1;
(3) in T′ each odd-distance (even-distance) vertex has the same out-degree as in

the whole game-tree T.

A drawing or winning strategy for the first (second) player is a sub-tree T′ of
the game-tree T such that it satisfies (1)–(2)–(3) and each leave of T′ is labeled by
D or I, or I only (D or II, or II only). Figure C.2 shows a First Player’s winning
strategy in the 22-game.
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The next picture is the beginning of Qubic’s distinct-position tree (Qubic is the
4×4×4 version of Tic-Tac-Toe).



688 Appendix C

The picture represents levels 0,1,2, and 3. There are only 7 distinct 3-moves,
reduced from 12 2-positions by choosing first player’s optimal responses for these
12 positions.

Position-graph. Every Positional Game (normal or Reverse) has a position-graph.
The position-graph is a labeled rooted directed graph. The vertices are the positions,
the root is the starting position, and the directed edges go from a position to its
options. The terminal positions (“leaves”) are labeled by I, II, and D according to
the outcome of the concrete play ending at that terminal position. I if it is a first
player’s win, II if it is a second player’s win, and D if it is a draw.

Every vertex of the position-graph has a well-defined distance from the root: it
is the number of moves made by the two players together. If this distance is even
(odd), then the first (second) player moves next.

Memoryless strategy. A memoryless strategy for the first (second) player is a
sub-graph G′ of the position-graph G such that:

(i) the root belongs to G′;
(ii) in G′ each even-distance (odd-distance) vertex has out-degree 1;
(iii) in G′ each odd-distance (even-distance) vertex has the same out-degree as in

the whole position-graph G.

A drawing or winning memoryless strategy for the first (second) player is a
subgraph G′ of the position-graph G such that it satisfies (i)-(ii)-(iii) and each leave
(i.e. vertex with zero out-degree) of G′ is labeled by D or I, or I only (D or II, or
II only).

Note that a strategy Str is not necessarily a memoryless strategy. Indeed, let pp
and PP be two distinct partial plays which have the same end-position Pos; then
strategy Str may associate different next moves to pp and PP. If Str is an optimal
strategy, then there is a simple way to reduce Str into an optimal memoryless
strategy. Assume that Str is a (say) winning strategy for (say) the first player, but
it is not a memoryless strategy. Then there exists a “violator,” i.e. there exist two
distinct partial plays pp and PP which:

(1) have the same end-position Pos;
(2) it is the first player’s turn to move in Pos; and, finally,
(3) Str associates different next moves to pp and PP.

Let T be the game-tree. Note that Str is a special sub-tree of T. Let T�pp�
and T�PP� denote, respectively, the labeled directed sub-trees of T which are
rooted at pp and PP. By property (1) these two labeled sub-trees are identical
(isomorphic). On the other hand, by property (3) Str ∩T�pp� and Str ∩T�PP�
are different “sub-strategies.” Replacing sub-tree Str ∩T�PP� of Str with Str ∩
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T�pp�, we obtain a winning strategy Str ′ of the first player with fewer number
of “violators.” Repeating this argument we have a sequence Str , Str ′, Str ′′, � � � of
winning strategies with a strictly decreasing number of “violators,” terminating (in
a finite number of steps) in a memoryless winning strategy.

Note that the number of memoryless strategies is substantially less than the
number of strategies (as always we use the Full Play Convention that the players
do not quit and play until the whole board is completely covered). Indeed, by (C.6)
the number of strategies is around

ee
N logN/2+O�N�

(C.12)

where N=�V � is the size of the board. On the other hand, since a memoryless
strategy associates with every accessible position a unique next move, the number
of memoryless strategies is less than

N 3N = e3
N logN = ee

O�N�

�

which is much less than (C.12).
A trivial lower bound on the number of memoryless strategies is

(
N

3

)2N/3

� (C.13)

Indeed, consider a concrete play x1� y1� x2� y2� x3� y3� � � �, that is x1� x2� x3� � � � are
the points claimed by the first player, and y1� y2� y3� � � � are the points claimed by
the second player in this order. Let V = V1∪V2 be a decomposition of the board
such that �V1� = N/3 and �V2� = 2N/3� Let Str be a memoryless strategy of (say)
the second player. A memoryless strategy for the second player is a function which
associates with an arbitrary accessible position �x1� x2� � � � � xi�∪ �y1� y2� � � � � yi−1�

(i≥ 1) a next move yi such that yi ∈ V \ �x1� y1� x2� y2� � � � � yi−1� xi�. We follow the
extra rule that if �x1� x2� � � � � xi� ⊆ V1, then yi ∈ V2� Under this rule memoryless
strategy Str associates with every subset �x1� x2� � � � � xi�⊆ V1 a next move yi ∈ V2 \
�y1� y2� � � � � yi−1� where �V2 \ �y1� y2� � � � � yi−1�� ≥ N/3� This proves (C.13). (C.13)
shows that the number of memoryless strategies is still doubly exponential.

The ultimate questions of game theory are “which player has a winning (or
drawing) strategy” and “how to find one.” From now on we can assume that
strategy always means a memoryless strategy.

A simple linear time algorithm – the so-called “backward labeling” of the
position-graph – settles both ultimate questions for any Positional Game (nor-
mal and Reverse). This algorithm gives an optimal memoryless strategy for either
player in linear time: linear in size of the position-graph. What is more, the “back-
ward labeling” provides the “complete analysis” of a Positional Game. Note that the
position-graph is typically “exponentially large”; this is why the “backward labeling
algorithm” is usually impractical. (To try out all possible strategies is much, much
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worse: the total number of strategies is a doubly exponential function of the size of
the board.) Note that “backward labeling” applies for a larger class of games called
Combinatorial Games.

Combinatorial Games. How to define Combinatorial Games? Here is a list of
natural requirements:

1. There are two players: the first player (or I, or White, etc.) who starts the game,
and the second player (or II, or Black, etc.).

2. There are finitely many positions, and a particular starting position.
3. There are clearly defined rules that specify the moves that either player can

make from a given position to its options.
4. The players move alternately.
5. The rules are such that a sequence of alternating moves will always come to

an end in a finite number of moves. The “ends” are called terminal positions.
6. A complete sequence of alternating moves ending with a terminal position is

called a play.
7. The outcome of a play is specified by the rules. It may be a win for the first

player, or a win for the second player, or a draw.
8. Both players know what is going on (complete information).
9. There are no chance moves.

Note that the 5th requirement prohibits perpetual draws, i.e. we exclude infinite
“loopy” games.
Of course, Combinatorial Games must contain the class of Positional Games.

With every Positional Game (normal and Reverse) we can associate its game-tree.
The standard way to define an “abstract” combinatorial game is to reverse this
process: an “abstract” combinatorial game is a “coin-pushing game” on a labeled
rooted directed tree.

Definition of Combinatorial Games. A (finite) combinatorial game � = �T�F�

means a coin-pushing game on a finite rooted directed tree T . The root of T has
in-degree zero, and any other vertex has in-degree exactly one. At the beginning
of a play a coin is placed in the root (“starting position”). At each move the
players alternately push the coin along a directed edge of tree T . F denotes the
outcome-function (“labeling”) which associates with each leaf (i.e. vertex with zero
out-degree) of tree T a label. The three possible labels are I, II, and D.
Note that a vertex of the tree represents a “partial play,” a leaf represents a

“terminal position”, and the unique full branch ending at that leaf represents a
“play.” Label I “means” that the particular play ending at that leaf is a first player
win, II “means” a second player win, and D “means” a draw. We can identify a
combinatorial game � = �T�F� with its own game-tree.
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We can easily define a strategy in a combinatorial game � = �T�F� as a special
sub-tree of T .

A Positional Game can be represented as a coin-pushing game on its own game-
tree. A more “economic” representation is a coin-pushing game on its own position-
graph. This representation belongs to the class of Linear-Graph Games (to be
defined below). This representation implies a (rather irrelevant) formal restriction
in the concept of strategy: it restricts strategies to memoryless strategies.

The position-graph of a Positional Game (without the labeling) belongs to the
class of rooted linear digraphs. A digraph (i.e. directed graph) is a linear digraph
if its vertex set has a partition V0�V1�V2� � � � � Vk (k ≥ 1) into non-empty sets such
that:

(1) for each v ∈ Vi with 1 ≤ i ≤ k there is a u ∈ Vi−1 such that the directed edge
u→ v, which goes from vertex u to vertex v, belongs to the linear digraph,

(2) if u→ v is a directed edge of the linear digraph, then there is an i with 1≤ i≤ k

such that u ∈ Vi−1 and v ∈ Vi.

A rooted linear digraph means that the first vertex-class V0 consists of a single
vertex called the root. Note that a rooted linear digraph is always connected as an
ordinary graph, i.e. when we ignore the directions. In a rooted linear digraph every
vertex has a well-defined distance from the root: if u ∈ Vi, then the distance of
vertex u from the root is i.

Linear-graph game. A (finite) linear-graph game � = �G�F� means a coin-
pushing game on a finite rooted linear digraph G. At the beginning of a play a
coin is placed in the root (“starting position”). At each move the players alternately
push the coin along a directed edge of digraph G. F denotes the outcome-function
(“labeling”) which associates with each leaf (i.e. vertex with zero out-degree) of
digraph G a label. The three possible labels are I, II, and D.
Note that a vertex of the digraph represents a “position,” a leaf represents a

“terminal position,” label I “means” that the terminal position is a first player win,
II “means” a second player win, and D “means” a draw.
By following We leave to the reader to define a strategy in a linear-graph game

� = �G�F� as a special sub-graph of G.
Since a rooted directed tree is a rooted linear digraph, the class of Combinatorial

Games is a sub-class of the class of linear-graph games. “Backward labeling” (see
below) will give a precise meaning to the vague expression “exhaustive search”;
“backward labeling” applies for the whole class of Linear-Graph Games.

Complete Analysis. “Backward labeling” is an algorithm for extending the I� II�D-
labeling F of the terminal positions in a linear-graph (or combinatorial) game � to
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all positions. The resulting label of the starting position answers the first ultimate
question “who wins?”.
Let � = �G�F� be an arbitrary linear-graph game, where G = �V�E� is a finite

rooted linear digraph, V is the vertex-set, and E is the edge-set. Let Z ⊂ V be the
set of terminal positions (i.e. vertices with zero out-degree). The outcome-function
F cuts Z into 3 parts (“I wins,” “II wins,” “draw”)

ZI = �u ∈ Z � F�u�= I��

ZII = �u ∈ Z � F�u�= II��

ZD = �u ∈ Z � F�u�=D��

We are going to extend this partition Z = ZI ∪ZII ∪ZD into a partition of V =
VI ∪VII ∪VD satisfying VI ⊇ ZI , VII ⊇ ZII and VD ⊇ ZD�

Let u ∈ V be an arbitrary position (i.e. vertex). Its options are

Options�u�= �v ∈ V � u→ v ∈ E��

By definition, all terminal positions are labeled by I, II, and D. In a rooted linear
digraph every vertex has a well-defined distance from the root. If the distance is
even (odd), then the first (second) player moves next.
We use the natural rules (1)-(2)-(3) and (1’)-(2’)-(3’) below to extend the I,II,D-

labeling F backward from Z to the whole vertex-set V in O��E�� steps (“iff” stands
for if and only if):

(1) u ∈ VI iff Options�u�∩VI 
= ∅,
(2) u ∈ VD iff Options�u�∩VI = ∅ and Options�u�∩VD 
= ∅,
(3) u ∈ VII iff Options�u�⊆ VII ,

if vertex u has an even distance from the root; and

�1′� u ∈ VII iff Options�u�∩VII 
= ∅,
�2′� u ∈ VD iff Options�u�∩VII = ∅ and Options�u�∩VD 
= ∅,
�3′� u ∈ VI iff Options�u�⊆ VI ,

if vertex u has an odd distance from the root.
More precisely, let s ∈ V denote the starting position. Let V0 = �s�, V1 =

Options�s�, and in general

Vi+1 =
⋃
u∈Vi

Options�u��

V0�V1�V2� � � � is a partition of V . Let m be the largest index such that Vm is not
contained by set Z. Then depending on the parity of m we use rules (1)-(2)-(3) if
m is even and rules �1′�− �2′�− �3′� if m is odd to extend the I,II,D-labeling to
Vm, then to Vm−1, then to Vm−2, and so on back to V0.
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Let F denote this extension of labeling F from the set of the terminal positions
Z to the whole V . We call � = �G�F� the complete analysis of game � = �G�F�.
The reason why we call � the complete analysis is that it answers the two ulti-
mate questions of “who wins” and “how to win.” Rules (1),(2),(3),�1′�� �2′�� �3′�
guarantee that if a position is labeled I (II) then the first (second) player can force
a win in the sub-game starting from this particular position. Label D means that
both players can maintain a draw in this sub-game. If the position is the starting
position, then the sub-game is the whole game � . In other words, the label of the
starting position answers the question of “who wins.”

The next question is “how to win.” The complete analysis � provides an explicit
way to find either player’s optimal strategy in game � .

(i) If the starting position is labeled by I (i.e. the first player has a winning strategy),
then the first player’s explicit winning strategy is to keep moving to any option
with label I (he can always do that).

(ii) If the starting position is labeled by II, then the second player’s explicit winning
strategy is to keep moving to any option with label II.

(iii) If the starting position is labeled by D, then the first (second) player’s explicit
drawing strategy is to avoid II (I).

Note that the complete analysis carries much more information than merely
answering the two ultimate questions. Indeed, by using the complete analysis we
can easily obtain the complete list of all possible optimal strategies in a linear-graph
game (though this list is usually absurdly long).
Furthermore, the complete analysis � of � answers the two ultimate questions in

every sub-game where the players start from an arbitrary position, not necessarily
the starting position.

For example, in Section 3 we gave an explicit Second Player’s Drawing Strategy
in ordinary Tic-Tac-Toe. But an optimal strategy is far less than the Complete
Analysis; an optimal strategy does not solve, among many others, the following
Tic-Tac-Toe puzzle: “What is Second Player’s (i.e. Os) optimal reply in the position
on Picture 1?”. Note that Second Player can force a draw here, but the five moves,
marked by ?, all lead to Second Player’s loss (why?). (That is, First Player gives the
opponent several “chances” to lose; this is all what we need against a poor player.)

?
? ? ?

?

Second Player’s
Draw forcing
move
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Note that the position on in the figure cannot show up if Second Player follows
his Section 3 Drawing Strategy. Of course, the Complete Analysis of ordinary
Tic-Tac-Toe solves this particular puzzle, and all possible puzzles like that.
Here is a game where it is easy to find a winning strategy but the Complete

Analysis remains a mystery. In the following Domino Game the players take turns
placing a domino everywhere on a rectangular board. Each domino must be put
down flat, within the border of the rectangle and without moving a previously
placed piece. There are more than enough dominoes to cover the whole rectangle.
The player who puts down the last piece is the winner. A play cannot end in a draw,
so which player has a winning strategy? Of course, First Player can force a win:
his opening move is to place the first domino exactly at the center of the board,
and thereafter to copycat his opponent’s play by placing symmetrically opposite. It
is obvious that whenever Second Player finds an open spot, there will always be
an open spot to pair with.
Here comes the twist: if First Player’s opening move is not the center, then we

do not know whether or not he can still force a win.
A similar example is “The-longer-the-better Arithmetic Progression Game”

played on the interval �1�2� � � � �2N� of even size. The players alternately select
previously unselected integers from the interval. The winner is the player whose
longest arithmetic progression at the end of the play is longer than the opponent’s
longest progression; in case of equality the play is a draw. The mirror image pairing
�i�N + 1− i�, i = 1�2� � � � �N is obviously a drawing strategy for Second Player.
However, if Second Player’s first move is not the reflection of the opponent’s
opening move, then again we do not know whether or not he can still force a draw.
In these two games it was very easy to find an optimal strategy, but the Complete
Analysis is not known.

REFLECTION
1 2N

We summarize the properties of the “backward labeling” in the following general
statement.
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Theorem C.3 (“Backward Labeling”) Let � = �G�F� be a linear-graph game. The
Backward Labeling algorithm determines the complete analysis of � – in particular,
it finds the outcome of the game, and provides either player’s optimal strategy – in
computing time O(�G�), i.e. linear in size of the graph G.

In particular, for a Positional Game �V�F� the computing time is linear in size
of the position-graph, i.e. O�N ·3N � where N = �V �.

In the special case of Combinatorial Games � = �T�F� the computing time is
linear in size of the game-tree T .

Theorem C.3 seems to be folklore; a variant was published in the classical book of
von-Neumann and Morgenstern [1944].

The Main Problem of Positional Game Theory. Consider a Positional Game
(normal or Reverse): if the size of the board V is N , then the size of the game-
tree is clearly O(N !). Note that O(N · 3N ) is substantially less than O(N !); this
saving – O(N ·3N ) instead of O(N !) – was the reason to introduce the concept of
Linear-Graph Games.

The Backward Labeling algorithm describes the winner and provides an explicit
winning or drawing strategy in linear time. In particular, for Positional Games the
running time is O(N ·3N ).
Backward Labeling answers the ultimate questions of Game Theory. This is

great, but there are several reasons why we are still “unhappy.” First, the Back-
ward Labeling is hardly more than mindless computation. It lacks any kind of
“understanding.”

Second, a 3N -step algorithm is impractical. To perform 3N operations is far
beyond the capacity of the fastest computers, even for relatively small board-size
like (say) N = 100. The laws of physics suggest a universal speed limit which is
much smaller than (say) 3100 operations per second (or minute, or hour, or year,
it does not really matter). Right now 1010 operations per second is about what the
fastest computers are capable of doing.

This means that, unless we find some substantial shortcut, for a game with board-
size ≥ 100 Backward Labeling is intractable. Human brain can sometime diagnose
shortcuts, but we cannot expect substantial shortcuts too often, certainly not for the
whole class of Positional Games. In other words, even small Positional Games are
so complex that it is possible that the existing winning or drawing strategies may
never be found. (In general we cannot expect too many symmetries, and it is not
clear how to make use of sequences of forced moves.)
Is there any escape from the “trap” of exponential running time? At first sight,

exponential running time seems inevitable: a complete analysis has to describe a
unique next move in every possible position, and in a Positional Game the total
number of positions is around 3N (i.e. exponential). But in a particular play the
players face no more than N = �V � positions, and the game is described by a
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hypergraph F . What we are really interested in is not the complete analysis, but
to achieve the optimal outcome in every particular play. The real question is: can
we implement an optimal strategy in polynomial time – polynomial in terms of
O(�V �+ �F �) where �V�F� is the given hypergraph – in every single play?
Now we understand why the Backward Labeling, although theoretically very

important, cannot be the last word of the theory. The “catch” of Theorem C.3 is
that Backward Labeling answers the two ultimate questions – “who wins” and “how
to win” – in the fastest way in terms of the position-graph (or game-tree), but the
position-graph (or game-tree) is an inefficient way to describe a particular play.
For example, if the Erdős–Selfridge Strong Draw criterion applies: F is n-

uniform and �F �< 2n−1� then the power-of-two scoring system provides an explicit
drawing strategy for both players. The computational complexity (“running time”)
of the power-of-two scoring system is polynomial in terms of O(�V � + �F �) for
every single play.
Similarly, every other theorem in this book describes classes of Positional Games

(i.e. hypergraphs) for which we know the outcome (“who wins”), and the proof sup-
plies an explicit strategy for either player (with the exception of those using Strategy
Stealing). The implementation of these explicit strategies is always polynomial in
the sense that the necessary computation is polynomial in terms of O(�V �+�F �) for
every single play.
Can we do it in general? This is a major open problem.

Open Problem C.1 Consider the class of all Positional Games.

(a) Does there exist an algorithm that determines the outcome of the game on
an arbitrary hypergraph �V�F� in polynomial time, polynomial in terms of
O(�V �+ �F �)?

(b) Does there exist an algorithm that determines an optimal strategy for either
player, and for every single play the computational complexity of the
implementation of this optimal strategy is polynomial in terms of O(�V �+�F �)?

In view of the famous conjecture P
=NP (where P and NP are the well-known
complexity classes), it seems to be hopeless to give a positive solution to Open
Problem C.1. We conclude, therefore, that Theorem C.3 is not the end, but rather
the starting point of the theory. We consider Backward Labeling the “worst case
scenario,” and the main problem of Positional Game Theory is to describe large
classes of games (i.e., hypergraphs) for which there is a much more efficient way
to answer “who wins” and “how to win.”
A complementary “negative” approach is to try to prove that some classes of

Positional Games are hard in the sense that every algorithm, which determines the
“outcome” (or an “optimal strategy”) for all games in the class, must necessarily
take as much computations as the Backward Labeling, or at least a very large
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amount of computations. Unfortunately no one knows how to prove unconditional
computational complexity lower bounds for “natural games,” only for “artificial
games,” so the “negative” approach is quite unexplored yet. For a survey paper
about games and computational complexity, see Fraenkel [2005].

Simulation. Positional Games form a very narrow sub-class of Combinatorial
Games. Indeed, Combinatorial Games like Chess and Checkers are “dynamic”
in the sense that the players can repeatedly relocate and also remove pieces from
the board. On the other hand, Positional Games are “static” in the sense that the
players are not allowed to relocate or remove their marks. It is rather surprising,
therefore, that the sub-class of Positional Games is, in fact, universal: every com-
binatorial game can be simulated by a Positional Game, and the simulation can be
described by a fairly simple general construction.

First, however, we have to overcome an obvious obstacle: in a Positional Game
Second Player cannot have a winning strategy. To resolve this difficulty, we intro-
duce the concept of Snub Games. Every combinatorial game can be played in the
Snub way: it just means a single premove. First player decides whether he wants
to keep his role (to be the first player) or he wants to switch role and become the
second player.

Snub Games are in favor of the first player because the second player cannot
have a winning strategy. This peculiar resemblance to Positional Games suggests
that they are closely related. And so they are: every Snub Combinatorial Game is
“equivalent” to a Positional Game. This surprising result is due to Ajtai, Csirmaz,
and Nagy [1979].

What does “equivalent” mean? Well, two Combinatorial Games are strictly equiv-
alent if the labeled game-trees are isomorphic in the standard graph-theoretic sense.
This implies that finding the complete analysis in two strictly equivalent games
are identical problems. But what we are really interested in is not the complete
analysis: all what we want is a single Optimal (winning or drawing) Strategy. So it
is reasonable to consider two games equivalent if any winning or drawing strategy
in either game can be converted into a winning or drawing strategy of the other
game in “linear time”. We stop here and refer the reader to the paper of Ajtai,
Csirmaz and Nagy [1979].

Undetermined Games Exist! Let us return to the Backward Labeling algorithm.
An important byproduct is that every finite combinatorial game is determined. The
proof of Theorem C.1 gave a pure existence argument, and Backward Labeling
(Theorem C.3) supplied an algorithm.

Determined means that either player has a winning strategy, or both of them
have a drawing strategy. These three alternatives are the possible outcomes of a
combinatorial game. Formally, we distinguish this from the concept of the outcome
of a perfect play, which means the outcome of a particular play where either player
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knows and follows one of his optimal strategies. There is, however, a natural
connection between these two concepts. If the outcome of a game is that the first
player (second player, neither player) has a winning strategy, then the outcome of
a perfect play in the same game is a first player win (second player win, draw),
and vice versa. So the loosely stated first ultimate question “who wins a game”
more precisely means “who has a winning strategy”, or equivalently, “who wins a
perfect play.” It is a completely different question whether real-world players know
an optimal strategy or not. In advanced games like Chess and Go nobody knows an
optimal strategy, and exactly this ignorance keeps the game alive for competitive
play (“ignorance is fun”)!
If we extend the concept of Combinatorial Games to Infinite Games, then the

Backward Labeling argument obviously breaks down. If a proof breaks down, it
doesn’t mean that the theorem itself is necessarily false. But it is false: there exist
infinite Combinatorial Games which are undetermined! This is a striking result, a
“paradox” in the same league as the more well-known Banach-Tarski “paradox” of
doubling the ball.

Banach-Mazur Game. The first example of an undetermined game was invented
by the Polish mathematician S. Mazur around 1928. Let A be an arbitrary subset
of the closed unit interval [0,1], and let B be the complementary set B = 	0�1
\A.
The �A�B�-game is played by two players: player A and player B� who move
alternately. Player A begins the play by choosing an arbitrary closed sub-interval
I1 ⊂ 	0�1
, next player B chooses a closed sub-interval I2 ⊂ I1, then again player A
chooses a closed sub-interval I3 ⊂ I2, then player B chooses a closed sub-interval
I4 ⊂ I3, and so on. At the end of a play the two players determine a nested infinite
sequence of closed intervals In� n = 1�2�3� � � �; player A chooses those with odd
indices, and player B chooses those with even indices. If the intersection set

⋂�
n=1 In

has at least one common point with set A� then player A wins; otherwise player B
wins.
Banach and Mazur proved the following perfect characterization of the

�A�B�-game.

Exercise C.1

(a) Playing the �A�B�-game Player B has a winning strategy if and only if A is a
first category set (i.e. a countable union of nowhere dense sets).

(b) On the other hand, player A has a winning strategy in the �A�B�-game if and
only if B∩ I1 is a first category set for some proper sub-interval I1 ⊂ 	0�1
�

Is it possible that neither of these two criterions hold? Yes! By using transfinite
induction we can prove the existence of a subset S of the real numbers such that
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both S and its complement intersect all uncountable closed subsets of the reals.
Such a set S is called a Bernstein Set.

Exercise C.2 Prove that Bernstein Set exists.

Now if A is the intersection of the unit interval [0,1] with a Bernstein set S, then
the Banach–Mazur �A�B�-game is clearly undetermined.

Gale–Stewart game. More than 20 years after Mazur, in 1953, D. Gale and
F. M. Stewart discovered a much simpler undetermined game, the so-called Infinite
0–1 Game. The fact that the Infinite 0–1 Game is undetermined can be proved by
simple “cardinality considerations” instead of the more delicate topological proof
of the Banach–Mazur Theorem. Next we discuss the Infinite 0–1 Game in detail.

Let A ⊂ �0�1�� be an arbitrary subset, and B = �0�1�� \A. The game-tree of
the Gale–Stewart Infinite 0-1 Game is the infinite binary tree of height � (the
first infinite ordinal number), and the labeling is determined by sets A and B.
The coin-pushing game on the infinite labeled binary tree of height � means the
following. The two players, player A and player B, alternately say 0 or 1, which at
the end gives an infinite 0–1 sequence. If this infinite 0–1 sequence belongs to set
A⊂ �0�1��, then player A wins; otherwise player B wins.

Theorem C.4 (Gale and Stewart) There exists a set A ⊂ �0�1�� such that the
corresponding Infinite 0–1 Game is undetermined.

Proof. A strategy for player A or B is a rule that specifies the next move. It is a
function F which associates with every finite 0–1 sequence �a1� a2� a3� � � � � a2n+��,
ai = 0 or 1, 1≤ i ≤ 2n+�, the next move

a2n+1+� = F�a1� a2� a3� � � � � a2n+���

where � = 0 for player A and 1 for player B, and n ≥ 0. Let STRA and STRB be,
respectively, the set of all strategies for players A and B.

Let F ∈ STRA be a strategy of player A and G ∈ STRB be a strategy of player
B. If both players follow their strategies, then we get a unique play. This means an
infinite 0–1 sequence that we denote by �F�G�.

Lemma 1:

(i) Both sets STRA and STRB have cardinality 2ℵ0 .
(ii) For each F ∈ STRA the cardinality of the set of plays (i.e. infinite 0–1 sequences)

PF = ��F�G� � G ∈ STRB� is 2
ℵ0 . Similarly, for each G ∈ STRB the cardinality

of the set of plays PG = ��F�G� � F ∈ STRA� is 2
ℵ0 .

Proof.
(i) Let �0�1�<� denote the set of all finite 0-1 sequences. Set �0�1�<� is clearly

countable. Let F be the set of all functions f � �0�1�<� → �0�1�. The cardinality
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of F is 2ℵ0 . We can associate with every f ∈ F a strategy F ∈ STRA of player
A as follows

a2n+1 = F�a1� a2� a3� � � � � a2n�= f�a2� a4� � � � � a2n��

Since different functions f ∈ F define different strategies F ∈ STRA, the car-
dinality of STRA is the same as the cardinality of F , namely 2ℵ0 . The same
argument works for STRB.

(ii) Let b = �b1� b2� b3� � � ��, bi = 0 or 1, be an arbitrary infinite 0–1 sequence.
The cardinality of the set of these bs is 2ℵ0 . We associate with every such
b a strategy Gb ∈ STRA of player B as follows: his ith move is bi for every
i ≥ 1. Now let F ∈ STRA be an arbitrary strategy of player A. If b 
= c, then
�F�Gb� 
= �F�Gc� (indeed, the �2i�th coordinate of �F�Gb� is bi and the �2i�th
coordinate of �F�Gc� is ci). This proves that the cardinality of PF is 2ℵ0 for
every F ∈ STRA. The same holds for PG.

Now we are ready to complete the proof of Theorem C.4. By using transfinite
induction we define subset A⊂ �0�1�� such that:

(1) for each strategy F ∈ STRA of player A there is a “witness” play t�F� ∈PF ∩B,
which proves that F is not a winning strategy;

(2) for each strategy G ∈ STRB of player B there is a “witness” play s�G� ∈PG∩A,
which proves that G is not a winning strategy;

(3) different strategies have different “witnesses.”

We cannot give an explicit construction of set A. The proof uses the Axiom of
Choice via the well ordering.
By the well-ordering principle, the class STRA of strategies of player A can be

indexed by the ordinal numbers  less than 2ℵ0 : STRA = �F �  < 2ℵ0�. Similarly,
we can index the set STRB = �G �  < 2ℵ0� of strategies of player B.

Choose t0 ∈ PF0
arbitrarily. Choose s0 ∈ PG0

such that s0 
= t0.
Proceed inductively. If 0 <  < 2ℵ0 and if t� and s� have been defined for all

� < , then the sets �s� � � < � and �t� � � < � have cardinality less than 2ℵ0 .
So the set

PF
\ (�s� � � < �∪ �t� � � < �

)
is non-empty. Choose one of its elements and call it t. Similarly

PG
\ (�s� � � < �∪ �t� � �≤ �

)
is non-empty. Choose one of its elements and call it s. By definition the sets
S = �s �  < 2ℵ0� and T = �t �  < 2ℵ0� are disjoint. Let S ⊂ A and T ⊂ B =
�0�1�� \A.
Since every play has a winner, it is enough to check that neither player has a

winning strategy. First we show that player A does not have a winning strategy.
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Let F = F ∈ STRA be an arbitrary strategy of player A. By the construction there
exists a play t ∈PF

such that t ∈ B. By definition t = �F�G� for some strategy
G ∈ STRB of player B. This means that if player A uses strategy F = F and player
B uses strategy G, then player A loses the play.
Symmetrically we show that player B does not have a winning strategy. Let

G = G ∈ STRB be an arbitrary strategy of player B. By the construction, there
exists a play s ∈ PG

such that s ∈ A. By definition s = �F�G� for some
strategy F ∈ STRA of player A. This means that if player B uses strategy G=G

and player A uses strategy F , then player B loses the play. This completes the proof
of Theorem C.4.

The Ultrafilter Game: an undetermined positional game. Theorem C.4 was
an undetermined combinatorial game; next we show a positional game which is
undetermined. The underlying set can be �, but the length of a play may go beyond
�, the first infinite ordinal number. Let F be an arbitrary infinite hypergraph, and
suppose Maker (the first player) and Breaker play a positional game on F , and they
play not only until they have made their nth move for every natural number, but
they continue to make moves as long as there is any unoccupied vertex of F . In
this case a play is a transfinite sequence of moves, and for an ordinal number ,
the th move of that play is the th element of the sequence. The players move
alternately, but the limit moves have no immediate predecessor, so we have to
decide separately about them. We admit the most natural possibility and offer these
limit moves to Maker. This type of game will be called infinite full games.
If the hypergraph F has finite edges only, then the following compactness result

holds (we mention it without proof): the infinite full game on F is a win for Maker
if and only if, for some finite sub-family G ⊂ F , the finite game on G is a win for
Maker. In other words, if Maker has a winning strategy in an infinite full game,
then, for some natural number n, he can win within n moves. It follows that if F
has finite edges only, then the weak infinite full game on F is determined.
To construct an undetermined positional game, the edges of the hypergraph are

required to be infinite. We recall the concept of the non-trivial ultrafilter. A filter
H on an infinte set S is a family of subsets of S such that:

(i) if A� B ∈ H, then A∩B ∈ H,
(ii) if A ∈ H and A⊂ B, then B ∈ H, and
(iii) H 
= 2S , i.e. H doesn’t contain the empty set.

By Zorn’s lemma, every filter is contained in a maximal filter, called ultrafilter. If
U is an ultafilter, then for every A ⊂ S either A ∈ H or �S \A� ∈ H. This implies
that every ultrafilter U defines a finitely additive 0–1 measure M on 2S: M = 1 if
A ∈ H and M = 0 if �S \A� ∈ H. Conversely, every finitely additive 0–1 measure
on 2S defines an ultrafilter. If there is a finite set of measure 1, then one of the
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elements, say, x ∈ S has measure 1, too. So U = �A⊂ S � x ∈ A�. These ultrafilters
are called trivial. Not every ultrafilter is trivial: any ultrafilter containing the filter
H = �A⊂ S � S \A is finite� is non-trivial.

Theorem C.5 (McKenzie and Paris) Suppose that the edges of a hypergraph form
a non-trivial ultrafilter of �= �0�1�2� · · · �. Then the infinite full game played on
it is undetermined.

Proof. When an infinite full play ends, all the elements of the board are occupied,
so either the set of the points of Maker, or the set of the points of Breaker is in
the given ultrafilter U , but not both. This means that every play has a winner. This
proves that Breaker cannot have a winning strategy in the ultrafilter game. Indeed,
a straigthforward adaptation of the finite strategy stealing argument shows that the
second player (Breaker) cannot have a winning strategy in an infinite full positional
game.
Now assume that Maker has a winning strategy: Str. We show that if Maker

uses strategy Str, then Breaker can win the strong play in � moves, which clearly
contradicts the fact that Str is a winning strategy.

Let Breaker play 3 simultaneous plays of length � against Maker’s winning
strategy Str: we call it the solitary 3� game. The board of the game is 3 copies
of �

�1 = �01�11�21�31�41� · · · �
�2 = �02�12�22�32�42� · · · �
�3 = �03�13�23�33�43� · · · ��

Breaker is the only player in this game, since Maker’s moves will be uniquely
determined by winning strategy Str. The first move is special: Maker occupies 3
points of the board, but after that Breaker and Maker alternately occupy 1 new point
per move only. Let m∗ ∈� denote Maker’s first move advised by winning strategy
Str: Str�∅� = m∗; then Maker’s first move in the 3� game is to occupy all the 3
elements of the set �m∗

1�m
∗
2�m

∗
3�. Then Breaker occupies an arbitrary new element

from one of the 3 sub-boards �i1 (i1= 1 or 2 or 3): let bi1 ∈ �i1 denote Breaker’s
first move. Then Maker occupies another element from the same sub-board �i1

by using strategy Str: let mi1 = Str�m∗
i1� bi1� ∈ �i1 be Maker’s second move. Then

again Breaker occupies a new element from one of the 3 sub-boards b′i2 ∈�i2 (i2= 1
or 2 or 3); then Maker occupies another element from the same sub-board �i2 by
using strategy Str as follows:

(i) if i2 
= i1, then let m′
i2 = Str�m∗

i2� b
′
i2� ∈ �i2 be Maker’s third move;

(ii) if i2= i1, then let m′
i1 = Str�m∗

i1� bi1�mi1� b
′
i1� ∈ �i1 be Maker’s third move.
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Then again Breaker occupies a new element from one of the 3 sub-boards b′′
i3 ∈�i3

(i3= 1 or 2 or 3); then Maker occupies another element from the same sub-board
�i3 by using strategy Str as follows:

(i) if i3 
∈ �i1� i2�, then let m′′
i3 = Str�m∗

i3� b
′′
i3� ∈ �i3 be Maker’s 4th move;

(ii) if i3 = i1 and i3 
= i2, then let m′′
i1 = Str�m∗

i1� bi1�mi1� b
′′
i1� ∈ �i1 be Maker’s

4th move;
(iii) if i3 = i2 and i3 
= i1, then let m′′

i2 = Str�m∗
i2� b

′
i2�m

′
i2� b

′′
i2� ∈ �i2 be Maker’s

4th move;
(iv) if i1 = i2 = i3, then let m′′

i1 = Str�m∗
i1� bi1�mi1� b

′
i1�m

′
i1� b

′′
i1� ∈ �i1 be Maker’s

4th move, and so on.

The length of a play is �, i.e. the players take turns for every natural number n. At
the end of a play Breaker wins the solitary 3� game if

(i) all the elements of the board �1+�2+�3 are occupied, and
(ii) for every j ∈� with j 
=m∗, Breaker occupied at least one element of the 3-set

�j1� j2� j3�.

In other words, Breaker loses the solitary 3� game if either there remains an
unoccupied element of the board or if for some j 
=m∗, Maker can occupy all the
3 elements of the set �j1� j2� j3�. (Note that Maker occupies �m∗

1�m
∗
2�m

∗
3� in his

opening move.) We show that by using a “forced blocking and filling up the holes”
combination strategy, Breaker can win the solitary 3� game.

Lemma. Breaker has a winning strategy in the solitary 3� game.

Proof. Breaker’s winning strategy consists of two kinds of moves: “forced moves
to block” and “filling up the holes” moves. To define these moves, we introduce
some notation. Suppose that Maker has already made n ≥ 2 moves, Breaker made
�n− 1� moves and it is his turn to make his nth move. Let M�n� denote the set
of Maker’s moves; in particular, let m�n� ∈ M�n� be Maker’s nth move, and let
B�n−1� denote the set of Breaker’s moves at this stage of the play. Let (D stand
for “danger” and H stands for “hole”):

Dn = �i ∈ �\ �m∗� � M�n�∩ �i1� i2� i3� 
= ∅�
and

Hn−1 = �i ∈ �\ �m∗� � �i1� i2� i3� 
⊂M�n�∪B�n−1���

Nowwe are ready to define Breaker’s nth move. IfDn =Dn−1, i.e.m�n�∈ �j1� j2� j3�

for some j ∈ Dn−1, then Breaker has no choice and have to make a “forced move
to block”: he occupies the third element of the set �j1� j2� j3�. If Dn 
= Dn−1, i.e.
m�n� ∈ �j1� j2� j3� for some j 
∈ Dn−1, then Breaker has time and doesn’t rush to
block the set �j1� j2� j3�. Instead he makes a “filling up the holes” move: if i is the
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smallest element of Hn−1, then Breaker occupies an available element of the set
�i1� i2� i3�. By using this strategy, among his first n moves Breaker makes at least
n/2 “filling up the holes” moves, so at the end of a play, Breaker can block every
3-set �j1� j2� j3� where j 
= m∗, and at the same time he can guarantee that every
element of the board is occupied by either player. This completes the proof of the
Lemma.

Finally observe that Breaker’s winning strategy in the solitary 3� game contradicts
the fact that Str is a winning strategy for Maker in the ultrafilter game on U . Indeed,
consider a play in the 3� game where Breaker uses his winning strategy. Since
Maker’s moves are determined by strategy Str, and at the end of the �-play all
the elements of the board are occupied, Maker wins the ultrafilter game in each
“row” �i, i = 1�2�3. So the set of Maker’s points in �i belongs to ultrafilter U
(we identify �i with �). Since the ultrafilter is non-trivial, the intersection of these
3 sets must be infinite, which contradicts the Lemma (indeed, by the Lemma, the
intersection is one-element and contains m∗ only). This proves that if Maker uses
strategy Str, then Breaker wins at least one of the 3 strong plays of the ultrafilter
game on U in � moves.

In the previous argument we can switch the role of Maker and Breaker, and
we obtain the following result. If Breaker uses any strategy, then Maker can win
at least one of the 3 strong plays of the ultrafilter game on U in � moves. This
gives an alternative proof of the fact that Breaker cannot have a winning strat-
egy, avoiding the infinite strategy stealing argument. This completes the proof of
Theorem C.5.



Appendix D
An informal introduction to game theory

Every “Theory” of Games concentrates on one aspect only, and pretty much neglects
the rest. For example:

(I) Traditional Game Theory (J. von Neumann, J. Nash, etc.) focuses on the
lack of complete information (for example, card games like Poker). Its main
result is a minimax theorem about mixed strategies (“random choice”), and
it is basically Linear Algebra. Games of complete information (like Chess,
Go, Checkers, Nim, Tic-Tac-Toe) are (almost) completely ignored by the
traditional theory.

(II) One successful theory for games of complete information is the “Theory of
Nim like compound games” (Bouton, Sprague, Grundy, Berlekamp, Conway,
Guy, etc. – see volume one of theWinning Ways). It focuses on “sum-games”,
and it is basically Algebra (“addition theory”).

(III) In this book we are tackling something completely different: the focus is
on “winning configurations,” in particular on “Tic-Tac-Toe like games,” and
develop a “fake probabilistic method.” Note that “Tic-Tac-Toe like games”
are often called Positional Games.

Here in Appendix D a very brief outline of (I) and (II) is given. The subject is
games, so the very first question is: “What is a game?”. Well, this is a hard one;
an easier question is: “How can one classify games?” One natural classification is
the following:

(a) games of pure chance;
(b) games of mixed chance and skill;
(c) games of pure skill.

Another reasonable way to classify games is:

(i) games of complete information;
(ii) games of incomplete information.

705
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(I) Neumann’s theory: understanding poker. Traditional game theory, initiated
by John von Neumann in an early paper from 1928, and broadly extended in
the monumental Theory of Games and Economic Behavior by von Neumann and
Morgenstern in 1944, deals with an extremely wide concept of games, includ-
ing all the 3× 2 = 6 classes formed by pairing (a)–(b)–(c) with (i)–(ii), with
two or more players, of mixed chance and skill, arbitrary payoff functions. In
the traditional theory each player has a choice, called strategy, and his objective
is to maximize a payoff which depends both on his own choice and on his oppo-
nent’s. The crucial minimax theorem for 2-player zero-sum games (i.e. pure conflict
situation) is that it is always possible for either player to find a mixed strategy form-
ing an “equilibrium,” which means the best compromise for both players. Mixed
strategy means to randomly play a mixture of strategies according to a certain
fixed probability distribution. The philosophically interesting consequence of Neu-
mann’s minimax theorem is that the best play (often) requires random, unpredictable
moves.
The contrasting plan of playing one strategy with certainty is called a pure

strategy.
Mixed strategies are necessary to make up for the lack of a saddle point in the

payoff matrix, i.e. for the discrepancy between the row maximin and the column
minimax (note that in general row-maximin≤column-minimax). If the payoff matrix
has a saddle point, then there is no need for mixed strategies: the optimal strategies
are always (deterministic) pure strategies.

The payoff matrix of the so-called “coin-hiding” game is a particularly sim-
ple example for row-maximin�=column-minimax: in fact row-maximin=−1 and
column-minimax=1:

( L R

L 1 −1
R −1 1

)
�

where L is for left and R is for right. In the “coin-hiding” game the first player has
a coin that he puts behind his back in his right or left fist. Then he shows his closed
fists to the second player, who has to guess where the coin is. They do this a number
of times, and in the end they count how many times the second player won or lost. If
the first player puts the coin in the same hand or if he simply alternates, the second
player will soon notice it and win. Similarly, a clever opponent will eventually see
through any such “mechanical” rule. Does it mean that a clever second player must
necessarily win in the long run? Of course not. If the first player put the coin at
random with probability one-half in either hand, and if his successive choices are
independent, then the second player, no matter how smart or foolish, will make a
correct guess asymptotically half of the time. On average the second player will
neither win nor lose – this is the optimal strategy.
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Note that Poker was Neumann’s main motivation to write his pioneering paper
on games in 1928. He could prove the fundamental minimax theorem, but the
“computational complexity” of the problem prevented him (and anybody else since)
from finding an explicit optimal mixed strategy for Poker. The next example is a
highly simplified version of Poker (Poker itself is far too complex); the example is
due to von Neumann, Morgenstern, and A. W. Tucker.

Suppose we have a deck of n cards (n is a large even number), half of which
are marked H (high) and the other half marked L (low). Two players A and B start
with an initial “bid” of a (i.e. each of them puts a dollars into the “pot”), and are
dealt one card each, which they look at. Now A can “See” (i.e. demand B to expose
his card), or “Raise” by an amount of b (i.e. put an extra b dollars into the “pot”).
If A chooses “See,” then B has no choice but to expose his card. B gains a (A’s
bid) if his card is H, while A’s card is L, and loses a (i.e. his own bid) if his card
is L, while A’s card is H. The “pot” is split (gain 0) if both have H or both have
L. However, if A “Raises,” then B has a choice either to “Pass” (i.e. he is willing
to lose a dollars without further argument) or to “Call” (i.e. to put in the extra b

dollars, forcing A to expose his card). Again the stronger card wins everything, and
they split if the cards have the same value.

Player A has 4 pure strategies:

(1) (S,S), a “See–See”: “See” regardless of whether he has been dealt H or L;
(2) (S,R), a “See–Raise”: “See” if he has been dealt H and “Raise” if he has been

dealt L;
(3) (R,S), a “Raise–See”: “Raise” if he has been dealt H and “See” if he has been

dealt L;
(4) (R,R), a “Raise–Raise”: “Raise” regardless of whether he has been dealt H or L.

We recall that if A chooses “See,” then B has no choice. If A chooses “Raise,”
then B has the options of “Pass” and “Call”. Therefore, player B has four pure
strategies: A chooses “Raise” then B has the four options of

(1) (P,P), a “Pass–Pass”: “Pass” regardless of whether he has been dealt H or L;
(2) (P,C), a “Pass–Call”: “Pass” if he has been dealt H and “Call” if he has been

dealt L;
(3) (C,P), a “Call–Pass”: “Call” if he has been dealt H and “Pass” if he has been

dealt L;
(4) (C,C), a “Call–Call”: “Call” regardless of whether he has been dealt H or L.

Note that (S,S) and (S,R) are not good strategies for A, because neither takes
advantage of the good luck of having been dealt a high card. Similarly, (P,P) and
(P,C) are not good for B, because they require him to “Pass” with a high card.
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Therefore, if we assume that both A and B are intelligent players, then we can
disregard outright (S,S) and (S,R) for A, and (P,P) and (P,C) for B.
It follows that the payoff matrix can be reduced to the following 2-by-2 matrix

( �C�P� �C�C�

�R�S� 0 b/4
�R�R� �a−b�/4 0

)

The four entries of the payoff matrix come from the following consideration.
Assume, for example, that A chooses (R,S) and B chooses (C,C). Then

(1) if A is dealt H and B is dealt H, then A gains 0;
(2) if A is dealt H and B is dealt L, then A gains a+b;
(3) if A is dealt L and B is dealt H, then A gains −a;
(4) if A is dealt L and B is dealt L, then A gains 0.

If n is very large, the four combinations (H,H), (H,L), (L,H), (L,L) appear with
the same frequency 1/4. On the average A gains ��a+b�−a�/4= b/4 dollars per
game. This is how we get the second entry in the first row of the payoff matrix.
The other 3 entries can be obtained by similar considerations.
Assume first that a < b. Then the payoff matrix

( �C�P� �C�C�

�R�S� 0 b/4
�R�R� �a−b�/4 0

)

has a saddle point: row-maximin=column-minimax=0. It means the optimal strate-
gies are pure: A chooses (R,S) and B chooses (C,P). In other words, both players
best choice is to play “conservative”: “Raising” with H, “Seeing” with L, “Calling”
a “Raise” with H, and “Passing” a “Raise” with L. This game is fair: each player
has an average gain of 0.
Next assume a > b. Then the payoff matrix does not have a saddle point. A’s

optimal strategy is a mixed strategy where A chooses (R,S) with probability �a−
b�/a and (R,R) with probability b/a. Then A can achieve an average gain of at
least �a−b�b/4a per game independently of B’s choice. B’s optimal strategy is to
choose (C,P) with probability b/a and (C,C) with probability �a−b�/a. This way
B can prevent A from averaging more than �a− b�b/4a per game. This game is
not fair (due to the asymmetry that A is the only player who can “Raise”).
We thus see that in his optimal strategy A must “bluff”, i.e. “Raise” with a low

card, at least part of the time (if a > b). Similarly, in order to minimize his loss, B
must give up the “conservative” play. He has to play risky by “Calling” a “Raise”
with a low card in part of the time.
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In the years since 1944 traditional game theory has developed rapidly. It plays a
fundamental role in mathematical fields like Linear Programming and Optimization.
It has an important place in Economics, and it has contributed non-trivial insights
to many areas of social science (Management, Military Strategy, etc.). Traditional
game theory is very successful in games of incomplete information. It means games
in which one player knows something that the other does not, for example a card
that a player has just drawn from a pack. However, for Combinatorial Games like
Chess, Go, Checkers, Tic-Tac-Toe, Hex, traditional theory does not give too much
insight. Indeed, from the viewpoint of traditional game theory Combinatorial Games
are “trivial.” For games of complete information the minimax theorem becomes
the rather simplistic statement that each player has a pure optimal strategy, i.e.
there is no need for mixed strategies whatsoever. No one may have discovered
what an optimal deterministic strategy actually looks like (since the exhaustive
search through the complex “game-tree” requires enormous amount of time), but it
definitely exists. (In fact, usually there are several optimal strategies.) Combinatorial
Games are, therefore, the simplest kind of pure conflict (“zero-sum”) situation
with no room for coalition, where the problem is “merely” the computational
complexity of the exhaustive analysis. The above-mentioned coin-hiding game and
the simplified poker with their very small 2×2 payoff matrices

( L R

L 1 −1
R −1 1

) ( �C�P� �C�C�

�R�S� 0 b/4
�R�R� �a−b�/4 0

)

are terribly misleading examples. Indeed, they are hiding the weak point of the
payoff matrix approach, which is exactly the size of the matrix (i.e. the total
number of strategies). In a typical board-game the number of strategies is usually
a doubly exponential function of the size of the board, making the payoff matrix
setup extremely impractical.
It is worth while quoting von Neumann; this is what he said about games of

complete information. “Chess is not a game. Chess is a well-defined form of
computation. You may not be able to work out the answers, but in theory there
must be a solution, a right move in any position.”

For complete-information games, including the sub-class of Combinatorial
Games, exhaustive search is much more efficient than the payoff matrix setup
(i.e. to try out all possible strategies). Unfortunately the running time of the exhaus-
tive search is “exponential” in terms of the board-size; this is still impractical. Note
that exhaustive search is officially called Backward Labeling.
We can say, therefore, that the basic challenge of the theory of Combinatorial

Games is the complexity problem, or as it is often called, the combinatorial chaos.
Even for games with relatively small boards, the Backward Labeling of the game-
tree or any other brute force case study is far beyond the capacity of the fastest
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computers. This is the reason why computers could not make such a big impact on
the theory of Combinatorial Games.
The original 1944 edition of the Theory of Games and Economic Behavior was

written before modern computers became available (somewhat later von Neumann
himself made a considerable contribution to the early developments of the electronic
computer), and the “complexity” issue was not addressed. Since then the main trend
in traditional game theory have been shifted from zero-sum 2-player games to study
games where the conflict is mixed with opportunities for coalition like more-than-
2-player games. These games often lead to absolute, unsolvable conflict between
individual rationality and collective rationality. A well-known example is the so-
called prisoner’s dilemma. The new trend is in a far less pleasing state than the
elegant von Neumann’s theory for the pure conflict case.

The complexity problem, i.e. our inability to make a complete analysis of
Combinatorial Games like Chess, Go, Checkers without impractically detailed
computation, has one apparent compensation: it leaves the “hard” games alive
for competition. Once a Combinatorial Game has been fully analyzed, like Nim or
the 4×4×4 version of Tic-Tac-Toe, then, of course, it is competitively dead.
Let us say a few words about game-playing computer programs: we compare the

popular games of Chess, Go, and Checkers. First note that Go is not “computer-
friendly.” In spite of serious efforts, Go-playing programs are nowhere close to
the level of good human players. On the other hand, computer programs can play
Chess much better; they reached the level of the top human grand-masters.

A good illustration is the story of the Kasparov vs. Deep Blue (later Deep Junior)
matches. In February of 1996 Garry Kasparov beat the supercomputer Deep Blue
4-2. In Deep Blue 32 separate computers operated in parallel. It could analyze
more than 200 million moves per second and had “studied” thousands of Chess’s
most challenging matches, including hundreds involving Kasparov. To beat Deep
Blue Kasparov had to play many moves in advance which extended beyond the
computer’s horizon.

Fifteen months later in the rematch the improved version of Deep Blue made
history by beating Kasparov 3.5–2.5. This time Deep Blue was programmed to play
“positional Chess” like a grand-master.

In January–February of 2003 there was a highly publicized third match between
Kasparov and the further improved Deep Blue, called Deep Junior, which ended in
a 3–3 draw.

“Positional Chess,” as opposed to “tactical Chess,” involves a situation in which
there are no clear objectives on the board, no obvious threats to be made. It means
that the two sides are maneuvering for a position from which to begin long-term
plans. It is the kind of Chess-playing in which grand-masters used to do so much
better than machines. The surprising loss of Kasparov in 1997, and the equally
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disappointing draw in 2003, are owe much to the fact that the new supercom-
puters evidently “understand” positional Chess far beyond the level of the old
machines.

Deep Blue’s victory in 1997 was a real breakthrough. It is safe to say that now
the best Chess-playing programs are at the same level, or perhaps even better, than
the top human players.

Finally, in the game of Checkers, a computer program is so good that it
consistently beats everyone but the world champion.

What is the basic difference between Go, Chess, and Checkers? In Checkers the
average number of options per move is not very large, say, about 4, which enables
a computer to calculate to a considerable depth in the available time, up to about
20 moves, which means 420 alternatives. On the other hand, in Go the number of
options per move is much greater – something like 200 – so the same computer
in the same time could analyze Go no more than 5 moves deep: 2005 alternatives.
Note that very roughly 420 ≈ 2005. The case of Chess is somewhat intermediate.
Consequently, games for which the number of options per move is large, but can
effectively be cut down by understanding and judgment, are relatively speaking to
the advantage of the human player.

Let us return to the complexity problem. The brute force way to analyze a position
in a game is to examine all of its options, and all the options of those options, and
all the options of the options of those options, and so on. This exhaustive search
through the game-tree usually takes a tremendous amount of time. The objective of
Combinatorial Game Theory is to describe wide classes of games for which there
is a substantial “shortcut.” This means to find a fast way of answering the question
of “who wins,” and also, if possible, to find a tractable way of answering the other
question of “how to win,” avoiding the exhaustive search in full depth. A natural
way to cut down the alternatives is to be able to judge the value of a position at
a level of a few moves depth only. This requires human intelligence, an essential
thing that contemporary computers lack.

A complementary “negative” approach is to try to prove that some other classes
of games are hard in the sense that any algorithm which determines the “outcome”
(i.e. which player has a winning or drawing strategy) for all of the games in the
class must necessarily take as much, or nearly as much, computations as the “brute
force” complete analysis. Unfortunately there are very few unconditional lower
bound results in Complexity Theory, see pp. 218–9 in the Winning Ways and also
Fraenkel [1991]. This is the reason why the “negative” approach, due to the lack
of effective methods, turned out to be much less successful, at least so far.

(II) Theory of NIM like games. A well-known and very advanced branch in the
“positive direction” is the beautiful theory of Nim like compound games, played
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with the normal play convention: a player unable to move loses. The most famous
example of such sum-games is of course Nim itself.

The ancient game of Nim is played by two players with heaps of coins (or stones,
or beans). Suppose that there are k ≥ 1 heaps of coins that contain, respectively,
n1� n2� � � � � nk coins. The players alternate turns, and each player, when it is his turn,
selects one of the heaps and removes at least one coin from the selected heap (the
player may take all coins from the selected heap, which is now “out of play”). The
play ends when all the heaps are empty, and the player who takes the last coin(s) is
the winner. A century ago, in 1902 Bouton found the following surprisingly simple
solution to Nim. Express each one of the heap-sizes ni in binary form

ni = a
�i�
0 +a

�i�
1 ·2+a

�i�
2 ·22+ � � �+a�i�

si
·2si �

By including 0s we can clearly assume that all of the heap sizes have the same
number of binary digits, say, s+ 1 where s = max1≤i≤k si. We call a Nim game
balanced if and only if the s+1 (complete) sums

a
�1�
0 +a

�2�
0 + � � �+a

�k�
0

a
�1�
1 +a

�2�
1 + � � �+a

�k�
1

�������������������������������

a�1�
s +a�2�

s + � � �+a�k�
s

are all even, i.e. all sums are 0 (mod 2). A Nim game which is not balanced is
called unbalanced (at least one sum is odd). We mention two simple facts (we leave
them to the reader as an easy exercise):

(1) whatever move made in a balanced Nim game, the resulting game is always
unbalanced;

(2) starting from an unbalanced Nim game, there is always a move which
balances it.

Now it is obvious that first player has a winning strategy in an arbitrary unbalanced
Nim game: first player keeps applying (2). On the other hand, second player has
a winning strategy in balanced Nim games: indeed, first player’s opening move
unbalances the game, and second player keeps applying (2).

Reverse Nim: Suppose we change the objective of Nim so that the player who
takes the last coin loses. Will this make much difference? Not if at least one heap
has ≥ 2 coins. Then the ordinary and Reverse Nim behave alike, and the following
is a winning strategy (we leave the proof to the reader): Play as in ordinary Nim
until all but exactly one heap contains a single coin. Then remove either all or all
but one of the coins of the exceptional heap so as to leave an odd number of heaps
of size 1.
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If all the heaps are of size 1, then of course the game becomes trivial
(“mechanical”), and the two versions have opposite outcomes: a player wins in
the ordinary (Reverse) Nim if and only if the number of singletons (heaps of size 1)
is odd (even).

After Bouton’s complete solution of Nim (and Reverse Nim), the theory of “Nim-
like games” was greatly developed by Sprague and Grundy: they discovered large
classes of games which are “Nim in disguise” (impartial games). More recently,
Berlekamp, Conway, Guy and others discovered large classes of games for which
the “Nim-addition,” or a similar “addition theory” works and solves the game.
Note that the “Nim-sum” of n1� n2� � � � � nk is 0 if the Nim game is balanced, and
non-zero if the game is unbalanced. In the unbalanced case the “Nim-sum” is a
sum of distinct powers of 2; namely those powers of 2 which show up an odd
number of times in the binary representations of n1� n2� � � � � nk. We refer to two
remarkable books: (1) On Games and Numbers by Conway (which gives, among
others, a striking new way to construct the set of real numbers); and (2) volume I
of the Winning Ways. The theory developed in volume I can be employed in games
in which the positions are composed of several non-interacting very simple games.
(Note that Nim is a “sum” by definition: a “sum” of one-heap games.) Then the first
thing to do is to associate values (numbers, nimbers, and other “Conway numbers”)
with these components. Next comes the problem of finding ways of determining the
outcome of a sum of games given information only about the values of the separate
components. (For example, in Nim we apply the “Nim-addition.”) This addition
theory is where the shortcut comes from. This theory has been quite successful in
analyzing endgame problems in a wide range of “real” games including Go – see
e.g. Berlekamp [1991]. The reason why it works is that positions which tend to
occur in the later stages of a game like Go decompose into separate, independent
regions. Therefore, it is natural to apply the addition theory. On the other hand,
positions which occur in the early and middle stages of a game like Go do not seem
to decompose.

We give a thumbnail summary of this addition theory –we refer the reader to David
Gale’s excellent introductory article in The Mathematical Intelligencer, 16 (2).
The main theory treats only win–lose games with the normal play convention.

Although this seems rather special, many games can be put into this form by making
simple changes to the rules. The two players are called Left and Right, and the
concrete rules of the game specify who moves first. Such games are represented by
trees: the moves of Left are represented by leftward slanting edges, and those for
Right by rightward slanting ones. We call them left–right trees, and they are kinds
of game-trees.

Next comes Conway’s arithmetic. There is a natural notion of addition on the
set of these games: the sum G+H of two games G, H is defined to be the two
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games played simultaneously. A player in his turn may play in either game. The
negative −G of a game G is to be G with the roles of the players interchanged.
Conway defines an equivalence relation ∼ by writing G∼H if G−H is a win for
the second player. Observe that G∼G; indeed, the second player can win G−G

by playing “copycat”: whenever the first player moves in G (−G), he makes the
same move in −G (G). It is easy to see that the set of equivalence classes forms
an Abelian group whose 0 element is the set of all second player wins. This group
is called � , and it is the object of study in the algebraic theory. Of course many
different left–right trees correspond to the same group element, i.e. equivalence
class. One of the important theorems of the theory states that every group element
has a “canonical form,” meaning a unique left–right tree with the fewest number
of edges. This canonical tree is that Conway calls the value of the game. Given
a concrete game, how do we find its value? Unfortunately, the general problem is
NP-hard.
There is a natural order on group � . Call G positive, G > 0, if G is a win for

Left, no matter who starts, and negative if G is a win for Right, no matter who
starts. Note that > is well defined. Every game is either positive, negative, zero, or
none of the above, meaning a first player win. Defining G>H if G−H> 0 gives
a partial ordering of � .

What does it mean to solve a game in this theory? Well, it means to find the value
of the game – instead of directly answering the natural questions of “who wins” and
“how to win.” Unfortunately, knowing the value, i.e. the canonical tree, does not
mean that we can necessarily obtain a winning strategy without performing a huge
amount of computation. But if “Combinatorial Game Theory” does not tell us how
to win a game, what good is it? The theory turned out to be very useful in those
games which can be expressed as a sum of simple games with explicitly known
values. Indeed, there is often a fast way to determine the value of the sum-game
from the values of the components, and that sum-value sometimes happens to be
simple. An essential part of the theory is a wonderful “botanical garden” of simple
games like Numbers, Nimbers, Star, Up, Down, Tiny, Miny, Double-Up-Star, etc.
satisfying surprising identities.

If games like Chess and Go are seemingly far too difficult for “brute force” anal-
ysis then how can we write good game-playing computer programs? Well, we
have to make a compromise. Instead of finding the best possible next move, the
existing computer programs usually make use of some kind of evaluation function
to efficiently judge the “danger” of a position without analyzing the game-tree in
full depth. This approximation technique produces at least a “reasonably good”
next move. As a result, computer-Chess (-Go, -Checkers) is “just” a bunch of
good heuristic arguments rather than a “theorem-proof” type rigorous mathematical
theory.
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The considerable success of the addition theory of Nim-like sum-games might
suggest the optimistic belief that we are at the edge of “understanding” Combinato-
rial Games in general: it is just a matter of being clever enough and working hard,
and then sooner-or-later we are going to find a shortcut way to quickly predict the
winner, and supplement it with an explicit winning strategy.

Well, let us disagree; this optimism is wishful thinking, and for the overwhelming
majority of Combinatorial Games there are no such shortcuts. It seems inevitable
that an efficient method has to approximate – just like all existing Chess-playing
programs approximate the optimal strategy. In this book we use evaluation tech-
niques which approximate the “danger” level of a single position without analyzing
the whole game-tree in full depth.



Complete list of the Open Problems

1. Open Problem 3.1 Consider the S-building game introduced in Section 1: is
there a finite procedure to decide whether or not a given finite point set S in the
plane is a Winner? In other words, is there a way to characterize those finite point
sets S in the plane for which Maker, as the first player in the usual (1:1) play,
can always build a congruent copy of S in the plane first (i.e. before the opponent
could complete his own copy of S)?

2. Open Problem 3.2 Is it true that 53 Tic-Tac-Toe is a draw game? Is it true that
54 Tic-Tac-Toe is a first player win?

3. Open Problem 4.1 Is it true that unrestricted 5-in-a-row in the plane is a first
player win?

4. Open Problem 4.2 Is it true that unrestricted n-in-a-row is a draw for n = 6
and n= 7?

5. Open Problem 4.3 Consider Harary’s Animal Tic-Tac-Toe introduced in Sec-
tion 4. Is it true that “Snaky” is a Winner? In particular, is it true that “Snaky” is
a Winner on every n×n board with n ≥ 15, and the first player can always build
a congruent copy of “Snaky” first in at most 13 moves?

6. Open Problem 4.4 Is it true that Kaplansky’s 4-in-a-line is a draw game? Is it
true that Kaplansky’s n-in-a-line is a draw game for every n≥ 4?

7. Open Problem 4.5 Consider Hex (see Section 4); find an explicit first player
(“White”) winning strategy in n×n Hex for every n ≥ 8. In particular, find one
for the standard size n= 11.

8. Open Problem 4.6

(a) Find an explicit first player winning strategy in the �K18�K4� Clique Game.
(b) Which player has a winning strategy in the Reverse Clique Game �K18�K4�−�?

If you know who wins, find an explicit winning strategy.

716



Complete list of the Open Problems 717

(c) Consider the Clique Game �Kn�Kq� where n is huge compared to q; is there
a uniform upper bound for the Move Number? More precisely, is there an
absolute constant C4 <� such that the first player can always win in less than
C4 moves in every �Kn�K4� Clique Game with n≥ 18?

Is there an absolute constant C5 <� such that the first player can always win
in less than C5 moves in every �Kn�K5� Clique Game with n≥ 49?
In general, is there an absolute constant Cq <� such that the first player can

always win in less than Cq moves in every �Kn�Kq� Clique Game with n ≥ R�q�

where R�q� is the Ramsey Number?

9. Open Problem 5.1 Consider the unrestricted 5-in-a-row; can the first player
always win in a bounded number of moves, say, in less than 1000 moves?

Notice that Open Problems 4.1 and 5.1 are two different questions! It is possible
(but not very likely) that the answer to Open Problem 4.1 is a “yes,” and the answer
to Open Problem 5.1 is a “no.”

10. Open Problem 5.2 Is it true that if the nd Tic-Tac-Toe is a first player win,
then the nD game, where D> d, is also a win?

The twin brother of Open Problem 5.2 is

11. Open Problem 5.3 Is it true that if the nd Tic-Tac-Toe is a draw game, then
the �n+1�d game is also a draw?

12. Open Problem 5.4 Consider the Hypergraph Classification introduced at the
end of Section 5. Is it true that each hypergraph class contains infinitely many nd

games? The unknown cases are Class 2 and Class 3.

13. Open Problem 6.1

(a) Find an explicit first player winning strategy in the �K49�K5� Clique Game.
(b) Find an explicit first player winning strategy in the �K165�K6� Clique Game.

14. Open Problem 6.2 Which player has a winning strategy in the Reverse Clique
Game �K49�K5�−�? How about the �KN �K5�−� game with N ≥ 49 where N →�?

How about the Reverse Clique Game �K165�K6�−�? How about the �KN �K6�−�

game with N ≥ 165 where N →�? In each case find an explicit winning strategy.
The next few problems are about the Win Number.

15. Open Problem 6.3

(i) Is it true that w�Kq� < R�q� for all sufficiently large values of q? Is it true that

w�Kq�

R�q�
−→ 0 as q →�?
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(ii) Is it true that w�Kq�−� < R�q� for all sufficiently large values of q? Is it true
that

w�Kq�−�

R�q�
−→ 0 as q →�?

16. Open Problem 6.4 Is it true that w�K4� < w�K4�−� < 18= R�4�?

17. Open Problem 6.5 Consider the �KN �Kq� Clique Game, and assume that the
Erdős–Szekeres bound applies: N ≥ (2q−2

q−1

)
� Find an explicit first player winning

strategy.

18. Open Problem 6.6

(a) What is the relation between the Weak Win and Reverse Weak Win Num-
bers ww�Kq� and ww�Kq�−�? Is it true that ww�Kq�≤ ww�Kq�−� holds for
every q?

(b) Is it true that ww�Kq� < w�Kq� for all sufficiently large values of q? Is it true
that

ww�Kq�

w�Kq�
−→ 0 as q →�?

(c) Is it true that ww�Kq�−� < w�Kq�−� for all sufficiently large values of q? Is
it true that

ww�Kq�−�

w�Kq�−�
−→ 0 as q →�?

(d) Is it true that

ww�Kq�

R�q�
−→ 0 and

ww�Kq�−�

R�q�
−→ 0 as q →�?

19. Open Problem 6.7 Is it true that ww�Kq�=ww�Kq�−� for every q? Is it true
that ww�Kq� = ww�Kq�−� for all but a finite number of qs? Is it true that they
are equal for infinitely many qs?
Recall thatHJ�n� is the Hales–Jewett number (see Sections 7–8 and Appendix B).

20. Open Problem 7.1 Is it true that w�n−line� < HJ�n� for all sufficiently large
values of n? Is it true that

w�n−line�
HJ�n�

−→ 0 as n→�?

21. Open Problem 7.2 Consider the �N�n� van der Waerden Game where N ≥
W�n�; for example, let

N ≥ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ �n+9�

(Gowers’s bound on the van der Waerden Number). Find an explicit first player
winning strategy.
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22. Open Problem 7.3 Is it true that w�n−term A�P�� < W�n� for all sufficiently
large values of n? Is it true that

w�n−term A�P��
W�n�

−→ 0 as n→�?

23. Open Problem 8.1 (a) Is it true that ww�n−line� < w�n−line� for all
sufficiently large values of n? Is it true that

ww�n−line�

w�n−line�
−→ 0 as n→�?

24. Open Problem 8.2

(a) Is it true that ww�n−term A�P�� < w�n−term A�P�� for all sufficiently large
values of n? Is it true that

ww�n−term A�P��
w�n−term A�P��

−→ 0 as n→�?

(b) Is it true that
ww�n−term A�P��

W�n�
−→ 0 as n→�?

25. Open Problem 9.1 (“Neighborhood Conjecture”)

(a) Assume that F is an n-uniform hypergraph, and its Maximum Neighborhood
Size is less than 2n−1. Is it true that playing on F the second player has a
Strong Draw?

Maybe the sharp upper bound < 2n−1 is not quite right, and an “accidental”
counter-example disproves it. The weaker version (b) below would be equally
interesting.

Open Problem 9.1

(b) If (a) is too difficult (or false), then how about if the upper bound on the
Maximum Neighborhood Size is replaced by an upper bound 2n−c/n on the
Maximum Degree, where c is a sufficiently large positive constant?

(c) If (b) is still too difficult, then how about a polynomially weaker version where
the upper bound on the Maximum Degree is replaced by n−c ·2n, where c > 1
is a positive absolute constant?

(d) If (c) is still too difficult, then how about an exponentially weaker version where
the upper bound on the Maximum Degree is replaced by cn, where 2 > c > 1
is an absolute constant?

(e) How about if we make the extra assumption that the hypergraph is Almost
Disjoint (which holds for the nd Tic-Tac-Toe anyway)?
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26. Open Problem 10.1 Is it true that the “Maker’s building” results in the book,
proved by using explicit potentials, can be also achieved by a Random Strategy
(of course, this means in the weaker sense that the strategy works with probability
tending to 1 as the board size tends to infinity)?

27. Open Problem 12.1

(a) Which order is the right order of magnitude for w�n−line� : (at least)
exponential or polynomial?

(b) For every nd Tic-Tac-Toe, where the dimension d = d�n� falls into range
(12.30), decide whether it belongs to Class 2 or Class 3.

Theorem 12.5 gave a quadratic bound for the “phase transition” from Weak Win
to Strong Draw in the nd Tic-Tac-Toe game. The best that we could prove was an
inequality where the upper and lower bounds for the dimension d differ by a factor
of logn.

28. Open Problem 12.3 Phase transition for nd hypercube Tic-Tac-Toe: Which
order of magnitude is closer to the truth in Theorem 12.5, n2/ logn (“the lower
bound”) or n2 (“the upper bound”)?

29. Open Problem 12.4 Are there infinitely many pairs �N�n� for which the �N�n�
Van der Waerden Game is a second player moral-victory?

30. Open Problem 16.1 Can we replace the pairing strategy upper bound 3n/4
in the Degree Game on Kn with some c ·n where c < 3/4 ? Is it possible to get
c = 1

2 +o�1�?
The next two problems are justified by the Random Graph intuition.

31. Open Problem 20.1 Consider the (1:b) Connectivity Game on the complete
graph Kn. Is it true that, if b = �1− o�1��n/ logn and n is large enough, then
underdog Maker can build a spanning tree?

32. Open Problem 20.2 Consider the Reverse Hamiltonian Game, played on Kn,
where Avoider takes 1 and Forcer takes f new edges per move; Forcer wins if at the
end Avoider’s graph contains a Hamiltonian cycle. Is it true that, if f = c0n/ logn
for some positive absolute constant and n is large enough, then Forcer can force
Avoider to own a Hamiltonian cycle?

33. Open Problem 25.1 For simplicity assume that the board is the infinite complete
graph K� (or at least a “very large” finite KN ); playing the usual (1:1) game, how
long does it take to build a Kq?

34. Open Problem 28.1 Consider the discrepancy version of the Clique Game. Is it
true that the �-Clique Achievement Number A�KN� clique��� is the lower integral
part of
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q= q�N���= 2
1−H���

(
log2N−log2 log2N+log2�1−H����+log2 e−1

)
−1+o�1��

or at least the distance between the two quantities is O�1� ? Here the function
H���=−� log2 �− �1−�� log2�1−�� is the well-known Shannon’s entropy.

35. Open Problem 30.1 Playing the (2:1) game in an N ×N board, what is the
largest q×q aligned Square Lattice that topdog Maker can always build?

36. Open Problem 30.2 (“Biased Clique Game”) Is it true that, in the �m�b� Biased
Clique Achievement Game with m > b, played on KN , the corresponding Clique
Achievement Number is

A�KN� clique�m � b�=�2 logc N−2 logc logc N+2 logc e−2 logc 2−1+ 2 log c

log c0
+o�1���

where c = m+b
m

and c0 = m
m−b

?
Is it true that, in the (m � b) Biased Clique Achievement Game with m≤ b, played

on KN , the corresponding Clique Achievement Number is

A�KN� clique�m � b�= �2 logc N −2 logc logc N +2 logc e−2 logc 2−1+o�1��
where c = m+b

m
?

Is it true that the Avoidance Number

A�KN� clique� a � f�−�= �2 logc N −2 logc logc N +2 logc e−2 logc 2−1+o�1��
where the base of logarithm is c = a+f

a
?

37. Open Problem 30.3 (“Biased Lattice Games”) Is it true that, in the (m � b)
Biased Lattice Achievement Game with m > b played on an N ×N board, the
corresponding Lattice Achievement Number is

(1a)

A�N ×N� Square Lattice�m � b�=
⌊√

logc N +2 logc0 N +o�1�
⌋
�

(1b)

A�N ×N� rectangle lattice�m � b�=
⌊√

2 logc N +2 logc0 N +o�1�
⌋
�

(1c)

A�N ×N� tilted Square Lattice�m � b�=
⌊√

2 logc N +2 logc0 N +o�1�
⌋
�

(1d)

A�N ×N� tilted rectangle lattice�m � b�=
⌊√

2 logc N +2 logc0 N +o�1�
⌋
�

(1e)

A�N ×N� rhombus lattice�m � b�=
⌊√

2 logc N +2 logc0 N +o�1�
⌋
�
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(1f)

A�N ×N� parallelogram lattice�m � b�=
⌊
2
√
logc N +2 logc0 N +o�1�

⌋
�

(1g)

A�N ×N� area one lattice�m � b�=
⌊√

2 logc N +2 logc0 N +o�1�
⌋

where c = m+b
m

and c0 = m
m−b

?
Is it true that, in the (m � b) Biased Lattice Achievement Game with m≤ b played

on an N ×N board, the corresponding Lattice Achievement Number is

(2a)

A�N ×N� Square Lattice�m � b�=
⌊√

logc N +o�1�
⌋
�

(2b)

A�N ×N� rectangle lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2c)

A�N ×N� tilted Square Lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2d)

A�N ×N� tilted rectangle lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2e)

A�N ×N� rhombus lattice�m � b�=
⌊√

2 logc N +o�1�
⌋
�

(2f)

A�N ×N� parallelogram lattice�m � b�=
⌊
2
√
logc N +o�1�

⌋
�

(2g)

A�N ×N� area one lattice�m � b�=
⌊√

2 logc N +o�1�
⌋

where c = m+b
m

?
Is it true that the Lattice Avoidance Number in the �a � f� play is the same as in

(a2)–(g2), except that c = a+f

a
?

38. Open Problem 31.1

(a) Is it true that, playing the (2:2) Achievement Game on KN , Maker can always
build a clique Kq with q = 2 log2N −2 log2 log2N +O�1�?

(b) Is it true that, playing the (2:2) Achievement Game on KN , Breaker can
always prevent Maker from building a clique Kq with q = 2 log2N −2 log2 log2
N +O�1�?
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39. Open Problem 31.2 Is it true that Theorem 31.1 is best possible? For example,
is it true that, given any constant c> 2, playing the (2:2) game on an N×N , Breaker
can prevent Maker from building a q×q parallelogram lattice with q = c

√
log2N

if N is large enough?
Is it true that, given any constant c >

√
2, playing the (2:2) game on an N ×N ,

Breaker can prevent Maker from building a q× q aligned rectangle lattice with
q = c

√
log2N if N is large enough?

40. Open Problem 32.1 Is it true that Theorem 31.1’ is best possible? For example,
is it true that, given any constant c> 2, playing the (k:k) game on an N×N , Breaker
can prevent Maker from building a q×q parallelogram lattice with q = c

√
log2N

if N is large enough?

41. Open Problem 33.1 Let Kq�red�blue� be an arbitrary fixed 2-colored goal
graph, and let q = �2− o�1�� log2N . Is it true that, playing on KN , Red has a
winning strategy in the Kq�red�blue�-building game?

42. Open Problem 34.1 (“Hales–Jewett Conjecture”)

(a) If there are at least twice as many points (i.e., cells) as winning lines, then the
nd Tic-Tac-Toe game is always a draw.

(b) What is more, if there are at least twice as many points as winning lines, then
the draw is actually a Pairing Strategy Draw.

43. Open Problem 47.1 Formulate and prove a stronger version of Theorem 47.1
(Picker’s blocking) which perfectly complements Theorem 33.4 (Chooser’s build-
ing), that is, which gives exact solutions in the biased (1:s) Chooser–Picker versions
of the Clique and Lattice Games.



What kinds of games? A dictionary

Throughout this list we will describing 2-player games played on an arbitrary (finite)
hypergraph. The players take turns occupying points of the hypergraph. The play
is over when all points have been occupied. We begin with the straight complete
occupation games.

Positional Game: Such as Tic-Tac-Toe: Player 1 and Player 2 take turns occupying
new points. The player who is the first to occupy all vertices of a hyperedge (called
winning set) is the winner. If there is no such a hyperdge, the play is declared a
draw. See p. 72.

Maker–Breaker Game: Maker and Breaker take turns occupying new points.
Maker wins if at the end of the play he occupies all points of some winning set;
otherwise Breaker wins (i.e. Breaker wins if he can occupy at least 1 point from
each winning set). See pp. 27 and 83.

Picker–Chooser Game: In each turn Picker picks two unoccupied points, Chooser
chooses one from the pair offered, the other goes to Picker. Picker wins if at the
end of the play he occupies all points of some winning set; otherwise Chooser wins.
See p. 320.

Chooser–Picker Game: In each turn Picker picks two unoccupied points, Chooser
chooses one from the pair offered, the other goes to Picker. Chooser wins if at the
end of the play he occupies all points of some winning set; otherwise Picker wins.
In the reverse versions described below, the objective of the game is to force

your opponent to occupy a whole hyperedge, rather than occupying a hyperedge
yourself. See p. 320.

Reverse Positional Game: Again Player 1 and Player 2 take turns occupying new
points. The player who is the first to occupy all vertices of a hyperedge is the loser.
If there is no such a hyperdge, the play is declared a draw. See p. 76.
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Reverse Maker–Breaker Game=Avoider–Forcer Game: Avoider and Forcer
take turns occupying new points. Forcer wins if at the end of the play Avoider
occupies all points of some winning set; otherwise Avoider wins. See p. 93.

Reverse Picker–Chooser Game: In each turn Picker picks two unoccupied points,
Chooser chooses one from the pair offered, the other goes to Picker. Picker loses if
at the end of the play he occupies all points of some winning set; otherwise Picker
wins. See p. 623.

Reverse Chooser–Picker Game: In each turn Picker picks two unoccupied points,
Chooser chooses one from the pair offered, the other goes to Picker. Chooser loses
if at the end of the play he occupies all points of some winning set; otherwise
Chooser wins. See p. 624.

Here is a new concept.

Improper–Proper Game: Mr. Improper and Ms. Proper take turns occupying new
points, Mr. Improper colors his points red and Ms. Proper colors her points blue.
Ms. Proper wins if and only if at the end of the play they produce a proper 2-
coloring of the hypergraph (i.e., no hyperedge is monochromatic). Mr. Improper
wins if at the end they produce an improper 2-coloring of the hypergraph (there is
a monochromatic hyperedge), so a draw is impossible by definition. See p. 134.

Notice that this game has a one-sided connection with both the Maker–Breaker
and the Avoider–Forcer Games: Maker’s winning strategy is automatically Mr.
Improper’s winning strategy (he can force a red hyperedge), and, similarly, Forcer’s
winning strategy is automatically Mr. Improper’s winning strategy (he can force a
blue hyperedge).

If the points of a hypergraph are 2-colored (say, red and blue), the discrepancy
of a hyperedge is the absolute value of the difference of the number of red points
and the number of blue points in that hyperedge.

Notice that every play defines a 2-coloring: one player colors his moves (i.e.,
points) red and the other player colors his moves (points) blue.

In a Discrepancy Game one player is trying to force the existence of a hyperedge
with large discrepancy. See p. 231.

In a One-Sided Discrepancy Game one player is trying to force the existence
of a hyperedge with large discrepancy where he owns the majority. See p. 231.

A Shutout of a hyperedge is the number of points that one player occupies in a
hyperedge before the opponent places his first mark in that hyperedge.

In a Shutout Game a player is trying to force some hyperedge to have a large
Shutout. See p. 85.

Finally, a bunch of concrete games.

Animal Tic-Tac-Toe: See Section 4, p. 60.
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Bridge-it: A particular “connectivity game”—see Section 4, p. 66.

Clique Games: Graph games in which the goal is to build (or to avoid building) a
large complete graph (often called clique)—see Section 6, p. 92.

Connectivity Games: See Sections 4 and 20, pp. 67 and 286.

Degree Game: Maker’s goal is to build a large maximum degree in a complete
graph – see Sections 16–17, pp. 231–59.

Hamilton Cycle Game:Maker’s goal is to build a Hamilton cycle – see Section 20,
p. 291.

Hex: A particular “connectivity game” – see Section 4, p. 65.

Kaplansky’s k-in-a-line game: See Section 4, p. 64.

nd-game (multidimensional Tic-Tac-Toe): The board is the d-dimensional hyper-
cube, where each side is divided into n equal pieces. It consists of nd little “cells.”
The winning sets are the n-in-a-row sets. See Section 3, p. 44.

Row-Column Game: See Sections 16–19, pp. 231–85.

Unrestricted n-in-a-row: The players play on the infinite chessboard, and the goal
is to have n consecutive little squares horizontally, vertically, or diagonally (slopes
±1). See the end of Section 10, p. 157.



Dictionary of the phrases and concepts

Almost Disjoint Hypergraphs: Any two different hyperedges intersect in at most
one common point (like a collection of lines), p. 27.

Achievement Number: See Section 6, p. 104.

Avoidance Number: See Section 6, p. 104.

Backward Labeling: Extension of the labeling (I wins, or II wins, or Draw) to
the whole Position-Graph (or Game-Tree), see Appendix C, p. 691.

Board of a Hypergraph Game: The underlying set of the hypergraph; it usually
means the union set of all hyperedges (winning sets), p. 72.

Chooser Achievement Number: See Section 47, p. 623.

Chooser Avoidance Number: See Section 47, p. 625.

Chromatic Number: The chromatic number of a graph (hypergraph) is the mini-
mum number of colors needed to color the vertices such that no edge (hyperedge)
is monochromatic.

Classification of finite Hypergraphs: Six classes defined at the end of Section 5,
p. 88.

Combinatorial Games: A very large class of games defined in Appendix C, p. 690.

Complete Analysis of a Game: Complete solution of a game—see Appendix C,
p. 691.

Degree (Maximum, Average) of a Graph or Hypergraph: The degree of a
vertex is the number of edges (hyperedges) containing the vertex. The Maximum
(Average) Degree means to take the maximum (average) over all vertices.

Determined and Undetermined Games: Determined means that either the first
player has a winning strategy, or the second player has a winning strategy,
or both players have a drawing strategy. There exist infinite games which are
undetermined – see Appendix C, p. 697.
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Drawing Terminal Position: A Halving 2-Coloring of the board such that no
winning set is monochromatic, p. 51.

Drawing Strategy: By using such a strategy a player cannot lose a play (i.e., either
wins or forces a draw), p. 680.

End-Position of a Partial Play: The last position of a partial play, p. 678.

Game: A set of rules.

Game-Tree: See Appendix C, p. 686.

Hales-Jewett Conjecture(s): If the number of points is at least twice as large as
the number of winning lines in an nd Tic-Tac-Toe game, then the second player
can force a draw (or even a pairing draw) – see Section 34, p. 463.

Hypergraph: A collection of sets; the sets are called hyperedges or winning sets.

Linear-Graph Game: See Appendix C, p. 691.

Pairing Criterions: Criterions which guarantee a draw-forcing pairing strategy –
see Theorems 11.1–11.2, p. 164.

Pairing Draw (Draw-Forcing Pairing): A decomposition of the board (or a subset
of the board) into pairs such that every winning set contains a pair, p. 163.

Partial Play: It means an initial segment of a play with “history” – see Appendix C,
p. 678.

Picker Achievement Number: See Section 22, p. 322.

Picker Avoidance Number: See Section 47, p. 623.

Position: See Appendix C, p. 678.

Position-Graph: See Appendix C, p. 688.

Power-of-Two Scoring System: The basic idea of the proof of the Erdős–Selfridge
Theorem (Theorem 1.4), pp. 28 and 152.

Proper 2-Coloring: A 2-coloring of the board with the property that there is no
monochromatic winning set, p. 51.

Ramsey Criterions: See Theorems 6.1-2, pp. 98–9.

Resource Counting: See Section 10, p. 149.

Reverse Games: Avoidance versions, p. 76.

Strategy Stealing: See Section 5 and Appendix C, p. 74.
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Strong Draw: When a player, usually the second player (or Breaker), can occupy
at least one point from every winning set, p. 46.

Terminal Position: The “end” of a play; when the board is completely occupied.

Weak Win: A player can completely occupy a winning set, but not necessarily
first, p. 46.

Weak Win Number: See Section 6, p. 97.

Winning Sets: An alternative name for the hyperedges of a hypergraph.

Winning Strategy: A player using such a strategy wins every possible play.

Win Number: See Section 6, p. 97.
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