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This book contains twenty essays, each of which deals with a separate math-
ematical topic. It may be a brilliant mathematical statement with an interesting
proof; or a simple, but effective method of problem solving; or an interesting prop-
erty of polynomials; or it may refer to exceptional points of the triangle.

In its time, when I first came across each of these topics, I was seriously im-
pressed and was led to reflect about them. I later returned, more than once, to
many of them, and each time found something new to think about.

The twenty essays are, for the most part, independent of each other. The only

onccantial aveontinn ic tha lagt aceavy ahant ~nhis M e ralatad +a o triancla Thia
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essay is based on a previous one, the one about isogonal conjugation with respect
to a triangle. But the topic of cubic curves related to triangles is too difficult to be
developed without preliminaries anyway.

I have lectured on all these topics to high school students in Moscow, Tel-Aviv,
Haifa, and Cheliabinsk.






CHAPTER 1

Conjugate Numbers

If we compute a few of the first terms of the sequenece a, = (2 + v3)", it
is easy to see that as n increases more and more, the number a,, differs from an
integer less and less:

a = 3,7321
as 13,9282
az = 51,9808
agy =~ 193,9948
as ~ 723,9986
ag ~ 2701,9996.

Q

This strange behavior becomes somewhat easier to understand after we com-
pute the first few terms of the sequence b, = (2 — v/3)™. Indeed, we have

b, = 0,2679 = 4—a
by = 0,0718 = 14 —as
by = 0,0192~ 52 —a3
by =~ 0,0052 =~ 194 — a4
bs = 0,0014 = 724 — as
bg =~ 0,0004 =~ 2702 — ag.

The decrease of the numbers b, is obvious, since |2 — /3| < 1. Thus, in order to
explain why the numbers a, behave as they do, it suffices to prove that all the
numbers a, + b, are integers.

To that end let us first note that no number can be represented in two different
ways in the form m + ny/3, where m and n are rational numbers. Indeed, let

m 4+ nv3 = m: 4+ n:/2 where the numhers m. n. m
m + ny m; + niv where the numbers m,

3 3, i, n, my,

my #m or ny # n, then

and n; are rational. If

1 1 Qvalliidmi.,

\/§=m—m1.

Ty —n

But this equality cannot be true, because v/3 is an irrational number.

Thus, for each number z of the form m + nv/3, where m and n are rational
numbers, we can define the conjugate number z = m — ny/3. It is easy to check
that 2125 = Z125, ie., if

(a+bV3)(c+ dV3) = A+ BV3,

then

(@ — bV/3)(c—dV3) = A - BVS.

1



2 1 CONJUGATE NUMBERS

Using this property, we see that
(a+bV3)" = A, + B,V3
implies
(a —bV/3)" = A, — B,V3.
Therefore,
an + bp = {2+
is an integer.

The behavior of the fractional parts of the numbers a, = (p + \/q), where p
and q are positive integers and 0 < p — /g < 1 is quite similar. For the case where
-1 < p— /g < 0, the situation is somewhat more complicated. This is because
although the numbers (p + ,/q)" + (p — /q)" are integers for all natural n, for even
n the number (p — ,/q)" is positive, whereas for odd n the number (p — \/q)" is
negative.

Let a and b be rational numbers, let IV be a positive integer which is not an
exact square. Then the equality (a + by/N)" = A + BV N implies that

(a—bVN)* = A—- BVN.

We have proved this statement only for N = 3, but in the general case the proof
is completely similar. We have already discussed one of the applications of this
statement. Now let us consider a few more applications.

1. For rational numbers x,y, z, and t the relation
r+yV2)2 + (2 +tV2)2 =5+ 4V2
is impossible.

Indeed, if the above relation holds for the rational numbers z, vy, z, and ¢, then
for the same numbers we will have

(x —yv2)? + (z — tV/2)? =5 — 4V2.
But 5 — 4v/2 < 0, while (z — yv/2)2 + (2 — tv/2)2 > 0.

2. For positive integers m and n the relation (5 + 3v/2)™ = (34 5v2)" cannot
hold.

a . /oym __ (2 /_\n

mwdand 1ot (£ fovm _ (9 4 = /ownm Then {5 — 34 — _
Il ) OVA/ —-\0 L}.

nuceu, ITu \U‘T’OV&} -_ \O“I’UV&) . 1 (
A contradlctlon can now be obtained in different ways. The first is to notlce
that |5 —3v2| < 1 and |3 — 5v/2| > 1. The second is to multiply the equalities
(5+3v2)™ = (34 5v2)" and (5 — 3v/2)™ = (3 — 5v/2)", obtaining 7™ = (—41)".

3. The equation x? — 2y® =1 has infinitely many solutions.

It is easy to find one solution, say x; = 3 and y; = 2. The equality 2% —2y% = 1
can be rewritten as

(z1 — 1 V2)(z1 + 11V2) = 1.

Clearly, we then have
(@1 -y V2) (&1 + V2" =1L
Further, (z; + 4 v2)” = z, + ¥, V2. Hence,
Tk — 292 =1,



1 CONJUGATE NUMBERS 3

i.e., (xn,yn) is a solution also, and 11 > Tn, Ynt1 > Yn.
Let us state without proof several properties of solutions of the equations
z? —dy’ =c

in positive integers (here d is an integer which is not an exact square). The equation
x? —dy? = 1 has solutions for all d; if (x;, ;) is the smallest solution (i.e., a solution

*
with the smallest x; or smallest y;, which of the two makes no difference), then

any other positive integer solution is of the form (x,, y.), where
Tn + yn‘/‘_i =(z1+m \/E)n

For ¢ # 1 the equation 22 — dy? = ¢ may have no positive integer solution. For
example, the equations 2 — 2y = 3 and z2 — 5y% = 2 do not have any positive
integer solutions.

If d is a prime number of the form 4k + 3, then the equation z? — dy? = —1
has no positive integer solutions, while if d is a prime of the form 4k + 1, then the
equation x? — dy? = —1 always has positive integer solutions.

Let (x1,%1) be the smallest positive integer solution of the equation 2 —dy? = 1
and (z',y’) be some positive integer solution of the equation z2 — dy?> = c. Then
the numbers (z),,y},), where

zh +yVd = (2’ + ¢ Vd)(z1 + ;i Vd)" T,

will be solutions of the equation z? — dy? = c. Further, all solutions of the equation
x? — dy? = c constitute a finite family of sequences (z!,y.), originating from
the solution (z’,y’). But for ¢ # 1 there may be several such sequences. For
example, the solutions of the equation x?—2y? = 7 constitute two disjoint sequences,
originating from the solutions (3,1} and (5, 3).






CHAPTER 2

Rational Parametrizations of the Circle

In order to find points on the circle 2 + 4? = 1 whose coordinates are both
rational, the following construction may be used. Take an arbitrary point A with
rational coordinates on the circle and draw all possible straight lines passing through
it. For example, for the point A we can take (1,0) or (3/5,4/5). We shall perform
the calculations for the point (1, 0), but for any other point with rational coordinates
on the circle the computations are similar.

A straight line passing through the point (1,0) is either given by the equation
y = t(x — 1), or by the equation x = 1 (the equation x = 1 may be obtained
from the equation y = ¢{(x — 1) by putting ¢ = oo; hence it is convenient to agree
that ¢ can also assume the value co). In order to find the intersection of the line
y = t(x — 1) with the circle 22 + y* = 1, we must solve the quadratic equation
2+t (z-1)2=1,ie,

a2 t*-1
T2+l 241
One intersection point of the line and the circle, the one corresponding to = = 1,

is already known. Therefore the x-coordinate of the second point may be found by
the Vieta theorem. As the result, we obtain

—gyp YTH )= 1

Thus the intersection point of the circle 2 + y> = 1 and the line y = ¢(z — 1) has

the coordinates
2—-1 -2t
2418241/

This means that the point on the circle will have rational coordinates if and only
if it corresponds to a rational value of the parameter ¢. Indeed, if the number ¢ is

— N
- uU.

T

$2 -1 -2t

rational, then so are the numbers £ = —— and y = ———. Conversely, if £ and
21 YT e ¥

y are rational, then so is ¢t = L] It is convenient to consider the value ¢ = o0,

corresponding to the point (1,0), as also being rational.

By using the rational parametrization of the circle one can describe all Pythago-
rean triples, i.e., triples of positive integers (a, b, ¢), such that a? 4+ b% = ¢2. Namely,
(a,b,c) will be Pythagorean triple if and only if there exist positive integers m
and n, such that @ = m? — n?, b = 2mn, ¢ = m? 4+ n? (or a = 2mn, b = m? — n?,
c =m? +n?).

Let us begin the proof of this statement by getting rid of the common divisors.
If two of the three numbers a,b, ¢ are divisible by d, then the third will also be
divisible by d. Hence we can assume that a/c and b/c are simple fractions. The

5



6 2 RATIONAL PARAMETRIZATIONS OF THE CIRCLE

point (a/c,b/c) lies on the circle x2 +3? = 1 and both of its coordinates are rational.
Therefore,

a -1 b 2
c T#+1 ¢ T8R4
where ¢ is a rational number. Let ¢t = m/n be a simple fraction. Then
2 _ 2
a_ym-nm b_, 2mn
c m?+ns ¢ mé + n*
The fraction m/n is simple, so the numbers m and n cannot both be even. If one
2 _ 2
. . m‘—n 2mn
of them is even and the other odd, then the fractions ——— and ——— are
m? + n? m?2 4 n?

both simple. If both numbers m and n are odd, i.e, m =2p+1and n =2¢+ 1,
then, as can readily be checked,

a 2min, b m? — n?
c mi+nd’ ¢ m? +n?’

where m; = p+ ¢+ 1 and n; = p — g. We have obtained simple fractions, since one
of the numbers m; and n; is even, while the other is odd.

As we have already mentioned, if we take another rational point on the circle,
similar calculations will yield a similar parametrization of the circle by a parame-
ter t, and to rational values of the parameter will correspond rational points on the
circie. Moreover, one may similarly parametrize any second order curve

(1) ar? + bzy+cy’ +dr+ey+ f=0.

To this end one can choose an arbitrary point of the curve and draw all the straight
lines passing through it.

Suppose that the following conditions are satisfied:

e the coefficients a,b,..., f are rational;

e the coordinates of the chosen point are rational,

e the curve (1) has infinitely many points.

Then as the result we obtain a parametrized curve (1) such that to rational values
of ¢ correspond points of the curve whose coordinates are both rational. Recall that
we have used the fact that the curve (1) contains at least one point with rational
coordinates. But such a point does not always exist. The simplest example is the
curve 72 4+ y? = —1.

A more instructive example is the curve 2x? + 5y? = 1. Let us verify that it
has no rational points. Assume that (z,y) is a rational point of this curve. We can
assume that x = p;/q and y = pa/q, where the numbers p, p2, ¢ have no common
divisor (i.e., there is no number d that divides all three of these numbers).

The numbers p;, pa, ¢ satisfy the relation 2p? +5p2 = ¢°. Hence 2p? and ¢2 have
the same remainders under division by 5. But under division by 5 the number a2
can only have the remainders +1 or 0. Hence 2p? has the remainder £2 or 0 under
division by 5, while ¢® has remainder +1 or 0. Therefore, both numbers 2p? and ¢?
are divisible by 5 and so are divisible by 25. But then 5p2 is divisible by 25, and so
pa is divisible by 5. As the result we see that the numbers p; and p2, g are divisible
by 5, which contradicts the assumption.



CHAPTER 3

Sums of Squares of Polynomials

It is easy to prove that any polynomial p(z) with real coeflicients that takes
nonnegative values for all real x, can be represented as the sum of squares of two
polynomials with real coefficients. To do this, first let us note that if p(z) = 0 and
p is a polynomial with real coefficients, then p(z) = p(z) = 0, i.e., Z is also a root of
the polynomial p. Hence the roots of a polynomial with real coefficients are either
real numbers or pairs of conjugate complex numbers. Therefore,

s t
p(x)=all(z—2)x—-2)Tl(x = a,)™
£ N r ll\ F A g7 ll\ ~n

j=1 k=1

where the numbers oy are real.
Now assume that we have p(x) > 0 for all real x. If x is large enough and

positive, then
8 t
TT/.. N - NTT¢, mg
11\ \
=1

:c—zj)(:r’—zi)ll z—ap)™ >0,
k

—

J:
so that a > 0. Moreover, all the exponents m; are even. Indeed, assume that
some my are odd. We can suppose that only the numbers m,,...,m, are odd and
o) < --+ < ag. Then for o, ; <z < a, we have the inequality

t
H(x - ak)m" <0,
k=1

i.e., p(xz) < 0. (If s = 1, then this inequality is satisfied for all x < a;.)
Thus the real roots also appear in pairs. Therefore,

px) = (ﬁlj(w - 3)) (ﬁlj(w -%)),

where some of the numbers z; may be real. Let

i
Va[](z - 2) = a(z) + ir(a),
Jj=1
where ¢ and r are polynomials with real coefficients. Then
!
\/EH(J: - z;) = q(z) — ir(x).
j=1

Finally we obtain p(z) = (q(ar))2 + (r(a;))z.

But for polynomials in several variables a similar statement is not always true,
i.e., there exist nonnegative polynomials (by that we mean polynomials with real

7



8 3 SUMS OF SQUARES OF POLYNOMIALS

coeflicients that take nonnegative values for all real values of the variables) that
cannot be represented as the sum of squares of polynomials with real coefficients.
This was first proved by Hilbert in 1888, but he did not give an explicit example of
such a polynomial. The first simple example was presented by T. Motzkin in 1967.
Namely, he showed that the polynomial
F(z,y) = 22y*(z®> + y> - 3) + 1

is nonnegative but cannot be represented as the sum of squares of polynomials with
real coefficients. The main difficulty, of course, was to find such a polynomial, while
the actual proof of its properties, as we shall soon see, is not difficult.

The fact that F is nonnegative, follows from the equality
(1 — 2292)% + 22(1 — 92)? + 22(1 — 22)%y?

1+ x2 ’

Now let us assume that F(x,y) = 5_ fi(z,y)?, where the f; are polynomials
with real coefficients. Then 3 f;(x,0)? = F(z,0) = 1. If at least one of the poly-
nomials f;(z,0) in the variable  is not a constant, then " f;(z,0)? is a polynomial
whose degree is twice that of the highest degree of the polynomials f;(x,0). There-
fore, fi(x,0) = ¢; is a constant, so that f;(z,y) = ¢;+yg;(x,y). A similar argument
shows that f;(x,y) = c; + zgj(x,y). Clearly ¢; = ¢ and f;(x,y) = ¢; + zyhj(z,y),
while

F(z,y) =

degh; =deg f; —2 < -deg FF -2 = 1

N =

here deg f is the degree of the polynomial f. Thus,
2y?(z® 4+ y? — 3) + 1 = z%y? Zh}q + 2xchjhj + Zc?,

ie.,
:z:n: ; n,’a 1 ; n2 1
y : b]'b] T : bJ 4.

All the monomials in the right-hand side of this equation are of degree at least 3,
while those in the left-hand side are of degree at most 4. Therefore, 22y?(x%y? —
3) —x*y? > h? =0, and so 2° + y* — 3 = }_ hZ. This is a contradiction, because
> +y2 -3 <O0whenz=y=0.

We have discussed only the simplest known results about the sum of squares.
At present a great deal is known on the subject, but many questions still remain
unanswered. The German mathematician David Hilbert conjectured that any non-
negative polynomial in several variables can be represented as the sum of squares
not of polynomials, but of rational functions. He included the question: “Is this
true or not?” under number 17 in his famous list of 23 problems. Hilbert’s Seven-
teenth Problem was solved in 1927 by E. Artin. He proved that any nonnegative
polynomial can be represented as the sum of squares of a certain number of ratio-
nal functions. In 1967 A. Pfister made Artin’s theorem more precise; he showed
that any nonnegative polynomial in n variables can be represented as the sum of
2" squares of rational functions: But it is still unknown if 2" can be replaced by
a smaller number. Only for n = 2 is it known that the number 2" = 4 is in this
case minimal. Actually Cassels, Ellison, and Pfister showed in 1971 that the same
polynomial F(z,y) that we considered above cannot be represented as the sum of
squares of three rational functions. Their proof is quite difficult; it is based on deep
results from the theory of elliptic curves.



CHAPTER 4

Representing Numbers as the Sum of Two Squares

In one of his letters in 1658 Pierre Fermat wrote that he had obtained an
“indisputable proof” of the fact that any prime number of the form 4k + 1 is the
sum of two squares and any number is the sum of no more than four squares. No
written record of the proof remained after Fermat. A hundred years passed, and
Leonard Euler became interested in these theorems. He proved the first one in
1747, and two years later found another elegant and relatively simple proof of the
same theorem. The second theorem was proved only in 1770 by Lagrange, and then
its proof was considerably simplified by Euler.

Later other interesting proofs of the fact that prime numbers of the form p =
4k + 1 can be represented as the sum of two squares were found; all of them, like
Euler’s proof, were not quite elementary. And only recently’, a very elegant and
perfectly elementary proof of this theorem was obtained.

The main role in the proof is played by the simple but very important notion

. . . ot p
of involution. Let M be a set. A map o: M — M is said to be an involution if

o(o(m)) = m for any element m of the set M. Any symmetry is an example of
an involution. An involution combines points (elements of the set M) into pairs
{m,o(m)} of “symmetric” points. For the element ¢(m) we obtain the same pair as
for the element m, since o(o(m)) = m. No pair of elements arises only if o(m) =
(such points m are called fized). Therefore if an involution of a finite set M is
given, then the number of fixed points of M is even whenever the total number of
points of M is even (since the other points appear in pairs, so that their number is
certainly even).

The general outline of the proof is as follows: consider the set of all solutions
of the equations z? 4+ 4yz = p in positive integers. It suffices to prove that if
p = 4k + 1, then this equation has a solution for which y = 2. Indeed, in that
case p = 2 + (2y)%. A solution for which y = z is a fixed point of the involution
o(x,y,2) = (x,2,y). So we need only prove that the total number of solutions is
odd. To this end we construct a completely different involution T with precisely
one fixed point. Here is this involution:

(1) ((x+2z,2,y—x-2), zT<y-—z
(2) T(.’E,y,Z)= (2y—x,y,x—y+z), y—Z<.’II<2y;
(3) (x—-2y,z-y+2y), 2wy<z

First note that x # 2y and = # y — 2, since otherwise we would have

p=a’+4yz=4(y  +yz) or p=(y—2)?+4yz=(y+2)>.

1D Zagier, A one-sentence proof that every prime p = 1 (mod 4) is a sum of two squares,
Amer Math. Monthly 97 (1990), 114.



10 4 REPRESENTING NUMBERS AS THE SUM OF TWO SQUARES

Let us check that any solution of the equation x? + 4yz = p is indeed taken to a
solution by the involution 7. This follows from the identities

(T +22)° +42(y — x — 2) = 2% + 4yz,

(x —2y)* +4y(z —y + 2z) = 2% + 4yz.

2'). f$<y—z thenx'—m+22>22—2y’,ie apointof
int o

dure Q: awler ~ea Aleo 41 o i d [

Ty 1. r r
t l.ry pe \O) L)ll.llll.d.l 1y OlIT Lllﬁbl\b l:l.l.d..l; a PuULLIL Ul. Ly pe \0}

Lype \.L} is taken to

Let’r(w y,2) = (2,9,

- poin
is taken to a point of type (1), while a point of type (2) goes to a point of type (2).
After that, it is easy to see that 7 is an involution.

A point of type (1) cannot be fixed, since ' = z + 2z > x; for a point of
type (3), we have 2’ = 2 — 2y < z. Hence only a point of type (2) can be fixed,
and it must satisfy the relation z = 2/ = x —y + z, i.e., £ = y. In that case
p =z + 4yz = x(x +42), so that x = y = 1 (here we use the fact that p is prime).
If p =4k + 1, then (1,1,k) is a fixed point (here we use the fact that p is of the

form 4k + 1). This completes the proof.

Let us continue with a few more remarks concerning the representation of
numbers as the sum of two squares. First note that a prime number of the form 4k+
3 cannot be represented as the sum of two squares. Indeed, the square of 2m + 1
equals 4(m2+m) + 1, and so its remainder under division by 4 equals 1. Therefore,
the remainder under division by 4 of the sum of two squares can equal 0, 1, or 2,
but certainly not 3.

The condition that p = 4k 4+ 1 be prime is also essential. For example, 21
cannot be represented as the sum of two squares.

Let us also note that if m = a? + b2 and n = ¢2 + d?, then

mn = (ac + bd)* + (ad — bc)?

is also the sum of two squares. Hence the product of prime numbers of the form
4k 4+ 1 can be represented as the sum of two squares. But if the factor 4k + 3
raised to an odd power appears in a positive integer, then this integer cannot be
represented as the sum of two squares. This follows, for example, from the fact that
the divisibility of a2 4+ % by a prime number of the form p = 4k + 3 implies that
a and b are also divisible by p. (The proof of this statement follows from Fermat’s
Small Theorem.)



CHAPTER 5

Can Any Knot Be Unraveled?

A knot may be imagined as a string whose ends are joined together after the
string has been tangled in some way. The simplest examples of knots are shown in
Figure 1. The knot shown in Figure 1(b) is known as the trefoil.

CO

FIGURE 1

(a)

After the ends of the string have been joined, one may try to untangle it or
tangle it up further, of course without tearing the string. If you try to “unravel” the
trefoil (i.e., to transform it into the knot shown in Figure 1(a)}, you will soon see
that this cannot be done. But how does one prove that no succession of tangling and
untangling manipulations will unravel the trefoil? The first proofs of this fact were
based on quite complicated techniques from algebraic topology. It is only recently,
in the eighties, that elementary proofs of the fact that the trefoil (and some other
knots) cannot be unraveled appeared. Such a proof will now be described.

Any knot can be represented by its projection on some plane, showing which
branches are higher and which are lower by interrupting the line depicting the lower
branch. Such a picture is called a knot diagram; an example of a knot diagram for
the trefoil is Figure 1(b).

Any knot diagram consists of several arcs; for instance, the diagram in Fig-
ure 1(b) consists of three arcs. Consider all possible colorings of a knot diagram in
three colors, each arc being painted in one color. Let us call a coloring correct if at
each crossing the three arcs either all have the same color, or have three different
colors (i.e., two arcs of the same color and a third one of a different color cannot
meet at a crossing).

THEOREM, The number of correct colorings of any knot diagram does not
change when we tangle or untangle the knot.

ProOOF. We shall use without proof the following rather obvious statement: the
transformation of a knot diagram when we tangle or untangle it reduces to carrying
out a succession of operations of the three types shown on Figure 2. (A rigorous
proof of this statement can be obtained by replacing the knot by a closed polyg-
onal line and following what happens to its projection in the tangling untangling
process. }

11
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We must check that under the operations shown above each correct coloring
becomes a well-defined correct coloring of the transformed diagram. Let us explain
what we have in mind. Suppose a correct coloring of the diagram is given. Consider
the diagram obtained from the given one by one of the three operations indicated
above. This operation is performed within a circular disk D. Let us leave the
coloring outside the the disk D. The arcs of the transformed diagram intersecting
the boundary of the disk will be colored in some way. We must verify that this
coloring can be extended to a correct coloring of all the arcs inside the disk D and
that this coloring is unique.

For colorings in one color this is obvious. For all essentially distinct correct
colorings in more than one color, the colorings of the corresponding transformed

diagrams are shown in Figure 3. The proof of the theorem is complete. O

FIGURE 3
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Now we can prove that the trefoil cannot be unraveled. Figure 4 shows a
correct coloring of a diagram of the trefoil in which all three colors are used. But
the unknotted circle shown in Figure 1(a) can only be colored in one color.

Unfortunately, by using correct colorings of knot diagrams in three colors, it is
not always possible to establish that a knot cannot be unraveled. For example, the
figure eight knot, shown in Figure 5 cannot be unraveled although all of its diagrams
possess only monochromatic colorings in three colors, just as the diagrams of the
unknotted circle.

In order to prove that the figure eight knot cannot be unraveled, one can
use correct colorings in five colors. It is then convenient to regard the colors as
remainders under division by 5. We shall say that a coloring of a knot diagram in
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{see Fiocure B): this exnressio

(see Figure 6); this expression mear
remainder under division by 5. In
of a knot dlagram in n colors.

By looking at Figure 7 it is easy to check that the numbe t
a knot diagram in n colors does not change in the process of tangling and u ta.nghng
a knot.

Figure 8 shows that the diagram of the figure eight knot has a multicolor correct
coloring in five colors. Hence the figure eight knot cannot be unraveled.

It is not hard to check that all the correct colorings of the trefoil in five colors
are monochromatic, so that the trefoil and the eight are different knots (they cannot

be transformed into each other).
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CHAPTER 6

Construction of a Regular 17-gon

In Ancient Greece geometers used various instruments for constructing figures,
but the main instruments used were the ruler and compass. And in the most
famous ancient geometry textbook, Euclid’s “Elements”, no other instruments are
considered. For that reason by a geometric construction one ordinarily means a
construction with ruler and compass. The compass allows one to draw a circle
of given radius centered at a given point, while the ruler allows one to draw the
straight line passing through two given points.

Great attention is paid in Euclid’s “Elements” to the construction of regular
polygons. The construction of the regular triangle is described in Proposition 1 in
Book I, while almost all of Book IV is devoted to the construction of other regular
polygons: the square, the pentagon, the hexagon, the polygon of fifteen sides. For a
very long time, nothing essentially new was added to this by geometers until 1786,
when the nineteen year old Gauss showed that the regular polygon of 17 sides can be
constructed by ruler and compass. Later he proved that if the number n = 92" 41
is prime, then one can construct a regular n-gon by ruler and compass. Gauss also
claimed that he was able to prove that a regular n-gon can be constructed only if
n = 2"p,...ps, where py,...,ps are distinct prime numbers of the form 92" 4 1.
But none of his papers contains a proof of this claim.

The construction of the regular 17-gon involves much more algebra than geom-
etry. The de Moivre formuia

(cosa + isina)” = cosna + isinno

shows that the roots of the equation £ — 1 = 0 are of the form

2km .. 2km
cos —— 4 i1sin —.
n n

On the complex plane, these points form the vertices of the regular n-gon. Thus
the construction of the regular n-gon is closely connected with the solution of the
equation x* — 1 = 0. This equation has the obvious root x = 1. To get rid of it,
let us divide the polynomial 2™ — 1 by £ — 1. The result will be the polynomial

2

R R A R

It is this polynomial that we shall consider below.

Let us say that the complex number a + ib can be constructed if it is possible
to construct line segments of lengths a and b, i.e., to construct the point a + b on
the complex plane. If a unit segment is given, then by using the given segments a
and b we can construct the segments a £ b, ab, a/b, \/a. It is easy to check that

2 3 1/2 2 7 _ 1/2
\/a-+-—z'=:t[(\/_a +2b —l—a) _H_(\/a +2b a) ]

15



16 6 CONSTRUCTION OF A REGULAR 17-GON

Therefore, if a and b can be constructed, then v/a + ib can also be constructed.
Thus we see that if the numbers u and v can be constructed, then so can the roots
of the equation z2 + uz + v = 0.

To begin with, let us describe the construction of the regular n-gons for n = 3
and n = 5 from this point of view. For n = 3 we obtain the equation 22 +z+1 = 0.
This equation is quadratic, so its roots can be constructed.

Forn =5 we get theeguation x4 + 23+ 22 +z4+1=0. Setu =z + =z
It is easy to check that 42 + u — 1 = 0. The roots u; and us of this equation
can be constructed. Using them, one can construct the roots of the equations
2 —uiz+1=0and 22 —usz+1 = 0. These roots are roots of the initial equation.

Now we can proceed to the construction of the regular 17-gon. To do this, as
we have shown above, it suffices to prove that the roots of the equation

-1

oS4z 41=0

may be obtained by successively solving quadratic equations. It actually suffices to
find one root

€ = COS 2m + ¢sin 27,
T 17’
the others will have the form &2,¢3,...,¢!%. Gauss’ proof is based on a special

numbering of these roots. He numbers them in such a way that for a fixed [, from wy
(the root with number k) we obtain wgy; according to the same rule, namely by

raising wy to a fixed power. Such a numbering can be obtained by setting wy = egk,
where the numbers 1, g,4%, ¢°,...,g' all have different remainders under division
by 17. Indeed, in that case

k+1 k1 l
W4l = g9y =99 = (wk)g .

For g we can take, say, the number 3. Then

. o r
wo=¢, wi =5, wy =6, wa=el?, wy=eB 5 _ 15 _ .l

h
16 _ 14 _ 8 _ 7 _ 4 12 2 __ 6
Wg =& , Wg=¢& , Wip=¢€¢, W11 =€, W2=¢€, W3 =€ , Wiy =€, W5 =€

First let us consider the quadratic equation with roots

7 7
Iy = E Wog, o= E Wok+t1.

By the Vieta theorem, Y  w; = —1, hence z; + 2z, = —1. It is easy to check that
r1=(e+e¥)+(+ M)+ (2 +e¥) + (e +€13)
= 2(cos @ + cos 8a + cos 2a + cos4a),
z2 = 2(cos3a + cos Ta + cos5a + cosba),
where o = 27 /17. Using the formula
2 cos pa cos ga = cos(p + q)a + cos(p — q)a,
we obtain
119 = 8{cosa + cos2a + cos3a + - - - + cos8a) = 4(x; + x2) = —4.

Thus z; and x5 satisfy the quadratic equation 22 +x—4 = 0 with integer coefficients.
Therefore x; and 2 can be constructed.
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Now let us consider the quadratic equation with roots
3 3
Yy = Zu)4k = 2(cos a + cos4a), Yo = Zw4k+2 = 2(cos 8a + cos 2a).
k=0 k=0
It is easy to check that y; + yo = x; and
Y1y2 = 2(cosa + cos2a + cos3a + - - - +cos8a) = 11 + T2 = —1.

Thus y; and y» are the roots of the quadratic equation y?> — 1y + 1 = 0. Similarly
one proves that
3 3
Yz = Zw‘”‘"‘l = 2(cos 3a + cos ba), Yg = Z waky3 = 2(cos Ta + cos 6a)
k=0 k=0
are the roots of the quadratic equation y? — zoy + 1 = 0. Therefore, y1, ¥2, y3 and
¥4 can be constructed.
Finally, consider the quadratic equation with the roots

7] =wptwg =2cC05q, 22 =wyq+wiz = 2cos4a.

Clearly, we have z; + 20 = y; and z;20 = 2(cos5a + cos3a) = y3. Thus z; and
zy are the roots of the quadratic equation z2 — y1z + y3 = 0. Hence z; = 2cosa
can be constructed, and therefore so can € = cosa + isina. But then the regular
polygon of 17 sides can be constructed.






CHAPTER 7

The Markov Equation

The relation
(1) m? + n? + p? = 3mnp,
where m, n, and p are positive integers, is known as the Markov equation. 1t is
interesting that it has infinitely many solutions, and although the structure of the
solutions is complicated, this structure is quite understandable,

First let us assume that among the numbers m, n, and p some are equal, say

n =p. Then m? + 2n? = 3mn?, ie., 3m (m/n)? + 2. Therefore, m = dn, where
4 ig an intecer Here r’2 _L r) RIeY; o Al An — r’\ — 9 Haonero 4 — 1 or 9 Tn hath

W L3 Quil MIVCERTL. AT — Yty 1.e. oy WywiIC a, LAICIIVC W — 1L L. A1l JULLL

cases n = 1. As the result we obtain the solutlons (1,1,1) and (2,1,1). Let us call
them singular.

Now take a nonsingular solution (m,n,p) for which the integers m,n,p are
pairwise distinct, and consider the quadratic trinomial

f(z) = 2% — 3znp + n? + p*.

Obviously f(m) = 0, i.e., one root of f equals m. Its second root m’ may be
found by using the Vieta theorem: m’ = 3np — m. Clearly, (m’, n,p) will then be
a solution of the equation (1). Let us show that the largest of the numbers n and
p lies between m and m’. To be definite, let n > p. Then

(n—m){(n —m') = f(n) =2n% + p® — 3n2%p < 0.

But this means precisely that n lies between m and m’.

In a similar way, the solution (m,n,p) may be used to construct the solutions
(m,n',p) and (m,n,p’).

Assume that m is the largest one of the numbers m, n, p. Then

m > max(n,p) > m/, n < m = max(m,p) < n'.

Thus when we pass from the solution (m, n, p) to the solution (m/, n, p), the largest
of the three integers decreases, while if we pass to the solutions (m,n’,p) and
(m,n,p’) it increases.

If we begin with the solution (1,1,1), we obtain the following tree of solutions;
this tree contains all the solutions, since an arbitrary solution will become a sin-
gular solution after several decreases of its maximal integer. By the decrease of
its maximal integer we mean the passage from the solution (m,n,p), for which
m > max(n,p), to the solution (m’, n,p).

19
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7 THE MARKOV EQUATION

(1,1,1)
v
(2,1, 1)
{
(5,2,1)
g ™~
(13,1,5) (29,5,2)
O\ ¥
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CHAPTER 8

Integer-Valued Polynomials

A polynomial p(x) is called integer-valued, if it takes integer values for all
integers x.
It can be shown by induction on k that the polynomial

(a:) _z(z—-1)...(x—k+1)

k] k!
is integer-valued. Indeed, for k = 1 this is obvious. Assume that the polynomial
(z) is integer-valued. It is easy to verify that

r+1 B T [z
k+1 k+1)  \k)
Therefore for all integers m, n the difference

(kil)_(k:1)

N / N /

0
is an integer. It remains to note that (Ic 4 1) = 0.

In a certain sense integer-valued polynomials all reduce to the polynomials (z),
what is more, the requirement that p(n) be an integer for all integer n may be
significantly weakened. Indeed, we have the following statement.

THEOREM. Let pi(x) be a polynomial of degree k taking integer values for all

r=mn,n+1,...,n+k corresponding to some integer n. Then
x x x
() =60(k) + ¢ (k_ 1) +c2(k_2) + ot gy
where ¢g,¢1, ..., Cr are integers.

PROOF. By induction on k it is easy to prove that any polynomial p(z) of
degree k may be represented in the form

pk(r)=00("z) +c1(kf1) +c2(ki2) + et ek,

where cg,¢1,. .., c; are some numbers. Indeed,
(=1 (Y=n ()=2-% . () =F+..
\U/ \J./ \d/ Z yA \fC/ K!

Hence if pr(z) = az* +. . ., then the polynomial px(z) —ak!(7) is of degree no higher
than & — 1, and the induction hypothesis may be applied to it. Thus we need only
prove that the numbers ¢y, ¢i,...,cr are integers. Let us prove this by induction
on k. Base of induction: k = 0. By assumption the polynomial pp(z) = ¢¢ assumes
an integer value for £ = n, so the coeflicient ¢y must be an integer. Now suppose

21



22 8 INTEGER-VALUED POLYNOMIALS

that the required statement has been proved for polynomials of all degrees up to k.
Let the polynomial

T
Prt1(x) = ¢o k41 + -+ g

AY rd

assume integer values for x = n,n+1,...,n+ k + 1. Consider the polynomial

(x) = Cg(x\ +c1( T \ + -+

o \k/ \k—-1/
It assumes integer values for x = n,n+1,...,n+k. Hence the numbers ¢, cy,...,cx
are integers, and so is

comat-a,2)-o(0) ()

App i (T) = prya{z +1) -

=i



CHAPTER 9

Chebyshev Polynomials

Chebyshev polynomials constitute one of the most remarkable families of poly-
nomials. They often appear in various branches of mathematics, from approxima-
tion theory to number theory and three-manifold topology. We shall discuss some
of the simplest, but very important, properties of Chebyshev polynomials.

The definition of Chebyshev polynomials is based on the fact that cosny can
be polynomially expressed in terms of cos, i.e., there exists a polynomial T}, (r)
such that T}, (x) = cosny for x = cosy. Indeed, the formula

cos(n + 1)y + cos(n — 1) = 2cos pcosny
shows that
Ton (-75) = 2.’ET,1(.13) - Tn—l('r)-

The polynomials T,,(r) defined by this recurrent relation and the initial conditions
To(z) =1 and Ti(z) = z possess the required property. The polynomials T, (x) are
called Chebyshev polynomials.

It follows immediately from the relation T,,(z) = cosny (valid for x = cos )
that |T;,(x)| <1 for £ < 1. And now the recurrent relation implies that

T,(z)=2""'2"+a1z" '+ + a,,

where a,,...,a, are integers.
The most important property of Chebyshev polynomials was discovered by
Chebyshev himself. It consists of the following.

THEOREM 1. Let P, (x) = x"+... be a polynomial of degree n with coefficient 1

at the leading term, and let |P,(z)| < T for|z| £ 1. Then P,(x) = T, (x).

(In other words, the polynomial 2]1—1__1'1“,1(33) is the polynomial of degree n with lead-

211—1

ing coefficient 1 with the least deviation from 0 on the segment [—1,1].)

Proor. We shall use only one property of the polynomial T, (x) = 2"~ 'z™ +

..., namely the fact that
T, (cos(km/n)) = coskm = (-1)* for k=0,1,...,n.
Consider the polynomial
1
Qx) = 2,,—_1Tn($) -~ P, (z).

Its degree is no greater than n — 1 since the leading terms of the polynomials
27—1_TT”(3:) and P,(r) are equal. The inequality |P,(x)| < =T {which holds for
|| < 1) implies that at the point xx = cos(km/n) the sign of Q(xx) coincides
with that of T, (zx). Thus at the extremities of each of the segments [z, z] the
polynomial QQ(z) assumes values of opposite signs, and so the polynomial Q(x) has

23
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which Q(zx)} = 0. In this case either z; is a root of multiplicity two, or inside one
of the segments [$k+1,«73k] and [z, Z—;] there is one more root. This follows from
the fact that at the points x4, and z,_; the polynomial Q(x) takes values of the
same sign (Figure 1).

The number of segments [rx, 1, ] equals n, therefore the polynomial Q(z) has
at least n roots. For a polynomial of degree no more than n — 1 this means that it

is identically equal to zero, i.e., P,(z) = T,.(x). O

2n—l
For pair of polynomials P and @ one can define their composition P o Q(x) =
P(Q(z)). The polynomials P and @ are called commuting if

Po@Q=QoP, ie, P(Q(z)=Q(P(z))
THEOREM 2. The Chebyshev polynomials T, (z) and T,,(x) commute.

PROOF. Let z = cosyw. Then T,,(x) = cos(ny) = y and T,,(y) = cos m(ny), so
that T;, (T, (:c)) = cosmnep. Similarly T,,(T;,(z)) = cosmny. Thus the equation
T (Tia(z)) = Thn(Tn(zx)) holds if |z| < 1, and so it holds for all z. O

In certain cases instead of the polynomial T,(z) it is convenient to consider
the polynomial P,(x) = 2T,(x/2) with leading coefficient 1. The polynomials
Pp(x) satisfy the recurrent relation P,;{z) = xP,(x) — Po_i(x), and so P,{x) is
a polynomial with integer coefficients.

If z = cosp +ising = e, then z + z7! = 2cosyp and z" + z
Therefore

" = 2cosnep.
P(z+4 z7') = 2T, (cosp) = 2cosng = 2" + 277,
i.e., the polynomial P, (r) corresponds to the polynomial expression of z* + z~" in

terms of z + z 7!
Using the polynomials P, we can prove the following statement.

THEOREM 3. If both numbers o and cos(aw) are rational, then the number
2cos(am) is an integer, i.e., cos(aw) =0, £1/2 or £1.

Ponnne Tat A — /o ha a cirmnle frantinn Pat . — Danct whara # — Ao
ROV, L€l G = T’/ 0C 4 SiINpPie ITaCuilli. rUo Iy = €084, WICIE ¢ = Q7
Then

P, (xo) = 2cos(nt) = 2cos(nanr) = 2cos(mm) = £2.
Therefore x is a root of the polynomial P,(z) ¥2 = z" + bjz" ! + --- + b, with
integer coefficients. Let xg = 2 cos{an) = p/q be a simple fraction. Then
PU A+ bip" g+ bag” =0,

and so p" is divisible by ¢q. But the numbers p and g are coprime, hence ¢ = £1,
i.e., 2cos(aw) is an integer. O



CHAPTER 10

Vectors in Geometry

Vectors are often useful for solving geometric problems. Besides, some geomet-
ric theorems can be conveniently stated in terms of vectors.
When working with vectors, one often uses the scalar product

(DA,OB) = OA- OB cos ZAOB.

The scalar product possesses the following important properties:

* (a,b+c) =(a,b) +(a,c);

o (Aa,b) = A(a,b);

o (a,a) = |a|? is the square of the length a.

By using vectors, it is easy to prove that the altitudes of any triangle ABC
intersect at one point. Indeed, let O be the center of the circumscribed circle and H
a point such that OH = O_A+ OB +o_c‘. Then, as can easily be verified, AHLBC,
BH1AC and CH1AB, i.e., H is the intersection point of the altitudes.

This can be proved in different ways. First, we can note that

(AH,BC) = (A0 + OH,BO + OC)
= (OB +0C,0C - OB)
=|0C|* - |0B|* = 0.
Second, we can note that the projections of the vectors OB and OC on line
BC have the same length and opposite directions. Therefore, the projections of the
vectors OA and OH on line BC coincide. This means that AH_LBC.

We have not only proved that the altitudes of triangle ABC intersect at one
point (H), but we have also obtained a rather convenient expression for this point:

OH = OA + OB + OC, where O is the center of the circumscribed circle. Using

this expression we can solve, in particular, the following problem.

PROBLEM 1. Quadrangle ABCD is inscribed in a circle. Let Ay, B, C;, D, be
the intersection points of the altitudes of triangles BCD,CDA, DAB, ABC. Prove
that the midpoints of the segments AA,, BB,,CC, DD, coincide.

HinT. If A3 is the midpoint of the segment A; A, then
OA; = é(OA + OB +0C + OD),
where O is the center of the circle. O

The vectors with origin in the center of a regular polygon and endpoints at
it vertices possess the following interesting property: their sum is zero. Let us

25



26 10 VECTORS IN GEOMETRY

formulate this statement more precisely. Let A; ... A,, be a regular n-gon, let O be
its center. Then
(1) OA| +---+ 04, =0.

To prove relation (1), consider the rotation that takes A; to A, A to As, ...,
A, to A;. Under this rotation the vector £ = OA; +--- + OA,,, on the one hand,
will turn by the angle 27 /n, but on the other hand, it will not change, since
OA| +---+0A, =0A; + OAz + --- + OA, + OA,.

Therefore, T = 0.
Using equation (1) we can prove that if the point X is located at the distance d
from the center O of a regular n-gon A, ... A,, then

AX? 4+ -+ A, X% =n(R?+ d?),

where R is the radius of the circle circumscribed to the n-gon. Indeed,
A 2 CiT R AT

D AiX =) |40+ OX|*
=3 4,0°+Y 0x*+2() A0,0X)

=nR® + nd®,

since ) A.0 =0.
Before passing to the last topic of this essay, it is useful to solve the following
problem.

PROBLEM 2. Consider a convex polygon and to each of its sides assign the
perpendicular unit vector pointing outwards 7i;. Let a; be the length of the ith side
of the polygon. Prove that 3" a;7i; = 0.

HINT. After a rotation by 90°, the vector a;7; is taken to the side of the
polygon, but the sum of the side vectors of the polygon is zero. O

A statement similar to that of Problem 2 is true for polyhedra. Indeed, let us
consider a convex polyhedron and assign to its ith face the unit outward pointing
normal vector ;. Let A; be the area of the ith face. Then >_ A,#; = 0.

This statement follows from the following physical considerations. Let us fill
the polyhedron with gas. The pressure of the gas on the ith face is proportional
to A;7;, while the sum of all the pressure forces on the faces is zero (otherwise a
perpetuum mobile could have been constructed).

Let us present, however, a mathematical proof. Let > A;@i; = £. It suffices
to show that the projection of the vector & on any straight line ! in space is equal
to zero. Together with the projection of the vector £ on the line I consider the
projection of the polyhedron on the plane II, perpendicular to [. It is easy to verify

+h tho lanoth of the
that the length of the projection of the vector A;7; on ! is equal to the area of the

projection of the ith face on II. Indeed, if the angle between the vector 7; and the
line ! is a, then the angle between the ith face and the plane II also equals «a, so
that both the length of the projection of the vector and the area of the projection
of the face equal A; cos a. It remains to note that the projection of the polygon on
the plane II is covered by the projections of the faces twice (by the “upper” and
“lower” faces). But here opposite signs of the projected vectors correspond to the
“upper” and “lower” faces.



CHAPTER 11

The Averaging Method
and Geometric Inequalities

In the proof of many geometric inequalities the following fact is often useful:
“On the plane let there be given two systems of vectors d,...,d, and 5;,...,5,,,
such that for any straight lkine, the sum of lengths of the projections on this line
for the first system is greater than that for the second. Then the sum of lengths
of the vectors of the first system is greater than that of the second.” To prove this
statement, let us fix a coordinate frame on the plane and consider the line { forming
the angle v with the z-axis. If the vector @ forms the angle o with the z-axis, then
the length of its projection on I equals a|cos(p — )|, where a is the length of a.
Thus the mean value of the length of the projection of @ equals

1 [7 2a
—/ alcos(p — a)|dp = —.
In particular, the mean value of the length of the projection does not depend on a,
i.e., does not depend on the position of the vector @. If the sum of lengths of the
vectors dj,...,a, on any line is greater than the sum of lengths of the projections

of 51, ..., b, then the corresponding inequality is true for the mean values of the
sum of lengths of the projections, and so

a1+ 4a, >0+ + by,

Let us present some examples of the use of the geometric fact just proved above.
We begin with a fairly simple theorem, which can also be easily proved in other
ways.

1. If a convex polygon is located inside another convex polygon, then the perime-
ter of the outer polygon is greater than that of the inner one.

Indeed, let &,,...,d, be the vectors of the sides of the outer polygon and

51, ..., by those of the inner one. For a convex polygon the sum of lengths of the

projections of its sides equals twice the length of the projection of the polygon
itself. It is also obvious that the projection of the inner polygon is contained in the

R i il i3 LB 31 2 13

projection of the outer one, and so its length is less.

Now let us consider a more complicated example, for which it is hard to find a
simple proof by a different method.

2. Several convex polygons with perimeters Pi,..., P, are positioned so that
there is no straight line dividing them (i.e., there is no line disjoint from the poly-
gons such that there are polygons on both sides of it). Then the given polygons can
be enclosed in a conver polygon of perimeter no greater than P, + -+ - + P,.
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FIGURE 1

If the line [ does not divide the family of polygons, then their projections on
a line perpendicular to [ form a single segment (rather than several). This means
that the sum of lengths of the projections of the sides of the given polygons on any
line is not less than that of the sides of their convex hull.! Therefore, the perimeter
of the convex hull of the given polygons is no greater than P, +--- + P,,.

In some cases the fact that the mean value of the length of the

vector of length a equals 2a/7 can be useful.

3. If the lengths of all the sides and diagonals of a polygon are less than 1, then
its perimeter is less than .

Let the perimeter of the given polygon equal P. Then the mean value of the
sum of lengths of the projection of its sides is 2P/m. It follows from the assumption
that the length of the projection of the polygon on any line is less than 1, i.e., the
sum of lengths of the projections of its sides is less than 2. Hence 2P/m < 2, and
so P <.

The next example involves convex sets of constant width. They are defined as
convex sets for which the length of the projection on any line is the same. This
length is then called the width of the set of constant width.

An obvious example of a convex set of constant width is the circular disk. But
there are other sets of constant width. The simplest example is the set bounded by
three arcs of circles of radius R centered at the vertices of an equilateral triangle of
side R (Figure 1). It is easy to check that the length of the projection of this set
on any line equals R.

4. The perimeter of any convex set of constant width d is wd.

The boundary of any convex set can be approximated as closely as we like by
convex polygons. Then the length of the projection of the polygon on any line will
lie between d — £ and d + £, where ¢ is a positive number as small as we wish.
Therefore, the perimeter of such a convex polyhedron lies between m(d — €) and
mw(d + ). Letting £ tend to 0, we see that the perimeter of the convex set will
equal 7d.

5. Let there be given vectors on the plane @, ... ,d,, whose sum of lengths is L.
Then among them we can choose some vectors whose sum is of length greater than
or equal to L/w.

The mean value of the sum of lengths of the projections of the given vectors
is 2L/, so there exists a line for which the sum of lengths of their projections is

IThe convex hull of a family of polygons is defined as the smallest convex polygon that
contains them all
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no less than 2L /7. Choose a direction on such a line. Then we can consider the
projections with a sign, and the sum of lengths of the projections will equal p — n,
where p is the sum of the positive projections, while n is the sum of the negative
ones. Since p—n > 2L/m and p > 0, —n > 0, one of the numbers p or —n is not
less than L/n. To be definite, let p > L/m. Then the sum of lengths of the vectors
whose projections on the chosen line were positive is not less than L/m. Indeed,

the sum of these vectors can he renrecentad as the sum of two orthooonal vertorg
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one of which is of length p > L/.

There is another approach to the calculation of the length of the projection of
a vector. This new approach will interest us because it can be used to calculate
the mean value of the projection of a vector in space as well. Suppose that to each
angle ¢ in the plane we assign a certain number f(¢). Then the mean value of the
function f equals

L (7 foae.

2m Jo
The geometric meaning of this integral is the following. Choose a point O on the

plane and assign to the angle ¢ the end X of the unit vector OX whose direction
corresponds to the angle . As the result, to each angle ¢ a point of the unit circle
centered at O will have been assigned in such a way that the difference between
two angles is equal to the length of the corresponding arc. Let us divide the circle
into little arcs and consider the sum

D flen)Alk,
P

where ;. is some point on the kth arc, Ali is the length of this arc. If all the arcs
decrease in length this sum tends to

/021r flp)d

To obtain the mean value of f, this integral must be divided by the length of the
circle, i.e., by 2.

Now we can define the mean value of the length of the projection of a vector
in space in the same way. Choose a point O in space and assign to each direction
in space the end X of the unit vector 0X corresponding to this direction. As the
result, we obtain the unit sphere centered at O. The function f that we consider is
equal to the length of the projection of each vector @ on the ray OX. To determine
its mean value, we must subdivide the sphere into sufficiently small surface elements
and consider the sum ), f(Xx)ASk, where X is some point of the kth element,
AS,. is its area. Then we must calculate the limit of such sums as the subdivisons
become finer and divide this limit by the area of the sphere, i.e., by 47. Instead
of subdividing the sphere into surface elements, we can consider convex polyhedra
that approximate the sphere sufficiently well. Then we can assume that for a face
M), the point X} is defined as the end of the vector OX » perpendicular to M. In
that case

f(Xi) = aASi|cos py],
where ASj is the area of the face My, i is the angle between the vectors @
and 0719. It is easy to check that ASy|cosyi| = AS}, where AS; is the area of
the projection of the face My on a plane orthogonal to @. Thus the sum under
consideration, >, f(Xx)ASy, is equal to the sum of areas of the projections of
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the faces of the polyhedron on the plane perpendicular to @. In the limit this sum
becomes equal to twice the area of the section of the sphere by a plane passing
through the sphere’s center. Thus the mean value of the length of the projection of
the vector @ to lines in space equals 2aA;/A,, where A, is the area of the equatorial
section of the sphere, A, is its total surface area. For the unit sphere we have A; =«
and A; = 4m, so that the mean value is a/2.

By using the mean value of the projections of vectors in space, we can prove,
by the same methods as for the plane, the following statements.

6. If one convex polyhedron lies inside another convex polyhedron, then the
surface area of the inner polyhedron is less than that of the outer one.

In this situation we assign to each face the outward-pointing orthogonal vector
of length equal to the area of the face.

7. If the area of any projection of a convex polyhedron is not greater than 1,
then its surface area is not greater than 4.

8. Let the vectors @i, ..., d, in space for which the sum of lengths is L be given.
Then among them we can choose vectors whose sum is of length greater than or equal
to L/4.

In conclusion let us discuss a statement that could have been stated for the
plane, but is really interesting only in space.

9. Let a tetrahedron lie inside another tetrahedron. Then the ratio of the sum
of lengths of the sides of the inner tetrahedron to a similar sum for the outer one is
no greater than 4/3, and this ratio can be as close to 4/3 as we like. (In particular,
the sum of lengths of the sides of the inner tetrahedron can be greater than that of
the outer one.)

We shall immediately prove a more general statement.
10. Let a polyhedron with m vertices be located inside a polyhedron with n ver-

tices. Then the ratio of the sum of all pairwise distances between vertices of the
2

inner polyhedron to2 a similar sum for the outer one is not greater than 4_(m—1)
-1 n—
for even m and m= for odd m.
4(n—1)

It suffices to prove this statement for projections of polyhedra on the straight
line. In the case of the line, the required statement is an obvious consequence of

LEMMA. Let k points be located on a line segment of length d, its exiremities
being part of the system of k points. Then the minimal sum of pairwise distances
between the given points equals (k— 1)d, while the mazimal sum is k*d/4 for even k

and (k* — 1)d/4 for odd k.

PROOF. Let A and B be the end points of the given line segment. For a point
X of the segment we have AX + BX = d, hence the sum of pairwise distances
between the given points is (k — 1)d + X, where ¥ is the sum of pairwise distances
for the system of k — 2 points obtained from the given one by eliminating A and
B. The minimal value ¥ is 0; it is achieved when all k¥ — 2 points are concentrated
at one of the endpoints of AB. The maximal value of ¥ can only be achieved for
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the case in which the new system of k — 2 points includes both points A and B
(we assume that kK — 2 > 2). Once again let us eliminate A and B and consider
the system of k& — 4 points and so on. As the result, we see that if £k = 2s, then
the sum of pairwise distances is maximal when s points are located at one end of
the segment and the s others at the other end; this sum is s?d = k?d/4. Now if
k = 2s+ 1, then there must be s points at one end and s + 1 at the other; in that
case the sum is s(s + 1)d = (k? — 1)d/4. O

S At (-
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CHAPTER 12

Intersection Points of the Diagonals
of Regular Polygons

Quite a few problems about triangles with integer angles are known. Here are
two examples of such problems.

PROBLEM 1. In an isoceles triangle ABC with base BC' the angle at A equals
80°. A point M is chosen inside the triangle so that ZM BC = 30° and ZMCB =
10° (Figure 1(a)). Prove that ZAMC = 70°.

PROBLEM 2. In an isoceles triangle ABC with base AC the angle at B equals
20°. Points D and E are chosen on the sides BC and AB respectively so that
£DAC =60° and ZECA = 50° (Figure 1(b)). Prove that ZADE = 30°.

(a)

FIGURE 1

Problems of this type are usually related with intersection points of triples of
diagonals of a regular polygon, in the present case, of a regular 18-gon.

Let us look at Figure 2. This figure shows that Problem 1 is equivalent to the
following statement: in a regular polygon of 18 sides the diagonals A1 A3, AzA14,
and AgAis intersect at one point. Indeed, if these diagonals intersect at some
point M, then

LA MAg = % (—A1Ag + —A13A415) = 50° + 20° = 70°.

It is also clear that the angles of triangle A; Ag A4 are 80°, 40°, 40° and LM A4Ag =
30°, LM AgA14 = 10°.

33
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FIGURE 2

As to Problem 2, it is equivalent to the following statement: in a regular 18-gon
the diagonals A} A4, A7A s and A, A7 intersect at one point (Figure 3).

11 +— 8

10 9

FIGURE 3

But Problem 2 can be solved by using a different triple of intersecting diagonals,
namely A; A3, A3A14 and AgAs (Figure 4). In the role of triangle ABC we take
A140A,5. The diagonals A;A)3 and AgAjs; are symmetric with respect to the
diagonal A5A;4, hence both diagonals intersect the diameter at one point.

FIGURE 4
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) B
Ch
A B, C
FIGURE 5

But we have not yet proved that the diagonals in Figures 2—4 do in fact intersect
at one point. It is convenient to verify that triples of diagonals intersect at one point
by using the following statement.

THEOREM. The points A, By,Cy are chosen on the sides of triangle ABC (A,
on BC, etc.). The segments AA,, BB, and CC| intersect at one point if and only if
sin BAA, sin ACC,; sinCBB,

sinCAA; sin BCC; sin ABB, =1

~ee Tieiod Yoo oo oo el a ool A A nD ... Y
OF. r'IIsSt I€L US assullle tlat L0e SEgINenLs AA), Do) and U] 1nLersect

¢
at the point O (Figure 5). Then
QSA()B : 25,4()(} = (AB - AOsin BAO) . (AC - AOsin CAO)

Therefore,
1 _ SaoB Scoa Ssoc
" Saoc Scos Spoa
_(AB CA BC\ sinBAO sinACO sinCBO
B (AC 'CB BA) sin CAO " sin BCO sin ABO’
ie.,

sin BAA, sin ACC, sinCBB, ]

sinCAA, sinBCC, sin ABB,

Now assume that the equation indicated in the theorem holds for the points

A, By and C). Let O be the intersection point of the segments AA, and BB,.

We must prove that the segment C'C, passes through O as well. In other words, if

C] is the intersection point of the lines CO and AB, then Cj = Cy. The segments
AA,, BBy and CC] intersect at one point, so, as we have just proved,

sin BAA, sinCBB, sin ACCj

sinCAA; sin ABB;, sin BCCj
Comparing this formula with the condition of the theorem, we obtain

sin ACC, : sin BCC) = sin ACC] : sin BCC].

It remains to prove that when the point X moves along the segment AB, the
value sin AC'X : sin BC X changes monotonically. The angles ZACX and ZBCX
themselves do change monotonically, but their sines are not necessarily monotone
in the case of an obtuse angle C. But this is no tragedy. In any triangle there is an

acute angle, and from the very beginning we could have taken such an angle for C.
This completes the proof of the theorem. O

= 1.
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Now the verification of the fact that the triple of diagonals shown in Figure 2
intersect at one point reduces to proving the following identity.

sin10° sin30° sin40° _

- . . — = 1.
sin 746° sin20° sin i10°
This is not hard to prove:
08 ol ANC 1 L ADS P Yt S5 Fe AN <l TG
sm 30 sn40” = —2—51n4U =sin 20" cos 2U0° = sm 20" sin 7U".

The triple of diagonals shown in Figure 3 corresponds to the identity
sin 20° sin 40° sin 20° = sin 30° sin 60° sin 10°.
There are three more identities that yield triples of intersecting diagonals:
sin 10° sin 20° sin 80° = sin 20° sin 20° sin 30°,
sin 20° sin 30° sin 30° = sin 10° sin 40° sin 50°,
sin 10° sin 20° sin 30° = sin 10° sin 10° sin 100°.

Their verification is left to the reader.

Note that the change of order of the factors in these identities leads to com-
pletely different triples of intersecting diagonals.

Our interest in the regular polygon of 18 sides rather than some other regular
polygon is related to the fact that triangies with angies that are muitiples of 10°
lead to that particular polygon. Among all the regular polygons with less than 18
vertices, interesting families of diagonals appear only in the 12-gon. For example,
the diagonals A; A5, A2 Ag, A3As, and A4A4;; of the regular 12-gon intersect at one
point (Figure 6). This statement is equivalent to the following well-known problem.

FIGURE 6

PROBLEM 3. The point P is chosen inside square ABC D so that triangle ABP
is equilateral. Prove that ZPCD = 15°.

Exercises. 1. Triangle ABC with angles ZA = 50°, ZB = 60°, ZC = 70° is
given.

a) Points D and F on sides BA and AC are chosen so that ZDCB = ZEBC =
40°. Prove that ZAED = 30°.

b) Points D and E on sides BA and AC are chosen so that ZDCA = 50° and
LEAC = 40°. Prove that ZAED = 30°.
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2. In triangle ABC the angles A, B, and C equal 14°, 62°, and 104°. The
points D and E are chosen on sides AC and AB respectively so that ZDBC = 50°
and ZECB = 94°. Prove that ZCED = 34°.

3. Prove that the diagonals A; Apy0, As,—1A3,and Ao, A5 of a regular 2n-gon
intersect at one point.

4. Prove that the diagonals A; A7, A3A11, and A5 Az of a regular 24-gon inter-

t a noint lvine on the diameter A, A

a point lying on the clameter A;4;6.

5. Prove that in a regular 30-gon the seven diagonals
A1A1z, ArA17, A3zA2y, AgAzg, AsAzg, AgA2g, A1oAszg

intersect at one point.

et
sect
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The Chromatic Polynomial of a Graph

In space consider a system of several points and segments joining some of these
points. We are only interested in what pairs of points are joined by segments.
Moreover, these segments are not necessarily rectilinear, they may be curved. Such
a system is called a graph; the points are called vertices of the graph, while the
segments are the edges of the graph.

A graph is called planar if it can be placed in the plane so that its edges are
pairwise nonintersecting (except at endpoints). For example, the graph shown in
Figure 1 is not planar. This follows from the solution of the well-known problem

of the thras honeae and thrae welle: “r'ah oarh nf thae haneae be ioined l"nr a Dath
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to each of the three wells so that the paths do not intersect?”

/\l/\\\\‘

FIGURE 1

In 1890 it was proved that the vertices of any planar graph can be painted
in five colors so that the ends of any edge will have different colors. For along
period after that the following “four color problem” was popular: “Can any planar
graph be painted in four colors?” (By a coloring of a graph here and further we
mean an assignment of colors to its vertices so that the ends of each edge are
assigned different colors.) Only in 1977 was it proved that any planar graph can be
painted in four colors. The proof was based on the verification of a huge number
of possibilities, carried out by computer.

Colorings of graphs are related to a very interesting phenomenon that we shall
now discuss. Let G be a graph and f(G,z) be the number of colorings of this
graph in z colors. Surprisingly, it turns out that f(G, ) is a polynomial of degree
n, where n is the number of vertices of G. Before proving this statement, let us
consider two simple examples.

The simplest case is when the graph G has no edges at all, only n vertices. In
that case any vertex may be colored in any way, independently of the other vertices.
Therefore f(G, ) = z".

< am

L‘ Y . an na any o of which
1 ILTS ally Lwu ul wiliull

gla,pu G with n ver

[l

The other extreme case is t
are joined by an edge. In that case all the vertices must be painted in different
colors, so f(G,z)=z(z—-1)...(x —n+1).

In both cases f(G,z) is a polynomial of degree n. As we shall soon see, this
readily implies that f(G,z) is a polynomial of degree n for any graph G with
n vertices.

39
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¢ D ¢ D C D
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A D A A - DR
L1 ir AL i — 1
Gv_'t G; Gn—l
FIGURE 2

Consider the graph G} with n vertices in which the two vertices A and B are
joined by an edge. To this graph let us assign the graph G, with the same vertices
and edges, except that it does not have an edge joining A and B. Now in turn
to the graph G assign the graph G,_; with the same vertices and edges as the
graphs G} and G, except that the vertices A and B are identified (if double edges
arise under this identification, they are replaced by ordinary edges). Examples of
the graphs G,,,G;}, and G,,_; are shown on Figure 2. Note that to construct G,
the double edge joining the vertices A = B and D has been replaced by an ordinary
(single) edge.

Any coloring of the graph G, with vertices A and B of the same color cor-
responds to a well-defined coloring of the graph G,_;, while any coloring of the
same graph with vertices A and B of different colors corresponds to a coloring of

...... Lapril L1l ciLites A All alileielll LUty LUllIe wuiidd Luiu

the graph G;. Therefore
(1) f(GL,x) = f(GF,2) + f(Gr-1,2).

By using formula (1), it is easy to prove that if G, is a graph with n vertices,
then f(G,,x) is a polynomial of degree n. To this end, let us use induction on n.
For n = 1 the graph consists of a single point, hence f{G,,z) = z. Assume that
for any graph G,—; with n — 1 vertices the function f(G,r_1,z) is a polynomial of
degree n. Take an arbitrary graph G, with n vertices. Applying formula (1) several
times, we can pass from G, to a graph with n vertices, any two of which are joined
by an edge. The chromatic polynomial of that graph is x(x — 1)...(x —n + 1),
therefore

fG,x)=z(z=1)..(x—n+ 1)+ fi+ -+ fr,
where fy,..., fr are chromatic polynomials of graphs with n — 1 vertices, i.e., poly-

nomials of degree n — 1.

In the proof we used the fact that the chromatic polynomial of a graph all of
whose vertices are joined by edges equals z(z — 1)...(x —n + 1). But we can also
srcovns dhin fFaomt th ot 2bh o Al bt mbctn e tal A 4 amanbh arithaiit o arier adoras T Tt T
ust LT 1all Lilal LUE Cllulllabvit pulyuuliiial Ul a Blapll wWitlluul ally TUgoo 1o 4 . 1V

this end we must rewrite formula (1) in the form
(2) F(GF,z) = f(GL,z) — f(Gn-1,2).

Applying this formula several times, we can pass from the graph G} to the graph
with n vertices and no edges. Therefore,

(3) f(Gha)=a"—g1— — g,

where g;,...,g; are the chromatic polynomials of graphs with n — 1 vertices.

The second method of proof has certain advantages. For example, by writing
the chromatic polynomial of a graph in the form (3), we readily prove the following
theorem.
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THEOREM. The chromatic polynomial of a graph with n vertices has the form
z® — a1z + axr™? —azz™ 3 + ..., wherea; > 0.

This theorem was stated and proved in 1932 by the American mathematician
Hassler Whitney.






Brocard Points

Besides such well known points in the triangle as the centers of the inscribed
and circumscribed circles, the intersection point of the altitudes, the intersection
point of the medians, other remarkable points are associated with every triangle.
Probably those with the most interesting properties are the Brocard points.

The point P inside triangle ABC is said to be the first Brocard point if

LPAC = LPCB = /ZPBA
(Figure 1(a)). For the second Brocard point we must have
LQAB = /QCA = ZQBC

(Figure 1(b)).

N
Q
N
Q

(a) (b)

FIGURE 1

Before disscussing the properties of these points, let us prove that for any
triangle there exists exactly one first Brocard point and exactly one second Brocard
point. We begin with the first Brocard point. On the sides of triangle ABC
construct triangles A, BC, AB,C, and ABC) similar to it, as shown on Figure 2.

Since ZPCB = £/C — ZPCA, the relations ZPAC = /PCB and Z/PAC =
£LC — LPCA are equivalent. The last one may be rewritten as

LC = LPAC + ZPCA=180° - ZAPC.
For a point P lying inside triangle ABC, this equation is equivalent to the point
being located on the circle circumseribed to triangle AB1C. A similar argument
for the other angles shows that P is a Brocard point if and only if it belongs to the
circumscribed circles to all three of the triangles Ay BC, AB,C, and ABC;. Let
P, be the intersection point of the circumseribed circles of the triangles A; BC' and
AB,C that differs from C. Then

ZAP\B =360° — LAPC — ZCP\B=~v+=180° - LAC, B,

43
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¥

w

B
FIGURE 2

and so the point P; also lies on the circumscribed circle to triangle ABC), i.e.,
P; = P is a Brocard point. Let us join it to all the vertices of the triangles under
consideration. From the congruence of angles subtending the same arc, the angles
are precisely as shown in Figure 2. But since a + 3 + v = 180°, the segments AA,,
BB,;, C(C, pass through the point P.

Note that the circumscribed circles of triangles 4, BC, AB,C, and ABC) are
tangent to lines AB, BC, and C A respectively; this follows from the relations

LABC = £Z/BA,C, £LBCA = ZCB, A, LCAB = LACB.
Hence the point P is also the intersection point of the three circles tangent to the

lines AB, BC, and CA at the points B,C, and A and passing through the points
C, A, and B respectively.

PROBLEM 1. On the sides of triangle ABC construct triangles A; BC, AB,C,
and ABC similar to it so that the segments AA;, BB;, and CC; intersect at the
second Brocard point.

Now let us pass to the study of properties of Brocard points.

THEOREM 1. Let P be the first Brocard point, and suppose that the lines AP,
BP, and CP intersect the circumscribed circle to triangle ABC at the points A,
By, and Cy. Then AABC = AB{C1A,. (For the second Brocard point AABC =
AC1A1By))

PRrROOF. Let us prove, for example, that the segments AB and B;(, are con-
gruent. To this end it suffices to establish that the arcs AB and B, C) are congruent.
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FIGURE 3

These arcs have the common arc AC), while the complementary arcs C1 B and A, B
are congruent, since they are subtended by equal angles. Similarly one proves the

armann A dlh s Al o oo e $dne AF tlsnglac DY .. M
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THEOREM 2. From the first Brocard point P drop the perpendiculars PA’', PB’,
and PC' on sides BC, CA, and AB. Then triangles ABC and B'C'A’ are similar,

the coefficient of similitude being sin ¢, where
w=4LPAC = LPCB = ZPBA.
PROOF. Points B’ and C’ lie on the circle with diameter AP, therefore
LB'C'P=4B'AP=¢ and ZC'B'P=/C'AP=qa- .
Similarly,
LCO'"A'P=¢ and LA'C'P=p(-y,
LA'B'P=¢p and 4LB'A'P=+-.
Hence the angles of triangle B’C’'A’ are equal to the angles of ABC, and so these
triangles are similar. Moreover, the angles of triangles ABP and B'PC’ are equal,
v B'C': AB=B'P: AP =sin.
O

Now let us consider the angle . It can be expressed in terms of the angles
of triangle ABC. To this end let us erase all the unneeded parts of Figure 2 (see
Figure 3) and from the point A; drop the perpendicular A; K to line AC. Then

A l’/ f"' l’/
ﬂU

t =
Y= A K- AKTAK

For the second Brocard point we can obtain the same expression for the angle ¢.
This angle is called the Brocard angle.
For the Brocard angle ¢, one can obtain the following implicit expression:

sin® p = sin(a — ) sin(8 — @) sin(y — ).

Indeed, by the sine theorem
AP sin ¢ BP sin CP sin
BP ~ sin(a—y)’ CP ~ sin(B - )’ AP ~ sin(y— o)’
Multiplying these equations, we obtain the required expression.

= (ctga + ctgy) + ctg b.
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THEOREM 3. For the Brocard angle ¢ we have the following inequalities:

(a) ¢ <30%

(b) ¢ < (a=9)(B =}y —¥);
(Y A3 < AR~ (the Vﬂ-‘ in nn'nn] 4+
\\./’ Uw o~ LLAS , \ULIG 111 \.i\..lcl;llu\y’

PROOF. (a) Using the relation ctg ¢ = ctga + ctg 8 + ctg~y, after some simple
transformations we obtain
Sln(fl + ) _ sm(f) + B) 4 sm(fl + ) _ S}n’y N sTnﬁ >0
sin @ sin 3 sin 4 sin  sinvy

Therefore, 2sinyp < sin(a + ) < 1, and so ¢ < 30°. (The inequality ¢ < 90° is
obvious from geometric considerations.)

(b) Consider the function f(x) = In(z/sinz) = Inx — Insinz. It is clear that
the functions

1 1 1
fi(z) = :—ctg:p and f"(x) = iz

are positive for 0 < z < 7. Therefore, the function f(x) monotonically increases as
z increases from 0 to 7w and, moreover, it is convex on this interval, i. e.,

fazy + -+ Anzn) S A f(x) + -+ A fxn)

for0 <z <m, 0< A, A +--+ A, = 1. In particular, f(¢) < f(7/6), since
¢ < m/6, and

f(ﬂ/ﬁ)zf(90+(a—w)+so+(ﬁ—w)+w+(7—w))

6
< S(70) + fla =)+ 1(9) + J(8 = ) + 10 + [~ 9)).

Using the monotonicity of the logarithm, we can rewrite this in the form

6 6
p /6 (o — ) (B — )y — ¥)
(sin go) = (sin(‘n'/ﬁ)) = sin® psin(o — @) sin(8 — @) sin(y — @)

Using the fact that sin(a — o) sin(8 — ) sin(y — ¢) = sin® ¢, we obtain
e® <(a-p)(B-v)(7-9).
(c) The inequality ¢® < (a — ¢)(8 — ©)(v — ) implies that

640° < 4p(o — ©)p(B — p)p(y — ).

dola—p) <o, 4p(B—¢) <B%, dp(v—v) <72

Let P be the first Brocard point of triangle ABC. On the sides CA, AB, and
BC(C choose points A;, B;, and C; so that

LAPA, = £BPB, = LCPC, =a

(Figure 4). Then triangles APA,, BPB,, and CPC| are similar. This means that
by a rotational homothety centered at P with angle o and coefficient of similitude
sin ¢/ sin(a + ¢) triangle ABC will be taken to triangle A, B, (.
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THEOREM 4. Suppose the vertices B and C of a triangle are fixed, while the
vertex A moves so that the Brocard angle ¢ of triangle ABC remains constant.

Then the point A moves along a circle of radius (a/2)+/ctg? v — 3, where a = BC
(the Neuberg circle).

PROOF. First let us show that
a’ +b° +¢°

45 ’

where S is the area of the triangle. By the cosine theorem,

ctgyp =

a2 =b% +c? — 2bccosa = b? + c? — 4Sctgo.

Adding three analogous equations, we obtain

ie., 45ctgp = a? + b* + 2.
Thus for a triangle with vertices at the points with coordinates (+a/2,0) and
(z,y), the Brocard angle ¢ is determined by the equation

B a4+ (a/2+ )2+ y* + (—a/2+ )% + ¢

ct
ie., 2z% + 2y° + 3a?/2 = 2ayctgy. The last equation defines a circle of radius
7 fon /T_‘,Q__ﬂ et mveerd adk O L TN a A\ Ml
(a/2)v/ctg? p — 3 centered at (0, (a/2) ctg ). O

THEOREM 5. From the point M perpendiculars MA;, MB;, and MC, are

aan s

dropped to the lines BC, CA, and AB. For a fized triangle ABC, the set of
points M for which the Brocard angle of triangle Ay B\ C) has a given value consists
of two circles, one of which lies inside the circumscribed circle of triangle ABC),
while the other lies outside it (the Schoute circles).

PROOF. Let a1, b;, c; be the lengths of the sides of triangle A; B;C; and S; be
its area. The theorem deals with the set of points M satisfying the equation
(1) 48, ctgp = a3 + b3 + 2.
The points B; and C lie on the circle of diameter AM, therefore

aAM
2R’

a) = BIC’I = AM sin B1A01 =
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where R is the radius of the circumscribed circle of triangle ABC. Thus
a’?AM? + b¥’BM? + c2CM?
4R? ’

Therefore, if (x,y) are the coordinates of M in some Cartesian coordinate frame,
then

ar‘l’+bf+cf=

a’® + b% + ¢?

4R2 (1:2 +y2) +p$+qy+7',

(2) af+bf+cf=

where p, g, r are constants.

We can also express S; in terms of the coordinates (x,y) of the point M. To
this end it is convenient to choose the origin of coordinates at the center O of the
circle circumscribed to triangle ABC. In that case, as we shall presently prove,

SABC 2 2 2]1.
(3) Sl=w|R —I =Y

SABC | o
Si = SAEZ |RE - &,

where d is the distance from the point M to the center O of the circumscibed circle.
To establish this formula, consider the auxilliary points A,, B>, (3, at which the
lines AM, BM,CM intersect the circumscibed circle; let S; be the area of triangle
Ax By

Let us show that triangles A; B1C, and A;B>C are similar. Obviously,

LC\BIM = LC1AM = £ZBAAy; = ZBByAy = LM B A».

Similarly, ZA1B1M = LM B5C5, hence £CB1 A1 = ZC3B3As. The congruence of
the other corresponding angles of triangles A, B1C and A, B>C5 is proved in the
same way. From the similitude of these triangles it follows that

S1_ 2 _ay _AM-CM
S_g_k , Where k= 2 2R B,M’
But BoM - BM = |d? — R?|, and it follows that

S (AM-BM-CM)?
S, ~  4R(d — R2)?

Triangles A; B1C; and AsBs(C; are inscribed in a circle of radius R, hence
abc a2b262
S=—and S; = , So that
4R 4R
ol _ L
D2 a202C2
S abc
T - P I S I I (SR L R, R o TN I & | mam e SYRATY L £ - 4+l a1 a B2M
Lrom e simiiiude oI Urialgles pDoiviy alld Civi D 1L 1I01IOWS LdL 42 = CM
. a-AM
Besides, as we have seen, a; = °R Hence,

as N BQM . |d2 - R2|

Therefore,
52 | d2 _ R2 |3

S ~ (AM-BM-CM)%’
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Now we can write,

S _ S8 (AM-BM-CM)* |d2 — R?? _ |d? - R?|
S S, S 4R?(d>-R%)?2 (AM-BM.-CM)?2  4R? °
as required.

The equation S; = 0 determines the circumscribed circle of the triangle ABC.
This set corresponds to the zero Brocard angle. Equations (1), (2), and (3) imply
that to the Brocard angle ¢ corresponds the set determined by the equation

2 12, .2

SA‘BC(R2 —?—yY) = L%%:—C(ﬁ +y) +pr+qy+r.

Here the plus sign is chosen for the points inside the circumcircle, the minus sign,
for those outside it. It is easy to see that each of the obtained equations is that
of a circle. This is because if f = 0 and g = 0 are equations of circles, then so is
Af = g. Moreover, the center of the circle Af = g lies on the line joining the centers
of the circles f = 0 and ¢ = 0. In our case the center of one circle will be the center
of the circle circumscribed to triangle ABC, while the center of the second is the
point for which the value of a?AM? + b2 BM? + c?CM? is minimal (the Lemoine
point). O

Tctge

It follows from Theorem 2 that both Brocard points of triangle ABC and its
circumcenter lie on the same Schoute circle. It can be proved that the Lemoine
point also lies on this circle.






Diophantine Equations for Polynomials

Polynomials possess many properties of natural numbers. For example, a poly-
nomial can be decomposed into factors, for a pair of polynomials the greatest com-
mon divisor is defined, etc. In this connection one can formulate problems about
polynomials similar to well-known exercises and problems about natural numbers.
As a rule, the solution for polynomials is considerably simpler. For example, the fa-
mous conjecture of Pierre Fermat asserting that for n > 3 the equation " +y" = 2"
has no solutions in natural numbers was proved only just recently. But its analog,
the unsolvability of the equation f™ + g™ = h" for polynomials, as we shall soon

T latieral 3 1
see, has a relatively simple proof.

The description of all triples of natural numbers «, 3, 7, for which the equation
f* + g° = k" for polynomials f,g,h has a nontrivial solution, was obtained at
the end of the 19th century. We shall present a more modern version of this
classification.

For the proof of the unsolvability of Diophantine equations for polynomials, an
effective approach is based on the following statement.

THEOREM 1 (Mason). Let a(x), b(z), and c(x) be pairwise coprime polynomi-
als satisfying the equation a+b+c = 0. Then the degree of each of these polynomaials
is no greater than ng(abc) — 1, where ng(abc) is the number of distinct roots of the
polynomial abc.

PRrROOF. Put f = a/c and ¢ = b/c. Then f and g are rational functions
connected by the relation f + g + 1 = 0. Differentiating this equation, we obtain
f'=—g'. Hence

b_o_ Il
a f d/9

The rational functions f and g have the special form [[(z — p;)™, r; € Z. For

the function R(z) = [[(z — p:)", we have the relation

’ r;
Ezz-'c—ﬁ’i.

a(@) = [[e - e, 8@ =[-8, o=)=]]@~-m)*
Then

IR D D
' b;
g/g=zx_’ﬁj —fo"%.
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Hence, after multiplying by the polynomial
No = [z = ) (@ — B5)(x — %)

of degree ng(abc), the rational functions f’/f and g'/g become polynomials of degree

v /v

no higher than no(abc) — 1. Since the polynomials a(x) and b(x) are coprime, the
relation

b Nof/f

a Nog/g'
implies that the degree of each of the polynomials a(x) and b(x) is no greater than
no(abe) — 1. For the polynomial ¢(z) the proof is similar. O

Theorem 1 has interesting corollaries that we shall state as Theorems 2-4. The
degree of a polynomial f will be denoted by deg f.

THEOREM 2 (Davenport). Let f and g be coprime polynomials of positive de-
gree. Then

deg(f3 - 92) > —;—degf + 1.
PRrROOF. If deg f3 # deg g2, then
) 1
deg(f® — 9%) 2 deg f* = 3deg f > S deg [ +1.

We can therefore assume that deg f* = deg g2 = 6k.
Consider the polynomials F = f3, G = ¢?,and H = F — G = f3 — g2. Cleatrly,
deg H < 6k. According to Theorem 1,

max(deg F,deg G,deg H) < ng(FGH) — 1 < deg f +degg + deg H — 1,
i.e., 6k <2k+3k+degH — 1. Thus,degH > k+1=1degf+1. 0

THEOREM 3. Suppose f, g, and h are coprime polynomzials, and at least one
of them is not a constant. Then the relation

fn + ng — hn
cannot hold for n > 3.

PROOF. According to Theorem 1, the degree of each of the polynomials f7,
¢", and h" is not greater than deg f + degg + degh — 1, i.e.,
ndeg f, ndegg, ndegh < deg f + degg + degh

Adding these three inequalities, we obtain

Aaas) & (AN
U.Us} >~ g)\uc

{4\ €gg T+ egg + €g egyg +
Therefore, n < 3. a
- L:..- ek LSO G SR T JAS TP, TR i P | TN
The Diophantine equation f® + ¢° = h” for the polynomials f,g,h has an
obvious solution if one of the numbers a, 3, equals 1. So we shall assume that

a, 8,7 > 2.

THEOREM 4. Letl «, 3, v be natural numbers satisfying 2 < a < <. Then
the equation
g’ =n
has coprime solutions for the following triples (o, 3,7): (2,2,7), (2,3,3), (2,3,4),
and (2,3,5).
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PROOF. Let a, b, and ¢ be the degrees of the polynomials f, g, and h. Then
according to Theorem 1,

(1) cala+b+c—-1,
(2) b<a+b+c—1,
(3) ye<a+b+c—1.
Therefore,

afa+b+c)<aa+pPb+vc<3(a+b+c) -3,
and so a < 3. By assumption, o > 2, hence o = 2. For a = 2, inequality (1) takes
the form

(4) a<b+tc-1
Adding inequalities (4), (2), and (3), we obtain
Bb+~vc <3(b+c)+a—3.
Having in mind that # < -, and applying inequality (4) once more, we obtain
Bb+c) <4(b+c)—4,

and so 3 < 4,ie,3=2or3.
It remains to prove that if 3 = 3, then v < 5. For 8 = 3 inequality (2) takes
the form

(5) 2<a+c-1.
Adding inequalities (4) and (5), we obtain
b <2c-2.
In that case inequality (4) implies that
a<3c-—3.
From the two last inequalities together with inequality (3) it follows that
ve¢ < 6¢ — 6,
and so v < 5. O

Polynomials satisfying the relation f* + ¢g# = h7 are closely connected with
regular polyhedra. In detail this connection is described in Felix Klein’s famous
book “Lectures on the icosahedron and solutions of fifth degree equations”; in
particular, the book indicates how to construct these polynomials. We only state
the end result.

The case @ = 8 = 2, v = n is related to the degenerate regular polyhedron,
namely the plane polygon of n sides. The required relation is of the form

/$n+1\\2 /xn_l\z_,_n
\2 ) T\ ) T
The case . = 2, # = 3, v = 3 is related to the regular tetrahedron. The relation
has the form
126v3(2® — ) + (2* — 2iv32% 4+ 1)% = (24 + 26322 +1)3.
The case a = 2, 3 = 3, v = 4 is related to the cube and the regular octahedron.
The relation has the form

(z'? — 332% — 33z* +1)? + 108(2® — 2)* = (2® + 142 + 1)2.
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The case o = 2, 3 = 3, v = 5 is related to the dodecahedron and the icosahe-
dron. The relation has the form T2 + h® = 1728 f%, where

T = 230 + 1 4 522(2° — z5) — 10005(z%° + z'°),
H=—(z+1)+228(z"° — 2°) — 4942'",
f=x(z'% +112° - 1).

Theorem 3 shows that the equation z™ + y™ = 2", where z,y, 2z are natural
numbers, has a solution if and only if exactly the same equation for polynomials
has a solution. The following question naturally arises: Is it true that the equation
%+ 1P = 27 will have polynomial solutions if and only if it has solutions in natural
numbers?

The first example gives some hope: the equation z? + y® = 2* has polynomial
as well as natural solutions. Indeed, an infinite series of solutions of this equation

in natural numbers may be obtained as follows. Put z = n(n — 1)/2, y = n and
22 = 'n('n + 1)/2. We are required to find a number n so that > will be an integer

<]l = rYL At AR NAALRSR nna a number n SO ¥V 412

The equation 222 = n(n + 1) may be rewritten in the form
(2n +1)2 — 2(22)% =

This is the famous Fermat—Pelle equation, which has infinitely many solutions. For
example, if n = 8, we obtain x = 28, ¥ = 8, z = 6. Besides this infinite series of

solutions, others may be indicated.

But equation x2 4+ y* = 2% dashes our hopes. This equation has no polynomial
solutions, but has natural solutions. One of them is z = 37-5%.7.29%, y = 2.33.55.294
z=232%.53.293



In 1640 Blaise Pascal, who was then 16 years old, printed, in the form of a
poster, 50 copies of his work “Essai sur les coniques”. These posters were hung
on walls and distributed among scientists. This essay on conic sections contained
several definitions and lemmas; there were no proofs. The main result of this trea-
tise was the theorem about the inscribed hexagon. This theorem is now called
Pascal’s theorem, and Pascal himself, as witnessed by Leibnitz, called it the “mys-
tical hexagon” (Hexagramma mysticum). The theorem asserts the following. If the
hexagon ABCDFEF is inscribed in a circle, then the intersections of the extensions
of its opposite sides (i.e., of the lines AB and DE, BC and EF, CD and AF)
lie on a straight line. Pascal also noted that by using central projection, one can
derive from this theorem a similar statement about hexagons inscribed in any conic
section (an ellipse, a parabola, or a hyperbola).

In Pascal’s theorem, the hexagon ABCDFEF is not necessarily convex; in the
given case the hexagon may be any closed polygonal curve with six edges. For
six fixed points on the circle, there exists exactly 60 closed hexagonal lines with
vertices at these points. Indeed, choose any of the points; it can be joined to any of
the five other points, the second point can be joined to the remaining four, and so
on. As the result we obtain 5-4-3 .2 = 120 different versions, but in our method
of counting, we count each hexagonal line twice (because we take the orientation of
the line into account). Thus the number of different hexagonal lines with vertices
at six given points is 120/2 = 60. To these 60 hexagonal lines correspond 60 Pascal
straight lines. Jacob Steiner established in 1827 that these 60 Pascal lines may be
split into 20 triples of lines intersecting at one point. Later Kirkman studied the
configuration of the 60 Pascal lines in more detail and established (in 1850) that
besides the Steiner points these lines have triple intersections at 60 more points.

Many proofs of Pascal’s theorem are known, but all of them are not too easy.
We shall present one of the possible proofs that also allows us to obtain proofs of
the results of Steiner and Kirkman.

F‘nr nnnunninnnn we |nfrnr|nr-n fhn Fn"n“nno' notatinn We chall sunnose that
nvenience ng noetation. yve Silall SUppOse tial

straight line AB is given by the equation [4p = 0; this equation is determined
up to proportionality In the coordinates z,y, the function ! 4B is of the form

Ll o

LAB\.'L' y} =ar+ Uy + C, dIlu LAB Vd.Illblle at tne polinws /‘1 dJJ.U. D

LEMMA. Let the points A, B, C, and D lie on the circle given by a second
degree equalion f = 0. Then

f=MNaplep + pulpclap,

where X\ and p are some numbers.



56 16 THE PASCAL LINES

FIRST PROOF. Let X be a point of the given circle distinct from the points
A, B,C, and D. Choose numbers A\; and u; so that

Alap(X)lop(X) + pilpe(X)lap(X) =0,
and consider the curve given by the equation f; = 0, where

fi =Mlaglep + mleclap.

This curve is determined by a second degree equation and passes through the points
A, B, C, D, and X. But if a second degree curve passes through five distinct
points of a circle, then it coincides with this circle and so f = af;, where a is some
number. 0

SECOND PROOF. Let us introduce the (not necessarily Cartesian) frame with
axes AB and AD. Then the lines AB and AD are determined by the equations
y = 0 and x = 0 respectively, while the equation f = 0 defining the circle is a
second degree equation with respect to = and y.

The restriction of the functions f and

Maglep + ulpclap = Mylep + pxlpe

to any of the coordinate axes are quadratic trinomials with two common roots
(A and B, or A and D). Thus the numbers A and u may be chosen so that the
polynomial

P(.’Z‘, y) = f(mv y) - ’\leD(x» y) - [L:Elgc(.’l), y)
vanishes both for £ = 0 and for ¥ = 0. This means that it is divisible by zy, i.e.,
P(x,y) = qxy, where ¢ is a constant. At the point C the polynomial P vanishes
while xy # 0. Hence ¢ =0, i.e.,

f=Maglep + pleclap.
O

By means of this lemma we shall prove the theorems of Pascal, Steiner, and
Kirkman. Consider the hexagon ABCDEF whose vertices lie on the circle f = 0.

The quadrilaterals ABCD, AFED, and BEFC are inscribed in this circle, so f
may be represented in any of the following forms:

(1) f=Mlaslep + milabplasc,
(2) f =2Xolarlep + polapler,
(3) f = Aslgelcr + pslBcler.

Equating the expressions (1) and (2), we obtain
Mlaplep — Aalarlep = (pilpe — paler)lan.

Let X be the intersection point of AB and ED. The functions {aglcp and
larlgp vanish at the point X, while {4 p does not vanish at this point. Therefore,
the function plgc — pol g vanishes at the point X, i.e., the point X lies on the line
wilpe = polpp. Similarly it can be proved that the intersection point of the lines
CD and AF lies on the line u1lpc = poler. It is also obvious that the intersection
point of BC and E'F lies on the line u i = u2lgr. As the result, we obtain the
following statement.
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PASCAL'S THEOREM. If the pointis A, B, C, D, E, and F lie on one circle,
then the intersection points of the lines AB and DE, BC and EF, CD and FA
lie on one straight line.

But let us continue our arguments. Equating (2) and (3), we see that the
intersection points of the lines AF and BE, ED and CF, AD and BC lie on
the line polap = pslpe. Finally, if we equate (1) and (3), we establish that the
intersection points of the lines AB and CF, CD and BE, AD and EF lie on the
line pilap = uslp . It is easy to check that the three lines just obtained,

tilec = paler, polap = pslee, wilap = usler,

intersect at one point. Indeed, if X is the intersection point of the first two of these
lines, then

2l (X Nap(X) = papsler(X)pc(X).
Cancelling polpc(X), we obtain u1lap = puslpr (we shall not dwell on the degen-
erate case in which polpco(X) = 0).

The Pascal line of a hexagon inscribed in a circle is defined as the straight
line containing the intersection points of the three pairs of its opposite sides. Here,
as we have already pointed out, we may think that the hexagon is a closed self-
intersecting polygonal line. The statement proved above may be formulated as
follows.

STEINER'S THEOREM. Let the points A, B, C, D, E, and F lie on the same cir-
cle. Then the Pascal lines of the hexagons ABCDEF, ADEBCF, and ADCFEB
intersect at one point.

Recall that in the proof of this theorem the initial quadrangles were ABCD,
AFED and BEFC. One can also start with the quadrangles ABFE, ABDC and
CDFE. Then we obtain the following statement.

KIRKMAN’S THEOREM. Let the points A, B, C, D, E, and F lie on the same
circle. Then the Pascal lines of the hexzagons ABFDCE, AEFBDC, and ABDFEC
intersect at one point.

It is easy to verify that each of the 60 Pascal lines corresponding to six given
points of a circle belong to exactly one Steiner triple and exactly three Kirkman
triples.






One Butterfily and Two Butterflies Theorems

The lemma that was used in the proof of the theorems of Pascal, Steiner, and
Kirkman in our essay about Pascal lines is useful in proving many other geometric
theorems. Let us recall its statement.

LEMMA. Let the points A, B, C, and D lie on the circle given by a second
degree equation f = 0. Then

f=Maglop +plsclap,
where A end p are some numbers, while [xy denotes the (linear) equation of the

s YV
e AT .

A self-intersecting quadrilateral ressembles a butterfly, in a way. This explains
the names of the next two statements.

ONE BUTTERFLY THEOREM. Suppose the chords KL and MN pass through
the midpoint O of the chord AB. Then the lines KN and ML intersect line AB
at two points equidistant from O.

TwO BUTTERFLIES THEOREM. Suppose that the self-intersecting quadrilaterals
KLMN and K'L'M’'N’, inscribed in the same circle, intersect the chord AB of
this circle at the points P,@Q,R,S and P',Q',R',S’ respectively (the side KL at
the point P, LM at the point Q, etc.). If three of the points P,Q, R, S coincide
respectively with three of the poinis P',Q',R',S’, then the remaining two points
also coincide. (It is assumed that the chord AB does not pass through the vertices
of the quadrangles.)

PROOF OF THE ONE BUTTERFLY THEOREM. Let f = 0 be the equation of the
circle. According to the lemma,

f=ANkrlyn +plenive.

This equation also holds for the restrictions of all the functions under consideration
to the line AB. Introduce the coordinate x on the line AB, taking O for the

&

—J

PROOF OF THE TWO BUTTERFLIES THEOREM. To be definite, let P = P/, Q =
@', and R = R’. According to the lemma,

Mrplun + wlenlpur = fF =Nl oy + p@'lonlda .

Considering the restriction of this equation to AB, we obtain an equation of the
form

(1) alz-—p)z—r)+Bz~r)(z-s)=d(x~p)z—r)+F(x-qg-5)

59
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Now we must prove that s = s’
The equation (1) may be rewritten in the form

oz —p)x—r1)=(z - q)fx—s) -z -5

The point O can only coincide with S, hence @ # P and Q # R, and so (z—p)(z—7r)
is not divisible by (z — ¢). Hence 8(x — s) — §'(x — s’) = 0. Therefore, s =s'. O



CHAPTER 18

The Van der Waerden Theorem
on Arithmetical Progressions

The van der Waerden theorem on arithmetical progressions has an interesting
history. The following conjecture was put forward by Baudet:

(A) If the natural numbers are split in some way into two classes, then for any
natural number | one can find an arithmetical progression of length | in one
of these classes (i.e., the chosen class contains the numbers

a, a+d, a+2d, ... ,a+(l—-1)d
for some a and d).

This conjecture soon became rather well known. Many mathematicians at-
tempted to prove it. But this turned out to be no easy task. The first important

results were obtained by the outstanding mathematicians E. Artin and O. Schreier.
First Schreier proved that Baudet’s conjecture is equivalent to the following

I EIEL 1TvEl Lilal AL o L A

statement:

(B) For any natural number ! there exists a natural number N(l) such that if the
numbers 1,2,..., N(l) are split into two classes, then one of these classes
contains an arithmetical progression of length .

Then Artin proved that {B) is equivalent to the following statement:
(C) For any two natural numbers | and k there exists a natural number N (I, k)

such that if the numbers 1,2, ..., N(l, k) are split into k classes, then one of
these classes contains an arithmetical progression of length [.

Statement (A) obviously follows from (C). But, as it turned out, it is more
convenient to prove the more general (C) by using double induction on k and .
Such a fairly complicated proof was devised by van der Waerden in 1927.

The splitting of a set into &k classes can be visualized by imagining that it is
painted in k colors. In those terms (C) can be stated as follows:

(C') For any two natural numbers | and k there exists a natural number N(I, k)
such that if the numbers 1,2,...,N(l,k) are painted in k colors, then one
can find a one-color arithmetical progression of length (.

Later new proofs of the van der Waerden theorem, as well as of its generaliza-
tions, appeared. We shall discuss a fargoing generalization whose proof is relatively
easy. This proof is due to P. G. Anderson.!

P, G Anderson, A generalization of Baudet’s conjecture (Van der Waerden's theorem),
Amer Math. Monthly, 83 (1976), 359-361.
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In n-dimensional space® consider the set of points whose coordinates are non-
negative numbers. We shall call this set the lattice and its points, lattice points.

THEOREM. Let S be a finite set of lattice points. Then for any coloring of the
lattice in k colors there exists a natural number a and a vector v with nonnegative
integer coordinates such that the elements of the set aS + v (i.e., the image of S
under the homothety with coefficient a followed by the parallel shift by the vector v}
are all of the same color. Furthermore, one can give estimates for the number a end
for the coordinates of the vector v that depend only on the set S and the number k.

REMARK. The van der Waerden theorem will be obtained if we put n = 1 and
S=1{12,...,l}

For the proof of the theorem, it is convenient to consider the cube consisting
of all lattice points with coordinates from 0 to N — 1. This cube will be denoted
by Kn; it contains N lattice points, where n is the dimension of our space. The
statement of the theorem for the set S may be formulated as follows:

(As) There exists a natural number N depending on the number of colors k such
that for any coloring of the lattice points in the cube Ky in k colors the cube
contains a one-color set of the form aS + v.

The outline of the proof of the theorem is the following. If S consists of one
point, then (Ag) is obvious. Hence it suffices to prove that if w is a lattice point
not in S, then (Ag) implies (Aguy), where S U w is the set obtained from S by
adding w. For the proof of this, we shall need the following auxilliary statement

for each natural number p:

(Cs.w.p) There exists a natural number N, such that for any coloring of the cube
Kn, in k colors one can find natural numbers a,,...,a, and a vector v
with nonnegative integer coordinates so that each of the sets

To=(a1+---+ap)w+v,
Ti=a1S+(ax+--+ap)w+v,
T2 = (a1 +a2)S+ (a3 +- - +ap)w+v,

---------------------------

STEP 1. If(Ac) holds
> SR VAR CE ISV B S Gt

[0 1S o7 o

First let us prove (Cs y p) for p = 1. In this case we must prove that some cube
K n, contains one-color sets a;w + v and a5 + v. Property (As) implies that Ky
contains the one-color set aS + v. Therefore we can put a; = a and extend Ky to
a bigger cube Ky, so that for any point v of the cube Ky the point aw + v lies in
the cube K, .

Now we must prove that if (4g) and (Cs..p) are true, then so is (Cs ppt1)-
This proof uses an important idea on which van der Waerden's original proof was
based. Let a coloring of the lattice in k colors be given. To the point v let us assign

2For the reader who is not familiar with the notion of multidimensional space, it may be
assumed that n = 2 or 3; the van der Waerden theorem deals with the case n =1



18 'ITHE VAN DER WAERDEN THEOREM ON ARITHMETICAL PROGRESSIONS 63

the cube v + K. This cube consists of N™ points, so there can be k" different
colorings of the lattice points in k colors. To these k" colorings let us assign a
family of V" new colors and use them to paint each point v in accordance with
the coloring of the cube v+ Kn. Now there will be many more colors, but the new
coloring has the following property: the new color of two points u and v is the same

if and only if the old color of the points u + x and v + x is the same for all points
T of the cube I(:u i.e.. the ecubes u©+ Kn and v -+ V” were painted nvar-ﬂv n fhp
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same way in the old coloring. Let us call this new coloring induced; it depends on
the initial coloring and on the size of the cube K.

Suppose both (Ag) and (Cs 4 p) hold. Then there exists a natural number N,
such that for any coloring of the cube Ky, in k colors one can find natural numbers
ai,...,ap and a vector v for which each of the sets Ty, T, ..., T, are painted in one
color. Consider the induced coloring in k' = k> colors corresponding to the cube
Ky,. We can apply the assertion (Cs .1) proved above to this coloring. As the
result, we see that there exists a cube K/ containing one-color sets (in the induced
coloring) a’w + v’ and a’S + v’. The fact that the set a’S + v’ is one-color means
that in the initial coloring the cubes Ky, + a's + v’ are identically colored at all
points s of the set S. Each of these identically colored cubes contain the following
one-color sets:

one-color sets

If we add the one-color set T, = a’w + Tp + v’ to these sets, we obtain the required
family of the one-color sets

............................

where v = v +v'.
STEP 2. If (Cs..p) 18 true for all natural numbers p, then so is (Asuw).
We shall only use the fact that (Cg ., ..\ holds for p = k, where k is the number

of colors. In that case we obtain one—color sets Ty, T1,...,Tx. There are more
of these sets than there are colors, hence two of them must have the same color.

th 1
nat, say, tie Coior

Puta’'=a,+--+a,-, and
s is some point of S. Then a’

<

(@1 +---+ar—y)s+(a, +- - +a,)w+ v, where

SUw) + v is a one-color set of the reqmred form.

/—\

g
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To each triangle ABC there corresponds a very interesting transformation of
the plane. This transformation may be described as follows. Let P be some point.
Let us reflect the lines AP, BP, and CP in the bisectors of the angles A, B, and C,
respectively. The obtained lines intersect at one point Q {Figure 1). To prove this
statement and to study the properties of the transformation P — @), it is convenient
to use the so-called trilinear coordinates, which we shall now introduce.

//\B

FIGURE 1

Let a, b, ¢ be the distances from the point X lying inside triangle ABC to
its sides BC, CA, AB. Then the number triple (a,b,c) is said to constitute the
trilinear coordinates of the point X. Here the triple (a, b, ¢) is considered up to pro-
portionality, i.e., the triple (Aa, Ab, Ac), where A > 0, corresponds to the same point
as (a,b,c). In that case any triple (a, b, ¢}, where a, b, ¢ > 0, uniquely determines an
inner point of triangle ABC'. Indeed, the set of points with trilinear coordinates of
the form (a, b, x), where a and b are fixed, is the segment C'K, where K is a point
of side AB. As we move along this segment, the value a/x monotonically varies
from 0 to oo.

Trilinear coordinates can be defined not only for the interior points of the
triangle, but for all the points of the plane. We shall assume that a, b, ¢ are the
distances from X to the lines BC, CA, AB with sign, i.e., a > 0, if X and A are
both on one side of BC and a < 0 if X and A are on different sides of BC; the

signs of b and ¢ are defined similarily.

The set of points with trilinear coordinates (a,b,x), where a and b are fixed
numbers, is a straight line passing through the vertex C. Under the symmetry
in the bisector of angle C, this line is taken to the line consisting of points with
trilinear coordinates of the form (b, a, z), or, which is the same, (a=!,b7!,y). Thus

if the point P has the trilinear coordinates (e, b, c), then the desired point @ is well

65



66 19 ISOGONAL CONJUGATE POINTS

defined as the point with trilinear coordinates (a=',b=!,¢™!). In that case P and
Q are called isogonally conjugate with respect to triangle ABC.

Isogonal conjugation has exactly four fixed points (i.e., four points each of
which is isogonally conjugate to itself). These points have the trilinear coordinates
(1,1,1), (—-1,1,1), (1,—-1,1) and (1,1, —1). Clearly, the first of them is the center
of the inscribed circle, and the other three are the centers of the exterior inscribed

N rr-lnc
A7 ¥ L0 Swriw )

It is also obvious that the first Brocard point is isogonally conjugate to the
second one (see the essay about the Brocard points).

Let us prove some less obvious, but more interesting properties of isogonal
conjugation.

THEOREM 1. The center of the circumscribed circle is isogonally conjugate to
the intersection points of the altitudes.

PrRoOOF. Let «, 3,7 be the angles of triangle ABC. Then the center of its
circumcircle has the trilinear coordinates {cos a, cos (3, cosy).

Now let us compute the trilinear coordinates of the intersection point H of
the altitudes. For instance, let us compute the length of HA,, where A, is the
base of the altitude dropped from A. Clearly HA; = BH cosy and BHsina =
BC cos 3 = 2R sin a cos 3, where R is the radius of the circumcircle. Hence HA, =

YR cos Becos~. This means that the intersection point of the altitudes has the

AT p AT T T A 2ia5 AU GALAD vaaGy vl VIO A AL iy Al A LTAEAE Loz I S e P

trilinear coordinates (1/cosa,1/cos 3,1/ cos7y). O

THEOREM 2. The point for which the sum of squares of the distances to the
vertices is minimal is isogonally conjugate to the point for which the sum of squares
of distances to the sides is minimal.

ProOF. First let us note that the first of these two points is the intersection
point M of the medians. The proof of this is based on the relation

MA+MB +MC =0.
Indeed, this relation implies that for an arbitrary point X we have
XA+ XB?+ XC?=|XM + MAP? + |XM + MB|* + | XM + MC/?
=3XM? +2(XM,MA + MB + MC)
+ MA? + MB? + MC?
=3XM?+ MA?+ MB? + MC? > MA? + MB? + MC”.

It is easy to check that the intersection point of the medians has the trilinear
coordinates (a=!,b7!,c 1), where a, b, ¢ are the lengths of the triangle’s sides. This
immediately follows from the fact that the areas of the triangles AM B, BMC, and
C M A are equal. Therefore the point isogonally conjugate to the intersection point
of the medians has the trilinear coordinates (a, b, c).

Consider an arbitrary point with trilinear coordinates (z,y, z). The distances
from this point to the sides of the triangle equal kx, ky, kz, where k is determined
from the relation k(ax + by + cz) = 25 (S is the area of triangle ABC). Thus the
sum of squares of distances from the point to the sides equals

152 22 4 y? + 22
(ax + by + c2)?’
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[

FIGURE 2

We must prove that this sum is minimal for the case in which (z,y,2) = (a,b,¢),
ie.,
z? +y? + 22 S a’>+ b + ¢
(ax + by +cz)2 = (a? + b2 +c2)?’
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THEOREM 3. The circumscribed circle to the triangle is isogonally conjugate to
the line at infinity. In other words, if X is a point of the circumcircle, while the
lines a, b, c are symmetric to AX, BX, CX in the bisectors of angles A, B, C,
then the lines a, b, ¢ are parallel (Figure 2).

PROOF. Let us show, for instance, that the sum of the angles a + ¢ and 8+ ¢
that AB forms with the lines a and b is equal to #. Indeed, ¢ + ¥ = ~, while
a+fB+vy=mn. O

REMARK. It is not hard to prove that in trilinear coordinates the line at infinity
and the cirumcircle are determined by the equations

ar +by+cz=0 and ayz+bzx+cry=0,

THEOREM 4. Let all the angles of triangle ABC be less than 120°. Then the
point from which all three sides of ABC are seen under an angle of 120° (the
Torricelli point), is isogonally conjugate to the point whose projection on the sides
of ABC form an equilateral triangle.

PROOF. The Toricelli point T may be constructed as follows. On the sides of
ABC let us construct (outwards) the triangles A; BC, AB|C, and ABC,. Then
their circumcircles intersect at the point T. This construction implies that the
segments AC,, C B, BA,, A,C, CB,, B, A are seen from T under angles of 60°,
hence T is the intersection point of the segments AA,, BB,,CC,. Now it is easy
to prove that T has the trilinear coordinates

1 1 1
(sin(60° + @)’ sin(60° + 3)’ sin(60° + 'Y)) '
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Indeed, the distances from the point C to the lines BC and C A equal csin(60° + 3)
and csin(60° + «). Hence the ratio of distances from T to sides BC and C A equals

sin(60° + 3) : sin(60° + «).

And so we must prove that the projections on the sides of ABC of the points
with trilinear coordinates

form a regular triangle. To this aim we argue as follows. Consider a point P from
which the sides of the triangle are seen under the angles 60° + o, 60° + 3, 60° + ~;
let us show that:

1) the projections A; B;,C) of P on the sides of ABC form a regular triangle;
2) the point P has the trilinear coordinates

(sin(60° + a), sin(60° + B), sin{60° + v)).
The points A, and B, lie on the circle with diameter C'P. Hence
LPA\ By = LPCB, = LPCA.
Similarly, ZPA,Cy = ZPBA. Hence,
£LB1ACy=ZPCA+ £PBA=(y—- ZPCB)+ (8- £PBC)
=pB+~v+ £LBPC - 180° = 60°.

Similarly we can prove that the other angles of triangle A; B;C; equal 60°.
In order to compute the trilinear coordinates of P, first let us note that

1 1 1
sin(60° + a) "~ sin(60° 4 3) ~ sin(60° + v)

ha aine thanra

his is because, by the sine theorem,
B,Cy = APsin ByAC, = APsina.
Moreover, as we already know, B,C; = C1 Ay = A1 B;. It is also clear that
PA, - BC = BP.CPsin(60° + a)
(because both expressions are equal to half the area of triangle BPC). Therefore
PA,: PB; : PC, = sin(60° + a) : sin(60° + 3) : sin{60° + v),

as required. O

AP:BP:CP=

THEOREM 5 (Morley). Suppose that the vertices of triangle ABC lie in the
complex plane on the unit circle |z| = 1; suppose, further, that a,b, ¢ are the complex
coordinates of these vertices. Then any two points p and q isogonally conjugate unth
respect to triangle ABC are related by the equation

n 1l ot abeobpa + b4
P § T Quepg T .

LY

£

PROOF. On the complex plane the bisectors of the internal and external angles
between the vectors z and w coincide with the bisectors of the internal and external
angles between the vectors z’ and w’ if and only if

zw _ Z'w
w o
Indeed, let z = |z|e!® and w = |wle!¥. Then zw/(zw) = Z(¥+¥) while the

bisectors of the internal and external angles between z and w correspond to the
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angles (¢ + v¥)/2 + kn/2. But the specification of the angle 2(¢ + ¥) up to 27 is
the same as the specification of the angle (¢ + v)/2 up to 7 /2.
Thus, if the rays AP and AQ are symmetric in the bisector of angle A, then

(p—allag—a) (b—alc— a)
Wp-aj\g-a) (b-ajlc—a)
(p—a)g—a) (b-a)(c-a)

) _

The expression in the right-hand side equals a“bc since ab(b — a) = a — b and
ac(¢ — a) = a — ¢. Therefore,

pq — a(p + q) + a® = a®bepg ~ abe(p + ) + be.
Similarly we obtain
Pq — b(p+q) + b = bachg — abe(p + §) + ac.

Let us take the difference of the last two equations and cancel a — b in both sides.
As the result we obtain the required equality. |

T & Te o] Lo fomooa Bl oo NS ») 1o o
THEOREM 6. Let P, and P> be wuyunu,uy (.uu,_]u,yu,w rrom uruy the per-

pendiculars P;A;, P;B;, P;C; to the sides BC, CA, AB, respectively. Then the
circumcircles of triangles A1 B,Cy, and A2B>Cy coincide.

PROOF. Let us prove that the points B}, Bo,Cq, C; lie on one circle. Indeed,
LPB\Cy = ZPAC, = £LPyABy = £Py(Cy By,

but since ZP\B1A = £ZP,CyA = 90°, it follows that ZC1B;A = £ZB,C>A. The
center of the circle that contains the four points is the intersection point of the
perpendiculars to the midpoints of the segments By B, and C;C>, and both these
perpendiculars pass through the midpoint O of the segment P) P, i.e., O is the

center of that circle. In particular, By and C; are equidistant from O. Similarly,
‘4. and R are nnnlrllefnrﬂ' Frnm f) 1 e, f) 19 fhu antar fU]'\U C"""]\, C
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to AlBlcl. Moreover, OB, = OBQ. ]

For the case in which P, is the intersection point of the altitudes, while P; is
the center of the circumcircle, the coincidence of these two circles means that the
basepoints of the altitudes and the midpoints of the sides lie on one circle (the Euler
circle).

A more interesting statement is obtained for the case in which P; lies on the
circumcircle of the triangle. In this case the point P> moves away to infinity. This
means that the basepoints of the perpendiculars dropped to the sides of the triangle
from an arbitrary point of the circumcircle lie on a circle of infinite radius, i.e., they
lie on one straight line (often called the Simson line, although a historically more
precise name for it is the Wallace line). The Wallace line for the point P; is
perpendicular to the direction of the point at infinity Ps, i.e., it is perpendicular to
the lines symmetric to APy, BP,, CP; with respect to the bisectors of angles A, B,
C (this assertion is equivalent to the property of the circle of being perpendicular
at each point to the radius passing through this point; of course, in our case we are
dealing with the circle of infinite radius.)

In conclusion, let us present without proof one more property of isogonally
conjugate points.

THEOREM 7. The foci of any ellipse inscribed in a triangle are isogonally con-
Jugate.






Cubic Curves Related to the Triangile

There are different ways of assigning, to each triangle, a cubic curve, i.e., a
curve given by an equation of the form

E a;;z'y’ =0
i+5<3
Some of these curves have interesting geometric properties. These cubic curves, or

cubics, usually bear the name of the geometers who first investigated them: the
Darboux cubic, the Thomson cubic, the Neuberg cubic, and the McCay cubic.

The most interestine nronerties of cubics related to trianeles are based in one
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way or another on isogonal conjugation with respect to the triangle. Therefore our
exposition will be based on properties of isogonal conjugation, which we studied
in the previous essay. We shall also make use of trilinear coordinates introduced
there. It is easy to understand that in trilinear coordinates (x, y, z) any cubic curve
is given by an equation of the form

Z cijkriyjzk =0.
i+j+k=3
Originally, the cubics related to triangles were defined by means of various

geometric constructions. The most famous cubics among these can be obtained by
a unified construction!. This construction is based on the following statement.

THEOREM. Let F be a point in the plane. For a given triangle ABC consider
all possible pairs of isogonally conjugate points P and Q for which the line PQ
passes through F. Then P and Q) sweep a cubic curve that passes through the
vertices of the triangle, through the centers of the inscribed circle and the three
exterior inscribed circles, as well as through the point F itself.

PROOF. Let F have the trilinear coordinates (f1, f2, f3). If P has the trilinear
coordinates (z, y, z), then the point @ isogonally conjugate to it has the trilinear co-
ordinates (z~*,y~%,27!), i.e.,, (yz, zx, xy). Therefore the condition that the points
P,Q, F lie on a single straight line can be written in the form

f. fo
41 J L
x Yy z =0,
yz zx XY

ie,

(1) fiz(y? = 2%) + foy(z® — 2°) + faz(z? - %) = 0.

IH M Cundy, C F Parry, Some cubic curves associated with a triangle, Journal of Geom-
etry, 53 (1995), 41-66.
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It is easy to check that

F=(fi,f2fi), A=(10,0), B=(0,1,0), C=(0,0,1),
I=(,1,1), I,=(-11,1), Iy=(1,-1,1), I.=(1,1,-1)

all lie on the curve given by equation (1), i.e., the coordinates of these points satisfy
this equation. (]

One can directly see from the geometric definition of the curve (1) that it is
transformed into itself under isogonal conjugation. Indeed, if P lies on the curve (1),
then its isogonally conjugate point ¢ also lies on the curve (1).

The point F' that we used to construct the cubic curve (1) will be called the
pivot of this curve.

The Darboux cubic. The pivot of this curve is the point H symmetric to the
intersection point H of the altitudes with respect to the center O of the circumcircle.
It is easy to verify that the point H has the trilinear coordinates

(cosa — cos Fcosy, cos — cosycosa, cosy — cosacos ),

where a, 3, v are the angles of our triangle.
In trilinear coordinates, the Darboux cubic is given by the equation

(cos a — cos Fcosv)x(y® — z2) + - = 0.

(We have written out only the coefficient at z(y? — z2); the coefficients at y(z% —z?)
and at z(x? — y%) can be written in the obvious way.)

The Darboux cubic passes through the following points: the orthocenter and
the center of the circumcircle.

The Darboux cubic has the following geometric description.

THEOREM 1. Let Ay, By, C; be the projections of the point D on the lines BC,
CA, AB. The point D lies on the Darbouz cubic if and only if the lines AA,, BBy,
CC) intersect at one poindt.

PROOF. According to Ceva'’s theorem, the lines AA,, BB;, CC) intersect at
one point if and only if

C\B

TR,
1 v D

R . A A
I = ‘1] 141y

where AC}, etc. are the oriented lengths of the segments (i.e., the numbers AC)
and C B have the same sign if C, lies on the segment AB, while if C) lies outside
AB, then these numbers have opposite signs).

Let (x,y,2) be the normed trilinear coordinates of the point D, i.e., z
the distances from D to BC, CA, AB with signs taken in consideration. I

to verify that
zcosa+y

AC, =

sin &
etc. Therefore the lines AA;, BB;, CC intersect at one point if and only if

(zcosa + y)(ycosy + z)(xcosB+ z) = (zcos 8+ z)(x cosy + y)(ycosa + z).

This relation can readily be transformed into the equation for the Darboux cubic.
a
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REMARK 1. If the equation
AC,-BA,-CBy=C1B-A)C-BA

holds for some point D, then the same equation holds for the point D’ symmetric
to D with respect to the center of the circumcircle. Therefore the Darboux cubic
is symmetric with respect to the center of the circumcircle.

REMARK 2. It is not difficult to prove that the lines AA;, BB;, CC] intersect
at one point if and only if there exists a second order curve tangent to the sides of
the triangle (or their continuations) at the points A;, By, C;.

The Thomson cubic. The pivot of this curve is the center of mass M. Recall
that the center of mass of the triangle has the trilinear coordinates (bc, ca, ab).
In trilinear coordinates, the Thomson cubic is given by the equation

bex(y? — 22) + cay(z2 -z + abz(at:2 - y2) =0.

R T I R U T I
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j=}

(cosa + cos Bcosy)z(y? — 22) +--- = 0.

The Thomson cubic passes through the following points: the orthocenter and
the center of the circumcircle, the midpoints of the sides and the midpoints of the
altitudes.

It is clear from Remark 2 to Theorem 1 that the Darboux cubic has the follow-
ing geometric description. Consider all the second order curves that are tangent to
the sides of the given triangle or their continuations. Among them let us distin-
guish those for which the perpendiculars to the sides of the triangle at the points
of tangency intersect at one point. Then the intersection points of these perpendic-
ulars sweep through the Darboux cubic. It can be proved that the centers of the
distinguished second order curves sweep through the Thomson cubic.

The McCay cubic. The pivot of this cubic curve is the center O of the
circumcircle. Recall that the center of the circumcircle has the trilinear coordinates
(cosa, cos 3, cos ).

In trilinear coordinates, the McCay cubic is given by the equation

cos ax(y® — 22) + cos By(z? — z?) + cosyz(z? — y%) = 0.

The McCay cubic passes through the following points: the orthocenter and the
center of the circumcircle.

THEOREM 2. Let the vertices of a triangle be located at the points a, b, ¢ of the
unit circle of the complex plane. The point corresponding to the complexr number z
lies on the McCay cubic if and only if we have

M W

PROOF. Let the points z and w be isogonally conjugate with respect to the
given triangle. Then according to Morley’s theorem (Theorem 5 from the previous
essay) the points z and w are related by the equation

(2) z+w+abczo=a+b+c
Therefore

(3) I+wtabtzw=a+b+é.
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Multiplying both sides of equation (3) by abcZ and subtracting equation (2) from
the result, we obtain

a+b+c—z—(a+b+c—z)abcz

(4) w =
R 1 — |abez|?

By the definition of the McCay cubic, the line zw passes through the center of the

circumcircle, i.e., through the origin. This means that 1n/m = 7/7 Expressing m/’m
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by using equatlon (4), after some manipulation we obtaln the requlred equation. []

COROLLARY. The McCay cubic intersects the circle circumsribed to the cor-
responding triangle at three points forming the vertices of a reqular triangle. (We
only take into account the intersections distinct from the vertices of the original
triangle. )

PROOF. We shall assume that the vertices of the given triangle are located on
the unit circle of the complex plane. Then for any point z lying on the circumcircle
of the triangle, we have # = 2!, Therefore the intersection points of the McCay
cubic with the circumcircle satisfy the equation

(z—a)(z —b)(z — ¢) = —273abe(z — a)(z — b)(z — ¢).

If we exclude the vertices of the triangle, the remaining points will satisfy the

= ~.3 — P N Lcn mvmirbe Fara JE I R, | rl
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We shall assume that ZPQR is the value of the angle by which we must rotate
(counterclockwise) the vector Cﬁ in order to make it codirected with the vector

QR

THEOREM 3. A noint M lies on the McC

2 I Vi 2. L1 UL IVED BT L d ELE S

LMAB + LMBC+ LMCA =

Mllﬂ

PROOF. Again we shall assume that the vertices of the triangle lie on the unit
circle of the complex plane. We put « = ZMAB, = /ZMBC, vy=ZMCA. Let
z be the complex number corresponding to the point M. Then

b=8 228 _ gia g gtie_ %771
z—a b-—a z—a
Therefore
2i(a+847) _ _gp (az — 1)(bz — 1)(cz — 1)-
’ e aGE-0G 9
Thus the point z lies on the McCay cubic if and only if 2> +/+7) = —1 i.e.,

-_r
T vt .

ol

It is easy to check that
LMAB+ ZMBC + LMCA+ LMAC + ZMCB + ZMBA = (2n + 1)7.
Hence M lies on the McCay cubic if and only if
LMAB+ LMBC+ LMCA=4ZMAC+ LMCB + ZMBA + 2In.
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The Neuberg cubic. The pivot of this curve is the point at infinity of the
line OH. In other words, the Neuberg cubic consists of pairs of isogonally conjugate
points P and @ for which PQ) is parallel to OH.

In trilinear coordinates, the Neuberg cubic is given by the equation

(cosa — 2cosBeosy)x(y® —z%) +--- =0,

The Neuberg cubic is the undisputed leader in the number of remarkable points
of the triangle through which it passes. Indeed, this curve passes through the
following points: center of the circumcircle; orthocenter; vertices of the regular
triangles constructed on the sides of triangle ABC (both exterior and interior);
points symmetric to the vertices of ABC with respect to its sides; two points from
which the sides of ABC are seen under a 60° or a 120° angle (the isogonal centers
of the triangle); two points that satisfy the relation AX-BC = BX-CA=CX -AB
(isodynamical centers of the triangle).



