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Preface

During the last Prague Symposium on Graph Theory several people sugge-
sted collecting papers which would exhibit diverse techniques of contemporary
Ramsey Theory.

The present volume is an outgrowth of this idea. Contemporary research
related to Ramsey Theory spans many and diverse areas of mathematics and
it has been our intention to demonstrate it. We decided not merely to collect
papers but also to edit the volume as a whole. In several instances we asked
for specific contributions.

Admittedly this was a bit ambitious project and as a result it took us
several years to complete it. But perhaps the time was worth it: we are pleased
that we have among the contributors many leading mathematicians.

We thank all the authors for the excellent job they have done.

We thank Jan Kratochvil and Yvonne Hold (Charles University, Pra-
gue) for technical assistance in editing this volume. The book has been TEX-
processed in the Institut fiir Diskrete Mathematik (Bonn) and we thank
Mrs. H. Higgins and B. Schaschek.

Bonn, March 13, 1990 Jaroslav Nesetfil
Vojtéch Rodl
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Introduction
Ramsey Theory Old and New

Jaroslav Nesetfil and Vojtéch Rodl

The purpose of this introduction is to outline scope and intentions of this
volume. We also state some classical results. This historical perspective will be
of some use to a (non-specialist) reader.

Ramsey theory stems from the following result:

Ramsey Theorem (infinite case). For every finite partition of the set of all p-
subsets of an infinite set one of the classes of the partition contains all p-subsets
of an infinite set.

This fundamental result changed and in a sense created combinatorial word
as we know it today. Historically, it was also one of the first combinatorial results
which attracted attention of mathematicians in general.

Ramsey theorem is a structural generalization of anglo-saxon pidgeonhole
— and continental Dirichlet’s “Schubfach” - principle (for p = 1) and it is
important that it admits a finite version:

Ramsey Theorem (finite case). For every choice of positive integers p,k,n there
exists an integer N with the following property:

For every set X of size at least N and for every partition A; U...U Ay of the
set (f) of all p-subsets of X there exists a homogeneous subset Y of X of size

at least n. Here homogeneous means that (:) is a subset of one of the classes
of the partition.

Investigations of the finite version are predominant in the history of this
subject. This is perhaps due to the many combinatorial applications of Ramsey
theorem which started with an independent discovery of finite Ramsey theorem
by Erdds and Szekerés. They arrived to it in the following geometrical context:

Erdos-Szekerés Theorem. For every n there exists N with the following pro-
perty: Let X be a set of N points of Euclidean plane containing no 3 colinear
points. Then X containsn independent points (i.e. n-points which form vertices
of a convex n-gon).

These early results motivated future research. These motivations are per-
sistent until now.
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In the more than fifty years since the publication of F. P. Ramsey (1930) and
P. Erdds, R. Rado (1952) the whole subject formed one of the most developed
combinatorial theories which transcendents by far the original motivation. It
is one of the goals of this volume to include modern aspects and more recent
approaches to this subject. The monograph by R. Graham, B. Rothschild and
J. Spencer gives an introduction to this subject. Nevertheless we feel that recent
development merits a volume which would complement their excellent book.
Admittedly this was a bit ambitious project and as a result of it it took several
years to complete a representative list of contributions.

Let us list several particular aspects of Ramsey theory (moreless in a chro-
nological order) most of which are relevant to articles in this collection.

1. Ramsey Numbers

One of the oldest areas of the Ramseyan research is the study of Ramsey
numbers r(p, k,n) : 7(p, k,n) is the smallest value N for which finite Ramsey
theorem is valid.

It is known that there are positive constants ¢, and c;, such that

c;nz < IOg(P_—l) 'r(p,2,n) < 207

(here log(*—1) denotes (p — 1)-times iterated logarithm). The lower bound was
proved in (Erdds, Rado 1952) and the upper bound (Erdés, Hajnal, Rado 1965).
The famous exponential lower bound 7(2,2,n) > 27 for Ramsey numbers was
established first by Erdés in 1947 by a probabilistic method which itself develo-
ped into one of the most active areas of combinatorics. These results stimulated
extensive research. It is difficult to evaluate Ramsey numbers both exactly (just
a handful of non-trivial cases is known) and asymptotically. Recently there has
been progress in asymptotical estimates of Ramsey numbers. See the paper by
J. Spencer in this volume and, for a more extensive survey, article (Graham,
R3dl 1987) which covers great part of the research related to Ramsey num-
bers. As the original setting presents somehow untractable problems Ramsey
numbers were generalized to other homogeneous graphs then complete ones. In
the last 15 years there has been a lot of activity in this area and several deep
results were obtained.

We are happy to include a paper in this area namely the paper by J.
Beck. The paper by S. Burr in this volume investigates the generalized Ramsey
numbers from the non-traditional computational point of view.
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2. Transfinite Ramsey Theory

Ramsey theorem may be generalized to sets of arbitrary size. This project
was developed by Erdés, Rado and Hajnal to the partition calculus of cardinal
numbers. They also introduced a concise notation of the (relatively complex)
statement of Ramsey type theorem. This so called arrow notation has many
variants. In its most standard form the Infinite Ramsey theorem reads

w = (W)

for every choice of positive integer p and k. Using this one can formulate fun-
damental result of Erdés and Rado as follows:

Theorem (Erdds, Rado 1952). For every finite p and infinite cardinals o, 3 there
exists a cardinal y such that v — (a)j.

Particularly, (29t — (a™)2.

A monograph devoted so this subject is the book by P. Erdos, A. Hajnal,
A. Maté and R. Rado (1984). One of the main uses of transfinite Ramsey theory
is set theory, topology and more recently functional analysis.

While most of the contributions to this volume are finitistic the paper by
W. Weiss on Ramsey topological spaces is related mostly to this area.

Another related contribution included in this volume is a paper by R. Rado
which gives a new proof of well known Erd6s-Rado canonization lemma.

3. Chromatic Number

It is well known that one may express a Ramsey type result as a statement
about chromatic numbers of special classes of hypergraphs.

Explicitly, given a set X let (f) be the set of all p-element subsets of X.
Denote by X' the set system (V, E) where V = (f) and E = {(’;) ;Y € (‘:f)}

Then |X| — (n)} if and only if the chromatic number x(X}') exceeds k.
Every Ramsey type statement may be reformulated in this way. Much of the
research on chromatic numbers was motivated by questions of Ramsey type.
The paper by P. Erdés in this volume written in the classical Erdésian style
suggests many selected problems which indicate how lively is the subject today.

4. Classical Theorems

As expected the Ramsey theorem fails to be chronologically the first statement
of Ramsey type. One may speculate that several classical theorems fall within
general framework outlined by Mirsky and Burkill philosophical lines (Bur-
kill, Mirski 1973) “every system of a certain class possesses a large subsystem
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with a higher degree of organization than the original system”. One may note
that Bolzano-Weierstrass theorem and many compactness type results may be
interpreted in this context.

However it is customary to cite the following two theorems as the first
examples:

Hilbert Theorem (Hilbert 1892). For every positive integers k,n there exists N
with the following property: For every partition of the power set P(X) into k
classes of a set of size > N there exist distinct subsets Ai,..., A, of X which
have pairwise identical intersections (i.e. A; N Aj = Ay N Aj) such that all
2™ — 1 non-empty unions belong to the same class of the partition.

Schur Theorem (Schur 1916). For every positive integers k,n there exists N
with the following property:

For every partition of {1,2,...,N} into k classes one of the classes contains
two numbers together with their sum.

There are much more general results known today and also easy proofs of
these results are available. The area is still active and there exists relationship
to other branches of mathematics. An example of such research motivated by
Pisier problem from harmonic analysis is included in this volume (contribution
by P. Erdds and the editors).

5. Other Classical Theorems

Apart from the Ramsey theorem itself no other result in this area is as popular
as Van der Waerden theorem.

Van der Waerden Theorem (Van der Waerden 1927) For every k,n there exists
N with the following property: For every partition {1,2,...,N} into k classes
one of the classes contains an arithmetical progression of length n. This deep
result found a proper combinatorial setting by means of Hales-Jewett theorem:

Hales-Jewett Theorem (Hales, Jewett 1963). For every k,n there exists N with
the following property:

For every partition of {1,...,n}" into k classes one of the classes contains a
combinatorial line.
Here we think of {1,...,n}" as of a cube and a combinatorial line determined
by w C {1,...,N} and (z9%,...,z%) is a set of the form

{(1,...,2N); zi =2} for i ¢ w}

z; =z fori,j € w.

Hales-Jewett theorem is presently one of the most useful techniques in
Ramsey theory.
We are happy to include in this volume a very nice paper by H. J. Promel and
B. Voigt which surveys the fascinating development related to Hales-Jewett
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theorem. The paper is called Parameter sets according to an approach due to
Graham and Rothschild (Graham, Rothschild 1971). We are happy to include
in the volume a paper by A.Nilli (N. Alon) which presents a particularly concise
version of the recent striking new proof of Van der Waerden’s theorem due to
S. Shelah.

6. Structural Generalizations

Positive examples of Ramsey type statements which were found in the sixties
and early seventies encouraged attempts to generalize and to abstract proper-
ties of classes of structures with Ramsey properties (see Graham, Rothschild
1971, Graham, Leeb, Rothschild 1972, Deuber 1973, Leeb 1973, Nesetfil, Rodl
1975 for early examples). The whole research attained the level of generality
which is in this volume mirrored by papers by Promel and Voigt and by the
editors. Perhaps the main feature of this development was the sharp defini-
tion of the whole subject which e.g. led to the project of investigating Ramsey
structures and to the following key concepts: parameter sets, Ramsey class, in-
duced and restricted theorems, Euclidean Ramsey theorems, Ramsey property,
ordering property, selective and canonical theorems. Several old problems were
solved such as Ramsey property of finite vector spaces (conjecture of Rota;
Graham, Leeb, Rotschild 1972) and Ramsey property of partition regular sets
(conjecture of Rado, Deuber 1973). When dealing with complex statements of
Ramsey type it seems that it was useful to apply some kind of a general for-
malism; (such as category theory) see the paper by Prémel and Voigt and by
editors in this volume. Euclidean Ramsey theorey is surveyed in this volume
by a paper of R. Graham.

Perhaps the most exciting line of research in Ramsey theorey is related to
the validity of the density version of Van der Waerden theorem. The related
conjecture proved to be one of the main motivations of the subject:

If A is a set of positive integers with positive upper density, that is, satisfying

An{l,...,n}

n

lim sup, >0

then A contains arbitrary long arithmetical progressions. This conjecture was
settled affirmatively in 1974 by E. Szemerédi in perhaps the most difficult paper
in the subject. Recently the Erdds-Turdn problem and its higher dimensional
analogue have been solved by quite different techniques from ergodic theory
and topological dynamics by Fiirstenberg (1981) and (1981). These techniques
are in this volume illustrated by paper by Fiirstenberg and Katznelson. Note

that these techniques yield results which are (at least presently) not obtainable
by combinatorial methods.
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7. Infinite Ramsey Theorem

It is well known that one cannot partition infinite subsets of an infinite set in
order to obtain an infinite homogeneous set. (Explicitely, k¥ /4 (w)4 for every
k.) However axiom of choice is needed for this fact and this led R. Solovay to
reverse the question : He asked whether one can find an infinite homogeneous
set () if only “nice partitions” are considered. This is indeed the case as shown
by Nash-Williams, Galvin-Prikry and others. This development culminated in
the proof of infinite dual Ramsey theorem which generalizes many results of
this type.

The paper by Carlson and Simpson (and partially by Promel and Voigt)
is a survey of this development.

These theorems are related to the theory of Well-Quasi Ordered Sets
(WQO). Ramsey theory and theory of WQO share many similarities and the
paper by K1z and Thomas is a recent attempt to study countable ordinal types
related to both Ramsey and WQO theory.

8. Unprovability Results

(When available) countable Ramsey type statement generalizes corresponding
finitistic statement. This is easy to see by a compactness type argument (ap-
plying e.g. the reformulation via the chromatic number). Recently, it has been
shown that infinite Ramsey theorem is strictly more powerfull as it may be
used (again by compactness) to prove the following:

Paris-Harrington Theorem (Paris,Harrington 1977). For every k,p,n there
exists N with the following property:

For every partition ({'+"N}) into k classes one of the classes contains () where
Y is a relatively large set with at least n vertices.

Here Y is relatively large if |Y| > minY.

Paris and Harrington proved that this result fails to be true within theory of
finite sets thus giving perhaps the first mathematically interesting example for
the Godel’s incompleteness theorem. This result gained an instant popularity
as it nicely fits to our common sense. Since then the progress has been quick
and several other examples has been found and the paper by Paris included
in this volume surveys these developments. Another feature of these indecida-
bility results is that it again relates Ramsey theory and theory of Well Quasi
Orderings. These two subjects have many common aspects see e.g. (Nesetfil
1984, Leeb 1973, Nesetfil, Thomas 1987) and the paper by Ki1z and Thomas
in this volume.
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9. Non-Standard Applications

Recently the whole field of Ramsey theory expanded in various directions. Se-
veral very deep and far reaching generalizations of the original theorems were
found. The interested reader may consult survey articles by Graham and Rodl
(1987), Nesetfil and RSdl (1979), Graham (1983). He may also compare them
to get a clearer picture of the development of the subject. There are tradi-
tional areas of Ramsey applications: these include geometry, number theory,
set theory. There are more recent applications some of them quite unexpected:
functional analysis, theorey of ultrafilters (Baumgartner, Taylor 1978), ma-
thematical logic (Abramson, Harrington 1978), and especially ergodic theory
(Fiirstenberg 1981, Fiirstenberg 1981). Another of these new trends are the
applications of Ramsey type results in theoretical computer science.

One may ask how one can use a typically “non constructive” theorem in the
computer science context.

The answer is given e.g. by articles by Yao (1981), Alon, Maass (1986),
Moran, Snir, Manber (1985), Vilfan (1976), Pudldk in this volume; see also
survey article Nesetfil (1984).

These applications use both lower and upper bounds for Ramsey functi-
ons. Using complex examples of graphs (which are obtained by lower bound
in corresponding Ramsey-type statement) one may obtain lower bounds for
various measures of complexity; see the paper by Pudldk in this volume. The
upper bounds, which essentially mean that we apply the existence of Ramsey
numbers only, yield a canonical form of various procedures when applied to a
very large object (such as sorting a large set). This was in fact the original
motivation of F. Ramsey for his discovery. It is surprising how persistent is this
motivation.
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Part 1

Classics



Problems and Results on Graphs and
Hypergraphs: Similarities and Differences

Paul Erdos

Many papers and also the excellent book of Bollobds, recently appeared on
extremal problems on graphs. Two survey papers of Simonovits are in the
press and Brown, Simonovits and I have several papers, some appeared, some
in the press and some in preparation on this subject.

Much fewer papers have appeared on extremal problems on hypergraphs,
not because there are no interesting and challenging problems but because none
of us could make any significant progress.

In this survey, I will hardly give any new results but will try to emphasize
the new difficulties which arise in the study of hypergraphs. In the first chapter,
I discuss classical extremal problems of Turdn type. In the second chapter, I
deal with density problems (generalizations and extensions of the theorem of
Stone, Simonovits and myself). In the third chapter, I deal with Ramsey’s
theorem, here an excellent book of Graham, Rothschild and Spencer recently
appeared and also a shorter book of Graham.

In the fourth chapter, I discuss Ramsey—Turén type problems and results.
This subject was initiated a few years ago by V.T. S6s and myself and in the
last chapter I discuss problems dealing with chromatic numbers of graphs and
hypergraphs.

Not to make the paper too long, I do not discuss generalized Ramsey
problems. Burr has two excellent and comprehensive papers on this subject
and I also omit digraphs and multigraphs. These are discussed in our paper
with Brown and Simonovits. I apologize in advance if I omitted to mention a
person or result which should have been mentioned. Limitations of time and
memory are, I hope, adequate excuses. (I had to finish the paper in a hurry to
meet a deadline.)

Many of the references which I do not give here can be found in B. Bol-
lob4s’, Extremal graph theory, Academic Press, 1978.
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1. Extremal Problems of Turan Type

Let G((h,£) be an r-uniform hypergraph of h vertices and £ edges (hyper-
edges i.e., r—tuples). F,(G((h,f)) is the smallest integer for which every
G)(n; F,,(G")(h,£))) contains G(")(h,£) as a subgraph. Turén in his classical
paper determined F(K(*(m)) fo every m > 3 (K(J(m) denotes the com-
plete r graph of m vertices) and raised the famous problems on F,(K("(m)),
r > 2,m > r. None of these values are known. It is easy to see that the value
of the limit

®) tim Ak Om)(7) = clmn)

exists but its values are not known for any r > 2, m > r. Turdn conjec-
tured

(2) 6(4,3) = g, 6(5,3) = %

and in general, he made plausible conjectures for the value of ¢(m,r).

In memory of Turédn I offered (and offer) $ 1000 for settling these problems.

As far as I know, the only extremal problem on hypergraphs which was
completely solved is due to Katona: Let r = 3, |S| = 3n. Let there be
given a system A;,...,A,, of triples in S. Assume that no A; contains the
symmetric difference of two A's. Is it then true that maxm = n3? Bollobds
proved Katona’s conjecture. Frankl and Fiiredi strengthened Bollobds’s result
for n > 1000, by showing that if m > n3 then there are three triples isomorphic
to {{1,2,3},{1,2,4},{3,4,5}}. The analogous problems for » > 3 are open. In
view of the theorem of Stone-Simonovits and myself it follows that if G(?)(k, £)
is t—chromatic then

1 .n?
3) Fo(GP(k,0) = (1+0(1))(1 - 1)

Thus F,(G®(k,£)) is asymptotically determined for ¢ > 2. For T = 2 (3)
only gives F,(G®(k,£)) = o(n?), and indeed most of the asymptotic problems
are still open for bipartite graphs. Here I only state a few conjectures of Si-
monovits and myself. Let 1 < a < 2 be any rational number. Then there always
is a bipartite graph G(?) = G for which

(4) nlirxgo F.(G)/n* =cg, 0<cg< oo

and conversely, the exponent a = a(G) must always be rational. We con-
sider this conjecture an interesting and challenging problem and I offer a reward
of § 250 for settling this problem. We have no guess about the possible values
of co — no doubt ¢, must be algebraic.

Let ng), ... be a finite or infinite sequence of graphs, F,((G4,...) be the
smallest integer for which every G(n, F,,(G1,...)) contains at least one of the
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G's as a subgraph. As long as the number of G's is finite, we suspect that (4)
remains true with a rational . In fact perhaps

(5) Fo.(G1,...,Gk) = 1r5r1;'i£kF"(Gi)'

Though a forthcoming paper of Faudree and Simonovits throws considerable
doubt on (5).

Simonovits just observed that (4) completely fails if the number of G's
is infinite. To see this let n; < np < ... tend to infinity sufficiently fast. The
graphs Gi,... are all the graphs of n; (i = 1,2,...) vertices and cn; edges.
Clearly, Fy;(Gi,...) < cn;. On the other hand, it easily follows from our work
with A. Rényi (on the evolution of random graphs) that if ¢ > co(€) and the n;
tend to infinity sufficiently fast then

Fn..+1-1(G1, .. ) > nf_:f
Perhaps (4) can be “saved” if we insist that for every n there is only one
(or a bounded number) of forbidden graphs of n vertices.

For hypergraphs nothing like (4) holds. Let, in fact, G(ls) consist of two

triangles having an edge in common and Gga) has three triangles (z1,z2,23),
(z3,24,%5), (Z2,%4,26). Ruzsa and Szemerédi proved that for every e > 0

(6) n?~¢ < Fo (G, G) = o(n?).

It seems certain that one can disprove (4) for r > 2 for a single hypergraph
G(7, though as far as I know this has not yet been done.
This has been recently proved by Fiiredi.
In fact, Ruzsa and Szemerédi settled a conjecture of Brown, V.T. Sés and
myself, according to
Fo(G®)(6,3)) = o(n?)

The more general conjecture
Fo(G®(k, k — 3)) = o(n?)

is still open for k£ > 3.
To end this chapter, I state a few of our more striking conjectures. Is it
true that if G is such that it has no subgraph of minimum valency > 2 then

(7 Fo(G¥) < cn¥/??

and perhaps if G(?) has a subgraph each vertex of which has valency > 2 then
Fo(GP)/n3/2 s o0 in fact perhaps F,(G(®) > n3/2+¢, Is it true that

(8) can® VT < B (K(r,1)) < c1n®~Y/7?

The upper bound is a well known result of Kdvéri, V.T. Sés and P. Turén. The
lower bound is known only for » = 2 and r = 3.
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Is it true that (C(® is the graph of the three dimensional cube) F,(C®)) >
en®/57 And in fact is it true that for some 0 < ¢ < 00

Fu(C®) = (e + o(1))n®/5?

F,(C®) < en/® is a well known result of Simonovits and myself.
I proved (1965) that for every r and ¢ there is an € = ¢(r,t) for which

(9) F,(KM(,...,1)) <n"<)

(8) is a generalization of (7). The exact value of the exponent is not known for
r>3.
Finally, I proved the following extension of (3) for » > 2. Denote by K f') (1)

the r-graph whose vertices are g ), 1<:<t,1<j<{and whose t"(:) edges

i
are {2, ...,20}, 1<ji<...<jr <8 1<i1 <t,..., 1 <ip <t Then
for every r,£ and ¢

-1

(10) tm BEPO)(T) = end

Just as in (3), the value of the limit does not depend on ¢.

2. Density Problems

Let n; < na < ... be a sequence of integers and G(™(n;) a sequence of -
uniform hypergraphs. We say that the edge density of this sequence is a, if a is
the largest real number for which there is a sequence m; — oo, m; < n; so that
for infinitely many indices i, G(")(n;) has a subgraph G(™(m;; (e + (1)) (™))
i.e., it has a subgraph of m; vertices and (a + o(1))(™) edges. If there is no
danger of misunderstanding, one can speak of the density a if a is the largest
real number for which G(")(n) has a large subgraph G("(m) with (a+o0(1))(T)
edges.

(8) can be stated in this language in the following elegant form: The only
possible values of the density of G®(n) are Lor (1 - 1), r=1,2,... .

For r > 3 very much less is known. (9) can be restated as follows: No
r—graph can have a density a for 0 < a < :—f, i.e., if the density is positive,
then it is at least ;f% The weakest form of my “jumping constant conjecture”

states: There is an absolute constant ¢, such that if G(")(n) has more than
(14 €)n™/r" edges, then its density is > ,’,‘—,' + ¢,. In other words, the density
G(") can never be o where 2 < a < 2 + ¢,. This modest looking conjecture
seems to present great difficulties and it is not even known for r = 3. I offer $
500 for a proof or disproof. More generally I conjectured that the density can
take only denumerably many possible values and if these values are ordered by
size then they form a well ordered set. This was one of my favorite conjectures
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and I offered $ 1000 for a proof or disproof. P. Frankl and V. Rodl (1984)
disproved this conjecture and showed that for n > 3 the set of these values is not
well-ordered. For more general conjectures for multigraphs and digraphs, see
our papers with Brown and Simonovits and the paper of Brown and Simonovits.

Several related questions can be asked. Suppose that our G(")(n,£) are
not considered to be subgraphs of K(")(n) but of some suitable subgraph of it.
For example, if G(")(n,£) is a subgraph of K("([2]) (the complete r—partite
r—graph where each class has 2 vertices), then it easily follows from (9) that

the density is 0 or 1. If the graphs are subgraphs of Kt(")(n) then the density
can take on only finitely many different values — we leave the details to the
reader. On the other hand, let us try to consider subgraphs of G®)(3n,n (%))

defined as follows: The vertices are Z1,...,Zn;¥1,--.,Y2. and the n(%") triples
are {z:,y;j,yr}. Now it is easy to see that every subgraph of positive density
contains a subgraph of density 1/2, i.e., it contains a complete tripartite 3—
graph K(®)(¢,1,1), and it is not hard to see that the only possible densities
are in fact 1 — , k = 1,2,... . For r = 3 and even more for r > 3, many
similar questions can be asked. I leave the formulation to the reader. In our
triple papers with Brown and Simonovits, we restrict ourselves to r = 2 but as
stated before we worked with digraphs and multigraphs. If we restrict ourselves
to r = 2 and to ordinary graphs, it seems harder to find non-trivial questions.
F. Chung and W. Trotter considered the following problem: Let the vertices of
G(n,t) be the integers 1,2,...,n, and join two vertices ¢ and j if |i — j| < &.
Here t is large (and fixed) and n — oo. Their problem is to determine the
smallest ¢ such that every subgraph of cnt edges of G(n,t) contains a triangle.
V.T. Sés suggested that if (c+ €)nt edges are given then this subgraph perhaps
contains a large complete tripartite subgraph. This would be an Erdés—Stone—
Simonovits type result. Chung and Trotter proved good inequalities for ¢ but
its exact value has not yet been determined as far as I know the question of
V.T. Sés has not yet been seriously attacked. Clearly many related questions
can be asked here.

It might be worthwhile to investigate from this point of view the subgraphs
of the n—dimensional cube C{™. I hope to return to this question at another
occasion.

Bollobés, Simonovits, Szemerédi and I proved (among others) the following
theorem: C(¥)(¢) is a cycle of length k where each vertex is multiplied by ¢, i.e.,
the vertices are z3), 1 <i < #; 1 < j < k. Two 23" are joined if and only
if their upper indices differ by one. We proved that to every ¢ > 0, there is
an £(c) such that if G(n) contains no C?+1(¢) for 1 < r < (c) then for
n > ng(c,t) G(n) can be made bipartite by the omission of at most cn? edges.
We conjectured that £(c) = o(c~/2) which if true is best possible. We further
conjectured: for every ¢ > 0 there exists an £ = £(c) so that if G(n) cannot be
made 3—chromatic by the omission of cn? edges G(n) contains a four-chromatic
subgraph H(r) of r < £ vertices. Unfortunately, this attractive conjecture and
its obvious generalizations to higher chromatic numbers are still open. This
conjecture was very recently proved by Duke and Rédl.
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Probably these results can (and should) be generalized to hypergraphs.
The first step is to prove or perhaps disprove the following conjecture: For
every ¢ > 0 there exists an £ = £(c) such that if G®®)(n) cannot be made
tripartite (i.e., the vertices are divided into three disjoint classes A, B,C, so
that all the triples meet A, B, and C) by omitting cn® edges (i.e., triples)
then there is a non—tripartite G®)(r) r < £ so that our G®)(n) contains a
G®)(7) for n > ng(Lyt,¢). GV(r) is of course a G®)(r) each vertex of
which is multiplied by ¢. Clearly (unless all our conjectures are wrong here),
many interesting and perhaps deep results can be found here.

Finally, I state the following theorem, which is an extension of my theo-
rem with Stone, for hypergraphs: Every G("(n;(c(m,r) + €)(7)) contains a
KQ(1), i.e., a set of tm vertices ), 1< j <m; 1 <i <t and (™){" edges
{z9V,...,28), 1< <... <jr<m; 1<4; <4,...,1 < i, < t. Probably
many extensmns of this result can be proved but as far as I know this has not
yet been done.

For ordinary graphs, Bollobds, Simonovits and I published several shar-
penings of my theorem with A. Stone. The strongest result of this type is at

present a theorem of Chvé4tal and Szemerédi: Every G(2:(1 — 1) + en?)
contains a complete (d + 1)-partite graph with ¢ vertices in each part where
t > sg51ct7sy- Bollobds and I showed that gi; cannot be replaced by 5.

3. Ramsey’s Theorem

In this chapter we discuss Ramsey type problems. The well known arrow symbol
of Rado

(11) n—(G",...,6);

means that if we split the r—tuples of an n—element set F into £ classes, then for
some 3, 1 <7 < £ the r—tuples of the :—th class contain GE') as a subgraph. As
stated in the introduction, we will not study (11) in its most general form. Most
of the time we restrict ourselves to the cases when G(") is a complete graph K "),

Denote the smallest integer n for which (11) holds for GV = K" 1 <i< ¢
by F.(k1,...,ke). We know of course most if r = £ = 2. It is well known that

(12) c1k2*/? < Fy(k,k) < (2:__ 12).

Fy(k,k) < (2k") /k= has recently been proved by Thomasson.

I offer $ 100 for a proof that limy_, ., Fo(k,k)/* exists and $ 250 for its
value. This value if it exists is between 2!/2 and 4 and any improvement of these
bounds would be of great interest and will receive an “appropriate” financial
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reward. (“Appropriate” I am afraid is not the right word, I do not have enough
money to give a really appropriate award.) Further it is well known that

2
(13) c1k?/(logk)* < Fa(3,k) < %

The upper bound in (13) is due to Graver and Yackel with the extra
loglog k in the denominator. Ajtai, Komlés and Szemerédi got rid of the factor
loglogk by a new method which was a great breakthrough and was already
used successfully in many other problems. The lower bound in (12) and both
bounds in (13) use the so—called probability method.

Just a few words about the results of Ajtai, Komlds and Szemerédi. They
first of all proved the following theorem: If G(n) is a graph of n vertices and kn
edges which has no triangle then it contains at least ﬁ,:ﬂ—" independent vertices
(en/k is easy and their essential gain is the extra factor logk). Using this
they obtained the improved upper bound in (13) and many other interesting
results. Komlés, Pintz and Szemerédi applied the same method to a problem
of Heilbronn.

It would be very desirable to get an asymptotic formula for F(3,k) (an
exact formula might “not exist” in the same sense as there is no exact (and
useful) formula for the n—th prime). Also

(14) Fy(4,k) > c1k3(log k)2

should be proved. I offer for both of these problems $ 250. The current best
result Fy(4,k) > ck®/? is due to Joel Spencer.

For r > 2, the situation is much less satisfactory. Hajnal, Rado and I
proved

(15) 2% < Fy(k,k) < 22"
and
(16) exp,_, ¢k < Fy(k,k) < exp,_; c'k

where exp, k denotes the f£—fold iterated exponential. We are sure that the
estimation on the right side is the correct one. Hajnal in fact proved

17) exp,_; c1k < Fy(k,k,k,k) < exp,_, c2k.

On the other hand, J. Beck’s surprising results on Ramsey games give
the following surprising and beautiful result: Let |S| = n and two players
alternatively choose r—tuples from S. If the first player wants to ensure the
existence of a large subset X of S so that all the r—tuples of X are chosen by him,
the second player cannot prevent him from doing so for |X| < c(logn)*/("—1)
(and the first player also cannot prevent the second player from getting all the
r—tuples of a set of essentially the same size). It is not clear if the exponent
1/(r — 1) is best possible.
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In view of the not quite satisfactory situation of our knowledge of the
growth of F,(k,k) Hajnal and I in a very little known paper started the fol-
lowing investigations: For given n,k,u,v, and r the relation

()

denotes the truth of the following statement: Split the r—tuples of a set of n
elements into two classes I and II. Then either there are k elements all whose
r—tuples are in class I or there is a set of u elements which contains at least v
elements of class II. We studied (18) in our triple paper with Rado if n is an
infinite cardinal, but it seemed to us that interesting and deep questions can
be asked in the finite case too. Denote by hn(n,u,v) the largest value of k for
which (18) holds. k,(n,u, (%)) is of course our old Ramsey function. It is the
largest integer k for which F,.(k,u) < n.

Our main conjecture is that as v increases from 1 to (*), hn(n,u,v) grows

first like a power of n, then at a well-defined value Lgr)(u) of v grows like a
power of logn, i.e., h,(n,u,L&')(u) —1) > n but h,.(n,u,Lgr)(u)) < (logn)es.
Then as v increases further h.(n,u, Lgr)(u)) suddenly increases only like a power
of loglogn, and finally there is an Lf.r)2(u) for which h,.(n,u,L,(,")z(u)) grows

like a power of log,._, n (log, n denotes the ¢ times iterated logarithm).

For » = 2 no great mysteries remain; only the exact value of the exponent
of n of ha(n,u,v) are in doubt. For » > 3 (and especially for r > 4), the
situation is much less satisfactory. We proved that for every » > 3

(19) cvlogn/loglogn < he(n,r +1,3) < c.logn

We have a good guess about the value of Lgs)(u) and more generally about
Lg")(u), we know nothing about Lgr)(u) (r > 3) and cannot even prove its

existence. Put ggs)(u) =z+y+2z+zyz where z+y+ z = u and z,y, z are as
nearly equal as possible. We proved

(20) hs(n,u, g8 (u)) > o

and conjecture

(21) ha(n,u,g§3)(u) +1) < clogn

where perhaps in (21) logn has to be replaced by (logn)°. In any case (20) and
the conjecture (21) is equivalent to L{®(u) = P w) + 1.

Let us color the edges of the complete graph whose vertices are the inte-
gers 1,2,...,u by three colors I,II,III. We wish to maximize the number of
triangles (a,b,¢), a < b < ¢ where the edge (a,b) has color I, the edge (b, ¢) has

color IT and the edge (a,c) has color II1. Denote by Fl(s)(u) the value of this
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maximum. It is easy to see that Fl(a) (u) > g§3)(u) and we, in fact, conjecture
(22) FP(u) = g{"(u).

Unfortunately, we have no real evidence for our conjecture (22), except that
it is easy to verify it for small values of u. The importance of our conjecture
lies in the fact that we proved

(23) LP(w) = FO(u) +1,

thus if (22) holds then L(la)(u) = ggs)(u) + 1 is proved.

In view of the fact that our paper with Hajnal was completely forgotten
(it was almost forgotten by the authors too) we state two more problems from
this paper. Color the edges of the complete graph K(?)(u) whose vertices are
the integers < u by two colors so that the number of triangles (a,d,¢), a < b <
¢ (a,b) and (b,c) are colored I and (a,c) is colored II is maximum. Perhaps
this maximum is F{®(u) (trivially it is > FV(x)).

An older problem of V.T. Sés and myself states: color the edges of K(n)
by three colors so that the number of triangles all whose edges get a different
color is maximal. Denote this maximum by F3(n). F3(1) = F3(2) =0, F3(3) =
1, F;3(4) = 4. We conjectured that
F3(n) =F3(u1) + Fs(u2) + F3(us) + Fs(ua)

(24)
+ u1U2U3 + UIULU4 + UL U U4 + U2U3U4

where u; + 42 + u3 + u4 = n and the u’s are as nearly equal as possible. We
made no progress with this problem. Clearly many generalizations are possible.
Rosenfeld and I posed the following related question: For which r is it possible
to color the r—tuples of a set S, |S| = 2r by r + 1 colors so that the r—tuples of
each (r +1)-tuple of S have all different colors? It is easy to see that this is no
longer possible for |S| > 2r. As far as I know it is not known if this is possible
for any r > 2. For r = 2 the answer is positive, for r = 3 negative.
Let us now consider the cases r > 3. We conjectured

(25) LO(r+1) =i+2.
We can prove (25) only for i = 1. We can prove
(26) he(n,r + 1,1 +2) > ¢, i(log; n)*

but we do not have a good upper bound of h.(n,r + 1,7 + 2).
Now we investigate L{”(k). Define g{” (k) as follows: ¢{” (k) = 0 for k <
T, ggr)(r) = 1. Assume that ggr)(t) has already been defined for all ¢ < k. Put

gi”(k) =Y o (ws) + [] ws

=1 =1
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where Ef=1 u; = k and the u’s as nearly equal as possible. We proved
(27) ho(n,k, 9" (k)) > n*r.

The proof of (27) is similar to that of (20). We conjectured: Lgr)(k) =
9" (k) + 1. In other words, we conjecture

(28) ho(n, k, 87 (k) +1) < ¢;(logn)°

Finally we conjectured that for every ¢ > 0, there is a ko = ko(€) such that

for every k > ko
n 4 ((logn)<, k).

At the end of the paper, we say: If we live we hope to investigate these
questions, but hope the others will do it before us. Of all these hopes only
the first (least important) was fulfilled — we live. I offer § 500 for a proof or
disproof of these conjectures.

In another somewhat later paper (which also was forgotten and igno-
red by everybody), I investigate related but nevertheless significantly diffe-

rent problems. Denote by F,E')(n,a) the smallest integer for which it is pos-
sible to split the r—tuples of a set |S| = n into k classes so that for every

Sy C 8, |S1] > F{™(n,a) every class contains more than a(%11) r—tuples of
S1. The probability method easily gives that for every 0 < a <

(29) ci(a)logn < F,Ez)(n, a) < ci(a)logn.

¢i(a) — oo as @ — 1/k. Thus again no great mysteries remain for » = 2 though
it would be nice to sharpen (29) and prove that

(30) F,Ez)(n, a) = (cx + o(1))logn

The case r > 3 is much more interesting and mysterious. For simplicity,
let us restrict ourselves to the case k = 2.
It is well-known that for a sufficiently close to 1/2

(31) ¢(@)(logn)/CD < F(n, a) < ¢"(a)(logn) /D

The upper bound is a result of Spencer and myself and the lower bound follows
easily from an old result of mine. For a = 0, we get the “old” Ramsey—function.
Our conjecture with Rado and Hajnal (see Erdos, Hajnal, Rado 1965 and Erdés,
Hajnal 1972) implies

(32) calog,_1n < Fé')(n, 0) < ¢1log,_;(n)
Now by (31) and (32) it follows (we assume our conjecture to be true)

that as a increases from 0 to 1/2, Fér)(n, a) increases from log,._;n to

(logn)/(m=1)_ Does the change occur continuously or are there jumps? Is there
only one jump? I do not know and feel that this question also deserves more
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careful investigation that it has received so far. If I can hazard a guess com-
pletely unsopported by evidence, I am affraid that the jump occurs all in one
step at 0. It would be much more interesting if my conjecture would be wrong
and perhaps there is some hope for this for 7 > 3. I know nothing and offer §
500 to anybody who can clear up this mystery.

Finally, I want to state one more old result and an old problem of mine: Let
|S| = n and divide the triples of S into two classes. Then there are always sets
A, B, (|A] = |B| = c¢(logn)'/?) such that all the triples (z,y,2), z € 4, y €
A, z € B are in the same class. First of all observe that this is a genuine
Ramsey type result, if we only assume that one of the classes has (1+0(1))(3)
triples, this clearly does not imply that this class contains such a system. It
seems to me to be an important and difficult question to decide if this theorem
can be strengthened to imply that all the triples (z,y, z) which meet both sets
A and B all belong to the same class. At present, I cannot decide this question.

Now let » > 3. Split the r—tuples of a set | S| = n into two classes. Our proof
gives that there always are r—1 sets 41,..., A,_1, |4;| = ¢(logn)'/("~V so that
all the r—tuples {z1,...,2.}, z; € A;, 1 <i<r—2, 2,1 € Ap_1, z, € Ar_;
are in the same class. ¢(logn)!/("~1) is best possible apart from the value of c.

Several generalizations and extensions seem possible, but I had no success
so far.

The difference between graphs and hypergraphs is nicely illustrated by
the following recently published result of Hajnal and myself. The probablhty
method easily gives that one can color the edges of a K(r), r = 2*f O , f(k)
tends to infinity as slowly as we please by two colors so that every K (k) (com—
plete subgraph of (k)) vertices contains (1/2+ 0(1))(2) edges of both colors. In
other words uniformity of the edge coloring can persist until nearly the Ram-
sey bound. We proved that if we color the triples of a K 3(2’° ) by two colors
there always is a set of size k on which the coloring is not uniform i.e. one of
the colors gets more than (% + €) of the triples, we believe that the Ramsey

bound nevertheless is at 22! Many problems remain but we have to refer to
our paper.

4. Ramsey-Turan Type Problems

Now I turn to Ramsey-Turéan type questions. These investigations were started
by V.T. Sés and myself. The classical theorem of Turdn determines the largest
graph on n vertices which contains no K(®(r). Observe that in this graph, there
is a very large independent set. Our problem was: What happens if we restrict
the size of the largest independent set? Does this decrease the number of edges
of the Turan graph? Here I do not want to state and discuss our most general
problem but just want to illustrate clearly the diference between r = 2 and
r > 2. Denote by F,(G("), £) the largest integer for which there is an r-uniform
hypergraph on n vertices and F,(G(", £) edges which does not contain G(") as a
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subgraph and the largest independent set of which has size < £. F,(G(") is the
largest integer for which there is a hypergraph on n vertices and F,,(G(™) edges
which does not contain G(*) as a subgraph. The determination of F,(G(™) is of
course the classical problem of Turdn. Clearly (by Ramsey’s theorem) £ cannot
be too small (for otherwise no such graphs exist) and usually we just assume
£ = o(n) and we investigate F,,(G(",0(n)). In our first paper, we proved that
for odd ¢

(2) n2 t—3
(33) Fu(K2(8),0(n)) = (L +o(1)) 4 ;=7
By the way, for K(®)(3), we trivially have F,(K?%(3),£) < Z£. For even ¢

the problem is much harder. Bollobdas, Szemerédi and I proved

Fu(KD(8),o(m) = (1 + (1))

and in paper Erdos et al. (1983) Hajnal, V.T. Sés, Szemerédi and I proved that
for even ¢

(34) F.(K®(t),0(n)) = (1 + o(1)) (n) 3t-10

2)2(3t —4)°

Turdn’s theorem asserts F,(K(®(t)) = (1 + o(1))(3) 75y

Thus, (33) and (34) show that the condition £ = o(n) significantly changes
the constant in Turdn’s theorem. We did not investigate the case when G()(t)
is bipartite. Perhaps here

Fo(GD(1) = (1 + o(1))Fa(GD(2), o(n))

always holds. In fact perhaps Fn(G(D(2)) = Fo(GD (1), o(n)).
The contrast in (34) with hypergraphs is sharp and striking. V.T. Sés and
I prove first of all that for every t > r > 3

(5 RO, 00m) = (14 DFKO) = (1 + o(1))ens7)

In other words, the condition £ = o(n) has a very much smaller effect for
hypergraphs. More generally, we prove the following theorem: Let G(™ be an
r-graph which is not r—partite, i.e., we cannot divide the vertex set S into r
disjoint sets S;, 1 < i < r so that every edge of G(") intersects every S;1<i<r
in (exactly) one vertex. This implies F,,(G() = (c+ 0(1))(7). Assume further

that for every edge k1 of G(") there is another edge k, for which (h1Nhy) > 2.
Then

Fo(GM, 0(n)) = Fo(GM)(1+0(1)) = (1 + o(1))c(’r‘).

In other words, the condition £ = o(n) has very little effect in this case. On the
other hand, we prove that if G(") is such that its vertex set can be decomposed
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into r disjoint sets Si, ..., S, so that the edges of G(") can be decomposed into
two classes E; and E;, so that every edge of Eq meets all the S; (in exactly one
point of course). The edges of E, are all contained in S; and can be written in

a sequence hi,ha,...,h, so that for every k
hen |J mi| <1
1<i<k
Then

F (G, 0(n)) = o(n").

We do not at present know if these theorems are best possible and in
particular we do not know if there is any G for which

Fo(GM,0(n)) = (a1 +o(1))(’:>, F (G™M) = (c2 +o(1))(’:) and 0<¢; <ecp

This is one of the outstanding problems of this subject. Recently, V. R6dl and
P. Frankl found an example of such r—graphs. Another difference between r = 2
and r > 2 is as follows: It is easy to see that if £ and n > 0 are fixed then there
exists € > 0 such that every G with n vertices for which every set of m vertices
m > en spans a subgraph having more than n(';‘) edges, must contain a K(t),
i.e., there is no Ramsey-Turdn phenomena if we insist that every large spanned
subgraph should contain many edges. On the other hand we easily show that

for every n > 0 there is an € > 0 and a G®)(n) = T for which every induced
subgraph of more than nn vertices contains more than e(”") edges and which

contains no K®)(4) and contains not even a G(%)(4;3). This TS") can be defined

as follows: The vertices are the integers 1 < ¢ < n, the edge (z,y, z) is in T
if the first digits written in ternary system where z,y and z differ are 0,1, and
2 respectively. It is easy to see that the edge density of every induced subgraph
of m > nn vertices of our T is positive but not uniformly positive, i.e., as
7 — 0, the number of edges of a vertex set of nn vertices can be less than ¢(7")
if n = n(e) is small enough.

Is it true that every such graph G(®)(n, cn®) of positive (but not necessarily
uniformly positive) edge density contains every fixed subgraph of our T?

There is a further problem here which seemed interesting to us. Let us
assume that the edge density of our G(n) is uniformly positive. In other words
for every m > nn every induced subgraph of m vertices contains more than c(’;)
edges. Is it then true that if n > ng(c,?,n) then our G(®)(n) contains a K3(t)?
We cannot prove this even for ¢ = 4 and what is more we do not know if our
G®)(n) must contain G®3)(4,3). Recently this question has been disproved by
A.Hajnal, V.T. Sés, M. Simonovits and myself and using a different example by
V. R3dl. One can construct a triple system of n points so that if {,/logn — oo
then every set of ¢, vertices spans (1/2+ o(1))(%) triples but the system does
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not contain 4 points with all its triples, perhaps 1/2 cannot be replaced by
(1/2 + €). Also there is an example where every set of ¢, elements satisfying
tn/logn — oo has (5 + o(1))(%) triples but there is no set of 4 vertices which
contains 3 triples. 1/4 can perhaps not be replaced by 1/4 + e.

We couldn’t even prove that a graph G®)(n) with uniformly positive edge
density must necessarily contain a G(3)(7, 11) of vertices z1, z2, 23,24, 5, T6, L7
and edges (z1,2,73), (z4,%s5,z¢) and the 9 triples (z7,2;,2;) 1 <9< 3, 4 <
j < 6, i.e., must it contain some fixed G®) which is a complete tripartite graph
with some additional edges in two vertex sets S1 and S». The positive answer
to a general form of this problem was given in Frankl, R6dl (to appear).

Finally to end this long chapter, I state some of our further unsolved
problems (for more details, see our papers referenced at the end of this chapter).

Is it true that

F(K(2,2,2),0(n)) = o(n?)?

Is it true that if n > ny(r,c) then every G(n,cn?) for which the largest inde-
pendent set is o(n) either contains a K(4) or a K(r,r,r)?

These two problems seemed fundamental to us. V. Rédl disproved recently
the last conjecture and constructed a graph with n vertices, "Tz(l +0(1)) edges,
not containing both K(3,3,3) and K(4) and having the largest independent
set of size o(n).

One final problem: In view of F,(K®)(4), 0(n)) = (cs,a + (1)) (3) we tried
with V.T. Sés to determine or estimate the largest h(n) for which

F(K®(4),h(n)) = o ((Z)) .

By Ramsey’s theorem such an h(n) exists and we could not get a very good
estimation for h(n) but hope to return to this problem.

5. Chromatic Numbers

In this final chapter, I discuss miscellaneous problems. It is well known and
easy to see that every graph G(®) of chromatic number k has at least () edges,
equality only for K(®)(k).

On the other hand for » > 2, the situation seems to change completely. It
was observed long ago by Hajnal and myself that for r = 3, the smallest G(") of
chromatic number 3 is given by the 7 lines (edges) of the Fano plane, whereas
K®(5) has 10 edges. Perhaps for large chromatic numbers, this difference again
disappears and for every r there is a ko(r) so that for every k > ko(r) every
G(" of chromatic number k has at least (k—1)r+ (1) edges with equality only
for K(((k —1)r 4 1). If true the proof will perhaps not be difficult. As far as

I know this problem has never been investigated carefully. Very recently the
problem has been solved negatively by N. Alon.
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Denote by matr) the smallest integer for which there is 3-chromatic G
of m3(r) edges. We have

(36) crt/32" < mg(r) < ear®27.

The lower bound in (36) is due to Beck and the upper bound to me. An
asymptotic formula for ms(r) seems to be beyond reach at present.

G. Dirac called a k-chromatic graph critical if the omission of any edge
decreases its chromatic number. Let G(®)(n,e) be k—chromatic and critical,
what is the smallest possible value of e = e(n,k)? Perhaps this question will
have a simple answer. Thomassen and Dirac conjectured e(n,4) = 52 + o(1).

Hajnal and I proved that every G® of chromatic number > R; contains all
finite bipartite graphs as subgraphs (in fact, we show that our G®) must contain
a K(n,R,) for every integer n. On the other hand, if G® is an arbitrary graph
which is not bipartite, then for every infinite cardinal number m there is an m
chromatic graph of power m which does not contain our G(? as a subgraph.
The situation for » > 3 is very much more complicated. In a long, exhaustive
and carefully written difficult paper, Galvin, Hajnal, and I tried to investigate
the finite subgraphs of uncountable hypergraphs. The situation is much more
complicated than for r = 2. We do not know which finite graphs have the
property that every G® of chromatic number ®; must contain H(®). We have
many special results of this type but no general theorem. In an earlier paper
of Hajnal, Rothschild, and myself proved that every graph G(®) of power and
chromatic number ®; must contain two edges e; and ez, satisfying [e; Nea2| = 2,
but there are graphs of power > RN; which have chromatic number R; any
two edges of which have at most one element in common. This phenomenon
of course cannot occur for » = 2. To finish this paper, I just state two more
unsolved problems from the Galvin—-Hajnal-Erdds paper: Let H. §3) and H§3) be
two finite graphs. Assume that there exists G(la) and Gg3) of chromatic number
R1 not containing H® and H{® respectively. Is it then true that there is G(®

of chromatic number R; not containing both H. f3) and H. §3)?

Is there a finite H(® so that every G of power X, and chromatic number
R; must contain H(® but this is not true for graphs of chromatic number ¥,
and power > R,? Probably such an H® does not exist. Many more deep and
interesting problems can be found in our paper which I feel has been unduly
neglected.

Final Remarks: I just learned that Hajnal and Komjith proved that every
G@ of chromatic number ®; contains a half-graph and an extra vertex which
is joined to every vertex of infinite valence of the half-graph. A half-graph is
defined as follows: The vertices are: z1,...,;¥1,¥2,... and z; is joined to y; for
every j > i. On the other hand, assuming 2% = R; they constructed a graph
of chromatic number R; which does not contain a half-graph and two extra
vertices which are joined to every vertex of infinte valence. This certainly is an
astonishingly accurate result.
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During our meeting in Prague at a party at the NeSetfils, Mihdk and I
formulated the following question: Can one characterize the sequences n; <
na < ... so that for every k there should exist a graph G of chromatic number
> k which contains no circuit Cy,, ¢ = 1,2,... . If the sequence n; < ...
increases sufficiently fast such graphs clearly exist. In particular let n; = 2:+1.
We do not know if for sufficiently large k there is a graph of chromatic number
k without circuits of size Ch,
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Note on Canonical Partitions!

Richard Rado

To B. L. van der Waerden on his 80. birthday

1. For every set X and every cardinal number r we put
X]"={PCX:|Pl=r}.

Let A = {0,1,2,...} and r € {1,2,...}. A partition, or coloring, of [4]" is a
function f : [A]" — F, where F is a set. Let L C {0,1,...,7 —1}. The partition
f is called L-canonical on B if B C A and, for

{:Bo,:l:l,.. -azr—l},{yOv .. 7yr—1} <C B,

we have f{zg,...,Zr—1} = f{¥%0,..-,y»—1} if and only if z, = y, for A € L.
In Erdés, Rado (1950) the following result was proved:

Theorem 1. Given any partition f : [A]" — F, there is an infinite set B C A
and a set L C{0,...,r — 1} such that f is L-canonical on B.

The object of this note is (i) to give a new proof of Theorem 1 which
is in some ways simpler than the proof in Erdés, Rado (1950) (ii) to discuss
connections between canonicity and some other properties of a partition. If
X € [A]" we sometimes write

X={x%Xx..., X" 1},
and similarly for letters other than X.

2. We begin by showing that for every L there exists a L-canonical partition
of [A]".

Theorem 2. Given any set L C {0,...,r — 1}, there exists a L-canonical par-
tition of [A]".

Proof. We define f by putting, for every P € [A]",
fP={Qe€[A]":Q*=P* for \e L}.
1 Originally printed in: Bull. London Math. Soc. 18 (1986), 123-126. Reprinted by courtesy
of the author and of the London Math. Society. Without a contribution by R.Rado this

volume would be incomplete. During the final stage of preparation of this book we learned
that R. Rado died. Without him the whole Ramsey theory seems to be incomplete.
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We now show that f is L canonical. We shall apply the definition of f
repeatedly without referring to this fact.

(i) Let fP = fQ. Then Q € fQ = fP; @Q* = P> for A € L.
(ii) Let P* = @* for A € L, for some P,Q € [A]". Consider any set R € fP.

We have, for \ € L,
R*=P*=Q* Re fQ.

Since R is arbitrary, we have fP C fQ. By symmetry, f@Q C fP, and Theorem
2 follows.

3. Proof of Theorem 1. For {zy,...,Z2,—1}< C A put
g{:co,...,:cg,._l} = {(ao,...,az,._l) tap <...<ap-1 <21
=ap<...< Qa1 <2r

f{zao,' .. 7zar-1} = f{zar,' .. 7za2r-1}'

The range of the function g is finite. Hence, by Ramsey’s theorem (Ramsey
1930), there is an infinite set B' C A such that g is constant on [B']?". Let
B' = {by,b1,b2,...}< and B = {by, ba,bs,...}. Let L be the set of all numbers
po < r such that, whenever

{y07- .. ,yr-1}<, {y(,)" .. ,y:-—l}< - B,,

Y = Yp for p # po and yp, # yp,, then f{yo,...,yr—1} # f{¥0,-- ., 41} To
complete the proof of Theorem 1 we show that f is L-canonical on B.

(a) Let {yOa"'7yr—1}<7 {y(’n"'ay:-—l}< C B and

(1) yr =95 for X e L.

We have to show that f{yo,...,¥r—1} = f{¥h,---,¥._1}. To this end we define
an operator T' thus: Let

{y07"-,yr—-l}<,{y('),"'ay:-—1}< C B‘
Ify,= Yp for p < r then put
T({y07' .. ayr—l},{yl!n" . 7y:~—1}) = ({y(!a- .. 7yr—l},{y(')7- .. ay:-—l})'

Now let y, # y, for at least one p. Let po = min {p : yp, # Yp}- Then,
by our assumption (1), pp ¢ L. Put z, = y, and z, = y, for p # po, and
Zpy = Zp, = min {Yp0s¥p,}- It follows from py ¢ L and the definition of L that

f{an' . azr—l} = f{y(h" . 7yr—1},
201y 2e 1} = Hyos - ¥ha}
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We put

T({yo;- - - 7yr—1},{y(')a e ,y:v—l} = ({=0,- - ',zr—l},{z('),- . -,z:-—l})'

We iterate T r times and obtain
T'({yo, s 7yr—1}, {y:), s ’y:-—l}) = ({w0, s awr—1}<, {'on, oo 7wr‘—1})'

Then f{yo,-.-,Yr—1} = f{wo,...,wr—1} = f{¥y,---,Yr_1}, as required.
(b) Let {zo,...,zr—1}<,{Zp)---»Zn_1}< C B; po € L;

(2) Tpy < Ty

To complete the proof of Theorem 1, we now proceed to deduce that
f{=zoy.--rzro1} # f{zh,...,2h_1}. Let us assume that f{zo,...,zr—1} =
f{zg,-..,2_1}. We have to deduce a contradiction.

For P,P',Q,Q' € [B]" let (P,P') = (Q,Q') mean that there is an order
preserving bijection ¢ : PU P' — Q U Q' such that ¢ P = Q and ¢P' = Q'.

Lemma. Let P,P',Q,Q"' € [B]";fP = fP';(P,P')=(Q,Q"). Then fQ = fQ'".
Proof of the Lemma. Thereisaset E € [B]2"‘|P UP'| such that z < y when-
everz € PUP'UQUQ' and y € E. Then

PUP'UE, QUQ' UE ¢ [B]*

and hence g(PUP'UE) = g(Q U Q' U E). 1t follows from the definition of g
that fQ = f@', and the Lemma is proved.
To continue the proof of Theorem 1 put, for ¢ € {1,2,3,...},

B(t) = {bo, bt, b2t, .o .}.

Let r < s € {2,3,...}. There are sets Xy, z1 € [B(r*)]" such that

(X0, X1) = ({z0y- - s Zr—1}, {205 -, 21 })-

Then there is a set X, € [B(r*~!)]" such that (Xo,X1) = (X1,X2). There
is a set X3 € [B(r*~%)]" such that (X;,X2) = (X2,X3), and so on until
there is a set X, € [B(r)]" such that (X,_2,X,_1) = (X,-1,X,). We have
Xo{X2,...,X:7 1}, for 0 < s. Then, by (2) and the definition of =, we have

X <X <...< XPo,
In view of s > r there is oy with 1 < ¢, < s such that

(3) X2 # X} for p<r.

opr**

There is a number 7 such that X290 = by, Put Zo, = {Z3,..., 25, '}, where
22, = X2 for p# po and Z2° = byr41. Since py € L we have fX,, # fZo,.
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On the other hand, we have, by choice of o and the definition of Z,,, that
(XO,XI) = (Xao—laxoo); (XO,Xao) = (XO,ZO’())'

We have fXy = fX; = ... = fX,,. Hence, by (3) and the Lemma, fX,, =
fXo = fZo,, which yields the required contradiction. This proves Theorem 1.

4. We now consider connections between canonicity and some other properties
of partitions. Let A and B denote infinite subsets of {0,1,...}. Consider a
partition f : [AU B]" — F. We require some definitions.

(f,A) is called invariant if, whenever P,Q,P',Q' € [A]" and (P;Q) =
(P',Q"), then fP = fQ if and only if fP' = fQ'.
(f,A) is called isomorphic to (f,B) [in symbols (f,A) = (f, B)] if, whenever
P,Q € [A]" and ¢ : A — B is an order preserving bijection, then fP = fQ if
and only if foP = f¢Q.

(f,A) is called stationary if, whenever B C A then (f, B) = (f, A).

Theorem 3. The following three conditions are equivalent:
(i) (f,A) is invariant,

(ii) (f,A) is stationary,

(iii) (f,A) is L—canonical for some L.

Proof of (i) = (ii). (f,A) is invariant. Let B C A. There is an order pre-
serving bijection ¢ : A — B. Let P,Q € [A]". Then (P,Q) = (¢ P,¢ Q). By
invariance we have fP = fQ@ if and only if f¢P = f¢Q, and (ii) holds.

Proof of (ii) = (iii). (f,A) is stationary. By Theorem 1 there is an infinite set
B C A such that (f, B) is L-canonical for some L. Then, by (ii), (f, B) = (f, A)
which implies that (f, A) is L—-canonical, and (iii) holds.

Proof of (iii) = (i). (f,A) is L-canonical for some L. Let P,Q,P',Q' € [A]"
and (P,Q) = (P',Q'). Then we have

(fP=fQ)& (P*=Q* for Ae L) (P*=Q*forAe L) & (fP' = fQ"),
and (i) holds. This proves Theorem 3.
The author would like to thank the referee.
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On Size Ramsey Number of Paths,
Trees and Circuits. II

Jézsef Beck

1. Introduction

In this paper we shall demonstrate that random graphs satisfy some interesting
Ramsey type properties. This paper deals with finite, simple and undirected
graphs only. If G and H are graphs, write G — H to mean that if the edges
of G are coloured by two colours, then G contains a monochromatic copy of H.

Erdés, Faudree, Rousseau and Schelp (1978) were the first to consider
the unconvenient question of how few edges G can have, given that G — H.
Following them, by the size Ramsey number #(H) we mean the least integer
7 such that there exists a graph G with 7 edges for which G — H, i.e.,
#(H) = min |G| : G — H (here, as usual, |-| means the cardinality).

We mention some known results concerning size Ramsey number. Clearly
#(K1,n) = 2n — 1 where K1, denotes the star of n edges. Moreover, for every
sufficiently large value of n,

(1) #(P,) < 900n

where P, denotes the path of length n (see Beck 1983, actually it was proved
that the “greater colour” contains a copy of P,). It was also shown there that
there exists a “universal” graph G = G(n,D) with less than D.n.(log n)!?
edges, such that colouring the edges of G by two colours in any fashion, one of
the colours contains all trees with < n edges and maximal degree < D (note
that here n is sufficiently large and the upper bound cannot be replaced by
D(n — D)/4).
As a corollary of it we get that for any tree T), of n edges,

(2) #(Tn) < D -n - (log n)'?

where D denotes the maximal degree of T,(n > ny). Recently we realized that
a slight modification of the proof of (2) gives an asymptotically good estimation
for the size Ramsey number of any individual tree.
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We need some notations. Let T' be an arbitrary tree. Since T is bipartite,
there is a unique bipartition (A, A,) of the vertex-set V(T') of T' such that for
any edge {u,v} € T either u € A;,v € A, or u € A3,v € A;.

Let D; = max,e4, dr(v) and Dy = max,e4, dr(v) where dr(v) denotes
the degree of the vertex v in T. The key quantity is as follows

A(T) = |A1| - D1 + |42| - D2

(we recall that |A| denotes the number of elements of the set A). The main
result of this paper is
Theorem 1. For any tree T,, of n edges
A(T»)
4

where C| is a universal constant.

< #(T,) < Cp - A(T;,) - (log n)'?

Note that our proof will be nonconstructive, we shall use random bipartite
graphs. Unfortunately, we cannot prove here density theorem (density theorem
means that the “greater colour” contains T),). From Theorem 1 immediately
follows that for a large class of trees T the size Ramsey number #(7T') is much
less than the trivial upper bound ('(Z,T )), where 7(T') denotes the traditional
(vertex) Ramsey number of 7. We state the following

Conjecture. There is an absolute constant ¢, such that #(T) < ¢; - A(T) holds
true for all trees T.

We have some results on the size of Ramsey number of any induced tree
as well (the problem is due to P. Erdds, communication by letter).
We write )
G4 H
if any two-colouring of the edges of G yields a monochromatic induced copy of
H. Furthermore, let
#(ind H) = min |G| : G5 H.

We cannot determine the correct order of magnitude of #(ind T},), but we have
some results

Theorem 2. There is a graph G = G(n) with less than n® - (log n)* edges such
that Gﬂ»Tn for every tree T,, of n edges (n > ny).

Actually, we shall prove that the “greater colour” contains an induced
copy of any tree T,. Here the upper bound cannot be essentially less than n2.
Indeed, it follows easily combining the trivial inequality

#(ind H) > #(H)

and the fact that for some tree T} the size Ramsey number 7(T}) is constant
times n?. We mention that in contrast to stars the size Ramsey number of the
path P, cannot be “as small as possible”, that is, greater than 2n-1.
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Theorem 3.
7(Pr)

n

lim infpoeo > %

Note that the problem of estimating the size Ramsey number of more
complex graphs seems to be very hard. As an example of unsolved questions
we mention the following

Problem. Let G,,p be a graph of n edges and maximal degree D. Decide
whether #(Gn,p) < ca(D) - n where the constant co(D) depends only on D.

We remark that recently Chvéatal, Rdl, Szemerédi and Trotter succeeded
in proving the analogous linear upper bound for Ramsey number.

Finally, we mention that each of Theorem 1-3 can be generalized for more
than two colours without any difficulty. We leave the details to the reader.

2. Proof of Theorem 1 — Part One

We start with the lower bound. Let there be given a tree T, with bipartition
(A1, A2). We may assume that |A;| D; > |Aa|- D3. Suppose G — T, and let
V = V(G) denote the set of vertices of G. Let

Vi={veV:dg(v)>Di}and Vo =V\V; ={v eV :dg(v) < D}

Now we define a two-colouring of the edges of G as follows: Let e = {u,v} € G
be red if either u € V1,v € V, or u € Va,v € V;; otherwise let e be coloured by
blue. We distinguish two cases.

Case 1. D; > D,
If G contains a blue copy of T, then clearly all vertices of this monochromatic
copy belong to V;, and so

Gl > (n+1)-D1/2 > A(T,)/2.

If G contains a red copy of T, then exactly |A;| vertices of this monochromatic
copy belong to Vi, and so

|G| > |A1]- D1/2 > A(T)/4.
Case 2. D, < D,
Then G contains a blue copy of T;, such that all vertices of this copy belong to
Vi. Therefore,
|G| 2 (n +1)-D1/2 > |A1] - D1/2 2 A(T:)/4,

which completes the proof of the lower bound. O
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The proof of the upper bound is much harder. Let T, be a tree of n edges with
bipartition V(T,) = A1 U A2, and let

D,' = ilg.gd:r"('v), 1= 1,2.

Without loss of generality we may assume

(3) |A1| - D1 > |Az2| - Ds.
Let
(4) n1 = |4;1| and ny = Dy - |44]|/Ds,.

We may further assume that min;—; 5 D; > 2, since in the opposite case T, is a
star and we know the exact value of #(T},). We shall use the following notation:
For any graph F and subsets X,Y of the vertex-set V(F) of F, let

FX,Y]={{u,v} € F:ue X and veY}.

The proof of the upper bound is based on the following rather difficult and
technical lemma.

Main Lemma. Let F' be a bipartite graph with bipartition V(F) = V; UV, such
that

(5) [Vi| < n; - (log »)° and rréa&tdp(v) < D;-(log n)®, i=1,2.

Let
d;(F) = |V| > dr(v), i =1,2.

veV,
Suppose F satisfies the following three properties:

(c1) For any two sets X C V;, X* C Va—; (1 = 1,2) with1 < |X| < ng—; -
(log n)*/?/D;, |X*| = D; - (log n)*/%. |X|, or with ns_; - (logn)®/?/D; <
|__X| < ng_; - (log n)5/2a |X*| = n3_,-(10g n)19/4, we have |F[XaX*]| <
di(F) - |X] /4.

(az) For any two sets Y1 C V1,Y C Va,|Yi| > ni - (log n)3/? (i = 1,2) the
induced bipartite subgraph F = F[Y;,Y,] has the property that for any
two sets Z C Y;,Z2* C Y3_; (1 = 1,2) with1 < |Z| < 2n3_;/D;,|Z*| =
D;-(log n)*/*-|2| , or with 2ns_s/D; < |Z| < ng—;, |2*| = na—i-(log n)*/%,
we have |F[Z,Z*)| < di(F) - |Z| /4 where d;(F) = IYI Y vey; Gi(v)-

(as) For any two disjoint set U; C V;i,|Ui| > n; - (log n)*/® (i = 1,2) there
exists an edge of F going from U; to U,.

Moreover, assume that n is sufficiently large. Then two-colouring the edges of
F in any fashion one of the colours contains a copy of T,, i.e., F — T,,.

Proof of the Main Lemma: Let F = F; U F, be an arbitrary two-colouring of
the edges of F. Suppose |Fi| > |F| /2. We need a simple lemma. For notational
convenience, write G(S) = G[S,V(G))].



38 Mathematics of Ramsey. Numbers

Lemma 2.1. Let H be a bipartite graph with bipartition V(H) = W1 UWa, and

let
1

— Y du(v), i=1,2.
Wil &,

di(H) =

Then there exists an induced subgraph G of H such that for each vertex-set
§c Wi (i=1,2),|G(S)| 2 di(H) - |S] /2.

We postpone the proof of Lemma 2.1 later. Applying Lemma 2.1 with
H = Fi, we get the existence of an induced subgraph G of F; such that
for each S C W;, where (W7, W,) denotes the bipartition of V(G),|G(S)| >
di(F) - |S|/2 = di(F) -|S| /4. For any S C V(G), write

I'c(S) = {v € V(G) : there exists u € S such that {u,v} € G}.

We conclude that

(6)if S € W;, 1 < |S| < ng—;-(log n)3/2/D; then |I'g(S)| > D;-(log n)®/*-|S|,
and if § C W;,ns—; - (log n)%/2/D; < |S| < n3_i(log n)*/2 then |I'c(S)| >
ng—i- (log n)19/4.

Indeed, setting X = 5, X* = I'¢(S) we know

1G(5)| = |G[S1, T6(S)]| 2 di(F) - || /4.

Comparing it to (1) we get (6). Next we need

Lemma 2.2. Let G be a bipartite graph with bipartition V(G) = W; U W,.
Suppose |W;| < k; - t*, max,ew, dg(v) < D; -t* and for each S Cc W;,

if |S| < 2ks_;/D; then |I'g(S)| > (c3-t-logt)- D;-|S|,
if2k3_;/D; < |S| < ks—; then |I'g(S)| > (cs -t -log t) - 2ks—_;

where c3 is a sufficiently large absolute constant and t,k;, D; > 2 are unspec-
ified parameters (i = 1,2). Assume further that k; is greater than a threshold
depending only on c3. Then either G contains any tree T with bipartition
V(T) = A1 U A, such that

|4;| < min{k;,2V(-1)/8}

and
max dr(v) < D; (i =1,2),

or there are two sets Y; C Wy,Y2 C W, |Y;| > k; (i = 1,2) such that no edge
of G goes from Y; to Y.

We postpone the proof of Lemma 2.2 later.

By (5) and (6) we see that the hypotheses of Lemma 2.2 certainly hold
for G with k; = n; - (log n)%/2 and ¢t = 8 - (log, n)? + 1 where log, n denotes
the binary logarithm of n. Thus Lemma 2.2 gives that either G contains a
copy of T, (see (4)), or there are two disjoint sets Y1 C Wy,Ys C Wa,|Y;| >
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ni(log n)%/2(i = 1,2) such that no edge of G goes from Y to Y2, or equivalently,
the induced bipartite graph F' = F[Y7,Y3] is entirely contained in the “smaller
colour” F,. In the first case we are done. In the second case we conclude,
similarly as above, by property (a») that Lemma 2.2 can be applied for F
with k; = n; - (log n)'/% and ¢ = 8 - (log, n)? + 1. Lemma 2.2 gives that either
F contains a copy of T),, and again we are done, or there are two sets Uy C
Y1,Us C Ya,|U;i| > n; - (log n)'/5(i = 1,2) such that no edge goes from U; to
U,. Comparing the last case with (a3) we get a contradiction. This proves the
Main Lemma assuming the validity of Lemma 2.1 and Lemma 2.2. O

Proof of Lemma 2.1: Let us consider the following “truncating” operation.
Let H' C H be a subgraph. Assume that one can find a non-empty subset
SCW;NV(H')(: =1,2) such that |H'(S)| < d;(H) - |S| /2. Then let

B(H') = H'[V(H')\S]

(note that the operation B(-) is not uniquely determined). Otherwise, let
B(H') = H'. Any sequence H,B(H),f*(H) = B(B(H)),...,BN*(H) =
B(BN(H)),... will certainly be stabilized within a finite number of steps, say
BM(H) = BM+Y(H) = fM*+2(H) = .... If BM(H) is non-empty, then we are
done. But in the opposite case we have

M
H| =Y (|6H)| - |67 (H)]) < du(H) - [Wh| /2 + do(H) - W2 | /2 = | H]|

1=0
a contradiction, which completes the proof of Lemma 2.1. O

The proof of Lemma 2.2 proceeds exactly along the same lines as that of Lemma
3.5 in Beck (1983). We need the following lemmas which are the “asymmetric
bipartite” versions of Lemmas 3.1, 3.2 and 3.3 of that paper in this order. Their
proofs are just the same as those of the analogous Lemmas 3.1, 3.2 and 3.3 in
there, and so we omit them.

Lemma 2.3. Given any tree T, of n edges we can “build it up” within 2 -
(logy n)? + 1 steps as follows:
T, =Gy®G1®G2®...0 Gy, g <2(log,n)? +1

where Gy is one vertex, G;(i < g) is a system of vertex-disjoint paths having
equal length, and the operation ® means that each path in G; is “glued” by
one of its endpoints to not necessarily distinct vertices of the same class of the
bipartition of Gy ® G1 ® ... ® G;_1. O

We recall the notation: if X C V(G) then

I'e(X) ={v € V(G) : there exists u € X such that {u,v} € G}.

Lemma 2.4. Let D, > 2 and D, > 2 be natural numbers. Let G be a bipartite
graph with bipartition V(G) = Wi U W,, and let there be given a partition
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V(G) = So U S1 U S, U SsUSy such that each X < V(G), i = 1,2 and
j =1,2,3,4 have the following “expandity” property: There are integers k1, k»
such that

if X C W, and |X| < 2k3_;/D; then |F0(X) n SJI > D;, and

if X C W; and 2k3—;/D; < | X| < k3—; then |Fg(X) n Sjl >2-k3_;.

Let i € {1,2}. Let v1,3,...,vx be arbitrary vertices in So N W; and let there
be given arbitrary integers DV, D®, ..., DM and I such that D) < D;(j =
1,...,h) and

h
(1-1)-()_ DDy < k.
j=1
Then either one can find paths P?**,1 < j < h,1 < v < D in G such that
Pi¥ starts from the vertex v;, P¥*Y and P¥*°(v # v,) are vertex-disjoint except
v;, P and P#™0o(j # jy) are vertex-disjoint, and all the paths P#"* have equal
length I; or there exist two sets Yy C W;,Y2 C W,, |Y;| > k; such that no edge
of G goes from Y; to Y. m)

Lemma 2.5. Under the hypotheses of Lemma 2 the vertex-set V(G) of G can

be partitioned into ¢t parts (VAD,V® ... V") in such a way that for each

i=1,2andj=1,2,...,t:

|Te(X)NVD| > D; - |X| whenever X C W; and |X| < 2ks_i/D;, and

|Fg(X) N V(j)l > 2ks—; whenever X C W; and 2k3—;/D; < | X| <ks—;. O
Repeating now the proof of Lemma 3.5 in Beck (1983) one can easily prove

Lemma 2.2, but instead of Lemma 3.1-2-3 of that paper one has to use the

analogous Lemma 2.3-4-5 in this order. We leave the details to the reader.
Thus the proof of the Main Lemma is complete. O

3. Proof of Theorem 1 — Part Two

We recall Lemma 2.1 from Beck (1983).

Lemma 3.1. If R,, , is a random variable with binomial distribution B(m,p)
then

(7) Prob(Rmp>k) < (m-p-e/k)*
and
(8) Prob(R,,, <m-p/2) < (2/e)™P/2. o

Let us consider the complete n; - (log n)® x ny - (log n)® bipartite graph and
choose its edges at random, independently of each other, with common proba-
bility

. D . D
p = min{1, 77,_21. - (log n)2} = min{1, ;12’ * (log n)2}
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Let RG(n1,n2,p) denote this random bipartite graph. Let (Vi,V2) denote the
bipartition of the vertex-set of RG(n1,n2,p). By the Main Lemma it suffices
to verify that F = RG(n1,n»,p) satisfies properties (5), (a1),(a2),(@3) and
that the number of edges is less than ¢ - A(T%) - (log n)!? with probability
approaching one as n tends to infinity.
First we state that for any two sets Y1 C V1,Y2 C V, with |Y:| = n; -

(log n)3/2(i = 1,2), the induced subgraph F' = F[Y;,Y3] (we recall that F =
RG(n1,n2,p)) have average degrees

—_ ~

9) di(F) Y dp(v) > [Yasil -p/2 (i =1,2)
lYlvEY

with probability 1 — €, (here ¢, — 0 as n — 00).
Indeed, the probability of the complementary event can be estimated from
above by

N, N,

(10) > 3 (N 1) - (Jl\; 2) - Prob(Ruy,.1, <l -1y -p/2)

l
li=n1-(log n)5/2 l3=na(log n)5/2 1

where N; = |Vi| = n; - (log n)’, I; = |Y;| and R,, denotes the random variable
with binomial distribution B(m, p)(throughout this section p is fixed and so we
omit the lower-index p from R,, ). Applying estimate (8) and the elementary
fact (17 ) < (N -e/l)! it is easy to see that the expression in (10) tends to zero
as n — 0o.

Under the assumption that (9) is true, the probability of the event that F
is false to satisfy property (a2) can be estimated from above by

(11)
{0 88

i=1 k=1 li=n1(log n)5/2 l3=n3(log n)5/2

N;\ (Ns_; ™
Prod(Rux- >l ipk/8)+ 3 (k) . (K) >
ng_i>k>2n3_;/D; li=n1(log n)5/2
N,
Y. Prob(Bexe >ls_i-p-k/8)

la=na(log n)5/2

where N; = |V;| = n; - (log ), k = |Z|,K* = D; - (log n)*/* - k,K** =
ns—; - (log n)9/4 and I; = |Y;].
Applying estimate (7) and the fact (]Z ) < (N -e/k)* one can easily see by
some elementary calculation that (11) tends to zero as n — oo.
Summarising, we obtain that F' = RG(ni,n,,p) satisfies property (a2)
with probability 1—e,. A similar (but simpler) calculation shows that F satisfies
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property (a1) as well with probability 1 — €,. Next we estimate the event that
F is false to satisfy property (as) from above:

N, N, na+(1 )3/5
. . 1 _ nina+(log n
© (or-tog 1) (o tog ) 47

Since
(1 _ p)ng S n—Dg-.-log n

it follows easily that (12) tends to zero as n — oo. That is, property (as) is
also settled.

The probability of the event that F = RG(n1,n2,p) is false to satisfy the
degree condition in (5) is clearly less than

2
(13) Z .Prob(Rn,_, > D; - (log n)®) where N; = |V;|.

=2

Here we can apply (7), since

= D;(log n)".

Ni—;-p=mns_;-(log n)5

By (7) it follows that the expression in (13) tends to zero as n — oco. This
settles the degree condition. Finally, the expected value of the number of edges
in our random graph equals Ny - N; - p. Clearly

Ni-Ny-p<ny-D-(log n)'? < A(T,) - (log n)*2.
Thus, by Chebyshev’s inequality the probability of the event
{|RG(n1,n2,p)| < 2+ A(T5) - (log n)'?}

tends to 1 as n — oo. Consequently, for every sufficiently large value of n,
there exists a deterministic graph Fy with |Fp| < 2+ A(T%) - (log n)'? such that
Fy — T,. This completes the proof of the upper bound, and so Theorem 1
follows. O

4. Proof of Theorem 2

We say that a graph G has property () if for every vertex v € V(G) and for ev-
ery less than n element subset S C V(G)\{v}, |I'c(v) N I'c(S)| < d(G)/4 where
d(G) denotes the average degree of G (we recall that for S C V(G),I'g(S) =
{u € V(G) : there exists v € § such that {u,v} € G}).

Lemma 4.1. Let G be a graph of property (3). Then every subgraph H C G
with |H| > |G| /2 contains all trees T, of n edges.
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Proof. Let H be an arbitrary subgraph of G containing at least the half of
the edges of G. Let X C V(H) be the smallest vertex-subset of H such that
the induced subgraph F = H[X] has at least d(H) - |X|/2 edges. We claim
that every vertex of F has degree greater than d(H)/2. Assume, in contrary,
that there exists a vertex u € X such that dp(u) < d(H)/2. Then the induced
subgraph H[X\{u}] contains > d(H) - (|X| — 1)/2 edges, which contradicts
the minimality of X. Therefore, for every vertex v € V(F),dr(v) > d(H)/2 >
d(G)/4. Combining this with property (8) we see that given any vertex v €
V(F'), the endpoint-set I'r(v) cannot be covered by the neighbourhood I'r(.S)
of any less than n element subset S C V(F)\{v}. From this property of F it
follows that one can successively embed every tree T, of n edges to F. Since
F C H, the lemma follows. O

Let us consider a complete graph of N = n?.(log n)? vertices and choose
its edges at random, independently of each other, with common probability
p =1/(18n). Let RG(N, p) denote this random graph. We shall show that with
probability tending to one, the random graph RG(N, p) satisfies property (£).
First we claim that the probability of the event

(14) {the maximal degree of RG(N,p) <3-N -p}

tends to zero as n — oo. Indeed, the probability of the complementary event
can be estimated from above by

N - Prob(Rn-1 >3- N -p)

where Ry_; is a random variable with binomial distribution B(N — 1,p) (p is
fixed throughout this section). From (7) it follows by some elementary calcula-
tion that this upper bound tends to zero as n — oo.

Moreover, the expected value of the number of edges in RG(N,p) equals

(J;,) .p~ N%.p/2.

Thus by Chebyshev’s inequality the probability of the event
(15) {N?.p/4 <|RG(N,p)| < N*-p}

tends to zero as n — oo.

Therefore, we may assume that both events (14) and (15) hold true. Under
these assumptions, the probability of the event that our random graph is false
to satisfy property (3) is clearly less than

N
(16) (n _ 1) -(N —n)- Prob(RD.(n_l) > N -p/2) where D=3-N -p.

Since
1
D (n-1)-p<3z-(N-p/3),
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we can here apply (7) and by some elementary calculations we get that expres-
sion (16) tends to zero as n — oo.

Summarising, we obtain that for every sufficiently large value of n, there
exists a deterministic graph G with less than

NZ%.p=nt(log n)*-1/(18n) < n®(log n)*

edges such that G satisfies property (8). This completes the proof of Theorem
2. O

5. Proof of Theorem 3

We need a simple lemma.

Lemma 5.1. Given any graph H and any natural number t < N = |V(H)|,
there exists a t-element subset S C V(H) such that the induced subgraph

H(S] contains at most NA(%V%IL) - |H| edges.

Proof. We use the standard probabilistic method. Let RS C V(H) be a “ran-
dom t-element subset” of V(H), i.e., for any Sy C V(H) with |Sp| = ¢,

Prob(R S = Sp) = (]Z) N

The expected value of the number of edges of the random induced subgraph
H[RS] equals

'S -2 = @

SCV(H): SCV(H):
|s|(=¢) {u,0}€H[S] {uv}eH |S|=t ﬁad((.),v)cs

- (35)-(7) sty

Thus there must exist a ¢-element subset S* C V(H) such that |H[S*]| <

t(t—1
|H|7\ﬁw—_% O

Now let G be a graph such that G — P, and |G| is minimal. Let
={ve V(@) :dg(v) =1},V2 = {v € V(G) : dg(v) = 2}

and
= {v € V(G) : dg('v) > 3}.

Since each vertex in V3 has degree > 3, we have

(17) N =%l 26l
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Let t = N — [n/2] + 2 and apply Lemma 8 to H = G[V3]. We obtain the
existence of a {-element subset S* C V3 such that

. t(t-1) H(t-1)

(18) 618" <1601 =1 < 1€ =1y

Let us now consider the following two-colouring of the edges of G. If e =
{u,v} € G[V3] and {u,v} C S* or {u,v} C §** = V3\S*, then let the edge e be
red. If e = {u,v} € G[V3] and u € §*,v € §** or u € §**,v € §*, then let the
edge e be blue. Moreover, the edges of the subgraph G = G[V1 UV,, ViUV, U V4]
can be two-coloured so that for any v € V, the exactly two edges containing
v have different colours. Indeed, it easily follows from the fact that @ is the
union of vertex-disjoint paths starting from V; and terminating at V3 U Vi, or
circuits containing at least one point of V3 (note that by the minimality of
G, V2 cannot contain circuits).

Since G — P, there must exist a monochromatic copy of P,. From the
colouring strategy immediately follows G[V3] — P,_,. This monochromatic
copy of P,_» in V3 cannot be blue, since the bipartite graph G[S*,5**] cannot
contain a path of length > 2 |$**|+1 = 2[n/2]—3. Consequently, G[S*] D Pp—2,
and so |G[S*]| > n — 2. Comparing it with (18) we get the inequality

(19) n—-2<|G| ;Ejv )1) where ¢t =N — [n/2] +2.
Let N =¢-(n—2)(c > 1), then (19) gives |G| > ((1 — )2 — €)(n — 2) where

€ — 0 as n — o0o. On the other hand, by (17)
3 3
G|>2=N>=-¢(n-2).
612 3N 2 5 - cfn—2)
Combining the last two inequalities we obtain
1 1 3
>—{(1-=)2-¢e+=c}-(n-2).
612 341~ )P~ e+ 5e}-(n-2)
Since (1 — 3-)7% + 3¢ > 9/2 for every real ¢ > 1, we get
9
|G| > (Z - é)n.

This completes the proof of Theorem 3. o
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On the Computational Complexity of
Ramsey—Type Problems

Stefan A. Burr

Abstract

If F,G and H are graphs, write F — (G, H) to mean that if the edges of F
are colored red and blue, either a red G or a blue H must occur. It is shown
that, if G and H are fixed 3-connected graphs (or triangles), then deciding
whether F /4 (G, H) is an NP-complete problem. On the other hand, if G
and H are arbitrary stars, or if G is fixed matching and H is any fixed graph,
the complexity of the problem is polynomial bounded.

1. Introduction

If F,G, and H are (simple) graphs, write ' — (G, H) to mean that if the edges
of F are colored red and blue, either the red subgraph contains a copy of G or
the blue subgraph contains a copy of H. (Of course, we write F' /4 (G, H) if
the above does not hold.) This relation has been much studied lately; see Burr
(1979) for a survey. We will consider here the computational complexity of this
relation. To do this we first define our basic problem, in the style of Garey,
Johnson (1979). (For the terminology of computational complexity, see that
book.) For technical reasons, we must state then the problem in the negative.

NON-ARROWING

Instance: (Finite) graphs F,G, and H.
Question: Is it true that F 4 (G, H)?

We will prove two theorems about the problem. First we need a definition: Let
I's denote the class of 3—connected graphs, together with the triangle Kj.

Theorem 1. NON-ARROWING is N P—complete for any fixed graphs G and
H that belong to Ts.
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In particular, NON-ARROWING is N P—complete when G = H = Kj;
this case is mentioned in Garey, Johnson (1979). Note that it was important
that NON-ARROWING be stated in the negative; “ARROWING” would be
co—N P—complete. For Theorems 2 and 3 we would not have needed to state
the problem in the negative.

Theorem 2. If G and H are restricted to be stars, then NON-ARROWING is
polynomial-bounded.

Note that in Theorem 2, G and H need not be fixed. On the other hand,
they must be fixed in the next theorem.

Theorem 3. If G is a fixed matching nK,, and H is any fixed graph, then
NON-ARROWING is polynomial-bounded.

Sections 2 and 3 will be devoted to proofs of these theorems, while Section
4 will discuss some related questions.

2. NP-Complete Ramsey Problems

Define a (G, H)-good coloring of a graph F to be a 2—coloring of the edges of F
in such a way that no red G nor blue H occurs. Thus, F — (G, H) means that
F has no (G, H)-good coloring. A (G, H)-determiner with determined edge e
is an F such that F 4 (G, H), but in any (G, H)-good coloring , e is red. Note
that if Fy is an (H, G)-determiner, then Fy /4 (G, H), but in any (G, H)-good
coloring its determined edge is blue. Also observe that a (G, H)-determiner
cannot exist when G = H. A positive (G, H)-sender with signal edges e and
f is an F such that F — (G, H), but in any (G, H)-good coloring, e and f
have the same color, and moreover, F is not a determiner for the edges e and
f. A negative (G, H)-sender is the same, but with “same color” replaced by
“opposite colors”. We call these graphs senders because they, in effect, send a
signal between e and f. We will usually drop the (G, H) from the above terms
when the meaning is clear. The following lemma, taken from Burr, Nesetfil,
Rodl (1985), shows that the above definitions are meaningful.

Lemma 2.1 (Burr, Nesetfil, R6dl). If G, H € I, then both positive and negative
(G, H)-senders exist with the property that the signal edges are farther apart

than the order of either G or H. In addition, if G # H, then (G, H)-determiners
exist.

As an example, the following is a positive sender for G = H = Kj. Take two
copies of K5 and identify a K3 of each. The four points not participating in this
identification spann the two signal edges. Determiners and especially senders
are very powerful tools in the study of arrow relations. For examples of their
use, see Burr, Nesetfil, R6dl (1985); Burr, Erdds, Lovéasz (1976); Burr, Faudree,
Schelp (1977). We will now define, and prove the existence of, a more elaborate
type of graph in a similar vein. The existence of this type of graph, called
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an evaluator, will then lead very directly to a proof of Theorem 1. Basically,
an evaluator evaluates a boolean function, with the two colors acting as truth
values. A negative sender in effect implements the function “not”. For the
general case, a rather technical definition is necessary.

Let G and H be graphs, and let & be a boolean function of k variables.
Then a (G, H,®)-evaluator is a graph F with a reference edge f, input edges
aj,---,0k, and an oufput edge b, which has the following properties:

(i) If G # H, then f is always red in any (G, H)-good coloring. (Whether
G = H or not, we regard the color of f as denoting falsehood.)

(ii) For each of the 2* possible colorings of the input edges, there is a (G, H)-
good coloring of F' for which the input edges are so colored.

(iii) In any (G, H)-good coloring of F, the color of b is $(a,,...,ax), where the
color of f represents falsehood and the opposite color represents truth.

We are now ready for a fundamental lemma. Of course, A represents 2—variable
logical conjunction.

Lemma 2.2. If G, H € I3, then (G, H,\)-evaluators exist.

Proof. Choose disjoint edges a1, a2,b, f. If G # H, attach a (G, H)—determiner
to f, so (i) will be satisfied. Therefore, whether G = H or not, we are assured
that no copy of G in the graph to be constructed can be entirely in the color of
falsehood in any good (that is, (G, H)-good) coloring. To simplify terminology,
call an edge true or false according to its color.

Let G1,G2,G3 be disjoint copies of G. Join one edge of G, to a; by a
positive sender, and all but one of the other edges to f by positive senders.
Treat G, in the same fashion, but join the first edge to ay, not a;. Now join
one edge of G3 to a; and another to a, by negative senders; again, join all but
one of the other edges to f by positive senders. (If G = K3, no edge is joined
to f.) Use senders with widely-separated signal edges, so that no copies of G
or H occur that are not entirely contained in one sender. Designate the edges
of G1,G,,G3 that are not presently joined to senders by e;, ez, e3 respectively.

It is easy to see that in any good coloring of the graph we have built so far
e) is true if @, is false, and is undetermined if a, is true. The same holds for
e2 and a3. Also, in any good coloring e3 is true if both a; and ay are true, and
underdetermined otherwise (unless G = Kj, in which case e3 is false if both a,
and a, are false).

Now join e; and e; to b by negative senders, and e3 to b by a positive
sender. It is straightforward that in any good coloring, b is true if and only if
a; and ay are, so (iii) is satisfied. Furthermore, any of the four possible ways
of coloring a; and a, can exist in a good coloring, so (ii) is satisfied. 0

The general case is now easy.
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Lemma 2.3. If G,H € Is and ¢ is any boolean function, then (G,H,®)-
evaluators exist. Furthermore, if G and H are fixed, and & is expressed in terms
of ~,A, and V (say), then an evaluator can be constructed in time bounded by
a polynomial in the length of the expression for .

Proof. Lemma 2.2 performs the desired construction for & = A. For & =~, we
just use a negative sender (as indicated before), except that, to be consistent
with (i) we adjoin a disjoint edge f, and if necessary a determiner on f. (Of
course, f serves no real purpose in this case). Once we have A and ~, we can
easily construct evaluators for V or for any boolean function ¢ of any number
of variables. All we have to do is the following: Express @ in terms of ~ and
A (which of course can be done), and create an appropriate evaluator for each
occurance of ~ or A. Connect inputs to outputs in the appropriate manner
with positive senders. Take the output edge of the highest-level operation (a ~
or an v) to be b. Finally, connect the edges f with positive senders, designating
one such f as the f to be used in the final evaluator. To avoid extraneons
occurances of G or H, use senders with widely-separated signal edges.
Moreover, it is obvious that if ¢ is expressed in terms of ~,A and V, the
construction of the evaluator can be performed in polynomial time. O

Proving Theorem 1 now only requires taking account of a few technical details.

Proof of Theorem 1: 1t is clear that NON-ARROWING € NP, since if a col-
oring of the edges of a graph F is given, one can obviously check in polynomial
time that no red G nor blue H occurs. (Note that, this is true only because
G and H are fixed.) To show that NON-ARROWING is N P—-complete, we
reduce SATISFIABILITY to it. We state SATISFIABILITY as follows; this
statement is obviously equivalent to that in Garey, Johnson (1979).

SATISFIABILITY

Instance: A (finite) boolean function ¢, expressed in conjunctive normal form
in terms of ~, A, and V.

Question: Is there any assignment of truth values to the variables for which &
is true?

Consider any instance of SATISFIABILITY. By Lemma 3, we can construct
a (G, H,®$)-evaluator in polynomial time. Now join its output edge to its ref-
erence edge by a negative sender. Clearly, some assignment of variables makes
& true if and only if the graph we have constructed does not arrow the pair
(G, H). Hence, we have reduced SATISFIABILITY to NON-ARROWING in
polynomial time; therefore NON-ARROWING is N P-complete. O

3. Polynomial-Bounded Ramsey Problems

We will prove Theorem 2 by reducing NON-ARROWING for stars to the
problem of finding a maximum c-matching, a polynomial-bounded problem.
We state that problem formally as a decision problem.
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C-MATCHING

Instance: A graph G = (V, E) with a capacity ¢(v) associated with each v €
V1, and an integer K.

Question: Does there exist a set E' C E of at least K edges with the property
that for each vertex v € V, no more than ¢(v) edges of E' are incident
with v?

This is easily seen to be a polynomial-bounded problem, since it can readily be
reduced to the problem of finding a maximum matching in the ordinary sense;
see Berge (1973), Chapter 8. (In the ordinary maximum matching problem,
c¢(v)=1forall v € V)

Proof of Theorem 2: Let G = K, x, H = K, 4; we will show how, for any graph
F, to decide in polynomial time whether or not F — (G, H). If any vertex of
F has degree at least k +£ —1, (which can be checked in polynomial time) it is
obvious that F — (G, H), so we may assume that all vertices have degree no
more than k+ £ — 2.

Now we construct a new graph F' from F. At each vertex of F which has
degree d, attach k + £ — 2 — d free edges. The new graph F' has vertex set
VUV’ where V is the vertex set of F, and where all vertices of V' have degree
1. Furthermore, all vertices of V have degree k + £ — 2 in F'. It is clear that
F 4 (G,H) if and only if F' 4 (G, H), since any good coloring of F can be
extended to F' by coloring the free edges at each v € V so that the red and
blue degrees become k — 1 and £ — 1 respectively. In fact, any good coloring of
F' has red degree exactly k — 1 at every vertex of V. It is obvious that F' can
be constructed in polynomial time.

Consider the following c-matching problem on the graph F : ¢(v) =k —1
ifveVe(v)=1ifve V',K = (k—1)|V|. This problem can be solved in
polynomial time. Clearly, if the required c-matching exists, it can be taken to
be the red subgraph of F', which induces a good coloring of F', and hence of
F. On the other hand, if no such c—matching exists, it is clear that F' and F
do not have good colorings. O

In the above proof, the transformation from F and F' was suggested by Jack
Edmonds (personal communication).

If G = H = K, , it is even easier to determine if F — (G, H). By Theorem
9 of Burr, Erd6s, Lovész (1976), F — (K k, K1) if and only if F has a vertex
of degree at least 2k — 1, or if F has a component which is regular of degree
2k — 2 and has an odd number of points. It is quite possible that the case of
stars in general has a similar solution.

Theorem 3 is even easier to prove than Theorem 2. We first need a defini-
tion. Say that F is (G, H)-minimal if F — (G, H), but F' /» (G, H) for any
proper subgraph F' of F.

Proof of Theorem 3: Let G be a matching nK,, and let H be any graph. In
Burr et al (1978) it is proved that only finitely many (G, H )-minimal graphs
exist. Clearly, for any F it takes only time polynomial in the size of F' to search
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it for any occurance of one of these (G, H)-minimal graphs. (Of course, it may
well take exponential time in the sizes of G and H to find the set of minimal
graphs, but since G and H are fixed, this does not matter.) O

4. Discussion

The above results leave open many questions, even aside from the fact that
many types of G and H are not considered. For example, what if G and H
are members of I';, but are not fixed? By Theorem 1, this problem is NP-
hard (again, see Garey, Johnson 1979 for terminology), and indeed it seems
likely that this problem is, in some appropriate sense, strictly harder than the
problems in NP. The only known methods for testing whether F — (G, H)
when G and H (or even just G) are not fixed involve forming exponentially
many colorings of F, and then testing each for a red G or blue H. (This is true
even if backtracking is used.) Since testing for a red G, say, is in general an
N P—complete problem, this method requires solving exponentially many N P-
complete problems. When G and H are not fixed, NON-ARROWING belongs
to the class called 3 5 in Garey, Johnson (1979). It seems conceivable that
NON-ARROWING might be proved Y 5—complete. If, as is likely, NP # >3,
then such a result would show that NON-ARROWING is, in this sense, strictly
harder than the N P—complete problems.

Further evidence for the above idea is that even in the very special case
F = K,,, NON-ARROWING has been shown to be NP-hard Burr (1984).
Indeed, it is shown in Burr (1984) that if H is a path, then the minimum
n such that K, — (G, H), called the Ramsey Number, often depends on the
chromatic number of G, and of course, determining the chromatic number of
G is N P-hard. It seems likely that in the general case, determining whether
F — (G,H) is far harder than determining the chromatic numbers of the
graphs involved.

In Theorem 2, G and H need not be fixed. In Theorem 3, they are fixed,
and if this requirement is relaxed it is likely that the difficulty escalates. It is
possible, given the present state of the author’s knowledge, that the problem
becomes Y >-complete, but this seems much less likely than for G, H € I3. In
fact, if H is fixed, or is an arbitrary matching, this cannot be the case, unless
Y2 = NP. For in this case, NON-ARROWING is definitely a member of NP,
since a proposed good coloring can be checked for forbidden matchings, and
for occurrances of a blue H if H is fixed, in polynomial time.

Finally, it is worth mentioning that it is possible to use determiners,
senders, and evaluators in a rather straightforward way to show that NON-
ARROWING is undecidable for infinite graphs F. For details, see Burr (1984a).
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Constructive Ramsey Bounds and Intersection
Theorems for Sets

Peter Frankl

Abstract

A classical result of Erdés says that R(k, k) > 2%/2. However, Erdds’s proof is
probabilistic, and the only known graphs showing that R(k, k) is greater than
any polynomial of k were constructed via set-intersections. Here we show, that
almost all such constructions yield non-polynomial lower bounds for R(k, k).

1. Introduction

Let us recall that R(k,k) is the minimal integer m, so that if the edges of the
complete graph on m vertices are partitioned into 2 classes then one of them
contains a complete subgraph on k vertices.

It is a classical result of Erd6s (1947) and Erdds-Szekeres (1935) that

2k -2

(1) 2F/2 < R(k,k) < (k 1

) holds.

Since his proof was probabilistic, Erdés raised the problem (cf. Erdés 1969)
of giving explicit constructions showing that R(k,k) grows faster than any
polynomial of k. In Frankl (1977) such a construction was given. A simi-
lar construction in Frankl, Wilson (1981) provides a lower bound R(k,k) >
ezp((1 + o(1))log? k/4loglog k), i.e., rather poor in comparison with (1). Let
us describe the construction.

Let X be an n-element set, r a positive integer, r < n, and L a subset
of {0,1,...,7 — 1}. Define a graph with vertex set V = (f) — all r-subsets
of X, and A,B € V forming an edge iff |AN B| € L. This graph is denoted
by G(n,r,L). E.g. in Frankl, Wilson (1981) n = p%, r = p> —1 and L =
{p-1,2p—1,...,p* — p— 1} is used.
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In what follows we always assume that n > ng(r). To given r there are 27
choices for L. When saying almost all choices of L it is understood that r tends
to infinity. Similarly, o(1) denotes a quantity tending to zero as r — oo.

1.1 Theorem. For almost all choices of L the size of the largest complete or
empty subgraph in G(n,r, L) is n°(").

2. Families of Sets with Prescribed Intersections

A family F c (%) is called an (n,r,L)-system if for all distinct F,F' €
F |F,nF'| € L holds. Also m(n,r, L) denotes the maximum size of an (n,r, L)-
system. For a survey on (n,r, L)-systems we refer the interested reader to Deza,
Frankl (1983). In Frankl (1977) a recurrent bound for m(n,r, L) is obtained.
This would be sufficient for the purpose of the present paper. However, it will
be simpler for the reader if we use a recent result of Fiiredi.

Consider families A C 2{12++7} satisfying the following assumptions:

(i) |AleLforall A€ A,
(ii) (ANnA")e Aforall A,A' € A,i.e., Ais closed under intersection.

A subset B C {1,2,...,r} is called free (with respect to .A) if B ¢ A holds for
all A € A. The minimum size of a free subset is denoted by b(.A). Note that
0 < b(A) < r holds.

2.1 Definition. Let a(L) denote the maximum of b(A) over all A C 2{1»-7}
satisfying (i) and (ii).

2.2 Theorem. (Fiiredi (1983)) There exists a constant ¢(r) depending only on
T so that

(2) m(n,r,L) < ¢(r) () holds.
For a family F and a set S one defines F(S)={F —-S:S C F € F}. Set
also Fs={FNS:S¢ FeF}.

In analogy define L(i) = {l —i : ¢ <l € L}. The following assertions are
direct consequences of the above definitions.

(3) b(A) < B(A(S)) +b(As) < bA(S)) + 18],
(4) if A fulfills (i) and (i), ({1,2,...,7} — S) € A, then for all B € A(S)
|B| € (LN L(|S])) holds.

Let us state a special case of (3):
(5) 5(A) < b(A4)+ 1 holds for all maximal (for containment) A € A.
These propositions will be used to prove the following:

2.3 Theorem. Suppose L C {0,...,7—1} and L contains no arithmetic progres-
sion of length t. Then a(L) < 3r/p holds, where p is defined by r = tp*log p.
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2.4 Corollary. Suppose L contains no arithmetic progressions of length t,% =
p?log p. Then m(n,r,L) < c(r)(s,f‘/p) holds.

3. The Proof of Theorem 2.3

Suppose A C 2{1r7"} A satisfies (i) and (ii). We must show that b(.4) < 3r/p
holds. Let us set rg = r, Ay = A, Ly = L. Suppose that we have defined so far
riy Lj C{0,...,r; — 1}, A; C 2{t»-m} ] A; satisfies (i) and (ii) with L = L;.
If 5(A;) < r/p, then we stop. Otherwise let A be a maximal (for containment)
member of A; and set § = {1,...,r;} — A.

(a) |S| > p, Define Tit+1 = |4], Lipz=L;n {0, oAl - 1}, AJ'+1 = (Aj)A.
(b) S| <p. Define rjyy = |4, Ljt1 = L; 0 Li(|S]), Aj+1 = A;(S)-

First note that case a) occurs at most r/p times — in fact » decreases each time
by more than p, thus it would become negative otherwise.

Next we claim that b) occurs at most 7/p® times. To show this we use the
easy observation that if a set K contains no arithmetic progression of length
t, then for any nonzero integer o one has |[K N K(e)| < (1 — 1) |K|. Therefore
after r/p? applications of b) the corresponding L; satisfies

1
L] < LI (1= )77 <r(1 = )8 2 <r/p.

Consequently b(A;) < r/p. Thus we stop. Let A, be the family with which
we end up and denote by s(a) (s(b)) the number of times a) (b)) occurred,
respectively. In view of (3) and (5) we have b(A) < b(Ag) + s(a) +ps(b) < 3r/p.

0

4. The Proof of Theorem 1.1

First note that the size of the largest complete subgraph in G(n,r,L) is
m(n,r,L). Also the size of the largest empty subgraph is m(n,r,{0,...,7 —
1} - L).

Recall as well that by a theorem of Erdés and Rado (1952) for almost all
choices of L neither L nor its complement contain arithmetic progressions of
length at least 3log r. Set ¢ = 3log r and let K denote L or its complement.

3,
A little computation shows that p > logﬁr and hence 2" < 4/%'rlog r. Thus
Corollary 2.4 yields m(n,r, K) < c(r)(\/u—:‘los ) = n°™, O
2 L
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Ordinal Types in Ramsey Theory and
Well-Partial-Ordering Theory

s>

Igor Kiiz
Robin Thomas

There is a gap between the infinite Ramsey’s theorem w — (w)} and its finite
version

R(n;el,--',ek) - (ela"'aek);:‘

The finite Ramsey’s theorem is much finer. In this paper we fill in the gap by
defining “Ramsey numbers R(n;v1,...,7%)” for arbitrary ordinals 41,...,7;
these generalized “Ramsey numbers” are again ordinals, and their estimate is
a quantitative strengthening of the infinite Ramsey’s theorem. Actually, this
is just a special case of our general definition of “Ramsey numbers” which is
based on an axiomatic approach. The axioms themselves imply some estimates
and other facts. To obtain sharper results, however, we have to consider more
concrete situations. Besides the classical one already mentioned we investigate
also the Canonical Ramsey Theorem, the Erdés—Szekeres theorem on monotone
sequences and the well-partial-ordering (wpo) theory. In the last case, the
“Ramsey numbers” generalize the so—caled types of wpo sets, a concept already
studied in a great detail.

The “Ramsey numbers” are also closely connected with independence re-
sults in finite combinatorics. This fact has been already known for the types
of wpo sets. The existence of “R(n;w,...,w)” implies the Paris—Harrington
modification of Ramsey’s theorem. As one might expect from unprovability of
this theorem in PA, it holds

lim R(n;w,...,w) = ¢p.
n—oo

Finally, we should remark that our approach is different from what is known
as ordinal Ramsey theorems (like e.g. w? — (w?,n)).
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1. Introduction

The well-known Finite Ramsey’s Theorem says that, given natural numbers
n,k,l,...,L, there is a number R(n;{y,...,%), called the Ramsey num-
ber, with the following property. If r is a coloring of n—element subsets of
{1,...,N} by k colors (i.e., r: [{1,...,N}]™ — {1,...,k}) such that every set
E C {1,...,N} whose all n-subsets are colored 7, has less than ¢; elements,
then N < R(n;f,...,£). The infinite Ramsey’s theorem (i.e. w — (w)3) gives
no such number, it simply says that every infinite sequence contains an infi-
nite homogeneous subsequence without indicating how sparse the homogeneous
subsequences are. We propose a way to measure this sparsity based on a gener-
alization of the notion of a Ramsey number. We refer to (Graham, Rothschild,
Spencer 1980) or (Nesetfil 1987) for an exposition of Ramsey theory.

Our results are motivated by the well-partial-ordering theory, so let us
start by recalling its rudiments. Let @ be a partially ordered set. A sequence
¢1,92,- .- (finite or not) of elements of @ is called good if there are indices 3, j
such that ¢ < j and ¢; < gj, and is called bad otherwise. The set of all bad
sequences of elements of @ is denoted by Bad(Q). The set Q is called well-
partially-ordered (wpo) if every infinite sequence of elements of @ is good. Let
us remark that this theory is often called the well-quasi—ordering one, because
it is usually sufficient to work with quasi—orderings (i.e. reflexive and transitive
relations) rather than with partial orderings. But since every quasi—ordering
becomes a partial-ordering after identifying all elements z,y withz <y <=z
we found it more convenient to work with partial orderings, and hence we call
the existing theory the well-partial-ordering theory.

The well-partially-ordered sets have been studied for a while (see e.g.
(Higman 1952), (Kruskal 1960), (Nash-Williams 1963) or (Kruskal 1972) for
a survey). A recent major breakthrough was done by Robertson and Seymour
(Robertson, Seymour) who proved the so—called Wagner’s conjecture, an out-
standing problem in the area which has been open for many decades.

The usual method in wpo theory is a minimal bad sequence argument,
basically due to Nash-Williams. It is an induction-like argument, but it is
highly nonconstructive. Trying to find a more constructive proofs for some
wpo theorems we rediscovered the theory of types of wpo sets, initiated by de
Jongh, Parikh (de Jongh, Parikh 1977) and Schmidt (Schmidt 1978), (Schmidt
1979). The constructive approach is as follows: To find an ordinal 4 and a
function f: Bad(Q) — 7 such that

flars---sqn—1) > f(q1,---,0n)

for every (g1,...,9,) € Bad(Q). The least ordinal for which such a function
exists, called the type of Q@ and denoted by ¢(Q), turns out to be an interesting
invariant which reflects the complexity of the wpo set and also provability and
nonprovability of some wpo statements in certain logical systems.

There is another way of expressing ¢(Q). A partially ordered set (@, <)
is wpo if and only if every linear extension of < is a well-ordering, in which
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case it has an ordinal type. It is a nontrivial fact that among all these linear
extensions there is a maximal one and its ordinal type is exactly ¢(Q). This
may be viewed as a minimax theorem in wpo theory (see Section 4). De Jongh,
Parikh (de Jongh, Parikh 1977) and Schmidt (Schmidt 1979) have computed
the types of some wpo sets.

The above facts led us to introduce the type in a more general setting
which includes both the Ramsey theory and well-partial-ordering theory. This
is a bit more involved. The type of a Ramsey result is not a single number,
but an ordinal function of the complexity of the partition. To clarify it let us
consider the simplest example. Let A C [w]? and assume that each infinite set
X C w contains an infinite subset Y such that [Y]? C A. For 4 an ordinal and
g: w<¥ - ylet uscall aset X Cw (A,g)-badif for any z; < z3 < ... <
z,, € X such that [{z1,...,2,}]> C A we have g(Z1,---,Zn—1) > 9(Z1,---,Zn)-
Roughly, the ordinal 4 and the function g measure the “killing” of homogeneous
subsets of X. Note that, by our assumption about A, there is no infinite (A, g)-
bad set. The type c4() corresponding to A and « is defined to be the least
ordinal § such that for every g : w<* — 4 thereis f : w<“ — § such that for
every X C w the following holds:

if X is (A, g)-bad, then f(z1,...,Zn—1) > f(Z1,...,2Zn) for any z; <
...<zn€X.
Hence if the killing of homogeneous parts of X is measured by g, then the
killing of X itself is measured by f.

Such a formulation is possible not only for the Ramsey’s theorem, but also
for the Canonical Ramsey Theorem of Erdés and Rado (Erdés, Rado 1950), for
the Nash-Williams’ Partition Theorem (Nash-Williams 1965) and in general
for every Ramsey type theorem which has an infinitary version and where
homogeneity can be recognized from finite segments.

In the following section we introduce the exact definitions. The key notion
is that of a sheaf, which corresponds to a partition in Ramsey theory. We
consider some basic examples and prove two theorems on abstract sheaves.

As in Ramsey theory we are not interested in a single partition but in a
system of partitions of the same kind. In Section 3 we introduce the correspond-
ing concepts of R—-property and strong R-property. These definitions enable us
to distinguish between “uniform” and “non-uniform” estimates (with respect
to systems of partitions). For a broad class of systems (the so—called stan-
dard ones) the uniform and non-uniform cases coincide (under some obvious
cardinality assumptions).

Section 4 is devoted to the wpo theory considered from our point of view.
Some of the theorems presented in this section were known, but the proofs are
new and simpler.

In Section 5 we investigate two possible generalizations of the Erdés—
Szekeres theorem on monotone sequences. Similarly as in the finite case, the

“Ramsey function” reveals as a product of its arguments, suitably defined for
ordinals.
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In Section 6 we give upper and lower bounds to the “Ramsey function”
of the k-system which corresponds to classical Ramsey theory. As in the finite
case the bounds are of the form of iterated exponentiation and in fact are
obtained by similar methods. The lower bound requires a somewhat tricky
modification of the Stepping-Up Lemma from Ramsey theory (see Graham,
Rothschild, Spencer 1980).

In Section 7 we give upper bounds for the Canonical Ramsey Theorem of
Erdos and Rado (Erd6s, Rado 1950).

Let us introduce some terminology. If U is an arbitrary set, then U<¥, U¥,
U™ and [U]™ denote the set of nonempty finite sequences of elements of U, the
set of infinite sequences of elements of U, the Cartesian product of n copies
of U and the set of n—element subsets of U, respectively. If a € U<, then |a|
is the length of a. For a = (a1,4a2,...), b = (b1,b2,...) € USY U U¥ we write
a C b if there are j; < ja < ... such that (a1,@as,...) = (bj;,bj,,...) and a K b
if @ # b and there is n such that a = (a1,...,a,) = (b1,...,b,). In particular
a C a, but not @ < a. If a C b we say that a is a subsequence of b andif a < b
we say that a is a segment of b. Fora €e U<“ we put | a:={b € U<¥ | b C a}.
Ifa=(a1,...,an), b= (b1,...,bm) € U<, then

a.b:= (al,...,an,bl,...,bm) € U<v.

If f: X - Y is any function and M C X, then f | M denotes the
restriction of f to M. If f : X — Y is any function and (z,,...,z,) € X,
then the value of f at (21,...,2,) will be denoted by f(z1,...,z,), to avoid
cumbersome notation like f((z1,...,Zn)).

A tree is a couple (T, <), where T is a set and < is a partial ordering on
T such that for every ¢t € T the set {t' € T' | t' < t} is a finite chain. A subtree
of T is a subset S of T such that s; < s < s3 and 83,83 € S imply s € S,
together with the restriction of < to S. A frequently used tree will be (U <%, <),
where a < b iff either a = b or a < b. We make the convention that subsets of
U<“ will be regarded as trees with this ordering. If (T, <) is a tree and ¢, are
distinct elements of T', we say that ¢' is a successor of ¢ if ¢ < ' and there is no
t", distinct from ¢ and ¢’ such that £t < ¢" <#¢'.

Of great interest will be trees without an infinite chain: to such a tree one
can find the least ordinal y7 < |T|* such that there is a function 97 : T — 47
satisfying ¢ (t) > 97(¢') for all ¢,#' € T with ¢ < ¢'. The ordinal yr is called
the type of T and the function 9t is called a character on T. If T is a tree,
then T, denotes the subtree of all ' € T such that ¢ < ¢'. Let S, T be trees. A
mapping f : S — T is called a tree homomorphism if it is strictly increasing,
that is, if s < s’ implies f(s) < f(s') for all s,s' € S. If T contains no infinite
chain and there is a tree homomorphism f : § — T, then it can be seen by
induction on 4 that S contains no infinite chain and 75 < 7.

The terminology about ordinals is a standard. We identify each ordinal
with the set of its predecessors. If @, 8 € On, the class of all ordinals, and

a=w"+...+w* (a12...Zan),
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B=wf 4. +wfm (B 2...>Pm)

are their Cantor’s normal forms, then the natural sum of a, 8 is defined by
a®Pi=wn +...+wMtm,

where 41 > ... > Yn4m iS a nonincreasing rearrangement of a1, ...,Qn,B1,. .. fm
An equivalent definition is

a®pf=sup{d'®f+1l,c0f8 +1|a <a, §' <p}
The natural product is defined by

a®p:= @{w“’e’ﬁ’ | i=1,...,n, 5=1,...,m}.

If X is an ordinal, then a set M C ) is called cofinal in ) if for every a € A
there exists 8 € M such that 8 > a. The cofinality of )\, denoted by cf(}A) is
the least ordinal o such that there exists a cofinal set M C A of order type
a. If X is a set then by |X| we denote the least ordinal which has the same
cardinality as X, and by |X |t we denote the least ordinal which has cardinality
bigger than X.

We list below some properties of @ and ® which will be used without any
further reference.

() a®f=B00a, a®B=B®a,

(i) a®l=a+1,

(i) c® (BO7) = (¢ ®B) D7, a®(B®Y) =(a®B)® 7,

(iv) if @ < 9, 8 < § and one inequality is strict, then a ® 8 < v ® § and
a®pB<v®6,

(v) if 8 <w* and ¥ < w®, then 8By < wW*,

(i) a®(B07) = (28A) @O,

(vii)if 8 < w*” and 7 < w“" then B ®7 <w® .

2. Sheaves

Definition 2.1. Let U be an infinite set. A sheafin U is a set A C U<“ such
that @ € A and b < a implies b € A. A k-sheaf in U is a k-tuple of sheaves
and it is convenient to identify sheaves and 1-sheaves. A sheaf A is said to
have the R-property (short for Ramsey property) if every infinite sequence in
U contains an infinite subsequence each finite segment of which belongs to A.
A k-sheaf (A,,...,Ax) is said to have the R-property if the sheaf A, U...U Ay
has the R-property. Equivalently (4, ..., Ax) has the R-property if and only
if for every infinite sequence pin U there are an index ¢ with 1 <i < k and an
infinite subsequence of p each finite segment of which belongs to A;.
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Example 2.2. For r: U™ — {1,...,k} and i € {1,...,k} we define
R :={a € U<¥ | r(b) = i for every sequence b C a of length n}.

Clearly R™ := (R],...,R}) is a k—sheaf, it will be called the Ramsey k-sheaf
corresponding to the coloring r. By Ramsey’s theorem this k—sheaf has the
R-property.

Definition 2.3. An ordinal-valued function f defined on a set M C U<¥ is
called a killing on M if a,b € M and a < b imply f(a) > f(d).

Let 71,...,7x be ordinals. A k-tuple of functions g = (g1,...,gk) is called
a (7,-..,7k)-testing if g; : U<¥ — ;. Let A = (A1,...,Axr) be a k-sheaf,
let 71,...,7% be ordinals and let g = (g1,...,9%) be a (11,...,7k)-testing. A
sequence a € U<“ is called (A, g)-bad if each g; is a killing on | a N A;. The
tree of (A, g)-bad sequences will be denoted by Bad(4, g).

Definition 2.4. Let A = (Ai,...,Ax) be a k—sheaf, and let v,,. .., 7 be ordinals.
The R-ordinal & 4(11,...,7x) is defined as the minimum ordinal 4 such that
for each (71,--.,7x)-testing g there exists a function f: U<“ — 4, called the
R-character corresponding to A and g (or simply corresponding to g if it is clear
which k-sheaf is ment), such that one of the following equivalent conditions is
satisfied.

(2.4a) Ifais(A4,g)-bad, then f is a killing on | a for every a € U<“.
(2.4b) Ifb < aand ais (4,g)-bad, then f(b) > f(a).

(2.4c) fis a character on the tree of (A4, g)-bad sequences.

If no such ordinal exists then the R-ordinal ®4(71,...,7%) is undefined. In
other words @ 4(v1,...,7x) is well-defined if and only if for no (y1,...,7%)—
testing g the tree Bad(A, g) contains an infinite chain and equals the least
upper bound of the types of Bad(4, g) taken over all (v1,...,7vx)-testings g.

Definition 2.5. The above least upper bound may be attained for some g. Such
a g will be called the universal (y1,...,7k)-testing. If 41,...,7, are finite then
the supremum is always attained, namely for g = (g1,...,gx) defined by g;(a) =
(7i—|a|)*. We make the convention that for v, ..., finite we shall understand
by a universal (y1,...,7:)-testing the one defined above.

Theorem 2.6. For a k-sheaf A = (Ai,...,A), the following conditions are

equivalent.

(i) A has the R-property.

(i) The R-ordinal  (m1,- .- ,v:) is well-defined and is < |U|* for all ordinals
YiseeosVk-

(ili) The R-ordinal 4(|U|T,...,|U|") is well-defined.

(1'V)+ The R-ordinal ® 4(m1,...,7x) is well-defined for all ordinals v,,...,vr <

[ul™.

Proof. (i) = (ii): Let m1,...,7+ be given and let g = (g1,-..,9%) be a

(715 -+,7%)-testing. By assumption, Bad(A4, g) contains no infinite chain. Thus

f: U<“ 5 |U|* defined by
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f(a) = ¥Baaca,g)(a) for a € Bad(4,g)
=0 otherwise

is the desired R-character corresponding to A and g.

(ii) = (iii): Obvious.

(iii) = (iv): Obvious.

(iv) = (i): Let (iv) hold and suppose for a contradiction that A does not have
the R-property. Then there exists an infinite sequence p in U such that for
i = 1,...,k the subtree S; of Bad(A,g) consisting of all {a C p | a € A;}
contains no infinite chain. Put, for: =1,...,k,

gi(a) = ¢s;(a) fora€ S;
=0 otherwise.

Then g = (g1,..-,9%) is a (¥s,,. - ,7s, )-testing such that every finite sequence
a C pis (A,g)-bad. By (iv) there exists an R—character f corresponding to A
and g. Let p; < p2 € ... < p, then

f(p1) > f(p2) > ...

is an infinite decreasing sequence of ordinals, a contradiction. O

Definition 2.7. Let A = (4,,...,A) be a k-sheaf, let 41,...,7% be ordinals
and let a € U<“. An (4;71,-..,7%)-germ on a is a k-tuple g = (g1,...,9x) of
functions g; : | @ — 4; such that each g; isa killingon | aNA;.If g = (g1,...,9%)
is a (11,...,7k)-testing, we define

glla:=(qlla,...,gx la)
Thus if a is (A4, g)-bad, then g [| a is an (4;71,...,7%)-germ on a.

Theorem 2.8. If a k—sheaf A has the R—property, then @ o(71,...,7k) < |U|+
for all ordinals m1,...,m < |U|*.

Proof. Let A= (A,,...,A»). Consider the tree (S,<) defined by
S:={(a,g9)| a € U< and g is an (4;7,...,7k)-germ on a},
(a,9) < (b,h)ifa<band g=h || a.
We claim that S has no infinite chain. Indeed, let {(a*,¢*)}$2, be an infinite
chain in S. Let a € U“ be such that a* < a for every 1 = 1,2,.... From the
fact that A has the R-property it follows that there exist an integer j with
1 <j <k and an infinite subsequence s C a each finite segment of which lies in
Aj.Let 8; € 82 < ... < s and assume that s; C a/()), where j(1) < j(2) < ....
By the definition of < we obtain

75 > g1 (s1) > g1 P(s2) > ...,

which is a contradiction showing that S has no infinte chain. Now 75 < |[U|T.
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Let g be a (71,...,7k)-testing, we define f: U<¥ — 45 by
f(a) =vs(a,g Il a) if ais (A4,g)—bad
=0 otherwise.

Obviously, f is an R-character corresponding to A and g. O

3. Ramsey Systems

Definition 3.1. A k-system M in U is a set of k—sheaves. A k-system M is
said to have the R—property, if each A € M has the R-property. In that case
we define the R-ordinals

Spm(v1s- -5 7k) = sup{@a(71,.--,1k) | A € M}

Definition 3.2. Let r : U™ — {1,...,k}. The Ramsey k-sheaf R" = (R],..., R})
was defined in 2.2. We put

r={R"|r:U™—>{1,...,k}}.
Clearly, R} has the R-property. It will be called the Ramsey k-system. We
shall write $,(71,...,7k) instead of Srz (71, -,7k)-
Proposition 3.3. If v1,...,7; are finite, then

Qn('Yl,---,’)’k) +1= R(n;’)’l +1,.. 7%+ 1),

the Ramsey number.

Proof. Let us consider the universal (71,...,7k)-testing g. Let m = R(n;y1 +
1,...,7% +1)—1,let ai,...,an, be distinct elements of U and let

r' :[{a1,-..,am}]” = {1,...,k}
be such that thereisno E C {ai,...,am} with |E| > 4; and #'(X) = i for every
X € [E]™. Let r : U™ — {1,...,k} be such that if (ai,,...,ai,) C (a1,---,8m),
then r(a;,,...,a:,) = r'({ai;,...,a; . }). Then a = (a1,...,an) is (R",g)-bad;
hence there is a killing f : U<* — &g+ (71,...,7) On | a, and thus
Rinimi+1, .., +1)=1=m < Bpe(M,--57) < Bn(715-+-» Mh)-

To show the converse inequality let a k-sheaf R™ € R} be given. We define
f: U< > R(n;m +1,...,m+1) by

f(a) := (R(nsm +1,...,7% +1) = |a| = 1)*,
and for a = (a1,...,am) € U<¥ we define 7 := [{1,...,m}]* — {1,...,k}
by 7({é1,...,%n}) = r(ai;,..-,a:, ). If ais (R",g)-bad, then there is no E C
{1,...,m} such that |E| > v; and 7(X) = i for every X € [E]|". Hence m <
R(n;11 +1,...,7% + 1) and thus f is a killing on | a. O
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Remark 3.4. The R-ordinal &, (w,...,w) corresponds to a statement whose fi-
nite miniaturization is the Paris-Harrington principle (Paris, Harrington 1977),
i.e., the statement Vn Vk Vn,,...,n; 3N such that for every k—coloring of
[{1,...,N}]™ there exists A C {1,...,N} and i € {1,...,k} such that |A| > n;
and [A]™ is colored i, and, moreover, A is relatively large, i.e., |A| > min A.
Indeed, letting U = w and g = (91,...,9%), where

gi(a1,...,an) = max(y; — m,min{ai,...,am} — m,0)

we see that the corresponding Ramsey character is a killing on sets of sequences
without “monochromatic relatively large” subsequences.

One might expect that because of unprovability of the Paris-Harrington
principe from PA it would hold

sup{®,(w,...,w) | n,k € w} = €.
N’
k times

This is in fact true, we prove it in Section 6.

In this section we stay on a rather abstract level. Of course, we have an
analogy of 2.7 for Ramsey systems, but there is no general analogy of 2.8. We
search for a restricted class of Ramsey systems for which such a statement
would hold.

Definition 3.5. A k-system M is said to have the strong R-property if for every
infinite sequence

Al = (A],...,AL), A2 = (42,...,A2),...

of elemets of M and for each infinite sequence p € U“ there exists an infinite
subsequence s C p such that for each finite segment @ < s there exists an
i > |a| with @ € Aj U...U A%. Note that the condition actually implies a to be
in A} for j € {1,...,k} fixed and infinitely many i.
Definition 8.6. Let M be a k-system and let 7y,...,7 be ordinals. We define
the germ tree T(M;m,...,7x) = (T, <) by
T := {(a,g9) | @ € U<¥ and there is A € M such that g is an
(A;715---,7%)-germ on a},
(a,9) < (b,h)ifa< band g=h || a.
If the germ tree has no infinite chain we define the strong R-ordinal by

3M(')’l yoee ﬁ'k) = YT(Mir e me)

and we write $,(71,-..,7:) instead of 31;: (715--37%)- In general the existence
of & 4 implies the existence of 1, $r4 > S a1, and nothing more holds.
Theorem 3.7. A k-system M has the strong R-property if and only if the germ

tree T(M;1,...,v+) has no infinite chain for all y,,...,7; < |U|*. In that
case we have

QSM(71,--'a7k) SEM(’YI,---,’)%)



66 Mathematics of Ramsey. Numbers

for all ordinals 41,...,vx. Moreover ®p(11,...,7:) < |U|T for all ordinals
M, < |U[F.
Proof. The last statement follows by a cardinality argument. To see

Spm(rseer7) S Bl »Yk) let a (m, ..., 7 )-testing g be given, and let
A€ M. We define f: U<“ - &p(711,.--,7%) by

f(a) = Y1 Mivs,.m)(@:9 1L @) if ais (4,g)—bad
=0 otherwise.

It is easily seen that f is an R—character corresponding to g.
Let us pass to the proof of the equivalence.

=: We must prove that T(M;~1,...,7%) has no infinite chain. Suppose that
(a,¢%),(a%,4?),...is an infinite chain in T(M;1,...,7), let g¢* = (g,...,9%)
be an (A%, 1,...,7:)-germ on a, and let A* = (4i,..., AL). Let a € U* be
such that @ < a for all i = 1,2,....By the strong R-property there exists an
infinite sequence s C a, a sequence 8; < 8 < ... of segments of s, an integer
Jj € {1,...,k} and an increasing sequence n(1) < n(2) < ... of integers such

that s; € A;-‘(i) for i = 1,2,.... By the definition of T'(M;1,...,7:) we have

v > y?(l)(sl) > g;‘(z)(sz) > iy,

which is a contradiction.

<: Let A™ = (A7,..., A}) be a sequence in M and let p € U“ be an infinite
sequence such that each infinite subsequence s of p has a finite segment a < s
such that a € ATU...UA} implies n < |a| . For j = 1,...,klet S; be the subtree
of U<“ consisting of all a C p such that a € A? for some 71,...,n > |af. It
follows from the assumption that S; contains no infinite chain. Now for a < p
let g7 :| a — s, be defined by

g; = ¢S,(b) ifbe S;
=0 otherwise.

We see easily that g* = (g2,...,g%) is an (Al%l;9s,,...,9s,)-germ on a.
Thus, {(a,9%)}axp is an infinite chain in T(M;m,...,7k), showing that
S m(7Ys,y--+,7s,) does not exist. O

Proposition 3.8. The Ramsey k-system R} has the strong R—property.

Proof. This follows either from 3.17 or from the estimates of &,, given below,
but we give a direct proof. Let (A™);e. be a sequence of elements of Ry. Let
us choose a non-trivial ultrafilter / on w and define r : U™ — {1,...,k} by

T(Z1,...,2) =1 iff {j|rj(21,...,2,) =1} €EU.

By Ramsey’s theorem there is for each infinite sequence p in U an infinite
subsequence s C p such that every finite segment a of s belongs to ATU...UAS.
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By the definition of r there is j > |a| such that rj(21,...,22) = 7(Z1,...,Zn)
for all subsequences (z1,...,%,) C a, and hence a belongs to AT U.. .UA;’ . O

Theorem 3.9. If M is finite and 7y, ..., are also finite, then ® pq(71,..-,7k)
exists if and only if B pm(71y-- -, 7k) exists and Bpaq(71y---,7k) =

QM('YI’ cee ,7’0)'

Proof. Let M = {A1,...,An},let T = T(M;m,...,7%) be the germ tree
and for s = 1,...,m let T; be the subtree of T consisting of all (a,g) € T such
that g is an (A:;71,...,7%)-germ on a. Then each T; is downwards—closed in
T (i.e., (a,g) < (b,h) and (b, k) € T; imply (a,g) € T;), and hence

EM('YI,---,’Yk) =47 =max{yz, |1 <i<m}
= ma‘x{aAi('Yl,'-',’Yk) | 1< S]}

Thus by Theorem 3.7 it is sufficient to prove that a(11,---,7%) 2
D pm(71y-.+57k) for [M| = 1. We proceed by transfinite induction with the
following induction hypothesis.

(Hy) For any natural number k, any k—sheaf A and any finite numbers
Y5--+>7k Such that Sa(m,...,7) < « the inequality $a(m,...,1x) =
®a(715--57%) holds.

Assume that (Hg) is true for any 8 < o and let k,A,7,...,7 such that
P4(1,---,7:) = a be given. We denote by T the germ tree T({A};71,---,7k)-
Let a € U<“ be a one-element sequence and let ¢ = (g1,-..,9%) be an
(A;571,---,7%)-germ on a. We define a 2k—sheaf A® = (A},...A3,) by A? =
A, Ay ;={beU<¥|abe A} (i=1,...,k) and a tree homomorphism

H:T,o — TH{A 1.0k 91(0), - - -, gr(a))

by H(a.b,h) = (b,h), where hi(z) = hi(z) and hx+i(z) = hi(a.z) for z C b.
Thus

E{A}('yl,...,’yk) < sup{a{Aa}('yI,...,'yk,gl(a),...,gk(a)) +1](a,9) € T}

Now we are going to estimate the corresponding R-ordinals. Given finite num-
bers 41,...,72% such that 4, > ;4 (G = 1,...,k), let A = (h1,...,ha)
be the universal (y1,...,72x)-testing. We define a (71,...,7x)-testing A =
(hl,...,hk) by

hi(z) = hi(z)  if neither a =z nor a < z
= Yi+i ifz=a
It is easily seen that if b € U<“ is (A%, h)-bad, then a.b is (A4,h)-bad. If f is

an R-character corresponding to A and h, we may define f := U<¥ — f(a)
by f(b) = f(a.b). Then f is clearly an R—character corresponding to A and h,
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thus showing &{4a}(71,---,72k) = Ypaacae sy < MBad(ah) < PLay(115---57k)-
(Here the finiteness of 41,...,7k is crucial.) Hence we may use the induction
hypothesis to conclude that (Hg) is true. 0

Theorem 3.10. If  pq(71,---,7k) < w, then B pg(Y15---,7k) = PMm(115- -y Tk)-

Proof. Ifg=(g1,---,9k)is an (4;71,...,7%)-germon a = (@y,...,am), then
extending each g; by gi(b) = 0 for b €| a we see that a is (4,g)-bad. Hence
m < Sm(71,---,7) and consequently Sam(1,---57%) < Pam(71,---57%)- The
converse inequality follows from 3.7. O

Remark 3.11. For no k-system M one can expect S aq(71,---,7k) =
Spm(1y---,m) for all ordinals 7i,...,7e, since Sm(71,.--,7) < UI* by
2.6(ii), while it is an easy exercise that $¢(71,...,7%) = min{y,...,7%}. On
the other hand it is easy to construct k—systems such that (1) < $4(1), or
that ®a4(1) exists and $4(1) does not. Namely, for a = (a1,...,am) € U<
we define

A% :={(21,...,%n) € U<Y | either z; = ... = z,, or z; # a; for all 4,5}.

Clearly @ 44 (1) = |a|. Thus letting M = {A* | a € U} we have $ (1) = w,
while the corresponding strong R-ordinal does not exist. If § C U<“ is a tree
without infinite chains, then for M(S) := {A* | a € S} we have & py(5)(1) < w,
while @ pq(5)(1) 2 7s-

An example of a k-system consisting only of one k-sheaf for which the
R-ordinals and strong R-ordinals differ for small ordinals is given in the next
section (see Remark 4.12).

In the rest of this section we prove that for a large class of k—systems the
R-ordinals and strong R-ordinals coincide for all ordinals 71,...,7 < |U|*.

Definition 3.12. We say that a k-system M is movable, if for any k-sheaf
A = (4,,...,A;) € M, any sequence (a,..-,an) € US¥ and any injective
sequence (b1,...,by) € U< there exists a k—sheaf B = (B;,...,B;) € M
such that if (bs,,...,b;,) € B; for some 1 < 4; < i3 < ... < i, < m and
1 <j <k, then (a;,,...,a;,) € 4;.

Let A = (A1,...,4%), B = (B1,...,Bi) be two k—sheaves and let V C
U<“. We say that A = B on V if for every sequence a € V and any j €
{1,...,k} we have a € A; if and only if a € B;. We say that a k-system
M has the concatenation property, if for any family {A®}ae4 of elements of
M, any family of subsets {Va}aea of U<“ such that each V, is closed under
subsequences and A* = AP on V, N Vj for any a, B € A there exists a k—sheaf
A € M such that A* = A on V, for every a € A.

A movable k-system which has the concatenation property will be called
standard. For example, the Ramsey k-system is standard.

Theorem 3.13. Let M be a movable k-system satisfying the strong R-property
and let V be an infinite subset of U. For A = (A;,...,Ax) € M we put
AV = (4Y,...,AY), where

AY = A;nv<v
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and further
MY = {AV | A e M}

Then MV satisfies the strong R-property (in V) and

5M(71,"',7k) =$MV(71,"',7k)

for any ordinals vy, ..., k.

Proof. Let ay,a2,... be distinct elements of V. Let (b,h) € T(M;y1,..-,7%),
where b = (b1,...,bn) and h = (hy,...,h:); we define H(b,h) = (a,g) by
a=(a1,...,am) and g = (g1,...,9%), where

g,'(a,-l,.. .,a,'p) = h,'(b,'l,. . ,b,'P).

Let S be the range of H. By movability, S is a subtree of T(MV;y1,...,7%)
and H is a tree homomorphism, showing that

BMm(Myee k) = YT (Miya i) < VS < Bpv(Y15-- - 7k)-
Since the converse inequality is obvious, we are done. O

Definition 3.14. Let T be a subtree of the germ-tree T'(M;1,...,7:). We say
that T is simple if whenever (a,g),(b,h) € T are such that a and b have the
same last term, then (a,g) = (b,h). Similarly, S C U<% is called simple if
whenever a,b € S have the same last term, then a = b.

Lemma 3.15. If M is a movable k—system satisfying the strong R-property
and 11,...,7 < |U|*, then there exists a simple subtree S of the germ tree
T(M;71,...,7k) such that vs = Sp(Y15- -5 7k)-

Proof. Let us denote by T the germ tree T(M;y1,...,7k), let I : T — U
be defined by I((a1,..-,am),9) = am and let J : T — U be a bijection. For
a (11,...,7k)-testing g = (91,-..,9%) we define a (71,...,7,)-testing g' =
(91,---,9%) by

gi(ary. .. am) = g(II Y a1),---, 1T am))
and for (a,g) = ((a1,...,am),9) € T we define
a' =(J((a1),9 1 (a1)), J((a1,a2),9 Il (a1,a2)),-..
v J((a1y- - 58m), 9 1L (a1, .., am))).

Now if g is an (A4;71,...,7%)-germ on a, there exists by movability a k-sheaf
A' € M such that ¢' is an (A';7,...,7k)-germ on ao'. Hence the mapping
H : T — T defined by H(a,g) = (a',g') is a tree homomorphism. Thus denoting
by S the image of T under H we see that

BMMse k) Z Y8 297 = P11, -, TR,

moreover S is clearly simple. ]
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Theorem 3.16. A k-system which has the R-property and the concatenation
property has the strong R—property.

Proof. Let M be as above, let 71,...,7, be ordinals and suppose that
{(a*,¢*)}22, is an infinite chain in T(M;71,...,7k). Let o' = (z1,...,2;),
and let ¢* = (gi,...,95) be an (A% 71,...,7:)-germ on a*, where A* € M. By
an easy compactness argument we may choose an increasing sequence iy, 12,. ..
such that

A = A* on | a™ for any m > n.

Now we apply the concatenation property to the family of sheaves { A"}, and
to the family of sets {| a"},. We obtain a sheaf A € M with

A=A"on |a™

For z C (21,--.,%,) we put g;(z) = g7(2) (j = 1,...,k). Then g = (g1,---,9x)
is well-defined and the sequence (zi,...,%,,...) is (4,9)-bad, contrary to the
assumption that M has the R-property. Thus the germ tree T(M;v1,...,7k)
has no infinite chain and so M has the strong R-property by 3.7. O

Theorem 3.17. If M is standard and has the R-property, and 1, ...,7. < |U|t,
then

¢A’i(’)’l," 'a'Yk) = 3A’i(’)’l)‘ X ,7k)-

Proof. Let T be a simple subtree of T(M;71,..-,7k) of type Saa(715---Tk)s
which exists by 3.15. We shall find a subtree S of T' of the same type, a
(115---,7%)-testing h and a k-sheaf A € M such that his an (4;71,-..,7k)-
germ on ¢ for every (a,g) € S.

Let Ty be the tree obtained from T' by formally adding a least element IT.
For 2z € T; we define

T(z):={s'€T|z2<z or2' <z}

(so that T(IT) = T) and V(z) := U{l a | (a,9) € T(2)}. Let us observe that
by simplicity if z = (a,g9) € T and 2',2" are its distinct successors, then
V(2') N V(z") =| a. We shall construct for every z € Ty a k-sheaf A%, a
subtree S(z) of T'(z) and a k-tuple g* = (g%,...,g7) of functions such that

(8.17a) for every (a,g) € S(z), g* is an (A%4x < |U|T. In that case we have
Y1,--+,7k)—germ on a, and
(3.17b) 7s(z) = Y1(2)-

If 2 = (a,g) € T is such that ¥r(z) = 0, then let S(z) = T(z), ¢* = g and
let A* be such that g is an (A%;71,...,7k)-germ on a. If 37(z) is a successor
ordinal, then 'qu(z) = 9r(2')+1 for some z < z'. We put §(z) := S(z'), A% :=
A* and g* := g* . Finally if ¥7(2) is a limit ordinal, let (z,)aca be successors
of z in T such that sup{¢r(2s) | @ € A} = 9r(z). There is a subset A' C A4
such that

(3:17c) sup{yr(za) | @ € A'} = ¢r(2)
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and if z # II, say z = (a,g) € T, then for every b C a, every o, 3 € A’ and every
ie{l,...,k}, be A7 iff b€ A;?. Hence A** = A* on V(za)NV(zp). By the
concatenation property there exists a k—sheaf A* € M such that A* = A*= on
V(zq) for every a € A'. We define g* = (g,...,9%) by

gi(c) = gZ=(c) if ¢ € V(z,) for some a € A’
=0 if no such a exists.

Then g¢* is well-defined and it follows that (3.17a) is satisfied for S(z) :=
U{S(za) | @ € A'}; condition (3.17b) follows from (3.17c).

Now put § := S(II), h:= g™ and A := A”. Then S, h, A are as claimed.
Let S'={a| (a,g) € S for some g}. Then S' C Bad(4,h), and hence

D15 ,7) =75 < TBad(ah) < MMy TR)-
The converse inequality follows from 3.7. O

Corollary 3.18 of the proof. If M is standard and has the R—property, and
if71,...,m < |U|*, then there exist A € M, a (11,...,7k)-testing g and a
simple subtree S of Bad(A, g) such that

Brm(T1ye-37) = BMV1y -5 Tk) = PA(V1, -+, V) = TBad(4,9) = TS-

In particular, there exists a universal (71, ...,7:)-testing.

4. Well-Partial-Ordering

Definition 4.1. Let (@, <) be a partially ordered set. A sequence g1, gz, . . . (finite
or not) of elements of @ is called good if there are indices %, j such that ¢ < j and
¢; < g; and is called bad otherwise. The set Q is called well-partially-ordered
(wpo) if every bad sequence is finite.

Proposition 4.2. The following conditions on a partially ordered set (Q, <) are

equivalent.

(i) (@,<) is wpo.

(ii)  For every infinite sequence g1, qa, ... of elements of Q there is an increas-
ing sequence t1,12,... of natural numbers such that ¢;;, <g¢;;, <... .

(iii)  There is neither an infinite decreasing sequence in Q nor an infinity of
mutually incomparable elements of Q.

(iv)  Every linear extension of < is a well-ordering.

(v)  Every nonempty subset of Q has at least one but only finitely many

minimal elements.

Proof. Easy consequence of Ramsey’s theorem. O

Definition 4.3. Let @ be a partially ordered set. For ¢;,¢, € Q we write ¢; < ¢a
if g1 < ¢2 and q1 # g2, and q1 £ g2 if not ¢1 < g2. Let k be a fixed cardinal.
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We put U := k X @ and we introduce the following sheaves in U :

ASC(U) = {((alaQI),' . 'a(aman)) SRAS | @1 5g<...< Qm}7

Ba'd(U) = {((alaQI)a ce 7(am7 Qm)) eU<¥ I q: /<_ q; for i < J},

Nd(U) = {((a1,q1)---s(am,qm)) € U<¥ | g > g for no i < j},

Dec(U) :={((a1,q1)s-+-»(@m1qm)) EU<Y | g1 > g2 < ... > gm},

Inc(U) = {((a1,01)s- -+ (Am,qm)) € U< | ¢; < g; for no i # j},

Comp(U) :={((a1,1);---+(¥m,qm)) € U<¥| for all i, either ¢; < g; or
g < ¢}

For k = 1 we identify U with @Q; thus the sheaves Asc(Q),...,Comp(Q) C Q<¥
are defined. If Q is wpo, then Bad(U), Dec(U) and Inc(U) are trees without
infinite chains. Hence they have types, which are denoted by YBaa(v)» YDec(t)
and 7c(v), respectively. Let g be the universal (1)-testing. Then a sequence
(e1,91), (a2,¢2),... is (Asc(U), g)-bad if and only if the sequence g1, ¢a,... is
bad. (This should justify our terminology). Hence the sheaf Asc(U) has the
R-property if and only if @ is wpo. Moreover

B asc@)}(1) = Pasc(v)(1) = Biasc(@)}(1) = Basc(@)(1) = TBad(v) = TBad(Q)-
This ordinal, denoted by ¢(Q), is called the type of the wpo set Q. Similarly,
we have

P naw)}(1) = Snaw)(1) = Sina@)3(1) = Bna@)(1) = MDec(U) = TDec(Q)-

This ordinal will be called the height of @ and will be denoted by ht(Q). Finally,

Q{Comp(U)}(l) = QComp(U)(l) = E{Comp(Q)}(l) = ¢Comp(Q)(l) =
= Ync(U) = Vnc(Q)-

This last ordinal will be called the width of Q and will be denoted by wd(Q).
For ¢ € Q we define
ht(¢) =0 if ¢ is a minimal element of @
= sup{ht(¢') + 1| ¢' < ¢} otherwise.

Clearly ht(Q) = sup{ht(q) + 1| ¢ € Q}.
Definition 4.4. For (q1,...,¢m) € Bad(Q) we put

Qa1 rngm) = {2 € Q| (a1,--.,9m,q) € Bad(Q)},
Qqy == Q1)
cdla1):={g€eQ|a <4g},

and we denote
A(Q) := sup{a € On | « is the (ordinal) type of a linear extension of <},
X(Q) := sup{a € On | a is the (ordinal) type of a chain in Q}.

Let us remark that ¢(Q) = sup{c(Qq) + 1| ¢ € Q}.
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If @, and @, are partially ordered sets, then @;UQ> denotes the disjoint
union of @; and @, whose partial ordering is the disjoint union of the partial
orderings on @; and @2, and @; x @ denotes the Cartesian product of Q; and
Q2 with the partial ordering defined by

(q1,22) < (g1,92) iff ¢; < g} in Q; (i =1,2).

It is easy to see that if @1 and @, are wpo, then these constructions define
again wpo sets.

Lemma 4.5. Let Q be wpo and let (¢o | @ € cf()\)) be a transfinite sequence of
elements of Q. Then there exists an increasing ordinal sequence (ag | B € cf()\))
such that ga, < ap for B < B' € cf(N).

Proof. Let (go | @ € c¢f()\)) be as above. For a cofinal subset M of cf()) we
call an ordinal a € M terminal for M if the set

{ﬁEMIQa/<_Qﬁ}

is cofinal in A. We claim that there is a cofinal subset of cf(\) without a terminal
element. Suppose not and put My = cf(\). If My,...,M,, bp,...,0,—1 are
defined, we let 8, be the terminal element for M,, and M, := {8 € M, |
gs. £ gg}. Then gs,,¢s,,... is a bad sequence in @, a contradiction.

So let M C cf()) be cofinal without a terminal element. We define induc-
tively @ := min M and

ap :=sup{sup{6 € M | ¢a,, £ g5} +1|8' <B}. o

Theorem 4.6 (de Jongh, Parikh 1977). If Q; and Q. are wpo, then
(@1 U Q2) = ¢(Q1) ® ¢(Q2)-

Proof. By induction on ¢(Q;) & ¢(Q2)

(@1UQ3) = sup{e((Q1UQ5),) +1 | ¢ € Q1UQ,} =

= sup{e((@1)e:UQ2) +1,e(QuU(Q2)g,) +1 | @1 € Q1, 02 € @2} =
= sup{c((Q1)q;) ® ¢(Q2) +1,¢(Q1) ® c((Q2)g,) +1 | q1 € Q1, g2 € @2} =
=¢(Q1) ® ¢(Q2). m]

Theorem 4.7. Let (Q,<) be wpo.

(i) (de Jongh, Parikh 1977) There exists a maximal linear extension of < .
That is, a linear extension of order type A\(Q).
(ii) (The First Minimax Theorem) ¢(Q) = \(Q).
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Proof. Clearly ¢(Q) > ¢(A(Q)) = A(Q). For the converse inequality let v =
¢(Q) and let (ga | @ € cf(y)) be such that sup¢(Q,.) +1 = 7. By Lemma 4.5
we may assume that g, < gg for a < 3 € cf(). We proceed by induction on 7.

Assume first that v = £ + 7, where £,7 # 0 and 7 is a power of w. Choose
a such that ¢(Qg,) > €. Since

¢(Q) = ¢(Qqa) @ ¢(cl(ga)) 2 ¢(Qq,) + ¢(cl(¢a)),
we have v > ¢(cl(¢a)) = 1. Hence by the induction hypothesis
NQ) £ ¢(Q) =€+ 1 < MQqa) + Mcl(ga)) < MQ)-

Now let 4 be a power of w. Let 7, converge to v (a € cf(y)), and for a
with 0 < a < cf(y) define inductively

p(e) = min{B € cf(7) | (((Hellgu() | &' < @})gp) > 7a}-

The function y is well-defined, since

(ﬂ{CI(Qu(a’)) I o < a})qp) u U{Qq,,(ar) I o < a} = qu,
and hence

c((ﬂ{d(Qu(a’)) | o < a})qp) @ C(U{Qq,,(,.l) I o < a}) > C(qu),

which converges to 4. We put

Qa = (ﬂ{d(Qp(a')) I o < a})q,.(a)‘

Clearly 4 > ¢(Qa) > 7o- By the induction hypothesis
M) <e@< Y Q)= D AQa) < AQ).
a€ci(y) a€cf(y)

Thus we have proved (ii) in both cases. A maximal linear extension is, in each
case, obtained by concatenating the maximal linear extensions on correspond-
ing subsets of Q. O

Theorem 4.8 (de Jongh, Parikh 1977). Let Q;, Q2 be wpo sets. Then
(@1 x Q2) = ¢(Q1) ® ¢(Q2).
Proof. Clearly

(@1 x Q2) = MQ1 x @2) > A(¢(Q1) x ¢(Q2)) > ¢(Q1) ® ¢(Q2)-

We prove the converse inequality by induction on ¢(Q;) ® ¢(Q2). Let first
c(Q)=ar1+...d4an (Q)=Pp14--.+Bmy 01 > ... > 0, B1 > ...0m,
where each a;,[; is a power of w, and n > 1 or m > 1. By Theorem 4.7,
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@ =QlU...UQT, Q2 =Q}U...UQP, where ¢(Q}) = i, ¢(Q}) =5 (i =
1,...n; j=1,...,m). We have

(@ x @) =c( {Qi x @ 1 <i<n, 1<j<m}) < P{e(Q) ® (@) |

1<i<n, 1<j<m}=

= ( D C(Q‘i)> ® ( D C(Q§)> = ¢(Q1) ® ¢(Q2)-

1<i<n 1<j<m
Now let ¢(@1) and ¢(Q2) be powers of w. Then by the induction hypothesis

(@1 % Q2) =sup{c((Q1 X Q2)(g1,02)) +1 |01 €Q1, 2 € Q2} <

< sup{e(((@1)g, X Q2) U (Q1 x (Q2)gs)) +1 |01 € Q1, g2 € @2} <

< sup{e((Q1)g X Q2) ® ¢(Q1 X (Q2)ga) +1 | q1 € Q1, g2 € Q2} =

= sup{(c((Q1)q,) ® ¢(Q2)) ® (c(Q1) ® c((Q2)g,)) +1| 91 € Q1, g2 € Q2} <

< ¢(Q1) ® ¢(Q2). o
Theorem 4.9. Let @ be wpo.

(i) (Wolk 1967) There exists a maximal chain in Q. That is, a chain of order
type x(Q)-
(ii) (The Second Minimax Theorem) ht(Q) = x(Q).
Proof. (i) This argument is taken from (Wolk 1967). Let My be the set of all
minimal elements of @, and define inductively M, to be the set of all minimal
elements in @\ Ug, Mp- By 4.2 each M, is finite. Let x be the least ordinal
such that M, = 0. Then clearly x > x(Q), and we shall prove that there is a
chain (go | @ € x) such that g, € M, for every a € x, which will give (1)
IfA={a1 <...<ay}C xis afinite set then there is a chain g4, < ... <
4o, such that go, € M o, (1 =1,...,n); we put fa(a;) = go,. By Rado Selection
Lemma (cf. Ore 1962) there is a funct1on f 1 x — @ such that for every finite
set A C x there is a finite set B such that AC BC xand fg | A= f | A.
Hence (f(a) | @ € x) is the desired chain.
(ii) Clearly ht(Q) > x(Q). For the other inequality define f : Dec(Q) — x(Q)
for g >...> g, by

f(QIv-'aQn):X({quIQn>q})‘

By (i) above, f is a character, which gives ht(Q) < x(Q)- a

Remark 4.10. Theorem 4.9 holds under weaker hypothesis than that Q be wpo,
namely it suffices that for every infinite sequence g;,qs ... of elements of Q
there are indices 4, such that ¢ < j, and either ¢; < g; or ht(q,) > ht(g;)- See
(Kiiz), (Milner, Sauer), (Pouzet 1979), or (Schmidt 1981).
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4.11 Tlleorem. _

(1) ¢{Asc(Q)i(7) = é{Asc(U)}(’Y) =710 C(Q)
(i) Iy <k™ then S w)(7) =7 ® ¢(Q).
(iii) For Q@ =w + 1 we have

éAsc(Q)(w + 1) < w? +52w <w?+2w +1= E{Asc(Q)}(w +1).

Proof. (l) 7®C(Q) < Q{A:c(Q)}(’y) : For s = ((ala q1)7 sy (ama qm)) € Bad(7x
Q) let a®* = (g1,...,9m) and let g* :| a® — « be defined by g*(z1,...,2,) = i,
if (gi,,-.-,4:,) is the first appearance of (z1,...,2,) C a® in a®. Then g° is an
(Asc(Q),v)-germ on a’. Hence H : Bad(y x Q) — T({Asc(Q)};7) defined by
H(s) = (a*,g%) is a tree homomorphism, which gives

18 ¢(Q) = e(71 X Q) < Piase(@1(7);
using Theorem 4.8.
D (Asc(@)}(7) < Piasc)}(7) : Obvious.
3{Asc(U)}(‘)’) < v®¢Q) : Let T = T({Asc(U)};v). We shall define a
tree homomorphism H : T — Bad(y x Q), which will give the result. So let

(a,g) € T,andlet a = ((@1,41)y-- -5 (@myqm)). We put b= (q1,...,9m) and we
define h:} b — v by

h(zi,...,zp) = ming(zi,,...,2i,),

the min taken over all i; < ... < i, = p such that z;, < =z;;, <...<«z;,. Now
we define

H(a7g) = ((h(QI)a QI)a (h(QI, Q2), Q2), LERN} (h(QI, LERE Qm), Qm))-

It is easily seen that H(a,g) € Bad(y x @), and hence H is as desired.
(ii) If 4 < k* then we may assume that 4y x @ C U. By (i) above and 3.7 it
suffices to show that @5,.w)(7) > 7 ® ¢(Q)- So let g : U<“ — « be defined by

9(z1, s Zm) =m f 2 =(1i,¢:) €y xQand gy <... < ¢gm
=0 otherwise,

and let f be the R—character corresponding to Asc(U) and g. It is easily seen
that if a sequence a € (yx Q)<¥ is from Bad(y x Q), then it is (Asc(U), g)-bad.
Hence f is a character on Bad(y x Q) and consequently @ .t (7) > ¢(yxQ) =
¥ ® ¢(Q), as desired.

(i) Let @ =w +1 and let g : Q<“ — w + 1 be given. Let ¢' : w<¥ — w be
the restriction of g to w<¥, and let f' : w<¥ — w? 4+ w be the R-character
corresponding to Asc(w) and g¢'. Let n = g(w,w) if g(w,w) € w, and let n =0
otherwise. We define f : Q<% — w? +w +n+ 3 by

f(ql,'“,q"z) =f'(q17---,q;‘l—l,Qi1+1a'--7Qi,—1,Qi,,+la"',Qm) +n+2-p,

where g¢;, ,...,¢;, are all occurences of w within (g1,...,¢m). Then it is easily
seen that f is an R—character corresponding to Asc(Q) and g, showing that
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P psc(@)(w + 1) < w? + 2w. On the other hand S(asc(@)}(w +1) = w? + 2w +1
by (i). O
Remark 4.12. Part (ii) of the above theorem is the essential reason for intro-
ducing the cardinal . For the other results the value of & is irrelevant. Let us
remark that 4.11(iii) can be used to construct a sheaf A for which a universal
(w + 1)-testing exists, but ${43(w + 1) < P(a3(w + 1). This shows that the
assumptions in 3.9 cannot be weakened.

Theorem 4.13 (The Height-Width Theorem). Let @ be wpo. Then
¢(Q) < ht(Q) ® wd(Q).
Proof. Let g be a character on Inc(Q). We define, for (q1,...,4») € Bad(Q)

h(q1y...,qn) = min{g(gi;,---, @, ) |41 <i2 <...<im =n, ht(g;,) < ...
< ht(g;,,)}

and
f(QI, (RN qn) = ((ht(q1)7 h(q1)), (ht(¢12),h(111, Q2))a cee

... (ht(gn), h(ar,- - - ,qn)))-

It is easily seen that h is well-defined and that f(g1,...,9.) € Bad(ht(Q)x
wd(Q)). Hence f : Bad(Q) — Bad(ht(Q) x wd(Q)) is a tree homomorphism,
which gives ¢(Q) < ¢(ht(Q) x wd(Q)) = ht(Q) ® wd(Q) by 4.8. O

4.14 Remark. The above theorem generalizes the result that a partially ordered
set with at least 7s + 1 elements contains either a chain of length r + 1, or an
antichain of s + 1 elements.

On the contrary to ¢(Q) and ht(Q) we did not find any reasonable char-
acterization of wd(Q). Of course, if wd(Q) < w the Dilworth’s decomposition
theorem (Dilworth 1950) gives one, but the width behaves much worse, when
it is infinite. For example, there is a wpo set @ of width w + 1, which cannot
be decomposed into two sets, one of width w and one of width 1.

5. Erdos-Szekeres Theorem
Deilnitign 5.1. Let < be a linear ordering on U. We define a 2-sheaf ES =
(ET,E3) by

E1S ={(z1y..9Zm) |21 < ... <z},

E.A,S ={(z1y.+9Zm) [Z1 = ... > 2T}

This gives rise to Ramsey 2-system

vV IA

& := {ES |< is a linear ordering on U},

which will be called the Erdds-Szekeres system.
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Definition 5.2. Let r : U2 — {1,...,k} be given. We define a k-sheaf §™ =
(51, .+, SE) by

ST :={(z1,---,2m) EU< | r(zj,zj41) =i for j=1,...,m —1}.

This defines a Ramsey system Sy := {S7 | r: U%2 — {1,...k}}, which will be
called the generalized Erd0s-Szekeres system.

A minor modification of this system yields a more general system, which, how-
ever, has the same R-ordinals. Recall that

Rl :={(z1,---,Zm) EU<Y | r(zs,2z;) =1forall 1 <i, j <m}.
We put Ch™ := (R, S7,...,S;) and
Chy:={Ch™|r:U% > {1,...,k}}.

Remark 5.3. It is an easy exercise that for £;,f, finite the Erd6s—Szekeres
theorem is equivalent to the statement &g, (£1,42) = £1 - £,.

We have taken the liberty to denote the last k-system of 5.2 by Chy,
because it corresponds to a weaker version of the Chvétal’s Tree—Complete
Graph Ramsey Theorem. The systems £;,Sk and Chj are closely related and
their R-ordinals are easily computed. Later in this section, we introduce the
Erd6s—Szekeres system £, corresponding to n linear orderings. Generally, &,
is a 2"-system. The investigation of &¢, is technically more complicated. It
has been done for finite values of the arguments in (Alon, Fiiredi, Katchalski
1985). We obtain (in the infinite case) a lower bound for $¢, by a certain
ordinal product and an upper bound by the maximal product. In the finite
case, of course, these bounds coincide. In the infinite case, however, the upper
bound is not generally achieved. The exact form of the function &g, seems to
be rather profound.

Theorem 5.4.

(1) Hy,..oome < |U|tthen Bs, (Y15 37) = Pere (Y15 57K) =11 @+ . . O k-
()5, (V13- y7k) = Pen, (715 -+ ,7k) = 71 ®. . .®7x for any ordinals vy, . . . , Yk-

Proof. (i) Let Q = 41 X... X, be endowed with the product partial ordering.
We first prove that $ca, (71,---,7%) <71 ®...@7%-Let r: U2 — {1,...,k} and
let a (91,...,7x)-testing g = (g1,...,9%) be given. We define a (71,--.,7%)-
testing h = (h1,...,hr) by

hi(a) = min{g;(3) | b €|l aN ST, a and b have the same last term}
fori=2,...,k and by

hi(a) = min{gi(z) | z = (z1,...,2p) C @, , = last term of a,
h,-(:cl) < h,-(:tl,:vg) <...< h;(:cl,...,:z:p) fori = 2,.. ,k}

for i = 1. If we consider A as a function U<¥ — @, then H : Bad(Ch",g) —
Bad(Q) defined by
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H(a,l,. . ,am) = (h(a1),h(a1,a2),. . ,h(al,.. . ,a,m))

is a tree homomorphism, showing that

¢Ch'(71,---,’)‘k) SC(Q) =M ®---®7k’

by 4.8. The inequality $s, (11,---,7k) < Pcre (115 --,7%) is obvious.
Finally we prove that 71 ® ... ® 7% < $cn, (715--.,7%)- We may assume
that @ C U. We define r : U2 — {1,...,k} by

r(a,b) = min({i | &; > B:;} U {k}) if a = (a1,...,az) € @ and
b=(Br,...,Pk) €Q

= arbitrarily otherwise.
and g; : U<¥ — «; by

gi(al,..,,am)za:'n if aj=(a},...,a;~°)leorj=1,...,m

=0 otherwise

It follows that the identity is a tree homomorphism Bad(Q) — Bad(S", g), and
hence 11 ® ... @Yk < Ps(71,---,7k)-

(ii) This follows from (i) by 3.17, since both S and Chy are standard and by
Theorem 3.13 we may assume that 7,...,7 < [U|*. o

Theorem 5.5.
(i)  Im,y2 <|U|" then &¢,(m,72) =11 ® 1.
(i)  P¢,(1n,72) =" ® 72 for any ordinals 71,72.

Proof. Similarly as in 5.4, it suffices to prove (i).
<: Given a linear ordering < on U, we define r : U2 — {1,2} by

r(z,y)=1ifz <y
= 2 otherwise.

Then the identity is a tree homomorphism Bad(E<,g) — Bad(S",g) for any
(71,72)-testing g, and the inequality follows from 5.4(i).

2>: We may assume that Q := 41 X 92 C U. Let gi(a1,...,am) be defined to
be the i-th coordinate of a, if a» € @ and to be 0 otherwise ( = 1,2). Then
9= (91,92) is a (11, 72)-testing. For (,B), (a',8') € Q we define

(a,8) < (,B")if B< B ,or =0 and a > a'.
Then the identity is a tree homomorphism Bad(Q) — Bad(E<,g) and the
remaining inequality follows from 4.8. o

Definition 5.6. Let » > 1 be a natural number and let 7 = (<,,...,<,) be
an n-tuple of linear orderings on U. We denote by X the set of all mappings
{1,...,n} — {1,2} and for ¢ € ¥ we define <, by
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t<,yiffz<;yforico*(1)and y <; z fori € 07'(2)
and put
El :={(z1,.--,2m) EUY |21 <5 22 <o ... S0 Tm}-
This gives rise to a 2™-sheaf
E" = (E] |0 € 3)
and a 2"-system
En = {E" | 7 is as above}.

This system will be called the Erdds-Szekeres system, for it clearly generalizes
the system &; introduced in 5.1.
For the lower bounds to $¢, we need some more definitions.

Definition 5.7. For 0,0’ € X we define o « ¢' if there exists ¢ € {1,...,n}
such that (i) < ¢'(3) and o(j) = o'(j) for all j = ¢ +1,...,n. For ordinals
Yo (0 € X) we define an irreflexive ordering < on the product [[,c 5. by

(ao)oex 9(Bs)oex if there exists o € X such that a, < B, and
Qg = B, for every o' < 0.

Let us denote by @ the partially ordered set (][,¢ 5 70,<)- The set Q is in fact
well-ordered, and we denote its type by [],c 5 ¥o- Let us remark that [[ ¢ 570
is the usual ordinal product of the ordinals 4, in the order given by < on X.

Lemma 5.8. Let n be a natural number and let @ be as in 5.7. Then there exists
an n-tuple T = (<1,...,<,) of linear orderings on Q such that for any 0 € ¥
and for any z,y € Q, z>y and ¢ <, y implies ¢, > y,, where z, and y, are
the o—th coordinates of ¢ and y, respectively.

Proof. We proceed by induction on n. For n = 1 we identify ¥ with {1,2}
and define <; as < in 5.5(i). Now assume the lemma to be proved for n — 1.
Let us prove it for n. For i = 1,2 we put

Y .={oc € X|o(n)=1i}

and

Qi :=( H 70,4)-

oEXS

Let p' : Q — @* be the projections. By the induction hypothesis, there are
linear orderings <i,...,<}_, on @Q* (i = 1,2) with the desired property. We
define for j =1,...,n -1

¢ <;y if p'(2) <} p'(y), and p'(z) >} p'(v) implies p*(z) <2 p*(y)
and

z <,y if either p'(z) <ap'(y),0r p'(z) = p'(y) and z> y,or z = y.
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Now let z >y and z <, y for some o € X. We distinguish two cases.

Case 1: ¢ € X2. Then z >, y and it follows that p'(z) > p'(y), since otherwise
we would have a contradiction to z > y. It follows that for j =1,...,n — 1 we
have

p'(z) <} p'(¥) if o(j) =1, and
p'(z) 2} p'(y) if o(j) = 2.

Thus we are done by the induction hypothesis.

Case 2: 0 € X'. Then z <,, y. Since p! is <—nondecreasing (!), we have p'(z) >
p'(y) or p'(z) = p*(y). The former case cannot occur and hence the latter one
occurs. But then p?(z) > p%(y) and for j =1,...,n—1

*(2) <2 P*(%) if o(j) = 1, and
p'(2) 2} p’(y) if 0(j) = 2.

We may again use the induction hypothesis. O

Theorem 5.9. Let n > 1 and let v, (¢ € X) be ordinals. Then
(i) Ifallvy, a-re_< |U|+ , then Haez Yo < ¢87.(('7?7)06}-7) < ®ae);‘7o, and
(ﬁ) Haez Yo < 458,.((%)0&2) < ®aez Yo-

Proof. Again, it is suficient to prove (i). We shall skip the expression “o € X”
whenever it will be possible.

[T7s £ %¢.((70)s) : Let @ and 7 := (<4,...,<,) be as in Lemma 5.8. We
may assume that @ C U and we extend the orderings <; to U arbitrarily.
Let go : @ — 4, be the projection to the o—th coordinate. Extend g, by 0
outside Q. Then g = (go)o is a (7o )o—testing and it follows from Lemma 5.8
that the identity is a tree homomorphism Bad(Q) — YBaa(&-,g), Which proves
the inequality.

e, (10)e) £ Quex¥o : Let 7 = (<y4,...,<y) and let a (v,),—testing g be
given. Let r : U2 — X be such that 2 <,,,) y for all z,y € U. Then the
identity is a tree homomorphism Bad(E",g) — Bad(S", g) and the inequality
follows from 5.4. O

Definition 5.10. We are going to show that, for n > 2, the upper bound from
5.9 is not attained. In the rest of this section we put n = 2 so that |¥| = 4.

Suppose that <;,<, are linear orderings on U. Then for a,b € U, a # b,
there is a unique o(a,b) € X such that a <o(a,p) b- Let us call o,0' opposite if
o(i) + o'(i) = 3 for every i = 1,2.

Lemma 5.11. Let a,b,c € U be distinct and let o(a,b), a(b,c), o(a,c) be
distinct. Then o(a,b), o(a,c) are not opposite.

Proof. Suppose the contrary. Because of symetry and possible reversing of
the orderings we may assume that o(a,b) is equal to 1 identically. Then we
have a <1 b, a <3 b, @ >; ¢, a >3 ¢c. Thus ¢ <; b, and ¢ <, b, and hence
o(a,b) = o(a,c), a contradiction. O



82 Mathematics of Ramsey. Numbers

Definition 5.12. Let Q be the Cartesian product of |X| copies of w +1 equipped
with the product partial ordering. For ¢ = (¢o)ocx € Q we define the pattern
of ¢ by
n(g):={0€ X |go <w}C X.

A sequence (g1, --.,qm) € @< is called jolly if
(5.12a)  for i # j, m(q:) # 7(g;),
(5.12b) for1<i<j<n, 2< |n(g)l < |n(g;)l <3, and
(5.12¢) for 1 <i < j < n,if ¢f,q7 are the oth coordinates of g, g;, respec-

tively, and if ¢f < w, then ¢7 < ¢7.
Thus the length of a jolly sequence is at most 10 and every jolly sequence is
bad. We put

T := {a € Bad(Q) | a contains no jolly subsequence of length 10}.

Lemma 5.13. 77 < w* + 4w’ + 5w? + 4w + 1.

Proof. The idea is straightforward: since T' contains no jolly subsequence of
maximal possible length, the essential part of some subset of type > w? is not
included in T'. To make it precise we need some more definitions.

We say that (¢o)oex € Q is controlled by (¢.)oex € Q if w > ¢, >
go for some o € Y. For # C X and q € Q we define

Qr:={g€ Q|n(q) =7},
Q% :={d' € Q| ¢ is controlled by g and |r(¢')| = 2},
Q3 :={¢ € Q| ¢ is controlled by ¢ and 2 < |7(¢')| < 3}.

It is easily seen that ¢(Qx) = w!™, ¢(Q%) < w?, ¢(Q}) < w?; let

gr: Qx — wlwla

92 : Q3 — ¢(Q3),

g5 : Q2 — ¢(QF)
be characters. In this proof we shall use a convention that g, of the empty
sequence is w!™ and similarly for g¢ and g. If s € Q<* and 7 C X, we denote

by s [ Qx the (possibly empty) subsequence of s consisting of all those terms
of s which belong to Q. It is worth noting that

f:Bad(Q) - w* + 4w® + 6w? + 4w +1
defined by
£(s) == €D gx(s 1 Qx)
CxX

is a character on Bad(Q).

For some s € Q<“ and ¢ € Q we define J(s) € Q<¥, II(s) C [Z]? U
[Z]?, s° € Q<¥ and s? € Q<¥ by induction on the length of s. The intended
meaning is the following. J(s) will be the “first jolly subsequence”, II(s) will
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be the set of patterns of terms of J(s), s® will be the subsequence of elements
controlled by no term of J(s) and s? will be the subsequence of all elements
controlled by gq.

For s = empty sequence we initialize all these objects to be empty se-
quences or empty sets. Now let s = z.(q), where z is possibly empty. We
distinguish several cases; each one is ment to assume negation of preceding
ones.

(i) I II(s) is undefined, or |r(q)] = 3 and [X]*\II(z) # 0, then let
J(s), II(s), s°, s? be undefined.

(if) If [w(q)| # 2 or |7(q)| # 3 or w(q) € II(z), then let J(8) := J(x), HI(s) :=
II(z), s° := z°.(q), s := z? for any ¢ € Q.

(iii) If g is controlled by no term of J(z), then let J(s) := J(z).(q), II(s):
O(z) U {n(q)}, s°:=2%(q), s? := z? for any q € Q.

(iv) Let ¢' be a term of J(z) such that g is controlled by ¢', we put J(s) :=
J(z), H(s) := H(z), & := z°, s¢ := 27 .(q), s := 2 for any ¢ €
Q\{d'}.

Let M(s) be the set of terms of J(s). We claim the following.

(5.13a)  J(s) is a jolly sequence.

(5.13b)  If [X]2\II(s) # 0 then [X])3 N II(s) = 0.

(5.13c) If s € T and [X)?\II(s) = 0 then [Z]3\II(s) # 0.

(5.13d)  If s? is a nonempty sequence, then s? € (Q3)<“ and if moreover
[Z]*\II(s) # 0, then s? € (Q3)<.

(5.13¢) If gis a term of s and II(s) is defined, then g is a term either of s°
or of 8¢ for some ¢' € M(s).

Condition (5.13c) follows from (5.13a) and the definition of T, the other con-
ditions follow from the construction.
Now we define

f:T -0 +40® + 50 + 4w +1

by
Drcr 9x(s° [ Qx) ® Byepa(ry 95(s7) i [SIP\II(5) # 0, where & €
[Z]2\ 1 (s)
f(8):=q Drcrax(s | Q) if II(s) is undefined
Drcr 95(=° 1 Qr) © Byenn 95(s7) if [EP\I(s) = 0, where x €
[Z13\1I(s)
It is easily seen that f is a character on T. O

Theorem 5.14. We have

Pe,(w+lw+lw+lw+1) <w'+40® +50® +4w+1
<(w+1)Q(w+1)®(w+1)® (w+1).

Proof. By standardness, it is sufficient to prove the inequality for &¢,. So let
T = (<1,<2) be a pair of linear orderings on U and let ¢ = (9,)ocx be an
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(w+ 1w+ 1,0 +1,w+ 1)-testing. We claim that
YBad(E7,9) < w* + 43 + 50 + 4w + 1.

This will be done by defining a tree homomorphism H : Bad(E",g) — T. We
define b = (ho)oex by

ho(a) := min{g,(d) | b €] aN E, a and b have the same last term}
and put, for a = (ay,...,am) € Bad(E7,g)

H(a) = (h(a1),h(a1,a2),...,h(a1,...,am)),

where h is considered as a function Bad(E7,g) — Q. It is easily seen that if
o = o(ai,a;), then

(5.14a)  ho(a1,...,ai) < ho(as,...,a;),
and if a; = aj, then
(5.14b)  ho(a1,...,a:) > ho(a1,...,a;) forall o € X.

Hence H is a tree homomorphism Bad(E™, g) — Bad(Q) and thus our aim is to
show that its range is in fact contained in 7T'. To this end suppose the contrary,
namely that

o= (b}x)O’EE = h(al, .. -,ai1),

blO — (btl,o)aEZ‘ = h(al, e ,ailo)’

is a jolly sequence for some 1 < 4; < ... < 439 < m. By (5.14b) we have
ai; # a;, for 1 < j < p < m and thus o;, := o(a;;,a;,) is well-defined. Now
for j = 17,8,9,10 let m(b;) = {o;} (m(b;) consists of one element by (5.12b)).
There are p,£ such that 7 < p < £ < 10 and 0,,0, are opposite. Now let
Jj €{1,...,6} be such that n(b;) = X\ {o},0¢}. By (5.14a)

bl > bP

orp = VoT,p"
From this and (5.12c) we deduce that o;, = 04, 00 = 0p, 07, = O74 =
01, 0j1 € {0p,0¢} (see fig. 1, where x denotes a value less then w).
o¢ 0p 07
Vo= (w,w,*, %)
b = (kyx,w, %)
b = (*,w,*, %)

bt = (w, %, %, %)

Fig.1
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By (5.12a), 07, 0p, oy are distinct. Now if 07 = 0p, then o;,7 is opposite
to oj,p, while 0j7, 07, 0j,p are distinct. If, on the other hand, ;7 = o¢, then
0,1 is opposite to o ¢, while 0j7, 07,0, are distinct. In both cases we obtain
a contradiction to Lemma 5.11. O

6. Ramsey Systems

In this section we give bounds for &,(7,...,7) and @.(11,...,7%). Recall
that, according to 3.17, n(Y1,---,7k) = Bn(Y15-- > k) fOr 11,..., 7% < |U|+ .

Theorem 6.1.

(1) Qn(’)‘l,- .. 77k) =0 ifsgme Yi = 0.

(ii)) K~,...,7x>0then &1(11,-.., 1) =711 D... D Y-

(iii) KO <~1,...,7 < |U|* then &1(m,..., ) =1 ®...® 1.
(iv) Forn>1 and y1,...,7% >0

Qn(’h’“ -,7k) S

sup [Qn—l(ﬁn('ﬁ,---,’Yk),---,Qn('Yl,---,’)’.{,---,’)’k),--- ,Q'n('yl,'--,'y;c)) + 1]‘
Yi<vi

Proof.
(i) Obvious.
(i) <:For (a,g) € T(Rk;m,-..,7k) we define

f(aag) = mf'x{®?=l Inin{gi(bl,- .. ,bm) | (bl,- . -abm) c a,r(bl) .=
=r1(bm) =i}},

the max taken over all colorings r : U! — {1,...,k} such that g is an
(R™;71,---,7k)-germ on a.
It is easily seen that f is a character on T(RL;y1,...,7k)-
2>: Let 71,...,7% be given, let us choose distinct elements z;,...,zx € U and
define
r(z) =1 ifz=u2;
= arbitrarily otherwise.
Let @ be the set consisting of all pairs (i, @), where i € {1,...,k} and a € ¥;,
partially ordered by the rule (i,a) < (j,8) if ¢ = j and @ < . Then ¢(Q) =
N ®...0 7 by 4.6.
For s = ((i1,01),...,(im,m)) € Bad(Q) let a® = (a1,...,am) =
(%iy5-.., %, ) and define g? :| a® — v; by
9:(ajy,.-.,a;5,) = aj, if aj,,...a;, are the first p
occurences of z; within a°
=0 otherwise.
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Then g* = (g¢,-..,9%) is an (R";71,...,7%)-germ on a’. Hence if we define a
tree homomorphism H : Bad(Q) — T({R"};m,--.,7) by H(s) = (a*,9°), we
see that 71 @ ... ® Tk = 1Bad(Q) < VTUR Yimrrrme) S B1(V15+ 445 Yk)-

(iii) This follows from (ii) above and Theorem 3.17, but we give a direct proof.
It suffices to show that if 4;,.. ., are nonzero and < |U|+ , then 71,...,7% <
®1(m,---,7k). Let Q be asin (ii), we may safely assume that Q C U. We define

a ('ha- .. ’7k)_te5ting 9= (gla LR ,gk) by

gi(ar,...,am)=amif aj =(¢,a;) €Q for j=1,...,m
=0 otherwise

and a coloring r: U! — {1,...,k} by

r(a)=1i ifa=(i,0) € Q
=1 otherwise.

Let f: U<“ — &;(m1,-..,7%) be the R—character corresponding to R" and g.
Since, as easily seen, every sequence from Bad(Q) is (R, g)-bad, it follows that
f is a character on Bad(Q), hence &1(y1,...,7%) 271 D ... D 7k, as desired.
(iv) Forr: U™ - {1,...,k}and z € U let ' : U™"! — {1,...,k} be defined
by '(a) = r(z.a). Let g = (g1,-..,9%) be a (11,...,7x)-testing and let T be
the tree of (R, g)-bad sequences. We are going to estimate the type of T;. Let
7! = gi(z), we define (11,-.-,7},--.,7%)-testings g* = (gi,...,9%) by

.- gi(a) ifi#j
g,-(a) = g,-(:c.a) if 7 =j and g,-(:c.a) < ")‘,E

0 otherwise.

Let h* be the R—character corresponding to R” and g*. Then h = (h',...,h*)is
a (Bn(ls--sTk)s -2 Bn(71,- .-, 7))-testing. It is easy to see that if a € U<¥
is such that z.a € Bad(R", g), then a € Bad(R" , k). Thus

1. < TBad(R"' vh) < é"l—l(Q'n('Vi yeee ,'Yk), cee ,én('Yl, cee 77;:))
and (iv) follows. O

Corollary 6.2. $2(71,...,7%) < (k + 1)1 007,

Remark 6.3. For n = 2, Theorem 6.1 gives the same estimate as the one
known is the finite case. The estimate contained in Corollary 6.2 is slightly
weaker because of the difficulties with limit ordinals. On the other hand, for
n > 2, the bound from 6.1(iv) is of little interest; in the finite case, for in-
stance, it is not even primitively recursive in n. To obtain sharper estimates
for @,(m,...,7%) (n > 2) one has to use different methods. It is convenient to
use the strong R-ordinals here.
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Definition 6.4. For n > 3 and colorings r; : U* — {1,...5;} (i = 1,...,n) put
Briroms = {a € USY | ri(21,y...,2;) = 1(Z1,...,Zim1, z;) for all
i =1,...,n and all subsequences
(Z1,--.52i),(21,--.,2i-1,2;) C a}.
We define a 1-system Bj, ... ;. by
Bji,.orjn = {B™ | it Ut - {1,...,5:}}
and put

r(m) =21,..., 14"
——

n-1
We denote by 1 the constant mapping U< — {1}.
Theorem 6.5.

(1) le,...,ju(o) =0,

and fory > 0 :

(ﬁ) ?jlnjz,...,ju('y) <h ®.451,J'2,...,J'n (7),

(i) P1j2,0in (1) < SUP{P1 o 2 s erinm1vmiin (1) 1 [ <2}

Proof.

(i) Obvious.

(ii) Let the colorings r; : U — {1,...,5;} (i = 1,...,n), an ordinal ¥ > 0

and a (y)-testing g be given. Let h : US“ — &, ;, . (7) be the character

corresponding to B3+ and g, and let f : U<¥ — 5, ® &1 ,,,....;. (7) be the

R-character corresponding to R™ and (h,...,h), which exists by 6.1(ii). Now
J1 times

if @ is (B™ ", g)-bad, then h is a killing on | aN R* for every j =1,...,71,

and hence f is a killing on | a, which proves (ii).

(iii) Let the colorings r; : U* — {1,...,5:;} ({ = 2,...,n), an ordinal y > 0 and a

(7)-testing g be given. Let = be a 1-element sequence consisting of an element

of U. We put j; = 1 for definiteness. Let T be the tree of (B g)-

bad sequences. We are going to estimate the type of T,. We define colorings

7 : U — {1,---7ji'ji+l} (7' =1...,n— 1) by

7i(a1,...,8;) := jiy1 - (ri(an,-..,a;) = 1) + ripa(2, 01, - - ,05)
and put 7, :=r,. We define a (g(z))-testing h by
h(b) = g(z.b) if g(z.b) < g(z)
=0 otherwise.

Now if b € Bft»%» then z.b € BV ™ Thus if z.a is (B1™r ™, g)-
bad, then a is (B™ ™ h)-bad. Hence

17, < Ppria (9(2))
and (iii) follows. O
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Corollary 6.6. If v is finite, then $7(7) is finite. For any v we have $7(7y) < w”.

Theorem 6.7. For n > 3 we have
Bo(Ms--r7k) S BF(Bn-1(715- - -1 M))-

Proof. Let r : U™ — {1,...,k}, let 7,...,7% be ordinals and let g =
(915---19%) be a (11,...,7k)-testing. We define h : U< — &, 1(711,.--,7%)
by

h(a) = WT(R:—l;.,l,,,,,-,,‘)(a,y la)if g }| a is an (R";m,...,7%)—germ on a
for some 7 : U™ — {1,...,k}

=0 otherwise.

We claim that if a is (R",g)-bad, then a is (B'=+'", h)-bad. Indeed,
let b €| an B 17 then for a sequence (Z1,...,2,) C b we may define
F(Z1y.++52n-1) = 7(Z1,...,Zn), since the right hand side does not depend
on z,. Thus g | bis an (R";7;,...,7k)-germ on b and hence A is a killing
on | b. Thus, a is (B~ ", h)-bad. We conclude that the identity is a tree
homomorphism Bad(R", g) — Bad(B**'", k). Hence

§Rr (71, e ,'Yk) S SFBl....,x,, (311—1(71 gees ,'yk)),

which gives the theorem by 3.17. O
Remark 6.8. Note that Theorem 3.17 is used essentially in the proof of 6.7.
Corollary 6.9. For n > 2 we have

u("+1)71$m$7"

Qn(’)’l,- .. ,’7k) < w* o }('"-—2) tlmes.

Now we are going to obtain lower bounds for &,(71,--..,7k)-

Definition 6.10. We need to consider another set U and for every tree § C

U<¢ its dual tree § C U . The set U is defined as the set of all functions
€: U<¥ — {0,1} with the property that there exists an a € U<“ such that
€(b) = 0 for every b € U<“ which is not a segment of a. The letter ¢ (with or

without dashes or suffixes) is reserved to designate elements of U or U~ ~.

For €,¢' € U we define € < €' if there exists an a € U<“ such that ¢(a) <
¢'(a) and for every b € U<“, &(b) # €'(b) implies a = b or a < b. In this case
we define D(e,€') := a; this determines D(e, ') for € a&' uniquely. The relation
dis easily seen to be an ordering. Observe the following properties of <« and D :
(6.10a) Ife<e' a€”, then D(e,e') # D(e',e").

(6.10b) If ey a€24...d¢€y, then D(e1,€,) is the <-minimum element of
{D(€i-1,6:) |1 <i < n}.
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If S C U<¥ is a tree, we define the dual tree S C T~ as the set of all sequences

(€15--+16m) € T<“ such that
(6.10c) ife;(a) =1thena€ Sforeverya€e U<¥ and i =1,...,m,
(6.10d) €149€24...49¢€m.

Lemma 6.11. Let S C U<¥ contain no infinite chain and let 5 C U~ be the
dual tree. Then S contains no infinite chain and we have

5 > 27s
Proof. Suppose that

(51), (51,52),...,(51,...,€n),...
is an infinite chain in S. We put

D; := lim D(g;,e€,).

(By (6.10b) the right hand sequence is eventually constant.) By (6.10b), too,
the sequence Dy, D,,... is <-nondecreasing and by (6.10a) is not eventually
constant. Thus it yields an infinite chain in S.

This proves the former statement. To prove the latter one we proceed by
induction on 4g. Let § be fixed and suppose that the lemma holds for every
tree §' C U<¥ such that 7sr < 7s. Let v < 75 be given. We denote by T
the tree of all (¢1,...,6m) € S such that &;(z) = ... = en(z) = 0 for every
z € U<¥ such that |z| = 1. If z € S then (S.) (i-e. the dual tree to S.) is
contained in T'; hence, by the induction hypothesis
(6.11a) 47 < V5 = SUPees 275 > 27.

We claim that
(6.11b) g, > 27 for every t € T.

To prove (6.11b) let z € S be such that |z| = 1; we define H : (S;) — S: by
H(e1y e sm) =1(€),---,60);

where
ei=cei1(a)ifa #2
=1 if a =zx.

Then H is a tree homomorphism showing that
Vs, 2 sup gy = sup 2= > 27,
z z

which proves (6.11b).
Now (6.11a) and (6.11b) imply

7§227+2‘Y=27+l

which proves the lemma, since v < ys was arbitrary. m]
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6.12 Stepping-Up Lemma. For n > 3 and ordinals 71,...,7, we have

L (7;,75, v ’7;c) > 25?-,.(‘71 ,...,-y,‘),

where
7; = min(y;,w) +sup{y’ +n |7 <m} fori=1
=4, + min(y; +n — 1,w) fori=2
=sup{y' +n |9 <} fori=3,...,k

Proof. We may assume that 71,...,7 < |U|", forif v > |U|" for some i and
all 4; are nozero, then $pp1(1],---,7) = Pa(1y--r k) = Ut = 2UI* by
2.6, 6.1(iii) and obvious monotonicity of the R-ordinals. By 3.18 there exists
a (m,...,7k)-testing ¢ = (g1,...,9x), a coloring r : U™ — {1,...,k} and
a simple substree S of Bad(R",g) of type ®,(71,.-.,7:).- We shall define a
coloring T : Unﬂ_-—) {1,...,k} and a (71,...,7})-testing h = (hy,...,h) such
that S € Bad(R",h). Then the lemma will follow from 6.11.

For 61,6, € U we define 6, < 6, if (61,02) C a for some a € S. This is an
ordering by simplicity of S and the definition of a subtree. For €,¢' € S let
d(e,€") be the last term of D(e,¢'). By (6.10a), (6.10b) and simplicity of S we
have
(6.12a) ife,e',¢" € S and € a€' a€”, then §(e,e') # §(¢',€"),

(6.12b) if &;,€2,...,6m € S and £ d€3 4... 4 €y,, then
0(€1,6m) = 9 — miny<i<n 8(€i—1,€:).

Let E = (€1,...,€6n+1) € T"*'. We define

T(E) =7(b1,...,0,) if §14...48, 0r 8, 4...46;,
=1 if 8; 1 62 > 83,
=2 if 81 > 62 < 3,
= arbitrarily otherwise.

Claim 6.13. Let ) a€3 9... 9€y be elements of U, m > n and assume that
(€15-..,6m) € RY. Put, for j =1,...,m —1, §; = (€j,€;+1). Then there exists
apsuchthatl<p<m-n+1and

(6.13a)  (by,...,6,) € R} and (6p,...,6m-n+1) € R,

and one of the following possibilities occurs.

(6131)) 61 462...45;,-1 <5pl>6p+1>...[>5m_n+1,01‘

(6.13c) &> 83p>...p Op-1D6,8p419...96m—nt1.

Moreover, if 1 < k < m — n + 1, then either i = 1 and (6.13b) holds, or i = 2
and (6.13c) holds.

Proof. For2 < j <m-n+1,let us call j local max if §;_; < §; > §j4+1 and
local min if §;_y 985> 6;41. i # 1 then there can be no local max j, since
otherwise (€;_1,€j,€j+1,-..,6n+1) € R]. Similarly there can be no local min
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if i # 2. Since between any two local max’s there must be a local min and vice
versa, all of the claim except (6.13a) follows.

To prove (6.13a) let (8;,,...,8;,) € (81,...,0m—n+1) and let, say, 6;, <6;, <
...<§; . The result follows by stepping-up to the sequence

E = (E,'l,. . .,e,-u,e,-,_+1).
For1<j<n
6(6,’,,6,’,“) =4 min{6¢ | 'ij <Ii< ij+1} = 6,’,
by monotonicity and
6(eiu ? e‘.u+l ) = 6"» *
The §;; are monotonic so E is colored “by the §”, and r(§;,,...,8;,) = 7(E) = 1.
If 6;, >...> §;, the same argument works with
E = (5;1,€i1+1,...,5,’n+1). O

6.14 Proof of 6.12 Continued. =|| For §,, € U weput 6, :=mif(1,...,0m) €
S for some 8y,...,6m—1 € U. Note that . is unique, if defined. It remains to
define h. So let (¢1,...,6,) C € € S, let (€1,...,6m) € RT and let p be as in
6.13. We define §; := §(¢j,€;41) for j =1,...,m—1 and observe the following.

(6.143.) If 6]' > §; then 5]' < & .
(6.14b) If 6,‘1 d...4d 5,', then g,'(ts,'1 geees 5,',_1) < gi(6i1 goeo ,6,'. )

Now we define fori =1
hi(e1y. .. 6m) =min(m,w) + G1(61) +n—m fm>n
= m.in("yl,w) +gl(51,---,6m—n+l) if m> np=m-n+1

= dm-1 fm>n, p<m-n+1,
and v > w

=1 -m fm>n,p<m-n+1l,
and 11 < w

fori=2

ha(er, . sem) =72+ 8 +n-mifm<n, p>w
=27+n-m-1) fm<norp=m-n+1, and 75 <w
=7+ Om-nt1 fm>n,p=m-n+1, p>w
=g2(8py. .-y Om-nt1) ifm>n, p<m-n+1

and for: =3,...,k

i1y r6m) =max( 6 ,gi(1)) +n—mifm<n, y>w

=gi(51,---,5m+n—1) if 614...<6m+n_1, 7,-2w
Om—n+1 f61>...00m4n-1, 1i 2w
=7+n-m+1 if 1, <w
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Corollary 6.15. For p, £ finite we have
$,.2p+n—1,20+n—-1,w,...,w) > 25 @),

Using the trivial lower bound #3(w,...,w) > w* (k repetitions of w), which
follows from 5.4 we obtain

Theorem 6.16. For k > 3 we have

wk

w }(n—l) times

.u"

Lt }(n—2) times
>, (wy...,w) > w” .
N——

ktimes

7. Canonical Ramsey Theorem

In this section n > 1 will be a fixed integer.

Definition 7.1. Let 7 : U™ — U™ and « C {1,...,n}. We say that a sequence a €
U<¥ is (r, k)-canonical if for every two sequences (z1,...,Z5), (¥1,---,9n) C @
we have r(z1,...,2n) = (Y1, ...,Yn) if and only if z; = y; for every i € k. Now
we define a 2™-sheaf C” = (Cf)xcqa,...,n} bY
Cr:={a€U<¥|ais (r,k)-canonical}
and put
Cn:={C"|r:U"—>U"}.

It is easily seen that C™ is a standard 2™-system. It has the R-property by
the canonical Ramsey theorem of Erdds and Rado.
Definition 7.2. Let b = (b1,...,bm) € U<, and let 2 = (bayy..-3ba,), ¥y =

(bgy5+--108,)s ¥ = (byyy...,by,) and v = (bs,,...,bs,) be subsequences of b.
We put z : y = u : v if we have

a; < B; iff 4; < 6;, and o; > B; iff v > 6.

Let r : U™ — U™. We say that b € U<¥ is r-invariant if for all subsequences
z,Y,u,v of b such that £ : y = u : v and r(z) = r(y) we have r(u) = r(v).

Lemma 7.3. Let 7 : U™ — U™ and b € U<“. If b is r-invariant and contains at
least 2n + 1 distinct elements, then it is (r, k)-canonical for some x C {1,...,n}.
Proof. This is a standard argument. See e.g. Rado’s paper in this volume. O

Theorem 7.4. Let k be the number of equivalence relations on the set
[{1,...,2n}]™. Then

QC"(('Y&):&Q{I,...,n}) < Bon((7x +2n — l)ng{l,...,n}a'gn, -'-,3'"'),
where the argument 3n is repeated (k — 2™) times.
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Proof. Let T be the germ tree T(C™;(yx)x), and let £ designate the set of all
equivalence relations on [{1,...,2n}]". For k C {1,...,n} let E. € £ be defined
by

{a1 < ... < an}E{b1 < ... < Bn} iff a; = B; for every i € .
Let (a,9) € T and let g = (g« )x be a (CT, (v« )x)-germ on a, where C™ = (C}).
and r : U™ — U™. We define

FiUM €

so that 7(z1, ..., 22,) = E if and only if it holds

{a1 < ... < aR}E{B1 < ... < B} T 1(2ayy0r 20, ) = T(28,5 -1 28,.)-
Finally, we define h = (hg)gee by the rule

he(d)=4x+2n—-1—|b| if E = E, for some k and |b| < 2n
= gx(b) if E = E, for some & and |b] > 2n
= max(3n — |b|,0)  otherwise .

We are going to show that H : T — T(R2"; (v« + 2n — 1), 3n,...,3n) defined
by H(a,g) = (a,h) is a tree homomorphism, which will give the theorem. To
this end we must show that h is an (R"; (v, + 2n — 1), 3n,...,3n)-germ on a.
To see this it is sufficient to show that

(7.4a)  ifbe R N|aand [b| > 2n then b € Cf, and
(7.4b) ifbe€ RgN | a and [b| > 3n + 1, then E = E, for some k.

To prove (7.4a) let b € Ry N | a and let [b| > 2n. Let (z1,...,2n),
(Y15-++,Yn)s (215...,22n) C b be such that z; = za,, ¥i = zs;, for some
a1 < .. < QnyP1 < ..o < Bn. Now we have r(z1,...,Zn) = 7(Y1,..-1%n) &
T(Zayse - s2an) = T(28y5028,) © {0150y} Ex{Br, ..., n} & a; = B; for
every 1 € Kk & z; = y; for every ¢ € k, which shows that b € C.

To prove (7.4b) let b € RLN | a and let [8| > 3n + 1. Let us choose
(b—ny.-esbo1,b0,01,...,b2,) C b and let ¢ = (bo,---,b2,). We claim that ¢
is r-invariant. So let z = (Z1,..+,2n),¥ = (Y15 -1Yn)s ¥ = (U1,...,Up), v =
(v1,...,v,) be subsequences of ¢, let z : y = u : v and let 7(z) = r(y). It follows
from z : y = u : v that we can find subsequences (z1,...,22.), (W1,-..,W2n)
of b (here we need that |b| > 3n + 1) and sets {oy < ... < an} C {1,...,2n},
{B1 < .. < Ba} C {1,...,2n} such that z; = 24,,% = 2p,,%i = Wa, and
v; = wg,. Since 7(21,...,22,) = F(W1,...,Wan) = E we have r(z1,...,2,) =
T(Y1ye1Yn) = T(Zagse ooy 20y ) = (2615128, ) = {1y @n}E{B1, -, B} =
T(Way sy Wa,) = T(Way s ey wg, ) = T(U15.eyUn) = 7(V1,...,Vn), which proves
that ¢ is r-invariant. Now by Lemma 7.3 there exists a set & C {1,...,n} such
that ¢ is (r, k)-canonical. Hence E = E,, which proves (7.4b) and thus com-
pletes the proof of the theorem. O

Corollary 7.5. We have forn > 1

wB®{TkleC{1,...,n}} o

éC"(('Yn)ng{l,...,n}) < w* }(2n—1)ﬁmea‘
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Partite Construction and
Ramsey Space Systems

Jaroslav Nesetfil
Vojtéch Rodl

Abstract

We prove several Ramsey type theorems for parameter sets, affine and vector
spaces by an amalgamation technique known as Partite Construction. This
approach yields solution of several open problems and uniform treatment of
several strongest results in the area. Particularly we prove Ramsey theorem for
systems of spaces.

1. Introduction

The following result is one of the most useful and fundamental combinatorial
statements

Finite Ramsey Theorem (Ramsey 1930). For every choice of positive integers
t,a,b there exists a positive integer ¢ such that ¢ — (b)3.

Here the undefined symbol ¢ — (b)} is a shorthand notation (due to Erdds
and Rado) for the following statement:

For every partition of all a—element subsets of a set X of size ¢ into ¢ classes
there exists a b-element subset B of X such that all a—element subsets of B
belong to the same class of the partition.

This theorem has been generalized many times and several of these gener-
alizations are both profound and difficult to prove. One of the most useful and
celebrated theorems is due to Graham and Rotschild (1971) which we state
after introducing a few standard notions. Let A = {a1,...,a,} be fixed finite
set and let B C A be non-empty. For non-negative integers k£ < n, we will
define special subsets Py, called k—parameter sets, of the cartesian product A™,
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in the following way (cf. Graham, Rothschild 1971, Graham, Rothschild,
Spencer 1980):

For disjoint, nonempty subsets w;,ws,...,wk of [n] = {1,2,...,n} define
P, to consist of all those (z1,...,2,) € A™ such that:
(i) Ifu,v € w; for some j then z, =z,
(ii) fu € [n] - U;w; then 2, = a, - a fixed element of B.

The elements of |J,w; are usualy called the moving coordinates of P and
the elements of the (possibly empty) subset [n] — U, w; are called the fixed
coordinates of Pj. In a certain sence, P) is the combinatorial analogue of a
k—dimensional affine space over a g—element field (at least, when ¢ is a prime
power). Observe that |P;| = ¢* for k > 0. A set X C A™ is said to be an
i—parameter subset of P, if X is an i—parameter set in A™ and ¢ C P,. A
discussion of various properties of k—parameter sets can be found in Graham,
Rothschild (1971) and in the paper by Promel and Voigt in this volume.
When g is a prime power and A = GF(g), a more common substructure
of A™ is that of a k—dimensional affine (or vector) space over GF(q). Since
we will be treating both k—parameter sets and k—dimensional spaces in A™
simultaneously, we will call them both k-spaces in A™ (although when we use
the term we will always have one particular interpretation in mind). We will
denote the set of k-spaces in A™ by (4") and their number by [}]. X will be

called subspace of A™ if X € (‘f) for some k, in which case k is called the
dimension of X, denoted by dim X.
The following statement expresses the basic Ramsey theorem for k—spaces.

Theorem (Ramsey theorem for spaces)(Graham, Rothschild 1971, Graham,
Leeb, Rothschild 1972). For all integerst,a,b with 0 < a < b there exists integer
No(t,a,b, 4, B) such that if N > Ny(t,a,b,A,B) and (4 ) = A, U...U A, is
an arbitrary partition of the a—subspaces of AN into t classes, then there is
always a b—subspace X € (A,,N ) with (¥) C A; for some i.

We should remark that the case of this theorem for k—parameter sets with
b=1, a =0is known as the Hales—Jewett theorem (Hales, Jewett 1963), and
will be needed below in Section 3 in the proof of Partite Lemma.

Putting A = A%, B = A%, C = A° we shall denote the validity of the
above statement by C — (B)2.

Ramsey theorem has been generalized by the authors to

- induced theorem (Nesetfil, R6dl 1977, 1982)

- to Rz)zmsey theorem for classes of set systems of given type (Ne3etfil, Rédl
1977

- to Ramsey theorem for systems not containing a given configuration (Nesetil
Rodl 1977, 1981) and finally to

- Ramsey theorem for sparse systems (Negetfil, R6dl 1984, 1987) (i.e. systems
not containing short cycles).
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These results are easy to state (at least on this level of generality) but the
proofs were quite involved and several of these results presented a challenging
problems for several years. See Neetfil, Rodl (1979) for an outline of this
development.

In Nesetfil, R6dl (1978) the authors posed as a problem to carry out this
program for spaces and space system. This perhaps too optimistic project re-
mained an open problem and only fragmentary results were obtained (see e.g.
Nesetfil, R6dl 1979). The first major breakthrough has been the proof of in-
duced space system theorem by Prémel (1985). One can say that this proof is
an elaborate refinement of the original Graham Rothschild ideas.

Meanwhile, the authors found a new method for proving theorems of this
type. This is based on a particular Amalgamation Technique and the heart
of it is so called Partite Construction, see e.g. NeSetfil, Rodl (1981, 1982).
This construction has been applied to space systems in Frankl, Graham, Radl
(1987) and Nesetfil, R6dl (1987) where a simple proof of a generalization of
Promel’s theorem has been given and a problem concerning space systems
related to Rado-Folkman-Sanders has been solved. It was apparent that once
a proper amalgamation pattern has been realized the methods for set systems
may be carried over to space systems. This has been sketched in NeSetfil,
R6dl (1987) and it is here where we carry out in full the program of Ramsey
theorems for space systems. Somehow surprisingly the methods are formally
very similar to those methods used for set systems and the formal similarity
with the companison paper (Ne3etfil, Rodl (1989)) is at certain places striking.
Let us remark that recently Promel and Voigt (1988) claimed independently
several results of this paper (on parameter sets). Their attempt is also based
on the Partite Construction however the proof is defective.

The paper is organized as follows: The first part contains the statement of
results, the second one Partite Lemma which is a key place in our proof and
the third one Partite Construction. In the last part we present generalizations
and strengthenings which follow from our method.

2. Statement of Results

Our theorems deal with space-systems. It will be irrelevant whether we deal
with vector or affine spaces or with parameter sets. Thus, for brevity, we use
short term space and we shall assume that we have a particular interpretation
in mind.

For a space V we denote by dim(V') the dimension of V. Denote by (}) the

set of all subspaces of V with dimension k. Thus 1(‘,:)1 = [¥™V] - the Gaussian
coefficient.

A typeis a sequence (ns; § € A) of non-negative integers. A type will be
fixed throughout this paper.
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A space system A (briefly system) is a pair (V,S) where V is a space,
S = (8536 € A) and S5 C (,:: ). Elements of V are called points, elements of
Usea Ss edges of A. Sometimes we write V = V(A), S5 = Ss(A). Without
loss of generality we will assume that the edge sets S5 are mutually disjoint.

A system will be always considered with a linear ordering of its points.
This needs a bit careful consideration:

As an easy consequence of Graham, Rothschild (1971) and Graham, Leeb,
Rothschild (1972) theorems there exists an ordering of points of AX with the
property that for any two subspaces V,V' of AX with the same dimension
the monotonne mapping f : V — V' is linear. Note that the structure of
such orderings, called canonical orderings was characterized in NeSetfil, Promel,
Rédl, Voigt (1985) From now on when we speak about systems we understand
that these are (canonically) ordered, and the corresponding linear mappings
are order preserving.

We say that system A is a subsystem of system B = (U,7) if V is an
(ordered) subspace of U and 75 N () = S5 for every § € A. Denote by ®)
the set of all subspaces of B which are isomorphic to A.

Using these concepts we may formulate the main result of this paper:

2.1 Theorem (Ramsey theorem for space system). Let ¢t be a positive integer,
A, B systems. Then there exists a system C with the following properties:
(i) C— (B

(ii) C contains an irreducible system F if B contains F as a subsystem

Here the undefined notions have the following meaning: C — (B)2 is
the classical Erdés—Rado partition arrow which is a shorthand notation for
the following statement: For every partition (ﬁ) C A;U...U A, there exists

B' € (§) such that (') C A; for some i.

A system F is irreducible if every pair z,y of points of F belongs to an
edge of F.

We prove this result in the Section 4. Let us remark that below in Section
5 we prove several stronger statements. Yet the proof of the above theorem
mirrors all the essential features of our method. The above Theorem perhaps
provides a good balance between generality and clarity.

3. Partite Lemma

In this section we prove the key step in our proof — the Partite Lemma (cf.
Nesetfil, R6dl 1982, 1989, Frankl, Graham, R6dl 1987 for analogous results).

Before proceeding to this result, we first need several additional notions and
results.
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Advanced Preliminaries

Let A be a fixed finite set (alphabet).
For a finite set X, AX will denote the set of all | X| - tuples (a-;a. € 4,z € X).
A map f: AX — AY is called linear if f(V) = {f(v);v € V} is a subspace of
AY for each subspace V of AX. If f : V — V' is linear and A = (V,S) is a
system then we denote by f(A) the system with points f(V') and edges of the
form f(E); explicitely Ss(f(A)) = {f(E);E € S5}, § € A.For0 #Y C X,
the projection map py is defined by setting py((a-;z € X)) = (ay;y € Y). It
is easy to see that the projection py is linear. For @ # Y C X, a subspace V
of AX is called Y-transverse if dimV = dimpy (V). (Note that in this case the
projection map py is 1 — 1 on V). The canonical ordering < will be chosen in
such a way that for any points v,v' € A%, py(v) < py(v') implies v < v'.

A system A is Y-transverse system if every edge of A is Y-transverse.

Forsets X(,..., X(™) we define the amalgamated direct product @, AX"
to be the set of all tuples (a,;z € |JX (). We start with the following easy
proposition (cf. Frankl, Graham, R6dl 1987):

3.1 Proposition. Suppose for sets X(1,..., X(™ we have XV N XD =Y £ 0
for1 <i < j < m. Let A® = (4X" ,S®)) be Y-transverse system, let

py(A®) = B for all i = 1,...,m. Then there exists a unique Y—transverse
system A = (@, AX®,S) such that
ry(A)=B
pxo(A) = A,

Symbolically, we write A = @, A® = AW . A § =80 §m,
Proof. We define E € S5(A) iff px)(E) € Ss(AD). O

A central notion used in this paper is the following: Suppose X DY, Z DY and
f: AZ - AX . Then f is called Y-linearif f is linear and for all v € A%, f(v)
has the same Y -part as v.
Further for Y-transverse systems A in AZ, B in AX we say that A and B are
Y-isomorphic systems if there exists a Y-linear map AZ — AX which when
restricted to V(A) is an isomorphism A — B.

Finally, let Y C X and let A be a system in AY and let B be a system
in AX satisfying py(B) = A. Denote by (i)y the family of all subsystems

A' € () which satisfy py(A') = A. Elements of the set (£), are called
Y—copies of A in B.

Remark. The notions Y -copies, Y-transverse system are space analogies of
partite - set systems, Nesetfil, R6dl (1981), (1982), cf. Frankl, Graham, R&dl
(1987).

Now we come to the key construction of this section:
Let B be a system with points AX,let § #Y C X and let A be a system in
AY satisfying py(B) = A. Let B be Y—transverse. Let the edge set of A be
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denoted by S and the edge set of B by 7. We assume that A is a complete
system (i.e. Usca Ss(A) is the set of all subspaces of A). (It will turn out that
we may assume that without loss of generality). Fix a positive integer m and

denote by @1;c,, B the system C defined in the following way:

Let X™,...,X(™ be copies of X satisfying X N X&) =Y for all 1 <
i < j < m. For an edge M of B (in AX) denote by M) the corresponding
edge in AX?,

For the edge set 75 of B we put 7; = 7 U 72 where T} consists of
all edges of B which belong to a copy A’ € (2)1,; T3¢ = T; — T}. We put
C = (Dycicm A, U), U = (Us; b € A), where M), ... M{() € Us iff

M;(;y € Ts for i = 1,...,m and either one of the two possibilities occurs:

@) py(M)) =...=py(M)) € S

(ii) There exists a non—empty set w C {1,...,m} such that M ,5'8) =M ,EZ;?) =
M e T2 for j,j' € w, py(MQy) = pr(Myp), My € T3 (thus also
PY(M;E?.-)) € Ss).

This completes the definition of C = @fs,-s,n B. (Cis a subsystem of @, <;<m

B.)
We derive several properties of this construction:

S\ A = AW (m) By ._
Fact 1. A' € (3)y iff A' = A} ) ... AT, where Aj;) € (R)y, i=1,...,m.

Proof. Check the definition of C. O

Put s = I(i)”’ and let L be a line in Hales-Jewett cube [s]™. By virtue of Fact

1 to each line L of [s]™ associate the corresponding m-tuple of A-systems in
1 m . .
C{AQ) ... AT (i(1),...,i(m)) € L}.

Let the line L be fixed. Denote by w the set of moving coordinates of L
and [m] — w = k the set of all constant coordinates.

We also define a map f, : AX — @, AX". For v € AX let v' = py(v)
denote the Y-part of v and v" = px_y(v) denote the X —Y-part of v. The map
fr is then defined as follows: the Y—part of f1(v)is v';for j € w the (XD -y)-
part of fr(v) is v" (i.e. a copy of ¥" in X1)); for j € & the (X — Y')-part of
fL(v) is v — the (X9 — Y')-part of the unique element in AEZJ).) which has
Y-part v' (note that AEQ) for j € k is the “constant” system of the line L). It
is easy toe see that fr is Y-linear map AX — @, AX ©,

Now we can formulate next
Fact 2. Let A = (V,S) be a system in AY, B = (U,T) be a system in AX
with py(B) = A. Let B be Y-transverse. Put s = I(ﬁ)' and let L be a line in
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Hales-Jewett cube [s]™. Consider system C = @%,., B defined above. Put
U' = fL(U). Then U' induces a Y-copy of B in C.” ~

Explicitely, the system (f(U), (Ts N (f’;f:’)); § € A) is Y-isomorphic to
B.

Notation. The copy of B determined by fr(U) will be denoted as fr(B).

Proof of Fact 2. Let k,w be (as above) sets of the constant and moving coor-
dinates of L.

For i € k let K(i) be the value of “constant” system A € (2)1, and
let K@ be the copy of K(i) in AX”. Thus, using Fact 1, the family of
copies of A corresponding to L is the set {AM .. .A(™; A®) = KO for
i€k, A® = AD fori,j € w}. Let A € (}), and let M be an edge of A.
Then fr(M) = M® ... M) where M is the edge of AY) uniquelly deter-
mined by py(M©) = py(M).

If M € T} and hence also M) belongs to the copy of 73 in A, j=1,...,m
then according to the definition of C we infer that fr(M) € Us.

Let now M € T2 then f(M) = M® ... M(™) where for j € k, M) is
the edge of “constant” system A() determined by py (M) = py (M), and for
j € w, MY is a copy of M. According to the definition of U5 we infer that
again fr(M) € Us holds. Thus for each § € A

(fo(M); M € Ts} Cths N (ZE)

To conclude the proof we must show that there are no other edges in U5 N
v), §€ A.

Set 7! = {M,...,M,}, T} = {M,41,...,M,} and for contradiction suppose
that M'(Lg) e Mﬁzn")l) i's an edge not belonging to Us N (g;) Note that this edge
has to satisfy pY(M;(:(i)) =M, i =1,...,m, for a fixed edge M of A. We
distinguish two possibilities which may occur:

(i) there are j,j' € w with u(j) # u(j').

Since M,(jy # M, ;) there must exist some point 7 € PY(M,("Z)) = py(M,;)) =
PY(Mi(,Zj),)) = py(M,(;)) = M such that the unique elements v; and vj in

(.z')

edges M (5 and MIE’(;),) which have Y-part v are different. Thus according to

the definition of fr, the point

(1) (m)
v E M,.(1) e Mp(m)

which has Y-part v is not in U’, a contradiction.
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(ii) For some j € k, M’(;g) is different from M(?) — the unique edge of A

with py (M@) = M.
Again (as in (i)) there must be ¥ € M such that the points of M'(E.) and M)

with Y—part v are different. This also implies that the point v € M'(‘g) e fﬂ»)»)
with Y-part v is not in U’, a contradiction. This proves the Fact 2. O

Summarizing the above properties we infer the following:

3.2 Theorem (Partite Lemma for Transverse Systems). Let t be a positive
integer. Let ® # Y C X be sets and let A be a system in AY, B a system
in AX satisfying py(B) = A. Let B be Y-transverse. Then there exists an m

such that the system C = ®f<i<m B has the following property:

for every partition (), = A1 U...U A, one of the classes contains fr(B) for
a line (in the corresponding Hales-Jewett cube).

Proof. follows immediately from the above Facts 1 and 2 if we set s =
I(i)yl, m equal to number guaranteed by Hales-Jewett theorem (¢ classes,

alphabet |A| = s, monochromatic line). Put C = EBfgigm B. 0

The next two properties of the above construction of C will be used effectively
bellow.

Fact 3. Let systems A, B and C, sets Y C X be as above in Fact 2. Let r be
a positive integer, r < dim V(A).

Let any two copies of A in B are either disjoint or intersect in an edge with
dimension < r. Let moreover Ly,L, be two different lines and U; = f,(U).
Moreover suppose that there exists a transverse (r +1)-space V satisfying V C
U,NU,. Let B,,B, be copies of B determined by U,,U», B; = (U;,T;), i = 1,2.
Then V is a subset of an edge M belonging both to B; and B,.

Proof. Suppose for contradiction that M does not exist. Thus there exists
t9 < m such that pxe (V) C pxeo (M) for all edges M belonging to both
B, and B,. Using definition of C again, for every § € A the set px(o)(7js) =
{Pxi0)(M); M € T;s}, j = 1,2, is either one element set or set pxeio)(Zj5) =
PxGo)(fr,(Zs)) forming a family Y-isomorphic to 75 (depending whether 4o
belongs to the constant or moving part of L;). Therefore we get one of the
following cases:

a) Either pyo) (715) or pxio)(T2s) is one element set;

B) Both pxo) (T15) and pyio)(7Z2s) form a family Y-isomorphic to 75.

Both these cases lead to a contradiction. O
Before presenting the final auxiliar result let us introduce the following notion:

Let A, B, C be systems. Let B be a family of copies of B in C. We denote
by Hg the hypergraph defined as follows: Hf = (V, E) where V = (%), E =
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{('i'); B' € B}. A—cyclein B is every cycle of the hypergraph H# . Particularly,
if A is the point then we speak about 0—cycle in B.

Fact 4. Let systems A, B, C sets X,Y have the same meaning as above in
Fact 2. Let | > 2 be an integer. Put s = l(i)y’ and let £ be a family of lines

in Hales-Jewett cube [s]™ which does not contain 0—cycles of length < 1. Then
every A—cycle in fc(B) = {f(B); L € L} has length > .

Proof. Let fr,(B), A1, fr,(B), Aa,...,Ar1, fr.(B), A, be an A—cycle
in fz(B). We suppose that all L; and A; are pairwise different. Using 1-1
correspondence between copies of A in C and points in the Hales—Jewett cube
we get the statement of Fact 4. O

It is very convenient and a bit surprising that for the A—sparse Partite
Lemma one needs only sparse form of Hales—Jewett theorem. This follows from
our proof of Partite Lemma and from Fact 4. Note that the sparse form of
Hales-Jewett theorem was established by probabilistic means in Rddl (1981)
and bellow we give a construction of such a family (Theorem 5.2).

4. Partite Construction

In this part we prove Ramsey Theorem for Systems by means of the Partite
Construction. We follow the Partite Construction introduced in Ne3etfil, R6dl
(1982, 1984, 1987), (cf. Frankl, Graham, Rodl (1987)).

Let ¢ be a positive integer, let A, B be systems. Let a be the dimension

of A, b the dimension of B. Without loss of generality let every point of B
belong to an edge of B. Also, without loss of generality let us assume that A is
irreducibile (in fact we may assume that Jsc o Ss(A) is the set of all subspaces
in V(A); we possibly add to A and B some classes of dummy edges).
Let p be an integer sufficiently large to guarantee that if a—spaces of p-space
are arbitrarily partitioned into ¢ classes then some b—space has all its a—spaces
monochromatic. Such a p exists by virtue of Graham-Leeb-Rothschild theorem,
cf. Graham, Leeb, Rothschild (1972).

Let zo be a large integer (to be specified later) and consider a zo—element
set Zy and p-element set Y C Z,. Let the set of all b-spaces in AY be denoted
by {Mi,...,M,}, r = [E]. Let the set all a-spaces in AY be denoted by
{Al,...,A.q}, q= [Z].

We shall construct systems P?,...,P* ... P? by induction on k. Picture
P? will be the desired system C.

Choose a collection of b-spaces in A%° (say V,...,V,) which are as dis-
joint as possible; i.e. pairwise disjoint or having pairwise intersection zero, and
furthermore so that py (Vi) = M;, 1 < i < r. It follows that py : A%° — AY is
1 -1 on each V;. This is certainly possible if z is taken sufficiently large. For
each V; let B? be system isomorphic to B in V;.

We define the system P® = (4%0,(°) where an edge belongs to 24 iff it belongs
to one of the edge-sets of BY, 1 < i < r. Suppose now that for some k < ¢ we
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defined P* = (AZ+,U*) in which every edge of P* is Y—transversal (this is

obviously satisfied for P°): We will describe the construction of P**!. To start,

first let D**! be the system determined by all edges E of P* which satisfy

py(E) C V(A1)

By Partite Lemma there exists a set Z O Y and system E*+! in AZ with the

following properties:

(1) each edge of E¥*! is Y—transverse

(2) for each edge E of E*+! the set py(E) is an edge of Ay, (of the same
type);

(3) Ek+l_y_)(Dk+1)%t

k41
(4) Recall (from the proof of the Partite Lemma) that in fact E¥+? D—y-» (DE+H)A

where D**! is the family of copies of D**! which correspond to Hales-Jewett
lines of a cube.

For each D € D*t! let Vp be the minimal subspace of AZ~Y such that D
is a subspace of V(Ak4+1) ® Vp.

Now let h: AY — V(A;41) be arbitrary but fixed retract i.e. h is a fixed
linear map which is the identity when restricted to V(A ;41).

For each copy D € D*+! C (g::i) take set Yp which is a copy Y, and
where all sets Yp are mutually disjoint and disjoint from Z.
Also, for each D, extend the copy D of D**! to full Y—-isomorphic copy Pp of
Pk in AY @ Vp.
Put 2*=2U |J Yo.
D€Dk+1

Finally, for each D € D*+! define a map gp : AY @ Vp — AZ" as follows:
For z € AY @ Vp let

gp(z) has the same Z-part as
gp(z) has the same Yp—part as z (we think about Yp as a copy of Y)
gp(z) has Y—part equal to h(Y-part of z) for D' # D.

Finally define P*¥+1 = (Zk+1 1/k+1) by:

ZM =z~
E e UfHif E = gp(E'),
E' € Ss(PD),
De Dk+l.
If we need to stress the dependence of P*+! on D**! and P* we shall write

Pk+1 = Dk+1 4 Pk Denote by gp(Pp) the system induced by the set of points
{9(z); = € Pp}. Note that for distinct D, D’ € D*+! we have gp(Pp)N
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go'(Ppr) C gp(E**') = gp/(E**?!) and thus gp(Pp) N gp'(Por) = gn(D) N
gp'(D'). As b > a this implies that P*+! does not contain any new irreducible
system (which would not be contained in P¥). It is also easy to see that every
copy of A in P is Y-transverse, thus (l::) = (i)y.

Finally consider picture P?. Put P? = C. We claim that C has the desired
properties.

4.1 Claim. Every irreducible subsystem in C is a subsystem of B.

Proof. Induction on k. This beeing trivial for k = 0 the inductive step follows
by the above remark. O

4.2 Claim. C — (B)2.

Proof. Backward induction on k = ¢,q — 1,...,1 : To see this, suppose that
(i)y is partitioned into classes A; U...U A;. Consider the subsystem of P?
induced by all edges E of P? which satisfy py (E) C V(A,). By the construction
of P this system is isomorphic to E? and thus, by the construction and by the
Partite Lemma there exists D € D? such that the set belongs to one of the
classes of partition. Moreover, D is a subspace of a copy P of P*~1,

Now we can repeat the same argument applied to P and all edges of P
with Y-projection in V(A 4_1).
Continuing this process, we eventually reach a set Zy O Y and a Y—copy P of
P? in A% such that the color of A’ € (}), = () depends on py(A’) only. By

the choice of p = |Y| there exists b-subspace V of (% ) such that all A’ € X

with py(A) € (V) have the same color.

However, again by construction of P, there exists a subsystem B' of P? such
that py(V(B')) C V.

This completes the proof of Theorem. 0

5. Applications

The method of the above proof yields in the spirit of Neset#il, R6dl (1984, 1987,
1988) several stronger results than Ramsey theorem for space systems. We list
some of them:

A. Hom-Connected Systems

First we give two auxiliary definitions:

Let B = (V,T) be a system. A space R is called a cut of B if there is a partition
of V—R into two disjoint sets V; and V, such that no pair {v;,v2}, v € V1, vz €
Va is contained in an edge of B.

We shall consider R together with all edges of B contained in R; this will be
denoted by R — thus R is a system. B is said to be lin A—connected if there
is no cut R of B for which there is a linear map R — A.
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It is also convenient to recall the following notion (Nesetfil, R6dl 1977).
Given a (possible infinite) set F of systems denote by Forb (F) the set of all
those systems A which do not contain any system F € F as a weak subsystem.
(A is a weak subsystem of B if every point (edge) of A is a point (edge) of B.)
Now we have

5.1 Theorem. Let F be a set lin A—connected systems. Then for every positive
t and every B € Forb(F) there exists C € Forb(F) such that C — (B)2.

Proof. First fix system P in AY such that P — (B)2 (thus we apply Ramsey
theorem for spaces). Put (g) = {B,,...,B,}. Define picture P° as follows:
Choose a set Zy and a collection of systems B},...,B! in A% which are as
disjoint as possible (i.e. pairwise disjoint or having pairwise intersection zero)
so that B} and B; are Y—isomorphic and py(B}) = B; for 1 <1 < r. It follows
that py : A% — AY is1—1 on each B!. This is certainly possible if zo = |Zo|
is taken sufficiently large.
We define the system Py = (A%°,U°) where an edge belongs to U7 iff it belongs
to one of the edge sets of B!. (Thus P? is a “dijoint union” of copies By,...,B,
with Y-parts induced by (&;).)
Clearly P® € Forb(F) and the amalgamation does not create any weak lin
A-—connected subsystem of P**!. (Note that each of the systems D?,...,D?
may be linearly mapped into A.) 0O
The Partite Construction is very convenient for construction of sparse
Ramsey systems. This is not surprising as one of the byproducts of the partite
construction is a new easy construction of highly chromatic graphs without
short cycles (Nesetfil, R6dl 1979), c.f. Lovész (1968). There are various ways
how to define sparseness and we list them in the order of increasing difficulty.

B. Sparse Ramsey Theorems - Ramsey Families

We say that B C (§) is a Ramsey family if for every partition () = A, U
...U A, there exists B' € B such that (i’) C A; for some i. We denote this by
c-L(B)A.

Recall the definition of the hypergraph H# and the A-cycle in B introduced

in Section 3 (before Fact 4).
We have:

5.2 Theorem (Sparse Ramsey Families). For every system A, B and positive
integers t,1 there exist system C and family B C (g) such that

1) CZ(B)

2) B contains no A-cycle of length < |

3) I A, B are T-transverse, pr(B) = A, then C may be chosen T-transverse
as well.

Proof. We proceed by induction on ! and construct B by means of Partite
Construction. We adopt the notation introduced in Section 3 and stress the
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key points of the proof only. We use picture P° as defined above in the proof
of Theorem 4.1. Moreover if A, B are T—transverse then let P° be chosen T
transverse as well (we apply then the Partite Lemma for Transverse Spaces).

Put B® = (1;0). In the inductive step (i.e. in the definition of P¥+1), we assume,

k
by induction on I, that there exists a system D**+! C (g,‘:i y Such that D*+1
k41
does not contain A-cycles of length <1 — 1 and E"“D?) Dk+1)A,

We form picture P¥+! = D*+! « P¥. Assuming that in P* we have a system

B* C (l;_:)y then in P**! we may define a system B*t! as D**! x B* of
Y -copies of B (in the same way as above in Section 3). In fact we may put
B¥+! = {gp(B'); B' € B*, D € D**'}. The fact that B* does not contain
A-cycles of length < I and D**! does not contain A-cycles of length < [ —1
together implies that B*+! does not contain cycles of length < I. This may
be seen as follows (compare Lovész 1968, Nesetfil, Rodl 1979 for similar set—
system argument):
Let A(1),B(1),A(2),...,A(w),B(w) be an A-cycle in B*+!,

Observe that each B(3) is of the form B(i) = D(¢) * B'(:) where D(i) €
DF+1 B'(i) € Bk.
As gp(Pp) and gp'(Ppr) intersect in a copy of A it follows that the set
{D(i); ¢ =1,...,w} either contains an A-cycle oflength wp or D(1) = D(2) =
... = D(w) = D. The second alternative is not possible as in this case the cy-
cle A(1),B(1),...,A(w), B(w) belongs to the copy Pp of P* a contradiction.
However, observe that if py (A(i)) = Ag41 (i-e. if A(7) is a subsystem of E**1)
then both A(i —1) and A(i + 1) fail to be subsystems of E¥+1. It follows that
wp > 1 —1 and thus w > [ (in fact > 2wp).
This proves 2); 1) follows by Partite Construction; 3) follows by observing that
if picture P? is T-transverse then all pictures P* are T-transverse as well. O

C. Sparse Ramsey Theorem - Cycles in Copies

We prove the following:

5.3 Theorem. Let ¢, be positive integers, p < a < b non negative integers.
Exclude possibility a =0, b= 1.

Then there exists a set S C (A:) with the following properties:

1) (A%,8) - (A

2) There are no a—cycles in S of length < .

The Theorem fails to be true for a = 0, b = 1 as in this case we deal with a
perfect graph.

Proof. Without loss of generality let a < b. We apply the Partite Construction
and we proceed by induction on k. Put A = (4°, (‘::)), B = (4%, (‘;b)). We
use picture P? defined as in the above proof of Theorem 4.1. In the inductive
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k
step we use Theorem 4.2 to obtain a Ramsey system D*+! C (IE),‘J:) without
cycles of length < I. Putting P**! = D*+! « P* one can check as above that
the hypergraph H “;,,‘H) has no cycles of length < L. o
A

Remark. We can prove the more general theorem for a system B which is lin
A-—connected. We omit the details.

Note also that our construction readily implies the Sparse Form of Graham,
Rothschild theorem from Theorem 4.2. Moreover, Theorem 4.2 may be eas-
ily derived (by our proof of Partite Lemma) from Theorem 4.2 specialized to
singletons (i.e. Hales Jewett theorem). See Section 2, Fact 4 and the remark
following it.

D. Linearity

We say that a system B is A-r-linear if every two copies of A in B intersect
in at most r—dimensional space. In NeSetfil, R6dl (1987) we proved Ramsey
Theorem for Steiner systems which is a set analogy of this notion. Here we
prove the following:

5.4 Theorem. Let A be a system, t positive integer. Then for every A-r-linear
B there exists A-linear C such that

C - (B)}

Proof. Check the construction in the Proof of Partite Lemma. Use the fact
that Hales—Jewett lines form a 0O-linear system. This implies that any dis-
tinct copies fr(B), fr:(B) intersect either in a copy of A or the dimension of
py(fr(B) N fr/(B)) is at most r. Use this to check that Partite construction
preserves A-r-linearity. a
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Graham—Rothschild Parameter Sets

Hans J. Promel
Bernd Voigt

Abstract

In their, by now classical, paper ‘Ramsey’s theorem for n—parameter sets’
(Trans. Amer. Math. Soc. 159 (1971), 257-291) Graham and Rothschild in-
troduced a combinatorial structure which turned out be central in Ramsey
theory. In this paper we survey the development related to the structure of
Graham-Rothschild parameter sets.

1. Introduction

Besides Ramsey’s theorem, van der Waerden’s theorem on arithmetic progres-
sions is commonly considered to be one of the main roots of Ramsey theory.
Both results are partition theorems of the same type, however they remained
quite unrelated for a long time. Compare Graham, Rothschild, Spencer (1980)
for historical remarks concerning these theorems.

Years after van der Waerden obtained his ‘Beweis einer Baudetschen Ver-
mutung’, Hales and Jewett revealed the combinatorial part of van der Waer-
den’s theorem. Basically, Hales-Jewett’s theorem says the following :
for any finite set A there exists a positive integer n with the property that
for every partition A™ = A|J B there exists a combinatorial line £ C A™ with
£ C Aor £ C B. Via the mapping 1 : A™ — IN , $(ag,--.,8n1) = oroy @i,
Hales—Jewett’s theorem then implies immediately van der Waerden’s theorem.

Graham and Rothschild extended Hales-Jewett’s result in a remarkable
way. Using the notion of k—parameter setsin A™ , where, basically, 0—parameter
sets are just the elements of A™ (n—tupels) and 1-parameter sets are the combi-
natorial lines occuring in Hales—Jewett’s theorem, they showed that, choosing
n large enough, for every partition of the k—parameter subsets of A™ into two

parts, one of the parts contains all k—~parameter subsets of some m—parameter
set.
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This is a complete analogue to Ramsey’s theorem carried over to the struc-
tures of parameter sets and, as it turns out, Ramsey’s theorem itself is an im-
mediate consequence of the Graham—Rothschild theorem. But the concept of
parameter sets does not only glue arithmetic progressions and finite sets toge-
ther. Also, it provides a natural framework for seemingly different structures
like Boolean lattices, partition lattices, hypergraphs and Deuber’s (m,p,c)-
sets, just to mention a few. So, the Graham-Rothschild theorem can be viewed
as a starting point of Ramsey Theory.

Besides the various applications, several ramifications and generalizations
of the original Graham-Rothschild theorem have been discovered. In this paper
we try to survey the development based on and related to the structure of
Graham-Rothschild parameter sets. For more information compare Graham,
Rothschild, Spencer (1980) or Prémel, Voigt (to appear).

Some Conventions

1. Small letters k,£,m,... denote nonnegative integers, resp., finite ordinals.
As usual, the number k is identified with the set of its predecessors, i.e.,
k={0,...,k—1}.

2. w is the smallest infinite ordinal, i.e., w = {0,1,2...}. IN denotes the set
of positive integers.

3. ‘A’ always denotes a finite set.

2. Parameter Sets and Parameter Words
(Definition and Basic Examples)

We are concerned with A™ , the set of n—tuples over A, and certain subsets
(parameter sets).

O-parameter sets are simply singleton elements of A™ . In general,
an m-parameter subset M C A™ is given by an m-parameter word f =
(for--os fa-1) € (AU {Xo,-..;Am1})" . We require that each parameter
Ai, 4 < m , occurs at least once in f . In order to avoid ambiguities we assume
that AN {X; | i < m} = 0 ; the set of constants a € A should be distinguis-
hed from the set of parameters X\;, i < m . If f € (AU {Xg,..., Ama })"
is an m-parameter word in A™ and g € (AU {Xo,..., g1 })™ is a k-
parameter word in A™ , the composition f-g € (AU {Xo,...,Ak—1})" is
the k-parameter word in A™ resulting from replacing the parameter ); in
f by gi, the ith component of g . In particular, for £ = 0 , we obtain
aset M = {f-(ao,...,am—-1) | (@0y---,am—1) € A™} C A™ . This is the
m-parameter set related to f . Clearly, two parameter words yield the same
parameter set iff they differ only by a permutation of their parameters. We get
a rigid representation requiring the first occurrences of different parameters to
be in increasing order, first )\ , then )\; , etc.
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Let us summarize these ideas in a formal definition. The concept of m~—
parameter sets is due to Graham and Rothschild (1971), the formal calculus of
parameter words has been introduced by Leeb (1973).

Definition. For nonnegative integers m < n we denote by [A]( ) the set of all
words (mappings) f :n — AU {Ag,..., Am—1} satisfying

for every j < m there exists i < n with f(2) = A; , and
min f~1(X;) < min f71();) foralli < j<m .

Mappings f € [A](..) are called m-parameter words of length n over A .
For f € [A](}) and g € [A]("y) the composition f - g € [4](}) is defined by
(- 9)(3) = £(5) if £(3) € A and (£ - 9)(4) = g(3) if £(i) = A

Observe that [A](7) = A™ . For f € [A](,.) theset M = {f-g | g €
[A]('s)} = f - [A4l('y) is the m—parameter subset of A™ described by f .

Note, however, that we have defined parameter words also with respect to
the empty resp., one—element alphabet. Corresponding to different alphabets
A, parameter words admit the following interpretations:

2.1 Parameter Words over the Empty Alphabet

Parameter words f € [0](}) represent equivalence relations on {0,...,n — 1}
with precisely k equivalence classes, and vice versa. The sth equivalence class
is given by f71(A\;) . So, [0](n) = Ur<.[0l(%) is the set of all equivalence
relations on {0,...,n — 1} . For f € [0](7) and g € [0](}) put f < g iff there
exists h € [0](";) such that g = f - h . Then ([0](n), <) becomes the lattice of
equivalence relations on {0,...,n — 1}

2.2 Parameter Words over the One—Element Alphabet

Parameter words f € [{0}](}) represent families of k& nonempty and disjoint
subsets of {0,...,n — 1}, viz., f~1(\;), ¢ <k . Then f- [{0}](':) is the set of
all unions of these k sets. Using the language of extremal problems, [{0}](})
is the set of strong A-systems with k terms.

2.3 Parameter Words over the Two—Element Alphabet

Let A =2={0,1} . Every f € [2](|;) can be interpreted as the characteristic
function of a subset of {0,...,n—1} (where the letter 1 indicates the occurrence
of an element of this subset) The inclusion of subsets imposes a lattice structure
< on [2](3) . Provided with this order ([2]( ), <) is isomorphic to the Boolean
lattice B(n) of rank n . Parameter words f € [2](}) represent B(k)-sublattices
in B(n) , and vice versa. The composition f-g corresponds to taking a sublat-
tice inside a sublattice. The partial order of Boolean sublattices of B(n) by set
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inclusion can be defined using the composition of parameter words. For f €
[2](}) and g € [2]() put f < g if there exists h € [2](';) such that f =g-h .

2.4 Parameter Words over GF(q)

Let us denote by GF(q), ¢ a prime power, the Galois field with ¢ ele-
ments. Every k-parameter word f € [GF(g)](}) , resp., the corresponding
k-parameter subset in GF(q)" , is a k—dimensional affine subspace. However,
in general there exist affine subspaces which are not parameter subsets.

The notion of parameter words, resp., parameter sets can be slightly ge-
neralized allowing a finite group G to acton A.
So let G be a finite group with unit element e operating on A4, i.e., there
exists an operation G X A — A such that (a-0)-c=a-(b-¢) forall a,b € G
andce A.

Definition. [A4,G]() consists of all mappings f : n = AU(G x{Xo,...,Am—1})
such that

FHG x {\:}) #0 for every i <m

f(min f~1(G x {\:})) = (e, \i) for every i < m and

min f71(G x {\}) <min (G x {A\;}) foralli<j <k.
For f € [A,G](}) and g € [A,G](";) the composition f-g € [4,G](}) is
defined by

(f-9)@) =£@) if f(i) e A
=a-b if £(i) = (a,);) and g(j) = b€ A
=(a-bAe) if £(5) = (a,);) and g(4) = (b, \e) -

What has changed is that parameters A; are labelled by group elements. In
order to make these parameter words rigid, the first occurence of ); is labelled
with the unit element e . Composition then is defined via group multiplication,
resp., via the group action on A . With respect to these more general parameter
words further interpretations are possible:

2.5 Parameter Words in [{0},GF(q)*1(2)

Consider the multiplicative group GF(q)* operating on {0} , where 0 is the
zero element of the Galois field GF(q) . Every f € [{0},GF(g)*]( ) represents
an m-dimensional (homogeneous) linear subspace of the n-dimensional vec-
tor space over GF(q) . In general there exist additional m-dimensional linear
subspaces, except for m = 1 , where we have bijective correspondence.
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2.6 Parameter Words in [{a},G](1)

Using a different terminology, Dowling (1973) investigates parameter words
f € [{a},G](}) . The finite group G operates trivially on the singleton
set {a},a is a kind of annihilator. Put [{a},G](n) = Ui.[{a},G](}) - For
f€{a},G)(}) and g € [{a},G](}) put f < g iff there exists h € [{a},G](})
such that g = f - h . For the trivial group G = {e} one easily observes that
([{a}, {€}](n), <) is the lattice of equivalence relations of an (n+1)—element set.
Dowling shows that, in general, ([{a}, G](n), <) is a geometric lattice of rank n+
1. Also, nonisomorphic groups yield nonisomorphic geometric lattices. Dowling
also considers the problem to what extent ([{a}, G](n), <) is representable over
a field k . He shows that this is the case if and only if G is isomorphic to
a subgroup of the multiplicative group of k (necessity requires n > 3) . The
reader should compare Dowling’s results with the example [{0}, GF(gq)*] .

3. Hales—Jewett’s Theorem

Hales—Jewett’s theorem is concerned with partitions of 0—parameter words, i.e.,
of A™.

Theorem (Hales-Jewett 1963).

Given A, m and r there exists a number n = HJ(|A|,m,r) such that for
every mapping A : [A](7) — {0,...,r — 1} there exists a monochromatic m—
parameter word f € [A](), i.e. A(f-g) = A(f-h) for all g,h € [A](T) -

We give two proofs of Hales Jewett’s theorem. The first one is the original
argument of Hales and Jewett. The second one is due to S. Shelah (1988) and

has the additional advantage of providing a primitive recursive upper bound
for HJ(|A|,m,7).

Proof. (Hales and Jewett) One shows

(1) HI(t,m+1,r) < HJ(t,1,7) + HJ(t,m,r )

(2) HI(t+1,1,r+1) < HJX,1+ HJ(t+1,1,7),r+1).

Together with the trivial assertion ‘HJ(1,m,r) = m’ observations (1) and (2)

yield a proof of Hales—Jewett’s theorem by induction on ¢ = |A|, m and r.

ad (1) let »" = HJ(t,1,r) and n' = HJ(t,m,r ) and consider A :

[A](™"#™) — r . This induces A’ : [4](Y) — r*" by A'(ag,---,an—1) =

< A0y -+, 8w—1,005- -« ;b 1) | (Boy- -y ban—1) € [AJ(Y ) > .

By choice of n' there exists a monochromatic m~parameter word, finally then

working on [A](") ) yields the (m + 1)st parameter.

ad (2) let A : [AU{8}J(}) — {0,...,7} , where |[A| = ¢, b ¢ Aann =
HJt,1+HJ@t+1,1,r),r+1).

Consider A4 = A][A4](7) - Let g € [4](,,},) , wherem = HJ(¢+1,1,r) , such

that AA]g-[A]("‘(',H) is constant, say, in color 7 .If A(g-(d,a0,...,am-1)) =T

(HI(t1,r)

(HI(t1,r)
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for some (ag,...,am—1) € (AU{b})™ , replace all b’sin g-(b,ap,...,am—1) by
Ao and call the resulting 1-parameter word f .

Clearly, A] f- [AU{b}](tl)) = constant. If no such (ay,...,am—1) exists, consider
A [AU{b})(7) — {0,...,r — 1} which is defined by A'(ag,...,8m-1) =
A(g-(b,a0,...,am—1)) and apply the properties of m = HJ(¢ + 1,r) . O
For the second proof of Hales Jewett’s theorem we need a lemma.

Shelah’s cube lemma. Let m and r be positive integers. Then there exists a
positive integer n = Sh(m,r) with the following property: Let A; for i < m be

) ron () () ror ()

~ ~

i —times (m—1—i) —times

where (3) denotes the set of two-element subsets of {0,...,n — 1}. Then there
exist two—element subsets {a;,b;} € () for i <m such that

Ai({a(!, bO}, ce 7{ai—l ) bi—l}, a;, {ai+1,bi+l}, ceey {am—l,bm—l})
= Ai({ao, bo}, KRR {ai—l ’ bi—l}, bi, {ai+1, bi+1}, ceey {am—l, bm—l})

for every i < m. The function Sh(m,r) satisfies the inequalities:
Sh(l,r)=r+1 and Shim+1,7) <1+ PCRTT)T < (Sh(mr)*™

Proof of Shelah’s cube lemma.
The assertion Sh(1,r) = r + 1 is just the pigeon hole principle and so we turn
to the second inequality.

Let n = Sh(m,r),let n* =1+ r(3)” and consider colorings

) (0 ) < (0 e () (5) v

E—V e N~
i —times (m—1—i) —times

as well as the mth coloring

o () e () (%) .

~ )

m —times
By choice of n* there exists a two—element subset {am,bm} € (%) such that

Am({ao, bo}, ceey {am—l, bm—l}, O'M})
= Am({a0,b0},--+>{@m-1,bm—1},bm})
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for all choices of two—element subsets {a;,b;} € (3), # < m. By projection the
pair {am,bm } induces colorings

Af n X n n n X X n)—» i<m
i . 2 e X 21)( 1 X 2 e 2‘ ) N

~~ ~~

i —times (m—1—i) —times

namely A}(...) = Ai(...,{@m,bm}). To these colorings the inductive assump-
tion on n may be applied yielding {ag,bo},---,{@m—1,0m—1} € (3). By con-
struction, then, {ao,b0},-..;{@m—1,0m—1}, {@m,bm} have the desired proper-
ties. ]

Note that, obviously, the function Sh(m,r) is primitive recursive, e.g.,

6-!4"2

Sh(m,r) < g
? -

Next we show how Shelah’s cube lemma can be used to prove Hales Je-
Wett,s theol-em.

Second proof of Hales-Jewett’s theorem. (Shelah)
With the aid of Shelah’s Cube Lemma the following recursion is derived:

(3) HJ(t + 1,1,1‘) < HJ(t,]_,r) . Sh(HJ(t,l,r),r(t+1)ﬂl(¢.1,r))‘

Together with the trivial observation HJ(1,1,7) = 1 this provides an inductive
proof for the existence of HJ(¢,1,r) in general. The numbers HJ(t,m,r) are
then estimated by

(4) HJ(t,m,r) <HJ{™1,r).

Inequality (4) may be derived by forgetting brackets, i.e., (A™)" is identi-
fied with A™™ : ((ao, e ,am_l), (bo, ceey bm—-l), ceey (60, e ,Cm—-l)) is viewed
as (ao,...,am._l,bo,...,bm_l, ...... ,CO,...,cm_l).
Using this interpretation one-parameter words f € [A™](]) correspond to m—
parameter words f € [A](™™), but not necessarily vice versa.

So we concentrate on proving inequality (3). For convenience we write
m = HJ(t,1,r) and n = Sh(m,r**D™), and we consider the alphabet B =
{0,...,t}.Let A : B™™ — r be an r—coloring. Using the properties of m and n
we derive the existence of a monochromatic one-parameter word f € [B](™™).

For every number a < n we define h, € B™ by

ha=(t=1,...,6=1,4,... ... ... ,1).
a—?i:nea (n—a;:timea

For every two-element subset {a,b} € (3), a < b, we define a one-parameter
word ga,5} € [B](}) by
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g{a,b}=(t—1,...,t—l, AOyeees A0 sByecnnee v ,1).
e e N e N
a—times (b—a)—times (n—b)—times

Note that
g{a,b} . (t - 1) = hb and g{a,b} . (t) = ha,.

For each 1 < m we induce a coloring

— — -~

i—times (m—1—1i)—times

as follows: let {aj,b;} € (3) for j < m with j # i, let a < n, and let
(e0,y---3am—1) € B™, then put

(5) Ai({ao, bO}, cee ,{ai—l ’ bi—l}, a, {a,-+1 ; b,‘+1}, ceny
{am-1,8m-1}, (a0, .-, &m1))

A(g{“O)bO} : (ao) X...X g{a,'_l,b,-_l}(ai_l)x
hﬂr X 9{a\+1,bi41} " (ai+1) X...
X 9{am-1bm-1}" (a1n—1))-

By choice of n there exist two—element subsets {ag,b},. .., {@m—1,bm-1} € ()
such that for all : < m and all (ap,...,am—1) € B™ it follows that

(6) A;({ao, bo},.-.,{ai—1,bi-1}, 05, {aiv1,0i11},. .,
{am—labm—l}, (a(!, ceey am—l))

A;({a0, b0}, .-y {ai—1,bi-1}, bi, {@iv1, 0541},
{am—l,bm—1}7 (a(!, ceey am—l))-

Consider the m—parameter word

9= 9{ao,bo} X Iar,bi} X -+ X Iam-1,bm-1} € [BI(7)

and observe that the property of the colorings A; implies that the color
A(g - (@0y---yam—1)) for (ag,...,am—1) € B™ remains unchanged whene-
ver some a; = t is replaced by a; = ¢t — 1. So we may consider the re-
striction A* : (B\{t})™ — r which is given by A*(ag,...,am—1) = A(g-
(agy...,am—1)). By choice of m there exists a monochromatic one-parameter
word h € [B\{t}|(T). Then the one-parameter word g - h € [B](™™) is mono-
chromatic with respect to A. O

Inequalities (1) and (2) involve a nested double recursion which leads to a non-
primitive upper bound for the Hales-Jewett function HJ(¢,m,r). In contrast
to that, as the function Sh(m,r) coming from Shelah’s cube lemma is primitive
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recursive, inequality (3) shows that HJ(¢,m,r) is primitive recursive. This was
an open problem for about 60 years.

Originally, Hales-Jewett’s theorem was used to analyse higher dimensio-
nal versions of the well-known game tic tac toe. Let us mention two typical
applications:

3.1 Arithmetic Progressions

Consider the alphabet A = {0,...,k — 1} ; the mapping 9% : A™ — {0,...,
(k—1)-n} with ¥(ao,...,an—1) = ) ;, a; has the property that it maps every
one-parameter set onto a k~term arithmetic progression. Hence, Hales—Jewett’s
theorem implies van der Waerden’s theorem on arithmetic progressions:

3.1 Theorem (van der Waerden (1927))

For every pair k and r of positive integers there exists a number
n = vdW (k,r) such that for every mapping A : {0,...,n—1} — {0,...,7 -1}
there exists a monochromatic k—term arithmetic progression. O

Hales—Jewett’s theorem can also be used to establish partition theorems
for multiple arithmetic progressions and for Deuber’s partition theorem on
(m, p, ¢)-sets (Deuber (1973), Leeb (1975), Deuber, Rothschild, Voigt (1982)).

3.2 Idempotents in Finite Algebras

Let A be a class of finite algebras which is closed under finite products and
such that every A € A consists of idempotent elements only. Observe that for
every algebra A € A (by abuse of language, A denotes also the underlying set
where we omit the algebraic operations) each one—parameter set M C A™ is an
A-subalgebra. Hence, by Hales—Jewett’s theorem one gets the following result:

3.2 Theorem (Promel, Voigt (1981), Jezek, Nesetfil (1983))

For every A € A and every positive integer r there exists a number n such
that for every mapping A : A® — {0,...,r — 1} there exists a monochromatic
A-subalgebra. O

Typical classes A are, e.g., distributive lattices, modular lattices, general
lattices and so forth.

Several generalizations and ramifications of Hales—Jewett’s theorem have been
considered:

3.9 A x-Version

Here not only 0-parameter words of one fixed length are partitioned, as in
Hales-Jewett’s theorem, but words of variable length (were a “x” indicates the
end of a word). Such x—parameter words were introduced in (Voigt 1980) to
prove a partition theorem for finite abelian groups.
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Let “x” be some symbol not contained in AU{\g, ... Am—1} and let [A]*()
denote the set of all m—parameter words f of length n over AU{x} satisfying
the condition

if f(i) =« for some i <n then f(j)=x*foralli<j<n.

Hence [A]*( ) is the set of m-parameter words of length at most n over
A . Note that [A]() c [A]*(L) . For f € [A]*(,.) and g € [A]*(7;) the
composition f - g € [A]*(}) is defined by

(f-9)() ==*, if there exists j < ¢ such that (f - g)(j) = *,

(f-9)@) =f@1), iff(i)e AU{x} and (f-g)(j) # * forall j <1,
(f-9)@) =g(3), iff(@)=2A;and (f-g)(j) #xforallj<i.

Intuitively, the composition f - g , interpreted as the insertion of g into the
parameters of f is performed as long as possible, eventually *’s are filled in.

3.3 Theorem (Voigt (1980))

Given A,m and r there exists a number n = HJ*(|A|,m,r) such that for
every mapping A : [A]*(7) — {0,...,r — 1} there exists a monochromatic
felA*(,),ie A(f-g) = A(f-h) for all g,h € [A]*(T7) .

Proof. Let ., =mr and npe—j = HI(|A|,2mpr—ji1 —mr + j,7) +mr —j .
Choose n = ng and let A : [A]*(7) — {0,...,m — 1} be given. For g € [A]*(})
let *(g) = k — max{i | g(i) € A} and for i = 0,...,k put [A)'({) = {g €
[Al(g) | *(9) =4} -

k
.k k

I ticul Al*(T) = [A] .
n pasticalar, 141(0) = 14°()
First we prove inductively that for every j < mr there exists f; € [A](n:‘+1)
such that for every g,h € U’.'=0[A]"(”’0+1) with *(g) = *(h) we have A(f;-g) =
A(f; - h)

For j = 0 this is Hales—Jewett’s theorem. So assume that the assertion is
true for some j < mr and let A7+ : [AJ7+!(™) — {0,...,r — 1} be given
by A*1(g) = A(f;-g) . By choice of njy1 = HJ(|A|,njp2 —j—1,7) +j+1

and Hales-Jewett’s theorem there exists f' € [A](::;I;:;:i) monochromatic.

Then fj+1 = fj (f'(O), ceey f’(nj+1 —j - 2),An,+2_]‘_1, . -,An,.“—l) fulfills the
requirement of the induction.

Choosing j = mr we get fm, € [4](,,.) such that all g,k € [A]*(")") with
*(g) = *(h) have the same color with respect to A . This defines an r—coloring
A" of the integers {0,...,mr} by A'(i) = A(fmr-g) for any g with x(g) =1 .
By the pigeon-hole principle we get 0 < ig < ... < i, < m-7 in one color. Now
let f" € [A](7) be given by f"(i) = a for some a € 4 , if i < ig, f"(3) = A; ,
if ij <4 < ij41 and f"(3) = x for iy, < i . Obviously f = fmr - f has the
desired properties. O
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3.4 An Induced Version

Let I': A™ — {0,1} be a structural mapping, i.e., the points (ag,...,am—1) €
A™ are split into two classes, blue points and red points. An induced partition
theorem respects the color of the points:

3.4 Theorem (Deuber, Rothschild, Voigt (1982))

Given A,m,r and a structural mapping I : [A]('¢') — {0,1} there exists a num-
ber n = HJy, 4(|A| ,m,r) and there exists a structural mapping I'* : [A](y) —
{0,1} such that for every mapping A : [A](7) — {0,...,7 — 1} there exists an
m-parameter word f € [A]() which is induced, i.e., I'*(f-g) = I'(g) for every
g € [A](7) » and monochromatic, i.e., A(f - g) = A(f - h) for all g,h € [A](})
with I'(g) = I'(h) . n]

As a corollary one obtains for example an induced version of van der Waer-
den’s theorem on arithmetic progressions. This has been established indepen-
dently by Spencer (1975) and Nesetfil and R6dl (1976).

3.5 A Restricted Version

The interest in restricted versions has been initiated by Erdés (1975) who asked
whether there exists a set S of positive integers which does not contain any
(k + 1)-term arithmetic progession, however, for every partition S = Sy U Sy
one of the parts Sy or S; contains a k-term arithmetic progression.

This question has been answered affirmatively by Spencer (1975) and
Nesetfil and RG6dl (1976). More generally, Hales—Jewett’s theorem admits a
restricted version:

3.5 Theorem (Deuber, Prémel, Rothschild, Voigt (1981))
Given A,m and r there exist a number n = HJ..,(|A|,m,r) and a set
S C [A]() satisfying the following two conditions:

(1) for every f € [A](,,",) there exists g € [A)(™F') such that f-g ¢ S , ie.,
S does not contain any (m + 1)-parameter set, however,

(2) for every mapping A : S — {0,...,r — 1} there exists f € [A]([) such
that f - [A]('y) € S and A]f - [A]('y) = constant. O

3.6 Forbidding Short Cycles

Apparently Tutte (Descartes (1948)) was the first to ask for graphs which have
a large chromatic number, and, simultaneously, do not possess short cycles. In
1948 he showed that graphs without triangles may have arbitrary large girth.
Eventually Erdés (1959) resolved the general problem by showing that for every
pair 7 and g of positive integers there exists a graph with chromatic number
larger than r and girth larger than g. Erdds’ proof used a counting argument.
Incidentally, this proof laid down the source for the nowadays so-called proba-
bilistic method in Discrete Mathematics. J. Spencer (1975) considered graphs
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and hypergraphs which are defined on combinatorial structures and then asked
how to refine the structure to obtain a large girth, but to maintain a large
chromatic number. E.g., let AP, be the set of k-term arithmetic progressions
A C n. We may view AP, as the edge set of a k-regular hypergraph on n.
Notice that van der Waerden’s Theorem 3.1 may be formulated by saying that
the chromatic numbers x(AP, k) tend to infinity with n tending to infinity,
and k fixed. Also using the probabilistic method Spencer showed how to forbid
short cycles in AP, x :

3.6 Theorem (Spencer (1975))
Let k,r and g be positive integers. Then there exists a family A C AP, of
k-term arithmetic progressions such that x(A) > r and girth(.A) > g.

The corresponding result in connection with Hales-Jewett’s theorem has been
established by Rodl (1981).

Let F C [4] (,’;) be a set of m-parameter words. F defines a hypergraph
H(F) on [A](;) with edges f - [A](T), f € F, i.e., edges are the corresponding
m-parameter sets. Hales-Jewett’s theorem can be formulated by saying that for
m fixed and n tending to infinity the chromatic numbers x(H([4]())) tend
to infinity. Using probabilistic means, R6dl shows the following strengthening
of Hales-Jewett’s theorem:

3.6a Theorem (R&dl (1981))

Given A, m,r and g there exists a number n = HJs,.3(A, m,7,g) and there
exists a family F C [A]() such that x(H(F)) > r and girth(H(F)) > g, i.e.
‘H(F) does not contain any cycle of length smaller or equal than g.

3.7 Sparse Versions

It was, then, an open question to find constructive proofs for the results in
3.6. But not only this. As it turns out, the probabilistic method allows to
select a family of edges, viz., k-term arithmetic progressions, in AP, ; which
do not form short cycles. However, these edges almost surely cover nearly all
the vertices in n. Spencer (1975) suggested to look for constructions of sets
S C n such that the set APg of all k-term arithmetic progressions A C S has
chromatic number larger than r and girth larger than g. So rather than selecting
edges we select vertices and consider all edges which are spanned (induced) by
these vertices. Accordingly, with respect to Hales-Jewett’s theorem, for sets
S C [A](5) we let Hum(S) be the set of all f € [4](7) with f- [4](T) C S
One easily observes that for |A| = 2 and for every set S C [A](]) such that
Xx(H1(S)) > 2 the hypergraph H;(S) must contain a triangle. However, this
case (viz., |A| = 2 and m = 1) is the only exception which does not allow a
sparse version of Hales-Jewett’s theorem.

3.7 Theorem (Promel, Voigt (1988))
Let A be a finite set and let m,r and g be positive integers such that |A| > 2 and
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|A| + m > 4. Then there exists a positive integer n = HJ,parse(A,m,7,g) and
there exists a family S C [A](]) such that x(Hm(S)) > r and girth(Hm(S)) >
g.

This result has been proved by a constructive approach relying on an amal-
gamation techniques for parameter sets. This amalgamation techniques extends
the approach of Frankl, Graham and R4dl (1987) and previous amalgamation
procedures of NeSetfil and RGdl for graphs and hypergraphs, as well as the
authors’ attempts in Promel, Voigt (1987, 1989). More elaborate versions also
allow to establish a sparse version of van der Waerden’s theorem, thus resolving
the conjecture of Spencer (1975).

3.7a Theorem (Promel, Voigt (1988))

Let k,v and g be positive integers. Then there exists a positive integer n =
VAW ,parse(kym, g) and there exists a set S C n such that x(APs) > r and
girth(APs) > g.

3.8 Density Versions

Again it started with a problem about arithmetic progressions. Szemeredi
(1975), proving a famous conjecture of Erdés and Turan, showed that for every
€ > 0 and every positive integer k there exists n = Sze(e, k) such that every
set S C {0,...,n—1} with |S| > €-n contains a k~term arithmetic progression.
R6dl (1982) proved a density version of Hales-Jewett’s theorem with respect
to two—element alphabets:

3.8 Theorem (Radl (1982))

For every € > 0 and positive integer m there exists a number R6(e, m) such
that for every n > Rd(e, k) and every S C [{0,1}|(g) with |S| > €- 2" there
exists f € [{0,1}](,,) satisfying f - [{0,1}](T)C S . 0

For m = 1 this result follows from Sperner’s theorem (Sperner 1928) saying that
a maximal antichain in 2" has cardinality (,7,) ~ 2"/v/n . The case m = 2 has

been proved by Erdés and Kleitman (1971). R6dl’s argument basically proceeds
by induction on m .

Somewhat more generally, Brown and Buhler (1984) show that, for any
finite alphabet A , a density version for m = 1 implies a density version for
arbitrary m .

However, it is a challenging problem whether such a density result holds
for arbitrary A . Even the case |A| = 3 is still open. We should mention that
Graham (1983) offers some money for a solution. Recently, Fiirstenberg and
Katznelson proved the following (slightly weaker) density theorem:

3.8a Theorem (Fiirstenberg—Katznelson (1985))

Let G be a cyclic group. Then for every € > 0 there exists a number FK(|G|,¢)
such that for every n > FK(G,¢) and every § C [G,G](3) (= [G](})) , where
G acts on itself, with |§| > €-|G|" there exists f € [G,G](}) such that
F1G,GIG)CS. O
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The Fiirstenberg-Katznelson theorem immediately implies a density result for
affine points in affine spaces over finite fields. For the ternary field GF(3) this
has been established before by Brown and Buhler (1982).

3.9 A Canonizing Version

The Erdés—Graham canonical version of van der Waerden’s theorem on arith-
metic progressions (cf. Deuber, Graham, Promel, Voigt (1983)) asserts that for
every mapping A : {0,...,n — 1} —» IN , where n > EG(k) is sufficiently large,
there exists a k-term arithmetic progression A={a+A-d|A=0,...,k—1}
such that A]A is constant or one-to—one. Analogously, the canonizing (resp.,
canonical — the terminology seems to be confusing) version of Hales—Jewett’s
theorem states the following:

3.9 Theorem (Promel, Voigt (1983))

Given A and m there exists a number n = PV (|A|,m) such that for every
mapping A : [A](7) — IN there exists an equivalence relation ~ on A and there
exists f € [A](}) such that for all g = (go,---,9m-1), b = (hos---,hm-1) €
[A](7) it follows that A(f-g) = A(f-h) iff gi~ h; foralli<m . 0

Schmerl (preprint 1985) applies this result in order to show that for every coun-
table nonstandard model M of Peano Arithmetic and every positive integer
k > 2 there exists a cofinal extension N of M such that the lattice L(N/M)
of intermediate models is isomorphic to II(k) , the lattice of equivalence rela-
tions of a k—element set (cf. also Schmerl (1985)).

The special case |[A| = 2 of theorem 3.8 admits the following formulation
(cf. 2.3):

Corollary. Let n = PV (2,m) . For every mapping A : B(n) — IN there exists
a B(m)-sublattice L C B(n) such that AL is constant or one—to—one. 0

Nesetfil and R6dl call this phenomenon ‘selectivity’ (cf. Nesetfil, R6dl (1978)).

In NeSetfil, R6dl (1984) a proof of this corollary is indicated which relies
on the Erdés—Graham canonical version of van der Waerden’s theorem. A short
proof has been given in Promel, Voigt (preprint 1985).

There is a common generalization of the canonical version and the re-
stricted version of van der Waerden’s theorem (and even its induced version)
(Promel, Rothschild (1987)). But we do not know whether such a common gene-
ralization of the canonical and the restricted version of Hales-Jewett’s theorem
is also valid. Even the case |A| = 2 is unsolved.

3.10 Canonical (Natural) Orders

A total order on A™ is called a canonical (or a natural) order if this or-
der is invariant with respect to parameter sets in A™ . This is to say that the
restrictions of a canonical total order to any two parameter sets are of the same
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type. In particular, the definition of a canonical order in A™ is independent
of n.

A typical example for a canonical order is the lexicographic order on A™
(with respect to some fixed order on A ) .If A™ is provided with the lexico-
graphic order then also every parameter set of A™ is of this kind.

A complete characterization of all canonical orders on A™ is contained
in NeSetfil et al. (1985). For the description of these orders see also Ne3etfil
(1984). Here we follow the approach of Promel (1989).

Let A = {ay,...,a:} be provided with a total order < ,i.eap <a; <...<
a; and let B(t) be the Boolean lattice on the ¢ (ordered) atoms 0,...,{—1.A
0-1 chain D in B(?) is a family D = (D,,..., D) of pairwise distinct subsets
of {0,...,t — 1} such that D; C D;,, for every i < k and Dy = 0, D =
{0,...,t—1} . For g € A™ let I(g(m)) be the index of g(m) , i.e., I(g(m)) =1¢
if g(m) = a; . Now we associate to every 0 — 1 chain D in B(t) a total order
< on A™ as follows:

Let g < h with respect to D = (Dy,..., D) if and only if

(1) thereexist i <k, j € D; and m < n such that I(g(m)) < j and I(h(m)) > j
(2) for all m' < m and all j € D; : I(g(m')) < jiff I(h(m')) < j
(3) forall¢' <i,all j € Dy and all m < n:I(g(m)) < jiff I(h(m)) <j.

We denote this order on A™ by <p .

Obviously, if D = (Dy, D1) (where Dy = @ and D, = {0,...,t —1}) we get
the usual lexicographic order with respect to the given total order < on A.
It should be mentioned that different pairs (<,D) and (<',D') yield different
orders <p, </, resp.
There is the following characterization theorem for canonical total orders on
A"
3.10 Theorem (NeSetfil, Promel, Rodl, Voigt (1985), Promel (1989))
Given A and m there exists a number n = NPRV(|A|,m) such that for
every one-to-one mapping O : [A](y) — IN there exist a total order < on
A, a0-1chain D in B(|A|— 1) and there exists f € [A]() such that for all
9,h € [A](7) it follows that

O(f-9) <O(f-h), where < isthe order on IN,

- O
if and only if f-9<pf-h.

Obviously, theorem 3.10 can be viewed as an asymmetric analogue to the ca-
nonizing version of Hales-Jewett’s theorem (i.e. theorem 3.9).

The special case |[A| = 2, which is already proved in Nesetfil et. al. (1982),
admits the following formulation:

Corollary. (Nesetfil, Promel, Rodl, Voigt (1982))

Let n = NPRV(2,m) . For every one-to—one mapping O : B(n) — IN there
exists a B(m)-sublattice £ C B(n) such that AL is either lexicographic with
respect to 0 < 1 or lexicographic with respect to1 <0 . O
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We should mention that if we impose an arbitrary partial order < on 27
(n sufficiently large) then there exists a 2™—sublattice £ C 2" such that £
is ordered as 2™ (i.e. g < h if g(z) < h(i) for every i < m) or lexicographic
or L is an antichain. Of course we can interchange the role of 0 and 1, and
so we get five canonical partial orders in this case (cf. Promel (1989)). It is an
open question, how the canonical partial orders look like for general alphabets
A.

4. Graham—Rothschild’s Theorem

Basically speaking, Graham-Rothschild’s theorem is concerned with partitions
of k—parameter words in A™ . It generalizes Hales—Jewett’s theorem to higher
dimension.

Theorem. (Graham, Rothschild (1971))
Let A be afinite set,let G be a finite group operatingon A andlet k, m and
r be positive integers. Then there exists n = GR(|A|,|G|,k,m,r) such that

for every mapping A : [A,G|(}) — {0,...,r — 1} there exists a monochromatic
fel4,G)(y) »ie, A(f-g) = A(f - h) for all g,k € [4,G]() - o

In particular, for the trivial group G = {e} we have the following corollary:

Corollary.

Let A be afinite set and let k,m and r be positive integers. Then there exists
n = GR(|A|,k,n,r) such that for every mapping A : [4](}) — {0,...,7 — 1}
there exists a monochromatic f € [A]() . 0

Proof of Graham—Rothschild’s theorem:
By induction on k . The case k = 0 is settled by Hales—Jewett’s theorem.
Hence we can assume the theorem for some k£ — 1 > 0 (and every finite set B
and every color-number r'). We use the *—version of Hales—Jewett’s theorem,
viz., theorem 3.3.

Let ¢ = HJ*(|A|,m,r) and n, =z +k .For0< j <z let

na—j = GR(|A| + |G|, |G|,k —1,na_js1 —z+ 35— 1,r 4y f o —j4+1.

Choose n = ny and let A : [4, Gl(%) — {0,...,7 — 1} be an arbitrary map-
ping. For g € [A4,G](}) let In(g) € [A]*(;) be given by In(g)(s) = g(%)
for i < ming~!(Xo,e) and In(g)(i) = * otherwise. Moreover let |In(g)| =
min g~1(\, e) . First we prove inductively that for every 0 < j < z there exists
fi € [4,G(,,) such that for every g,k € [4,G]("}) with In(g) = In(h) and
[In(g)| < j we have A(f; -g) = A(f;-h) .

For j = 0 the assertion becomes vacuous. So assume the claim is true for
some 0 < j < z and let A7 : [AU (G x Xo),G](™. ") — rl4l’ be given by

Al(g) = (A(f; - ') | (4(0),-.,9'(i — 1)) € 4,9'(§) = (&:X0),g'(G + k) =
glk—=1)for1<k<n;—j-1).
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By choice of n; = GR(|A| + |G|,|G|,k — 1L,nj41 —j — L,rl4P) + 5 +1
and by Graham-Rothschild’s theorem for k£ — 1 there exists f' € [AU (G x

)\o),G](n:‘il_f;.‘_ll) monochromatic with respect to A; . Let f € [4, G](n:‘jrl)

be given by f7(i) = (\i,e) ,if i < j,f () = fl(i—j—1)if j <i <mnj and
fli—j—1)e Aand " (5) = (a,\j+x) if j <i<njand f'i—j—1) = (a, ) .
Then f;+1 = f; - f fulfills the requirement of the j-induction.

Choosing j = = we get f, € [4,G](,},) such that all g,k € [4, G]("};k)
satisfying In(g) = In(h) have obtained the same color with respect to A . This
defines an r—coloring A’ of [A]*(7) by A'(g) = A(g') for any g¢' satisfying
min g~ (e, Ao) = min g~!(x) and g'(i) = g(s) for all i < min g~!(x) . By choice
of z = HJ*(|A|,m,r) and theorem 3.3 we get some f° € [A]*( %) in one color.
Define f° € [4, G](*+*) by £°() = f°(3), if f°(3) € 4, f*°%) = (e,);) , if
f°(3) = A\; and f°°(4) = afor some a € A otherwise. Now let f = f,-f°° . Then
f has the desired properties. 0

The Graham-—Rothschild theorem has many applications:

4.1 Ramsey’s Theorem

For nonnegative integers k,m let us denote by (%) the set of strictly ascending
injections f : {0,...,k—1} — {0,...,m—1} . Clearly, every f € () describes
a k—element subsets of {0,...,m — 1} , and vice versa. Hence, (}) is the set
of k—element subset of {0,...,m — 1} . For f € (1) and g € () the usual
composition of mappings yields f-g € (}) -

Parameter words very naturally admit a surjective functor onto finite sub-
sets, i.e., consider & : [4](7') — (}) which is given by &- f : {0,...,k— 1} —
{0,...,m =1} , where (¢- f)(i) = min f~1();) . The functorial property of &
is that for f € [A]([) and g € [A](") it follows that &(f-g) = (- f)-(®-9) ,
where the left hand side uses composition of parameter words, the right hand
side refers to ordinary composition of mappings.

Now, given A : (}) — {0,...,r — 1} define A4 : [4](}) — {0,...,7 — 1}
by As(f) = A(® - f) . Using this idea, the Graham-Rothschild theorem (in
fact, already the case G = {e}) implies Ramsey’s theorem:

4.1 Theorem (Ramsey (1930))

Let k,m and r be positive integers. Then there exists n = Ram(k, m,r) such
that for every mapping A : (}) — {0,...,r — 1} there exists f € () with
Alf - (T) = constant. m]

Ramsey’s theorem may be visualized using the picture of figure 1, where
B(n) , as before, denotes the lattice of subsets of an n—element set.
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B(n)
Ai d
is
constant l m-th level
. below f
e k-th level
Fig. 1

4.2 The Dual Ramsey Theorem

Ramsey’s theorem deals with strictly ascending (rigid) injections, i.e., subsets.
The dual Ramsey theorem deals with rigid surjections, i.e., partitions. Consider
II(n) , the lattice of equivalence relations (partitions) on an n—element set, say
{0,...,m — 1} . Let II(}) denote all those equivalence relations on {0,...,
n — 1} which have precisely k classes. Recall that these equivalence relations
are represented by parameter words (rigid surjections) f € [0](}) and vice
versa (cf. 2.1). Hence, composition is well-defined. Using this interpretation we
derive immediately from the Graham—Rothschild theorem:

4.2 Corollary (Dual Ramsey theorem)

Let k,m and r be positive integers. Then there exists n = DR(k,m,r) such
that for every mapping A : II(}) — {0,...,r—1} there exists a monochromatic
fem(y). o

The dual Ramsey theorem can be visualized using figure 2:

4.3 Finite Unions, Finite Sums

The particular case A = {0} and k = 1 of the Graham-Rothschild theorem can
be stated as follows (cf. 2.2).

4.3 Corollary (Finite union theorem)

Let m and r be positive integers. Then there exists n = FU(m,r) such that
for every mapping A : B(n) — {0,...,r — 1} there exist m mutually disjoint
and nonempty subsets Ay, ..., Am—1 € B(n) such that for all nonempty I,J C
{0,...,m — 1} it follows that A(U;c 4:) = A(U;es4;) - O
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Considering subsets as binary expansions of positive integers, one gets the fol-
lowing result, known as Rado-Folkman-Sanders’ theorem (cf. Graham, Roth-
schild, Spencer (1980)).

4.3a Corollary

Let m and r be positive integers. Then there exists n = FS(m,r) such that
for every mapping A : {1,...,n} — {0,...,r — 1} there exist mutually distinct
integers ag, . . . @m_1 such that for all nonempty I,J C {0,...,m—1} it follows
that A(3 ey ai) = A(X er95) - m]

4.4 A Partition Theorem for Finite Graphs

Recently, Nesetfil and Rodl (1985) observed that the Graham-Rothschild theo-
rem can also be used to prove a partition theorem for finite graphs, which
originally is due independently to Deuber (1975) and Ne3etfil and R6dl (1975).

Recall that a finite graph G is a pair (V, E) , where V is a finite (not
necessarily ordered) set and E is a subset of Po(V) , the 2-element subsets of
V . Thereby V is the set of vertices and E is the set of edges of G . Graphs
G and G' are isomorphic if there exists a bijection between V and V'
such that images and preimages of edges are edges again. G' = (V',E') is an
induced subgraph of some graph H = (W,F)iff V' C W and E' = FNPy(V').
If G' is aninduced subgraph of H and G' is isomorphic to G we say that
G' is an induced G-subgraph of H .

4.4 Theorem (Deuber (1975), Nesetfil, Rodl (1975))

Let k,r be positive integers and G be a finite graph. Then there exists a finite
graph H such that for every partition of the k—-cliques (i.e., the complete
subgraphs on k vertices) into r classes there exists an induced G-subgraph
G' of H with all its k—cliques in the same class.
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Proof. (Nesetfil, Rodl (1985))

Define a graph on B(n) joining X,Y € B(n) by an edge iff XNY = 0 . Observe
that every finite graph G can be embedded into some B(n) provided with this
structure. Now apply the Graham-Rothschild theorem with A4 = {0} . O

Next we discuss some extensions of the Graham—Rothschild theorem:

4.5 A x-Version

First we consider a partition theorem for k-parameter words of length at most
n,i.e., for k-parameter *—words. This extends the Graham—Rothschild theorem
in the same way as Theorem 3.3 extends Hales—Jewett’s theorem.

4.5 Theorem (Deuber, Voigt (1982))

Let A,k,m and r be given. Then there exists n = GR*(|A|,k,m,r) such that
for every mapping A : [A]*(}) — {0,...,r — 1} there exists a monochromatic
felAl(y),ie A(f-g) = A(f - k) for all g, h € [A]*(}) - o

4.6 An Induced Version

Here a higher dimensional analogue to theorem 3.4 is considered. Let [A](n) =
Uk<nl4](%) and let I' : [A](n) — {0,1} be a structural mapping, i.e., all
parameter sets in A™ are split into two classes. One can view this as a (hyper-)
graph imposed on the parameter sets in A™ .

The following partition theorem shows that it is possible to respect the
additionally imposed structure:

4.6 Theorem (Promel (1985))

Let A,k,m,r and a structure mapping I" : [A](m) — {0,1} be given. Then
there exists n = GRinq(|A|,m,r) and there exists a structure mapping I'* :
[4](n) — {0,1} such that for every mapping A : [A](}) — {0,...,r — 1} there
exists f € [A]( ) which is induced, i.e., I'*(f - g) = I'(g) for every g € [A](m),
and which is monochromatic, i.e., A(f-g) = A(f-h) for all g,h € [A]("y) with
I'(g-¢")=TI(h-g')forall ' € [4] . ]

We should note that the applications and corollaries of the Graham-Rothschild
theorem described above become induced versions using Theorem 4.6 instead
of the original Graham-Rothschild theorem. Let us mention one consequence
of the induced Graham-Rothschild theorem in more detail.

A finite ordered hypergraph G is a pair (V,£) where V is a finite ordered
set, the vertex—set of G ,and £ , the set of edges of G , is a subset of P(V)\V .
Subhypergraph means induced subhypergraph. G is said to be isomorphic to
a hypergraph G' if there exists an orderpreserving bijection between G and
G' such that images and preimages of edges are edges again. If, additionally,
G' is a subhypergraph of a hypergraph H then @' is a G-subhypergraph
of M . Partition theory for finite graphs and hypergraphs culminates in the
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following theorem due to Negetfil and R6dl (1977, 1983) and, independently,
Abramson and Harrington (1978).

4.6a Theorem (Nesetfil, R6dl (1977, 1983), Abramson, Harrington (1978))
Let k be a positive integer an G be a finite ordered hypergraph. Then
there exists a finite ordered hypergraph ‘H such that for every partition of
all subhypergraphs of H on k vertices into r classes there exists a G-
subhypergraph G' of ‘H such that any two subhypergraphs of G' which are
isomorphic and have k vertices are in the same class.

Proof. Assume the atoms of ([2](7'),<) to be the vertices of G . Define
r.[2[(m) — {0,1} by I'(9) = 1 iff g-[2(§) N V(G) € &(G) , where
g € [2)(}) - Hence (2™, I') bears the structure of G . Apply the induced
Graham-Rothschild theorem and get n and I'* : [2](n) — {0,1} . Define
H = (V(H),E(H)) by V(H) = [2](5) and [2](;) 2 e € E(H) if and only if e
is the set of atoms of a Boolean sublattice L C ([2](3),<) and I'™*(L)=1. A
straightforward calculation shows that H is the desired hypergraph. O

Compare also Promel, Voigt (1989) for another proof relying on a direct amal-
gamation procedure.

4.7 A Sparse Version

Let § C [A](}) be a set of points in A™ and let k¥ < m be positive integers.
Extending the notation from section 3.7 we let Hy ,(S) be the hypergraph
whose vertices are [4](}) and whose edges are f - [A](}) for f € Hm(S). In
other words, every m-parameter set f which is spanned by S in the sense that
f-[4] (’5‘) C S gives rise to an edge, and this edge consists of all k-parameter
subsets of f - [A](7}). The sparse Graham-Rothschild theorem now says the
following:

4.7 Theorem (Pr6mel, Voigt (1988))

Let A be a finite set with |A| > 2 and let k,m,r and g be positive integers.
Then there exists a positive integer n = GR,parse(A,k,m,r,g) and there exists
a set § C [A](5) such that x(Hk,m(S)) > r and girth (Hi,m(S)) > g.

A similar result may be established with respect to one-element sets A = {0}.
In view of the interpretation given in section 4.3 this implies a sparse finite
union theorem, viz.,

4.Ta Theorem (Promel, Voigt (1988))

Let m,r and g be positive integers. Then there exists a family S of nonempty
and finite sets such that x({S}m) > r and girth {S},, > g, where {S} <m
is the hypergraph having S as vertices and edges {UierSi | I S m, I # 0}
for each choice of pairwise disjoint sets Sy,ldots,Sm_1 € S such that also all
unions | J;; S; still belong to S.

For g > 2 it particularly follows that S does not contain (m + 1) mutually
disjoint sets together with all their unions. This restricted result has been pro-
ved by NeSetfil and Radl (1986).
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For more general restricted and sparse induced versions of the Graham-
Rothschild theorem compare Frankl, Graham, Rdl (1987) and Proémel, Voigt
(1988).

4.8 A Canonizing Version

Next we consider an extension of the canonizing version of Hales—Jewett’s theo-
rem to higher dimensions. First we describe the canonical equivalence relations
of k-parameter words.

Let { €{0,...,k — 1} be any subset and let |{| denote its cardinality. We
view ( as a strictly increasing mapping ¢ : {0,...,[{| -1} — {0,...,k —
1} . Thus ( is identified with its enumerating function. Moreover, we put
¢(I¢]) = k . Consider a family of equivalence relations {=;}:<|¢| , where =;
is defined on AU {\, | p < {(3)} and satisfies (1) @ ~; b implies a ~;41 b
for all a,b € AU{A, | p < ¢(?)} and (2) if a ~;4; b implies a =; b for all
a,b€ AU{), | p < ((3)} then there exists c € AU {A, | p < ¢(3)} such that
¢ Riq1 (i) Such a pair (¢, {~}i<|¢|) is called a canonical (4, k)-pair.

We associate to every canonical (4, k)-pair I = ({,{~i}i<|¢|) an equi-
valence relation ~y on [4](}) by putting g ~p h iff for every i < [{| we
have that g(p) ~; h(p) for every p < ming='(A¢)) - Equivalence relations
which are defined from canonical (A4, k)-pairs in this way are called canonical
(A, k)-equivalence relations.

Note that the definition of a canonical (A, k)-equivalence relation does
not depend on the dimension of the parameter words where it is imposed on.
Moreover, as shown in Promel, Voigt (1983), these equivalence relations are
hereditary in the sense that if [A](} ) is endowed with a certain canonical (4, k)-
equivalence relation, then the restriction to an arbitrary f € [4](,) yields the
same canonical (4, k)-equivalence relation.

The following theorem can be viewed as a completeness theorem of cano-
nical (A, k)-equivalence relations:

4.8 Theorem (Promel, Voigt (1983), cf. also (1986))

Let A,k and m be given. Then there exists n = PV(|A|,k,m) such that for
every mapping A : [A](}) — IN there exist a canonical (A, k)-pair II and an
f € [A](,.) such that for all g,h € [A](7) we have A(f-g) = A(f - k) if and
onlyif f-gruz foh. 0

Note that the case of canonical (A4, 0)-pairs corresponds to the canonical Hales—
Jewett theorem (cf. 3.8).

Finally, we consider two particular instances of theorem 4.7: Let n =
PV(0,k,m) and A : (}) — IN be a mapping. Define A’ : [4](}) — IN by
A'(g) = A(®g) . Then there exist a canonical (0,k)-pair I = (¢,(i)i<i¢|)
and an f' € [A]() according to theorem 4.7. Let f € (1) be given by
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f@) = min f'~ (A;) for i = 0,...,m — 1. Then for all g,k € (%) we have
A(f-g9)= A(f-h) ifand only if (f-g)(¢(7)) forall i< [(] .
Hence we have proved the Erdés—-Rado canonization theorem for finite sets:

4.8a Theorem (Erdés-Rado (1950))

Let k and m be given. Then there exists n = ER(k,m) such that for every

mapping A : (}) — IN there exist a subset ¢ C {0,...,k—1} and an f € (1)

such that for all g, h € () we have A(f-g) = A(f-h) ifand onlyif g-¢ =h-(.
O

In 4.3 we observed that the case A = {0} and k£ = 1 of the Graham-
Rothschild theorem corresponds to the finite union theorem (to the Rado-
Folkman-Sanders theorem, resp.) From theorem 4.8 we deduce canonizing ver-
sions of these results. The point is to observe that there exist precisely three
({0},1)-canonical equivalence relations:

4.8b Theorem (Pr6émel, Voigt (1983))

Let m be a positive integer and let n = PV(1,1,m) . Then for every map-
ping A : B(n) — IN there exist m mutually disjoint and nonempty subsets
Ag,...,Am—1 € B(n) such that one of the following three cases is valid for all
nonempty I,J C {0,...,m —1}:

(1) A(Uier Ai) = A(Ujes 45)

(2) A(U;er 4s) = A(UjEJ A;) if min I = min J

(3) A(Uie[ Ai) = A(UjEJ AJ’) fI=1J. o
For sake of completeness we also state the canonizing sum theorem explicitely:

4.8c Theorem (Promel, Voigt (1983))

Let m be a positive integer and let n = PV(1,1,m) . For every mapping
A :{0,...,2" — 1} — IN there exist mutually distinct integers ag,...,am—1
such that one of the following three cases is valid for all nonempty I,J C
{0,...,m—1}:

1) A(Eie[ a;) = A(Zje.] a;)

(2) A s ) = A(zje_,aj) if min I =min J

(3) A iecra) = A jes05) iffI=J . O

4.9 Some Open Problems

It is an open question whether, in general, a restricted canonizing version of
the Graham-Rothschild theorem holds true. In particular, coming back again
to arithmetic progressions, we find the following conjecture very attractive:

Conjecture.
Let k and g be positive integers. Then there exists a set S of positive integers
such that girth (APg,) > g but still for every coloring A : § — w there exists

a progression A € APg ) such that A]A either is a constant or a one-to-one
coloring.
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Another open problem is to determine the canonical total orders on k-
parameter sets for £k > 0 , thus to prove a higher dimensional analogue to
theorem 3.9. Canonical total orders on k—element sets are investigated in Leeb,
Promel (preprint 1983). Using the functor & : [4](}) — (}) we get from this
some canonical orders for [4](}) . Some other we obtain from the canonizing
version of Hales-Jewett’s theorem (considering the parameters as letters). But
a complete characterization of the canonical total orders on k—-parameter sets
is not yet known. Recall that theorem 4.7 is not a canonizing version of the
full Graham-Rothschild theorem but only of its special case G = {e} . It is
not known how a canonizing version looks like if we do not restrict ourselves
to the trivial group. There seems to be a difference in the canonizing pattern
depending on whether G is an abelian group or a non—abelian one.

Every theorem is accompanied by a Ramsey-type function, e.g., the
Graham-Rothschild theorem by GR(.,.,.,) . Almost nothing is known about
the (minimal) growthrate of the functions. Taylor (1981) gives an upper bound
for FU(.,.) . Compare also Graham, Rothschild, Spencer 1980.

5. Infinite Versions

We consider the question to what extend results from previous sections admit
infinite versions, like, typically, Ramsey’s theorem does. It turns out that, in
general, the answer depends on the set theoretic axioms.

If the set of possible monochromatic configurations has the cardinality of
the continuum and also the number of colored (partitioned) objects is that
large, straightforward diagonalization methods, involving the axiom of choice,
produce bad colorings without any monochromatic configuration. However, po-
sitive results can be established restricting to colorings which are defined wi-
thout using the axiom of choice. This can be made precise using topological
notions coming from descriptive set theory. The situation can be compared
with, e.g., classical real analysis. The topic of real analysis is not to study
all mappings R — R but rather those functions which are continuous, resp.,
can be derived from continuous functions in a natural way. We should mention
here René Baire’s thesis ‘Sur le fonctions de variables réelles’ (Baire (1899)) the
hierarchy of Borel-measurable functions. It turns out that for our purposes the
concept of Borel-measurable mappings can be extended in two ways, using the
classical notions of category and measure (as, e.g., nicely described in Oxtoby’s
book ‘Measure and Category’ 1971.

In some cases, however, it turns out that the number of colored (par-
titioned) objects is countable, i.e., small compared to the number of possible
monochromatic objects. Ramsey’s theorem itself is an example for this. In those
cases positive results can be established without any set theoretic complication.

Before we discuss specific examples we straightforwardly extend the defi-
nitions of section 2 and introduce [4,G](%) , resp. [4,G](}) for nonnegative
integers k < w .
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Definition. For an ordinal ¥ < w we denote by [A](}) the set of all words
(mappings) f :w — AU {); | ¢ < k} satisfying
for every j < k there exists i < w with f(i) = ); and min f~'();) <
min f~!()\j) forall i< j<w.
Composition is defined as before. Then examples 2.1 up to 2.6 carry over to
the infinite situation. [4,G]() and [A, G](;) are defined analogously.

5.1 An Infinite x-Version

Compare 3.3 and 4.5. We define, for k < w ,
x W _ : -1 w
[A1(3) = {g1 min g71(k) | g € 41, % )},

where g] min g~!(k) denotes the restriction of g to {0,..., min g~'(k)
—1} ; alternatively and in accordance with our earlier definitions we could set
(¢]min g~'(k)) (é) = g(i) for i < min ¢g~'(k) and (g] min g7'(k)) (1) = =
otherwise. For F € [A4]() and g € [A]*(}) we put

F-g=(F-g)]min (F-3)7'(k),

where § € [A](,},) in such that §] min §—*(k) = g . Recall that this also agrees
with the definitions of sections 3.3, resp., 4.5.

5.1 Theorem (Carlson-Simpson lemma, Carlson, Simpson (1984), Voigt to
appear)

For every mapping A : [A]*(}) — {0,...,r — 1} , where r and k are
nonnegative integers, there exists F' € [A]({) such that A(F-g) = A(F -h) for
all g,h € [A]"(2) . 0

The case k = 0 is due independently to Carlson, Simpson (1984) and Voigt
(to appear), k£ > 0 is from Voigt (to appear). Like the finite x—version of Hales-
Jewett’s theorem, viz., theorem 3.3, the particular case kK = 0 of theorem 5.1,
also known as the Carlson-Simpson lemma, proves to be a convenient tool for
establishing further partition theorems. Though slightly weaker, this particular
case is closely related to the famous Halpern-Lauchli theorem (Halpern, Lauchli
(1966)). Several applications and extensions of the Halpern—-Lauchli theorem
actually need the Carlson-Simpson lemma only, e.g., (Blass (1981)). Note that
the proof of the Carlson-Simpson lemma is somewhat more transparent than
those known for the full Halpern-Lauchli theorem.

5.2 Infinite A-Sequences

Next we consider 0-parameter sets in infinite dimensional cubes A“ , resp., in
our present notation [A](§ ) . Note that |[A](§)| = |[4](¥)| = [2*| . Hence, as
mentioned above, straightforward diagonalization techniques show that there
exist mappings A : [4](;) — {0,1} such that for all F € [A](¥) there exist
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g,h € [A]() with A(F-g) # A(F-h) . Of course, A should have at least two
elements, otherwise everything would be trivial. However, these constructions
rely on the axiom of choice. This can be made precise restricting to construc-
tively given mappings. Basically, there exist two approaches, those of category
and those of measure. Using a completely different language (and not being
aware of Hales—Jewett’s theorem, resp., the Graham-Rothschild generalization
there of) these two approaches were suggested by Moran and Strauss (1980).

5.2.1 The Category Approach to A¥

Let us view A“ as a topological space, viz., the Tychonoff product with A
belng discrete. Thus A“ is a metric space with d((fo, f1,...),(90,91,-..)) =
= +1 if the sequences f and g differ for the first time at position n . Recall
that meager sets are countable unions of nowhere dense sets and that a set
B is a Baire set iff there exists a meager set M such that the symmetric
difference (B/M) U (M/B) is open (Baire sets are open modulo meager sets).
The axiom of choice implies that there exist sets X C A“ which are not Baire,
but as Shelah (1984) shows, it is consistent with ZF to assume that every set
X C A“ is Baire.
Moran and Strauss (1980) investigated Baire mappings A : A - w .

Notation. (A)2 C [A](?) is the set of m—parameter words F': A — AU {); |
i < w} such that |F 1(/\ )| =1 for every i < w} , i.e., every parameter occurs
exactly once.

Note that in the finite dimensional case we cannot hope to find a mo-
nochromatic parameter word where each parameter occurs exactly once (e.g,
that would yield monochromatic arithmetic progressions with difference 1).
However, with respect to infinite dimensional cubes the situation is somewhat
different:

5.2.1 Theorem (Moran-Strauss (1980))
Let A be a finite set. For every Baire mapping A : [A](}) - w ,i.e., A7 (i) is
a Baire set for all i < w , there exists F € (A)., such that for all g,h € [A](]) :
A(F-g)= A(F-h). 0
This is proved using a Baire category argument. As a matter of fact, the Moran—
Strauss result is somewhat stronger than stated above.

Theorem 5.2.1 cannot be extended to infinite sets A , as there exist Borel
mappings A : [w](y) — {0,1} such that for all F € [w]() there exist g,h €
[w](§) with A(F - g) # A(F - h) (see Moran, Strauss 1980)

5.2.2 The Measure Approach to AY

Let p be the completion of the product probability measure on A“ which
is generated by equal distribution on A . We consider measurable mappings.
Here Moran and Strauss (1980) prove a density result:

5.2.2 Theorem (Moran-Strauss (1980))
Let A be a finite set and let M C A“ be a set of positive measure. Then there
exists F € (A) such that F-[A](7) S M . o
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5.2.3 Canonizing Results for A“

We consider equivalence relations on A“ which are topologically nice and ask
about the ‘typical’ structures, i.e., what are the canonizing patterns? There
exist two different concepts:

(a) Baire mappings into metric spaces

Let X be a metric space. A mapping A : AY — X is a Baire mapping if
preimages of open sets in X are Bairein A“ .

5.2.3a Theorem (Promel, Simpson, Voigt (1986))

Let A = 2 be a two-element set, let X be a metric space and let A : 2¥ — X be
a Baire mapping. Then there exists F € (2) and there exists an equivalence
relation = on 2 such that for all g = (9o, 41,...), h = (ho,h1,...) € 2¥ it
follows that A(F-g) = A(F-h) ifand only if g; = h; forall i <w . m]

Remark. These kind of results are related to recursion theoretic investigations
of Lachlan (1971) and Thomason (1970). The particular result for continuous
mappings is due to some unpublished work of Silver from about 1960. It has
been shown in Lefman, Voigt (to appear) that Theorem 5.2.3a does not extend
to sets A with at least three elements. For sets A with |A| > 3 one should
weaken the requirements on F, allowing ascending parameter words.

Note that some equivalence relations on A“ which are easily described do
not occur as fibres of Baire mappings into metric spaces, e.g., consider f ~ g
if and only if {¢ < w | f; # gi} is finite.

Moreover, this equivalence relation cannot be canonized by some F €
(A)? . Still, this example is covered by the second concept.

(b) Baire partitions

An equivalence relation R on A“ can be visualized as a subset of A¥ x A“ .
We call R a Baire partition iff R C A“ x A“ is a Baire set with respect
to product topology. In particular, every Borel set and every analytic set is
restricted Baire.

5.2.3b Theorem (Prémel, Simpson, Voigt (1986), Promel, Voigt to appear)
Let A be a finite set and let R C A“ x A“ be a Baire partition. Then

there exists F' € [A]({) and there exists an equivalence relation = on A
such that for all g = (gg,g1,-..), b = (ho,h1,...) € AS it follows that
(F-g9,F-h)eR ifandonlyif g;=h;, forall i<w. m]

Note that the assertion is weaker than in the previous theorem, as we can only
claim that F € [4](Y) .

Nothing is known with respect to measurable mappings A : [4](§) — X,
resp., with respect to measurable partitions in the sense of (b).
5.2.4 Canonical Orders for AY
In principle one should expect the same orders as in theorem 3.9. But there is
still a gap in our knowledge. With respect to the notions of category only
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the case |A| = 2 is completely settled. We state this particular result using the
interpretation 2.3:

5.2.4 Theorem (Prémel, Simpson, Voigt (1986))

Let < be a Baire order on 2 (the power set lattice of w ), i.e., viewed as a
subset of 2 x 2“ the order has the property of Baire. Then there exists a 2“—
sublattice £ C 2% such that <)L is a lexicographic order, either coming from
0 <1 or coming from1 < 0. O

With respect to |A| > 2 the same canonical orders as described in theorem
3.9 occur, but unfortunately we can prove this only for restricted Baire orders,
although the result should be true for Baire orders in general. Also, the case of
measurable orders on A“ is still untouched.

5.3 Partitions of [A](}) for0<k<w .

Again, except for |4| = 0 and k = 1, we have |[4](%})| = |[4](?)| = |R| and
so we have to restrict to the concepts of category and measure. As [4]() C
(AU{Xg,...,Ak—1})“ and, moreover, this is an open non-null set, we take the
induced topology, resp. measure.

Compare Promel, Voigt (to appear) for results concerning the concept of
measure. With respect to the concept of category the following is known:

5.3.1 Theorem (Promel, Voigt (1985))
For every Baire mapping A : [A](%) — {0,...,r — 1} there exists F € [A]()
such that A(F - g) = A(F - k) for all g,h € [A](}) - mi

Remark. For Borel-mappings this has been established by Carlson and Simpson
(1984). Let us mention the case |A| = k = 1 explicitly, using the interpretation
2.2 (cf. also 4.3).

5.3.2 Corollary (Promel, Voigt (1985))

Let 2“ be the powerset lattice of w , topologically this is Cantor’s discontinuum.
For every Baire-mapping A : 2% — {0,...,r — 1} , where r is a nonnegative
integer, there exist mutually disjoint and nonempty subsets A; € 2%, i <w ,
such that A(U;¢; Ai) = A(Ay) for all nonempty subsets I C w . 0

This is closely related to a question of Erdds (1975) who asked whether
there exists a cardinal & such that for every partition of the nonempty subsets
of x into finitely many classes there exist countably many mutually disjoint
and nonempty subsets A;, i < w , such that all their unions belong to the same
class. The expected answer is negative and presently the best result is due to
Galvin, Prikry and Wolfsdorf (1984) who showed that the answer is no for all
k <X, . In view of Shelah’s result ’Consistency of ZF’ implies *Consistency of
ZF plus every set X C 2“ has the Baire property’ (Shelah (1984)), we see that
it is consistent with ZF , but contradictory to ZFC , to assume that already
K = w admits an affirmative answer.
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A crucial observation for proving theorem 5.3.1 is that for every meager set
M C [A](}) there exists F € [A]() such that F-g ¢ M for every g € [4](%) ,
in other words, meager sets are Ramsey null.

As every Baire mapping A : [4](}) — X , where X is a metric space,
is continuous apart from a meager set (this follows, e.g., from (Emeryk, Fran-
kiewicz, Kulpa (1979)),every Baire mapping A : [A](}) — & is continuous on
some F € [4](.) ,i.e.

Lemma (Promel, Voigt (1985)).
For every Baire mapping A : [A](}) — X , where X is a metric space, there
exists F € [A]( ") such that the restriction A]F - [A](%) is continuous. O

But even more can be said, as the structure of a ’typical’ continuous
mapping can be specified further. Basically, it is determined by some (4,k)-
canonical equivalence relation (cf. section 4.7). This yields the canonizing theo-
rem for [A](}) :

5.3.3 Theorem (Pr6émel, Simpson, Voigt (1986))

For every Baire mapping A : [A](}) — X , where X is a metric space, there
exists a (A, k)—canonical pair II and there exists F € [A]()) such that for all
g,h € [4](}) it follows that

A(F-g)=A(F-h)ifandonlyif g=pg h . O

5.4 Partitions of [A]()

The situation is slightly more delicate than before. It turns out that still the
concepts of category and measure are too general. For example,

5.4.1 Fact

There exists a meager set M C [A4](;)) (with respect to the Tychonoff product
topology on [A]()) such that F - [A](2) N M # 0 for every F € [4]() -

Proof. One easily observes that for v € {0,1} the set M, = {F € [4]({)) |
min F~1(\;) = v (mod 2) for every i < w} is meager, but F - [4](“) N (Mo U
Mi) # 0 for every F € [A]({) . As every subset of a meager set is meager,
using the axiom of choice, an M C My U M; can be easily selected. O

In some sense, the defect with the Tychonoff product topology is that although
cosets F'-[A4]( ) are homeomorphic to [4](“) , the natural subspace embedding
F:[A(2) — [4)(2) with F(G) = F - G generally is not a homeomorphism. F
is always continuous, but, in general, it is not open.

This leads to refine the Tychonoff product topology such that all subspace
embeddings F' become open mappings.

In connection with the structure (5) of infinite subsets of w this approach
originally is due to Ellentuck (1974). For this reason we call the resulting topo-
logy the Ellentuck topology. (Note that on () the Ellentuck topology agrees
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with the so called exponential or Vietoris topology. In our present context
this seems to be a casual incidence, but compare Prikry’s suggestion (-Prikry
(1984)).
Equivalently, the Ellentuck topology can be understood in the following way:
The Tychonoff cones T(H,n) := {G € [A)() | G(3) = H(3) for all i < n}
where H € [A]({) and n < w , form a system of basic open neighborhoods
for the Tychonoff product topology. A basic system for the Ellentuck topology
then is given by the sets F- T(H,n) , where F,H € [4](Y) ,and n <w .
Somewhat easier to visualize is our final description of the Ellentuck topology:
for F € [A|(2) and ¢ < w let £(F,q) = {F -G | G € [4](_) and G(3) = X
for all ¢ < g} be the Ellentuck neighborhood determined by F and g . Then
a basic system for the Ellentuck topology is given by the sets of all Ellentuck
neighborhoods £(F,q) , where F € [A]({) and ¢ < w (with respect to the
Tychonoff product topology on [A](()).

The Ellentuck topology is closely related to the partition problem:

5.4.2 Theorem (Carlson, Simpson (1984))

(1) A set M C [A](_) is meager with respect to the Ellentuck topology iff
every Ellentuck neighborhood £(F, q) contains some G € £(F,q) with MnN
£(G,9)=0.

(2) AsetB C [A]({) has the property of Baire with respect to the Ellentuck to-
pology iff every Ellentuck neighborhood E(F, q) contains some G € E(F, q)
with £(G,q) C B or with E(G,q)NB=10. a

Such an Ellentuck type theorem implies results concerning the Tychonoff
product topology. Recall that analytic sets are obtained from closed sets
via Souslin’s A-operation. The property of Baire is preserved under this A-
operation. Hence, in particular, assertion (2) of theorem 5.4.2 is valid for sets
which are analytic with respect to the Tychonoff product topology.

Incidentally, theorem 5.4.2 can be generalized somewhat considering the
structure [4, G](()) . The notion of the Ellentuck topology is defined as before.

5.4.3 Theorem (Voigt to appear)

(1) A set M C[A,G|(?) is meager with respect to the Ellentuck topology iff
every Ellentuck neighborhood E(F, q) contains some G with £(G,¢)NM =
0.

(2) AsetB C [A,G]() has the property of Baire with respect to the Ellentuck
topology iff every Ellentuck neighborhood £(F, q) contains some G with
&(G,q) C B or with £(G,q)NB=10. O

Carlson considered the following variation:
Definition. Let [A]<() C [A](?) consist of all mappings F : w — AU {X; |

t < w} which act surjectively onto {); | i < w} and satisfy additionally that
max F~1(i) < min F~1(i 4+ 1) forall i <w .

Such parameter words F' € [A]<(") are called ascending w-parameter words of
length w over alphabet A . Here the parameters occur ascendingly in blocks
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and are not intertwined. Clearly, [A]<(2)-[A]<(2) = [A]<() ,ie., [A]<() is
a subsemigroup of [A](_)) . Carlson observed that also this submonoid admits
an Ellentuck type theorem:

5.4.4 Theorem (Carlson in preparation, ef. also Prikry (1982) and Voigt (to

appear))

(1) A set M C [A]<(?) is meager with respect to the Ellentuck topology on
[A]<(%) iff every Ellentuck neighborhood E(F,q) , where F € [A]<(_) ,
contains some G € [A]<({) with £(G,q)N"M =0.

(2) A set B C [A]<(") has the property of Baire with respect to the Ellentuck
topology on [A]<(%) iff every Ellentuck neighborhood £(F,q) , where F €
[A]<(2) , contains some G € [A]<({) with £(G,q)NB =0 or £(G,q) N
<) cs.

For A = @ this theorem reduces to the original Ellentuck theorem. For |4]| =1
this is a result of Milliken (1975). It turns out that the cases |[A| > 2 are
particularly more difficult to prove.

Let us say that a subsemigroup S C [A](_)) is Ramsey if it satisfies an
Ellentuck type theorem. So, Carlson’s theorem says that [A]<(!) is Ramsey.

Problem. Characterize those subsemigroups S C [4]( ) which are Ramsey.

6. Other Structures

In this final section we very briefly mention some results which are closely
related to the concept of Graham—Rothschild parameter words.

6.1 Hindman’s Theorem

Graham and Rothschild (1971) conjectured an infinite generalization of the
Rado-Folkman-Sanders theorem (cf. 4.3).

Notation. A family (4;);<, of finite and nonempty subsets of w is an ascending
family if max A; < min A;4; for all i < w . By FU((A;)i<w) we denote the set
of all finite unions of the family (A:)i<w ,i.€., FU((4i)icw) = {Ujes 4i | S
a finite and nonempty subset of w} . E.g., if A; = {1} then FU(({?})i<w) is
just the set of finite and nonempty subsets of w .

6.1.1 Theorem (Hindman’s finite union theorem , Hindman (1974))

For every mapping A : FU((A:)icw) — {0,...,7 — 1} , where (4;)i<w is an
ascending family and r a positive integer, there exists an ascending family
(Bi)icw with each B; € FU((A:)i<w) such that A]FU((B;)i<w) is a constant
mapping, i.e., all finite unions of the (B;)i<. get the same color. O
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Again, using binary expansions of integers, this can be formulated in terms of
finite sums:

6.1.2 Theorem (Hindman’s finite sum theorem, Hindman (1974))

For every mapping A : IN — {0,...,r —1} , where r is a positive integer, there
exist infinitely many numbers ag,a1,0az,... such that all finite sums Y ;. s a;
get the same color.

Several proofs have been given for this theorem, e.g., by Baumgartner
(1974) using some kind of combinatorial forcing, by Glazer (see Hindman
(1979)) using idempotent ultrafilters in SIN and by Fiirstenberg and Weiss
(1978) using topological dynamics, compare also Fiirstenberg’s book (1981).
Taylor (1976) considered a canonizing version of Hindman’s theorem. For sim-
plicity we only state the sum version:

6.1.3 Theorem (Taylor (1976))
For every mapping A : IN — IN there exist infinitely many numbers ag,a1,az ...
such that one of the following five cases holds for all finite and nonempty subsets
S, TCIN:
(1) A(Xies i) = A(Xser a:)
(2) A(D ;es @) = A(X;er ai) if and only if min S =minT
(3) A(Xies i) = A(D;erai) if and only if max$ = maxT
(4) A(Xies i) = A(X;er ai) if and only if min S =minT
and max .S =maxT
(5) A(Qies @) = A(X;erai) fand only if S=T . m]

Compare this with the canonizing version of the Rado-Folkman—Sanders
theorem (viz., 4.7).

6.2 Ascending Parameter Words

We already introduced the notion of ascending parameter words at the end of
section 5.4. Let us recall the definition

Definition.

A1=(%) = 15 € (%) 1 max 7720 < i £~ )
for all i < k < —1 and f~1(Ax_) is finite}

[4]< (Z) = {F € [4] (:) | (F7*(\:))i<w is an ascending family} .

Composition is defined as before.

Hindman’s theorem can be formulated using one-element alphabets and
partitioning ascending one-parameter words (compare 4.3). This has been ge-
neralized by Milliken (1975) and, independently, by Taylor (1976) who also
considered partitions of ascending k-parameter words:
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6.2.1 Theorem (Milliken 1975)

Let A = {0} . For every mapping A : [{0}]<(%) — {0,...,r — 1} , where k
and r are positive integers, there exists a monochromatic F € [{0}]<(?) , i.e.,
A(F-g) = A(F - h) for all g, h € [{0}]<(®) . o

Lefman (1985) considered a canonizing version of Milliken’s result, thus
extending Taylor’s canonizing theorem 6.1.3. It turns out that all canonizing
patterns on [{0}](}) can be obtained as follows: first take some h € [{0}](_'7?) ,
where j < k ; for a given g € [{0}]({) this leaves us with g-h € [{0}](‘;) ;
additionally, the patterns from Taylor’s theorem can be applied to each (g -
h)"1(X\i) , © < j . Clearly, such patterns are hereditary and thus cannot be
avoided. Lefman’s result states that this is best possible.

If [A] > 2, again the axiom of choice prevents Ramsey type partition
theorems. Using topological tools, as explained in section 5.3, positive results
can be established:

6.2.2 Theorem (Promel, Voigt (1985))
For every Baire-mapping A : [A]<({) — {0,...,r — 1} , where k and r are
positive integers, there exists a monochromatic F € [A]<(¥) . O

Nothing is known for measurable partitions. Also, no canonizing version
of this theorem is known.

6.8 Vector Spaces

Let F be a finite field and let F(}) be the set of k~dimensional vector spaces
in F™ , the n—dimensional vector space over F . At the end of the 60’s much
effort has been put on proving a Ramsey type partition theorem for finite
vector spaces. Eventually a success has been achieved by Graham, Leeb and
Rothschild (1972). We mentioned already some connections between parameter
sets and vector spaces (e.g. 2.5). The close relationship will be transparent if
we consider subspaces M € F (:1) represented by matrices. There is a general
feeling that analogous methods and results as for parameter sets also apply
for vector spaces. We do not go into any details, but refer the reader to the
literature, e.g. Leeb (1973), Spencer (1979), Deuber, Voigt (1982), Voigt (1984,
1985), Carlson (1987), Promel (1986).

6.4 Finite Abelian groups

Here the same remarks as before apply. However, concerning Ramsey type par-
tition theorems, finite abelian groups have not yet been studied systematically.
What is known is a partition theorem (Deuber, Rothschild (1975), Voigt (1980))
and an induced partition theorem (Prémel (1982)). But no canonizing version
and no infinite version is known.



146 Mathematics of Ramsey. Structural Theory

References

Abramson, F., Harrington, L.A. (1978): Models without indiscernibles. J. Symb. Logic
43, 572-600

Baire, R. (1899): Sur les fonctions de variables réelles. Ann. Mat. 3, 1-123

Baumgartner, J.E. (1974): A short proof of Hindman’s theorem. J. Comb. Theory,
Ser. A 17, 384-386

Blass, A. (1981): A partition theorem for perfect sets. Proc. Am. Math. Soc. 82,
271-277

Brown, T.C., Buhler, J.P. (1982): A density version of a geometric Ramsey theorem.
J. Comb. Theory, Ser. A 32, 20-34

Brown, T.C., Buhler, J.P. (1984): Lines imply spaces in density Ramsey theory.
J. Comb. Theory, Ser. A 36, 214-220

Carlson, T.J. (1987): An infinitary version of the Graham-Leeb-Rothschild theorem.
J. Comb. Theory, Ser. A 44, 22-33

Carlson, T.J. (1988): Some unifying principles in Ramsey theory. Discrete Math. 68,
117-168

Carlson, T.J. (In preparation, cf. Carlson, Simpson (1984))

Carlson, T.J., Simpson, S.G. (1984): A dual form of Ramsey’s theorem. Adv. Math.
53, 265-290

Descartes, B. (1948): A three color problem. Eureka

Deuber, W. (1973): Partitionen und lineare Gleichungssysteme. Math. Z. 133, 109-123

Deuber, W. (1975): Partitionstheoreme fiir Graphen. Comment. Math. Helv. 50, 311-
320

Deuber, W., Rothschild, B. (1978): Categories without the Ramsey property. In: Ha-
jnal, A., Sés, V. (eds.): Combinatorics I. North Holland, Amsterdam, pp. 225-249
(Colloq. Math. Soc. Jénos Bolyai, Vol. 18)

Deuber, W., Rothschild, B., Promel, H.J., Voigt, B. (1981): A restricted version of
Hales-Jewett’s theorem. In: Hajnal, A., Lovész, L., Sés, V. (eds.): Finite and
infinite sets I. North Holland, Amsterdam, pp. 231-246 (Colloq. Math. Soc.
Jénos Bolyai, Vol. 37)

Deuber, W., Rothschild, B., Voigt, B. (1982): Induced partition theorems. J. Comb.
Theory, Ser. A 32, 225-240

Deuber, W., Voigt, B. (1982): Partitionseigenschaften endlicher affiner und projektiver
Raume. Eur. J. Comb. 3, 329-340

Deuber, W., Graham, R.L., Promel, H.J., Voigt, B. (1983): A canonical partition
theorem for equivalence relations on Z*. J. Comb. Theory, Ser. A 34, 331-339

Dowling, T.A. (1973): A class of geometric lattices based on finite groups. J. Comb.
Theory, Ser. B 13, 61-87

Ellentuck, E. (1974): A new proof that analytic sets are Ramsey. J. Symb. Logic 39,
163-165

Emeryk, A., Frankiewicz, R., Kulpa, W. (1979): On functions having the Baire pro-
perty. Bull. Pol. Acad. Sci., Math. 27, 489-491

Erdés, P. (1959): Graph theory and probability. Can. J. Math. 11, 34-38

Erdés, P. (1975): Problems and results in combinatorial number theory. In: Journées
Arithmétiques de Bordeaux (Bordeaux, 1974). Société Mathématique de France,
Paris, pp. 295-310 (Astérisque, No. 24-25)

Erdés, P., Hajnal, A. (1966): On the chromatic number of graphs and set-systems.
Acta Math. Acad. Sci. Hung. 17, 61-69

Erdés, P., Kleitman, D.J. (1971): On collections of subsets containing no 4-member
Boolean algebra. Proc. Am. Math. Soc. 28, 87-90

Erdés, P., Rado, R. (1950): A combinatorial theorem. J. Lond. Math. Soc. 25, 249-255

Frankl, P., Graham, R.L., Rédl, V. (1987): Induced restricted Ramsey theorems for
spaces. J. Comb. Theory, Ser. A 44, 120-128



Parameter Sets 147

Fiirstenberg, H. (1981): Recurrence in ergodic theory and combinatorial number
theory. Princeton University Press, Princeton, NJ

Fiirstenberg, H., Katznelson, Y. (1985): An ergodic Szemerédi theorem for IP-systems
and combinatorial theory. J. Anal. Math. 45, 117-168

Fiirstenberg, H., Weiss, B. (1978): Topological dynamics and combinatorial number
theory. J. Anal. Math. 34, 61-85

Galvin, F., Prikry, K., Wolfsdorf, K. (1984): Ein Zerlegungssatz fiir P(x). Period.
Math. Hung. 15, 21-40

Graham, R.L., Rothschild, B. (1971): Ramsey’s theorem for n-parameter sets. Trans.
Am. Math. Soc. 159, 257-292

Graham, R.L., Leeb, K., Rothschild, B. (1972): Ramsey’s theorem for a class of ca-
tegories. Adv. Math. 8, 417-433

Graham, R.L., Rothschild, B., Spencer, J. (1980): Ramsey theory. J. Wiley & Sons,
New York, NY

Graham, R.L. (1984): Recent developments in Ramsey theory. In: Ciesielski, Z.,
Olech, C. (eds.): Proc. International Congress of Mathematicians (Warsaw,
1983), Vol. 2. North Holland, Amsterdam, pp. 1555-1569

Hales, A.W., Jewett, R.I. (1963): Regularity and positional games. Trans. Am. Math.
Soc. 106, 222-229

Halpern, J.D., Lauchli, H. (1966): A partition theorem. Trans. Am. Math. Soc. 124,
360-367

Hindman, N. (1974): Finite sums from sequences within cells of a partition of N.
J. Comb. Theory, Ser. A 17, 1-11

Hindman, N. (1979): Ultrafilters and combinatorial number theory. In: Nathan-
son, M.B. (ed.): Number theory. Springer Verlag, Berlin, Heidelberg, pp. 119-184
(Lect. Notes Math., Vol. 751)

Jezek, J., Nedetfil, J. (1983): Ramsey varieties. Eur. J. Comb. 4, 143-147

Kuratowski, K. (1966): Topology I. Academic Press, New York, NY

Lachlan, A.H. (1971): Solution to a problem of Spector. Can. J. Math. 23, 247-256

Leeb, K. (1973): Vorlesungen iiber Pascaltheorie. Universitat Erlangen-Nirnberg (Un-
published)

Leeb, K. (1975): A full Ramsey theorem for the Deuber category. In: Hajnal, A.,
Rado, R., Sés, V. (eds.): Infinite and finite sets II. North Holland, Amsterdam,
pp. 1043-1049 (Colloq. Math. Soc. Jénos Bolyai, Vol. 10)

Leeb, K., Promel, H.J. (1983): Ordering subsets of finite sets. Preprint

Lefmann, H. (1985): Kanonische Partitionssatze. Dissertation, Universitat Bielefeld

Lefmann, H., Voigt, B.: A remark on 4“. SIAM J. Discrete Math., to appear

Lovész, L. (1968): On the chromatic number of finite set-systems. Acta Math. Acad.
Sci. Hung. 19, 59-67

Milliken, K. (1975): Ramsey’s theorem with sums or unions. J. Comb. Theory, Ser. A
18, 276-290

Moran, G., Strauss, D. (1980): Countable partitions of product spares. Mathematika
27, 213-224

Nesetfil, J., Rodl, V. (1975): Partitions of subgraphs. In: Fiedler, M. (ed.): Recent
advances in graph theory. Academia Praha, Prague, pp. 405-412

Nesetfil, J., Rddl, V. (1976): Van der Waerden’s theorem for sequences of integers
not containing an arithmetic progression of k terms. Commentat. Math. Univ.
Carol. 17, 675-688

Nesetfil, J., Rodl, V. (1977): Partitions of finite relational and set-systems. J. Comb.
Theory, Ser. A 22, 289-312

Nesetfil, J., Rodl, V. (1978): Selective graphs and hypergraphs. In: Bollobés, B. (ed):
Advances in graph theory. North Holland, Amsterdam, pp. 181-189 (Ann. Dis-
crete Math., Vol. 3)



148 Mathematics of Ramsey. Structural Theory

NesetFil, J., Rodl, V. (1979): A short proof of the existence of highy chromatic hy-
pergraphs without short cycles. J. Comb. Theory, Ser. B 27, 225-227

Nesetiil, J., Rédl, V. (1980): Dual Ramsey type theorems. In: Proc. 8th Winter School
on Abstract Analysis (Prague, 1980). Ceskoslovenska Akademie Ved., Prague,
pp- 121-123

Nesetfil, J., Promel, H.J., Rodl, V., Voigt, B. (1982): Canonical ordering theorems,
a first attempt. In: Proc. 10th Winter School on Abstract Analysis (Srni, 1982).
Circolo Matematico di Palermo, Palermo, pp. 193-197 (Rend. Circ. Mat. Pa-
lermo, II. Ser., Suppl. No. 2)

Nesetiil, J., Rodl, V. (1983): Ramsey classes of set-systems. J. Comb. Theory, Ser. A
34, 183-201

Nesetfil, J. (1984): Some nonstandard Ramsey-like applications. Theor. Comput. Sci.
34, 3-15

Nesetfil, J., Rodl, V. (1984): Combinatorial partitions of finite posets and lattices -
Ramsey lattices. Algebra Univers. 19, 106-119

Nesetfil, J., Rddl, V. (1985): Two remarks on Ramsey’s theorem. Discrete Math. 54,
339-341

Nesetfil, J., Promel, H.J., Rédl, V., Voigt, B. (1985): Canonizing ordering theorems
for Hales-Jewett structures. J. Comb. Theory, Ser. A 40, 394-408

Oxtoby, J.C. (1971): Measure and category. Springer Verlag, Berlin, Heidelberg
(Grad. Texts Math., Vol. 3)

Prikry, K. (1982): In these notes I give .... Manuscript

Prikry, K. (1985). In: Rival, I. (ed.): Graphs and order. D. Reidel, Dordrecht, p. 561
(NATO ASI Ser., Ser. C, Vol. 147)

Promel, H.J., Voigt, B. (1981): Recent results in partition (Ramsey) theory for finite
lattices. Discrete Math. 35, 185-198

Promel, H.J. (1982): Induzierte Partitionssatze. Dissertation, Universitat Bielefeld

Promel, H.J., Voigt, B. (1983): Canonical partition theorems for parameter sets.
J. Comb. Theory, Ser. A 35, 309-327

Promel, H.J. (1985): Induced partition properties of combinatorial cubes. J. Comb.
Theory, Ser. A 39, 177-208

Promel, H.J., Voigt, B. (1985): Baire sets of k-parameter words are Ramsey. Trans.
Am. Math. Soc. 291, 189-201

Prémel, H.J., Voigt, B. (1985): Canonizing Ramsey theory. Preprint

Promel, H.J. (1986): Partition properties of g-hypergraphs. J. Comb. Theory, Ser. B
41, 356-385

Promel, H.J., Voigt, B. (1986): Hereditary attributes of surjections and parameter
sets. Eur. J. Comb. 7, 161-170

Promel, H.J., Simpson, S.G., Voigt, B. (1986): A dual form of Erdés-Rado’s canoni-
zation theorem. J. Comb. Theory, Ser. A 42, 159-178

Prémel, H.J., Rothschild, B. (1987): A canonical restricted version of van der Waer-
den’s theorem. Combinatorica 7, 115-119

Promel, H.J., Voigt, B. (1987): Ramsey theorems for finite graphs I. Report No.
86447-OR, Institut fur Operations Research, Universitat Bonn

Promel, H.J., Voigt, B. (1988): A sparse Graham-Rothschild theorem. Trans. Am.
Math. Soc. 309, 113-137

Prémel, H.J. (1989): Some remarks on natural orders for combinatorial cubes. Dis-
crete Math. 73, 189-198

Promel, H.J., Voigt, B.: A short proof of the restricted Ramsey theorem for finite
set-systems. J. Comb. Theory, Ser. A, to appear

Prémel, H.J., Voigt, B.: Aspects of Ramsey theory. Springer Verlag, Berlin, Heidelberg
(To appear)

Promel, H.J., Voigt, B.: Graham-Rothschild parameter words and measurable parti-
tions. Combinatorica, to appear



Parameter Sets 149

Ramsey, F.P. (1930): On a problem of formal logic. Proc. Lond. Math. Soc., IL. Ser.
30, 264286

Radl, V. (1981): On Ramsey families of sets. Manuscript (Unpublished)

R&dl, V. (1982): A note on finite Boolean algebras. Acta Polytech. Prace CVUT
Praze, Ser. IV Tech. Teoret. 1, 47-50

Schmerl, J. (1985). In: Rival, I (ed.): Graphs and order. D. Reidel, Dordrecht, pp.
539-540 (NATO ASI Ser., Ser. C, Vol. 147)

Schmerl, J. (1985): Substructure lattices of nodes of Peano arithmetic. Preprint

Shelah, S. (1984): Can you take Solovay’s inaccessible away? Isr. J. Math. 48, 1-47

Shelah, S. (1988): Primitive recursive bounds for van der Waerden numbers. J. Assoc.
Comput. Mach. 35, 683-697

Spencer, J. (1975): Restricted Ramsey configurations. J. Comb. Theory, Ser. A 19,
278-286

Spencer, J. (1979): Ramsey’s theorem for spaces. Trans. Am. Math. Soc. 249, 363-371

Sperner, E. (1928): Ein Satz uber die Untermengen einer endlichen Menge. Math. Z.
27, 544-548

Szemerédi, E. (1975): On sets of integers containing no k elements in arithmetic
progression. Acta Arith. 27, 199-245

Taylor, A.D. (1976): A canonical partition relation for finite subsets of w. J. Comb.
Theory, Ser. A 21, 137-146

Taylor, A.D. (1981): Bounds for the disjoint unions theorem. J. Comb. Theory, Ser. A
30, 339-344

Thomason, S.K. (1970): Sublattices and initial segments of the degrees of unsolvabi-
lity. Can. J. Math. 22, 569-581

Voigt, B. (1980): The partition problem for finite Abelian groups. J. Comb. Theory,
Ser. A 28, 257-271

Voigt, B. (1984): Canonization theorems for finite affine and linear spaces. Combina-
torica 4, 219-239

Voigt, B. (1985): Extensions of the Graham-Leeb-Rothschild theorem. J. Reine An-
gew. Math. 358, 204-220

Voigt, B. (1985a): Canonizing partition theorems: diversification, products and itera-
ted versions. J. Comb. Theory, Ser. A 40, 349-376

Voigt, B.: Parameter words, trees and vector spaces. Eur. J. Comb., to appear

Voigt, B.: Ellentuck type theorems. J. Symb. Logic, to appear

van der Waerden, B.L. (1927): Beweis einer Baudetschen Vermutung. Nieuw Arch.
Wiskd. 15, 212-216



Shelah’s Proof of the Hales-Jewett Theorem

Alon Nilli

This communication contains a description of Shelah’s recent proof for
the Hales-Jewett Theorem, in a condensed (and yet self contained) form. For
simplicity we include here only the proof of the one dimensional case of the
theorem, which solves a problem of Graham by showing that the Hales-Jewett
function is primitive recursive. The general cases will appear in the full paper
of Shelah.

Definitions. hy(n) = 2n; for i > 1, hi(n) = hi—1(hi-1(...hi—1(1))), where h;_;
is taken n times. (For example, hy(n) = 2".) A ={0,1,...,m —1}. A root is a
word in the symbols AU{z}, with at least one a, denoted T(:c). Fori € A, 7(3)is
the word obtained from 7(z) by replacing each z by 2. A combinatorial line is a
set of m words {7(¢) : 1 € A}, where 7(z) is a root. H(c,m) is the minimum n so
that in each coloring of A™ in ¢ colors there is a monochromatic combinatorial
line.

Theorem (She]ah s version of the Hales-Jewett Theorem). For every c¢,m >
1, H(e,m) < Lhy(c+m+2).

Proof. For each fixed ¢, we apply an induction on m. For m = 1 the theorem
is trivial. Assuming it holds for m — 1 (and ¢) we prove it for m. Put £ =

it
H(c,m —1). Define a sequence n;,i = 1,...,4, by n; = c”‘L,ng =c™ E’ ="
Put n = Y{ | n;. We now show that H(c,m) < n. Let C be a coloring by c
colors of A™. For £ roots 71(z),...,Te(z), where the length of 7;(z) is n;, and
for a word v = 111y ...v1 € A% we denote T(v) = T1(v1)T2(v2) . .. Te(ve). Note

that 7(v) € A™. We claim that there are £ roots 7,(z), ..., T¢(z) as above, such
that:

(*)If 20! € A* are two words which differ only in one coordinate, say, the
i-th in which »? = 0 and »} = 1, then C(7(v°)) = C(7(+?)).

(Notice that this clearly implies that the last equality holds for any v?,1! € A%,
whenever v? is obtained from »! by changing some of the coordinates of
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v! from 1 to 0.) We prove the existence of the required roots 7; by de-
scending induction on i. Suppose we have already defined 7; for i > 4.
For 0 < j < ny, let o; be the word consisting of j zeros followed by

ni, — j ones. Denote £; = E;.;ll nj. For each j as above define a color-

ing f; : Abot(t=io) _ {0.1,...,¢c — 1} by fi(v1,ve,-.. Ve, ,V£0+1, V)=
C(vi,vay. -3 V8,5 05y Tig+1(Vig41) - - - Te(V)-

Clearly, the total number of possibilities for f; is at most n;;. Thus, there
are j, > j1 such that f;, = fj,. Define, now 7;,(z) to be the root consisting of
j1 O’S, followed by j2 - j] :l:’S, followed by Niy — jz 1’s.

One can easily check that the roots 7y,...,7, defined by this procedure
satisfy (*). We can now complete the proof using the roots 7;. Define a col-
oring C* of {A\{0}}* by C*(v) = C(r(v)). Since £ = H(c,m — 1) there is a
monochromatic (with respect to C*) combinatorial line {v(i) : 1 € A\{0}},
where v(z) = v1...v¢ is a root of length £. Note that at least one v; is an
z. Clearly 7(v) is a root of length n and {7(3) : ¢ € A} is a monochromatic
combinatorial line with respect to C.

It remains to estimate the upper bound obtained by this for H(c,m).

Clearly, £; = £;_, Fem T < ™ T4 and this givesn = £, < c—lm—hs(cml).
By the induction hypothesis £ = H(c,m — 1) < Z-hy(c + m + 1) and hence

H(c,m) < n < Lhs(ha(c +m +1)) = ha(c +m + 2). This completes the
proof. O

Remark. The idea in the proof is that if n is large enough then in any coloring
C of the cube A™ there is an f-subcube in which the colors are indifferent to
the replacement of 0’s by 1’s. Here an £-subcube is a set of m* vertices of the
large cube in which all but £ pairwise disjoint sets of coordinates are fixed and
the coordinates in these sets vary so that all those in each set attain the sam
evalue.
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Partitioning Topological Spaces

William Weiss

1. Introduction

The study of partitions of topological spaces is a relatively new addition to
Ramsey theory, but one which promises interesting things in the future. We
partition topological spaces and hope to obtain a homogeneous set which is
topologically relevant — for instance, a set homeomorphic to a well known to-
pological space. We thus add something new to the ordinary partition calculus
of set theory. We do, however, borrow the arrow notation. We write

X - (Y)X
to mean the following statement.
‘X and Y are topological spaces, A is a cardinal and n is a positive in-

teger. For each function f : [X]® — X there is H C X such that H is
homeomorphic to Y and f is constant on [H]™.’

Also, as in the ordinary partition calculus
X —[Y]}
denotes the modification in which we only require that f"[H]™ is not all of \.
When certain structures such as the reals R, the rationals @ or cardinals

£ are involved, we use the letters top to denote the topological, rather than
order-theoretic or cardinality properties. For example, we have

R — (top Q)2.
By the way, this last statement is false. I hope it is the only false one in the
article. The negation of a partiton relation is written in the usual way, for
example

R /— (topw)i-
Note that, unlike the ordinary partition calculus, a superscript 1 does not
always signal an easy problem!
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I have tried to make this article as self-contained as possible so that the
benignly critical reader who has read this far should be able to enjoy it. Ne-
vertheless, a good place to look for undefined terms is the textbook ‘Set Theory’
by K. Kunen, or any of its competitors.

There is one more comment about terminology. In this article, as in set-
theoretic topology, space means regular space (i.e. singleton points are closed
sets and any point not in a closed set has a neighbourhood whose closure misses
the closed set). In fact our intuition will not go astray if you assume that each
space has a basis of sets which are clopen (that is, both open and closed). Just
to see what can happen when this topological restriction is relaxed, we present
this one misleading but clever example of J. Nesetfil, J. Pelant and V. Radl.

Let Y be the set of points on the usual Cartesian plane, with the topology
generated by sets of the form

{(zy):a<z<ptu{(z,y):z=p, c<y<d}U{(z,y):p<z <D}
where a,b,c,d and p are real numbers. It is not difficult to check that
Y — (topR)j.

However, “in real life” homogeneous homeormorphic copies of R are not, as we
shall see, so easily obtained.

Several results about partitioning topological spaces have never been pu-
blished and have been lying around in manuscript form. I have included those
proofs which are not likely to be otherwise found in the literature. The biblio-
graphy of the subject is small enough that I have been able to comment upon
each entry.

I would like to thank Alan Dow, Jim Baumgartner, Peter Komjath, John
Merrill, Saharon Shelah, Boban Velitkovi¢ and especially Stevo Todortevié for
helpful and interesting discussions about the material presented here.

2. Partitioning Singletons

We begin by partitioning topological spaces to study the relation X — (Y)}.
The simplest non-discrete spaces we can use for Y are just the countable ordi-
nals with the usual order topology; the simplest of these is just the convergent
sequence w + 1. To get a feeling for the subject, the reader might like to verify
the following relations:

w? /= (top w+1)} and w?+1 — (top w+1)}.

By partitioning richer topological spaces we can find any countable ordinal.
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2.1 Theorem. For each countable ordinal o we have:

(i) Q — (top )l for each natural number n > 1,

(i) R — (topa)},, and X — (topa)y, for any X € [R]™

(iii) wy — (top @)y,

Proof. For parts (i) and (ii) just recall the topological theorem that any denu-
merable metric space without isolated points is homeomorphic to @, and note
that Q contains a homeomorphic copy of each countable ordinal. Part (iii) is
also easy; it will follow directly from Lemma 1.3. O

2.2 Definitions. A closed unbounded subset C of an ordinal a is one which is
closed (in the order topology) and unbounded (in the order). We write that C is
a c.u.b. subset of @ and when o = w; we usually omit mention of it. A stationary
subset S of a is one which has non-empty intersection with each c.u.b. subset
of a. We think of c.u.b. sets as large and stationary sets as medium-sized. If a
stationary subset of w; is partitioned into countably many pieces, one of the
pieces must be stationary.

2.3 Lemma. If o is a countable ordinal and S is a stationary subset of w,, then
S contains a homeomorphic copy of a.

Proof. We prove this by induction on a < w;. The cases when « is a limit
ordinal or « is a successor of a successor are easy. For the case when « is the
successor of a limit ordinal 3, we notice that for any stationary set S, the set of
all ¥ € w, such that there is some B C S, homeomorphic to 3 with the property
that for all § < 4 the subspace BN (§+1) is compact, is c.u.b. Intersecting this
set with .S gives a point which can be used to build the homeomorphic copy of
B+ 1. ]

While Theorem 2.1 is hardly surprising, since Q, R and w; are all relatively
rich topological spaces compared to countable ordinals, it is interesting to in-
vestigate the relation o — (top3)} when a and f are both countable infinite
ordinals. Topological properties of ordinals in some instances differ dramati-
cally from their order type properties. For any ordinal o we have a+1 ~ a+2.
We have w? + 1, a subspace of w? + w, but homeomorphic to w? + w + 1.
Thus

w4t w o (top W+w+1)!

Is it possible that for some @, o — (top a +1)1? No.

2.4 Lemma. For any countable ordinal a

() a7 (top a+1);

(i) of /- (top a+1)}L for all k > 1 if a satisfies the additional condition
that for each § < a, a\§ — (topa)l.

Proof. We first prove (i) by assuming that a is the least ordinal for which (i)
holds and drawing out a contradiction. Fix any 8 < a. By the minimality of
a, B #— (topa)l. Hence the partition
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_Jo ify<§B
f(7)_{1 if’YZ,B
immediately shows that a\8 — (fop a+1)].
In particular for 8 = 0, we have a continuous one-to-one h : a +1 — a.
By continuity there is some § < a such that h(a), i.e. the set of ordinals less
than h(a), satisfies h(a) — (topa\§)}. Hence h(a) — (topa)] contradicting
the minimality of a.
Before proving (ii), notice that the ordinal space a* is homeomorphic to
the topological space which is the lexicographic order topology on a* = ax a x

... X a. We deal with this product; a typical element is 8 = (8,,8,,...,08)-
We say that 3 is a point of type j if

B; #0 but B; =0 forall i>j.

Note that for each j, the set of points of a* of type j is a union of a collection
of open sets, each homeomorphic to a, such that the pairwise intersection of
closures of sets in the collection is empty.

We now suppose that « is the least ordinal satisfying o* — (top a+1)} and
a\§ — (top a)} for all § < a. A natural partition of a* is given by requiring
that

f(B) = j if B is of type j.

Since for some j, the set of points of type 7 must contain a homeomorphic copy
of a + 1, we see that for some § < a

a — (top(a +1)\é)]

and so by hypothesis @ — (top a + 1)}. An argument used in part (i) now
shows that the minimality of « is contradicted. O

There are also some positive relations.

2.5 Lemma.
(i) w— (topw);
(ii) If o is a countable ordinal such that o — (top )} then for all n < w and

all m > 2 we have

mn+1

a — (topa™t)L

(iii) If (o) and (B,) are sequences of ordinals such that for each n, a, —
(top Bn +1)3, then a — (topB)} where @ = 3" a, the sum of the o,
and B = sup{B,}-

Proof. (i) is maximally trivial. The case n = 0 is immediate for (i) and we

shall use it repeatedly in the proof for the general case. To this end fix m and

n, and let £ = mn + 1. Let f : a®* — m be a partition. We wish to find an

appropriate copy of a™*+1. For each fixed (81, B2, . - -, Br—1) we define a partition

£ a\{0} — m
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by f'(v) = f(B1,B2;---,Bk-1,7). Using a — (topa),, we obtain, for each
(B1,B2,---,Bk—1) a homeomorphic copy H(f1,P2,--.,Pr-1) of a with f' con-
stant on H(B1,p2,---,Bk—1)- Replacing o* by its homeormorphic subspace

{(ﬂl,ﬁ2,' .. ,Bk—1,7) Y€ H(ﬁhﬂh- .. ,,Bk—l);ﬁlaﬂ%- .y Pr—1in a}.

We have therefore reduced the problem to the case when the partition function
f has the property that if B is any point of type k (as defined in the proof of
part (i) of Lemma 2.4) then f(3) is determined by the first k£ — 1 coordinates
of B. From now on we assume f has this property and continue this process.

For each (f1,82,--.,Bk—2) apply a@ — (topa)’ ; to find a homeomorphic
copy H(B1,B2,...,Bk—2) of a such that f" is constant on H(B1,B2,...,Bk-2)
where f" : a\{0} — m? is a partition defined by

f"('Y) = (f(ﬂlaﬁh-- . ,,Bk—277a0)af(ﬂlaﬁ2a' .o ,Bk—2,7,1))'

Note that 1 could be replaced by any 1 < § < a. We now replace of by its
homeomorphic subspace

{(ﬂl,ﬂ'h" . 7:3’6—2,776) 17 € H(ﬁl,ﬂh- . 7ﬁk—2);ﬂlaﬁ2a cee 7.Bk—2a6 in a}‘

We have now reduced the problem to the case when the partition function
f has the following property: if B3 is any point of either type k or type k — 1,
then f(B) is determined only by the first £ — 2 coordinates of B and the type
of B. From now on we assume the f has this property.

We continue this process, using & — (topa)! ; at stage j. After k stages
we have reduced the problem to the case when f has the property that f(3)
is determined solely by the type of B. Since £k = mn + 1 there must be n + 1
types t1,%2,...,¢,41 such that f is constant on the set

{B € a* : B has one of the types t;,3,...,¢n41}-

And this set contains a homeormorphic copy of a™+!.
Since the proof of part (iii) is easy, we are finished with the proof of this lemma.
O

It is easy to demonstrate that in the case of order types of countable ordinals
a — (a)} if and only if @ = wP for some ordinal 3. The following theorem is
interesting.

2.6 Theorem. For any countable ordinal o, o — (top )} if and only if

a=w

for some countable ordinal 3.

Proof. We first demonstrate the “if” part by induction on f3, using Lemma
2.5. Part (i) is the case B = 0. For the successor case put

a=w
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and let a, = a®™*!. From part (i) we see that a, — (fop a™+ 1)}, and hence
by part (iii) we have a* — (top a*)}. But

a” (w

and the successor case follows. The limit case is a direct application of part
(iii).

In order to prove the “only if ” part we use Lemma 2.4. For any countable
infinite ordinal 4, there are some ordinals 3, and o such that a = w*’ and a <
4 < a™ for some positive integer n > 2. If ¥ — (top~y)} then a™ — (top a+1)},
contradicting part (i) of the lemma. This completes the proof of the lemma.

O

We now assume § = 0, and so v = a” and therefore a™ — (top ™)} and so
a™ — (top a + 1)}, contradicting part (ii) if » > 1. This completes the proof.

We now consider the relation X — (topfB)}, for countable ordinals f3.
Certainly X will not be countable here. The weakest relation of interest is
with 8 = w+ 1. In some cases, and not others, this weakest relation implies the
strongest. Part (i) of the following result of P. Komjath and I greatly generalizes
parts (ii) and (iii) of Theorem 2.1.

2.7 Theorem. Remember we consider regular topological spaces.

(i) I X is first countable and X — (top w + 1)}, then for each countable
ordinal B, X — (topﬂ)R

(ii) Assume MA(R,). If x(X) =R, and X — (top w + 1)}, then for each
countable ordinal 8, X — (topB)R

(iii) Assume {*. There is a space X such that x(X) =R, and
X — (top w+ 1)R but X doesn’t even contain a homeomorphic copy of
w? +1.

MA(R,) and {* are (separately) consistent with the usual axioms of set
theory; {7 is a consequence of Gddel’s axiom of constructibility. x(X) = ®;
means that each point of X has a local base of size at most R;. O

We now turn to finding homeomorphic copies of w;. Here things are quite
different from the case of countable ordinals. Immediately we have the following.

2.8 Theorem. For each ordinal o of cardinality X, we have
(i) a /- (topw)}, and even
(i) a#— [topuwnl},.

Proof. Note that (ii) is stronger than (i). Since a homeomorphic copy of w;
embedded in w; must be a c.u.b. of w, the relation wy #— [topw,]}, expresses
the well-known fact that w; can be partitioned into R, pairwise d1s301nt sta-
tionary sets. The proof of (ii) now proceeds by induction on a. At successor
stages or stages of countable cofinality there is no difficulty. If o has cofinality
R; we find a continuous increasing sequence (cs : B < w) cofinal in a. We
partition each interval (cg,cg+1) independently using the inductive hypothesis
and partition the sequence (cg : 8 < w1) using w1 /— [topwi]},. O
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This theorem can be extended in two ways, considering either larger ordi-
nals or more complex spaces of size 1. In both cases we have only consistency
results. { is another consequence of Gddel’s axiom of constructibility, as are all
the [ principles, which we formally define. All these combinatorial principles
are due to R. Jensen.

2.9 Definition. By [J, we mean the following principle:

There is a sequence (Cy : A < k¥ and X a limit ordinal) such that

(i) C. is closed and unbounded in A,

(ii) c¢f(X) < & implies |C,| < &, and

(iii) if 4 is a limit point of C, then C,, =y N C.

2.10 Theorem.

(i) Assume O,,. Then wy #— (topwi)}.

(ii) Assume . If X is any space of size N1, then X /— (topw1);.

Proof. Part (i) was noticed by J. Silver. Let Sy and S1 be disjoint stationary

subsets of w; with w; = SpU.S;. The reader may like to verify that the partition
f :ws — 2 where:

0 ifo.t. Cu€So
1 ifot.Cy €51

and the C, come from [, , actually works. O

0 ifef(a) # No
fla) = {

Part (ii) was noticed by P. Komjith and I; the proof is omitted here. John
Merrill, however, has a better result, including the following.

2.11 Theorem. Assume both { and O,,. If X is any space of cardinality R,,
then X #— (topw1)}.

It seems easier to partition ordinals than general topological spaces. Prikry
and Solovay proved that, under V = L, k #/— (topw;)} for each ordinal . This
can be compared with the following result of S. Shelah. SPFA, the semi-proper
forcing axiom, is a strengthening of M A(R;) which says that in any partial
order which preserves stationary subsets of w;, one can find a generic set for
any given collection of ®; dense subsets.

2.12 Theorem. Assume SPFA.

(i) ws — (topw;)}

(ii) {0,1}** — (topw1);

(iii) If the countable subsets of w, are partitioned into two pieces, one piece
contains a family {Sq : & € w,} such that if a < B then S, & Sp and if B
is a limit ordinal Sg = |J{Sa : @ < B}.

Proof. We will not prove (i) and (iii) here but B. Veli¢kovié has noticed that

(iii) implies (ii). Indeed, let {As : @ < w2} be a subfamily of [w1]** such that if

a # [ then |A, N Ag| < Ro. We define ¢ : [wa]*0 — {0,1}* by:

#(X) is the characteristic function of U{A" ta € X}
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It is easy to show that ¢ is one-to-one; hence a partition of {0,1}** induces a
partition of [wa]®0. The image of the family {S. : @ € w1} given by (iii) is a
homeomorphic copy of ws. O

In connection with part (iii) of Theorem 2.12, we immediately get that if X
is the 3 -product of {0,1}“?, then SPFA implies that X — (fopw1)3. In the
negative direction, Shelah has proven the following.

2.13 Theorem. For any positive integers m and n > 2m, there is a partition
f : [w2]®® — n such that if {S, : a € w;} is a family as described in part (iii) of
Theorem 2.12, then |{f(Sa) : @ € w1}| > m. Consequently, the result of part
(iii) of Theorem 2.12 does not hold if the partition is into 3 pieces.

In order to emphasize the difficulty in obtaining homeomorphic copies of
wy, we present the following result attributed to J. Silver.

2.14 Theorem. Let M be a model of set theory and M[G] be the model obtained
by forcing with the partial order F,(w,w;) which collapses w;. In M[G] we have
that for any ordinal k, there is a partition kK = A U B such that neither A nor
B contain a homeomorphic copy of w.

Proof. Our forcing terminology is taken from K. Kunen’s textbook. We work
inside the model M. Let & be given; the partition of k will actually be in M.
Let A ={a € 6 : cf(a) = Ry}, and B = k\A. Suppose there is p € F,(w,w1)
such that

p gisalto 1 continuous function; dom g = w13 range g c A.

Note that we can replace w; with @. Since F,(w,w;) has cardinality X; there
isagqg < pand § € [w2]* such that for each o € S there is aoa € A and
g 9(&) = &o. We pick an increasing sequence (a¢ : ¢ < wi) from S and let 4 be
the supremum. By continuity

¢ 9(5) = sup{da, : ¢ <w1}

but clearly sup{aa, : { < w1} cannot be in A.
A similar proof shows that B contains no homeomorphic copy of w;; this
time choosing a countable increasing sequence. O

If it is difficult to find homeomorphic copies of wy, it is even more difficult
to find homeomorphic copies of the Cantor set, which we identify with the
Ro power of the two point discrete space, 2. More than eighty years ago F.
Bernstein proved that the real line can be partitioned into two disjoint sets,
neither of which contains a homeomorphic copy of the Cantor set. Somewhat
later, I was able to extend this result.

2.15 Theorem. Suppose X is a space such that for all 2% < X < |X| with
cf(X) = Ry we have A0 < A+ and O,. Then X /— (top2“)i.

The result is even true for spaces which are not regular but only Hausdorff.
We get two immediate corollaries.
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2.16 Corollary. If X is a space with |X| < R,, then X /— (top2*)}.

2.17 Corollary. If any one of the following hypotheses hold, then for all spaces
X, X /- (2);

(i) ARo = X\* and O, holds for each cardinal ) of cofinality Ro with A > 2%°.
(ii) Godel’s axiom of constructibility.

(iii) There are no measurable cardinals.

Proof. (i) is immediate and well-known work of Jensen and Dodd and Jensen
shows that (ii) or (iii) imply (i). O
Since a (correct) proof of Theorem 2.15 has not appeared in print, we take
this opportunity to present one. The proof will be immediately attainable from
Lemmas 2.20, 2.21, 2.22 and 2.23 which constitute the inductive steps for a
proof by induction on |X|. First, however, we need to make two temporary
definitions.

2.18 Definition. Z is said to be an F¥ subset of the space X iff there is a
sequence {Z, : n € w} of subsets of X such that Z = |J{Z, : n € w} and each
Z, contains the closure of each of its countable subsets.

2.19 Definition. We say that f : X — 2 is a Cantor set partition iff f is not
constant on any homeomorphic copy of the Cantor set in X.

Let IH(x) denote the following statement.

“If X is a space and |[X| < k and Z is an F¥ subset of X and if there exists
g9+ Z — 2 which is a Cantor set partition of Z, then there exists a Cantor
set partition f : X — 2 extending g.”

The first lemma is a simple extension of Bernstein’s result.
2.20 Lemma. I H(c) holds, where ¢ = 2%o.

Proof. Let X be a space of cardinality c. There are at most ¢ distinct homeo-
morphic copies of the Cantor set in X. Enumerate these as {H, : 1 < a < c}.
Let g: Z — 2 be given as in IH(c).

Recursively construct {go : @ < ¢} and {Z, : @ < ¢} such that go = g, Z9 = 2
and forall a < 3

(1) Z,C Zgand |Z5\Z| < ¢

(2) g98:Zp — 2 extending g,

(3) |HgN Zg| > 2 and gg | (Hg N Zg) is not constant.

A stage 3 simply consider Hg.
Case 1. Hg C U{Z. : a < B} For some K C Hg which is homeomorphic

to the Cantor set, K C Z. Now just let Zg = |J{Za : @ < 8} and

98 =U{ga: @ < B}

Case 2. Hp € U{Za : o < B}. Pick p € Hg\|U{Zs : a < B} and ¢ € Hp.
If ga(q) is defined for some a < 3, let gs(q) = 9ga(q), otherwise let
95(q) =0. Now, let Zg = J{Z, : « < B} U{p,q} and

98 = {90 : @ < BYU {< g, 95(q) >,< p,1 — gs(q) >}.
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We finished let Z. = |J{Z4 : @ < ¢} and g = U{go : @ < c}. Extend g.
to f arbitrarily over X\Z.. O

2.21 Lemma. If 5™ = k and I H(k) holds then IH(x") holds.

Proof. Let X, Z and g be as in IH(x%*). Enumerate X as {zq : a < kT}. We
will construct {ha : @ < k*} and {Y, : @ < k*} such that forall a < B :

(1) Yo CYp,

(2) Ysl <k,

(3) To € Ya+1, _

(4) Yg={z € X : 2 € C for some countable C C Yz},

(5) ho C hﬁ)

(6) hg is a Cantor set partition of Yp,

(7) hﬁlYp NnZ= leB n2Z.

We begin the inductive construction by letting Yy = 0 = ho. At stage B+1, let
Y11 =YsU {(Eﬁ}. Let

hg ifzg €Yp
hs+1 = { hgU(zp,9(zp)) ifzp€Z
hg U (z3,0) otherwise.

At stage A with ¢f(A\) =w obtain A\, /A Let YA ={z € X:z € C for some
countable C C J{Y,, : n € w}}. Let

h* =g | (Yan 2)u| J{ha, :n € w}.

It is straightforward to check that we can use TH(k) on Yy, domh* and h* to
obtain h)‘.

At stage 4 for cf(y) > w, simply let Y, = J{Ys : B <~} and by =U{hg:
B < 4}. At each stage it is straightforward to show that the proper inductive
hypothesis is satisfied. We finish by letting f = h,+. O

The following lemma has a proof similar to the preceding one.

2.22 Lemma. If cf(k) # w and for all A < k,A®¢ < k and TH()), then IH(x%).
2.23 Lemma. If O, cf(k) = w and for all A < k,A®° < k and TH()), then
IH(x").

Proof. Let X,Z and g be as in TH(k%). Let {zo : @ < k*} enumerate X.
Obtain £, & such that k)° = k,. Let (Cy : A € k* and X a limit ) witness
O..

We will construct {Y? : a < k*,n < w} and {AZ : @ < k*,n < w} such
that foralln <w and a < B :
(1) YpcypH,

@) [¥7] < s
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(3) ‘ca € Yo,

(4) Y3 = {z € X : z is in the closure of a countable subset of Yi)

(5) hj Chgtt,

(6) U{h" n € w} CU{h5 : n € w},

(7) hj is a Cantor set partition of Y,

(8) h3lYpNZ=glYsnN2Z,

(9) U{Y" n € Cg} C Y, if B is a limit ordinal and |Cg| < Kn.

We begin the inductive construction by letting Y* = 0 = hf for each n < w.
At stage B+ 1, let Y3, = Y3 U {zg}. Let

hz if 25 € Y3
hﬁ (zﬁ,y(xﬂ)) ifzpg€Z

n —
hgr1 = hB 23/3, E(zp)) if zg € Yy for some k >n
U (zg8, Of otherwise.

At stage X for ¢f(\) = w, obtain Ax " A such that {\¢ : k € w} C C, and for
each n such that |Cy| < kn, U{Y; : 7 € Ci} = U{Y}, : k € w}. To do this we
may need to use (9). Now for these n, let

= {z € X : zis in the closure of some countable subset of U{Yn" :n €0

Define
h* = 9|(U{Y;‘ in<w}U U{h}k tk<w, n<w}.
We wish to define A} by induction on n. For each k, < |C|,let AT =0 =Y.
Suppose h} ! is deﬁned consider ;! = 0 = Y}!. Apply IH(k,) to Y7,
UYn sk <wlu@ptnyf)u(znyy)
and
(U OIS, s k< U n¥) U2 nYy)

and obtain A} : Y* — 2.
At stage ¥ for cf(y) > w,let Y3 = U{Y] : @ € C, and n € w} and let
=U{h%:a € Cyand n € w}. Also, let m be the least integer such that
Icm> |Cy]. Forn<m,let Y} =h3 =0.Forn>m,let

Y = {z € X : ¢ is in the closure of a countable subset of U{Y: ta € Cy}}

Then U{Y' : n € w} = Y. For each n > m, let AZ = h3|Y". It is straightfor-
ward to check that at each stage the proper mductwe hypotheses are fulfilled.
To finish the construction, let

f=U{h§:n<wand B<kt}. 0
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This completes the sequence of lemmas needed to prove Theorem 2.15. It is
interesting to compare Corollary 2.17, part (i) with the following theorem of
Bregman, Sapirovski and Sostak. The conclusions are the same, but neither
hypothesis implies the other.

2.24 Theorem. Assume that 2% > R, and that for each cardinal \ of cofinality
Ro, the following set has size less than 2%°

{x : k is a cardinal and A< k< AN}

Then for any space X, X /— (2¥)3.

We can demonstrate a connection between these studies and other pro-
blems in combinatorics by showing how Theorem 2.15 and 2.23 give a consistent
verification of a conjecture of P. Erdés.

2.25 Theorem. Assume that 2% /— (top2“)i. We can then partition P(k), the
power set of k, into two pieces such that neither piece contains a family of
disjoint sets {A, : kK < w} such that all unions belong to the same piece.

Proof. By identifying a set with its characteristic function we can identify
P(k) with 2%, Such a family {A, : k£ < w} would give rise to a homeomorphic
copy of the Cantor set in 2~. O

We end this section with an unpublished positive relation due to S. Todoréevi¢;
we include his proof.

2.26 Theorem. Let A, denote the one point compactification of a discrete space
of size k. For any infinite cardinal K

{0,1}* — (top Ax)cs(x)

Proof. A A-system of subsets of k is a collection of distinct subsets of k such
that there is some R C x which is the intersection of any two members of the
collection. R is called the root of the A-system. By identifying subsets of x
with their characteristic functions we see that the theorem is a consequence of
the following statement which we temporarily call (*)

“Whenever the subsets of k are partitioned into ¢f(x) many pieces, there is
one piece which contains a A-system of size x and its root.”

We will first prove (*) for the case x = R; and only then later indicate how to
prove the general case.

Let P(w;) = U{Py : ¥ < w1} be a partiton of the power set of w;.
Let w; = U{S« : @ < w1} be any partition of w; into R; pairwise disjoint
uncountable sets. From this we define for each {( < w; a proper o-ideal I¢ on
P(w;) by letting I, be all those X C w; such that
(a) for all @ < wy, |X N S| < Xi, and
(b) foralla < ¢, X NS, =0.

Note that if < (, then I;, D I.
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We now begin the recursive construction of a sequence of triples (X¢, Y¢,#(¢)
where X¢ and Y; are subsets of w; and i(¢) € w1. We will show that if at any
stage ¢ we cannot continue this construction, then we will be able to build the
required A-system and its root. On the other hand, we will show that if this
construction can be continued for all { < w;, then some X C w; was not put
into any piece of the partition. For the construction, we insist that the following
inductive hypotheses, which we call INDHY P((), are satisfied at stage (.

(l) X( n Y( =0

() U{Xy:n< ¢} G X¢, and X\U{Xy:n< (el

(iii) Ye € Ip and U{Yy : n < (} C Y¢

(iv) X¢ € Py and for all 4 < #({) there is no set X € Py such that (i), (ii)
and (iii) hold for some Y., and X replacing X.

(V) if0#£Z¢ I; and Z N (Y( UX() =0, then (Zu X() ¢ P“(()‘

First, suppose we have constructed (X,,Y;,i(n)) for all n < ¢, but we cannot

find an appropriate (X¢,Y¢,4({)). Note that each X, € I and hence there is
some z with

ze X\ {XuYyin<(}

We let X} = {z} UU{X; : 7 < ¢} and ¥} = U{Y; : 7 < ¢}, and note that
X; and Y} satisfy (i), (ii) and (iii) of INDHY P((). Hence there must be
some triple (X¢,Y¢,i(¢)) satisfying (i), (ii), (iii) and (iv) of INDHY P({) and
that means that (v) must fail for this triple. Therefore, there is some non-empty
Zy € I such that ZyN(XUY¢) = 0 and ZoUX, € P;¢). We can now recursively
build {Zs : B € w1} by, at stage 3, considering the triple (X(,Yf ,3(¢)) where

Yf =Y. UU{Z,:v< B} {Zs : B € w1} forms a A-system with root X.
Second, suppose (X¢, Y¢,4({)) have been constructed for all { < w;. Define

Xo, =U{X¢:( <w}

and set X, € P, in order to derive a contradiction. Note that for each ¢ < w1,

X(\U{Xeta < (} € I(

and hence
X\ Xy :n< el

Therefore X,,, and Y, satisfy (i), (ii) and (iii) of INDHY P((), and so
¥ 2 4(¢)- Similarly each pair X1, Y, satisfies (i), (ii) and (iii) of INDHY P((),
and s0 #(¢ + 1) > i(¢). Also, by considering Z = X1\ X¢ in (v), we see that
1(¢) ;é (¢ + 1). This shows that v € w; and completes the proof for the case
K = N;.

In general, when & is regular the proof is similar to the case Kk = Nj.
When & is singular, we find an increasing cofinal sequence (ko : @ < ¢f(x)) of
cardinals greater cf(x). The following changes need to be made. We partition
Kk =U{S«: a < cf(x)} with each |S,| = &.
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We replace (a) by
(al) for all a < ¢f(k), |X N Sa| < Kq-

We can no longer deal with just triples. We deal with quadruples (X¢, Y,
i(¢),6(¢)) where the new coordinate §(¢) is an ordinal less than cf(x). We
change I; to Is) in (ii) and (v) of INDHY P(() and we add
(vi) for each n < ¢ 8(n) < 8(¢).

The proof now proceeds similarly to the case k = N;. O

2.27 Corollary. Suppose X is a dyadic space with weight having uncountable
cofinality. Then
X - (topA,c)‘l:f(n)

where A, is the one point compactification of a discrete space of size k.

Proof. This uses Theorem 2.26 and the topological fact that if X is a dyadic
space and the cofinality of its weight « is uncountable, then X contains a copy
of {0,1}*. 0

Earlier, G. Elekes, P. Erdds, and A. Hajnal had used a result of J. Baumgartner
to give an elegant proof of (x) for the special case when & is regular. In fact,
they were able to prove more, but we do not include the proof here.

2.28 Theorem. Suppose \ < k are cardinals. Whenever the subsets of k are
partitioned into k many pieces there is one piece which contains a A-system of
size A and its root. Hence

{0,1}* — (top A)}.

3. Partitioning Pairs

We now consider the relation X — (Y)2. Far less is known here than for the
case of singletons. There are few positive results; but an interesting one is the
following, essentially due to Erdds and Rado.

3.1 Theorem. R — (top w + 1)3

Proof. Let f : [R]2 — 2 be a partition of the pairs from R. Let {zo : @ < w1}
enumerate an uncountable subset of R.

For each o < w; we try to construct a sequence o, of ordinals as follows.
Let ap < a such that f({ag,a}) = 0. If ag,...,a, have been constructed, let
041 be such that

(l) 0n < apy1 < a,

(i) lzdn+1 - z“' < n+|-1’ and

(i) f"{Zags- -1 Tans Topi1s za}] = {0}

If (an : 7 < w) can be constructed for some a, then we have a homogeneous
homeomorphic copy of w + 1 with z, as the limit point. Therefore we can
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assume that for each a < w; there is a finite sequence o, which cannot be
extended. We define a function g on w; by

g(a)z{o ifoa=0

the last element of o,, otherwise.

By the pressing down lemma, there is an uncountable S C w; and 4 € w; such
that g(a) =  for all @ € S. We can then find an uncountable T C § and a
finite sequence o such that
(iv) oo =0 for all @ € T, and
(v) the diameter of T is less than I_vllﬁ’ where |o| is the length of o

Now pick 8 < a in T} if f({zg,zo}) = 0, then the sequence o, can be
extended with 3. Hence f"[T'])? = {1} and we can use part (ii) of Theorem 2.1
to extract a homeomorphic copy of w + 1 (or even more). 0

The method of proof of this theorem now belongs to the folklore of the subject.
This same method proves the following

3.2 Theorem. w; — (top w +1)3

A subset A C R is said to be second category if it is not the union of
countably many nowhere dense sets. A classical construction of N. Luzin uses
the continuum hypothesis, CH, to construct a subset A C R for which every
uncountable B C A is second category. Starting with such a set A and using
the method of proof of Theorem 3.1, one can show the following.

3.3 Theorem. Assume CH. R — (top w + 1, second category)?
Partitioning in R, pieces gives mainly negative relations.

3.4 Theorem.

(i) R4 (top w+1);,
(ii) For any ordinal k, k #— (top w+1)%

Proof. Part (i) follows from cardinality considerations and the ordinary par-
tition calculus. Part (ii) needs a short proof. For each a < & of cofinality Ro,
fix an increasing sequence (an : k < w) cofinal in . For B < a < &, let

f({ﬂ,a})= {n ifansﬂ<an+1

0 otherwise.

Verifying that f witnesses the negative partition relation completes the proof.
0

We now state some results of J. Baumgartner, who has studied the square
bracket relations on countable spaces.

3.5 Theorem. For any positive integer n Q #— [top w™ + 1]2,,.
3.6 Theorem. Q /— [top Q]}, and in fact even Q /— [topw“]} .

However, he also has this positive result, which shows that Theorem 3.5 is
best possible.
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3.7 Theorem. Q — [top w™ +1]%,, for all k,n > 1.

This last theorem says that if the pairs of rationals are partitioned into
k pieces then there is a homeomorphic copy of w™ + 1 such that the pairs
from it are distributed among at most 2n pieces. In fact, relating to Theorem
3.7, Baumgartner is able to determine for a given n which ordinals 4 have the
property v — [top w™ + 1]} ,, for all k.

4. Open Problems

In conformity with the two previous sections, I would have liked to title this
one ‘Partitioning Triples’, but then I wouldn’t have had anything to write. The
study of partitioning topological spaces is so new that triples have not yet been
investigated. Furthermore, we have enough questions about partitioning single-
tons and pairs to keep us quite busy. I will explicitly mention four problems
which intrigue me and have captured the interest of others as well.

The question of Nesetfil and R6dl has still not been completely answered.

4.1 Question. Is it consitent that there is a space X such that X — (top2¥)3?

A negative answer in the case of metric spaces X would still be interesting!
The following problem is attributed to F. Galvin.

4.2 Question. Does R — [top Q)3?

This one is attributed to R. Laver.

4.3 Question. Does w; — (topa)3 for all & < wy?

To which I add the following.

4.4 Question. Does R — (topa)} for all a < wy?

There is some evidence for positive answers to the latter two questions.

4.5 Notation. We write X ——(Y)™ if whenever f is an n-to-one function with
domain [X]™, thereis,in X, a homeomorphic copy H of Y such that f restricted
to [H]™ is one-to-one.

4.6 Lemma. X — (Y)™ implies X —(Y)™.
Proof. Given an n-to-one function f with domain [X]™, define a function

g : [X]™ — n such that f is one-to-one on each g~!(j). Now a homogeneous
Y for the first partition relation immediately gives one for the second. O

S. Todor€evi¢ has proven the following.

4.7 Theo:-em. Let o be any countable ordinal and n any positive integer. Then
(i) wr—(tope);, and
(i) R—>(topa)?.
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There are many more questions to be answered before we can build a
theory of partitions of topological spaces as rich as the theory of partitions of
order types. For example, it is not known if there is an absolute example of a
non-discrete space X of size R; such that

X — (top X)y,-

There is of course related to the Toronto seminar problem of whether there
is an uncountable non-discrete space which is homeomorphic to each of its
uncountable subspaces. There are rules for working on this latter problem. The
problem can be worked upon only in groups of three or more mathematicians,
and it is required that alcohol, preferably beer, be present during this time.
Contact anyone in the Toronto Set Theory Seminar for the current status of
the problem. It may never be solved.
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Topological Ramsey Theory

Timothy J. Carlson!
Stephen G. Simpson?

We survey the interplay between topology and Ramsey Theory which began
with Ellentuck’s Theorem (Ellentuck 1974) (and was anticipated by work of
Nash-Williams (1965), Galvin and Prikry (1973) and Silver (1970) by giving a
fairly abstract treatment of what have become known as Ellentuck type theo-
rems.

Section 1 is introductory. Section 2 contains an abstract version of Ellen-
tuck’s Theorem which reduces the verification of an Ellentuck type theorem
to its “combinatorial part”. Section 2 also contains the definition of the term
“Ramsey space” — a topological structure which satisfies an Ellentuck type
theorem. Finitary consequences of Ellentuck type theorems are discussed in
section 3. The necessity of using the axiom of choice in constructing sets wi-
thout the property of Baire in any of a large class of Ramsey spaces is discussed
in section 4. In section 5, “finite dimensional” versions of Ellentuck type theo-
rems are discussed. Section 6 contains a treatment of canonical partitions in
connection with Ramsey spaces.

1. Introduction

The main purpose of this paper is to present a unified treatment of Ellentuck
type theorems and closely related matters. We have concentrated on general
principles and examples which illustrate them. No detailed proofs are given,
and no attempt to comment on all, or even most, of the relevant results has
been made.

Following the custom among logicians, a natural number n is identified
with the set of its predecessors: n = {0,1,...,n — 1}. w is the set of natural

1 partially supported by NSF grant MCS 19-07774.
2 partially supported by NSF grant MCS 8107867.
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numbers. (ag,a1,...,an—1) denotes the sequence of length n whose it® term is
a;. For sets X and Y , XY denotes the collection of functions from X into Y. So
™Y is the collection of all sequences of length n with values in Y. Functions with
domain w are called infinite sequences. X <* is the collection of finite sequences
with values in X.

E is a partition of a set I if E is a collection of pairwise disjoint nonempty
subsets of I and the union of the members of E is I. The elements of a partition
E are called blocks of E. Note that the empty set is a partition of itself.

[w]® is the collection of infinite subsets of w.

2. Ramsey Spaces and Ellentuck’s Theorem

We begin by recalling Ellentuck’s theorem. For A an infinite set of natural
numbers and a a finite subset of A let E(a, A) be the collection of all infinite
sets of natural numbers which begin with a and are subsets of A. If n is a
natural number E(n, A) is defined to be E(a,A) where a consists of the first
n elements of A. The collection of sets E(n,A) is a basis for the Ellentuck
topology on [w]“. We will write & for [w]“ endowed with the Ellentuck topology.
A subset X of £ is Ramsey if for each basic set E(n,A) there is B in E(n, A)
such that E(n, B) is either contained in or disjoint from X. X is Ramsey null
if for each basic set E(n, A) there is B in E(n, A) such that E(n, B) is disjoint
from X.

Ellentuck’s Theorem. (Ellentuck 1974). Suppose X is a subset of £. X is Ram-
sey iff X has the property of Baire (with respect to the Ellentuck topology).

A simple argument shows that £ is a Baire space. Hence, the theorem
implies that a subset of £ is Ramsey null iff it is meager. Ellentuck’s theorem is
a very strong partition theorem for [w]“ which immediately implies the Galvin-
Prikry theorem.

Galvin-Prikry Theorem. (Galvin, Prikry 1973). If [w] is partitioned into fini-
tely many Borel sets there exists A € [w]“ such that all infinite subsets of A
are in the same block.

Borel refers to the usual topology on [w]“ which is induced from the pro-
duct toplogy on “2 under the identification of a set with its characteristic
function.

Definition 1. Suppose Z is any set, p is a function with domain w x Z and <
is a partial order on Z. (Z,p, <) is called a partial order with approzimations
provided assumptions A1-A3 below hold.

A1l. p(0,A) = p(0,B) for all A and B in T.
A2. If A and B are distinct elements of I then p(n, A) # p(n, B) for some n.
A3. If p(n, A) = p(m, B) then n = m and p(i, A) = p(i, B) for all § < n.

p(n, A) is the n** approzimation of A. The depth of p(n,A), #(p(n, A)), is
defined to be n.
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We will use p(A) to denote the sequence of approximations of A of positive
depth. So p(A) is a function with domain w whose value at n is p(n+1, A). Note
that (Z,p, <) is a partial order with approximations iff it is isomorphic (in the
obvious sense) to some (J,r, <) where J is a set of sequences of length w, < is
a partial ordering of J and r is the restriction function given by r(n,S) = S[n.

Let P be the range of p. The elements of P will often be referred to
simply as approzimations. Give P the discrete topology and “P the product
topology. The map which takes A to p(A) induces a topology on Z which we
will somewhat inappropriately refer to as the product topology on I.

We now describe a basis for a second topology on Z. If A and B are
elements of 7 then we will say B is a reduction of Aif B < A. If Ais an
element of Z and b is an approximation then we will write R(b, A) for the set of
all reductions B of A such that b is an approximation of B. Let R(n, A) denote
R(p(n, A), A). The collection of R(n, A) is a base for a toplogy on Z which we
will call the natural topology on I. Note that the natural toplogy is stronger
than the product topology.

([w]“,p, <) is a partial ordering with approximations where p(n, A) is the
set consisting of the first n elements of A and A < B iff A is a subset of B. In
this case, R(a, A) = E(a, A) and R(n,A) = E(n, A). This leads to the following
definition.

Definition 2. Suppose (Z,p, <) is a partial ordering with approximations and
X is a subset of Z. X is Ramsey if for all R(n, A) there exists B € R(n, A) such
that R(n, B) is either contained in or disjoint from X. X is Ramsey null if for
all R(n, A) there exists B € R(n, A) such that R(n, B) is disjoint from X.

We next define a Ramsey space to be a partial ordering with approximations
which satisfies an Ellentuck type theorem. Note that if (Z,p,<) is a partial
ordering with approximations then every Ramsey set has the property of Baire
and every Ramsey null set is nowhere dense (with respect to the natural topo-
logy).

Definition 3. Suppose (Z,p, <) is a partial order with approximations. (Z, p, <)
is a Ramsey space if every set with the property of Baire is Ramsey and every
meager set is Ramsey null.

The Ramsey spaces that have been studied in the literature have a great deal
of structure in common which we attempt to capture by some additional as-
sumptions on partial orders with approximations.

Assume (T, p, <) is a partial order with approximations and ° is a partial
ordering of P, the set of approximations. If @ * b we will say that a is a reduction
of b. We will be concerned with the following assumptions on *

A4. If A and B are in T then A is a reduction of B iff every approximation of
A is a reduction of an approximation of B.
A5. If a is an approximation then a has only finitely many reductions.
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A6. The collection of p(A) is a closed subset of “ P i.e. if S is an infinite sequence
of approximations and every finite initial segment of S is an initial segment
of some p(A) then S equals p(A) for some A.

A7. If B € R(b, A) where b is a reduction of the n'* approximation of A then
there is A' in R(n, A) such that R(b,A') is a subset of R(b, B).

Theorem 1. (Carlson). Suppose (I, p, <) is a partial order with approximations
which satisfies assumptions A4-A7. (Z,p,<) is a Ramsey space iff

A8. If X is a set of approximations of depth n + 1 and A is in T there exists
B € R(n, A) such that either all the (n + 1)** approximations of elements
of R(n,B) are in X or none of the (n + 1)** approximations of elements
of R(n, B) are in X.

Generally, when proving a particular partial ordering with approximations
is a Ramsey space assumptions A1-A7 are immediate. Theorem 1 is an abstract
version of Ellentuck’s theorem which is proved in essentially the same way. To
derive Ellentuck’s theorem from Theorem 1, define an approximation a to be
a reduction of an approximation b if either both are empty or a is a nonempty
subset of b with the same maximal element as b (this last condition is needed
for AT). All assumptions A1-A8 are obvious.

Example 1 (Carlson). Suppose L is a finite alphabet. Fix a symbol v not in L
which we will call a variable. A variable word (over L) is a finite sequence of
symbols which are either in L or are v in which v occurs at least once. If tis a
variable word and z is a symbol then #(z) is the result of replacing all occur-
rences of v in ¢ by z. In particular, {(v) is just ¢. Let Z be the collection of all
infinite sequences of variable words and let p be the usual restriction function
given by p(n,S) = S | n. So the approximations are simply finite sequences
of variable words. We first define reductions between the approximations and
then extend to the elements of Z so that assumption A4 holds. Given an appro-
ximation s = #1,1s,...,%, and a variable word v = a;,ay,...,a, define s(u) to
be the variable word ;(a1) *ta(az) *...*t,(ay) i.e. substitute the i** symbol of
n into the i** term of s for each i and then concatenate the results. Similarly,
if u1,u2,...,ur are variable words such that the sum of the lengths of the u; is
the length of s then define s(u1,u2,...,us) to be a sequence of k variable words
(the first term of s(uy,uz,...,us) is 81(u1) where s; is the initial segment of
8 whose length is the same as the length of u; etc.). Extend the notion of re-
duction to I so that A4 holds. Assumptions A1-A7 are easily verified while A8
requires a delicate argument. If L is empty we obtain Ellentuck’s theorem (for
which A8 is trivial) and if L has exactly one symbol we obtain a theorem of
Mi]liicen (1975) (for which A8 is equivalent to Hindman’s theorem (Hindman
1974)).

Note that any basic neighborhood in a Ramsey space has a natural Ramsey
space structure. Suppose (Z,p, <) is a Ramsey space. If n € w and A € T then
(R(n, A),q,<) is a Ramsey space where g(m, B) = p(n+m, B). This allows one
to derive “local” versions of the results in the following sections. Also notice
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that a dense subset of a Ramsey space is a Ramsey space with the induced
structure.

Axioms A4-A7 where chosen primarily in order to allow the usual argu-
ments concerning Ellentuck type theorems to be carried out and then for their
simplicity. Some of the axioms can be replaced by weaker, but more obscure,
formulations. For example, in Theorem 1 A6 can be replaced by the assump-
tion that the collection of p(A) is sufficiently dense in its closure: If n € w
and S is in the closure of the collection of p(A) then there is B € I such that
p(B) | n = S | n and every approximation of B is a reduction of a coordinate
of S or of the approximation of depth 0.

3. Finitary Consequences of Ellentuck Type Theorems

Suppose (Z,p, <) is a Ramsey space and * is a partial ordering of the approxi-
mations. Under very general conditions we can derive a finitary version of the
fact that (Z,p, <) is a Ramsey space.

Definition 4. Suppose n, h, e, ¢ are natural numbers. The statement
n — (h); mod (Z,p, <)

menas that whenever the reductions of an approximation a of depth n are
colored with ¢ colors there exists a reduction b of a of depth h such that all
reductions of b of depth e have the same color.

Theorem 2. Assume that the notion of reduction is extended to the approxi-
mations so that

A9. Ifa is a reduction of an approximation of A then R(a, A) is nonempty.

Al0. Every approximation is a reduction of an approximation which is ma-
ximal (that is, which is a reduction only of itself) and no two maximal
approximations have a common reduction.

All. If a and b are approximations of the same depth then there is a cor-
respondence between the reductions of a and the reductions of b which
preserves order and depth.

For all natural numbers h,e,c there is a natural number n such that n —
(h)e mod (Z,p, <).

The proof of the theorem is a straightforward proof by contradiction. As-
sumptions A9-A11 are usually easy to verify. The result of applying this theo-
rem to Ellentuck’s theorem is essentially the finite version of Ramsey’s theorem.

Example 2 (Carlson). Fix a finite field F. “F is a vector space under coordina-
tewise operations. Give F the discrete topology and give “F the corresponding
product topology. Let Z be the collection of infinite dimensional subspaces of
“F which are closed in the product topology on “F. There are natural projec-
tion maps of “F onto ™F for each natural number n obtained by restriction
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to the first n values. Let p(n + 1, A) be the projection of A to ™F where m is
maximal such that the projection has dimension n. Choose the approximation
of depth O arbitrarily so long as it is distinct from the other approximations.
An approximation a is defined to be a reduction of an approximation b if it is
a subspace of b or if both have depth zero. If A and B are in 7 define A to be
a reduction of B if A is a subspace of B. (Z,p,<) is shown to be a Ramsey
space in (Carlson). The conclusion of Theorem 2 in this case is the Graham-
Leeb-Rothschild theorem for linear spaces (Graham, Leeb, Rothschild 1972)
(the Graham-Leeb-Rothschild theorem for affine spaces can be derived from
Theorem 2 by restricting this example to a basic neighborhood).

4. The Axiom of Choice and the Construction of
Non-Ramsey Sets

Using the axiom of choice non-Ramsey sets can be constructed for almost any
partial ordering with approximations. In fact, if < is a partial ordering of a
set Z such that Z has no minimal elements (that is, each element of Z has an
element of Z which is strictly below it) then from a well-ordering of I one can
construct a subset £ of Z such that any element of Z has an element below
it in £ and an element below it which is not in z (to prove this it suffices to
consider two cases: P is inversely well founded, i.e. there is no strictly increasing
sequence, or each element of P has a strictly increasing sequence below it).

The use of the axiom of choice has been shown to be necessary for con-
structing non-Ramsey sets for certain Ramsey spaces (Milliken 1975, Carlson,
Simpson 1984). We will extend this to a large class of Ramsey spaces in this
section.

Suppose T is a collection of finite sequences and * is a partial ordering of
T. Construct a partial order with approximations ([T],r, <) as follows (recall
that [T] is the collection of all infinite sequences A such that every finite initial
segment of A is in T'). Let r be the usual restriction function with r(n,4) =
A | n, and define < on [T] so that A4 holds i.e. so that A < B iff every finite
initial segment of A is less than or equal to a finite initial segment of B.

Note that if (Z,p, <) is a partial ordering with approximations such that
A4 and A6 hold for some partial ordering of the approximations then (Z, p, <X) is
isomorphic to ([T],r, <) for some T and . This is accomplished by identifying
each A in T with the infinite sequence p(4) = (p(1, 4),p(2, 4),...,p(n, A),...).
T is the collection of all finite sequences (p(1, A),...,p(n, A)) with the case n =
0 interpreted as the empty sequence. Since r is the restriction function, T' will
be the set of approximations for ([T],r, <). The ordering ° on T is simply the
ordering induced from the approximations for (Z,p, <) under the identification
of the unique approximation of depth 0 with the empty sequence and p(n+1, A)
with (p(1, A),...,p(n+1, A)). Moreover, if the set of approximations of (Z, p, <)
is countable we may assume that T is a subset of w<“ by identifying each
approximation with a natural number. This leads us to the following definition.
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Definition 5. Suppose T is a subset of w<“ which contains the empty sequence
and all initial segments of any of its members, each element of T' has a proper
extension in T and ° is a partial ordering of T. (T, *) is a standard Ramsey
space if ([T],r, <) as constructed above satisfies A1-A8 with the ordering * of
T.

Note that if T and ° are as in the assumption of Definition 5 then ([T],r, <
) and ° already satisfy A1-A4 and AS6.

Every Ramsey space which satisfies A4—A7 with some partial ordering of
its approximations is locally isomorphic to a standard Ramsey space. Speicifi-
cally, if (Z,p, <) is a Ramsey space which satisfies A4-A7 and A € T then the
collection of approximations of reductions of A is countable so by the remark
above Definition 5 (R(0, A),p, <) is isomorphic to a standard Ramsey space.
Of course, “(T, *) is isomorphic to (Z,p, X)” is intended to mean “([T],r, <)
is isomorphic to (Z,p, X)” here.

Theorem 3. If ZFC plus “there exists an inaccessible cardinal” is consistent so
is ZFC plus “if (T, ) is a standard Ramsey space then every subset of [T]
which is definable from a sequence of ordinals is Ramsey”.

Recall that ZF is Zermelo-Fraenkel set theory and ZFC is Zermelo-Fraenkel
set theory plus the axiom of choice. For the definition of “definable from a
sequence of ordinals” we refer the reader to section 15 of Jech (1978). Suffice
it to say for now that this is an extremely broad notion of definability and
that ZFC plus “every set is definable from a sequence of ordinals” is consistent
(though not simultaneously with the line in quotes at the end of Theorem 3 of
course).

The proof of Theorem 3 proceeds by collapsing an inaccessible cardinal to
become w; and follows the pattern laid down in Solovay (1970) and elaborated
in Mathias (1977) and Carlson, Simpson (1984). One introduces a notion of
forcing for each standard Ramsey space (T, *) which adds a generic element
of [T] in such a way that any reduction of a generic element is also generic.

Following Solovay (1970) Corollary 1 below can be derived.

Corollary 1. If ZFC plus “there is an inaccessible cardinal” is consistent then
so is ZF plus DC plus “if (Z,p, <) is a Ramsey space such that there exists a
partial ordering of the approximations satisfying A4-A7 then every subset of
Z is Ramsey”.

DC is the axiom of dependent choices which says: if R is a subset of A x A
for some set A and for each z in A there is a y in A such that (z,y) is in R then
there exists z,, for n € w such that (z,,Z,41) is in R for all n. DC is a sufficient
replacement for the axiom of choice in a large part of standard mathematics.
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5. Finite Dimensional Analogues of
Ellentuck Type Theorems

For many Ramsey spaces (Z,p, <) the elements of Z can be viewed as infinite
dimensional objects of some sort (in the present discussion one might keep in
mind Example 2 from section 3). Moreover, there is usually a natural collection
F of “finite dimensional” reductions of the elements in Z. Suppose that the
notion of reduction is extended to F i.e. assume that < is a partial ordering
not just of Z but of FUZ. A finite dimensional analogue of the fact that (Z, p, <)
is a Ramsey space might be something like: If F is partitioned into finitely many
“nice” sets then there exists an element of Z all of whose reductions in F are
in the same block of the partition. This usually isn’t the right approach since
often F can be partitioned into sets Fr(k € K) in a natural way such that every
element of T contains reductions in each Fj. In Example 2, each F} consists of
all finite dimensional subspaces of “ F of some fixed dimension. The solution is
to replace F by F} for any k :

(*) If Fi is partitioned into finitely many “nice” sets then there exists an
element of Z all of whose reductions are in the same block of the partition.
The problem is to determine which choices of “nice” make (*) true.
A form of (*) can often be deduced by chosing an appropriate projection
of T to Fy. Suppose that f : T — F} has the property that

(%) each Ain 7 has a reduction B in Z such that every reduction of B in F
is of the form f(C) for some reduction C of A.

We can then take “nice” to mean that the inverse image under f of each block
of the partition has the property of Baire (and is therefore Ramsey). For we
can choose A in 7 such that f(C) is in the same block of the partition for all
reductions C of A, and B can then be chosen so that all reductions of B in F},
have the form f(C) for some reduction C of A.

In the case of Ellentuck’s theorem F is the collection of all finite subsets
of w, and let Fi be [w]*, the collection of all subsets of w of size k, if k € w.
Define f(A) to be the set consisting of the first k elements of A. (**) holds
with B = A. (x) is the infinite version of Ramsey’s theorem in this case.

Example 3 (Carlson, Simpson 1984). (w)“ denotes the collection of all partitions
of w into infinitely many blocks. If A is an element of (w)“ then a natural
number 7 is called a leader of A if n is the least element of some block of A.
p(n+1, A) is the restriction of 4 to {0,1,...,m — 1} where m is the n'®* leader
of A. Define B to be a reduction of A if B is a coarser partition than A. In
Carlson, Simpson (1984), ((w)“,p, <) is shown to be a Ramsey space (in fact,
if an approximation a is defined to be a reduction of an approximation b iff a
is a coarsening of the partition b then A1-A8 hold).

For each positive natural number k let F be (w)*, the collection of all
partitons of w into k blocks, and let F be the union of the F (k > 1). If A is
an element of 7 UZ then the blocks of A are assumed to be listed according to
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their minimal elements. So the 0* block of A is the block of A which contains
the 0F leader of A (namely, 0) etc. Extend the notion of reduction to FUZ in
the natural way by letting B be a reduction of A iff B is coarser than A.

Fix a positive natural number k. Define f(A) for A in F to be the reduction
of A in F whose i*® block is the same as the i*" block of A whenever 0 < i < k.
In other words, all of the blocks of A form the k** block on are combined with
the 0" block to get f(A). One easily ckecks that (**) holds.

There is a natural topology on Fj under which f is continuous (even with
respect to the product topology on I). Each element of % can be identified
with an equivalence relation on w which in turn can be identified with its
characteristic function which is a member of “*“2. Under this identification,
the product topology on “*“2 induces a property of Baire in Z form a o-algebra,
the inverse image under f of any Borel subset of F} has the property of Baire.
Hence, (*) holds when we interpret “nice” as Borel.

Promel and Voigt have shown that not only is () true with “nice” inter-
preted as Borel but more generally if “nice” is interpreted as the property of
Baire. This can be derived directly as in (Prémel and Voigt (1985a)), or one
can derive this from the instance of (*) with “Borel” by showing that meager
subsets of F3 can be neglected. More specifically, if z is a meager subset of Fj
then the collection of A in Z which have a reduction in « is meager with respect
to the product topology on Z (see Carlson).

6. Canonical Partitions

If E is a partition of I we will identify E with an equivalence relation on I.
This allows us to view E as a subset of I x I.

Fix a Ramsey space (Z,p,<). If A isin T let Red(A) be the collection of
reductions of A (this is the same as R(0, A) but we will modify this definition
later). If E is a partition of Z (or of Red(A) for some A) and B isin T (is a
reduction of A) we call the restriction of E to Red(B) a reduction of E.

If E is a partition of Z into finitely many blocks each of which has the
property of Baire then, since (Z,p, <) is a Ramsey space, there exists A such
that Red(A) is contained in one block of E. Generally, there is no hope of
finding such A if E has infinitely many blocks. Nevertheless, perhaps if E
is nice enough we can find an A in Z such that the partition E restricted to
Red(A) is as simple as possible in some sense. When should we say a restriction
to Red(A) is “as simple as possible”? We need a way of comparing a partition
of Red(A) with a partition of Red(B).

Usually the sets Red(A) are naturally order isomorphic with each other.
We assume there are maps ha g for A, B € T such that for all A,B,C in T

(a) ha,B is an order preserving bijection from Red(A) to Red(B).

(b) ha,c=hpcoha,s.
(c) hBp,a is the inverse of h4 5.
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Let H be the system of maps h 4, p. If E is a partition of Red(A) define h 4, 5(E)
to be the partiton of Red(B) induced by E via ha,p i.e. two reductions of B
are in the same block of h4 p(F) iff their preimages under hy,p are in the
same block of E. A partition E of Red(A) is canonical (with respect to H) if
for all reductions B of A the restriction of E to Red(B) equals h4,B(E) i.e.
two reductions of A are in the same block of E iff their images under h 4, p are.

Ideally, all “nice” partitions of Z would reduce to canonical partitions.
Unfortunately, there are usually very simple partitions which don’t have cano-
nical reductions. In the case of Ellentuck’s space, say that two infinite subsets
of w are equivalent iff they have the same minimal element, call it n, and they
have the same first n elements. This partition is an open subset of [w]* x [w]*
(even using the product topology on [w]“) but has no canonical reductions
with respect to the natural system of maps induced by the order preserving
bijections between elements of [w]“.

Even though we cannot prove such strong results about canonical partiti-
ons there are two profitable alternatives.

The first alternative is to show that every nice partition reduces to a
partition which is very simple in some sense (see Promel and Voigt (1985)). In
this situation we say that the “simple” partitions form a basis for the “nice”
partitions. Note that the collection of reductions of the partition given above
does not have a basis which is minimal under inclusion. This implies that no
collection of partitions which includes all reductions of the partition above can
have a minimal basis.

The second alternative is to carry out the scenario above for partitions
of “finite dimensional” reductions of the elements of Z. So suppose that < is
extended to F U Z for some set F which is disjoint form Z. We will say that
elements of F are finite dimensional and elements of T are infinite dimensional.
We also assume that F is partitioned into sets Fr(k € K) (see the discussion in
section 5). The elements of F}, are said to have dimension k. We will modify the
definitions made earlier in this section. Let Red(A) be defined for all elements
of FUZT to be the collection of reductions of A i.e. the collection of B in FUZ
with B < A. If k € K let Red(k,A) be the collection of reductions of A of
dimension k. We assume that whenever A and B have the same dimension
(infinite dimensional objects are considered to have the same dimension) there
is a map h 4, p such that for all A, B,C, D with A, B,C of the same dimension
(a)—(c) above hold along with

(d) ha,B preserves dimension.
(e) If D is a reduction of A then the restriction of ha,s to Red(D) is hp,p’
where D' = h4,g(D).

Redefine H to be this system of maps h 4, 5. If A and B are infinite dimensional
and E is a partition of Red(k, A) then define h4,B(E) to be the partition of
Red(k, B) which is induced by E via h4 g, and if B is a reduction of A the
restriction of E to Red(k,B) will be called a reduction of E. E is canonical
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(with respect to H) if ha,B(E) equals the restriction of E to Red(k, B) for all
infinite dimensional reductions B of A.
Fix k € K. We want to prove

(* * ) Every “nice” partition of Fj reduces to a canonical partition.

for some broad interpretation of “nice”. This can often be done either by ar-
guments similar to those outlined in section 5 for establishing (*) or by first
proving a version of (x) and then deriving (* * %) as a corollary. A derivation
of (* * x) from (*) is usually based on two facts

(i) Each finite dimensional object has only finitely many reductions.
(ii) There’s d € K such that whenever A,B € F; and A,B < C € T then
there is D € F,; such that A,B <D <C.

Given a parition E of Fj one can then partition Fy so that A and B in F; are
equivalent iff the restriction of E to R(k, A) and R(k, B) are of the same type,
meaning that h4,p (the restriction of E to Red(k, A)) equals the restriction of
E to Red(k, B). This partition of 4 has only finitely many blocks so (*) can
be applied if E is nice enough. If Red(d, A) is in one block of the partition on
Fa then the restriction of E to Red(k,A) will be canonical.

Establishing (* * %) is the easy part. One then wants to investigate the
structure of canonical partitions and perhaps show they all admit very simple
descriptions (see Erdds, Rado (1950) and Promel, Simpson, Voigt (1984)).

Let’s consider the version of (* * *) we get from Ellentuck’s theorem. For
k € w let Fy be [w]*, the collection of subsets of w of cardinality k. Let A < B
iff A is a subset of B. The maps h4 B are induced from the order preserving
bijection between A and B when they have the same dimension (which simply
means they have the same cardinality). (i) and (ii) clearly hold. This allows
us to conclude from (), which is Ramsey’s theorem in this case, that (x * %)
holds for arbitrary partitions of [w]*. Erdds and Rado (1950) showed that the
canonical partitions of [w]* are very simple: A partition E of [w]* is canonical
iff there exists a set s C {0,1,...,k— 1} such that A and B are equivalent just
in case the i** element of A equals the i** element of B for all i in s.

The discussion in this section should be compared with remarks on cano-
nical partition theorems in Voigt (1984) and Prémel, Voigt (1983).
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Ergodic Theory and Configurations in Sets of
Positive Density

Hillel Fiirstenberg
Yitzchak Katznelson
Benjamin Weiss

1. Introduction

We shall present here two examples from “geometric Ramsey theory” which
illustrate how ergodic theoretic techniques can be used to prove that subsets of
Euclidean space of positive density necessarily contain certain configurations.
Specifically we will deal with subsets of the plane, and our results will be valid
for subsets of “positive upper density”. For any measurable subset E C R? we
let S range over all squares in the plane and we set

D(E) = lim SUDP(5)—00 ™(S N E)/m(S)

where £(S) denotes the length of a side of S. D(E) is the upper density of E
and we shall be concerned with sets E having D(E) > 0. Our first result is

Theorem A. If E C IR? has positive upper density then 3¢y so that for any
£ > £y one can find a pair of points z,y € E with ||z — y|| = £

We could say that the configuration {z,y} is congruent to the configuration
{0,£} C R.
The next result deals with triangles.

Theorem B. Let E C R? have positive upper density and let Es denote the
points of distance < § from E. Let u,v,€ R%, then 3¢y so that for £ > £, and

any § > 0 there exists a triple {z,y,2z} C E; forming a triangle congruent to
{0, fu, tv}.

Theorem A answers a question posed by L. Szekely (1983). Since we an-
nounced this result it has been proved by other methods by J. Bourgain who
has also given several refinements (Bourgain 1986) and also by Falconer and
Marstrand (1986). Bourgain also has shown by an example that the result of
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Theorem B cannot be improved to finding triangles in E itself (instead of the
“thickened” set of Es). We shall reproduce this in Section 7. The underlying
idea in our proof of both Theorems A and B is the possibility of attaching
to a measurable subset of the plane a measure preserving action of R* on a
particular measure space. If E C R? is the subset in question we shall obtain
an “R? measure preserving system” (X, B, u, T.,), where (X, B, u) denotes the
measure space, T,,u € R? denotes the measure preserving action, and a subset
E C X so that every “recurrence” of the set E :
*) W(ENTEN...nT;2E) >0

implies a “reccurence” of the thickened set Es :
(**)E50(E5—u1)ﬂ...n(E5—uk) # 0.

Ergodic theory will enable us to establish results of the form (x) and the fore-
going correspondence then guarantees the existence of points z € Es with

4+ Y1,z + u2,y...,& + ur € Es.

In the case of Theorem A we shall be able to pass from the existence of con-
figurations in Es to the existence of (simpler) configurations in E. In the case
of Theorem B we shall have to be satisfied with results regarding Ej.

2. Correspondence Between Subsets of R? and
IR2-Actions
Let E C R? be an arbitrary subset and set

#'(u) = P'p(u) = dist(u, E) = inf{Ju — vl| | v € E}.
Where ||u — v|| denotes the euclidean metric in R?. If

p(u) = min {¢'(u), 1}

then o(u) is a bounded uniformly continuous function on R? with
(2.1) lo(u1) = p(u2)| < Jlur — ua|.

The functions ¥,(u) = ¢(u + v) form an equicontinuous family and have com-
pact closure in the topology of uniform convergence over bounded sets in R?.
Denote this closure by X; thus ¥ € X if there is a sequence {v,} C R* with

p(u+vn) — P(u)

uniformly for d(u,0) < R, for each R < oo.

R? acts on X with T,¥(u) = ¥(u+v) for ¥ € X,u,v € R%. The function ¢
belongs to X and its orbit {T¢}, g2 is densein X. X is a compact metrizable
space and we can identify borel measures on X with functionals on C(X).
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Suppose now that D(E) > 0 so that there exists a sequence of squares S, C R?
with £(S,) — oo and

m(Sn N E)

(2.2) m(Sn)

— D(E),

with D(E) > 0. Using the sequence of squares {S,} we shall define a probability
measure on X. Namely refine the sequence {S,} so that

lim !
k—co m(Sh,,)

/ £(Typ)dm(v)
Sy

exists for every f € C(X). Such a subsequence can be found since it can be
found simultaneously for a countable dense set of functions f € C(X). We now
define the measure y on X by

) 1

Set fo(¥) = ¥(0). By definition of the topology on X, fo is a continuous
function. We define E C X by

ek s fo(¥)=0s ¥(0)=0.
E is a closed subset of X and we have
(2.4) W(E) = Jim [ (1= fo@) du(@).

Lemma 2.1. u(E) > D(E).
Proof. By (2.4), it suffices to show that for any £,

/X (1 - fo(®))'du(®) > D(E).

By (2.3),
. 1
[ 1= @y au) = fim —o— [ (= AT dme)

1
=1im——/ 1— p(v))dm(v).
Jim 5y Js, 4= o) am)
Since p(v) = 0 for u € E, the last expression is at least

lim m(ENSy,,)

=) = D(E). u]

We now establish the correspondence between E and E described in the Intro-
duction.



Ergodic Theory and Ramsey 187

Proposition 2.2. Let E C R? and E C X be as above. If for a k-tuple of
vectors, {u1,...,ur} we have

(2.5) wWENT'En...nT;'E) >0,
then for all § > 0,

EsnN(Es—u1)N...n(Es —ux) # 0.
Proof. Define the function g(¥) on X by

§— fo(¥), if fo(¥)<§
9(‘”:{0, SN

g(¥) is positive for ¥ € E and (2.5) implies that

[o®9(T.,2)....o(T 01 > 0
In particular for some v, the integrand is > 0. Since g(Typ) > 0 < p(w) <
6§ & w € Eg this implies for some v,
vEEs;, v+us €Es ..., v+ur € Es

and this is the assertion of the proposition. ]

3. Ergodic Averages for Subsets of R?

The following is the variant of the ergodic theorem which we use.

Theorem 3.1. Let G be a locally compact abelian group and let Tg,g € G
be a measure preserving action on a probability space (X,B,p). Let m, be a
sequence (one parameter family, etc.) of probability measures on G such that

(3.1) lim ru(y) =0,7€ G,y #0.

Denote by P the orthogonal projection of L*(X ) on the subspace of G-invariant
elements. Then

(3.2) T™ = / T,dm.(g) — P

in the strong topology.
Proof. For f € L*(X),< T,f, f > is positive-definite on G and is in fact the
Fourier transform of v;(7)-the spectral measure of f on G.

Recall that || f||> = [ dvy, that vpy is the part of v carried by {0} € G,
and that T(WPf = Pf for all u. Thus

T f — Pf = T™(f - Pf)
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and by (3.1)

IT f - Pf||? = / Iru(7)I* d(vs — vpys) = 0. .

Theorem 3.2. Let T, be an R*-action on (X, B, 1), and let P denote the ortho-
gonal projection of L?(X) onto the subspace of T,-invariant functions. Then
for0<a<f<2rm

1
B—-a

as R — oo, in the strong operator topology for L*(X).

(3.3)

B
/ TReio dg = P

Proof. Apply Theorem 3.1. The parameter u = R and m, is normalized
arc length in the arc Re?,a < 0 < B. To check condition (3.1) we write
¢=(§,p) =re* and

1 A R . 1 B .
1R(§ cos 0+ psin O)dg — / iRr cos(e—cp)dg‘
IB —-a \/a ¢ ﬁ —QJ, ¢

Apply Van der Corput’s Lemma (Zygmund 1955) to obtain

mg(() =

Mg(¢) = O(r~Y2R™'/2) as R — oo. O

4. First Application to Subsets of Positive Density in IR?

Theorem 4.1. Let E C IR? be a subset of positive density, D(E) > 0. Let ¢ > 0
be given as well as numbers 0 < a; < 1 < a2 < B2 <...<any < fn <27
Then for all sufficiently large R there exists points z9,21,...,2N € E so that
writing z; — zg = r;€*% ,0 < 6; < 27, we have

() Irj-R|<e

(i) aj < 8; < B; for j =1,2,...,N.

Proof. 1If § is small and we find points 2y, 2, ..., 2}y in Es satisfying

) rj=R

(ii) a; <8 <p}for j=1,2,...,N with 2} — zj = r\e% and with a; < a} <
B; < Bj, then there will be points 2o, 21,...,zn in E as required. We shall
use Proposition 2.2 to show the existence of the desired configurations in
Ej5 by way of intersection properties of E. To obtain the relevant properties
of E we make use of Theorem 3.2.

The operator P in Theorem 3.2 is a positive self-adjoint operator, so that
< Pf,f >> 0 for all f € L?(X). Also P1 = 1. Setting f = 14 — u(A) for
a subset A C X we deduce that < P14,14 >> u(A)2. This implies that for
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ae. z € A,Ply(z) > 0. For if B = {z € A | Ply(z) = 0} we will have
< Plg,1p > < < Pl4,1p >=0, so that u(B) =0.

Now apply Theorem 3.2 to the function 1z to obtain for each j,j =
1,2,...,N,

1 A
(4.1) ——,—/ " Trewlgdd — Plg
B —aj Ja,
3
in L2(X, B, u) as R — oo, where (X, B, u, T,) is the system attached to E C R>.
Since the function of the right in (4.1) is positive for almost every z € E, it
follows that if R is sufficiently large, the expression on the left will also be

positive for all z € E but for, say, a subset of measure < 52%2 Hence for at

least half of the points z € E, all N of the averages in (4.1), j = 1,2,...,N
are positive and the product

B B
__N_}_,/ / " IN(Ty ;1) dby ... dbn
(85 — a3) Ja aly

is positive. Multiplying by 1z and integrating over X, we conclude that for
some 6, € (a"l)ﬂi)a% € (a;,ﬁ;),- .,0N € (0'3\!7ﬁ}v)a
_ 1 = ., =
WMENT W EN...N Tk, E) > 0.

Proposition 2.2 now gives the desired result. O

Because of the approximative nature of Theorem 4.1 it is easily seen that
the result will be valid for a set E if it is true for arbitrarily small thickenings
Es. Thus it will be true if each Es,§ > 0, has positive upper density. This
happens, for example, if E is a subset of the lattice Z* C IR? which, relative
to the lattice has positive upper density. This gives the following.

Theorem 4.2. Let E be a subset of a lattice A = ¢Z* with positive upper density.
Let € > 0 be given as well as numbers 0 < a1 < f1 < a2 < P2 <...<an <
Bn < 2w. Then for all sufficiently large R there exists points 2y, 21,...,2N € E
so that writing z; — zg = r,-e"oi,O < 6; < 2m, we have

(i) |rj—R|<e

(ii) aj < 8 < B for j =1,2,...,N. O

5. Proof of Theorem A

We can now prove Theorem A. Let E C R? be measurable and with positive
upper density. Denote by @, the partition of R? into squares of side 2,
determined by the lattice 27*Z%. A number 8 > 0 is eligible for Q, if the
set of squares @ € Q,, in which the relative measure of E exceeds 3, has
positive upper density. It is clear that if 8 is eligible for Q,, it is eligible
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for Qi4e for £ > 0, since every @ € Qk in which the relative measure of E
exceeds [ contains at least one Q' € Q,,, with the same property. Define
B* = sup {B;3k such that B is eligible for Q,}, the positive upper density
of E insures that 8* > 0. The key observation now is that if § < B* but is
very close to it and if we partition a typical square of @, in which the relative
measure of E exceeds £ into its Q. , subsquares, all of the 22¢ subsquares will
have the property that the relative measure of E in them exceeds §*/2. The
proper order of quantifiers here is: for any £ > 0 there exists 3, < §* such that
the above is valid for 8 > ;. The observation is that if the relative measure of
E in one of the subsquares is lower than the average, other subsquares have to
conpensate but none of them, typically, can exceed the average by more than
g —B.

We now set N = 30(8*)"2,£ >> log N,B* > 8 > [,k large enough so
that B is eligible for Q, and denote by F the set of lower left hand corners
of the squares Q € Q, in which the relative density of E exceeds 3, and are
“typical” in the sense discussed above.

F C 27*Z? and has there positive upper dens1ty We apply Theorem
4.2 with € << 27%,0; = X~ 32,8i = &% + §1,j = 1,...,N and obtain
Ry > 0 such that given any R > Ry, we have a conﬁguratlon 20,..-92ZN €

27*%Z? such that z; — zo = rje’ with |r; — R| < € and |v; — 3N| < w7
We denote by Qo,Q1,...,Q@nN the corresponding Q, squares and set E;
ENQ;,j =0,...,N; by the definition of F, m(E;) > fm(Q;) = 272, a.nd
for convenience we normalize all measures by a factor 2¥ so that m(Q;) = 1
and m(E;) > (. Our final step is to evaluate the measure of the set of points

in Qo which are at distance R from some point in Uf;l E; and show that the
measure exceeds 1 — 3. Once we do that we are done because it implies that
this set must have positive intersection with Ej.
Denote by G; the subset of Qg of points whose distance from some point in
E; is R. G; is a union of circular arcs, intersection of Q¢ with circles of radius
R centered at points in E;. Divide Q; into its Q,,, subsquares and in each of
the principal diagonal subsquares find a subset of E; contained in a horizontal
sugment of full length and of relative linear measure equal to 5. Denote the
set so obtained by E; and the corresponding subset of Qo by G';. We shall
estimate the (planar) measures of G} and G} N GY. G is a union of arcs from
circles of radius R and to estimate the measures in questlon we approximate
these arcs by line segments. The following is now an approximate description
of G;. Through the lower-left and upper-right vertices of Qp pass two lines
orthogona.l to the direction § = 3. Divide the strip formed by these lines 1nto
2¢ equal strips. Let $; be the union of the lines also orthogonal to § = IR
such that S; meets each of the 2¢ strips in a fixed proportion f3; of the strip.
The B; will be bounded from below. Then G'; is approximately S; N Qo-

Let P be a pa.ra.llelogram formed by mtersectmg one of the narrow stnps
corresponding to § = 3% with one of the narrow strips corresponding to § = 7.
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We have

m(S; N P) = Bjm(P),m(S; N P) = B;m(P)

m(S, N Sj NnP)= ,B,ﬂJm(P)
By choosing £ very large we can assume that Qo differs by an arbitrarily small
amount from the union of parallelograms such as P. Hence we will have

m(GS) ~ ﬂj’ m(G:) ~ B, m(G: N G_’,) ~ Bif;.
Let 8' = inf B;. We now show that for £ large
(5.1) m(JG) >1- ﬁ,z )

for arbitrarily small § > 0. Set ¢; = 8; — 1g» on @Qo. We consider the situation
m(G}) = B; and m(G} N G}) = B;B;. On QO\UGJ,ZcpJ > Nf' and so
m(Qo\|J G5V < 1Y ¢illg,-
Now
< Qi pi >Qo=Bi — B}, < pi,p; >=0
so that || 3 gilly, = 2.8 — 282 < N and

m(Qa\JG) < 37
this would give
m(|JGi) >1- 5&
and since £ can be choosen very large we have (5.1).
Finally we note that from our construction
B cos B

cos3N+s1n - 1+tané

ﬂ_

Hence choosing N large after 8 has been prescribed we can assure that some
G; meets Ey. This proves Theorem A. O

6. A Recurrence Property of R*~Actions

In this section we prove a certain recurrence result for R%-actions from which
Theorem B will follow.

We begin with a lemma regarding mean values of vectors in a Hilbert
space.

Lemma 6.1. Let {u,,} be a bounded sequence of vectors in a Hilbert space H;
assume that
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1
(6.1) AYm = lim N Z < Uny Untm >

N—ooo

exists, and that

LM
(6.2) lim > Am=0.
1
Then
Ly
— Unp — 0
N 1
in the norm of 'H.

Proof. We choose M large so that the average in (6.2) is small and we choose
N large with respect to M. Having done so the two expressions

N Eun, MZ Zun+m

n=1 n=1 m=1

will be close, the vectors u,, being bounded. In general one has

1 & 1 &
2 2
I 30" < 37 D laml”
So up to a small error

1 N
1 2
IINnZ::lunII

will be bounded by

N Z ”_ Z un+m” = NM2 Z Z < Untmys Untdmg > -

n=1m;,ma=1

Let N — oo and it is easily seen that this expression goes to 0. O
The same proof yields the following uniform version.

Lemma 6.2. For each £ in some index set = let un(¢) € H, such that all the
un(€) are uniformly bounded. Assume for each m the limits

N
() = Jim 3 < (O tnem(6) >

exist uniformly, and that

1 M
W, 37 2 m(@) =0
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uniformly. Then
1 X
7 2 un(§) =0

n=1
in ‘H uniformly in §.
We shall need the following notion.

Definition. An action of a locally compact abelian group G by measure pre-
serving transformations T, of a measure space (X, B, ) is a Kronecker action
if X is a compact abelian group, 4 = Haar measure on X, and we have a
homomorphism 7,7 : G — X with 7(G) a dense subgroup of X and

Ty(z) =7(9) + 2.

Theorem 6.3. If (X, B, u, T, ) is an ergodic measure preserving action of a abe-
lian group G then there is a map w : X — Z where Z is a compact abelian
group, and a Kronecker action Ty, on Z so that Tyr(z) = n(Tyz) for z € X.
For every character x on Z the function x'(z) = x(n(z)) satisfies

xX'(Toz) = x(7(9) + 7(2)) = x(7(9))x' (=)

and so is an eigenfunction of the G-action, and, moreover, every eigenfunction
of the G—action comes about this way.

We refer the readers to Fiirstenberg (1981) for the proof of this.

The next theorem is a consequence of the fact that the eigenvectors of the
tensor product of two unitary operators are spanned by tensor products of the
eigenvectors.

Theorem 6.4. Let T' be a measure preserving transformation on the space
(X,B,u) and let S be a measure preserving transformation on the space
(Y,D,v). If F € L*(X x Y,B x D,u X v) satisfies F(Tz,Sy) = F(z,y) a.e.,
and if f € L?(X, B, u) is orthogonal to all eigenfunctions of the transformation
f — Tf where Tf(z) = f(Tz), then

/ F(z,9)f(z)du(z) = 0

a.e.onY.

We now take G = R? and we consider an ergodic R’>-action on a space
(X,B, u). The following proposition is also presented without proof. The proof
is based on the notion of the spectral measure (class) of an R*-action and the
manner in which this determines the spectral measure for the restriction of the
action of subgroups on RRZ.

Proposition 6.5. Let (X, B, u,T,) denote an ergodic R -action. But for a coun-
table set of 1-dimensional subgroups of R, each subgroup Ruy contains at most
a countable subset of elements v for which T, is not ergodic on (X, B, u).
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Lemma 6.6. Let (X,B,u,T,) denote an ergodic action, and suppose T, is er-
godic on (X, B, u). Then every eigenfunction of T, is an eigenfunction for the
R*-action.

Proof. ¢(Tyz) = Ap(z). Then for each u,
P(T,Tyz) = (TyTuz) = Ap(Tuz).

Since [A| = 1, p(Tuz)p(z) is seen to be invariant under ¢ — T, z. By ergodicity
of T, this is constant. Moreover |p(z)| is constant by ergodicity so that

— c
p(z) = —=
(z) p(z)
and we conclude ¢(T,z) = constant p(z). n]
The foregoing results are combined in the following.

Proposition 6.7. Let (z,B,u,T,) be an ergodic action of R? and let vy,v,
be such that T,, and T,,_,, act ergodically. Let f,g be bounded measurable
functions on X and suppose that f is orthogonal to all eigenfunctions of the
IR2?-action. Then for all wy, Wy € R?

N
1
(64) N Z Tw1+'n01fTw2+'n-”29 -0

n=1

in L*(X, B, u), uniformly in (wy,ws).
Proof. This will be an application of Lemma 6.2 with ¢ = (wy,w2), H =
L*(z,B, ) and
Un(§) = Twi+nvy fTws4nv,9-
We have

< Un(£), Ungm(é) > = /Tw1+nv1fTw1+nvl+mv1?Twz+nv39Twz+nvz+mvz§d#
= /(Twl_wlfTwl—w2+m”1—f)T‘J;—vl(ng‘lmg)d.u“
Since T,,—_,, acts ergodically
1 N
N Z Tzz-vl(ngvz:q-) - /ngvzgdﬂ
n=1

and this expression is independent of (w;,w;). Hence

1 N
N z < Un(€)s Untm(§) >— Tm

n=1

where
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Tm = /Tw1—wszw1—wz+mvl?dﬂ/ngvzgdﬂ

= /mem?dl"/ngvzgdﬂ

and this convergence is uniform in (w;,ws). Finally

M
%va - / / f(2)g(y)F (z, y)du(z)du(y)

where .
F(z,y) = lim 2= 3" F(Tm2)3(T5ny)

which is well defined by the ergodic theorem. Now by Lemma 6.6 since f
is orthogonal to all eigenfunctions of the RR*-action, it is orthogonal to all
eigenfunctions of T,,. But clearly

F(T,,z,Ty,y) = F(z,y)

so that we may apply Theorem 6.4 to conclude that

[ )P @ v)dutz) =0
and hence that
1M
I E Ym — 0.
1
This yields the proposition. O

Let (X,B,u,T,) denote an ergodic R*-action and let (Z,T,) represent the
Kronecker factor of (X, B, u,T,). We have a map m : X — Z which defines a
“disintegration” of the measure u to measures u,,z € Z, with u, supported for
each z by m~!(z). The map

£ [ 1du.= fa)

takes L?(X) to L2(Z). If we lift functions on Z to X then the foregoing map
represents the projection of L?(X) to L%(Z) o C L*(X) and by Theorem
6.3, L*(Z) o  is the subspace of L?(X) spanned by eigenfunctions of {T,}.
It follows that for each f € L%(X), f — f o« is orthogonal to the subspace
of L?(X) spanned by eigenfunctions. From this it is easy to deduce from the
foregoing proposition:

Theorem 6.8. Let (X,B,u,T,) be an ergodic R*-action; let (Z,T,) denote its

Kronecker factor, and let f,g,h € L®(X,B,p). If f,§,h denote the correspon-
ding functions on Z and if T,, and T,,_,, act ergodically on (X,B,p), then
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1 N
F 2 [ F vt 20Ty )l
n=1

1L f . .
N ,{2 /zf (Twr47928)3(Tows +noa€)(E)dE

converges to 0 as N — oo, uniformly in w;,ws.

The main result of this section is the following theorem. In formulating
this theorem we identify R? with C and we can then multiply elements of C.

Theorem 6.9. Let (X, B, u, T,) be a measure preserving action of C. Let A€ B
with pu(A) > 0 and let w € C. There exists £y so that for all £ > £y there will
exist z € C with |z| = £ for which

wWANTPANTSA) > 0.

Proof. One first shows by a standard argument that it suffices to treat the
case of an ergodic C—action. By Proposition 6.5 we can find z; so that T},
and T{,_1);, are both ergodic. We will later impose a further restriction on z,
which will be consistent with the present restriction.

Set f = 14 and consider f(¢) defined on Z. We see that f(¢) is a non—
negative function which is strictly positive on a set of positive measure of Z.
There will be a neighborhood W of the identity of Z so that if w;,ws € W,

/ FEO)F(€ +wn) F(€ +wa)dE > a>0,

for some appropriate a.
Define a homomorphism ¢ : C — Z x Z by

a(2) = (7(2),7(wz))

(see the definition of a Kronecker action), and let £2 = ¢(C). A non—trivial
character on 2 restricts to a non—trivial character on C which has the form
x(z) = €®#%', An element z will have {o(n2)}, 7 dense in 2 unless one of
these characters is trivial on 2z, and so we see that for z outside of a countable set
of lines o(z) generates a dense subgroup of 2. Let us suppose that z, satisfies
this restriction.

From the fact that o(z,) generates a dense subgroup of 2 it is easy to
show that there exists a number L so that for each (&;,£2) € £2, some

(& +1(n21), &2+ T(wzn)) EW x W
with 0 < n < L. W econclude that

a

N
%; /f(ﬁ)f(ﬁ + (w1 +n21)) f(€ + T(wwy + w2y ))dE > 37

whenever N > L, for all w; € C.
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Now apply Theorem 6.8 to deduce that there exists Ny so that if N > Ny

a
N ZI»‘(A N w1+nz1A N ww1+nwz1A) > ﬁ’

for all w; € C. In particular, for each w; € C, In < Ny with

wANT, ANTS

w1+nz1 ww1+nwz1A) > a7 3L
Our G-actions are required to be continuous in the sense that for any measu-
rable set A C X,e > 0,3 a neighborhood of the identity V C G so that for
g € V,u(TyAAA) < e. Take € < 3%. Then if w' is sufficiently close to w +nz
we will have

1 a a
(6.6) p(ANT, ANT, =

A)>3L iL = 1oL

ww'
To prove the theorem, choose w; a vector length 1 which is orthogonal to z;.
Then for large £

2
n? |z

1/ =4+ — e
[bws +nz| +|£w1+nz|+£

£+ 0( )
for n in restricted range. It follows that for large £ we can find w' with |w'| = £
so that (6.6) is true. This proves the theorem. m]

7. Proof of Theorem B

Theorem B is an immediate consequence of the foregoing theorem and Propo-
sition 2.2. For E C R? we form the IR*~action described in Section 2. Consider
u,v € R? as complex numbers and with v = wu, and apply Theorem 6.9 to
A = E and this w. For each z with

wWENTENT;E) >0

and for any § > 0 there exists a,8,y € Es with f —a =2, v —a = wz and so
the triangle {a, 3,7} is congruent to {0, z,wz} which is congruent to {0, fu, fv}
with £ = |z| / |u|.

We conclude with the example given by J. Bourgain (1986) which shows
that the configurations of Theorem B may not exist in E itself.

Let E = {(z,y) € R? | 3n € Z with |22 +y? —n| < %}, and let the
“tna.ngle” of Theroem B be {0 u, 2u} It is easily checked that E has (uniform)
density 1 5- Since for vectors v',v"

o' + 0”12 + [lo" = o"|1* = 2|}v"||* + 2]}»")?

and so
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o — "

2

,vl +,vll
(1) )12 + 0" | — 20512 = 21 =5 I

then if v',v", 2'—“‘,;,"ieE, the expressions to the left of (7.1) differs from an integer

by less than 2 dnd so 2| 25%"||? cannot be 1 an odd integer. This means that
||v' — v"|| does not attain all possible large values in such a triple.
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Topics in Euclidean Ramsey Theory

Ronald L. Graham

1. Introduction

Many questions in Ramsey Theory can be placed in the following context.
We are given a set X, a family Fof distinguished subsets of X, and a positive
integer r. We would like to decide whether or not the following statement holds:
For any partition of X = X; U...U X, into r classes, there is an F € F and
an index i such that F C X;.

Such an F is usually called homogeneous (or monochromatic, if the parti-
tion of X is thought of as an r-coloring of X; we will use both terminologies
interchangeably).

The key feature which distinguishes Euclidean Ramsey Theory from other
branches of Ramsey Theory is the use of the Euclidean metric in determining
the structure of . More precisely, X is usually taken to be Euclidean n-space
IE" for some n, and F= JFC) consists of all subsets F' which are congruent to
a given point set C C IE™.

The requirement that the homogeneous set be congruent to C is quite
stringent. For example, if C' consists of three equally spaced collinear points
then it turns out (as we shall see) that for any n,IE™ can always be 4-colored
with no monochromatic congruent copy of C formed, whereas monochromatic
homothetic copies of C must always exist, as shown by van der Waerden’s
theorem, for example.

In this chapter I will survey some of the basic results in Euclidean Ramsey
Theory as well as describing some very recent theorems and numerous open
problems.

2. Preliminaries

Let us say that R(C,n,r) holds if any r-coloring of IE® contains a monochroma-
tic set congruent to C. Thus, for example, if C' is the set of three vertices of a
unit equilateral triangle then R(C’,4,2) holds (by considering the five vertices
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of a unit simplex in E*) while R(C",2,2) does not hold (by partitioning E?
into two classes of alternating strips of width 4/3/2, each open on the top and
closed on the bottom.

Slightly more interesting is the following.

2.1 Theorem. If S is the set of four vertices of a unit square then R(S,6,2)
holds.

Proof. Consider the set X C IE® defined by X = {(z1,...,2¢) : z; = 1/4/2 for
exactly two values of i, and ; = 0 for all other values of i}. Any partition of ES
into two classes, say x : IE® — {0,1}, also partitions X into two classes. To each
point (z1,...,%¢) € X, we can associate a pair {4,;} by letting i and j be the
indices of the nonzero coordinates of (zi,...,%¢). Thus, x induces a 2-coloring
of the edges of K¢, the complete graph on six vertices. It is a standard result in
(Ramsey) graph theory that in any such 2-coloring, a monochromatic 4-cycle,
say ¢; — ¢z — c3 — ¢4 — c¢1, must be formed. It is now straightforward to
check that this 4-cycle corresponds to the four vertices of a unit square in X,
and the theorem is proved. O

It is no accident that in the examples we have given up to this point, proofs
that R(C,n,r) holds for some C were always accomplished by selecting only a
suitable finite subset of E™ and coloring it (rather than all of IE™). A standard
compactness argument (see Graham, Rothschild, Spencer 1980) shows that this
is always the case, although it is often far from obvious what the appropriate
finite subset should be.

Before proceeding to more general considerations, we first discuss a tanta-
lizing question which besides being among the most fundamental in the theory,
illustrates quite clearly how little we ! still know about what is going on in
this area. For this example we take C to be the set C* consisting of two points
separated by distance 1.

To begin with, it is easy to see that R(C*,2,2) holds, simply by considering
(as the suitable finite set) the set of three vertices of a unit equilateral triangle.
To show that R(C*,2,3) holds, we need only consider the graph G (known as
the Moser graph) shown in Fig. 1. Each edge {z,y} of G denotes the fact that
the distance between z and y is 1.

A simple calculation shows that the chromatic number of G is 4. Thus,
any 3-coloring of IE? induces a 3-coloring of (infinitely many copies of) G and
consequently, always produces a monochromatic pair of points at unit distance
from each other, as claimed.

In the other direction, it is not difficult to 7-color the standard tiling of
IE? by regular hexagons of side 9 /10 so that no color class contains two points
separated by distance 1. Thus, R(C*,7,2) does not hold. The least value d for
which R(C*,d,2) holds is also known as the chromatic number x(IE?) of E2,
since it is the chromatic number of the (uncountable) graph formed by taking
each point of IE? as a vertex and each pair {z,y} with distance 1 between z

1 “we” meaning combinatorialists collectively, in this case.



202 Mathematics of Ramsey. Variations and Applications

Fig. 1. The Moser graph

and y, as an edge. Thus, the best available bounds for x(IE?) are:
4< x(E*) <.

There is some evidence that x(IE*) > 5 from the result of Wormald (1979),
who showed that IE* contains a (finite) graph of chromatic number 4, with all
edges of length one and containing no 3—cycle and no 4—cycle.

For the chromatic number x(IE™) of IE™, it has been recently shown by
Frankl and Wilson (1981), using a powerful result on set systems with restric-
ted intersections, that x(IE™) grows exponentially with n, verifying an earlier
conjecture of Erdds. The best current bounds on x(IE™) are now:

(14 0(1))(6/5)" < x(B") < (3+ o(1))™

3. Ramsey Sets

A basic concept in Euclidean Ramsey Theory is that of a Ramsey set.

Definition. A configuration C is said to be Ramsey if for all r there exists an
N = N(C,r) such that R(C, N,r) holds.

An easy argument shows that no infinite set can be Ramsey. The following
result forms the basis for constructing essentially all known Ramsey sets.

3.1 Theorem (Erdos, Graham, Montgomery, Rothschild, Spencer, Straus 1973).
If C, and C, are Ramsey then the cartesian product C; x C, is Ramsey.

Proof. Fix C; C E™, C; C E™ and let r be a positive integer. Choose u
so that R(C1,u,r) holds. By the compactness theorem mentioned earlier there
exists a finite set T C IE* such that in any r-coloring of T', a monochromatic
congruent copy of C; is formed. Let ¢ = |T| and let T = {z1,Z2,...,Z¢}-
Choose v so that R(C,,v,r') holds (which is possible since C, is Ramsey).
We claim that R(C; x Ca,u + v,7) holds. To prove the claim, suppose x :
E*** — {1,2,...,7} is an r-coloring of IE**”. Define an induced coloring
x' :E” - {1,2,...,7*} by

X' () = (x(1,¥) X(£2,9), - - -, X(Z2,Y))-
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By the choice of v there is a x'-monochromatic congruent copy of Ca, say C,
in IE*. Now define an induced r-coloring x" of T by x"(z:) = x(zi,y) for
some y € C,. This is well-defined since C, is x'-monochromatic. It is now
straightforward to check that T' contains a monochromatic (under the original
coloring x) copy of C1 x C>. This proves the claim and consequently, the theorem
follows. O

Since any two-point set is Ramsey then arbitrary cartesian products of
two-point sets, i.e., the sets of vertices of rectangular parallelepipeds, are also
Ramsey (and, of course, any subset of these sets of vertices). An interesting
question which arises in this context is that of determining which simplexes
(i.e., (n+1)-subsets of IE™ in general position) are subsets of the vertex set of a
rectangular parallelepiped. A necessary condition is that no angle determined
by three of its vertices should exceed 90°. This condition turns out to be suffi-
cient for n = 2 and n = 3. However, it is not sufficient for n > 4. Indeed, it is
not difficult to construct a five-point simplex in E* with all angles determined
by three points being less than 89°, and which cannot be extended to the vertex
set of any rectangular parallelepiped.

An ingenious construction recently discovered by Frankl and R3dl can be
used to show that any set of three non-collinear points is Ramsey (thus partially
resolving a conjecture in Graham (1980)). The idea behind their construction is
the following. For arbitrary fixed k and r, and n = n(k,r) chosen suitably large,
consider the subset X C IE™ formed as follows. For each subset I C {1,2,...,n}
of size 2k — 1, say I = {i1,12,...,%2k—1}, define z = z; = (21,22,...,%a) by

taking
J ifj=1, foru=1,2,...,k,
z;j=492k-j ifj=i,foru=k+1,...,2k—1,
0 otherwise.

Thus, a typical point z looks like:
z=(0,...,0,1,0,...,0,2,0,...,0,k,0,...,k—1,...,0,1,0,0)

X is taken to be {z; : I C {1,...,n} with |I| = 2k — 1}. Consider now an
arbitrary r-coloring of X. This induces an r-coloring of the set of all (2k — 1)-
subsets of {1,2,...,n}. Hence, if n is large enough then by Ramsey’s Theorem
there is a (2k + 1)-subset ¥ C {1,2,...,n} having all its (2k — 1)-subsets in
a single color. Suppose we write Y as {i1,12,...,42k4+1}. Consider the three
points z,,2;, and z;, where

Il = {ilai2,"'7i2k—1},
I2 = {iZ,i3,---,i2k},
I3 = {is,i4y... 02k +1}-

A straightforward calculation shows that distance(zy,,z5,) =distance(z,,z1,)
= V2k, distance(zy,,z1,) = V/8k — 2. Thus, z1,,z1, and zz, form an (arbitra-
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rily) obtuse monochromatic isoceles triangle. Various obtuse triangles can now
be formed from the sets of vertices of prisms created by taking the product
of X with two-point sets. To form arbitrary obtuse triangles a similar tech-
nique is used, but with greater “shifts” of the (1,2,...,k,...,2,1) positions.
Presumably, every non-degenerate simplex is Ramsey?. It would also be inter-
esting to know whether such simple sets such as the five vertices of a regular
pentagon are Ramsey but at present this is unknown?3.

As mentioned earlier the collinear set C = {x,y,z} with distance (x,y) =
distance(y,z) = 1 is not Ramsey. (Indeed, no set with three collinear points
can be Ramsey, as we will see later). The proof of this is not difficult and goes
as follows. For each point u € IE™ assign the color

x(u) = [u- u] (mod 4)

where for u = (u1,...,%n),u - u denotes the inner product Y 1, u? and [z]
denotes the greatest integer not exceeding z. Suppose the set C = {x,y,z}
occurs monochromatically in this 4-coloring of IE™, say C C x~!(i). From Fig.
2, since

a>=0+1-2bcos@®
=0 +1+2bcos®

then
a2+ =20 +2
Fig. 2. The collinear set C = {x,y, z}
Since
x(x) =x(y) = x(z) =1
then

2 This has now been proved by Frankl and Rédl (to appear).

3 The vertices of a regular pentagon do form a Ramsey set. This has been proved very
recently by Igor KiiZ (to appear).
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a® =4k, +i+es, 0<e, <1,
b* =4k, +i+ep 0<e, <1,
=4k +it+e,0<e<1
for suitable integers kq, ks, k.. Thus, we have
(kg — 2ky+ k) — 2= —e, +2€, — €

which is easily seen to be (just barely) impossible. This proves that C is not
Ramsey.

The preceding argument actually contains the kernel of an idea which when
more fully developed leads to the following result.

Let us call a set X C IE™ spherical if it is a subset of a sphere.

3.2 Theorem (Erdds, Grakam, Montogomery, Rothschild, Spencer, Straus
1973). If C is Ramsey then C is spherical.

The proof, which we sketch for completeness, rests on several lemmas.

3.3 Lemma. There exists a (2n)-coloring x of IR such that the equation

n
D wi-yh=1
i=1
has no solution with x(y;) = x(y!), 1 <i<n.

Proof. Define x by setting x(y) =j ify € [2m+j/n,2m+(j +1)/n] for some
integer m. Then x(y;) = x(y;) implies

¥ —y; = 2m; +6;

for some 6; with |6;| < 1/n. Therefore

1=§:(y;—y£)=2im;+i0;=2M+9
=1 =1 =1

where § = >, 6;. However, this is impossible since 0 < 4] < 1. 0

3.4 Lemma (Strauss 1975). Suppose c1,...,¢, and b # 0 are arbitrary real
numbers. Then there exists a (2n)™-coloring x* of R such that the equation

n

(1) Z ci(zi—z) =0

i=1
has no solution with x*(z;) = x*(z!), 1 <i < n.

Proof. Note that (1) holds if and only if

(2) zn:cf(:ci —-zi)=1
=1
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where ¢ = ¢;b!. Define x* on R by setting x*(a) = x*(B) if and only
if x(cta) = x(c!PB) for all i, where x is the 2n-coloring defined in Lemma
3.3. Thus, x* is a (2n)™-coloring. Now suppose (2) holds with x*(z;) =
x*(zi), 1 < i < n. Then x(cjz;) = x(cjzi), 1 < i,j < n. In particular,
x(cfz;) = x(ciz}), 1 <i < n. Therefore,

n n
S ei(o -2 = 3 (eims - cizh
=1 i=1

=) (2m; + 6; — 2m - 6})

i=1
=2M +) (6; - 6}) #1
i=1
since 0 < D7, [6; — 8}] < 1. O

3.5 Lemma. A set K = {vq,V1,...,V;} is not spherical if and only if there exist
¢;, not all 0, such that:

(i) iy ei(vi—vo) =0,
(i) Yryeivi-vi—vg-vo)=b#0.

Proof. Assume K is a subset of a sphere with center w and radius r, and
suppose K satisfies (i). By the law of cosines,

2= (v; —w) - (v; —w)
= (vo —w) - (vo — W) + (vi — Vo) - (vi — Vo) — 2(vi — Vo) - (W — vo)

which implies

(vi — ) - (vi — vp) = 2(v; — vp) - (W — vp)

since (vo — w) - (vg — w) = r2. Thus,

k k
Ec,-(v,- —vg) - (vi —vg) =2(W —vq) - Zci(v,- —vg) =0
i=1 i=1

which contradicts (ii).

On the other hand, suppose K is not spherical. We may assume without
loss of generality that K is minimally non-spherical, i.e., all proper subsets of
K are spherical. Thus, the k + 1 points of K cannot form a simplex since a
simplex is spherical. Therefore, the vectors v; — vq are linearly dependent, i.e.,
there exist ¢;, 1 <1 < k, not all 0, such that

k

(3) E C,'(V,' - Vo) = 0.

i=1
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By the minimality assumption on K, we may assume that ¢y # 0 and that
Vg,...,Vi_1 lie on some sphere, say with center w and radius r. Since

Viovi—vg-vp = (v —w)-(v; —w) — (vo —w)-(vo —W)+2(v; —vo) - W

then
k k
D ei(viovi—vo -vo) =D ei((vi — w) - (v; — W) — (Vo — W) - (vo —w))
=1 =1

k
+226;(V; —Vo) ‘W
i=1

= ck((vi —w) - (vk —w) —7%) #0

by (3) since vi is not on the sphere of radius r centered at w. Thus (ii) holds

and the lemma is proved. O
We are now ready to complete the proof of Theorem 3.2. Assume C =
{vo,...,V,} is not spherical. By Lemma 3.5, there exist ¢1,¢2,...,¢, and b # 0
such that
n n
(4) D ei(vi—vo) =0, Y ci(vi-vi —vg-vg) =b #0.
i=1 i=1

Let us color each point u of EN with x by defining x(u) = x*(u - u) where x*
is the (2n)™-coloring used in Lemma 3.4 with these values of ¢; and b. Thus, if
X assigns a single color to all the v; then x* must assign a single color to all
the v; -v;. However, this is impossible since (4) cannot hold monochromatically
using the coloring x*. Thus, with the (2n)-coloring x of EN given above, the
set C cannot occur monochromatically. Since N was arbitrary, this shows that
C is not Ramsey, and the theorem is proved. O

Before concluding this section we point out that a number of analogues
to the preceding results are known when instead of requiring a monochromatic
set congruent to the given set C, we only require that the congruent set have
at most k colors for some fixed value of k. Specifically, call a configuration
k-Ramsey if for any r there is an N = N(k,C,r) such that in any r-coloring
of EV, some set congurent to C must occur which has at most k colors. Thus,
1-Ramsey sets are just Ramsey sets. The following analogue to Theorem 3.2
appears in Erdds et al. (1973).

3.6 Theorem. If C is k-Ramsey then C is contained in the union of k spheres.
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4. Sphere-Ramsey Sets

Rather than take all of IE™ as our underlying space, it is possible to consider
various subsets of IE™ instead and ask the analogous questions. A very natural
choice for such subsets are unit spheres. Specifically, we denote by S™ the unit
sphere in IE™*! centered at the origin, i.e.,

8™ = {(zo,-..,2,) € E*: sz =1}

=0

A configuration C will then be called sphere-Ramsey if for any r, there is an
N = N(C,r) such that in any r-coloring of SV there is always a monochromatic
subset of S which is congruent to C. In this section we will describe several
results concerning sphere-Ramsey sets which bear some similarity to those for
ordinary Ramsey sets, although in general far less is known about sphere-
Ramsey sets.

The strongest constraint currently known for sphere-Ramsey sets is given
by the following result.

4.1 Theorem (Graham 1983). If X = {x1,...,Xm} C IE" is sphere-Ramsey then
for any linear dependence ;. ; a;x; = 0 there must exist a nonempty subset

Proof. Suppose the contrary, i.e., suppose

(i) for some nonempty I C {1,2,...,m}, there exist nonzero «;, i € I, such
that
Z o;X; = 0;
i€l
(ii) for all nonempty J C I,
Z a_,- 7é 0.
jeJ

We will show that there exists an r = 7(X) such that for any N, SV can
be r-colored with no monochromatic subset congruent to X.
To begin with, consider the homogeneous linear equation

(5) D oz =0.
i€l
By assumption (ii), Rado’s results for the partition regularity of this equation
over R" (see Graham, Rothschild, Spencer 1980 or Rado 1933) implies that
(5) is not regular, i.e., for some r there is an r-coloring x : R* — {1,2,...,7}
such that (5) has no monochromatic solution. Color the points of
Sf = {(z0,..-,ZN) € SNz > 0}

with x* by defining
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x*(x) = x(u - x)
where u denotes the unit vector (1,0,...,0). Thus, the color of x € S¥ depends
only on the distance of x to the “north pole” of SN.
For each nonempty subset J C I, consider the equation

(6) Ea,-z_,' = 0.

JEJ

Of course, by (ii) this equation also fails to satisfy the necessary and sufficient
condition of Rado for partition regularity. Therefore, there is an rj-coloring x s
of R* so that (6) has no xs-monochromatic solution. As before, we can color
S¥ by giving x € S¥ the color

x7(x) = xs(u-x).
Now, we form the product coloring % of S¥ by defining for x € S¥

() = (-, x0(x), - )

where the index J ranges over all 2/l — 1 nonempty subsets of I. The number
of colors required by the coloring x is at most

R = H TJ.

o2ICI
An important property of % is this. Suppose we extend X to
S(J)V = {(30,"',31;) € SN:SO > 0}

by assigning all R colors to any point in S{'\S¥, i.e., with o = 0. Then the
only monochromatic solution to (5) in Rt U {0} is z; =0 for all i € I.

Next, we construct a similar coloring x on S = {-x : x € SV}, but
using R different colors. This assures that any set X which intersects both
hemispheres Sf and SV cannot be monochromatic.

Finally, we have left to color the equator

SNl ={xe SN :20=0}.

By the construction, any monochromatic set congruent to X must be contained
entirely in SV—!. Hence, it suffices to color S¥~! avoiding monochromatic
copies of X, where we may use any of 2R colors previously used in the coloring of
Sf USY. By induction, this can be done provided we can so color S*. However,
if m > 1 then S? can in fact always be 3-colored without a monochromatic copy
of X. This completes the proof of the theorem. O

4.2 Corollary. If X C S™ and 0 € conv(X) then X is not sphere-Ramsey
(where conv(X) denotes the convex hull of X).
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Proof. If 0 € conv(X) then there exist @, > 0, x € X' C X, such that
Z axx = 0.
xeX'’

Since no subset of the a, can sum to 0, the result follows. O

In the other direction, it is known that the vertex set of any rectangular
parallelepiped is sphere-Ramsey, provided the length of its main diagonal is at
most v/2. The proof has the same basic structure as the usual proofs of the
Hales-Jewett theorem and can be found in Graham (1983). It seems likely that
this should hold in fact for any rectangular parallelepiped with main diagonal
length less than 2%. Here, we show this for the case of two points. Specifically,
we have

4.3 Theorem. For any A with 0 < A < 1, the set {—\, A} is sphere-Ramsey.

Proof. It is enough to show that the graph G()) with vertex set S™ and edge
set {{x,y}: distance (x,y) = A} has chromatic number tending to infinity
with n. To prove this we use the following result of Frankl and Wilson:

4.4 Theorem (Frankl, Wilson 1981). Let F be a family of k-sets of {1,2,...,n}
such that for some prime power gq,

|FNF'| # k(mod q)

Iﬂs(qfl)-

For a fixed r, choose a prime power ¢ so that

(825> (52)

where 3 = A\/4/2q, and o and e > 0 are chosen so that

for all F # F' in F. Then

ol +2(1+e)gf2=1
and N = (1 + e)q is an integer. Consider the set
2N
S = {(30,...,32N) 8=, 8 = iﬁ,zs; = 0}.

=1

To each s € S associate the subset

F(s)={ie{1,...,2N}:s; = B}.
Thus, the family
F={F(s):se S}

4 This has now been proved by Frankl and Rédl (to appear).
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consists of the (%)) N-element subsets of {1,...,2N}. If F,F' € F, F # F',
then

|[FNF'|= N (modq)
if and only if

|[FNF'|=N—-q=eq.

If the elements of F are r-colored then some color class must contain at least

7= (5)> ()

elements of F However, by the preceding result of Frankl and Wilson, if
|F N F'| = eq never occurs, then the number of elements of F can be at most
M), which is a contradiction.

Therefore, F must contain a monochromatic pair F(s), F(s') with
|F(s) N F(s")| = egq.

This implies that s and s' must (up to a permutation of coordinates) look like:
€q q q eq

S=(a, ﬁv-'aﬂ, B,--',B7 _B,'--,_ﬁ, _ﬂa"-a_ﬂ)a
S'=(a, B,-‘-,ﬂ, —ﬁv-',_ﬁ, ﬂ,"',ﬂ, _ﬂ,"',_ﬂ)'

It now follows that
distance(s,s') = 1/8¢B% = 2\
and
distance(s,0) = distance(s’,0) = o + 2(1 + €)gB* = 1.

Thus, s and s' € S2V and the theorem is proved. O

5. Concluding Remarks

Space limitations have prevented us from describing more than just a few of the
many interesting results and problems in Euclidean Ramsey Theory. Several
topics we might have discussed are the following.

Let us call a collection C of line segments in E™ line-Ramsey if for any
T, in any partition of all the line segments in IE™ into r classes, some class
contains a set of line segments congruent to C. It is known (Erdds et al. 1973),
for example, that if C is line-Ramsey then all line segments must have the same
length. Another negative result is the following.

5.1 Theorem (Graham 1983). Suppose C is a configuration of unit line segments
L; such that:

(i) The set of endpoints of the L; is not spherical;
(ii) The graph having the L; as its edges is not bipartite.
Then C is not line-Ramsey.
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It is not known whether four line segments forming a unit square is line-
Ramsey.

Even if we restrict ourselves to IE2, there are many unsolved problems. For
example, is it true that if T is any three-point set in IE? which does not form
an equilateral triangle, then R(T,2,2) holds? The strongest conjecture would
be that in any 2-coloring of IE2, a congruent copy of every three point set must
occur monochromatically, with the exception of the set of vertices of a single
equilateral triangle. On the other hand, it may be true that R(T,2,3) never
holds for any three-point set T

Since we have seen that IE? can be 7-colored so that no set congruent to a
given two-point occurs monochromatically, one might wonder if there were any
interesting Euclidean Ramsey properties which hold when IE? is partitioned
into an arbitrarily large (finite) number of colors. The following result shows
that there are.

5.2 Theorem (Graham 1980). For every partition of IE* into finitely many cl-
asses, some class has the property that for all « > 0, it contains three points
which span a triangle of area a.

The proof, which can be extended to the analogous result for IE™, is sur-
prisingly tricky.

For other Euclidean Ramsey Theory results, the reader can consult Erdés
et al. (1973), Erdds, Rothschild, Straus (1983), Graham (1980), Graham (1983),
Shader (1974, 1976), Straus (1975).
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On Pisier Type Problems and Results
(Combinatorial Applications to Number
Theory)

Paul Erdos
Jaroslav Nesetfil
Vojtéch Rodl

Abstract

Several number theoretical results are (sometimes a bit surprisingly) conse-
quences of purely combinatorial statements. In this paper we deal with some
of these results. Particularly we solve several problems related to Pisier-type
problems.

1. Introduction

1.1 In connection with his work on Sidon sets Pisier formulated (1983) the
following problem which in our opinion is very interesting in itself:

A (finite or infinite) sequence of integers A = {a1 < a2 < ...} is called
independent if all the sums > ¢;a;, €; =0 or 1, are distinct.

Pisier posed the problem of giving a necessary and sufficient condition that
a sequence should be the union of a finite number of independent sequences.
He then asked:

Is it true for every § > 0 there is an absolute constant ks (depending only
on §) so that

(P)if for every m and every subsequence {a;, < a;, < ... < a;, } there exists a
further subsequence of ém terms of a;, < ... < a;,, which is independent,
then A is the union of ks independent sequences?

The condition (P) is clearly necessary if A is a union of k independent
sequences (we may put § = 3). The problem is whether it is sufficient. If
the answer is positive then Pisier has a characterization for Sidon sets, in other
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words his well known condition, see Pisier (1983), that a set should be a Sidon
set is both necessary and sufficient.

We will be here concerned only with the combinatorial and number theo-
retic problems of Pisier type. As the reader will see many related questions
can be asked in number theory or combinatorics. Essentially all our non-tivial
results are of negative character.

1.2 First let us make some remarks on independent sets. One of the first con-
jectures of the first author states (this dates 1932 A.D. (not B.C.)):
Is it true that if a3 < a2 < ... < ax < z is independent then

log z
log 2

In other words: Is the sequence 2",n = 0,1,2,... in some sense the densest
independent sequence?

P. Erdos offers 500 dollars for a proof or disproof of (1). The best known
upper bound for k is due to P. Erd6és and L. Moser and states

(1) k< —==+C?

log z loglogz
log2  2log 2

k<

Conway and Guy found a set of 24 integers 1 < a; < ... < a4 < 222 which
is independent and it has been conjectured that (1) holds with C = 3. The
truth or falsity of Pisier problem seems to have nothing to do with (1) and
unfortunately we can make no contribution to this beautiful problem.

1.3 More than 50 years ago Sidon called a sequence a; < a3 < ... a B, sequence
if all the sums Y ._, €;a,,,€; = 0,1, are distinct. Especially B, sequences have
been studied a great deal (Ajtai, Komlds, Szemerédi 1981, Alon, Erdos 1985).

In Alon, Erdos (1985) the following Pisier-type problem is posed: Let § > 0
and suppose that A has the property that for every finite subsequence a;, <
... < a;, there is a finite B, sub-subsequence having §m terms. Is it then true
that there exists ks such that A is the union of ks B,-sequences?

This conjecture can be disproved for § < i by using a non-trivial Ramsey-
type result of Nesetfil and Rodl (see 1979, 1981):

1.4 Theorem. There exists a sequence A of positive integers with the following
properties:
1) A fails to be a finite union of B,-sequences

2) For every finite subsequence B of A there exists a By sub-subsequence C
of B such that |C| > 1 |B].

’I‘nvla.lly the result holds for § > 4 It is open at the moment what happens
for ;<6 < 3.6 = 2 seems particularly interesting:

Is it true if every subsequence of m terms contains a B, sequence of 3"‘
terms then A is the union of a finite number of B, sequences?

1.5 The methods of Ne3etfil, R6dl (1985) imply that if we permit § to be suffi-
ciently small then all the Pisier type problems for B!-sequences have negative
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answer, see Theorem 4.1. For the original Pisier problem this method does not
apply (compare Theorem 5.3 below). So far we have no non-trivial positive
result in number theory for a Pisier type problem. Just for illustration we give
at least a trivial result of this type:

A sequence of integers is called primitive if no one divides the other Erdds,
Sérkdzy, Szemerédi (1967). From Dilworth (1950) one gets easily the following:

Let A be a sequence. If every subsequence of A of m terms contains a
primitive sub-subsequence of §m terms then A is the union of [1/§] primitive
sequences.

1.6 Two more Pisier type problems will be treated in Section 4. Fix positive €
and let the sequence A = (a; < ap < ...) be such that every subsequence of m
terms contains a sub-subsequence of at least (3 + €)m terms for which

(*) ay + a, # ay

for every choice of distinct indices. Is it then true that A is a finite union of
sets with the property (x)?

This being trivially true for € > 1/6, for 0 < ¢ < 1/6 the problem appears
to be much harder. The same question can be asked if a, + a, # a,, is replaced
by the condition that no a is the sum of distinct other entries: a sequence of
integers is called free if no entry is the sum of other entries. Here we have a
more satisfactory situation as we can prove:

1.7 Theorem. For every positive € there exists a sequence A = (a; < az < ...)

of integers with the following properties:

1) For every finite parititon A = A; U...U A one of the classes A; fails to be
free;

2) For every finite subsequence B C A there exists a free sub-subsequence
C C B with |C| > (1/2 - ¢€)|B|.

1.8 Now some problems in graph theory:
Let G = G(n;e) be a graph with n vertices and e edges, H is any other fixed
graph. We try to find a necessary and sufficient condition that our G(n,e)
is the union of a bounded number of graphs which do not contain H as a
subgraph. The Pisier type condition could be: Assume that every subgraph
G(n,e1) contains another subgraph G(n,e;) with es > fe; which does not
contain H as a subgraph. Is there then a Cs for which G(n,e) is the union of
C;s graphs none of which contain H as a subgraph?

The necessity of this condition is obvious the sufficiency is the difficult
problem. Again we do not have any non-trivial positive result.

1.9 Let us discuss few special cases which seemed particularly interesting to
us. First, let H be Cjy. It follows from Ramsey-theoretic results of Neset#il and
R4dl that if § < } then our Pisier type conjecture is false. For § > 2 the
answer is trivially positive, but for % < § < 2 the problem is open and perhaps
is difficult. Similar situation prevails for K., and probably for every bipartite
graph which is not a tree.
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1.10 One further question of a slightly different type seems to be of an interest:

Let G(n,e) be a graph of n vertices and e edges. We would like to find a
condition which would imply that there is a subgraph of §e edges without a
C; and in fact a condition which would imply that every subgraph of e, edges
contains another subgraph of > §e; edges without a Cs.

Here is a condition which is obviously necessary and could be sufficient:
There is an absolute constant ¢ so that every bipartite subgraph of G of a white
and b black vertices, a < b, contains at most c.a.b!/? edges.

The necessity follows from the fact that a bipartite graph of a white and
b black vertices (a < b) which has no Cy contains at most a.b'/? edges.

1.11 Let us now consider the case when H is a K. First consider r = 3.

Clearly every G(n,e) contains a bipartite subgraph of more than § edges,
thus we can hope for a positive Pisier type result only for § > % :

Is it true that if G(n,e) is such that every subgraph of e; edges contains
a subgraph of (3 + €)e1, € > 0, edges without a triangle then our G(n,e) is the
union of C, graphs without a triangle? We do not know the answer even for
¢ = §. The case € = § seems to be particularly interesting. Similar questions
can be asked for K,,r > 3.

1.12 Related question has been asked by Erdds and NeSetfil:

Is there a G(n,e) which contains no K, but every subgraph of (3 + €)e
edges of it contains a triangle? Frankl and RGdl proved (1986) by the probability
method that such a graph exists. If we replace triangle by K,, r > 3, then the
problem is still open.

All our examples of solved Pisier type problems are based on a convenient
combinatorial representation. Therfore we decide to include some other exam-
ples of the use of combinatorial methods in number theory. This is done in
Section 2 where we survey recent results related to theorems of Ramsey and
Van der Waerden.

In Section 3 we define graphical sequences of integers (introduced in
Nesetiil, Rodl (1979)) and we list several applications in number theory.

In Section 4 we deal with negative solutions of Pisier type problems. Par-
ticularly we solve Alon-Erdés problem on B, sequences.

In Section 5 we list some positive examples of Pisier type problems. In
Section 6 we sketch a proof of a Ramsey-type result which is the key point in
proof of Section 4.

2. Multiplicative Bases and Szemerédi-Ruzsa Theorem

Let X be a set of positive integers. We say that X is a multiplicative base if
for every positive integer n there are z,y € X such that n = zy. The following
was proved by P. Erdés (see Erdds 1964).

2.1 Theorem. Let X be a multiplicative base. Then for every positive integer
p there exists a positive integer n such that n can be expressed as the product
of two elements of X in at least p different ways.
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Neset#il and Rodl found a very easy proof using the well-known theorem of
Ramsey: Let p be a given integer and let [A]? = C1 U C be a partition of the
set of all p-tuples of elements of an infinite set A into two parts. Then there
exists i and an infinite set B C A such that [B]? C C;. The set B is called
homogeneous with respect to the partition (C1,Ca).

Proof of Theorem 2.1. In the following we shall consider the integers which
are products of distinct primes only. Such integers can be identified in a natural
way with finite subsets of the set of all primes. Thus it suffices to prove the
following.

2.2 Theorem. Let A be an infinite set. Denote by [A]<“ the set of all finite
subsets of A. Let A C [A]<“ be a set of finite subsets of A such that the
following holds:
(x) For every P € [A]<“ there are Q,Q"' € A such that QU Q' = P and
eNE' =0.
Then for every integer p there is a set P which can be expressed in at least
p different ways as a union of two disjoint elements of A.

Proof of Theorem 2.2 is a straightforward consequence of Ramsey’s theorem:
Let p be a given positive integer, p > 2. For every : = 1,...,p — 1 consider a
partition [A]* = C} U Ci defined by Q € C} iff @ € A. Let B be an infinite
set which is homogeneous with respect to all partitions C},C},i =1,...,p—1
(such a set clearly exists by iterating the Ramsey theorem). From (*) we get
that there is an i,1 < i < p — 1, such that

(B € Ci and [BP~ C 07,

and hence every P € [B]? can be represented as a union of at least (£) > p
elements of A. O

2.3 Remark Note that the above proof gives nothing concerning the additive
version of Theorem 2.1. This is an old problem of P. Erdés and Turén:

Problem. Let X be a set of positive integers with the property that for every
positive integer n there are z,y € X such that n = z + y. Is it true that for
every positive integer p there exists a positive integer n such that n can be
expressed as the sum of two elements of X in at least p different ways?

2.4 Perhaps the most celebrated application of combinatorial methods to num-
ber theory is the well known Szemerédi theorem. Set

vi(n) = max{|X|;X C {1,...,n},X contains no arithmetic progression of
length k}.

Answering a longstanding conjecture of Erdés and Turdn Szemerédi proved his
famous theorem:

Theorem (Szemerédi 1975). vi(n) = o(n) for every k.

We include a proof of a special case k = 3 as it fits to our survey being a
very beautiful application of graph theory to number theory. The proof given
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here is based on idea of Ruzsa and Szemerédi (1978) and is taken from Erdds,
Frankl, R6dl (1986).

2.5 For a graph (V,E) let A,B C V be a pair of disjoint subsets of V. The
density of a pair (A, B) is the fraction
e(4,B)

44B) = 1B

where e(A, B) is the number of edges with one end point in A and second in
B. The pair (A, B) is called e-uniform if for every A' C A,B' C B, |A'| >
e|Al,|B'| > ¢|B|, |d(A',B') — d(A, B)| < € holds.

Finally, the partition V = Cy U ... U C} is called e-uniform if
l) |Co| <e€ |V|
it) [C1] = |Cy| = ... = |Cil
iii) all but e(';) pairs (C;,Cj),1 <i < j <k, are e-uniform.

2.6 The following important result was proved by E. Szemerédi:

Theorem (Uniformity Lemma — Szemerédi 1976). For every € > 0 and positive
integer l, there exist positive integers ny(e€, ) and my(e,1) such that every graph
with at least no(e,1) vertices has an e-uniform partition, into k classes, where
k is an integer satisfying | < k < my(e,1).
2.7 First we show how one can approach arithmetical progression of length 3
in a combinatorial way:

Let A C {1,...,n} and let X,Y,Z be three disjoint copies of (integer)
interval [1,3n]. Consider all triples {z,y,2},z € X,y € Y,z € Z, such that

(%) y—:c=z—y=z;zeA

and let G be a graph consisting of all pairs contained in these edges. This graph
has 9n vertices, |E(G)| > 3|4| - n edges and can be decomposed into 3 |E(G)|
edge disjoint triangles.

Claim (Ruzsa, Szemerédi 1978). If G contains a next triangle i.e. different from
those of the form () then A contains an arithmetic progression of length three.

Proof. Let z,y, z be such traingle. Then z—y #y—z.Set b= z—y,a = y—=z.
We have %52 = 52'—'3 € A,a € A,b € B, which gives an arithmetic progression
of length 3 in A. 0

2.8 Consider now a set A C {1,...,n},|A| = an where « is a positive constant
independent on n. We will prove that A contains an arithmetic progression of
length three provided n is large enough.

Set m = 9n,|E(G)| = B(7) > 3an?. Then 3 is a positive constant inde-
pendent on n. Set further e = % and ! = [1] and apply the Uniformity Lemma
to G (we can clearly assume that the number of vertices is very large).
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The number of edges not contained in pairs with density at least % is clearly

H(7) 3G () +6) e <3 (7)

After omision of these edges we get a graph which still contains a triangle T
(as there are g(’;‘) edge disjoint traingles in G'). Moreover all the edges of this
triangle T are contained in pairs which are e-uniform and have density at least
%. Let Cp,C,,C, be three partition classes corresponding to these pairs. We
prove the following:

2.9 Claim. Let all pairs (Cy,Cp),(Cp,C+),(Cy,C;) be e-uniform with density
at least %. Then there is a vertex contained in at least ‘1%35 |Cp| - |Cq| traingles.

This Claim already implies that A contains an arithmetic progression of
length 3:

We have (10) |Cq| - |Cp| > |Cp| = |Cy| triangles containing a vertex z.

As no two triangles of the form (x) (see 2.7 above) share an edge there are not
more than |Cp| = |C,| such triangles containing a vertex z. Thus there exists
a triangle different from (*) and hence by Claim 2.7 A contains an arithmetic
progression of length three.

Proof of Claim: As both pairs (Cp,Cy),(Cq,C>) are e-uniform there are at
least (1 — 2¢) |C,| points in C, which are joined to at least (g — €) |C;| points
of C; for bothi =pand i = q Fix one such vertex z and let N be a set of
the neighbours of z in C;. As & c—€= E > € we infer that there are at least

(&) tesiied

edges joining vertices of N? and NZ. Each such edge give rise to a triangle that
contains z. g

2.10 Remark Rusza and Szemerédi investigated the triple systems (X, M) sa-
tisfying property that every 6-tuple contains at most 2 triples. They proved
for such triple systems |[M| = o(n?) necessary holds. This implies similarly as
above that v3(n) = o(n) holds.

Similarly the truth of the following combinatorial conjecture (considered
by P. Frankl and V. Rddl) implies Szemerédi’s theorem.

Conjecture. Let (M, X) be a simple k-uniform hypergraph not containing the
following hypergraph depicted on Fig. 0 with k edges and (k — 1) + 2 vertices.
Then M = o(|X|?).

Let us close this section by stating two questions which relate Van der
Waerden theorem to Pisier type theorems:
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Fig. 0.

Problem 1. Fix positive ¢ < 1. Are the following two statements for a set X

equivalent?

1) X is a finite union of arithmetic progressions

2) For every finite subset Y C X there exists Z C Y with at least € |Y| terms
contained in an arithmetical progression in X.

Problem 2. Fix positive € < 1. Are the following two statements for a set X

equivalent?

1) X is a finite union of sequences without arithmetic progression with three
terms.

2) For every finite subset Y C X there exists a subset Z C Y, |Z| > ¢|Y| such
that Z contains no arithmetic progression with 3 terms.

Whereas one can easily see that Problem 1 has a negative solution, Problem
2 appears to be interesting.

3. Graphical Sequences and Examples of Their Use

3.1Let G = (V, E) be a graph, let v;,...,v,,... beits vertices (V may be either
finite or countable set). For each v; let a weight w(v;) be given; we assume that
w(v;) is a positive integer.
For an edge e = {v;,v;}, ¢ < j, define its weight w(e) by
J
(*) w(e) = Y w(v)

k=:i+1

We always assume that w is chosen so that w(e) # w(e') whenever e # e'.
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Finally put
w(E) = {w(e);e € E}.

A set of this type is called a graphical sequence.

By chosing appropriately labelling w we can transform graph-properties
to number-theoretical properties of the graphical sequences. We shall mention
three such examples.

Example I.
3.2 Put w(v;) = 2°. Then the mapping w : E — w(E) is a bijection. Moreover
the edges e, e',€" form a triangle G iff
w(e) + w(e') = w(e").
One can use this as a starting point for a proof of the following result:
A set ay,...,a, of integers is called complete in X if X contains all 2™ —1

sums of type

> ai, 0AIC{L,...,n}.

ier
3.3 Theorem (Nesetiil, Rodl 1986). Let n be a fixed positive integer. Then there
exists a set X with the following properties:
1) For every finite partition X = X; U...U X}, one of the classes X; contains

a set of n elements which is complete in X;.

2) X does not contain a complete subset of size n + 1.

For n = 2 one can put X = w(E) where E is the edge set of countable
complete graph and apply Ramsey theorem.

Note that this proof (Nesetfil, R6dl 1986) yields also a proof of Folkman-
Rado-Sanders Theorem (or Finite Union Theorem, cf. Graham, Rothschild,
Spencer 1980) which does not involve a use of Van der Waerden theorem and
which guarantees a primitive recursive upper bound for the corresponding finite
theorem, see also Taylor (1981), Graham, R6dl (1987).

The following infinitary version of the above theorem is presently open:

Problem 3. Let n be a fixed positive integer. Does there exist a sequence X =

z1 < 3 < ... with the following properties:

1) For every finite partition X; U...U X} of X one of the classes X; contains
an infinite subsequence Y = y; < y2... of X together with all sums of at
most n members of Y.

2) X does not contain a complete subset of size n + 1.

For n = 2 this follows easily by Ramsey theorem.

Example II.
3.4 The same weight function as in Example I may be used for a construction
of locally sparse Schur-sets.

A set X of positive integers is called a Schur set if for every finite partition

X = X; U...U X one of the classes contains two distinct numbers together
with their sum.
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The (local) density g(A) of a subset A of X is the size of the following set:

{{:c,y};:v,y €A,z +y€ X}

Let g(X) be the maximal density of a k-element subset of X. It is easy to see
that for every Schur set X ¢(X) > k holds for all sufficiently large k. We have
the following:

3.5 Theorem (Nesetfil, RGdl 1986). For every positive integer ko there exists a
set X with the following properties:

1) X is a Schur set;

2) q1(X) =k —1 for every k < ko.

This result is a consequence of the graphical sequence method when applied
to the following Ramsey theoretic result:

3.6 Theorem (Nesetfil, Rodl 1979). For every integer | > 3 there exists a graph
G = (V, E) with the following properties:
1) G — (K3)? for every k;
2) The hypergraph -
(E,{{e,¢',€"};e,¢',e" form a triangle in G})

has no cycle of length < 1.
(An example of a cycle of length 13 is indicated on Fig. 1)

Fig. 1.

The existence of graphs G has been proved in Nesetfil, Rodl (1979).
Example III.

Recall that a sequence of integers z; < 3 < ... is called a B,(") sequence if the
number of representations of every integer n as the sum of { distinct a;’s is at
most r while some integer n actually has r representations.
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In response to a P. Erdds, D.J. Newman problem (Erdés 1980) the following
is proved in Nesetfil, Rodl (1985):

3.7 Theorem. For every r,l there exists a sequence X with the following pro-
perties:

1) X is a B\ sequence

2) X fails to be a finite union of B sequences.

This result is obtained by means of graphical sequences and the following
technical result:

A k-prismis the graph with vertices 0,1,2,...,k, k+1 and edges {0,4}, {i, k+
1},i=1,...,k. A k-prism will be always considered with the standard ordering
of its vertices:

0<1<2<...<k+1.

A (k,1)-prism is a subdivision of the k-prism where each edge is subdivided by
1 — 1 vertices, see Fig. 2

o
@

Fig. 2. (3,3)-prism

3.8 Theorem. (Nesetiil, R6dl 1981, 1985): There exists a graph G = (V, E) and

an ordering of V' with the following properties:

1) No (k + 1,l)-prism in G has a standard ordering;

2) for every partition E = E; U E, there exists a (k,l)-prism in G (with a
standard ordering) with all its edges belonging to E; for either i = 1 or
i=2.

In Section 6 we shall indicate a proof which gives a result of this type.

4. Pisier Type Theorems

We make no attempts to provide a general scheme for Pisier type problems.
Instead, we list several examples which may be treated uniformly. First, we
shall consider two local variants of the Pisier problem introduced in Section 1.
The following theorem answers an Alon-Erdds problem (Alon, Erdds 1985):

4.1 Theorem. Let I,r be positive integers. There exists a sequence X with the
following properties:
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1) X fails to be a finite union of B{" sequences.
2) For every finite subset Y of X there exists a B,(") subset Z of Y such that

-1
|Z|Z—21—|Y|-

In the other words B,(')—sequences do not posses Pisier property. Similar si-
tuation occurs for the following concept: We call a sequence
X =21 <23 <...sum free if no £ € X is a sum of distinct z;’s different
from z.

4.2 Theorem. Let ¢ > 0. There exists a sequence X with the following proper-
ties:
1) X fails to be a finite union of sum-free sequences.
2) For every finite subset Y of X there exists a sum-free subset Z of Y such
that |Z| > 3(1 +¢€) Y|
Both of these results may be proved in the same vein by the graphical
sequence method.

Proof of Theorem 4.2. Let G = (V, E) be a graph with its vertex set (linearly)
ordered by < . A special circuit is a circuit of the form vy, e1,v2,...,v1,€1,1,
where v; < v < ... <. See Fig. 3

O)-
7

O
NS NS
Fig. 3.

Let ¢ > 0 and a positive integer k be fixed. Put | = e 1. Let G =
(V,E), V ={1,2,...} be a graph with the following properties:

1) For every positive k and for every partition E = E; U...U Ej one of the
classes contains a special circuit (with respect to natural ordering of V')

2) G does not contain a special circuit of length < I (again with respect to the
standard ordering of V).

The existence of G is non-trivial and follows from the amalgamation tech-
nique developed in Nesetfil, R6dl (1981). A proof will be sketched in Section
6.

Put w(i) = 2% and consider the graphical sequence S = w(E). Again
w: E — § is a bijection. Also if 81 +...+ s,, = s for distinct s,51,...,8m €S
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then the edges w™!(s1),...,w  (8m), w™1(s) form a special cycle. Thus it suf-
fices to prove that for every subset F of edges of E there exists a set F' C F
which contains no special cycle and for which [F'| > 1{=2 |F]|.

To do so we proceede as follows:

1. Find F" C F such that F" induces an [—1 partite graph and |F"| > % |F|.

(This is well known: find a partition V' = V1U...UV;_; such that for every v € V;
andi#j, (I-2)|{e€ E;v € e&ke CV;}| <|{e € E;v € e&kenV; # 0}|.)
Let V1,...,Vi_; be a partition of V which corresponds to F".

2. Define partition F"' = F{ U F; by {z,y} € F1if (z € V;, ye Vj, 1 <jand
z < y). Put F, = F — F;. We may assume |Fy| > |F3|. Finally put F' = Fy.

It is a routine to check that F' does not contain a special cycle. It is here where
we use the fact that G has no special cycle of length < . O

Proof of Theorem 4.1. The main change in the proof is that we consider prism
graphs instead of special circuits. The subtle difference is that the Ramsey
graph has to be rectangle free. This is guaranteed by a non-trivial result of
Ne3etfil and Rodl (1987). Appart from these changes the proof follows from
graphical sequence method and thus we state only the key Ramsey result: 0O

4.3 Theorem. Let l,r be positive integers, | > 2. There exists a graph G = (V, E)

and an ordering of V with the following properties:

1) G contains no (r,l)-prism in a standard ordering;

2) G is rectangle free;

3) For every partition E = E;UE, there exists a (r,1)-prism in G in a standard
ordering with all its edges belonging to E; for either it =1 or i = 2.

Similar Pisier type problems may be considered also for graphs and hy-
pergraphs. Let us state three typical examples:

4.4 Theorem. For every positive integer r there exists a graph G = (V, E) with
the following properties:
1) G is a Ramsey graph for K, with respect to any finite partition of the edge
set E of ; symbolically
G — (K)%.

2) For every subset F C E there exists a subset F' C F such that F' is K,-free
r—2

and |F'| > {F=25 | F|.

4.5 Theorem. There exists a graph G = (V, E) with the following properties:

1) G is a Ramsey graph for Cy (=the rectangle) with respect to every finite
partition of the edge set of G;

2) For every finite subset F C E there exists a rectangle-free subset F' C F
such that |F'| > 1 |F|.

It is not known whether the constants in the above theorems are best
possible for the negative solution of the corresponding Pisier-type result. This



is not the case with the following result which is perhaps the earliest example
of such statement contained in Erdés, Hajnal, Szemerédi (1979):

4.6 Theorem. For every ¢ < 1/2 there exists a graph G with the following

properties:

1) The chromatic number of G is infinite;

2) Every set A of n vertices of G contains a subset B which is independent (in
G) and which has at least ¢ - n vertices.

Examples of such a graph G may be obtained as a disjoint union of Kneser
graphs K ( 2”;",’"‘)) where k; — oo and n; >> k;. Related problems and some
extensions are contained in Rdl (1982).

One may formulate every Pisier type problem as a statement about chro-
matic number and (suitably defined) independent subsets of a hypergraph.
Theorem 4.6 (and its analogy for hypergraphs) then show that, in the full
generality, the Pisier problem has negative solution in a very strong sense.

5. Pisier Problem — Positive Results

The results of Section 4 may be viewed as local variations of the Pisier problem.
The conclusion which may be drawn from these results may be misleading as
indicated by the result 5.3 below. We find it useful to introduce the following
concept:

5.1 Definition. A sequence X is called Pisier sequence if there exists a positive
€ > 0 such that every subsequence Y C X contains a free subsequence with at
least ¢ |Y'| terms.

Using this one can formulate the Pisier problem as follows:

5.2 Pisier problem. Is it true that for a sequence X of positive integers the
following two statements are equivalent:

1) X is a finite union of independent sequences;

2) X is a Pisier sequence?

5.3 Theorem. Let X be a graphical sequence. Then X is a Pisier sequence iff
it is a finite union of free sequences.

Proof. Let X = w(E) be a graphical sequence. Put E C (%), where V =
{v1 <wa <...},w:V — {1,2,...}. The key observation is that X = w(E) is
an independent sequence iff E is a forest (i.e. a graph without circuits). This is
easy and it may be proved by induction. Thus the condition that X is a Pisier
sequence is equivalent to the following:

Every subset F' C E of n edges contains a subforest of size € - n. It follows
from a theorem of Nash-Williams (1964) that every finite subset of E is a union
of [1] forests. For the infinite graphs we may apply compactness. O

We have been informed by M. Piccardello (Roma) that a related result was
obtained as early as 1955 by A. Horn in a response to a problem of K.F. Roth
and R. Rado: He proved that linear independent sets in a vector space have
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Pisier property. We know just a few more examples of Pisier type problems
with a positive solution. It seems that a certain regularity (e.g. a matroidal
structure or perfect-graph property) is needed. Let us list without proof one
more example:

5.4 Theorem. For every positive ¢ > 0 there exists k such that for every set X

in R™ the following two conditions are equivalent:

1) For every finite set Y C X there exists a set Z of colinear points of size
1Z] > €-|Y];

2) X may be covered by k lines.

6. Special Ramsey Graphs — the Partite Construction

In this section we sketch a proof of the missing part of the above proof of
Theorem 4.2. Namely, we prove:

6.1 Theorem. For every positive integers k,l > 3, there exists a graph G =

(V,E) and a linear ordering < of V with the following properties:

1) For every partition E = E;1U...UE), one of the classes E; contains a special
cycle of length 1.

2) G does not contain a special cycle of length < .

The proof which follows is a modification of the main construction — the
partite construction, see Nesetfil, Rodl (1979, 1981), and we include it here for
the completeness:

6.2 Preliminaries. Let (V;)_, be a system of pairwise disjoint sets, V =
Ui_, Vi, and let E C (%) such that EN (%) = 0 for all i = 1,2,...,r. Then
the couple G = ((V;)I-,, E) is called a r-partite graph. It will be convenient to
write V; = Vi(G). A standard ordering of G is any ordering of V which satisfies
Vi < V; whenever i < j.

Let G = (Vi)ie1,g)s H = ((Wi)i=1, F) be two r-partite graphs. We say
that G is an induced subgraph of Hif V; C W; for every i = 1,...,r and the
graph (V, E) is an induced subgraph of (W, F) (here W = |J_; W;). We denote
this by G < H.

In the proof we shall make use of the following folkloristic lemma (see e.g.
Graham, Rothschild, Spencer 1980, Nesetfil, R6dl 1981):

6.3 Lemma. For every bipartite graph B = (V1,Va, E) there exists a Ramsey
bipartite graph R(B) = (W1, W3, F). This means the following: For every par-
tition F = Fy U F, there exist V, C Wl,Vz C W, and 1 € {1 2} such that if we
denote E' = {e € F;e CV; UV,} then E C F; and (V;,V,,E') is isomorphic
to (Vi, Vs, E).

Proof of Theorem 6.1. Without loss of generality assume k = 2,] > 3. Let
H = K, be the complete graph with r vertices where r = 7(2,2,0) is the
Ramsey number (for partition of pairs into two classes). Put V(H) = {1,...,7},
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E(H) = {e1,...,er}, R= (}). Foreach A € [V(H)] consider the special cycle

of length I with vertex set 4; let C*,C?,..., c() be a system of such cycles.
Define inductively an r-partite graph P™ for all n < R as follows:

Po = ((‘/to ::1’E0)

where
VY ={(vi,4);5 < R}

and {(v;,5), (v},j')} € E® if and only if j = j' and {v;,v}} € E(C?). In the in-
duction step suppose we have defined the r-partite graph P™ = ((V,*)I_,, E™).
Put ep41 = {v1,v2},v1 < v2, and let B be a bipartite subgraph of P™ induced
on a set V,» UV,>. Apply 6.3 to get a bipartite graph R(B) which is Ramsey
for B. Let By, Bs,...,B, be all the induced subgraphs of R(B) which are iso-
morphic to B. For each ¢ < g let ¢; : B; — B be the natural inclusion. Put
V(P 1) = Ui, V**! where

v = W x {3}) for i # 1,0
i<q
Vot = Vi(R(B)) for i=1,2.

Denote by ¥; : V(P™) — V(P™) the 1 — 1 mapping defined by

¥;(v) = p;j(v) for v € V(B),
¥;(v) = (v,7) for v g V(B).

Finally, we define E(P™*!) by {z1,z,} € E(P"*!) if and only if there exist
J < qand {y1,y2} € E(P™) such that z; = ¥;(y1) and z2 = ¥;(y2).

Claim 1. PE is Ramsey for C,. This follows by a backward induction from R to 1
repeatedly applying Lemma 6.3 to edges with the “projection” eg,ep—1,...,¢€1.

This part is common to all applications of the partite construction.
Claim 2. PR does not contain a special cycle of length < .

Proof of Claim 2 follows by induction on n = 0,1,2,...R. Clearly P° satisfies
the claim as P (viewed as a graph) is a disjoint union of cycles of length I.
Moreover if P* does not contain a special cycle then also P*+! has this property
as every special cycle in P*+! belongs to exactly one copy of P*. O
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Combinatorial Statements Independent of
Arithmetic

Jeff Paris

1. Introduction

When Peano’s first order axioms of arithmetic (P) were originally formulated
it was generally felt that these axioms summed up all that was obviously true
about the natural numbers (IN) with addition and multiplication and that
any true first order statement of arithmetic would follow from these axioms.
This belief held sway until in 1931 Go6del exhibited a first order statement of
arithmetic (or as we shall now call it an arithmetic statement) ©g which was
true but neither it nor its negation could be proved for P. That is @ was an
arithmetic statement independent of arithmetic.

Whilst G6del’s result had an enormous effect on mathematical logic and
the philosophy of mathematics its effect on mainline mathematics was much less
dramatic. The reason for this was that @g, and the many varients of @¢ which
appeared at the same time, was, as a statement about numbers, extremely
complicated. Certainly one cannot envisage @g being studied in its own right.

Of course one might ask then how it was that Gédel found Og if it was so
complicated. Well simplifying matters considerably Godel derived a method of
coding a formal proof ¢q as a number "q", now called the Gédel number of g. This
coding can be carried out in such a way that simple statements about ¢ become
equivalent to arithmetic statements about "q". Under this translation @g is the
arithmetic statement equivalent to “there is no proof from P of 0 = 1”. Clearly
most mathematicians would accept @g as true although as Gédel showed, in
that case neither @ nor —@ (its negation) can be proved from P.

Well that was how the situation stood until 1977 when the author noticed
that some earlier work with Laurie Kirby could be used to produce independent
arithmetic statements which were meaningful to main line mathematicians.

In this short paper we shall explain the original method for obtaining
independent statements and give a number of combinatorial examples.
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2. Notation

An arithmetic term is an expression built up using the binary function symbols
+,., variables z,y,2,... and the constant symbols 0,1. We write n for the
arithmetic term

1+(1+(1+...+(1+1)...)

-~

n copies of 1.

An arithmetic formula is an expression built up from the atomic formulae
p(z) = g(z),p(z) < g(z) where p(z), g(z) are arithmetic terms, using paren-
thesis, the connectives A (and), V (or), = (not), — (implies), «— (if and only
if), and the quantifiers Vz, 3z. So for example

1<zAVaVy(zy=z - (z=2Vy=2))

is an arithmetic formula. An arithmetic statement is an arithmetic formula in
which all the variables are quantified.
Peano’s (first order) axioms consist of the arithmetic statements

Vz(z 4+ 0= z)

Vzvy(z +(y+1) = (2 +y) + 1)
Vz(z.0 = 0)

VaVy(z.(y +1) = (z.y) + 1)

VeVy(z <y «— Jz((z +2)+1=1y)

together with the induction schema
Vz((©(2,0) A Vy(O(z,y) — O(z,y + 1)) — VyO(z,y))

where ©(z,y) is an arithmetic formula.

For an arithmetic formula ©® we write P I © if there is a proof of @ in the
predicate calculus using only axioms from P. So an arithmetic statement © is
independent of arithmetic if P |/ © and P I/ -6.

Arithmetic formulae can be “ranked” in terms of the complexity of their
quantifiers. Let

Jz <y © stand for Jz(z <y AO)

Ve <y @ stand for Vz(z <y — O).

We call these bounded quantifiers. A formula is said to be -, (or [],) if it can
be built up from the atomic formulae using just the connectives and bounded
quantifiers. A formula is 3 ., if it is of the form 3z,3z,...3z:O for some
O €I, and is [],,, if it is of the form Vz,Vz,...Vz,© for some O € 3, .
In practice we shall say that a formula x is >, (]],,) if thereisa 3", (IT,.)
formula @ such that
PO «— x.
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With this broadening of the definition of ), (]],,) every arithmetic formula is
> .(I1,,) for some n.

A structure for arithmetic M consists of a set dom(M) (the domain of M),
together with binary functions +as,-m on dom(M), a binary relation <ps on
dom(M) and distinguished elements Oz, 1a from dom(M). In practice we write
z € M instead of z € dom(M) etc. For an arithmetic formula ©(z1,...,2xs)
and a;,...,a, € M we write M | O(a1,...,a,) if the statement obtained
by replacing everywhere in @,z;,...,Zn,+,+,<,0,1,A,V,V, =, &, Vz,3z by
@1y 58n,+M, M, <M,0nr,1np, and, or, not, implies, if and only if, for all
z € dom(M), there exists z € dom(M), respectively is true. We say M is an
arithmetic, or is a model of P, if M |= © for every © € P.

Of course the standard natural numbers with addition, multiplication etc
gives an arithmetic, denoted by N and called the standard model. So as an
example, for a € N,

NE1l1l<aAVzVy(z.y=a— (z =aVy=a)) < a is prime.

On the face of it, in terms of combinatorics, arithmetic statements seem to be
rather limited. For example the statement of the finite Ramsey Theorem

VbVcVda,a — (b)?

talks about finite sets and functions and is not, as it stands an arithmetic
statement. However given a finite set {a;,...,a,} C IN we can, by using the
Chinese remainder theorem, find numbers n,m,k such that for i < n,

k = aiyr mod(m(i +1) +1)
a;+1 <m(t+1)+1.

Hence we can code the set {a1,...,a,} as the three numbers n,m, k, in such a
way that we can find an arithmetic formula A(z,y, z,w) such that for b € IN

b€ {a1,...,an} < N E A(n,m,k,b).

Continuing in this way to code also finite maps we can find an arithmetic
statement x “coding Ramsey’s Theorem” such that

[VbVeVdda, a — (b)3] <= N E x.

Now given an arbitrary structure M for arithmetic we say that Ramsey’s Theo-
rem holds in M (or that M |= VbVcVd3a, a — ()5) just if M |= x. In a sense
then to say that “Ramseys Theorem holds in M” is ambiguous since it depends
on the choice of x, there may have been several options for y. However it is
an empirical fact that if M is a model of arithmetic (indeed much less will do)
then any two natural choices for x will be equivalent in M. So in future when
we write say
M |=VbVcVd3a, a — (b)g

we shall mean that M |= x for some such natural fixed arithmetic statement
X-
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3. Arithmetic

In order to explain the origins of these independence results we need to inve-
stigate a little more deeply the properties of models of P.

Let M be an arithmetic. Then < is a discreet linear ordering of dom (M).
The least element is Ops the next 1ps, the next 17 + m1a and so on. Thus M
starts of looking like IN. Furthermore the axioms ensure that +as,-ar act like
the standard addition and multiplication on here. Thus M has a subarithmetic
isomorphic to N and we shall agree to identify this subarithmetic with N.
Notice then that, with respect to <ar, N forms an initial segment of M, so
every element of M — N lies above every standard natural number.

We call a non—empty, proper initial segment I of M which is closed under
+u and -ps and contains 1ps a cut, denoted I C. M. We treat sucha cut 7 asa
structure for arithmetic by setting +r etc to be the restriction of +as to I etc.
So if M is a model of P and M % N (we can show such arithmetics exist) then
there is a cut in M which is itself a model of P, namely N. Indeed by results
of Friedman (1973) and Gaifman (1972) such an M has many cuts which are
arithmetics.

Of course we cannot define a cut by an arithmetic formula since if say
IC., M and

ael& MEO(a)

then
) M | 6(0) AVz(O(z) — O(z + 1)) A “VzO(z)

so one of the induction axioms would fail in M. However whilst we cannot define
any cut we do have methods for detecting cuts having certain properties. To
be more precise let P be a property of cuts (a cut here is to be thought of as
given along with its extending arithmetic). Then

Definition. A formula Y (z,y,2) is an indicator for cuts satisfying P if

(i) Y(z,y,2)is >,

(ii) Pl VzVy3lzY(z,y,z2)

i.e. for every z,y there is a unique z such that Y(z,y, 2). For this reason in an
arithmetic M we think of Y as defining a function Y such that

YM(a,b) = c <=> M = Y(a,b,¢),
and we often write Y (z,y) = 2 for Y(z,y, 2).

(iii) For any countable arithmetic M and a,b € M, YM(a,b) €' N 3IIC. M
having property P such that a € I and b €' I.

In other words Y™ (a,b) is above every number in N just if there is a cut
I C. M satisfying P and lying in the interval (a,b). So Y™ indicates the
presence of cuts satisfying P.

As an example just let P be vacuous. Then I cut I Cc, M, a € I and
be' I & (a+2)" <bforalln € N (since then I = { | z < (a + 2)"
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some n € N} will do) < YM(a,b) € N where YM(a,b) = min. ¢ such that
(a+2)° >b.
So the formula Y (z,y, z) expressing

z is minimal such that (z +2)* >y

is an indicator for cuts satisfying P. (Property (ii) is believable, property (i)
is less obvious but is still true for a suitable formulation of exponentation).
It turns out that most interesting properties P have indicators. In particular
there are many indicators when P is the property of being a model of P. The
importance of such indicators is given by the following result which is a corollary
to a result of Kirby—Paris.

3.1 Theorem (See lemma 1 of Paris 1978). Let Y be an indicator for models of
P and let Y(z,y) > z abbreviate 3t(Y (z,y,t) At > z). Then
(i) PFVziyY(z,y)>n
(ii) N = VaVzAyY(z,y) > z,
(iii) Pt/ VaV2z3yY (z,y) > z. O
By the completeness theorem for the predicate calculus if P+ @ and M is
an arithmetic then M |= ©. Hence (ii) ensures that P I/ =VzVz3yY (z,y) > 2
so VzV23yY (z,y) > z is independent of arithmetic.
In practice most natural indicators also satisfy a convexity condition like

P+VzVy(Y(0,z +y) <1+ Y(0,z) + Y(z,z + ¥)).

In such cases we can fix z to be zero in the above theorem to give
3.2 Theorem.

Vz3yY (0,y) > z is independent of arithmetic. O

If one wanted an explanation of why VzVz3yY (z,y) > z was independent
of arithmetic we could say that it was because for given z,z the y must be so
ineffably larger that in arithmetic there is no way of proving that it exists. To
be more precise define for m € N, g,, : IN — N by

gm(z) = theleast y such that YN(z,y) >m
and
9(z) = gz(z) = theleast y such that YN(z,y) > =.

i.e. g is the diagonalization of the g,,’s. Then the g,,’s are recursive and provably
total by Theorem 3.1 (i). Furthermore

3.3 Theorem (See lemma 8 of Paris 1978). If f is recursive and provably total
then

ImVzf(z) < gm(z). 0

Since g eventually dominates each g,, it follows from this that g is not
provably total and furthermore that g is increasing inconceivably fast.
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What we need now is to find suitable indicators for models of P such that
the corresponding independent statements are saying something interesting.
Our first example was found by L. Harrington (see Paris, Harrington 1977,
Paris 1978).

Example 1

Let [a1, a2] —(b)5 be the statement that whenever F maps the c element subsets
*

of [a1,as](= {a1,a1 + 1,...,a2}) into {1,2...,d} then there is X C [a;,a2]
homogeneous for F such that |X| > b, min (X).
Now let Y (z,y, z) be the natural formulation of the statement

z is maximal such that [z,y]—(z+ 1)%.

Then Y (z,y,2) is an indicator for models of P (for a proof see Lascar, Paris
1978). Hence, identifying y with its set of predecessors.

3.4 Theorem (Harrington—Paris 1978).

Vz3y,y—(z + 1)Z is independent of arithmethic. O

This result can be refined a little since the lower z can be fixed. The best
result known at present is

3.4’ Theorem (J. Quinsey).

Vz3y,y—(z + 1); is independent of arithmetic. O
*

It is not known if 3 can be replaced by 2. Clearly then it is the top z which
is really important one.

There are now many variations on Theorem 4. The following one is due
to H. Friedman (unpublished). Say that F : [b]* — N is decreasing if for all
a1 <ay <...<a, <b, F(aj,as,...,a,) < ay

3.4” Theorem (H. Friedman). The statement VwV23y such that if F : [y]* — y
is decreasing then 3X C y,|X| > w A |F[X)?| < w is true but independent of
arithmetic. O

It follows by Theorem 3.1 and some fairly easy properties of — that for

each n € IN,
P Vz3y, y—:(n +1)7.

In fact what happens is that as we increase n so these proofs use ever more
complicated induction axioms. To be precise let IX, be the same as Peano’s
axioms but with the induction scheme only for the case when @ is ¥,,. Then
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3.5 Theorem (Paris 1980).
(i) I1Z.YVedy,y—(n+ 2)n+1,

(ii) For eachm € N, 15, + Va3, [z,y]>(n + 2)5+.
(iii) IZn41 F Vz3y,y—-(n +2)7*. o

Theorems 3.3 and 3.4 together raise a slightly embarassing spectre. For
consider the following common situation in combinatorics. We first show that
a function, given by some combinatorial property, is a total function from IN
to IN. We then ask for an upper bound on f. What we want here is something
like exponentiation, iterated exponentiation, etc. or maybe even some primitive
recursive function. In other words we want to bound f in terms of functions
built up from the basic functions of addition and multiplication by recursion
and substitution. But all such functions are recursive and provably total. So,
since we know that the function

g(n) = theleast m such that [n,m]—(n+ 1)}

dominates all provably total recursive functions the problem “find an upper
bound on the least m such that [n,m]—(n +1)2” has no reasonable solution in

the sense in which the question is asked.

When Theorem 3.4 first became known Harrington and, independently,
McAloon noticed a surprising connection between this independent statement
and Godel’s original independence results. Using Gddel’s coding trick it is pos-
sible to find an arithmetic statement Con,(P) saying, essentially, that “if there
is a proof of a ), statement then that statement is true”. Again it is a classical
result that Cony(P) is independent of arithmetic. Now what Harrington and
McAloon noticed was that for the indicator Y as above,

Pt Cony(P) & VaVz3yY(z,y,2).

So whilst both these statements are independent of P they are actually
equivalent in P. Such a connection between pure logic and combinatorics is
quite surprising.

Furthermore this is not an isolated occurence. The same result holds for all
the indicators mentioned in examples 2-5 below (although this is not a general
theorem about indicators for models of P).

One consequence of this is that since Cony(P) implies @ so does
VzV23y, [:c,y]?(z + 1)7. Indeed in Paris, Harrington (1977) this result is ob-

tained directly in order to show that VzVz3dy, [:c,y]—:(z + 1)Z is independent.

In view of this result one might hope that the method of indicators would
give an independent statement equivalent within arithmetic to ©g. However
without some major reinforcements this cannot be since we know that Og is
[1, whilst the form of the independent statement obtained from an indicator
is [], and not [T, .
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Example 2

This was the first example of a meaningful statement independent of arithmetic
and was arrived at much more indirectly than example 1, as we shall now
explain.

In early work of Kirby-Paris (1977) it was observed that many properties
of cuts (given with the extending arithmetic) were symbiotic with the property
of being a model of P, where properties Py, P, of cuts are symbiotic if for any
countable arithmetic M and a,b € M,

I C. M having property P; (as a subset of M),a€ I and b€' I, 3IC. M
having property P, (as a subset of M),a € I and b €' I.

In other words properties P;, P, are symbiotic if arbitrarily close to cuts
satisfying one there are cuts satisfying the other.

Now if two properties are symbiotic then they have the same indicators.
This observation yields new indicators based on combinatorial rather than se-
mantic properties of cuts. In particular strong cuts were known to be symbiotic
with cuts which are models of P where we can define what it means for a cut
to be strong as follows.

Let I C, M. We say X C I™ is coded in M if there are c,d,e € M such
that for all ,,...,z, € I,

< ZyooyZyn >E X & c=0mod [d(z1 + 26+ ...+ 2oe™ 1 +1) +1]

(Compare this with the coding of finite sets when n = 1.) Notice that if M is
countable then there will be 280 subsets of I but only Rp subsets of I coded
in M. We say I C. M is strong if whenever 8 € I and F : [I]® — 8 is coded in
M then there is a homogeneous set A C I which is coded in M and unbounded
in I. Notice that the property of being strong also depends on the extending
arithmetic M.

Now a direct attempt to produce an indicator for strong cuts produces the
following train of definitions.

Let S C N be finite. Define any such S to be 0—dense. Define S to be 1-
dense if S # @ and 3 +min (S) < |S|. Define S to be (n+ 2)-dense if whenever
f:[S]® — 2 then 3T C S such that T is (n + 1)-dense and homogeneous for
f. Now let Y(z,y, z) be the natural formulation in arithmetic of the statement

“z is maximal such that [z,y] is z-dense.”

Then Y is an indicator for strong cuts and hence, by symbiosis, for models of
P. Hence

3.6 Theorem (Paris 1978).

(Vz3y[0,y] is z—dense) is independent of arithmetic. m)

It is an interesting open problem as to what happens if we replace
f:[S]® — 2 by f:[S)> — 2 in the above definition.
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Example 3

There are many equivalent formulations of the definition of a strong cut. Using
an alternative definition and a natural indicator corresponding to this definition
P. Pudlak gave an independence result which we now describe.

Let A = {ay,as,...,a,}. We say that A is an approximation to the
partial function f, where dom (f) C [0,a,], if for 1 < i < n, f"[0,a;) C
[0,8;+1) J(@n,0). Now let X C IN be finite. Define X to be 0—dense for any
such X, to be 1-dense if |X| > 3 and to be (n + 2)—dense if for every partial
function f with dom (f) C [0,maz(X)] there is an approximation A of f such
that A C X and A is (n + 1)—dense.

Then as in example 2 the natural formulation Y (z,y, z) of the statement

“z is maximal such that [z,y] is z-dense”

is an indicator for strong cuts and hence for models of P. So we obtain an
analogous result to Theorem 3.6.

Example 4

Following the discovery of the independent statement in example 1 Ketonen
and Solovay (1981) set out to prove by purely combinatorial means that the
function

o(n) = the least m such that m—*>(n+ 1)n

eventually dominated every provably total recursive function. The indepen-
dence result of Theorem 3.4’ would then follow. Their approach was as follows.
For each ordinal a < ¢ (recall ¢, is the least solution of & = w*) and each
n € IN define {a}(n) as follows.

{0}(n) =0,
{8 +1}(n) =B,
{w*1 (v + D}(n) = Py + wPn,
{w (7 + 1)}(n) = 0y + 0™ for limit A < €,
{Eo}(O) =w, {50}(77, + ]_) = i} (n)
Now for o < €9 define F, : N — IN by
Fo(:c) =z+1
Fpia(z) = F3*'(z)
Fi(z) = maz {Fayn)(2) | n < 2} for limit A.

S. Wainer (1970) has shown that if f : IN — IN is recursive and provably total
then f is eventually dominated by F, for some a < €. Also if @ < 8 < ¢, then
Fg eventually dominates F,.
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What Solovay and Ketonen show directly is that o has approximately the
same rate of growth as F., and hence dominates all provably total recursive
functions.

In the course of their paper they introduce the notion of a-large sets for
a < €. Precisely for a finite set {30,381,...,3»} in ascending order and a < €

set
{a}(0) =«
{a}(30,815--+58x) = {{a}(30)}(51,---,8n)-
Define {so, 81,...,8,} to be a-large if {a}(80,81,...,82) =0. For k € IN let

H,(k) = theleast m such that [k,m] is a— large.

Then Solovay and Ketonen show that H,a is essentially the same as Fi,. From
this it follows that

3.7 Theorem (Ketonen—Solovay 1981).

(Va < €3y, [0,y] is a—large) is independent of arithmetic. 0

Their proof of this result does not mention indicators. However a direct
proof of Theorem 3.7 can be given which does use indicators. Such a proof is
given in Paris (1980). The idea is to define for n,m € IN,

w™

n—times
wr = w }

and let Y (z,y, z) be a suitable formulation of
“z is maximal such that [z,y] is w? — large”.

Then as shown in Paris (1980) Y is an indicator for cuts which are n—extendible

for all n € IN where n—extendible cuts are defined as follows:

I C. M is 1- extendible if there is an arithmetic K extending M such that

(i) ICcKand3Ja€ K —TIsuchthatforallBe M —1I,a<f.

(ii) Whenever @(z) is an arithmetic formula and @ € M then M | O(a) &
K = ©(a).

We express (i) and (ii) by M <; K. We say I C. M is n—extendible (as a cut
in M) if 3Ky,...,K,,M <; K1 <; Ks <1 ... <1 K,. The property of being
n—extendible for all n is symbiotic with the property of being a model of P.
Hence Y is also an indicator for models of P and so we obtain

3.7’ Theorem (Paris 1980).
(V23y[0,y] is wl—large) is independent of arithmetic. 0

Theorem 3.7 follows from this since ¢y = lim,, w?.
As with the first example we can tell just how much induction is needed

to show the existence for each = of y such that [z,y] is a-large.
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3.8 Theorem (Paris 1980).

(i) IX, Y VzVz3y,[z,y] is wi-large.

(ii) For eachm € IN,IX, \- Vz3y,|z,y] is w]-large.

(iii) IX, 41 F VaV2z3y,[z,y] is wZi-large. 0

Example 5

Whilst Theorem 3.7 is perhaps a little technical and its known proofs rather
unpleasant it is a very useful result in that it allows us to directly compare
other “ordinal valued measures on finite sets” with the notion of a-largeness
to obtain meaningful independent statements. We give an example.

For m,n € IN,n > 1 define the base n representation of m as follows. First
write m as the sum of powers of n. (E.g. if m = 266,n = 2 write 266 = 28 +2% +
21.) Now write each exponent as the sum of powers of n. (E.g. 266 = 22° +22+1 4
21.) Repeat with exponents of exponents and so on until the representation
stabilizes. (E.g. 266 stabilizes at the representation 22" +22+14+21.) Now define
the number G,(m) as follows. If m = 0 set G,(m) = 0. Otherwise set Gn(m)
to be the number produced by replacing every n in the base n representation
of m by n+ 1 and then subtracting 1. (E.g. G2(266) = 33" +33+1 4+ 2.)

Now define the Goodstein sequence for m starting at 2 by, mo¢ = m,m; =
G2(mg),ma = G3(my),ms = G4(my),...

E.g 266 = 266 = 22" 4 22+1 4 o,
266! = 33°*" 1 33+1 1 2 L 10%8,
2665 = 447" £ 441 11 ~ 10818,

2665 = 5% + 551 ~ 1010000,

3.9 Theorem.

(i) (Goodstein 1944.) N k= Vz3y,z, =0

(ii) (Kirby—Paris 1982.) Vz3y,z, = 0 is independent of arithmetic. 0
To see the connection between Theorems 3.7 and 3.9 associate with each

pair n,m € IN,n > 1 the ordinal O,(m), in Cantor normal form, formed by

replacing n everywhere in the base n representation of m by w.
By comparing the ordinals

02(mo), O3(m1), O4(m2), . ..
and  Oz(my), {02(mo)}(2), {02(m0)}(2,3),. ..
we can show that termwise the top sequence dominates the bottom sequence.

Also since Ogia(mi) = 0 just if m; = 0 it follows that if m; = 0 then
{02(m0)}(2,3,...,2 + k) = 0 so [2,2 + k] is Oa(mo)-large. Since this proof

. . . . . . n—times
can be carried out in arithmetic, by considering m = 22 (n=times) we see
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that the Theorem 3.9 (ii) follows from Theorem 3.7. The first part of Theorem
3.9 follows by noticing that whilst the Or+2(mx) are non-zero,

Oz(mo) > 03(m1) > 04(m2) > ...

and recalling that there cannot be an infinite decreasing sequence of ordinals.
Of course we know that as we increase m the least k£ such m; = 0 must
grow phenomenally quickly. Some early values of this k are

m=1 k=1
m=2 k=3
3 k=5
4 k=3 x 2102653211 _ 3

m
m

Example 6

The fact that the independence results introduced as far were all equivalent to
Con;(P) suggests obtaining meaningful independence result by relating combi-
natorial assertions to known independent statements obtained via proof theo-
retic methods, (as in Paris, Harrington 1977.)

Of course such an approach had been available for many years but had
remained untapped. A considerable body of work along these lines has been
carried out by H. Friedman. The following theorem is a particularly fine exam-
ple of the marque.

3.10 Theorem.
(i) (Finite Kruskal Theorem.) For every non-zero k € IN there exists a non—
zero n € IN such that for every sequence of trees Ti,...,T, such that T;
has at most k + i vertices there is a homeomorphism of one tree into a
later tree.
(ii) (H. Friedman.) The Finite Kruskal Theorem is independent of arithmetic.
0O

Indeed Friedman shows much more, that the Finite Kruskal Theorem is
independent of predicative analysis.

Recently Theorem 3.10 was sharpened with a surprising exactness. In order
to state the corresponding result which is due to Loebl and Matousek let us
state first the following:

Let f : IN — IN be a function. Denote by FKTy the statement:

For every non—zero k € IN there exists a non—zero n € IN such that for
every sequence of trees T1,...,T, such that T; has at most k + f(z) vertices
there is a homeomorphism of one tree into another tree.

Then we have:

3.11 Theorem (Loebl, Matousek 1987).
(i) FKTy is a true statement for every f.
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(ii) FKTy y,, is provable in arithmetic.
(iii) FKTy 104 is independent of arithmetic.

These results are also related to long games played on graphs. NeSetfil and
Thomas (1987) give another survey of this recent development.

4. Conclusions

In this paper we have given a number of statements which are independent
of arithmetic. Certainly such results are interesting and certainly more such
results will be obtained in the future by these methods. However the long term
benefit to cominatorics will come from a deeper analysis of this independence
and the broadening of available techniques — as for example, in the papers of
Solovay and Ketonen (1981) and the author (1980).

As an example of this we site the following theorem which is proved in
Paris (1981).

4.1 Theorem (Paris 1981. Also (ii) independently by H. Friedman).
(i) For any arithmetic statement @ andn > 0, BY¥, 1 F @ & I = O for
every n—extendible cut I C, M and countable arithmetic M.
(ii) For any © € 42,
BE,,FO&IS, 0O 0

Here BX,; is Peano’s axioms with the induction axiom replaced by the
Yn+1—collection schema

VaVz[Vy < 23w0(z,y, 2z, w) — ItVy < z3w < 10(z,y, 2, w)]

where @ € X, 4.

Now in practise for combinatorial @ it may be much easier to show that @
holds in all n—extendible cuts rather than to show BX,,; i ©@. The reason, for
combinatorialists, of being interested in the amount of Peano’s axioms need to
prove a result is that this may give information on the size of functions implicit
in the result. For example to show a function has a primitive recursive bound
it is enough to show that the totally of the function is a theorem of Iy, .

But by (i), (ii) to show this we only need to show that this theorem holds
in all 1-extendible cuts.

So it is to be hoped that the better understanding we are beginning to
aquire of these independence results will in the future make a positive as well
as negative contribution to combinatorics.
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Boolean Complexity and Ramsey Theorems

Pavel Pudldk

1. General Remarks

The aim of this paper is to bring attention to some connections between these
two fields. In the complexity theory there are difficult open problems most of
which are essentially of combinatorial character. It is generally believed that
some interaction between complexity theory and combinatorics may help to
solve these problems.

An n-dimensional Boolean function is any mapping f : {0,1}" — {0,1}.
Thus a Boolean function can be also viewed as a partition of the n-cube {0,1}".
A Boolean function is called symmetric if f(a1,...,a.) depends only on the
number of 1’s among a1, ...,a,. We call the set of all vectors with exactly k
ones the k-th level of the n-cube. Hence a symmetric function is a function
which is constant on every single level. Given a complete basis of connectives,
we define the formula size complezity L(f) of a function f to be the size of the
smallest formula realizing f, where the size of a formula is conveniently defined
to be the number of all the occurrences of variables in it. (E.g. 1 A (-z1 V 22)
has size 3).

Theorem A. For every basis there exists ¢ > 0 such that if f is n-dimensional
and

L(f) < e-n(loglogn — logr),

then there exists an interval I = (0,a) of length r in the n-cube such that

(1) f |1 is symmetric;

(2) in f | I all the even levels, with a possible exeption of the 0-th level, are
of the same color, and all the odd levels are of the same color. (It is not
excluded that f is constant on I.)

Theorem B. For the basis of all at most binary connectives there exists ¢ > 0
such that it f is n-dimensional and

L(f) < e-n-(logn —logr),
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then there exists an interval I = (a,b) of length r in the middle of the n-cube

such that

(1) f|I is symmetric;

(2) in f|I all the even levels are of the same color, and all the odd levels are
of the same color. (The exact meaning of “the middle” is that the number
of 1’s in a equals to the number of 0’s in b possibly —1.)

Theorem A is a reformulation of the Hodes-Specker theorem (Hodes,
Specker 1968) with the bound proved in (Pudldk 1984), the second theorem
is a reformulation of the main theorem of Fischer, Meyer, Paterson (1982). The
bounds are known to be of the best growth rate. I see at least three connections
of these theorems to Ramsey theory.

1. The general form of the statement is:“If an object is of small complexity,
then it is locally very simple”. If we consider e.g. the number of colors as
the complexity of a coloration (say of a complete graph), then the Ramsey
theorem is of this form.

2. Using Ramsey theorem one can prove e.g. that there exists a function r(n),
with lim,_, o, 7(n) = 00, such that for every n-dimensional Boolean function
f there exists an interval I = (0, a) of length r(n) such that f | I is symme-
tric. In case f is of small complexity Theorem A extends the information
about f|I in two ways: gives us a larger interval I and the condition (2).

3. The original proof of the Hodes-Specker theorem and the proof of Fischer-
Meyer-Paterson theorem use the standard heuristic “divide and take the
largest one” used also for Ramsey theorems. Ramsey theorem was also used
in the proof of a generalization of Hodes-Specker theorem by Vilfan (1976).
Ramsey theorem is the corner-stone of the proof of the bound of Theorem
A in Pudlak (1984). Roughly speaking the proof goes as follows. Given
a Boolean formula a(zi,...,2,), where z1,...,Z, are the propositional
variables of the formula, we define the induced formula aX for every X C
{z1,...,2z,} in a suitable way. The formula is called homogeneous if for
every X,Y,|X| = |Y| = 2, aX is isomorphic to aY, (which means that if
we substitute the first variable of X for the first variable of Y and the second
variable of X for the second variable of Y in oY, then we obtain aX). Given
r, if the complexity of a(z1,...,2,) is small (i.e. < e-n-(loglog n—log r)),
then using the Ramsey theorem one can find a subset of variables H of
cardinality r such that aH is homogeneous. Then it is shown (and this is
the difficult part of the proof) that every homogeneous formula determines
a Boolean function which satisfies (1), (2) of Theorem A.

The theorem of Ajtai (1983) and Furst, Saxe and Sipser (1981) can be stated
also in a form resembling the Ramsey theorem. A theorem of Hodes-Specker
type for branching programs was announced in Pudlék (1984).

During the preparation of this book several new lower bounds to the com-
plexity of Boolean functions have been obtained. A large part of these re-
sults uses some version of the Ramsey theorem. The lower bound of this paper
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n - (loglogn)¢, €> 0, can now be improved to £2(n -logn) using the results of
Babai et al. (to appear). These results are based on a Ramsey-type combinato-
rial lemma, which was discovered independently also by Alon and Maass (1986).
This technique was further developed in Babai et al. (1989); they obtained a
bound £2(n - (logn)?) which is currently the largest lower bound obtained using
Ramsey-type arguments. The lower bounds of Ajtai (1983) and Fischer et al.
(1982) have been also significantly improved by Yao (1985) and Hestad (1986).
In a recent paper Razborov (to appear) uses also Ramsey theorem to obtain
nonlinear bounds for the directed switching networks computing symmetric
Boolean functions.

2. An Example of a Lower Bound to Formula Size
Complexity

In this section we shall present a nonlinear lower bound to formula size of some
Boolean functions. The proof uses a quite different approach, “the graph theo-
retical method”, which is the approach to prove lower bounds using only graph
theoretical properties of the Boolean formula (which is essentially a labelled
tree), the Boolean circuit (which is a labelled directed acyclic graph) etc. The
reason for including this result in this paper is that the proof uses the Ramsey
theorem. However it is quite likely that a better bound can be proved without
it.

The idea of the proof is to show that any circuit, in particular formula,
which realizes some Boolean function must contain a special graph called super-
concentrator. Then we show that the superconcentrators which are embeddable
in formulas must have a nonlinear size, (Lemma 2.5). The idea to use supercon-
centrators for lower bounds is not new, but we think that it has not been used
for formula size complexity. (Better lower bounds follow from recent results of
Babai, Pudlék, R6dl and Szemerédi.)

It should be stressed that the idea does not work for circuit size, since
there are superconcentrators of linear size. For formula size we cannot get a
much better bound too, since there is an upper bound for a larger class of
superconcentrators, namely superconcentrators of depth 2, of the form O(n -
(log n)?), see Pippenger (1982). (I owe for this observation to Ravi Boppana.)
We do not know, if this can be used to show such an upper bound for the
formula size of the functions that we consider.

For an overview of results on superconcentrators see Dolev et al. (1983).
For a,b € {0,1}" define
a|b = (a,-l,. ..,a,-,),

where 4; < ... < i, and

i € {it,...,in} o bi=1.
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Theorem 2.1. There exists ¢ > 0 such that if f(x, y, z, t) is a 4n-dimensional
Boolean function with |x| = |y| = |z| = [t| =n > 1, and

Zci=zdi—’(f(aaba ¢, d)=1Ha|c=b|d)7
then in the basis of all at most binary connectives

L(f) > n - (loglog n)".

We need some lemmas. If G is a graph and 4,,...,4n, B1,...,B, are
pairwise disjoint subsets of vertices of G then we say that there are vertez
(vesp. edge) disjoint paths between {A;,...,A,} and {By,..., By} if for some

permutation (i1,...,%,) there are pairwise vertex (resp. edge) disjoint paths
Py,..., P, such that P, connects some point of A; with some point of B;,, for
k=1,...,n.

Lemma 2.2. Let f(x,y) be a Boolean function such that for every a, b €
{o,1}»
f(a,b)=1-a=b,

then in any circuit realizing f there exist edge disjoint paths between X1,...,X,
and Y1,...,Y,, where X;, resp. Y;, is the set of occurrences of z;, resp. y;, in
the circuit.

Proof. Suppose not. Then we can choose < n vertices which separate inputs
T1,...,Tpn from y1,...,¥n, (by Menger’s theorem). For every a € {0,1}" we
assign to each of the chosen edges the value which appears on it during the
computation of f(a,a). Then for some a, b € {0,1}", a # b we have the
same value on all the chosen edges. We assign the values of the computation of
f(a,a), resp. of f(b,b), to the part of the circuit containing. z1,...,Zn, resp.
Y1,...,Yn. This gives us the computation of f(a,b), but we get 1 on the output
which is a contradiction.

If we consider formulas with at most binary connectives, then every vertex
has degree at most 3, hence two loop—free paths are edge disjoint iff they are
vertex disjoint.

Lemma 2.3. Let C, be the cycle ({0,1,...,¢g—1} | {{1,7} | 7 =i+ 1 modg})
and 0 =py < p; <...<ps < q, pg = 0. Then there is no homomorphism F
mapping C, into a tree such that for j = 0,1,2,

F({pjrp; +1,...,0j11}) N F({pj+3,pj+s + 1,...,pj+a}) = 0.

Proof. Use induction over gq. O

Lemma 2.4. Let G be a graph, k > 1 and let A,,...,A,,B,,...,B,, be pairwise
disjoint sets such that

(1) |Ail,...,|As|,|Bily--+s|Bm| < k;

(i) s=2k+1;
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iii) m > R3(s), where | = s3k* + 1;
!
(iv) for every 1 < i; < ... < i, < m there are vertex disjoint paths from
{A1,...,4,} to {B,‘,,. ..,B;,}.

Then G is not a tree.

Proof. We shall find a mapping of some cycle C, into G satisfying the condi-
tion of Lemma 2.3. Suppose G satisfies the assumptions of Lemma 2.4. In order
to simplify the notation, we shall assume that equality holds in (i). Choose
some enumeration of the sets Ay, B, : Ay = {@ui}i<k, By = {bvi}i<k,u =
1,...,8v=1,...,m. If ay;i — by; is a path, then we say that j is its type.
For every three element set {u,v,w} C {1,2,...,m}, whenever it is possible,
choose a triple of vertex disjoint paths of the same type ay/g — bui, @Gy —
byi, Gw'j — by and assign to it the color (u',v',w’, g, h,j,1). If such a triple
of paths does not exist, we assign to {u,v,w} a fixed different color, say 0.
By (iii) there exists a homogeneous set H C {1,2,...,m}, |H| =s=2k+ 1.
By (iv) there are vertex disjoint paths from A;,..., A, to {B: |t € H}. Since
there are only k types of paths and by (ii), at least three of these paths are of
the same type. Hence the color of the triples of H is different from 0; say it is
(u',v',w',g,h,j,i). Now we take arbitrary four elements v < v < w < ¢ of H.
Then we have the following paths:

Qy'g Qy'h Qo' §
buz bvt bwi bt: bz;
Fig. 1.
where every two paths denoted by the same kind of a line are disjoint. Hence
the cycle in Figure 2 is the required cycle. O
bvi Qu'g buws Ay j bji Qv'h
Fig. 2.

Lemma 2.5. There exists a constant e > 0 such that every tree T which satisfies
the following condition has at least n - (loglog n)¢ vertices:

(*) There exist pairwise disjoint sets A1,...,An, Bi,...,Bn, of vertices of T
such that foreveryr <n,1<i1 < ... <1, <n,1<j1 <...< jr <, there
are vertex disjoint paths from {4;,,...,4A;,} to {Bj,,...,B; }.
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Proof. Recall that 2
Rl(s) < ll ’

(see e.g. Lovasz 1979). Hence, for some § > 0, condition (iii) of Lemma 2.4
is implied by k < (loglog m)®. Let T satisfy the condition of Lemma 2.5.
Suppose |T| < 1/2 - n - (loglog n)°. Then at least for one half of the indices
i < n,|4;| < (loglog n)° and the same is true about B;’s. W.l.o.g. we can
assume that it is for ¢ < [n/2]. Hence if n is sufficiently large, then T satisfies
the assumptions of Lemma 2.4 with

m = [n/2],k = [(loglog n)®],s = 2k + 1.
Thus by Lemma 2.4, if T is a tree then
IT| >1/2-n - (loglog n)®,

for every sufficiently large n. If € > 0 is sufficiently small, then
|T'| > n - (loglog n)¢ for every n > 1. O

Proof of Theorem 2.1. For every two subsets {i1,...,%,},{j1,.-.,Jr} Of
{1,...,n} take c,d such that

f(a,b,c,d) =1 (ay,...,0:,) = (bjy,- -+, b5,)-

Hence by Lemma 2.2, in every formula realizing f there are vertex disjoint
paths between the occurrences of z;,,...,z; and y;,,...,¥;,. Thus by Lemma
2.5 every formula realizing f must have at least n(loglog n)€ vertices; here we
count also the inputs, but we do not have to count the vertices with degree 2.
The complexity of a formula is bigger than 1/2 of the number of such vertices.

0
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Uncrowded Graphs

Joel Spencer

1. Graphs

Turan’s Theorem provides a relation between the number of vertices n, the
number of edges e, and the independence number ¢ of a graph G. In the simplest
case, when e = tn/2 and (¢ + 1)|n, Turdn’s Theorem yields o > n/(t +1). This
inequality is best possible. An extremal graph is given by letting G be the union
of n/(t + 1) vertex disjoint cliques, each on ¢ + 1 vertices.

TURAN GRAPH WITH n=15, t=4
Fig. 1.

These extremal graphs are unusual in the imprecise sense that their edges
are crowded together. In recent years a number of results have given strengthe-
nings of Turdn’s Theorem when one requires that the graph be “uncrowded,”
in various precise formulations. These results have seen application to Sidon
Sequences (Ajtai, Komlés, Szemerédi 1981) the Heilbronn Conjecture (Komlds,
Pintz, Szemerédi 1982) and to bounds (Ajtai, Komlés, Szemerédi 1980) on the
Ramsey Function R(k,t). In this article we outline the basic Graph—Theoretical
ideas and some of the applications.
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Notation. For any graph G we let n = n(G) denote the number of vertices
of G, e = ¢(G) the number of edges of G, t = {(G) the average degree, and
§ = 8(G) the density of G. These parameters are related by the equations

t=2e¢/n
§=2e/n(n —1)

We let & = a(G) be the independence number of G, i.e., the size of the largest
independent set in G. We let girth(G) denote the length of the shortest cycle
in G.

Let G be a graph with n vertices and average degree {. Turdn’s Theorem
implies @ > n/(t+1). We shall be mainly interested in the case when ¢ is large
absolutely but small relative to n. The results will often be stated with rough
caveats to that effect though more precise formulations may be found in the
literature. The fundamental strengthening of Turdn’s Theorem is given by the
following result.

Theorem 1. Let G have n vertices and average degree t > 100 and assume that
G is trianglefree. Then
a(G) 2 ¢(n/t)(Int)

where ¢ is an absolute constant.

For ease of exposition we shall also deal with the following logically weaker
statement.

Theorem 2. Let G have n vertices and average degree t > 100 and assume that
girth(G) > 4. Then
a(G) 2 ¢(n/t)(Int)

where ¢ is an absolute constant.

We approach these results with the use of probabilistic methods. (A second
approach, completely constructive in nature, is described later.) First we prove
a weak form of Turdn’s Theorem. Let G be given with n vertices and average
degree t. Set, with foresight, p = 1/¢. Let C be a randomly chosen subset
of V = V(G) where each vertex v € V is placed in C independently with
probability p. We call C the chosen points. On average, np = n/t points are
chosen. C will, in general, not be independent itself but it will have few edges.
Each edge {z,y} of G lies in C with probability p?. As there are nt/2 such
potential edges, C has, on average, (nt/2)p? = n/2t edges. Thus, on average,
C has n/2t more vertices than edges. Therefore there is a particular C' which
does have at least n/2¢ more vertices than edges. Select one point from each
edge arbitrarily and remove it from this particular C. The remaining set I will
be independent and have at least n/2¢ vertices. Thus a(G) > n/2¢, which is
Turén’s result within a factor of two. Generally, we will not be concerned with
constant factors.

We now indicate the argument for Theorem 2. Let G be given with n
vertices and average degree ¢ and suppose further (skipping some Lemmas)
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that G is regular of degree ¢. Assume G has girth at least five. We then know
exactly what the 2-neighborhood of any point P looks like. P is adjacent to
Q1,...,Q¢ and Q; is adjacent to R;y,..., R;:—1 and all these points are distinct.
As before, we set p = 1/t and randomly select the set of chosen points C , inside
of which lies an independent set I. We discard a vertex y € V if it is adjacent to
any chosen point z. Let D be the set of discarded points. The set of remaining
points (neither chosen nor discarded) is denoted by R . A vertex P lies in R if
and only if none of the points, P,Q,...,Q: have been chosen and this occurs
with probability (1—p)*t! ~ e~1. On average, n/e points remain. Let deg™ (P)
denote the degree of P in R , i.e., the number of @; that remain. If we condition
on the statement “P € R ” then @; € R if and only if none of R;1,...,R;:—1
are chosen and that occurs with probability (1 —p)*~! ~ e~!. Thus the average
value of deg™(P) is approximately ¢/e. Thus far we have not used the fact that
G has no 4-cycle. (We have used that G is trianglefree since we have needed
that none of the R;, are another @;.) Since G has no 4—cycle the events “Q; €
R ” (conditional on P € R) are mutually independent as all the R;; are distinct
points. Thus degt(P) has binomial distribution approximately B(¢,e~!). By
the Law of Large Numbers the probability that deg®(P) differs from e~ by a
factor of (1 + €) asymptotically negligible for any fixed ¢ > 0.

Gy
,I . \\
‘ 4 \‘ \
I ==
o
o ’,’

C Cy

D/R

THE TRANSFORMATION

Fig. 2.

With the above information there exists a specific set C' of chosen points
with the following properties. Inside C lies a set I of independent points of size
at least n/2¢. The remaining set R has approximately n/e points and almost
every P € R has deg™ (P) approximately ¢/e. Delete the points with abnormal
deg® from R and let G; be the restriction of the original graph G to the still
remaining points. Then G, has approximately n/e points and every point has
degree approximately ¢/e. We now begin the entire procedure all over again
with G;! Inside G, we chose C;, inside of which lies set I; of independent
points of size at least (n/e)/2(¢/e). That is, I; has the same size n/2t as I.
We have already discarded all points adjacent to I (in fact, to C) so we may
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add the independent set I; to I to form a larger independent set I U I of
size at least 2(n/2t). But we also have new discarded points and remaining
points and a new graph G, with approximately n/e? points, each with degree
approximately ¢/e2. Inside G we find yet another independent set I, still of
size at least n/2¢. This procedure can be continued (with some careful looking
at the approximations) for ¢ times (at that point ¢ becomes small) until an
independent set of size ¢(n/t)(Int) is found.

Two proofs are available of Theorem 1. We skip the probabilistic proof
given in Ajtai, Komlds, Szemerédi (1981) and discuss instead the constructive
proof given in Ajtai, Komlds, Szemerédi (1980). Call a point P in a graph G a
groupie if the average degree of its neighbors is at least as large as the average
degree t over the entire graph. (In colloquial usage a groupie is one who seeks
the friendship of celebreties, particularly entertainers. Equating vertices with
people and adjacency with friendship a groupie is a person whose friends, on
average, have many friends. Note that the groupie him/her/itself may or may
not have many friends/adjacencies.) Every graph has a groupie. For let G be
any graph with n vertices and average degree ¢ and let the adjacency relation

be denoted by I. Then
Yo > dy =) d>nt
z€G zly 2EG

The first equality holds because each summand d, occurs precisely d, times,
once for each z such that zIz. The inequality is simply Cauchy-Schwartz. If
there were no groupie then

> dy <td,

zly

DD dy< > td, = nt?

z€EG zIy z€EG

for every z so that

a contradiction.

Let G = Gy be a trianglefree graph with n = ng vertices and average
degree t = to. We find an independent set roughly as follows. Take a groupie P
and place it in the independent set. Remove P, its neighbors, and all their edges
from G, yielding G, and continue. Suppose P has s neighbors Q1 ,...,Q,.Then
> deg(Q;) > st since P is a groupie. Since G is trianglefree the edges from the
Qs are distinct (i.e. there is no edge from Q; to Q;) so that at least st edges
and precisely (s + 1) vertices are removed. Ignoring the “+1” we have removed
nonadjacent points of, on average, at least average degree and so the density
6, of the remaining graph G, should be at most the original density § = £o/ng
of G. An idea of the calculation may be seen by assuming that at every stage
a groupie of average degree is found and that the density remains constant.
Letting n,t, be the values of n,? at stage (or “time”) u we would have

Nytl = Ny — tu — 1 ~ ny(1 = 6)
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and
ty = 0Ny

so that
Ny ~ no(1 — )"

ty ~to(1 — 6)

The procedure halts when ¢, becomes small. Since § = ¢,/ng this occurs at
u ~ (ng/to)Intp and so there is an independent set of approximately this size.

In fact, the details are more complicated. For one thing, the groupie may
not have the average degree £. In the original proof (Ajtai, Komlds, Szemerédi
1980) if the groupie had degree more than ten times the average degree then it
was simply discarded. It was then shown that & > (1/K)(n/t)Int for K = 100.
Jerrold Griggs and Lih-Hsing Hsu were able, independently, to reduce K to
approximately 2.4. Recent work of Jim Shearer has reduced K to 1 and given
the following precise result.

Theorem 3. If G has n vertices, average degree t > 1 and is trianglefree then

a(G) > nltlnt —t +1]/(t - 1)%.

An immediate application of these results is to the Ramsey Function
R(3,t). Recall R(3,t) is the least n such that all graphs on n vertices contain
either a triangle or an independent set of size ¢{. Suppose G is a trianglefree
graph with n = R(3,¢ + 1) — 1 vertices and a(G) < ¢ + 1. The neighbors of
any vertex P form an independent set (as G is trianglefree) so all degrees are
at most ¢ and hence the average degree is at most £. Thus

1n
> > ——
t_a(G)_Ktlnt

and so
t2
_+1

= <K
R(3,t+1)=n+1< ni

The more precise result of Shearer yields
R(3,t+1)<t(t—1)?/[tlnt —t+1)+1

or, asymptotically,
R(3,t) < (t2/1nt)(1 + o(1)).

The previously best known upper bound on R(3,%) had been
R(3,t) < ct’Inlnt/Int

due to Graver and Yackel (1968). Their proof had used considerably different
techniques. The lower bound

R(3,t) > ct*/(Int)?
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due to Erd6s (1961) has not been improved on since its discovery though this
author (1977) has provided an alternative proof.

Extending the “groupie” method it was shown (Ajtai, Komlds, Szemerédi
1980) that for any fixed k

R(k,t) < cxt*™/(Int)*~

for ¢ sufficiently large. Note that this bound is stronger than what would be
obtained by simply plugging the new bound on R(3,t) into the standard re-
cursion R(k,t) < R(k—1,t)+ R(k,t —1). For k > 4, however, the appropriate
exponent of ¢ is not known. For example, when k& = 4 the best known lower
bound (Spencer 1977) is

R(4,t) > t2.5+0(1)

The positive results on trianglefree graphs have led to a spate of questions
that meld the concerns of Ramsey Theory and Extremal Graph Theory. Sup-
pose that a graph contains no Ky. (Results for excluding K} for fixed £ > 4
are similar.) What can one say about the independence number a in terms
of n and ¢. Paul Erd6s conjectured that when 1 € ¢ < n one may bound
a > (n/t)f(t) where f(t) approaches infinity with ¢. In Ajtai, Erdds, Komlds,
Szemerédi (1981) it was shown that a > ¢(n/t)(Inlnt), thus answering Erdés
question in the affirmative. Still, the appropriate order of o remains unkown.
In particular, it is not known if a > ¢(n/t)(In t).

2. Hypergraphs

Let G be a k-graph on n vertices (i.e., G is a collection of k—element subsets)
with average degree t*~'. We think of k fixed (k = 3 is a representative case)
and k¥ € ¢ € n. What bounds can be made on the independence number
a = a(G)? This analogue of Turdn’s Theorem for hypergraphs may be answered
within an constant factor. Given such a G we imitate the random construction
for graphs. Let C be a subset of vertices where each vertex z is placed in C
with probability p = 1/¢. G has nt*~!/k edges, each of which are in C with
probability p*. Thus on average C vertices and n/kt edges. There exists a
particular C' which has at least n/t — n/kt more vertices than edges. Deleting
one vertex from each edge in this C leave an independent set of size at least
n/t — n/kt. Thus a > cgn/t. On the other hand, let G be the union of n/t
vertex disjoint complete k—graphs, each on ¢ points. Each vertex has degree
(:23) ~ t*1/(k — 1)! and a(G) = (k — 1)n/t. Absorbing the factors (k — 1)!
and (k — 1) into the constant we see that a k-graph G with n vertices and
average degree t*~! may have a < cjn/t. Unlike the situation for graphs, the
ﬁrecise maximum of ¢« is unknown and we do not contribute to that problem
ere.

Let girth(G) be, as before, the length of the minimal cycle of G. A cycle of
length s in a k—graph is defined technically, as a set of s edges whose union con-
tains at most s(k—1) vertices. Assume girth(G) > 4. Then the 2-neighborhood
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Q QI

P
UNCROWDED REGULAR 3-GRAPH OF DEGREE 3

Fig. 3.

of any point P has no intersections. Figure 3 gives the 2-neighborhood of a 3-
graph where each point has degree 3 and the girth is at least 4. If Q, Q' are
identified then a cycle of length 4 is created. In Ajtai et al. (1982) it was shown
that if G is a k-graph with n vertices, average degree t*~!, girth(G) > 4 then

a > cp(n/t)(Int)/ D

The proof follows the lines of the probabilistic proof given earlier. A random
set C of n/t vertices is selected, inside of which lies an independent set I of
cn/t vertices. Having chosen C we are forced to discard those vertices z for
which exist y1,...,yx—1 € C with {z,91,-..,¥r—1} an edge of G. Furthermore,
if {z1,...,2,,91,...,%:} is an edge (z; € C, y; ¢ C) then it is transformed to a
new edge {y1,-...,¥:}. The remaining graph Gy is such that any independent
set in G; may be added to I. (Note that G is not only the restriction of G
to the remaining points R but also contains s—edges for 2 < s < k.) With
the assumption girth(G) > 4 the degrees in G, are tightly controlled and the
above bound on a (after some technical effort) is achieved.

Suppose we require girth(G) > 3 but allow cycles of length 4. Once again
let G be a k—graph with n vertices and average degree t*, k < t < n. We
conjecture that the independence number still satisfies

a > (n/t)f(t)

for some function f(t) approaching infinity with ¢.

3. Heilbronn’s Conjecture

The results of this section are given in detail in Komlés, Pintz, Szemerédi
(1982).
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SMALL CYCLES IN HEILBRONN'S PROBLEM

Fig. 4.

Define H(n) has the maximal real such that given any n points Pj,...,P, in
the unit square S some triangle P;P; P has area at least H(n). (Three collinear
points are considered to form a triangle of area zero and so are never used.) We
shall be concerned with lower bounds on H(n). Thus we wish to find Py,..., P,
containing no “small” triangle. Heilbronn conjectured that H(n) was of order
Kn~? for some constant K.

Let P, Q, R be independently and uniformly chosen from S. Then
area(PQR) is a random variable and we are interested in its values near zero.
It is a nice probability/calculus exercise (which we omit) to show that

Prlarea(PQR) < €] < 100¢

Here “100” is certainly not the best constant.

Let Py,...,P,, be independently and uniformly chosen from S. Call a
triangle small if its area is less than 10~*n~2. For each i,7j,k the triangle
P,,P,,P,e is small with probability less than 1072n~2. There are (%) <
2n3 such triples. Hence the average number of small tnangles is less than
2n3(1072n~2) = .02n. Thus there exist specific Pi,..., Py, forming fewer than
.02n small triangles. Delete one point from each tria.ngle What remains is a
collection of more than n points with no small triangle. Thus H(n) > 10~*n=2.

Let K be an arbitrarily large constant and call a triangle small if its area
is less than Kn~2. To improve the above method we let t > K and n > ¢
and choose tn points Py,...,Ps, independently and uniformly from S. We
define a 3—graph G on {1,...,tn}, letting {7,7,k} be an edge if and only if
P;P;P, is small. There are ("‘) < t3n® such triples and each {i,j,k} is an
edge with probability less than 100Kn~2 so G has, on average, fewer than
(100Kn‘2)(t3 %) = nt(10v/Kt)? edges. Now we examine the small cycles (see
Figure 4) in G. A further probability calculus calculation shows that the pro-
bability P;P;P; and P;P;P,, are both small (i, j, k,m unequal) is less than



Uncrowded Graphs 261

(100n=2)2(1001nn). Thus the average number of 2-cycles in G is less than
(tn)*10° K2n~—*Inn which is o(n) since K,¢ < n. The calculations for 3—-cycles
and 4-cycles are progressively more complex but the results are the same. G
has on average o(n) cycles of length 2, 3, or 4. Thus there exists a specific choice
of tn points Py, ..., P, for which G has ¢n vertices, roughly nt(10v/Kt)? edges
and o(n) small cycles. Deleting one point from each small cycle gives a graph
G’ with roughly the same number of vertices and edges and girth at least five.
Applying the result of the previous section on uncrowded k-graphs (for k = 3)
we see

' nt 1/2
«(G) 2 a(G') 2 er 7 In[10vVK{]
where ¢ is an absolute constant. Let ¢ be so large that ¢In[10v/K¢]? > 10vVK.
Then a(G) > n. Among the points Py,..., P;, we may find n points which are
independent in G, i.e., such that no triangle formed by them is small. Hence
H(n) > Kn~2. That is, Heilbronn’s Conjecture is false.
The following construction (published in Roth 1951) was first made by
Erdés. Let n be prime. Let a mod n denote that unique b, 0 < b < n, such
that a = b mod n. Set

V ={(i,i* mod n): 0 <i < n}

(For example, when n = 5, V = {(0,0),(1,1),(2,4),(3,4),(4,1)}.) We claim
that no three points of V are collinear. Suppose a line y = mz + b did intersect
V at x—coordinates 7,j,k. Then the slope m could be written as a fraction
N/D where the denominator D was strictly less than n. The intercept b could
similarly be written. Then we could interpret m, b as elements of Z,, and in Z,
the equation z2 = mz +b would have three solutions 3, j, and k. Since n is prime
this is not possible. It is a theorem of recreational mathematics that any triangle
with lattice points as vertices has area s/2 where s is an integer. Hence all
triangles in V have area at least 1/2. Normalizing by dividing both coordinates
by n gives a set V' = V/n contained in the unit square which has n points and
no triangle with area less than 1/2n2. Thus H(n) > 1/2n2. The uncrowded
graph techniques have made this result obsolete but the construction is too
pretty to be forgotten.
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