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Preface

Generally speaking, Ramsey theory studies which combinatorial configurations of
a structure can always be found in one of the pieces of a given finite partition.
More generally, it considers the problem of which combinatorial configurations
can be found in sets that are “large” in some suitable sense. Dating back to the
foundational results of van der Waerden, Ramsey, Erdős, Turán, and others from the
1920s and 1930s, Ramsey theory has since then had an extraordinary development.
On the one hand, many applications of Ramsey theory to numerous other areas
of mathematics, ranging from functional analysis, topology, and dynamics to set
theory, model theory, and computer science, have been found. On the other hand,
results and methods from other areas of mathematics have been successfully applied
to establish new results in Ramsey theory. For instance, ergodic theory has had a
profound impact on Ramsey theory, giving rise to the research area of “ergodic
Ramsey theory.” Perhaps the best known achievement of this approach is the
ergodic-theoretic proof of Szemerédi’s theorem due to Furstenberg in the 1980s.
In a different (but intimately related) direction, the theory of ultrafilters has been an
important source of methods and ideas for Ramsey theory. In particular, the study of
topological and algebraic properties of the space of ultrafilters has been used to give
short and elegant proofs of deep combinatorial pigeonhole principles. Paradigmatic
in this direction is the Galvin–Glazer ultrafilter proof of Hindman’s theorem on sets
of finite sums, previously established by Hindman in 1974 via a delicate, purely
combinatorial argument.

Recently, a new thread of research has emerged, where problems in Ramsey
theory are studied from the perspective of nonstandard analysis and nonstandard
methods. Developed by Abraham Robinson in the 1960s and based on first-order
logic and model theory, nonstandard analysis provided a formal and rigorous
treatment of calculus and classical analysis via infinitesimals. Such a treatment is
more similar in spirit to the approach originally taken in the development of calculus
in the seventeenth and eighteenth century and avoids the epsilon-delta arguments
that are inherent in its later formalization due to Weierstrass. While this is perhaps its
most well-known application, nonstandard analysis is actually much more versatile.
The foundations of nonstandard analysis provide us with a method, which we shall
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call the nonstandard method, that is applicable to virtually any area of mathematics.
The nonstandard method has thus far been used in numerous areas of mathematics,
including functional analysis, measure theory, ergodic theory, differential equations,
and stochastic analysis, just to name a few such areas.

In a nutshell, the nonstandard method allows one to extend the given math-
ematical universe and thus regard it as contained in a much richer nonstandard
universe. Such a nonstandard universe satisfies strong saturation properties which
in particular allow one to consider limiting objects which do not exist in the
standard universe. This procedure is similar to passing to an ultrapower, and in fact
the nonstandard method can also be seen as a way to axiomatize the ultrapower
construction in a way that distillates its essential features and benefits, but avoids
being bogged down by the irrelevant details of its concrete implementation. This
limiting process allows one to reformulate a given problem involving finite (but
arbitrarily large) structures or configurations into a problem involving a single
structure or configuration which is infinite but for all purposes behaves as though
it were finite (in the precise sense that it is hyperfinite in the nonstandard universe).
This reformulation can then be tackled directly using finitary methods, ranging from
combinatorial counting arguments to recurrence theorems for measurable dynamics,
recast in the nonstandard universe.

In the setting of Ramsey theory and combinatorics, the application of non-
standard methods was pioneered by the work of Keisler, Leth, and Jin from the
1980s and 1990s. These applications focused on density problems in combinatorial
number theory. The general goal in this area is to establish the existence of
combinatorial configurations in sets that are large in the sense that they have
positive asymptotic density. For example, the aforementioned celebrated theorem
of Szemerédi from 1970 asserts that a set of integers of positive density contains
arbitrarily long finite arithmetic progressions. One of the contributions of the
nonstandard approach is to translate the notion of asymptotic density on the integers,
which does not satisfy all the properties of a measure, into an actual measure in the
nonstandard universe. This translation then makes methods from measure theory
and ergodic theory, such as the ergodic theorem or other recurrence theorems,
available for the study of density problems. In a sense, this can be seen as a version
of Furstenberg’s correspondence (between sets of integers and measurable sets in
a dynamical system), with the extra feature that the dynamical system obtained
perfectly reflects all the combinatorial properties of the set that one started with.
The achievements of the nonstandard approach in this area include the work of
Leth on arithmetic progressions in sparse sets, Jin’s theorem on sumsets, as well
as Jin’s Freiman-type results on inverse problems for sumsets. More recently, these
methods have also been used by Jin, Leth, Mahlburg, and the present authors to
tackle a conjecture of Erdős concerning sums of infinite sets (the so-called B + C
conjecture), leading to its eventual solution by Moreira, Richter, and Robertson.

Nonstandard methods are also tightly connected with ultrafilter methods. This
has been made precise and successfully applied in a recent work of one of us (Di
Nasso), where he observed that there is a perfect correspondence between ultrafilters
and elements of the nonstandard universe up to a natural notion of equivalence. On
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the one hand, this allows one to manipulate ultrafilters as nonstandard points and to
use ultrafilter methods to prove the existence of certain combinatorial configurations
in the nonstandard universe. On the other hand, this gives an intuitive and direct
way to infer, from the existence of certain ultrafilter configurations, the existence of
corresponding standard combinatorial configurations via the fundamental principle
of transfer from nonstandard analysis. This perspective has successfully been
applied by Di Nasso and Luperi Baglini to the study of partition regularity problems
for Diophantine equations over the integers, providing in particular a far-reaching
generalization of the classical theorem of Rado on partition regularity of systems
of linear equations. Unlike Rado’s theorem, this recent generalization also includes
equations that are not linear.

Finally, it is worth mentioning that many other results in combinatorics can be
seen, directly or indirectly, as applications of the nonstandard method. For instance,
the groundbreaking work of Hrushovski and Breuillard–Green–Tao on approximate
groups, although not originally presented in this way, admit a natural nonstandard
treatment. The same applies to the work of Bergelson and Tao on recurrence in
quasirandom groups.

The goal of this manuscript is to introduce the uninitiated reader to the non-
standard method and to provide an overview of its most prominent applications
in Ramsey theory and combinatorial number theory. In particular, no previous
knowledge of nonstandard analysis will be assumed. Instead, we will provide a
complete and self-contained introduction to the nonstandard method in the first
part of this book. Novel to our introduction is a treatment of the topic of iterated
hyperextensions, which is crucial for some applications and has thus far appeared
only in specialized research articles. The intended audience for this book includes
researchers in combinatorics who desire to get acquainted with the nonstandard
approach, as well as logicians and experts of nonstandard analysis who have been
working in this or other areas of research. The list of applications of the nonstandard
method to combinatorics and Ramsey theory presented here is quite extensive,
including cornerstone results of Ramsey theory such as Ramsey’s theorem, Hind-
man’s theorem on sets of finite sums, the Hales–Jewett theorem on variable words,
and Gowers’ Ramsey theorem. It then proceeds with results on partition regularity of
Diophantine equations and with density problems in combinatorial number theory.
A nonstandard treatment of the triangle removal lemma, the Szemerédi regularity
lemma, and of the already mentioned work of Hrushovski and Breuillard–Green–
Tao on approximate groups conclude the book. We hope that such a complete list
of examples will help the reader unfamiliar with the nonstandard method get a
good grasp on how the approach works and can be applied. At the same time, we
believe that collecting these results together, and providing a unified presentation
and approach, will provide a useful reference for researchers in the field and will
further stimulate the research in this currently very active area.

This work originated out of lecture notes written by the authors on occasion of
the workshop “Nonstandard methods in combinatorial number theory” held in 2017
at the American Institute of Mathematics. We would like to thank the participants
of the conference for providing valuable feedback to an earlier version of the
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manuscript. We received further useful comments and suggestions from several
people, including Kevin Barnum, Jordan Barrett, Ryan Burkhart, the Bogotá Logic
Group (especially Alex Berenstein and Dario Garcia), and Lorenzo Luperi Baglini.
We would also like to express our gratitude to our friend and colleague Steven Leth
for his many helpful insights on earlier versions of this draft (as well as for being
responsible for bringing the second author into this line of research).

Di Nasso’s research was partially supported by PRIN Grant 2012 “Models and
Set Theory.” Goldbring’s work was partially supported by NSF CAREER grant
DMS-1349399. Lupini was partially supported by the NSF Grant DMS-1600186
and by a Research Establishment Grant by Victoria University of Wellington.

Pisa, Italy Mauro Di Nasso
Irvine, CA, USA Isaac Goldbring
Wellington, New Zealand Martino Lupini



Notation and Conventions

We set N := {1, 2, 3, . . .} to denote the set of strictly positive natural numbers and
N0 := {0, 1, 2, 3, . . .} to denote the set of natural numbers.

We use the following conventions for elements of particular sets:

• m and n range over N.
• h, k, and l range over Z.
• H,K,M , and N range over elements of ∗N.
• δ and ε sometimes denote (small) positive elements of R, while sometimes they

denote positive infinitesimal elements of ∗R. There will be no confusion between
these two uses as we will always explicitly state the assumptions on the quantity.

• Given any set S, we let α, β, and γ denote arbitrary (possibly standard) elements
of ∗S.

For any set S, we set Fin(S) := {F ⊆ S | F is finite and nonempty}.
For any n ∈ N, we write [n] := {1, . . . , n}. Similarly, for N ∈ ∗

N we write
[N] := {1, . . . , N}.

Given any nonempty finite set I and any set A, we write δ(A, I) := |A∩I |
|I | . We

extend this to the nonstandard situation: if I is a nonempty hyperfinite set and A is
an internal set, we set δ(A, I) := |A∩I |

|I | . We also write δ(A, n) := δ(A, [n]) and
δ(A,N) := δ(A, [N]).

Given a hyperfinite set X, we let LX denote the σ -algebra of Loeb measurable
subsets of X and we let μX denote the Loeb measure on LX that extends the
normalized counting measure on X (see Chap. 5). When X = {1, . . . , N}, we write
LN andμN instead of LX andμX. IfA is internal, we write μX(A) := μX(A∩X).

Suppose that A ⊆ Z and k ∈ N. We write

k · A := {x1 + · · · + xk : x1, . . . , xk ∈ A}
and

kA := {kx : x ∈ A}.
Of course kA ⊆ k · A.

Throughout this book, log always denotes the logarithm base 2.

xi
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Preliminaries



Chapter 1
Ultrafilters

Filters and ultrafilters—initially introduced by Cartan in the 1930s—are fundamen-
tal objects in mathematics and naturally arise in many different contexts. They are
featured prominently in Bourbaki’s systematic treatment of general topology as they
allow one to capture the central notion of “limit”. The general definition of limit of
a filter subsumes, in particular, the usual limit of a sequence (or net). Ultrafilters—a
special class of filters—are especially useful, as they always admit a limit provided
they are defined on a compact space. Thus, ultrafilters allow one to extend the usual
notion of limit to sequences (or nets) that would not have a limit in the usual sense.
Such “generalized limits” are frequently used in asymptotic or limiting arguments,
where compactness is used in a fundamental way.

1.1 Basics on Ultrafilters

Throughout this chapter, we let S denote an infinite set.

Definition 1.1 A (proper) filter on S is a set F of subsets of S (that is, F ⊆P(S))
such that:

• ∅ /∈ F , S ∈ F ;
• if A,B ∈ F , then A ∩ B ∈ F ;
• if A ∈ F and A ⊆ B, then B ∈ F .

We think of elements of F as “big” sets (because that is what filters do, they
catch the big objects). The first and third axioms are (hopefully) intuitive properties
of big sets. Perhaps the second axiom is not as intuitive, but if one thinks of the
complement of a big set as a “small” set, then the second axiom asserts that the
union of two small sets is small (which is hopefully more intuitive).
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Exercise 1.2 Set F := {A ⊆ S | S\A is finite}. Prove that F is a filter on S, called
the Frechét or cofinite filter on S.

Definition 1.3 Suppose that D is a set of subsets of S. We say that D has the finite
intersection property if: wheneverD1, . . . ,Dn ∈ D , we haveD1 ∩ · · · ∩Dn �= ∅.

Exercise 1.4 Suppose that D is a set of subsets of S with the finite intersection
property. Set

〈D〉 := {E ⊆ S | D1 ∩ · · · ∩Dn ⊆ E for some D1, . . . ,Dn ∈ D}.

Show that 〈D〉 is the smallest filter on S containing D , called the filter generated
by D .

If F is a filter on S, then a subset of S cannot be simultaneously big and small
(that is, both it and its complement belong to F ), but there is no requirement that
it be one of the two. It will be desirable (for reasons that will become clear in a
moment) to add this as an additional property:

Definition 1.5 If F is a filter on S, then F is an ultrafilter if, for anyA ⊆ S, either
A ∈ F or S\A ∈ F (but not both!).

Ultrafilters are usually denoted by U . Observe that the Frechét filter on S is not
an ultrafilter since there are sets A ⊆ S such that A and S\A are both infinite.

The following exercise illustrates one of the most important properties of
ultrafilters .

Exercise 1.6 A filter F on S is an ultrafilter if and only if whenever A1, . . . , An
are subsets of S such that A1 ∪ · · · ∪ An ∈ F , there exists i ∈ {1, . . . , n} such that
Ai ∈ F .

We have yet to see an example of an ultrafilter. Here is a “trivial” source of
ultrafilters:

Definition 1.7 Given s ∈ S, set Us := {A ⊆ S | s ∈ A}.
Exercise 1.8 For s ∈ S, prove that Us is an ultrafilter on S, called the principal
ultrafilter generated by s.

We say that an ultrafilter U on S is principal if U = Us for some s ∈ S.
Although principal ultrafilters settle the question of the existence of ultrafilters,
they will turn out to be useless for our purposes, as we will soon see. From
a philosophical viewpoint, principal ultrafilters fail to capture the idea that sets
belonging to the ultrafilter are large, for {s} belongs to the ultrafilter Us and yet
hardly anyone would dare say that the set {s} is large!

Exercise 1.9 Prove that an ultrafilter U on S is nonprincipal if and only if there is
no finite set A ⊆ S such that A ∈ U if and only if U extends the Frechét filter.

We now would like to prove the existence of nonprincipal ultrafilters. The
following exercise will be the key to doing this.
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Exercise 1.10 Suppose that F is a filter on S. Then F is an ultrafilter on S if and
only if it is a maximal filter, that is, if and only if, whenever F ′ is a filter on S such
that F ⊆ F ′, we have F = F ′.

Since it is readily verified that the union of an increasing chain of filters on S
containing a filter F is once again a filter on S containing F , the previous exercises
and Zorn’s lemma yield the following:

Theorem 1.11 Nonprincipal ultrafilters on S exist.

Exercise 1.12 Suppose that f : S → T is a function between sets. Then given any
ultrafilter U on S, the set

f (U ) := {A ⊆ T : f−1(A) ∈ U }

is an ultrafilter on T , called the image ultrafilter of U under f .

1.2 The Space of Ultrafilters βS

In this section, S continues to denote an infinite set. Since topological matters are
the subject of this subsection, we will also treat S as a topological space equipped
with the discrete topology.

The set of ultrafilters on S is denoted βS. There is a natural topology on βS
obtained by declaring, for A ⊆ S, the following sets as basic open sets:

UA := {U ∈ βS : A ∈ U }.

(Note that theUA’s are indeed a base for a topology as UA∩UB = UA∩B .) Since the
complement of UA in βS is US\A, we see that the basic open sets are in fact clopen.
Note also that βS is Hausdorff: if U ,V ∈ βS are distinct, take A ⊆ S with A ∈ U
and S\A ∈ V . Then U ∈ UA and V ∈ US\A and UA and US\A are disjoint.

Exercise 1.13 Let A be a family of subsets of S. Then the following (possibly
empty) set is closed in βS:

CA := {U ∈ βS : A ⊆ U }.

Theorem 1.14 βS is a compact space.

Proof It is enough to show that every family (Ci) with the intersection property and
consisting of compact sets has nonempty intersection. Without loss of generality, we
can assume that Ci = UAi for some subsets Ai of S. The assumption that the family
(UAi ) has the finite intersection property implies that the family (Ai) has the finite
intersection property. Thus there exists an ultrafilter U over S such thatAi ∈ U for
every i. Thus U ∈ UAi for every i, witnessing that (Ci) has nonempty intersection.
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We identify S with the set of principal ultrafilters on S. Under this identification,
S is dense in βS: if A ⊆ S is nonempty and s ∈ A, then the principal ultrafilter
Us ∈ UA. Thus, βS is a compactification of S. In fact, we have:

Theorem 1.15 βS is the Stone-Čech compactification of S.

We remind the reader that the Stone-Čech compactification of S is the unique
compactificationX of S with the following property: any function f : S → Y with
Y compact Hausdorff has a unique continuous extension f̃ : X → Y . In order
to prove the previous theorem, we will first need the following lemma, which is
important in its own right:

Lemma 1.16 Suppose that Y is a compact Hausdorff space and (ys)s∈S is a family
of elements of Y indexed by S. Then for any U ∈ βS, there is a unique element
y ∈ Y with the property that, for any open neighborhood U of y, we have {s ∈ S :
ys ∈ U} ∈ U .

Proof Suppose, towards a contradiction, that no such y exists. Then for every y ∈ Y ,
there is an open neighborhood Uy of y such that {s ∈ S : ys ∈ Uy} /∈ U . By
compactness, there are y1, . . . , yn ∈ Y such that Y = Uy1 ∪ · · · ∪ Uyn . There exists
then i ∈ {1, . . . , n} such that {s ∈ S : ys ∈ Uyi } ∈ U , yielding the desired
contradiction. We now show that such a y is unique. Suppose by contradiction that
there exists y ′ �= y satisfying the same conclusions. Then as by assumption Y is
Hausdorff, one can choose disjoint open neighborhoods Uy and Uy ′ of y and y ′,
respectively. Hence, we have that U contains both {s ∈ S : ys ∈ Uy} and {s ∈ S :
ys ∈ Uy ′ }. This contradicts the assumption that U is an ultrafilter, as these two sets
are disjoint.

Definition 1.17 In the context of the previous lemma, we call the unique y the
ultralimit of (ys) with respect to U , denoted lims,U ys or simply just limU ys .

Proof (of Theorem 1.15) Suppose that f : S → Y is a function into a compact
Hausdorff space. Define f̃ : βS → Y by f̃ (U ) := limU f (s), which exists by
Lemma 1.16. It is clear that f̃ (Us ) = f (s), so f̃ extends f . We must show that f̃
is continuous. Fix U ∈ βS and let U be an open neighborhood of f̃ (U ) in Y . Let
V ⊆ U be an open neighborhood of f̃ (U ) in Y such that V ⊆ U . (This is possible
because every compact Hausdorff space is regular, that is, every point has a base
of closed neighborhoods.) Take A ∈ U such that f (s) ∈ V for s ∈ A. Suppose
V ∈ UA, so A ∈ V . Then limV f (s) ∈ V ⊆ U , so UA ⊆ f̃−1(U).

Recall that the set of points where two continuous functions with values in
a Hausdroff space agree is closed. As S is dense in βS, it follows that such a
continuous extension is unique.

Now that we have shown that βS is the Stone-Čech compactification of S, given
f : S → Y where Y is a compact Hausdorff space, we will let βf : βS → Y

denote the unique continuous extension of f . If S, T are two sets and f : S → T is
a function, then we let βf : βS → βT be the continuous extension of f .
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Definition 1.18 Fix k ∈ N. Let mk : N→ N be defined by mk(n) := kn. Then for
U ∈ βN, we set kU := (βmk)(U ).

Note that A ∈ kU ⇔ A/k := {n ∈ N | nk ∈ A} ∈ U . The ultrafilters kU will
play an important role in Chap. 9.

Exercise 1.19 Given A ⊆ S, show that A = UA, where A denotes the closure of A
in βS.

Let �∞(S) denote the space of bounded real-valued functions on S. Given f ∈
�∞(S), take r ∈ R

>0 such that f (S) ⊆ [−r, r], whence we may consider its unique
continuous extension βf : βS → [−r, r]. Note that the function βf does not depend
on the choice of r . The following exercise will be useful in Chap. 12.

Exercise 1.20 The function f �→ βf is an isomorphism between �∞(S) and
C(βS) as Banach spaces.

1.3 The Case of a Semigroup

We now suppose that S is the underlying set of a semigroup (S, ·). Then one can
extend the semigroup operation · to a semigroup operation � on βS by declaring,
for U ,V ∈ βS and A ⊆ S, that

A ∈ U � V ⇔ {s ∈ S : s−1 · A ∈ V } ∈ U .

Here, s−1A := {t ∈ S : s · t ∈ A}. In other words, U � V = lims,U (limt,V s ·
t), where these limits are taken in the compact space βS. In particular, note that
Us �Ut = Us·t , so this operation on βS does indeed extend the original operation
on S. It is also important to note that, in general, ultralimits do not commute and
thus, in general, U � V �= V �U , even if (S, ·) is commutative. (See Chap. 3 for
more on this lack of commutativity.) In the commutative case, we often denote the
semigroup operation by +, in which case we write the extended operation on the
space of ultrafilters by ⊕.

The following theorem allows one to apply Theorem 1.23 below to produce
ultrafilters whose existence has deep combinatorial consequences.

Theorem 1.21 (βS,�) is a compact, right topological semigroup, that is, � is a
semigroup operation on the compact space βS such that, for each V ∈ βS, the left
translation map ρV : U �→ U � V : βS → βS is continuous.

Proof Fix V ∈ βS. We need to show that ρV is continuous. Towards this end, fix
A ⊆ S. We must show that ρ−1

V (UA) is open. Let B := {s ∈ S : s−1 · A ∈ V }. It
remains to note that ρ−1

V (UA) = UB .

One can introduce some notation to express more succinctly the semigroup
operation in βS. Given A ⊆ S and t ∈ S, one defines A · t−1 to be the set
{s ∈ S : s · t ∈ A}. Similarly, for A ⊆ S and V ∈ βS, one defines A · V −1
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to be {x ∈ S : x−1 · A ∈ V }. Then for U ,V ∈ βS and A ⊆ S, one has that
A ∈ U � V if and only if A · V −1 ∈ U .

1.4 The Existence of Idempotents in Semitopological
Semigroups

Definition 1.22 Suppose that (S, ·) is a semigroup. We say that e ∈ S is idempotent
if e · e = e.

The following classical theorem of Ellis is the key to many applications of
ultrafilter methods and nonstandard methods in Ramsey theory.

Theorem 1.23 Suppose that (S, ·) is a compact semitopological semigroup. Then
S has an idempotent element.

Proof Let S denote the set of nonempty closed subsemigroups of S. It is clear that
the intersection of any descending chain of elements of S is also an element of S ,
whence by Zorn’s lemma, we may find T ∈ S that is minimal.

Fix s ∈ T . We show that s is idempotent. Set T1 := T s. Note that T1 �= ∅ as
T �= ∅. Since S is a semitopological semigroup and T is compact, we have that T1
is also compact. Finally, note that T1 is also a subsemigroup of S:

T1 · T1 = (T s)(T s) ⊆ T · T · T · s ⊆ T · s = T1.

We thus have that T1 ∈ S . Since s ∈ T , we have that T1 ⊆ T , whence by
minimality of T , we have that T1 = T . In particular, the set T2 := {t ∈ T : t ·s = s}
is not empty. Note that T2 is also a closed subset of T , whence compact. Once again,
we note that T2 is a subsemigroup of S. Indeed, if t, t ′ ∈ T2, then t t ′ ∈ T and
(tt ′) · s = t · (t ′ · s) = t · s = s. We thus have that T2 ∈ S . By minimality of T , we
have that T2 = T . It follows that s ∈ T2, that is, s · s = s.

The previous theorem and Theorem 1.21 immediately give the following:

Corollary 1.24 Let (S, ·) be a semigroup and let T be any nonempty closed
subsemigroup of (βS,�). Then T contains an idempotent element.

We refer to idempotent elements of βS as idempotent ultrafilters. Thus, the
previous corollary says that any nonempty closed subsemigroup of βS contains an
idempotent ultrafilter.

1.5 Partial Semigroups

We will encounter the need to apply the ideas in the previous section to the broader
context of partial semigroups.
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Definition 1.25 A partial semigroup is a set S endowed with a partially defined
binary operation (s, t) �→ s · t that satisfies the following form of the associative
law: given s1, s2, s3 ∈ S, if either of the products (s1 · s2) · s3 or s1 · (s2 · s3) are
defined, then so is the other and the products are equal. The partial semigroup (S, ·)
is directed if, for any finite subset F of S, there exists t ∈ S such that the product
s · t is defined for every s ∈ F .

The following example will play a central role in our discussion of Gowers’
theorem in Chap. 8.

Example 1.26 For k ∈ N, we let FINk denote the set of functions b : N →
{0, 1, . . . , k} with Supp(b) finite and such that k belongs to the range of b. Here,
Supp (b) := {n ∈ N : b(n) �= 0} is the support of b. Note that, after identifying a
subset of N with its characteristic function, FIN1 is simply the set of nonempty finite
subsets ofN. We endow FINk with a partial semigroup operation (b0, b1) �→ b0+b1,
which is defined only when every element of Supp (b0) is less than every element
of Supp (b1). It is clear that this partial semigroup is in fact directed.

For the rest of this section, we assume that (S, ·) is a directed partial semigroup.

Definition 1.27 We call U ∈ βS cofinite if, for all s ∈ S, we have {t ∈ S :
s · t is defined } ∈ U . We let γ S denote the set of all cofinite elements of βS.

Exercise 1.28 γ S is a nonempty closed subset of βS.

We can define an operation � on γ S by declaring, for U ,V ∈ γ S and A ⊆ S,
that A ∈ U � V if and only if

{s ∈ S : {t ∈ S : s · t is defined and s · t ∈ A} ∈ V } ∈ U .

Note that the operation � is a totally defined operation on γ S even though the
original operation · was only a partially defined operation.

Exercise 1.29 (γ S,�) is a compact semitopological semigroup. Consequently,
every nonempty closed subsemigroup of γ S contains an idempotent element.

Notes and References

The notion of ultrafilter was introduced by Cartan [23, 24] in 1937 to study
convergence in topological spaces. Ultrafilters and the corresponding construction
of ultraproduct are common tools in mathematical logic, but they also found many
applications in other fields of mathematics, especially in topology, algebra, and
functional analysis. A classic reference on ultrafilters is the book “Ultrafilters”
by Comfort and Negrepontis [30]. See also the more recent [14] for a review
of ultrafilters across mathematics. The standard reference for the algebra of βS
and its applications throughout Ramsey theory is the excellent book by Hindman
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and Strauss [72]. The extension of the operation on a semigroup to the space of
ultrafilters can be seen as a particular instance of the notion of Arens product on
the bidual of a Banach algebra [2]. Indeed, one can regard the space of ultrafilters
over a semigroup S as a subspace of the second dual of the Banach algebra �1(S)

endowed with the usual convolution product. This was the initial approach taken in
the study of the Stone-Čech compactification since the 1950s [29, 33]. Its realization
as a space of ultrafilters was first explicitly considered by Ellis [44]. The existence
of idempotent elements in any compact right topological semigroup is a classical
result of Ellis [44]. The observation that this implies the existence of idempotent
ultrafilters is due to Galvin. Idempotent ultrafilters play a fundamental role in the
application of ultrafilter methods to combinatorics, starting from the Galvin–Glazer
proof of Hindman’s Theorem on sumsets (see Chap. 8 below).



Chapter 2
Nonstandard Analysis

If one wants to present the methods of nonstandard analysis in their full generality
and with full rigor, then notions and tools from mathematical logic such as “first-
order formula” or “elementary extension” are definitely needed. However, we
believe that a gentle introduction to the basics of nonstandard methods and their
use in combinatorics does not directly require any technical machinery from logic.
Only at a later stage, when advanced nonstandard techniques are applied and their
use must be put on firm foundations, detailed knowledge of notions from logic will
be necessary.

We will begin with presenting the main properties of the nonstandard versions of
the natural, integer, rational, and real numbers, which will be named by adding the
prefix “hyper”. Then we will introduce the fundamental principle of nonstandard
analysis, namely the transfer principle of the star map. While at this stage the
treatment will still be informal, it will still be sufficient for the reader to gain a
first idea of how nonstandard methods can be used in applications.

In the Appendix, we give sound and rigorous foundations to nonstandard analysis
in full generality by formally introducing first order logic. The reader already
familiar with nonstandard methods can proceed directly to the next chapter.

2.1 Warming-Up

To begin with, let us recall the following notions, which are at the very base of
nonstandard analysis.

Definition 2.1 An element ε of an ordered field F is infinitesimal (or infinitely
small) if − 1

n
< ε < 1

n
for every n ∈ N. A numberΩ is infinite if either Ω > n for

every n ∈ N orΩ < −n for every n ∈ N.
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In Definition 2.1 we identify a natural number n with the element of F obtained
as the n-fold sum of 1 by itself. Clearly, a nonzero number is infinite if and only if
its reciprocal is infinitesimal. We say that a number is finite or bounded if it is not
infinite.

Exercise 2.2

1. If ξ and ζ are finite, then ξ + ζ and ξ · ζ are finite.
2. If ξ and ζ are infinitesimal, then ξ + ζ is infinitesimal.
3. If ξ is infinitesimal and ζ is finite, then ξ · ζ is infinitesimal.
4. If ξ is infinite and ζ is not infinitesimal, then ξ · ζ is infinite.
5. If ξ is infinitesimal and ζ is not infinitesimal, then ξ/ζ is infinitesimal.
6. If ξ is infinite and ζ is finite, then ξ/ζ is infinite.

Recall that an ordered field F is Archimedean if for every positive x ∈ F there
exists n ∈ N such that nx > 1.

Exercise 2.3 The following properties are equivalent for an ordered field F:

1. F is non-Archimedean;
2. There are nonzero infinitesimal numbers in F;
3. The set of natural numbers has an upper bound in F.

We are now ready to introduce the nonstandard reals.

Definition 2.4 The hyperreal field ∗R is a proper extension of the ordered field R

that satisfies additional properties (to be specified further on). The element of ∗R
are called hyperreal numbers.

By just using the above incomplete definition, the following is proved.

Proposition 2.5 The hyperreal field ∗R is non-Archimedean, and hence it contains
nonzero infinitesimals and infinite numbers.

Proof Since ∗R is a proper extension of the real field, we can pick a number ξ ∈
∗
R\R. Without loss of generality, let us assume ξ > 0. If ξ is infinite, then we are

done. Otherwise, by the completeness property of R, we can consider the number
r = inf{x ∈ R | x > ξ}. (Notice that it may be r < ξ .) It is readily checked that
ξ − r is a nonzero infinitesimal number.

We remark that, as a non-Archimedean field, ∗R is not complete (e.g., the set of
infinitesimals is bounded but has no least upper bound). We say that two hyperreal
numbers are infinitely close if their difference is infinitesimal. The nonstandard
counterpart of completeness is given by the following property.

Theorem 2.6 (Standard Part) Every finite hyperreal number ξ ∈ ∗
R is infinitely

close to a unique real number r ∈ R, called the standard part of ξ . In this case, we
use the notation r = st(ξ).
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Proof By the completeness of R, we can set st(ξ) := inf{x ∈ R | x > ξ} = sup{y ∈
R | y < ξ}. By the supremum (or infimum) property, it directly follows that st(ξ)
is infinitely close to ξ . Moreover, st(ξ) is the unique real number with that property,
since infinitely close real numbers are necessarily equal.

It follows that every finite hyperreal number ξ has a unique representation in the
form ξ = r+ε where r = st(ξ) ∈ R and ε is infinitesimal. By definition of standard
part, ξ ∈ ∗

R is infinitesimal if and only if st(ξ) = 0. Given finite hyperreals ξ and
ζ , it is sometimes convenient to write ξ � ζ to mean st(ξ) ≥ st(ζ ).

The following are the counterparts in the nonstandard setting of the familiar
properties of limits of real sequences.

Exercise 2.7 For all finite hyperreal numbers ξ, ζ :

1. st(ξ) < st(ζ )⇒ ξ < ζ ⇒ st(ξ) ≤ st(ζ );
2. st(ξ + ζ ) = st(ξ)+ st(ζ );
3. st(ξ · ζ ) = st(ξ) · st(ζ );
4. st( ξ

ζ
) = st(ξ)

st(ζ ) whenever ζ is not infinitesimal.

Definition 2.8 The ring of hyperinteger numbers ∗Z is an unbounded discretely
ordered subring of ∗R that satisfies special properties (to be specified further on),
including the following:

• For every ξ ∈ ∗R there exists ζ ∈ ∗Z with ζ ≤ ξ < ζ + 1. Such a ζ is called the
hyperinteger part of ξ , denoted ζ = �ξ�.
Since ∗Z is discretely ordered, notice that its finite part coincides with Z. This

means that for every z ∈ Z there are no hyperintegers ζ ∈ ∗
Z such that z < ζ <

z+ 1.

Definition 2.9 The hypernatural numbers ∗N are the positive part of ∗Z. Thus ∗Z =
−∗N ∪ {0} ∪ ∗N, where−∗N = {−ξ | ξ ∈ ∗N} are the negative hyperintegers.

Definition 2.10 The field of hyperrational numbers ∗
Q is the subfield of ∗

R

consisting of elements of the form ξ
ν

where ξ ∈ ∗Z and ν ∈ ∗N.

Exercise 2.11 The hyperrational numbers ∗Q are dense in ∗R, that is, for every pair
ξ < ξ ′ in ∗R there exists η ∈ ∗Q such that ξ < η < ξ ′.

We remark that, although still incomplete, our definitions suffice to get a clear
picture of the order-structure of the two main nonstandard objects that we will
consider here, namely the hypernatural numbers ∗N and the hyperreal line ∗R. In
particular, let us focus on the nonstandard natural numbers. One possible way (but
certainly not the only possible way) to visualize them is the following:

• The hypernatural numbers ∗N are the extended version of the natural numbers
that is obtained by allowing the use of a “mental telescope” to also see infinite
numbers beyond the finite ones.
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So, beyond the usual finite numbers N = {1, 2, 3, . . .}, one finds infinite numbers
ξ > n for all n ∈ N. Every ξ ∈ ∗N has a successor ξ+1, and every non-zero ξ ∈ ∗N
has a predecessor ξ − 1.

∗
N = {

1, 2, 3, . . . , n, . . .︸ ︷︷ ︸
finite numbers

. . . , N − 2, N − 1, N,N + 1, N + 2, . . .︸ ︷︷ ︸
infinite numbers

}

Thus the set of finite numbers N does not have a greatest element and the set
of infinite numbers ∗N\N does not have a least element, whence ∗N is not well-
ordered. Sometimes we will write ν > N to mean that ν ∈ ∗N is infinite.

Exercise 2.12 Consider the equivalence relation∼f on ∗N defined by setting ξ ∼f
ζ if ξ − ζ is finite. The corresponding equivalence classes are called galaxies. The
quotient set ∗N/∼f inherits an order structure, which turns it into a dense linearly
ordered set with least element [1] = N and with no greatest element.

2.2 The Star Map and the Transfer Principle

As we have seen in the previous section, corresponding to each of the sets
N,Z,Q,R, one has a nonstandard extension, namely the sets ∗

N, ∗Z, ∗Q, ∗R,
respectively. A defining feature of nonstandard analysis is that one has a canonical
way of extending every mathematical object A under study to an object ∗A which
inherits all “elementary” properties of the initial object.

Definition 2.13 The star map is a function that associates to each “mathematical
object” A under study its hyper-extension (or nonstandard extension) ∗A in such a
way that the following holds:

• Transfer principle: Let P(A1, . . . , An) be an “elementary property” of the
mathematical objects A1, . . . , An. Then P(A1, . . . , An) is true if and only if
P(∗A1, . . . ,

∗An) is true:

P(A1, . . . , An) ⇐⇒ P(∗A1, . . . ,
∗An).

One can think of hyper-extensions as a sort of weakly isomorphic copy of the
initial objects. Indeed, by the transfer principle, an objectA and its hyper-extension
∗A are indistinguishable as far as their “elementary properties” are concerned.
Of course, the crucial point here is to precisely determine which properties are
“elementary” and which are not.

Let us remark that the above definition is indeed incomplete in that the notions
of “mathematical object” and of “elementary property” are still to be made precise
and rigorous. As anticipated in the introduction, we will do this gradually.
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To begin with, it will be enough to include in our notion of “mathematical object”
the following:

1. Real numbers and k-tuples of real numbers for every k ∈ N;
2. All sets A ⊆ R

k of real tuples, and all functions f : A→ B between them;
3. All sets made up of objects in (1) and (2), including, e.g., the families

F ⊆ ⋃
kP(R

k) of sets of real k-tuples, and the families of functions
G ⊆ Fun(Rk,Rh).

More generally, every other structure under study could be safely included in the
list of “mathematical objects”.1

As for the notion of “elementary property”, we will start working with a semi-
formal definition. Although not fully rigorous from a logical point of view, it may
nevertheless look perfectly fine to many, and we believe that it can be safely adopted
to get introduced to nonstandard analysis and to familiarize oneself with its basic
notions and tools.

Definition 2.14 A propertyP is elementary if it can be expressed by an elementary
formula, that is, by a formula where:

1. Besides the usual logical connectives (“not”, “and”, “or”, “if . . . then”, “if and
only if”) and the quantifiers (“there exists”, “for every”) only the basic notions
of equality, membership, set, ordered k-tuple, k-ary relation, domain, range,
function, value of a function at a given point, are involved;

2. The scope of every quantifier is bounded, that is, quantifiers always occur in the
form “there exists x ∈ X” or “for every y ∈ Y ” for specified sets X,Y . More
generally, also nested quantifiers “Qx1 ∈ x2 and Qx2 ∈ x3 . . . and Qxn ∈
X” are allowed, where Q is either “there exists” or “for every”, x1, . . . , xn are
variables, and X is a specified set.

An immediate consequence of the transfer principle is that all fundamental
mathematical constructions are preserved under the star map, with the only two
relevant exceptions being powersets and function sets (see Proposition 2.49). Below
we give three comprehensive lists in three distinct propositions, the first one about
sets and ordered tuples, the second one about relations, and the third one about
functions. Until the notion of “elementary property” has been made precise, one
can take those properties as axioms for the star map.

Proposition 2.15

1. a = b⇔ ∗a = ∗b.
2. a ∈ A⇔ ∗a ∈ ∗A.
3. A is a set if and only if ∗A is a set.

1According to the usual set-theoretic foundational framework, every mathematical object is
identified with a set (see Remark A.2 in the Appendix). However, here we will stick to the common
perception that considers numbers, ordered pairs, relations, functions, and sets as mathematical
objects of distinct nature.
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4. ∗∅ = ∅.
If A,A1, . . . , Ak, B are sets:

5. A ⊆ B ⇔ ∗A ⊆ ∗B.
6. ∗(A ∪ B) = ∗A ∪ ∗B.
7. ∗(A ∩ B) = ∗A ∩ ∗B.
8. ∗(A\B) = ∗A\∗B.
9. ∗{a1, . . . , ak} = {∗a1, . . . ,

∗ak}.
10. ∗(a1, . . . , ak) = (∗a1, . . . ,

∗ak).
11. ∗(A1 × . . .× Ak) = ∗A1 × . . .× ∗Ak.
12. ∗{(a, a) | a ∈ A} = {(ξ, ξ) | ξ ∈ ∗A}.

If F is a family of sets:

13. ∗{(x, y) | x ∈ y ∈ F } = {(ξ, ζ ) | ξ ∈ ζ ∈ ∗F }.
14. ∗(

⋃
F∈F F) =

⋃
G∈∗F G.

Proof Recall that by our definition, the notions of equality, membership, set, and
ordered k-tuple are elementary; thus by direct applications of transfer one obtains
(1), (2), (3), and (10), respectively. All other properties are easily proved by
considering suitable elementary formulas. As examples, we will consider here only
three of them.

(8) The property “C = A\B” is elementary, because it is formalized by the
elementary formula:

“∀x ∈ C (x ∈ A and x /∈ B) and ∀x ∈ A (x /∈ B ⇒ x ∈ C)”.

So, by transfer, we have that C = A\B holds if and only if

“∀x ∈ ∗C (x ∈ ∗A and x /∈ ∗B) and ∀x ∈ ∗A (x /∈ ∗B ⇒ x ∈ ∗C)”,

that is, if and only if ∗C = ∗A\∗B.
(9) The property “C = {a1, . . . , ak}” is formalized by the elementary formula:

“a1 ∈ C and . . . . . . and ak ∈ C and ∀x ∈ C (x = a1 or . . . or x = ak)”. So,
we can apply transfer and obtain that ∗C = {∗a1, . . . ,

∗ak}.
(14) The property “A =⋃

F∈F F ” is formalized by the elementary formula: “∀x ∈
A (∃y ∈ F with x ∈ y) and ∀y ∈ F ∀x ∈ y (x ∈ A).” Then by transfer one
gets “∗A =⋃

y∈∗F y.”

Proposition 2.16

1. R is a k-ary relation if and only if ∗R is a k-ary relation.

If R is a binary relation:

2. ∗{a | ∃b R(a, b)} = {ξ | ∃ζ ∗R(ξ, ζ )}, that is, ∗domain(R) = domain(∗R).
3. ∗{b | ∃a R(a, b)} = {ζ | ∃ξ ∗R(ξ, ζ )}, that is, ∗range(R) = range(∗R).
4. ∗{(a, b) | R(b, a)} = {(ξ, ζ ) | ∗R(ζ, ξ)}.
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If S is a ternary relation:

5. ∗{(a, b, c) | S(c, a, b)} = {(ξ, ζ, η) | ∗S(η, ξ, ζ )}.
6. ∗{(a, b, c) | S(a, c, b)} = {(ξ, ζ, η) | ∗S(ξ, η, ζ )}.
Proof (1), (2), and (3) are proved by direct applications of transfer, because the
notions of k-ary relation, domain, and range are elementary by definition.

(4). The property “C = {(a, b) | R(b, a)}” is formalized by the
conjunction of the elementary formula “∀z ∈ C ∃x ∈ domain(R) ∃y ∈
range(R) s.t. R(x, y) and z = (y, x)” and the elementary formula “∀x ∈
domain(R) ∀y ∈ range(R) (y, x) ∈ C”. Thus transfer applies and one obtains
∗C = {(ξ, ζ ) | (ζ, ξ) ∈ ∗R}.

(5) and (6) are proved by considering similar elementary formulas as in (4).

Proposition 2.17

1. f is a function if and only if ∗f is a function.

If f, g are functions and A,B are sets:

2. ∗domain(f ) = domain(∗f ).
3. ∗range(f ) = range(∗f ).
4. f : A→ B if and only if ∗f : ∗A→ ∗B.2
5. ∗graph(f ) = graph(∗f ).
6. ∗(f (a)) = (∗f )(∗a) for every a ∈ domain(f ).
7. If f : A → A is the identity, then ∗f : ∗A → ∗A is the identity, that is

∗(1A) = 1∗A.
8. ∗{f (a) | a ∈ A} = {∗f (ξ) | ξ ∈ ∗A}, that is ∗(f (A)) = ∗f (∗A).
9. ∗{a | f (a) ∈ B} = {ξ | ∗f (ξ) ∈ ∗B}, that is ∗(f−1(B)) = (∗f )−1(∗B).
10. ∗(f ◦ g) = ∗f ◦ ∗g.
11. ∗{(a, b) ∈ A× B | f (a) = g(b)} = {(ξ, ζ ) ∈ ∗A× ∗B | ∗f (ξ) = ∗g(ζ )}.
Proof (1), (2), (3), and (6) are proved by direct applications of transfer, because
the notions of function, value of a function at a given point, domain, and range, are
elementary. (4) is a direct corollary of the previous properties. We only prove two
of the remaining properties as all of the proofs are similar to one another.

(5). The property “C = graph(f )” is formalized by the elementary formula
obtained as the conjunction of the formula “∀z ∈ C ∃x ∈ domain(f ) ∃y ∈
range(f ) such that y = f (x) and (x, y) ∈ C” with the formula “∀x ∈
domain(f ) ∀y ∈ range(f ) (y = f (x) ⇒ (x, y) ∈ C)”. The desired equality
follows by transfer and by the previous properties.

(10). If f : A→ B and g : B → C, then the property “h = g ◦ f ” is formalized
by the formula “h : A → C and ∀x ∈ A ∀y ∈ C (h(x) = y ⇔ ∃z ∈ B f (x) =
z and g(z) = y)”.

2Recall that notation f : A→ B means that f is a function with domain(f ) = A and range(f ) ⊆
B.
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Exercise 2.18 Prove that a function f : A→ B is 1-1 if and only if ∗f : ∗A→ ∗B
is 1-1.

We now discuss a general result about the star map that is really useful in practice
(and, in fact, several particular cases have already been included in the previous
propositions): If a set is defined by means of an elementary property, then its hyper-
extension is defined by the same property where one puts stars in front of the
parameters.

Proposition 2.19 Let ϕ(x, y1, . . . , yn) be an elementary formula. For all objects
B,A1, . . . , An one has

∗{x ∈ B | ϕ(x,A1, . . . , An)} = {x ∈ ∗B | ϕ(x, ∗A1, . . . ,
∗An)}.

Proof Since C = {x ∈ B | ϕ(x,A1, . . . , An)}, we have that the following formula
holds:

P(A1, . . . , An, B,C) : ∀x (x ∈ C ⇔ (x ∈ B and ϕ(x,A1, . . . , An)) .

By transfer, we have that P(∗A1, . . . ,
∗An, ∗B, ∗C) holds as well. This readily

implies that is ∗C = {x ∈ ∗B | ϕ(x, ∗A1, . . . ,
∗An)}.

An immediate corollary is the following.

Proposition 2.20 If (a, b) = {x ∈ R | a < x < b} is an open interval of real
numbers then ∗(a, b) = {ξ ∈ ∗

R | a < ξ < b}, and similarly for intervals of
the form [a, b), (a, b], (a, b), (−∞, b] and [a,+∞). Analogous properties hold for
intervals of natural, integer, or rational numbers.

2.2.1 Additional Assumptions

By property Proposition 2.15 (1) and (2), the hyper-extension ∗A of a set A contains
a copy of A given by the hyper-extensions of its elements

σA = {∗a | a ∈ A} ⊆ ∗A.

Notice that, by transfer, an hyper-extension ∗x belongs to ∗A if and only if x ∈ A.
Therefore, σA ∩ σB = σ (A ∩ B) for all sets A,B.

Following the common use in nonstandard analysis, to simplify matters we will
assume that ∗r = r for all r ∈ R. This implies by transfer that ∗(r1, . . . , rk) =
(r1, . . . , rk) for all ordered tuples of real numbers, i.e. σ (Rk) = R

k . It follows that
hyper-extensions of real sets and functions are actual extensions:

• A ⊆ ∗A for every A ⊆ R
k ,

• If f : A→ B where A ⊆ R
k and B ⊆ R

h, then ∗f is an extension of f , that is,
∗f (a) = f (a) for every a ∈ A.
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In nonstandard analysis it is always assumed that the star map satisfies the
following

• Properness condition: ∗N �= N.

Proposition 2.21 If the properness condition ∗N �= N holds, then σA �= ∗A for
every infinite A.

Proof Suppose that there is an infinite set A such that σA = ∗A. Fix a surjective
map f : A→ N. Then also the hyper-extension ∗f : ∗A→ ∗

N is surjective, and

∗
N = {∗f (α) | α ∈ ∗A} = {∗f (∗a) | a ∈ A} = {∗(f (a)) | a ∈ A}
= {∗n | n ∈ N} = N,

whence the properness condition fails.

As a first consequence of the properness condition, one gets a nonstandard
characterization of finite sets as those sets that are not “extended” by hyper-
extensions.

Proposition 2.22 For every setA one has the equivalence: “A is finite if and only if
∗A = σA”. (When A ⊆ R

k , this is the same as “A is finite if and only if ∗A = A”.)
Proof If A = {a1, . . . , ak} is finite, we already saw in Proposition 2.15 (9) that
∗A = {∗a1, . . . ,

∗ak} = {∗a | a ∈ A}. Conversely, if A is infinite, we can pick a
surjective function f : A → N. Then also ∗f : ∗A → ∗

N is onto. Now notice
that for every a ∈ A, one has that (∗f )(∗a) = ∗(f (a)) = f (a) ∈ N (recall that
∗n = n for every n ∈ N). Then if ξ ∈ ∗N\N there exists α ∈ ∗A\{∗a | a ∈ A} with
∗f (α) = ξ .

One can safely extend the simplifying assumption ∗r = r from real numbers r to
elements of any given mathematical object X under study (but of course not for all
mathematical objects).

• Unless explicitly mentioned otherwise, when studying a specific mathematical
object X by nonstandard analysis, we will assume that ∗x = x for all x ∈ X, so
that X = σX ⊆ ∗X.

It is worth mentioning at this point that star maps satisfying the transfer
principle and the properness condition do actually exist. Indeed, they can be easily
constructed by means of ultrafilters, or, equivalently, by means of maximal ideals of
rings of functions (see Sect. 2.4).

We end this section with an example of using properness to give a short proof of
a classical fact. (This nonstandard proof was suggested by D.A. Ross.)

Theorem 2.23 (Sierpinski) Given a1, . . . , an, b ∈ R
>0, the set

E :=
{
(x1, . . . , xn) ∈ N

n : a1

x1
+ · · · + an

xn
= b

}

is finite.
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Proof Suppose, towards a contradiction, that E is infinite. Then there is x =
(x1, . . . , xn) ∈ ∗E\E. Without loss of generality, we may assume that there is
k ∈ {1, . . . , n} such that x1, . . . , xk ∈ ∗N\N and xk+1, . . . , xn ∈ N. We then have

a1

x1
+ · · · + ak

xk
= b −

(
ak+1

xk+1
+ · · · + an

xn

)
.

We have now arrived at a contradiction for the left hand side of the equation is a
positive infinitesimal element of ∗R while the right hand side of the equation is a
positive standard real number.

2.3 The Transfer Principle, in Practice

As we already pointed out, a correct application of transfer needs a precise under-
standing of the notion of elementary property. Basically, a property is elementary if
it talks about the elements of some given structures and not about their subsets or the
functions between them.3 Indeed, in order to correctly apply the transfer principle,
one must always point out the range of quantifiers, and formulate them in the forms
“ ∀ x ∈ X . . .” and “ ∃ y ∈ Y . . .” for suitable specified sets X,Y . With respect to
this, the following remark is particularly relevant.

Remark 2.24 Before applying transfer, all quantifications on subsets “∀ x ⊆ X . . .”
or “∃ x ⊆ X . . .” must be reformulated as “ ∀ x ∈ P(X) . . .” and “ ∃ x ∈
P(X) . . .”, respectively, where P(X) = {A | A ⊆ X} is the powerset of X.
Similarly, all quantifications on functions f : A → B must be bounded by
Fun(A,B), the set of functions from A to B. We stress that doing this is crucial
because in general ∗P(X) �= P(∗X) and ∗Fun(A,B) �= Fun(∗A, ∗B), as we will
show in Proposition 2.49.

Example 2.25 Consider the property: “< is a linear ordering on the set A”. Notice
first that < is a binary relation on A, and hence its hyper-extension ∗< is a binary
relation on ∗A. By definition, < is a linear ordering if and only if the following are
satisfied:

(a) ∀x ∈ A (x �< x),
(b) ∀x, y, z ∈ A (x < y and y < z)⇒ x < z,
(c) ∀x, y ∈ A (x < y or y < x or x = y).

Notice that the three formulas above are elementary. Then we can apply transfer
and conclude that: “∗< is a linear ordering on ∗A.”

3In logic, properties that talks about elements of a given structure are called first-order properties;
properties about subsets of the given structure are called second-order; properties about families
of subsets of the given structure are called third-order; and so forth.
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Whenever confusion is unlikely, some asterisks will be omitted. So, for instance,
we will write + to denote both the sum operation on N, Z, Q and R, and the
corresponding operations on ∗N, ∗Z, ∗Q and ∗R, respectively, as given by the hyper-
extension ∗+.

Similarly as in the example above, it is readily verified that the properties of a
discretely ordered ring, as well as the properties of a real-closed ordered field, are
elementary because they just talk about the elements of the given structures. Thus,
by a direct application of transfer, one obtain the following results, which generalize
the properties presented in Sect. 2.1.

Theorem 2.26

1. ∗R, endowed with the hyper-extensions of the sum, product, and order on R, is a
real-closed ordered field.4

2. ∗Z is an unbounded discretely ordered subring of ∗R, whose positive part is ∗N.
3. The ordered subfield ∗Q ⊂ ∗

R is the quotient field of ∗Z.
4. Every non-zero ν ∈ ∗N has a successor ν + 1 and a predecessor ν − 1.5

5. For every positive ξ ∈ ∗
R there exists a unique ν ∈ ∗

N with ν ≤ ξ < ν + 1. As
a result, ∗N is unbounded in ∗R.

Proposition 2.27 (N,≤) is an initial segment of (∗N,≤), that is, if ν ∈ ∗N\N, then
ν > n for all n ∈ N,

Proof For every n ∈ N, by transfer one obtains the validity of the following
elementary formula: “∀x ∈ ∗

N (x �= 1 and . . . and x �= n) ⇒ x > n”, and
hence the proposition holds.

To get a clearer picture of the situation, examples of non-elementary properties
that are not preserved under hyper-extensions, are now in order.

Example 2.28 The property of well-ordering (that is, every nonempty subset has
a least element) and of completeness of an ordered set are not elementary. Indeed,
they concern the subsets of the given ordered set. Notice that these properties are not
preserved by hyper-extensions. In fact, N is well-ordered but ∗N is not (e.g., the set
of infinite hyper-natural numbers has no least element). The real line R is complete
but ∗R is not (e.g., the set of infinitesimal numbers is bounded with no least upper
bound).

Remark 2.29 Transfer applies also to the well-ordering property of N, provided
one formalizes it as: “Every nonempty element of P(N) has a least element”.
(The property “X has a least element” is elementary: “there exists x ∈ X such
that for every y ∈ X, x ≤ y.”) In this way, one gets: “Every nonempty element
of ∗P(N) has a least element”. The crucial point here is that ∗P(N) is not equal

4Recall that an ordered field is real closed if every positive element is a square, and every
polynomial of odd degree has a root.
5An element η is the successor of ξ (or ξ is the predecessor of η) if ξ < η and there are no elements
ζ with ξ < ζ < η.
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to P(∗N) (see Proposition 2.49 below). So, the well-ordering property is not an
elementary property of N, but it is an elementary property of P(N). Much the
same observations can be made about the completeness property. Indeed, virtually
all properties of mathematical objects can be formalized by elementary formulas,
provided one uses the appropriate parameters.

A much more slippery example of a non-elementary property is the following.

Example 2.30 The Archimedean property of an ordered field F is not elementary.
Notice that to formulate it, one needs to use N ⊂ F as a parameter:

“For all positive x ∈ F there exists n ∈ N such that nx > 1.”

While the above is an elementary property of the pair (F,N) since it talks about the
elements of F and N combined, it is not an elementary property of the ordered field
F alone. In regard to this, we remark that the following expression:

“For all positive x ∈ F it is x > 1 or 2x > 1 or 3x > 1 or . . . or nx > 1 or . . . .”

is not a formula, because it would consist in an infinitely long string of symbols
if written in full. Notice that the Archimedean property is not preserved by hyper-
extensions. For instance, R is Archimedean, but the hyperreal line ∗R is not, being
an ordered field that properly extends R (see Proposition 2.5).

Similarly, the properties of being infinitesimal, finite, or infinite are not elemen-
tary properties of elements in a given ordered field F, because to formulate them
one needs to also consider N ⊂ F as a parameter.

2.4 The Ultrapower Model

It is now time to justify what we have seen in the previous sections and show that
star maps that satisfy the transfer principle do actually exist. Many researchers
using nonstandard methods, especially those less familiar with mathematical logic,
feel more comfortable in directly working with a model. However we remark that
this is not necessary. Rather, it is worth stressing that all one needs in practice is
a good understanding of the transfer principle and its use, whereas the underlying
construction of a specific star map does not play a crucial role.6 The situation is
similar to what happens when working in real analysis: what really matters is that
R is a complete Archimedean ordered field, along with the fact that such a field
actually exists; whereas the specific construction of the real line (e.g., by means of

6There are a few exceptions to this statement, but we will never see them in the combinatorial
applications presented in this book.
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Dedekind cuts or by a suitable quotient of the set of Cauchy sequences) is irrelevant
when developing the theory.

2.4.1 The Ultrapower Construction

The ultrapower construction relies on ultrafilters and so, to begin with, let us fix an
ultrafilter U on a set of indices I . For simplicity, in the following we will focus
on ultrapowers of R. However, the same construction can be carried out by starting
with any mathematical structure.

Definition 2.31 The ultrapower of R modulo the ultrafilter U , denoted R
I /U , is

the quotient of the family of real I -sequences RI = Fun(I,R) = {σ | σ : I → R}
modulo the equivalence relation≡U defined by setting:

σ ≡U τ ⇔ {i ∈ I | σ(i) = τ (i)} ∈ U .

Notice that the properties of being a filter on U guarantee that ≡U is actually
an equivalence relation. Equivalence classes are denoted by using square brackets:
[σ ] = {τ ∈ Fun(I,R) | τ ≡U σ }. The pointwise sum and product operations on
the ring Fun(I,R) are inherited by the ultrapower. Indeed, it is easily verified that
the following operations are well-defined:

[σ ]+ [τ ] = [σ + τ ] and [σ ] · [τ ] = [σ · τ ].

The order relation < on the ultrapower is defined by putting:

[σ ] < [τ ] ⇔ {i ∈ I | σ(i) < τ(i)} ∈ U .

Proposition 2.32 The ultrapower (RI /U ,+, ·,<, 0, 1) is an ordered field.
Proof All properties of an ordered field are directly proved by using the properties
of an ultrafilter. For example, to prove that < is a total ordering, one considers the
partition I = I1 ∪ I2 ∪ I3 where I1 = {i ∈ I | σ(i) < τ(i)}, I2 = {i ∈ I |
σ(i) = τ (i)} and I3 = {i ∈ I | σ(i) > τ(i)}: exactly one out of the three sets
belongs to U , and hence exactly one out of [σ ] < [τ ], [σ ] = [τ ], or [σ ] > [τ ]
holds. As another example, let us show that every [σ ] �= 0 has a multiplicative
inverse. By assumption, A = {i ∈ I | σ(i) = 0} /∈ U , and so the complement
Ac = {i ∈ I | σ(i) �= 0} ∈ U . Now pick any I -sequence τ such that τ (i) = 1/σ(i)
whenever i ∈ Ac. ThenAc ⊆ {i ∈ I | σ(i)·τ (i) = 1} ∈ U , and hence [σ ]·[τ ] = 1.

There is a canonical way of embedding R into its ultrapower.

Definition 2.33 The diagonal embedding d : R → R
I /U is the function that

associates to every real number r the equivalence class [cr ] of the corresponding
constant I -sequence cr .
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It is readily seen that d is a 1-1 map that preserves sums, products and the order
relation. As a result, without loss of generality, we can identify every r ∈ R with its
diagonal image d(r) = [cr ], and assume that R ⊆ R

I /U is an ordered subfield.
Notice that if U = Uj is principal then the corresponding ultrapower RI /Uj =

R is trivial. Indeed, in this case one has σ ≡Uj τ ⇔ σ(j) = τ (j). Thus, every
sequence is equivalent to the constant I -sequence with value σ(j), and the diagonal
embedding d : R→ R

I /Uj is onto.7

Remark 2.34 Under the Continuum Hypothesis, one can show that for every
pair U ,V of non-principal ultrafilters on N, the ordered fields obtained as the
corresponding ultrapowers RN/U ,RN/V of R are isomorphic.8

2.4.2 Hyper-Extensions in the Ultrapower Model

In this section we will see how the ultrapower RI /U can be made a model of the
hyperreal numbers of nonstandard analysis. Let us start by denoting

∗
R = R

I /U .

We now have to show that the ordered field ∗
R has all the special features that

make it a set of hyperreal numbers. To this end, we will define a star map on the
family of all sets of ordered tuples of real numbers and of all real functions, in such
a way that the transfer principle holds.

Definition 2.35 Let A ⊆ R. Then its hyper-extension ∗A ⊆ ∗
R is defined as the

family of all equivalence classes of I -sequences that take values in A, that is:

∗A = AI/U = {[σ ] | σ : I → A} ⊆ ∗
R.

Similarly, if A ⊆ R
k is a set of real k-tuples, then its hyper-extension is defined

as

∗A = {([σ1], . . . , [σk]) | (σ1, . . . , σk) : I → A} ⊆ ∗
R
k

where we denote (σ1, . . . , σk) : i �→ (σ1(i), . . . , σk(i)).

7In most cases, the converse is also true, namely that if the diagonal embedding is onto, then the
ultrafilter is principal. A precise statement of the converse would require a discussion of measurable
cardinals, taking us too far afield. It suffices to say that when I is an ultrafilter on a countable set,
the converse indeed holds.
8This is because they are elementarily equivalent ℵ1-saturated structures of cardinality ℵ1 in a
finite language, and they have size ℵ1 under the Continuum Hypothesis.
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Notice that, by the properties of ultrafilter, for every σ1, . . . , σk, τ1, . . . , τk : I →
R, one has

{i ∈ I | (σ1(i), . . . , σk(i)) = (τ1(i), . . . , τk(i))} ∈ U ⇐⇒ σs ≡U τs for every

s = 1, . . . , k.

In consequence, the above equivalence relation is well-defined, and one has that
([σ1], . . . , [σn]) ∈ ∗A⇔ {i | (σ1, . . . , σn) ∈ A} ∈ U .

We also define the star map on real ordered tuples by setting

∗(r1, . . . , rk) = (r1, . . . , rk).

Recall that we identified every r ∈ R with the equivalence class [cr ] of the
corresponding constant sequence and so, by letting ∗r = r = [cr ], we have that
A ⊆ ∗A for every A ⊆ R

k.
We have already seen that ∗R is an ordered field that extends the real line. As

a result, every rational function f : R → R is naturally extended to a function
∗f : ∗R → ∗

R. However, here we are interested in extending all real functions
f : A→ B where A and B are set of real tuples, to functions ∗f : ∗A→ ∗B. With
ultrapowers, this can be done in a natural way.

Definition 2.36 Let f : A → B where A,B ⊆ R. Then the hyper-extension of
f is the function ∗f : ∗A → ∗B defined by setting ∗f ([σ ]) = [f ◦ σ ] for every
σ : I → A.

A B

I

f

σ f◦ σ

�

If f : A→ B is a function of several variables where A ⊆ R
k and B ⊆ R, then

∗f : ∗A→ ∗B is defined by setting for every σ1, . . . , σk : I → R:

∗f ([σ1], . . . , [σk]) = [〈f (σ1(i), . . . , σk(i)) | i ∈ I 〉].

Similarly as for hyper-extensions of sets of tuples, it is routine to check that the
properties of an ultrafilter guarantee that the function ∗f is well-defined.

Let us now see that the ultrapower model has all the desired properties.

Theorem 2.37 The hyper-extensions of real ordered tuples, sets of ordered real
tuples and real functions, as defined above, satisfy all the properties itemized in
Propositions 2.15, 2.16, and 2.17. For every k, n ∈ N, a, a1, . . . , ak ∈ R

n, and
A,B ⊂ R

n:

1. a = b⇔ ∗a = ∗b.
2. a ∈ A if and only if ∗a ∈ ∗A.
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3. A is a set if and only if ∗A is a set.
4. ∗∅ = ∅.
5. A ⊆ B ⇔ ∗A ⊆ ∗B.
6. ∗(A ∪ B) = ∗A ∪ ∗B.
7. ∗(A ∩ B) = ∗A ∩ ∗B.
8. ∗(A\B) = ∗A\∗B.
9. ∗{a1, . . . , ak} = {a1, . . . , ak}.
10. ∗(a1, . . . , ak) = (a1, . . . , ak).
11. ∗(A1 × . . .× Ak) = ∗A1 × . . .× ∗Ak.
12. ∗{(a, a) | a ∈ A} = {(ξ, ξ) | ξ ∈ A}.
13. R is a k-ary relation if and only if ∗R is a k-ary relation.
14. ∗{a | ∃b R(a, b)} = {ξ | ∃ζ ∗R(ξ, ζ )}, that is, ∗domain(R) = domain(∗R).
15. ∗{b | ∃a R(a, b)} = {ζ | ∃ξ ∗R(ξ, ζ )}, that is, ∗range(R) = range(∗R).
16. ∗{(a, b) | R(b, a)} = {(ξ, ζ ) | ∗R(ζ, ξ)}.
17. ∗{(a, b, c) | S(c, a, b)} = {(ξ, ζ, η) | ∗S(η, ξ, ζ )}.
18. ∗{(a, b, c) | S(a, c, b)} = {(ξ, ζ, η) | ∗S(ξ, η, ζ )}.
19. f is a function if and only if ∗f is a function.
20. ∗domain(f ) = domain(∗f ).
21. ∗range(f ) = range(∗f ).
22. f : A→ B if and only if ∗f : ∗A→ ∗B.
23. ∗graph(f ) = graph(∗f ).
24. (∗f )(a) = f (a) for every a ∈ domain(f ).
25. If f : A → A is the identity, then ∗f : ∗A → ∗A is the identity, that is

∗(1A) = 1∗A.
26. ∗{f (a) | a ∈ A} = {∗f (ξ) | ξ ∈ ∗A}, that is ∗(f (A)) = ∗f (∗A).
27. ∗{a | f (a) ∈ B} = {ξ | ∗f (ξ) ∈ ∗B}, that is ∗(f−1(B)) = (∗f )−1(∗B).
28. ∗(f ◦ g) = ∗f ◦ ∗g.
29. ∗{(a, b) ∈ A× B | f (a) = g(b)} = {(ξ, ζ ) ∈ ∗A× ∗B | ∗f (ξ) = ∗g(ζ )}.
Proof All proofs of the above properties are straightforward applications of the
definitions and of the properties of ultrafilters. As an example, let us see here
property (13) in detail. We leave the others to the reader as exercises.

Let Λ = {a | ∃b R(a, b)} and let Γ = {ξ | ∃ζ ∗R(ξ, ζ )}. We have to show
that ∗Λ = Γ . If σ : I → Λ then for every i there exists an element τ (i) such
that R(σ(i), τ (i)). Then ∗R([σ ], [τ ]) and so [σ ] ∈ Γ . This shows the inclusion
∗Λ ⊆ Γ . Conversely, [σ ] ∈ Γ if and only if ∗R([σ ], [τ ]) for some I -sequence τ .
Since ([σ ], [τ ]) ∈ ∗R, the set Θ = {i | (σ (i), τ (i)) ∈ R} ∈ U , so also the superset
{i | σ(i) ∈ Λ} ⊇ Θ belongs to U . We conclude that [σ ] ∈ ∗Λ, as desired.

We disclose that the previous theorem essentially states that our defined star map
satisfies the transfer principle. Indeed, once the notion of elementary property will
be made fully rigorous, one can show that transfer is actually equivalent to the
validity of the properties listed above.

Remark 2.38 A “strong isomorphism” between two sets of hyperreals ∗R and �R
is defined as a bijection ψ : ∗R → �

R that it coherent with hyper-extensions, that
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is, (ξ1, . . . , ξk) ∈ ∗A⇔ (Ψ (ξ1), . . . , Ψ (ξk)) ∈ �A for every A ⊆ R
k and for every

ξ1, . . . , ξk ∈ ∗
R, and ∗f (ξ1, . . . , ξk) = η ⇔ �f (Ψ (ξ1), . . . , Ψ (ξk)) = Ψ (η) for

every f : Rk → R and for every ξ1, . . . , ξk, η ∈ ∗
R. Then one can show that two

ultrapower models RN/U and R
N/V are “strongly isomorphic” if and only if the

ultrafilters U ∼= V are isomorphic, that is, there exists a permutation σ : N → N

such that A ∈ U ⇔ σ(A) ∈ V for every A ⊆ N. We remark that there exist
plenty of non-isomorphic ultrafilters (indeed, one can show that there are 2c-many
distinct classes of isomorphic ultrafilters on N). This is to be contrasted with the
previous Remark 2.34, where the notion of isomorphism between sets of hyperreals
was limited to the structure of ordered field.

2.4.3 The Properness Condition in the Ultrapower Model

In the previous section, we observed that principal ultrafilters generate trivial
ultrapowers. Below, we precisely isolate the class of those ultrafilters that produce
models where the properness condition N �= ∗

N (as well as R �= ∗
R) holds.

Recall that an ultrafilter U is called countably incomplete if it is not closed under
countable intersections, that is, if there exists a countable family {In}n∈N ⊆ U such
that

⋂
n∈N In /∈ U . We remark that all non-principal ultrafilters on N or on R are

countably incomplete.9

Exercise 2.39 An ultrafilter U on I is countably incomplete if and only if there
exists a countable partition I =⋃

n∈N Jn where Jn /∈ U for every n.

Proposition 2.40 In the ultrapower model modulo the ultrafilter U on I , the
following properties are equivalent:

1. Properness condition: ∗N �= N;
2. U is countably incomplete.

Proof Assume first that ∗N �= N. Pick a sequence σ : I → N such that [σ ] /∈ N.
Then In = {i ∈ I | σ(i) �= n} ∈ U for every n ∈ N, but

⋂
n In = ∅ /∈ U .

Conversely, if U is countably incomplete, pick a countable partition I = ⋃
n Jn

where Jn /∈ U for every n, and pick the sequence σ : I → N where σ(i) = n

for i ∈ Jn. Then [σ ] ∈ ∗
N but [σ ] �= [cn] for every n, where cn represents the

I -sequence constantly equal to n.

In the sequel we will always assume that ultrapower models are constructed by
using ultrafilters U that are countably incomplete.

9The existence of non-principal ultrafilters that are countably complete is equivalent to the
existence of the so-called measurable cardinals, a kind of inaccessible cardinals studied in the
hierarchy of large cardinals, and whose existence cannot be proved by ZFC. In consequence, if
one sticks to the usual principles of mathematics, it is safe to assume that every non-principal
ultrafilter is countably incomplete.
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2.4.4 An Algebraic Presentation

The ultrapower model can be presented in an alternative, but equivalent, purely
algebraic fashion where only the notion of quotient field of a ring modulo a maximal
ideal is assumed. Here are the steps of the construction, whose details can be found
in [9].

• Consider Fun(I,R), the ring of real valued sequences where the sum and product
operations are defined pointwise.

• Let i be the ideal of those sequences that have finite support:

i = {σ ∈ Fun(I,R) | σ(i) = 0 for all but at most finitely many i}.

• Extend i to a maximal ideal m, and define the hyperreal numbers as the quotient
field:

∗
R = Fun(I,R)/m.

• For every subset A ⊆ R, its hyper-extension is defined by:

∗A = {σ +m | σ : I → A} ⊆ ∗
R.

So, e.g., the hyper-natural numbers ∗N are the cosets σ + m of I -sequences
σ : I → N of natural numbers.

• For every function f : A→ B where A,B ⊆ R, its hyper-extension ∗f : ∗A→
∗B is defined by setting for every σ : I → A:

∗f (σ + m) = (f ◦ σ)+m.

It can be directly verified that ∗R is an ordered field whose positive elements are
∗
R
+ = Fun(N,R+)/m, where R

+ is the set of positive reals. By identifying each
r ∈ R with the coset cr + m of the corresponding constant sequence, one obtains
that R is a proper subfield of ∗R.

Notice that, as in the case of the ultrapower model, the above definitions are
naturally extended to hyper-extensions of sets of real tuples and of functions
between sets of real tuples.

Remark 2.41 The algebraic approach presented here is basically equivalent to the
ultrapower model. Indeed, for every function f : I → R, let us denote by Z(f ) =
{i ∈ I | f (i) = 0} its zero-set. If m is a maximal ideal of the ring Fun(I,R), then
it is easily shown that the family Um = {Z(f ) | f ∈ m} is an ultrafilter on N.
Conversely, if U is an ultrafilter on N, then mU = {f | Z(f ) ∈ U } is a maximal
ideal of the ring Fun(I,R). The correspondence between U -equivalence classes [σ ]
and cosets σ + mU yields an isomorphism between the ultrapower RI /U and the
quotient Fun(I,R)/mU .
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2.5 Internal and External Objects

We are now ready to introduce a fundamental class of objects in nonstandard
analysis, namely the internal objects. In a way, they are similar to the measurable
sets in measure theory, because they are those objects that behave “nicely” in our
theory. Indeed, elementary properties of subsets or of functions transfer to the
corresponding internal objects (see below).

Recall that the star map does not preserve the properties of powersets and
function sets. For instance, we have noticed in the previous sections that there are
nonempty) sets in P(∗N) with no least element, and there are nonempty sets in
P(∗R) that are bounded but have no least upper bound (see Example 2.28 and
Remark 2.29). However, by the transfer principle, the family P(A) of all subsets
of a set A and ∗P(A) satisfy the same properties. Similarly, the family Fun(A,B)
of all functions f : A→ B and ∗Fun(A,B) satisfy the same properties. Let us now
elaborate on this, and start with two easy observations.

Proposition 2.42

1. Every element of the hyper-extension ∗P(A) is a subset of ∗A, that is, ∗P(A) ⊆
P(∗A);

2. Every element of the hyper-extension ∗Fun(A,B) is a function f : ∗A → ∗B,
that is, ∗Fun(A,B) ⊆ Fun(∗A, ∗B).

Proof

(1) Apply transfer to the elementary property: ∀x ∈P(A) ∀y ∈ x y ∈ A.
(2) Apply transfer to the elementary property: ∀x ∈ Fun(A,B) “x is a function”

and dom(x) = A and range(x) ⊆ B.

Consequently, it is natural to consider the elements in ∗P(A) as the “nice”
subsets of ∗A, and the elements in ∗Fun(A,B) as the “nice” functions from ∗A
to ∗B.

Definition 2.43 Let A,B be sets. The elements of ∗P(A) are called the internal
subsets of ∗A and the elements of ∗Fun(A,B) are called the internal functions from
∗A to ∗B. More generally, an internal object is any element B ∈ ∗Y that belongs to
some hyper-extension.

The following facts about functions are easily verified, and the proofs are left as
exercises.

Proposition 2.44

1. A function F is internal if and only if it belongs to the hyper-extension ∗F of
some set of functionsF ;

2. A functionF : A→ B is internal if and only if there exist setsX,Y such thatA ∈
∗P(X), B ∈ ∗P(Y ), and F ∈ ∗{f function | domain(f ) ⊆ X and range(f ) ⊆
Y }.
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In consequence, domain and range of an internal function are internal sets.
The first natural examples of internal objects are given by the hyperreal numbers

ξ ∈ ∗
R, and also by all ordered tuples of hyperreal numbers (ξ1, . . . , ξk) ∈ ∗

R
k .

Notice that the hyper-extension ∗X of a standard objectX is an internal object, since
∗X ∈ ∗{X} = {∗X}.
• Rule of thumb. Properties about subsets of a setA transfer to the internal subsets

of ∗A, and properties about functions f : A → B transfer to the internal
functions from ∗A to ∗B.

For instance, the well-ordering property of N is transferred to: “Every nonempty
internal subset of ∗N has a least element”, and the completeness property of R

transfers to: “Every nonempty internal subset of ∗R that is bounded above has a
least upper bound”.

The following is a useful closure property of the class of internal objects.

Theorem 2.45 (Internal Definition Principle) Let ϕ(x, y1, . . . , yk) be an elemen-
tary formula. If A is an internal set and B1, . . . , Bn are internal objects, then the
set {x ∈ A | ϕ(x,B1, . . . , Bn)} is also internal.
Proof By assumption, there exists a family of sets F and sets Yi such that A ∈ ∗F
and Bi ∈ ∗Yi for i = 1, . . . , n. Pick any family G ⊇ F that is closed under
subsets, that is, C′ ⊆ C ∈ G ⇒ C′ ∈ G . (For example, one can take G =⋃{P(C) | C ∈ F }.) Then the following is a true elementary property of the
objects G , Y1, . . . , Yn

10:

P(G , Y1, . . . , Yn) : ∀x ∈ G ∀y1 ∈ Y1 . . . ∀yn ∈ Yn ∃z ∈ G such that

“z = {t ∈ x | ϕ(t, y1, . . . , yn)}.”

By transfer, the property P(∗G , ∗Y1, . . . ,
∗Yn) is also true, and since A ∈ ∗G , Bi ∈∗Yi , we obtain the existence of an internal set C ∈ ∗G such that C = {t ∈ A |

ϕ(x,B1, . . . , Bn)}, as desired.

As direct applications of the above principle, one obtains the following properties
for the class of internal objects.

Proposition 2.46

1. The classI of internal sets is closed under unions, intersections, set-differences,
finite sets and tuples, Cartesian products, and under images and preimages of
internal functions.

10The subformula “z = {t ∈ x | ϕ(t, y1, . . . , yn)}” is elementary because it denotes the
conjunction of the two formulas:

“∀t ∈ z (t ∈ x and ϕ(t, y1, . . . , yn))” and “∀t ∈ x (ϕ(t, y1, . . . , yn)⇒ t ∈ z)”.
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2. If A ∈ I is an internal set, then the set of its internal subsets P(A) ∩I ∈ I
is itself internal.

3. If A,B are internal sets, then the set Fun(A,B) ∩I ∈ I of internal functions
between them is itself internal.

Proof

(1) If A and B are internal sets, say A ∈ ∗P(X) and B ∈ ∗P(Y ), then A ∪ B =
{t ∈ ∗X ∪ ∗Y | t ∈ A or t ∈ B} is internal by the Internal Definition Principle.
The other properties are easily proved in the same fashion.

(2) Let X be such that A ∈ ∗P(X). It is easily verified that P(A) ∩ I = {B ∈
∗P(X) | B ⊆ A}, and so the Internal Definition Principle applies.

(3) Pick X,Y such that A ∈ ∗P(X) and B ∈ ∗P(Y ). By Proposition 2.44, we
know that

Fun(A,B) ∩I = {F ∈ ∗F | domain(F ) = A and range(F ) ⊆ B}

where F = {f function | domain(f ) ⊆ X and range(f ) ⊆ Y }, and so
Fun(A,B) ∩I is internal by the Internal Definition Principle.

Definition 2.47 An object that is not internal is called external.

Although they might not satisfy the same first-order properties as standard sets,
external sets are useful in a number of application of nonstandard methods.

Example 2.48

1. The set of infinitesimal hyperreal numbers is external. Indeed, it is a bounded
subset of ∗R without least upper bound.

2. The set of infinite hypernatural numbers is external. Indeed, it is a nonempty
subset of ∗N without a least element.

3. The set N of finite hypernatural numbers is external, as its complement ∗N\N
inside ∗N is external.

The above examples shows that ∗P(N) �=P(∗N) and ∗P(R) �=P(∗R). More
generally, we have

Proposition 2.49

1. For every infinite set A, the set σA = {∗a | a ∈ A} is external.
2. Every infinite hyperextension ∗A has external subsets, that is, the inclusion

∗P(A) ⊂P(∗A) is proper.
3. If the set A is infinite and B contains at least two elements, then the inclusion

∗Fun(A,B) ⊂ Fun(∗A, ∗B) is proper.

Proof

(1) Pick a surjective map ψ : A → N. Then also the hyper-extension ∗ψ : ∗A →
∗
N is surjective. If by contradiction σA was internal, its image under ∗ψ would
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also be, and this is not possible, since

∗ψ
(
σA
) = {∗ψ(∗a) | a ∈ A} = {∗(ψ(a)) | a ∈ A} = {ψ(a) | a ∈ A} = N.

(2) Notice first that A is infinite, because if A = {a1, . . . , an} were finite, then also
∗A = {∗a1, . . . ,

∗an} would be finite. Recall that ∗P(A) is the set of all internal
subsets of ∗A. Since σA ⊂ ∗A is external by (1), σA ∈P(∗A)\∗P(A).

(3) Recall that ∗Fun(A,B) is the set of all internal functions f : ∗A → ∗B. Pick
an external subset X ⊂ A, pick b1 �= b2 in B, and let f : ∗A → ∗B be the
function where f (a) = ∗b1 if a ∈ X and f (a) = ∗b2 if a /∈ X. Then f is
external, as the preimage f−1(∗{b1}) = X is external.

We warn the reader that becoming familiar with the distinction between internal
and external objects is probably the hardest part of learning nonstandard analysis.

2.5.1 Internal Objects in the Ultrapower Model

The ultrapower model ∗R = R
I /U that we introduced in Sect. 2.4 can be naturally

extended so as to include also hyper-extensions of families of sets of real tuples, and
of families of functions.

Let us start by observing that every I -sequence T = 〈Ti | i ∈ I 〉 of sets of real
numbers Ti ⊆ R determines a set T̂ ⊆ ∗

R of hyperreal numbers in a natural way,
by letting

T̂ = {[σ ] ∈ ∗R ∣
∣ {i ∈ I | σ(i) ∈ Ti} ∈ U

}
.

Definition 2.50 If F ⊆ P(R), then its hyper-extension ∗F ⊆ ∗P(R) is defined
as

∗F = {
T̂
∣
∣ T : I → F

}
.

We remark that the same definition above also applies to families F ⊆ P(Rk)
of sets of k-tuples, where for I -sequences T : I → P(Rk) one defines T̂ ={
([σ1], . . . , [σk]) ∈ ∗Rk

∣
∣ {i ∈ I | (σ1(i), . . . , σk(i)) ∈ T (i)} ∈ U

}
.

According to Definition 2.43, A ⊆ ∗
R is internal if and only if A ∈ ∗P(R).

So, in the ultrapower model, A ⊆ ∗
R is internal if and only if A = T̂ for some

I -sequence T : I →P(R).
Analogously as above, every I -sequence F = 〈Fi | i ∈ I 〉 of real functions

Fi : R → R determines a function F̂ : ∗R → ∗
R on the hyperreal numbers by

letting for every σ : I → R:

F̂ ([σ ]) = [〈Fi(σ (i)) | i ∈ I 〉].
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The internal functions from ∗
R to ∗R in the ultrapower model are precisely those

that are determined by some I -sequence F : I → Fun(R,R).

Definition 2.51 If G ⊆ Fun(R,R), then its hyper-extension ∗G ⊆ ∗Fun(R,R) is
defined as

∗G = {
F̂
∣
∣ F : I → G

}
.

If F = 〈Fi | i ∈ I 〉 is an I -sequence of functions Fi : Rk → R of several
variables, one extends the above definition by letting F̂ : ∗Rk → ∗

R be the function
where for every σ1, . . . , σk : I → R:

F̂ ([σ1], . . . , [σk]) = [〈Fi(σ1(i), . . . , σk(i)) | i ∈ I 〉].

Indeed, also in this case, if G ⊆ Fun(Rk,R) then one sets ∗G = {
F̂
∣
∣ F : I → G

}
.

2.6 Hyperfinite Sets

In this section we introduce a fundamental tool in nonstandard analysis, namely
the class of hyperfinite sets. Although they may contain infinitely many elements,
hyperfinite sets satisfy the same “elementary properties” as finite sets. For this
reason they are useful in applications as a convenient bridge between finitary
statements and infinitary notions.

Definition 2.52 A hyperfinite set A is an element of the hyper-extension ∗F of a
family F of finite sets.

In particular, hyperfinite sets are internal objects.

Remark 2.53 In the ultrapower model, the hyperfinite subsets of ∗R are defined
according to Definition 2.50. Precisely, A ⊆ ∗

R is hyperfinite if and only if there
exists a sequence 〈Ti | i ∈ I 〉 of finite sets Ti ⊂ R such that A = T̂ , that is, for
every σ : I → R, [σ ] ∈ A⇔ {i ∈ I | σ(i) ∈ Ti} ∈ U .

Let us start with the simplest properties of hyperfinite sets.

Proposition 2.54

1. A subset A ⊆ ∗X is hyperfinite if and only if A ∈ ∗Fin(X), where Fin(X) =
{A ⊆ X | A is finite}.

2. Every finite set of internal objects is hyperfinite.
3. A set of the form ∗X for some standard set X is hyperfinite if and only if X is

finite.
4. If f : A → B is an internal function, and Ω ⊆ A is a hyperfinite set, then its

image f (Ω) = {∗f (ξ) | ξ ∈ Ω} is hyperfinite as well. In particular, internal
subsets of hyperfinite sets are hyperfinite.
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Proof

(1) If A is a hyperfinite subset of ∗X, then A is internal, and hence A ∈ ∗P(X).
So, if F is a family of finite sets with A ∈ ∗F , then A ∈ ∗P(X) ∩ ∗F =
∗(P(X) ∩F ) ⊆ ∗Fin(X). The converse implication is trivial.

(2) Let A = {a1, . . . , ak}, and pick Xi such that ai ∈ ∗Xi . If X = ⋃n
i=1Xi ,

then A ∈ ∗Fin(X), as it is easily shown by applying transfer to the elementary
property: “∀x1, . . . , xk ∈ X {x1, . . . , xk} ∈ Fin(X)”.

(3) This is a direct consequence of transfer and the definition of hyperfinite set.
(4) Pick X and Y with A ∈ ∗P(X) and B ∈ ∗P(Y ). Then apply transfer to

the property: “For every C ∈ P(X), for every D ∈ P(Y ), for every f ∈
Fun(C,D) and for every F ∈ Fin(X) with F ⊆ C, the image f (F ) is in
Fin(Y )”.

Example 2.55 For every pair N < M of (possibly infinite) hypernatural numbers,
the interval

[N,M]∗N = {α ∈ ∗N | N ≤ α ≤M}

is hyperfinite. Indeed, applying transfer to the property: “For every x, y ∈ N with
x < y, the set [x, y]N = {a ∈ N | x ≤ a ≤ y} ∈ Fin(N)”, one obtains that
[N,M]∗N ∈ ∗Fin(N).11 More generally, it follows from transfer that every bounded
internal set of hyperintegers is hyperfinite.

Whenever confusion is unlikely, we will omit the subscript, and write directly
[N,M] to denote the interval of hypernatural numbers determined by N,M ∈ ∗N.

Definition 2.56 A hyperfinite sequence is an internal function whose domain is a
hyperfinite set A.

Typical examples of hyperfinite sequences are defined on initial segments
[1, N] ⊂ ∗

N of the hypernatural numbers. In this case we use notation 〈ξν | ν =
1, . . . , N〉.

By transfer from the property: “For every nonempty finite set A there exists a
unique n ∈ N such that A is in bijection with the segment {1, . . . , n},” one obtains
that there is a well-posed definition of cardinality for hyperfinite sets.

Definition 2.57 The internal cardinality |A|h of a nonempty hyperfinite set A is
the unique hypernatural number α such that there exists an internal bijection f :
[1, α] → A.

Proposition 2.58 The internal cardinality satisfies the following properties:

1. If the hyperfinite set A is finite, then |A|h = |A|.
2. For any ν ∈ ∗

N, we have |[1, ν]|h = ν. More generally, we have |[α, β]|h =
β − α + 1.

11More formally, one transfers the formula: “∀x, y ∈ N [(x < y ⇒ (∃A ∈ Fin(N) ∀z (z ∈ A ↔
x ≤ z ≤ y))]”.
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Proof

(1) If A is a finite internal set of cardinality n, then every bijection f : [1, n] → A

is internal by Proposition 2.44.
(2) The map f : [1, β − α + 1] → [α, β] where f (i) = α + i − 1 is an internal

bijection.

When confusion is unlikely, we will drop the subscript and directly write |A| to
also denote the internal cardinality of a hyperfinite set A.

The following is a typical example of a property that hyperfinite sets inherit from
finite sets. It is obtained by a straightforward application of transfer, and its proof is
left as an exercise.

Proposition 2.59 Every nonempty hyperfinite subset of ∗R has a least element and
a greatest element.

A relevant example of a hyperfinite set which is useful in applications is the
following.

Definition 2.60 Fix an infinite N ∈ ∗N. The corresponding hyperfinite grid HN ⊂∗
Q is the hyperfinite set that determines a partition of the interval [1, N] ⊂ ∗

R of
hyperreals into N-many intervals of equal infinitesimal length 1/N . Precisely:

HN =
{
[1+ i − 1

N
, 1+ (N − 1)

i

N
]
∣
∣
∣ i = 1, 2, . . . , N

}
.

We close this section with a couple of result about the (infinite) cardinalities of
hyperfinite sets.

Proposition 2.61 If α ∈ ∗N is infinite, then the corresponding interval [1, α] ⊂ ∗
N

has cardinality at least the cardinality of the continuum.

Proof For every real number r ∈ (0, 1), let

ψ(r) = min{β ∈ [1, α] | r < β/α}.

Notice that the above definition is well-posed, because {β ∈ ∗
N | r < β/α} is an

internal bounded set of hypernatural numbers, and hence a hyperfinite set. The map
ψ : (0, 1)R → [1, α]∗N is 1-1. Indeed, ψ(r) = ψ(s)⇒ |r − s| < 1/α⇒ r ∼ s ⇒
r = s (recall that two real numbers that are infinitely close are necessarily equal).
Thus, we obtain the desired inequality c = |(0, 1)R| ≤ |[1, α]∗N|.
Corollary 2.62 If A is internal, then either A is finite or A has at least the
cardinality of the continuum. In consequence, every countably infinite set is
external.

Proof It is easily seen by transfer that an internal set A is either hyperfinite, and
hence there is an internal bijection with an interval [1, α] ⊂ ∗

N, or there exists an
internal 1-1 function f : ∗N→ A. In the first case, if α ∈ N is finite, then trivially
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A is finite. Otherwise |A| = [1, α] ≥ c by the previous proposition. In the second
case, if α is any infinite hypernatural number, then |A| ≥ |∗N| ≥ |[1, α]| ≥ c.

2.6.1 Hyperfinite Sums

Similarly to finite sums of real numbers, one can consider hyperfinite sums of
hyperfinite sets of hyperreal numbers.

Definition 2.63 If f : A→ R then for every nonempty hyperfinite subsetΩ ⊂ ∗A,
one defines the corresponding hyperfinite sum by setting:

∑

ξ∈Ω
∗f (ξ) := ∗Sf (Ω),

where Sf : Fin(A)\{∅} → R is the function {r1, . . . , rk} �→ f (r1)+ . . .+ f (rk).
As a particular case, if a = 〈an | n ∈ N〉 is a sequence of real numbers and

α ∈ ∗
N is a hypernatural number, then the corresponding hyperfinitely long sum is

defined as

α∑

i=1

ai = ∗Sa(α)

where Sa : N→ R is the function n �→ a1 + . . .+ an.
Remark 2.64 More generally, the above definition can be extended to hyperfinite
sums

∑
ξ∈Ω F(ξ) where F : ∗A → ∗

R is an internal function, and Ω ⊆ ∗A
is a nonempty hyperfinite subset. Precisely, in this case one sets

∑
ξ∈Ω F(ξ) =∗S (F,Ω), where S : Fun(A,R) × (Fin(A)\{∅})→ R is the function (f,G) �→∑

x∈G f (x).

Let us mention in passing that hyperfinite sums can be used to directly define
integrals. Indeed, if N ∈ ∗

N is any infinite hypernatural number and H is the
corresponding hyperfinite grid (see Definition 2.60), then for every f : R → R

and for every A ⊆ R, one defines the grid integral by putting:

∫

A

f (x)dH(x) = st

⎛

⎝ 1

N

∑

ξ∈H∩∗A
∗f (ξ)

⎞

⎠ .

Notice that the above definition applies to every real function f and to every subset
A. Moreover, it can be shown that if f : [a, b] → R is a Riemann integrable
function defined on an interval, then the grid integral coincides with the usual
Riemann integral.
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2.7 Overflow and Underflow Principles

Proposition 2.65 (Overflow Principles)

1. A ⊆ N is infinite if and only if its hyper-extension ∗A contains an infinite number.
2. If B ⊆ ∗

N is internal and B ∩ N is infinite then B contains an infinite number.
3. If B ⊆ ∗

N is internal and N ⊆ B then [1, α] ⊆ B for some infinite α ∈ ∗N.
Proof Item (1) follows from Propositions 2.22 and 2.27. For Item (2), suppose that
B does not contain an infinite number. Then B is bounded above in ∗N. By transfer,
B has a maximum, which is necessarily an element of N, contradicting that B ∩ N

is infinite. For Item (3), let C := {α ∈ ∗
N : [1, α] ⊆ B}. Then C is internal and

N ⊆ C by assumption. By Item (2) applied to C, there is α ∈ C that is infinite. This
α is as desired.

Proposition 2.66 (Underflow Principles)

1. If B ⊆ ∗
N is internal and B contains arbitrarily small infinite numbers, then B

contains a finite number.
2. If B ⊆ ∗

N is internal and [α,+∞) ⊆ B for every infinite α ∈ ∗
N then

[n,+∞) ⊆ B for some finite n ∈ N.

Proof For Item (1), suppose that B does not contain a finite number. Then the
minimum of B is necessarily infinite, contradicting the assumption that B contains
arbitrarily small infinite numbers. Item (2) follows by applying Item (1) to the
internal set C := {α ∈ ∗N : [α,+∞) ⊆ B}.

In practice, one often says they are using overflow when they are using any of the
items in Proposition 2.65 and likewise for underflow. Below we will present a use
of overflow in graph theory.

2.7.1 An Application to Graph Theory

Recall that a graph is a set V (the set of vertices) endowed with an anti-reflexive and
symmetric binary relation E (the set of edges). Notice that ifG = (V ,E) is a graph
then also its hyper-extension ∗G = (∗V, ∗E) is a graph. By assuming as usual that
∗v = v for all v ∈ V , one has that G is a sub-graph of ∗G. A graph G = (V ,E)
is locally finite if for every vertex v ∈ V , its set of neighbors NG(v) = {u ∈ V |
{u, v} ∈ E} is finite. One has the following simple nonstandard characterization.

Proposition 2.67 A graphG = (V ,E) is locally finite if and only if ∗(NG(v)) ⊆ V
for every v ∈ V .
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Proof If G is locally finite then for every v ∈ V the set of its neighbors NG(v) =
{u1, . . . , un} is finite, and so ∗NG(v) = {∗u1, . . . ,

∗un} = {u1, . . . , un} ⊆ V .
Conversely, if G is not locally finite, then there exists a vertex v ∈ V such that
NG(v) is infinite, and we can pick an element τ ∈ ∗(NG(v))\NG(v). Now, τ /∈ V ,
as otherwise τ ∈ ∗(NG(v)) ∩ V = NG(v), a contradiction.

Recall that a finite path in a graph G = (V ,E) is a finite sequence 〈vi | i =
1, . . . , n〉 of pairwise distinct vertexes such that {vi, vi+1} ∈ E for every i < n. A
graph is connected if for every pair of distinct vertices u, u′ there exists a finite path
〈vi | i = 1, . . . , n〉 where v1 = u and vn = u′. A hyperfinite path ∗G is a hyperfinite
sequence 〈vi | i = 1, . . . , N〉 forN ∈ ∗N of pairwise distinct vertexes vi ∈ ∗V such
that {vi, vi+1} ∈ ∗E for every i < n. An infinite path is a sequence 〈vi | i ∈ N〉 of
pairwise distinct vertexes such that {vi, vi+1} ∈ E for every i ∈ N.

Theorem 2.68 (König’s Lemma - I) Every infinite connected graph that is locally
finite contains an infinite path.

Proof Given a locally finite connected graph G = (V ,E) where V is infinite, pick
u ∈ V and τ ∈ ∗V \V . Since G is connected, by transfer there exists a hyperfinite
sequence 〈vi | i = 1, . . . , μ〉 for some μ ∈ ∗

N where v1 = u and {vi, vi+1} ∈ ∗E
for every i < μ. By local finiteness, ∗(NG(v1)) ⊆ V and so v2 ∈ V and {v1, v2} ∈
E. Then, by induction, it is easily verified that the restriction 〈vi | i ∈ N〉 of the
above sequence to the finite indexes is an infinite path in G.

A simple but relevant application of overflow proves the following equivalent
formulation in terms of trees. A graph is a tree if between any pair of distinct vertices
u, u′ there exists a unique finite path 〈vi | i = 1, . . . , n〉 where v1 = u and vn = u′.
A rooted tree is a tree with a distinguished vertex, called the root. The vertices of
a tree are also called nodes. The height of a node (other than the root) in a rooted
tree is the length of the unique finite path that connects is to the root. A branch of a
rooted tree is an infinite path 〈vi | i ∈ N such that v1 is equal to the root.

Theorem 2.69 (König’s Lemma - II) Every infinite, finitely branching tree has an
infinite path.

Proof Let Tn denote the nodes of the tree of height n. Since T is finitely branching,
each Tn is finite. Since T is infinite, each Tn �= ∅. By overflow, there is N > N such
that TN �= ∅. Fix x ∈ TN . Then

{y ∈ T | either y is the root of T or y is connected to x by a hyperfinite path

that does not pass from the root of T }

is an infinite branch in T .

Exercise 2.70 Prove the last assertion in the proof of Theorem 2.69.
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2.8 The Saturation Principle

The transfer principle is all that one needs to develop the machinery of nonstandard
analysis, but for advanced applications another property is also necessary, namely:

Definition 2.71 Countable Saturation Principle: Suppose {Bn}n∈N ⊆ ∗A is
a countable family of internal sets with the finite intersection property. Then⋂
n∈N Bn �= ∅.

Exercise 2.72 Assume countable saturation. Then every sequence 〈Bn | n ∈ N〉 of
internal elements can be extended to an internal sequence 〈Bn | n ∈ ∗

N〉, that is,
there exists an internal function σ with domain ∗

N and such that σ(n) = Bn for
every n ∈ N.

Countable saturation will be instrumental in the definition of Loeb measures. In
several contexts, stronger saturation principles are assumed where also families of
larger size are allowed. Precisely, if κ is a given uncountable cardinal, then one
considers the following.

Definition 2.73 κ-saturation property: If B is a family of internal subsets of ∗A
of cardinality less than κ , and if B has the finite intersection property, then

⋂
B∈B

B �= ∅.

Notice that, in this terminology, countable saturation is ℵ1-saturation.
In addition to countable saturation, in the applications presented in this book, we

will only use the following weakened version of κ-saturation, where only families
of hyper-extensions are considered.

Definition 2.74 κ-enlarging property: Suppose F ⊆P(A) has cardinality |F | <
κ . If F has the finite intersection property, then

⋂
F∈F ∗F �= ∅.12

As a first important application of the enlarging property, one obtains that sets
are included in a hyperfinite subset of their hyper-extension.

Proposition 2.75 If the κ-enlarging property holds, then for every set X of
cardinality |X| < κ there exists a hyperfinite subset H ⊆ ∗X such that X ⊆ H .

Proof For each a ∈ X, let Xa := {Y ⊆ X : Y is finite and a ∈ Y }. One then
applies the κ-enlarging property to the family F := {Xa : a ∈ X} to obtain
H ∈⋂a∈X ∗Xa . Such H is as desired.

The saturation property plays a key role in the application of nonstandard
methods to topology, as the next example shows.

12We remark that the enlarging property is strictly weaker than saturation, in the sense that for
every infinite κ there are models of nonstandard analysis where the κ-enlarging property holds but
κ-saturation fails.



40 2 Nonstandard Analysis

Example 2.76 Let (X, τ) be a topological space with character < κ , that is, such
that each point x ∈ X has a base of neighborhoods Nx of cardinality less than
κ . If we assume the κ-enlarging property, the intersection μ(x) = ⋂

U∈Nx
∗U is

nonempty. In the literature, μ(x) is called the monad of x. Monads are the basic
ingredient in applying nonstandard analysis to topology, starting with the following
characterizations (see, e.g., [91, Ch.III]):

• X is Hausdorff if and only if distinct points of x have disjoint monads;
• A ⊆ X is open if and only if for every x ∈ A, μ(a) ⊆ ∗A;
• C ⊆ X is closed if and only if for every x /∈ C, μ(x) ∩ ∗C = ∅;
• K ⊆ X is compact if and only if ∗K ⊆⋃

x∈K μ(x).

2.8.1 Saturation in the Ultrapower Model

We now show that the ultrapower model ∗R = R
I /U introduced in Sect. 2.4

provides an example of nonstandard map that satisfies saturation. Let us start with a
direct combinatorial proof in the case of ultrapowers modulo ultrafilters on N.

Theorem 2.77 For every non-principal ultrafilter U on N, the corresponding
ultrapower model satisfies countable saturation.

Proof Let {Bn} be a countable family of internal subsets of ∗R with the finite
intersection property. For every n, pick a function Tn : N→P(R)\∅ such that

Bn = T̂n =
{[σ ] ∈ ∗R | {i ∈ N | σ(i) ∈ Tn(i)} ∈ U

}
.

For any fixed n, pick an element τ (n) ∈ T1(n) ∩ · · · ∩ Tn(n) if that intersection
is nonempty. Otherwise, pick an element τ (n) ∈ T1(n) ∩ · · · ∩ Tn−1(n) if that
intersection is nonempty, and so forth until τ (n) is defined. By the definition of τ ,
one has the following property:

• If T1(n) ∩ · · · ∩ Tk(n) �= ∅ and n ≥ k then τ (n) ∈ T1(n) ∩ . . . ∩ Tk(n).
Now let k be fixed. By the finite intersection property, T̂1 ∩ . . . ∩ T̂k �= ∅, so there
exists σ : N → R such that Λj = {i ∈ N | σ(i) ∈ Tj (i)} ∈ U for every
j = 1, . . . , k. In particular, the set of indexes Γ (k) = {i ∈ N | T1(i)∩ . . .∩Tk(i) �=
∅} ∈ U because it is a superset of Λ1 ∩ . . . ∩ Λk ∈ U . But then the set {i ∈ N |
τ (i) ∈ T1(i)∩ . . .∩ Tk(i)} ∈ U because it is a superset of {i ∈ Γ (k) | i ≥ k} ∈ U .
We conclude that [τ ] ∈ T̂1∩. . .∩T̂k . As this holds for every k, the proof is completed.

The above result can be extended to all ultrapower models where the ultrafilter
U on I is countably incomplete (recall that every non-principal ultrafilter on N is
countably incomplete).
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Theorem 2.78 For every infinite cardinal κ there exist ultrafiltersU on the set I =
Fin(κ) of finite parts of κ such that the corresponding ultrapower model satisfies the
κ+-enlarging property.

Proof For every x ∈ κ , let x̂ = {a ∈ I | x ∈ a}. Then trivially the family X =
{̂x | x ∈ κ} has the finite intersection property. We claim that every ultrafilter U
that extends X has the desired property.

Suppose that the family F = {Bx | x ∈ κ} ⊆ P(A) satisfies the finite
intersection property. Then we can pick a sequence σ : I → A such that
σ(a) ∈⋂x∈a Ax for every a ∈ I . The proof is completed by noticing that [σ ] ∈ ∗Ax
for every x ∈ κ , since {a ∈ I | σ(a) ∈ Ax} ⊇ x̂ ∈ U .

A stronger result holds, but we will not prove it here because it takes a rather
technical proof, and we do not need that result in the applications presented in this
book. The proof can be found in [25, §6.1].

Theorem 2.79 For every infinite cardinal κ there exist ultrafilters U on κ (named
κ+-good ultrafilters) such that the corresponding ultrapower models satisfy the κ+-
saturation property.

2.9 Hyperfinite Approximation

As established in Proposition 2.75, in sufficiently saturated structures, hyperfinite
sets can be conveniently used as “approximations” of infinite structure. The fact
that they behave as finite sets makes them particularly useful objects in applications
of nonstandard analysis. In this section we will see a few examples to illustrate this.
We assume that the nonstandard extension satisfies the κ-enlarging property, where
κ is larger than the cardinality of the objects under consideration.

Theorem 2.80 Every infinite set can be linearly ordered.

Proof LetX be an infinite set, and let κ be the cardinality ofX. We can assume that
the nonstandard map satisfies the κ+-enlargement property. By Proposition 2.75
there exists a hyperfiniteH ⊆ ∗X such that {∗x | x ∈ X} ⊆ H . By transfer applied
to the corresponding property of finite sets, H can be linearly ordered, whence so
can {∗x | x ∈ X}, and hence X.

The next theorem is a generalization of the previous one:

Theorem 2.81 Every partial order on a set can be extended to a linear order.

Proof We leave it as an easy exercise by induction to show that every partial order
on a finite set can be extended to a linear order. Thus, we may precede as in the
previous theorem. This time, H is endowed with the partial order it inherits from
∗X, whence, by transfer, this partial order can be extended to a linear order. This
linear order restricted to X extends the original partial order on X.
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Recall that a k-coloring of a graph G for some k ∈ N is a function that assigns
to each vertex of G and element of {1, . . . , k} (its color) in such a way that vertices
connected by an edge are given different colors. A graph is k-colorable if and only
if it admits a k-coloring.

Theorem 2.82 A graph is k-colorable if and only if every finite subgraph is k-
colorable.

Proof Suppose that G is a graph such that every finite subgraph is k-colorable.
Embed G into a hyperfinite subgraph H of ∗G. By transfer, H can be k-colored.
The restriction of this k-coloring to G is a k-coloring of G.

The next result plays an important role in the application of ultrafilter and
nonstandard methods. Let S be a set. Say that f : S → S is fixed-point free if
f (x) �= x for all x ∈ S.

Theorem 2.83 Suppose that f : S → S is fixed-point free. Then there is a function
c : S → {1, 2, 3} (that is, a 3-coloring of S) such that c(f (x)) �= c(x) for all x ∈ S.
Proof In order to use hyperfinite approximation, we first need a finitary version of
the theorem:

Claim For every finite subset F ⊆ N, there is a 3-coloring cF of F such that
c(f (n)) �= c(n) whenever n, f (n) ∈ F .

Proof of Claim We prove the claim by induction on the cardinality of F , the case
|F | = 1 being trivial since F never contains both n and f (n). Now suppose that
|F | > 1. Fix m ∈ F such that |f−1(m) ∩ F | ≤ 1. Such an m clearly exists by the
Pigeonhole principle. Let G := F\{m}. By the induction assumption, there is a 3-
coloring cG ofG such that c(f (n)) �= c(n) whenever n, f (n) ∈ G. One extends cG
to a 3-coloring cF of F by choosing cF (m) different from cG(f (m)) (if f (m) ∈ G)
and different from cG(k) if k ∈ G is such that f (k) = m (if there is such k). Since
we have three colors to choose from, this is clearly possible. The coloring cF is as
desired.

Now that the claim has been proven, letH ⊆ ∗S be hyperfinite such that S ⊆ H .
By transfer, there is an internal 3-coloring cH of H such that c(f (x)) �= c(x)

whenever x, f (x) ∈ H . Since x ∈ S implies n, f (n) ∈ H , we see that the restriction
of cH to S is a 3-coloring of S as desired.

Notes and References

Nonstandard analysis was introduced by Robinson in the 1960s [112]. Robinson’s
original approach was based on model theory. Shortly after, Luxemburg proposed
an alternative approach based on the ultrapower construction [99], which helped to
further popularize nonstandard methods. Indeed, the ultrapower construction is still
one of the most common ways to present nonstandard methods. This is the approach
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followed in [53], which is an accessible introduction to nonstandard analysis,
including a rigorous formulation and a detailed proof of the transfer principle. The
foundations of nonstandard analysis are also presented in detail in §4.4 of [25]. A
survey of several different possible approaches to nonstandard methods is given in
[11]. A nice introduction to nonstandard methods for number theorists, including
many examples, is presented in [80] (see also [76]). Finally, a full development of
nonstandard analysis can be found in several monographs in the existing literature;
see e.g. Keisler’s classical book [83], or the comprehensive collection of surveys
in [3].



Chapter 3
Hyperfinite Generators of Ultrafilters

In this chapter, we will show that there is a very tight connection between ultrafilters
(introduced in Chap. 1) and nonstandard methods (introduced in Chap. 2). Indeed,
any element (or “point”) in a nonstandard extension gives rise to an ultrafilter
and, conversely, any ultrafilter can be obtained in this way. Such an observation
makes precise the assertion that ultrafilter proofs can be seen and formulated as
nonstandard arguments. The converse is often true but not always, as two different
points in a nonstandard extension can give rise to the same ultrafilter.

Throughout this chapter, we fix an infinite set S and we assume that ∗s = s for
every s ∈ S, so that S ⊆ ∗S.

3.1 Hyperfinite Generators

An important observation is that elements of ∗S generate ultrafilters on S:

Exercise 3.1 Suppose that α ∈ ∗S. Set Uα := {A ⊆ S : α ∈ ∗A}.
1. Uα is an ultrafilter on S.
2. Uα is principal if and only if α ∈ S.

We call Uα the ultrafilter on S generated by α. Note that in the case that α ∈ S,
there is no conflict between the notation Uα in this chapter and the notation Uα from
Chap. 1.

Exercise 3.2 For k ∈ N and α ∈ ∗N, show that kUα = Ukα .1

1Recall from Definition 1.18 that A ∈ kU ⇔ A/k = {n ∈ N | nk ∈ A} ∈ U .
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Recall from Exercise 1.12 that, for every function f : S → T and for every
ultrafilter U on S, the image ultrafilter f (U ) is the ultrafilter on T defined by
setting

f (U ) = {B ⊆ T | f−1(B) ∈ U }.

Exercise 3.3 Show that f (Uα) = Uf (α).

Since there are at most 22|S| ultrafilters on S, if the nonstandard extension is κ-
saturated for κ > 22|S| , then |∗S| > 22|S| and we see that there must exist distinct
α, β ∈ ∗S\S such that Uα = Uβ (see Proposition 3.6 and Exercise 3.7 below). This
leads to the following notion, which is of central importance in Part II of this book.

Definition 3.4 Given α, β ∈ ∗S, we say that α and β are u-equivalent, written
α ∼ β, if Uα = Uβ .

One can reformulate Definition 3.4 as follows. A k-coloring of S for some k ∈ N

is a function that assigns to each element of S and element of {1, . . . , k} (its color).
A finite coloring of S is a k-coloring for some k ∈ N. Each coloring c of S induces a
coloring ∗c of ∗S, which we will still denote by c. Then we have that two elements
α, β of ∗S are u-equivalent if and only if c(α) = c(β) for every finite coloring c
of S.

The following exercise establishes some useful properties of the notion of u-
equivalence.

Exercise 3.5

1. If α, β ∈ ∗S, then α ∼ β if and only if α = β.
2. Suppose that f : S → S and α ∼ β. Then f (α) ∼ f (β).
3. Suppose that f : S → S and α is such that f (α) ∼ α. Then f (α) = α. (Hint:

prove the contrapositive using the coloring from Theorem 2.83.)

We have seen that elements of ∗S generate ultrafilters on S. Under sufficient
saturation, the converse holds:

Proposition 3.6 Assume that the nonstandard universe has the (2|S|)+-enlarging
property. Then for every U ∈ βS, there is α ∈ ∗S such that U = Uα .

Proof Fix U ∈ βS. It is clear that U is a family of subsets of S of cardinality
|U | ≤ 2|S| with the finite intersection property, whence, by the (2|S|)+-enlarging
property, there is α ∈⋂A∈U ∗A. Observe now that U = Uα .

Exercise 3.7 Assume the (2|S|)+-enlarging property. Show that for every non-
principal U ∈ βS\S there exist |∗S|-many α ∈ ∗S such that U = Uα .

By the previous proposition, the map α �→ Uα : ∗S → βS is surjective.
This suggests that we define a topology on ∗S, called the u-topology on ∗S, by
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declaring the sets ∗A, for A ⊆ S, to be the basic open sets.2 This topology, while
(quasi)compact by the enlarging property, is not Hausdorff. In fact, α, β ∈ ∗S are
not separated in the u-topology precisely when α ∼ β. Passing to the separation, we
get a compact Hausdorff space ∗S/∼ and the surjection ∗S → βS defined above
descends to a homeomorphism between the quotient space ∗S/∼ and βS. So, while
βS is the “largest” Hausdorff compactification of the discrete space S, a (sufficiently
saturated) hyper-extension of S is an even larger space, which is still compact (but
non-Hausdorff) and has βS as a quotient.

3.2 The Case of a Semigroup Again

Let us now suppose, once again, that S is the underlying set of a semigroup (S, ·).
One might guess that, for α, β ∈ ∗S, we have that the equation Uα·β = Uα � Uβ
holds. Unfortunately, this is not the case, even in the case when S is the additive
semigroup of positive integers (N,+):
Example 3.8 Fix any α ∈ ∗N\N. We show that there is β ∈ ∗N such that Uα⊕Uβ �=
Uβ ⊕ Uα . For this β, we must have that either Uα ⊕Uβ �= Uα+β or Uβ ⊕ Uα �=
Uβ+α .

LetA =⋃
n even[n2, (n+1)2). Take ν ∈ ∗N such that ν2 ≤ α < (ν+1)2. Without

loss of generality, we may assume that ν is even. (The argument when ν is odd is
exactly the same.) First suppose that (ν+1)2−α is finite. In this case, we let β := ν2.
Note that {n ∈ N : (A−n) ∈ Uα} = {n ∈ N : n+α ∈ ∗A} is finite by assumption,
whence not in Uβ . Consequently,A /∈ Uβ⊕Uα . However, since α−β is necessarily
infinite, we have {n ∈ N : (A− n) ∈ Uβ} = {n ∈ N : n+ β ∈ ∗A} = N, whence
a member of Uα and thus A ∈ Uα ⊕ Uβ . If (ν + 1)2 − α is infinite, then set
β := (ν + 1)2. An argument analogous to the argument in the previous paragraph
shows that A /∈ Uα ⊕Uβ but A ∈ Uβ ⊕Uα .

Remark 3.9 The previous argument also gives a nonstandard proof of the fact that
the center of (βN,⊕) is precisely the set of principal ultrafilters.

The previous example notwithstanding, there is a connection between (βS, ·) and
the nonstandard extension of the semigroup (S, ·). Fix α, β ∈ ∗S. DefineA ·U −1

β to

be the set {a ∈ S : {b ∈ S : a · b ∈ A} ∈ Uβ}. For a ∈ S, we have that a ∈ A ·U −1
β

if and only if a ·β ∈ ∗A. By transfer, we have that ∗(A ·U −1
β ) = {γ ∈ ∗S : γ · ∗β ∈

∗∗A} Hence, we have that

A ∈ Uα �Uβ ⇔ α ∈ ∗(A ·U −1
β )⇔ α · ∗β ∈ ∗∗A.

2This topology is usually named “S-topology” in the literature of nonstandard analysis, where the
“S” stands for “standard”.
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Wait! What is ∗∗A? And what is ∗β? Well, our intentional carelessness was
intended to motivate the need to be able to take nonstandard extensions of nonstan-
dard extensions, that is, to be able to consider iterated nonstandard extensions. Once
we give this precise meaning in the next chapter, the above informal calculation
will become completely rigorous and we have a precise connection between the
operation� on βS and the operation · on ∗∗S.

We should also mention that it is possible for the equality Uα � Uβ = Uα·β to
be valid. Indeed, this happens when α and β are independent in a certain sense; see
[37].

Notes and References

The notion of nonstandard generator of an ultrafilter was initially isolated by
Luxemburg in [98]. It was later used by Puritz [107, 108] and by Cherlin and
Hirschfeld [26] to study the Rudin-Keisler order among ultrafilters. Model theorists
will recognize hyperfinite generators of ultrafilters simply as realizations of the
types corresponding to the ultrafilters. A survey on hyperfinite generators of
ultrafilters and their properties is presented in [37].



Chapter 4
Many Stars: Iterated Nonstandard
Extensions

We have seen in Chap. 3 how ultrafilters correspond to points in a nonstandard
extension. We will see in this chapter how one can describe operations between
ultrafilters, such as the Fubini product, in terms of the corresponding nonstandard
points.

In the most common approach to nonstandard methods, one assumes that the star
map goes from the usual “standard” universe to a different (larger) “nonstandard”
universe. We will see in this chapter that one can dispense of this distinction
assume that there is just one universe which is mapped to itself by the star map.
This has fruitful consequences, as it allows one to apply the nonstandard map
not just one, but any finite number of times. This yields the notion of iterated
nonstandard extension, which will be crucial in interpreting the Fubini product and
other ultrafilter operations as operations on the corresponding nonstandard points.

4.1 The Foundational Perspective

As we saw in the previous chapter, it is useful in applications to consider iterated
hyper-extensions of the natural numbers, namely ∗

N, ∗∗N, ∗∗∗N, and so forth.
A convenient foundational framework where such iterations make sense can
be obtained by considering models of nonstandard analysis where the standard
universe and the nonstandard universe coincide.1 In other words, one works with a
star map

∗ : V→ V

1A construction of such star maps is given in Sect. A.1.4 of the foundational appendix.
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from a universe into itself. Clearly, in this case every hyper-extension ∗X belongs
to the universe V, so one can apply the star map to it, and obtain the “second level”
hyper-extension ∗∗X, and so forth.

Let us stress that the transfer principle in this context must be handled with much
care. The crucial point to keep in mind is that in the equivalence

P(A1, . . . , An) ⇐⇒ P(∗A1, . . . ,
∗An),

the considered objects A1, . . . , An could be themselves iterated hyper-extensions.
In this case, one simply has to add one more “star”. Let us elaborate on this with a
few examples.

Example 4.1 Recall that N is an initial segment of ∗N, that is,

N ⊂ ∗
N and ∀x ∈ N ∀y ∈ ∗N\N x < y.

Thus, by transfer, we obtain that:

∗
N ⊂ ∗∗

N and ∀x ∈ ∗N ∀y ∈ ∗∗N\∗N x < y.

This means that ∗N is a proper initial segment of the double hyper-image ∗∗N, that
is, every element of ∗∗N\∗N is larger than all element in ∗N.

Example 4.2 If η ∈ ∗
N\N, then by transfer ∗η ∈ ∗∗

N\∗N, and hence η < ∗η.
Then, again by transfer, one obtains that the elements ∗η, ∗∗η ∈ ∗∗∗

N are such that
∗η < ∗∗η, and so forth.

The above example clarifies that the simplifying assumption ∗r = r that was
adopted for every r ∈ R cannot be extended to hold for all hypernatural numbers .
Indeed, we just proved that η �= ∗η for every η ∈ ∗N\N.

Example 4.3 Since R ⊂ ∗
R, by transfer it follows that ∗R ⊂ ∗∗

R. If ε ∈ ∗
R is a

positive infinitesimal, that is, if 0 < ε < r for every positive r ∈ R, then by transfer
we obtain that 0 < ∗ε < ξ for every positive ξ ∈ ∗R. In particular, ∗ε < ε.

Recall that, by Proposition 2.19, for every elementary formula ϕ(x, y1, . . . , yn)

and for all objects B,A1, . . . , An, one has that

∗{y ∈ B | P(y,A1, . . . , An)} = {y ∈ ∗B | P(y, ∗A1, . . . ,
∗An)}. (†)

Of course one can apply the above property also when (some of) the parameters
are hyper-extensions.

Remark 4.4 In nonstandard analysis, a hyper-extension ∗A is often called a “stan-
dard” set. This terminology comes from the fact that—in the usual approaches—one
considers a star map ∗ : S → V between the “standard universe” S and a
“nonstandard universe” V. Objects A ∈ S are named “standard” and, with some
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ambiguity, also their hyper-extensions ∗A are named “standard”.2 Let us stress that
the name “standard” would be misleading in our framework, where there is just
one single universe, namely the universe of all mathematical objects. Those objects
of our universe that happen to be in the range of the star map, are called hyper-
extensions.

4.2 Revisiting Hyperfinite Generators

In this subsection, we let (S,+) denote an infinite semigroup. Now that we have the
ability to take iterated nonstandard extensions, we can make our discussion from
the end of Sect. 3.2 precise. Recall that, for α ∈ ∗S, we let Uα denote the ultrafilter
{A ⊆ S : α ∈ ∗A}. Similarly, we can define, for α ∈ ∗∗S, Uα to be the ultrafilter
{A ⊆ S : α ∈ ∗∗A}.
Proposition 4.5 For α, β ∈ ∗S, we have Uα �Uβ = Uα·∗β .

Proof By equation (†) from the previous section, we have that ∗(A ·U −1
β ) = {γ ∈

∗S : γ · ∗β ∈ ∗∗A}. Hence, for A ⊆ S, we have that

A ∈ Uα �Uβ ⇔ α ∈ ∗(A ·U −1
β )⇔ α · ∗β ∈ ∗∗A.

Exercise 4.6 The tensor productU ⊗V of two ultrafilters on S is the ultrafilter on
S × S defined by:

U ⊗ V = {C ⊆ S × S | {s ∈ S | Cs ∈ V } ∈ U },

where Cs = {t ∈ S | (s, t) ∈ C} is the vertical s-fiber of C. If α, β ∈ ∗S, prove that
Uα ⊗Uβ = U(α,∗β).

We can extend this discussion to elements of higher nonstandard iterates of the
universe. Indeed, given α ∈ k∗S, we can define Uα := {A ⊆ S : α ∈ k∗A}.
Exercise 4.7 For α ∈ k∗S, prove that Uα = U∗α .

For α, β ∈ ⋃k
k∗S, we define α ∼ β if and only if Uα = Uβ . Note that α and β

may live in different levels of the iterated nonstandard extensions.

Exercise 4.8 Prove that, for α0, . . . , αk ∈ ∗N and a0, . . . , ak ∈ N, one has

a0Uα0 ⊕ · · · ⊕ akUαk = Ua0α0+a1
∗α1+···+akk∗αk .

2To avoid ambiguity, some authors call the hyper-extensions ∗A ∈ V “internal-standard”.
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Exercise 4.9

1. Suppose that α, α′, β, β ′ ∈ ∗
N are such that α ∼ α′ and β ∼ β ′. Prove that

α + ∗β ∼ α′ + ∗β ′.
2. Find α, α′, β, β ′ as above with α + β �∼ α′ + β ′.

4.3 The Iterated Ultrapower Perspective

The ultrapower model does naturally accommodate iterations of hyper-extensions,
although one can be easily puzzled when thinking of iterated hyper-extensions in
terms of “iterated ultrapowers”. Let us try to clarify this point.

Let us fix an ultrafilter U on N. Since one can take the ultrapower N
N/U

of N to get a nonstandard extension of N, it is natural to take an ultrapower
(NN/U )N/U of N

N/U to get a further nonstandard extension. The diagonal
embedding d : NN/U → (NN/U )N/U is the map where d(α) is the equivalence
class in (NN/U )N/U of the sequence that is constantly α. We define ∗α as d(α),
but, unlike the first time when we took an ultrapower and identified n ∈ N with d(n),
let us refrain from identifying α with ∗α. Indeed, recall that, according to the theory
developed in the first section of this chapter, ∗α is supposed to be infinitely larger
than α. How do we reconcile this fact with the current construction? Well, unlike
the first time we took an ultrapower, a new phenomenon has occurred. Indeed, we
now have a second embedding dU0 : NN/U → (NN/U )N/U given by taking
the ultrapower of the diagonal embedding d0 : N → N

N/U .3 Precisely, if α =
[σ ] ∈ N

N/U where σ : N → N, then dU0 (α) = [([cσ(1)], [cσ(2)], [cσ(3)], . . .)].
It is thus through this embedding that we identify α ∈ N

N/U with its image
dU0 (α) ∈ (NN/U )N/U .

It is now straightforward to see that α < d(α) for all α ∈ N
N/U \N.

For example, if α = [(1, 2, 3, . . .)] ∈ N
N/U , then we identify α with

[([c1], [c2], [c3], . . .)] ∈ (NN/U )N/U . Since [cn] < α for all n, we have that
α < [(α, α, α, . . .)] = d(α) = ∗α.

Also, it is also straightforward to see that defining ∗∗f as (fU )U extends ∗f =
fU for any function f : N→ N. Indeed, if α = [σ ] ∈ N

N/U , then we have that

(fU )U (α) = (fU )U (dU0 (α)) = [(fU ([cσ(1)]), fU ([cσ(2)]), . . .)]
= [([cf (σ (1))], [cf (σ (2))], . . .)] = dU0 ([f ◦ σ ]) = [f ◦ σ ] = fU (α).

3Every map f : A→ B yields a natural map fU : AN/U → BN/U between their ultrapowers,
by setting fU ([σ ]) = [f ◦ σ ] for every σ : N→ A.
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4.4 Revisiting Idempotents

Until further notice, fix a semigroup (S, ·). Given the correspondence between
ultrafilters on S and elements of ∗S, it is natural to translate the notion of idempotent
ultrafilter to the setting of ∗S. Suppose that α ∈ ∗S is such that Uα is an idempotent
ultrafilter on S. We thus have that Uα = Uα � Uα = Uα·∗α . This motivates the
following:

Definition 4.10 α ∈ ∗S is u-idempotent if α · ∗α ∼ α.

We thus see that α ∈ ∗S is u-idempotent if and only if Uα is an idempotent
ultrafilter on S.

As a first example of the nonstandard perspective of idempotents, we offer the
following exercise, which gives a nonstandard proof of [15, Theorem 2.10].

Exercise 4.11

1. Suppose that α ∈ ∗
N is idempotent. Prove that 2α + ∗∗α, 2α + ∗α + ∗∗α, and

2α + 2∗α + ∗∗α all generate the same ultrafilter, namely 2Uα ⊕Uα .
2. Suppose that U ∈ βN is idempotent and A ∈ 2U ⊕U . Prove that A contains a

3-termed arithmetic progression. (Hint: Use part (1) and transfer.)

We now seek an analog of the above fact that nonempty closed subsemigroups of
βS contain idempotents. Suppose that T ⊆ βS is a subsemigroup and that α, β ∈ ∗S
are such that Uα,Uβ ∈ T . Since Uα·∗β = Uα�Uβ ∈ T , we are led to the following
definition:

Definition 4.12 T ⊆ ∗S is a u-subsemigroup if, for any α, β ∈ T , there is γ ∈ T
such that α · ∗β ∼ γ .

We thus have the following:

Corollary 4.13 Suppose that T ⊆ ∗S is a nonempty closed u-subsemigroup. Then
T contains a u-idempotent element.

Now suppose instead that (S, ·) is a directed partial semigroup. Note that ∗S
is naturally a partial semigroup with the nonstandard extension of the partial
semigroup operation.

Definition 4.14 We say that α ∈ ∗S is cofinite if s · α is defined for every s ∈ S.

We leave it to the reader to check that α is cofinite if and only if Uα is a cofinite
element of βS. Consequently, Exercise 1.29 implies that any nonempty closed u-
subsemigroup of the set of cofinite elements of ∗S contains an idempotent element.

Exercise 4.15 Without using Exercise 1.29, prove that, for any cofinite α, β ∈ ∗S,
there is cofinite γ ∈ ∗S such that α · ∗β ∼ γ . Compare your proof to the proof that
U � V ∈ γ S whenever U ,V ∈ γ S.
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Notes and References

Iterated hyper-extensions and their use to characterize sums of ultrafilters were
introduced in 2010 by Di Nasso in unpublished lecture notes, which were eventually
included in [37]. The technique of iterated hyper-extensions and its foundations was
then systematically studied by Luperi Baglini in his Ph.D. thesis [93], where several
applications in combinatorial number theory were also proved. A use of iterated
hyper-extensions for a nonstandard proof of Rado’s Theorem can be found in [38].
Further applications to the study of partition regularity of equations are obtained in
[39, 40, 94–96] (see Chap. 9 below).



Chapter 5
Loeb Measure

In finitary combinatorics, one often encounters counting arguments involving the
(normalized) counting measure on the finite set under consideration. The continuous
analogue of such a basic tool is the Lebesgue measure on [0, 1], [0, 1]n or, more
generally, some other probability space. Such an analogy can be made precise
through the nonstandard perspective. Indeed, one can consider a hyperfinite set,
such as the interval [1, N] = {1, . . . , N} in ∗

N for some hypernatural number N,
endowed with its internal counting measure (defined on the algebra of its internal
subsets). Such an internal object in turns gives rise to an (external) probability
measure, called Loeb measure. As it turns out, the Lebesgue measure on [0, 1] can
be regarded as a restriction of the Loeb measure to a suitable σ -algebra. This makes
precise the intuition that the Lebesgue measure is a limit “at infinity” of normalized
counting measures. In this chapter, we will present the construction of the Loeb
measure and some of its fundamental properties.

5.1 Premeasures and Measures

In this section, we recall some preliminary information from measure theory. Our
presentation borrows somewhat from that of Tao [122].

Fix a set X. A nonempty set A ⊆ P(X) is an algebra if it is closed under
unions, intersections, and complements, that is, if A,B ∈ A , then A ∪ B, A ∩ B,
and X\A all belong to A . If A is an algebra of subsets of X, then ∅,X ∈ A . An
algebra A onX is said to be a σ -algebra if it is also closed under countable unions,
that is, if A1, A2, . . . all belong to A , then so does

⋃∞
n=1 An. A σ -algebra is then

automatically closed under countable intersections.
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Exercise 5.1 Suppose that X is a set and O ⊆ P(X) is an arbitrary collection of
subsets of X. Prove that there is a smallest σ -algebraΩ containing O . We call this
σ -algebra the σ -algebra generated by O and denote it by σ(O).

Remark 5.2 When trying to prove that every element of σ(O) has a certain property,
one just needs to show that the set of elements having that property contains O and
is a σ -algebra.

Suppose that A is an algebra on X. A pre-measure on A is a function μ : A →
[0,+∞] satisfying the following two axioms:

• μ(∅) = 0;
• (Countable Additivity) If A1, A2, . . . , all belong to A , are pairwise disjoint, and⋃∞

n=1 An belongs to A , then μ(
⋃∞
n=1 An) =

∑∞
n=1 μ(An).

If A is a σ -algebra, then a pre-measure is called a measure. If μ is a measure on
X and μ(X) = 1, then we call μ a probability measure on X.

Exercise 5.3 Fix n ∈ N and suppose that X = {1, 2, . . . , n}. Let A := P(X).
Then A is an algebra of subsets of X that is actually a σ -algebra for trivial reasons.
Define the functionμ : A → [0, 1] byμ(A) = |A|

n
. Thenμ is a probability measure

on A , called the normalized counting measure.

Exercise 5.4 Suppose thatμ : A → [0,+∞] is a pre-measure. Prove that μ(A) ≤
μ(B) for all A,B ∈ A with A ⊆ B.

For subsets A,B of X, we define the symmetric difference of A and B to be
A#B := (A\B) ∪ (B\A).
Exercise 5.5 Suppose that A is an algebra and μ : σ(A )→ [0,∞] is a measure.
Prove that, for every A ∈ σ(A ) with μ(A) < ∞ and every ε ∈ R

>0, there is
B ∈ A such that μ(A#B) < ε.

For our purposes, it will be of vital importance to know that a pre-measure μ
on an algebra A can be extended to a measure on a σ -algebra Am extending A , a
process which is known as Carathéodory extension. We briefly outline how this is
done. The interested reader can consult any good book on measure theory for all the
glorious details; see for instance [122, Section 1.7].

Fix an algebra A of subsets of X and a pre-measure μ on A . For arbitrary
A ⊆ X, we define the outer measure of A to be

μ+(A) := inf{
∑

n∈N
μ(Bn) | A ⊆

⋃

n∈N
Bn, each Bn ∈ A }.

Note that μ+(A) = μ(A) for all A ∈ A . Now although μ+ is defined on all of
P(X) (which is certainly a σ -algebra), it need not be a measure. However, there
is a canonical σ -sub-algebra Am of P(X), the so-called Carathéodory measurable
or μ+-measurable subsets of X, on which μ+ is a measure. These are the sets
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A ⊆ X such that

μ+ (E) = μ+ (A ∩E)+ μ+ (E\A)

for every other set E ⊂ X. Let us collect the relevant facts here:

Fact 5.6 Let X be a set, A an algebra of subsets of X, and μ : A → [0,∞]
a pre-measure on A with associated outer measure μ+ and σ -algebra of μ+-
measurable sets Am. Further suppose that μ is σ -finite, meaning that we can write
X =⋃

n∈NXn with each Xn ∈ A and μ(Xn) <∞.

1. σ(A ) ⊆ Am and μ+|A = μ.
2. (Uniqueness) If A ′ is another σ -algebra on X extending A and μ′ : A ′ →
[0,∞] is a measure onA ′ extending μ, then μ+ and μ′ agree onAm∩A ′ (and,
in particular, on σ(A )).

3. (Completeness) If A ⊆ B ⊆ X are such that B ∈ Am and μ+(B) = 0, then
A ∈ Am and μ+(A) = 0.

4. (Approximation Results)

a. If A ∈ Am, then there is B ∈ σ(A ) containing A such that μ+(B\A) = 0.
(SoAm is the completion of σ(A ).)

b. If A ∈ Am is such that μ+(A) <∞, then for every ε ∈ R
>0, there is B ∈ A

such that μ(A#B) < ε.
c. Suppose that A ⊆ X is such that, for every ε ∈ R

>0, there is B ∈ A such
that μ(A#B) < ε. Then A ∈ Am.

Example 5.7 (Lebesgue Measure) Suppose that X = R and A is the collection of
elementary sets, namely the finite unions of intervals. Define μ : A → [0,∞]
by declaring μ(I) = length(I) and μ(I1 ∪ · · · ∪ In) = ∑n

i=1 μ(Ij ) whenever
I1, . . . , In are pairwise disjoint. The above outer-measure procedure yields the σ -
algebra Am, which is known as the σ -algebra of Lebesgue measurable subsets of R
and usually denoted by M. The measure μ+ is often denoted by λ and is referred to
as Lebesgue measure. The σ -algebra σ(A ) in this case is known as the σ -algebra
of Borel subsets of R, usually denoted by B. It can also be seen to be the σ -algebra
generated by the open intervals.

5.2 The Definition of Loeb Measure

How do we obtain pre-measures in the nonstandard context? Well, we obtain them
by looking at normalized counting measures on hyperfinite sets. Suppose thatX is a
hyperfinite set. We set A to be the set of internal subsets ofX. Then A is an algebra
of subsets ofX that is not (in general) a σ -algebra. For example, ifX = [1, N] ⊆ ∗

N

for someN ∈ ∗N\N, then for each n ∈ N,An := {n} belongs to A , but
⋃
n An = N

does not belong to A as N is not internal.
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If A ∈ A , then A is also hyperfinite. We thus define a function μ : A → [0, 1]
by μ(A) := st

( |A|
|X|
)

. We claim thatμ is a pre-measure. It is easily seen to be finitely

additive, that is, μ(A1 ∪ · · · ∪ An) = ∑n
i=1 μ(Ai) whenever A1, . . . , An ∈ A

are disjoint. But how do we verify countable additivity? The following simple fact
shows that in fact countable additivity follows immediately from finite additivity in
this context.

Proposition 5.8 If A1, A2, . . . all belong to A and
⋃∞
n=1 An also belongs to A ,

then there is k ∈ N such that
⋃∞
n=1 An =

⋃k
n=1 An.

Proof Suppose that the statement of the proposition failed. Set B := ⋃∞
n=1 An

and, for k ∈ N, set Bk := ⋃k
n=1 An. By assumption, we have that each B\Bk

is a nonempty internal set and the countably family of sets (B\Bk) has the finite
intersection property. By countable saturation, it follows that

⋂∞
k=1 B\Bk = ∅,

which is absurd.

We may thus apply the Carathéodory extension theorem from the previous
section to obtain a probability measure μ+ : LX → [0, 1] extending μ. The
measureμ+ is called the Loeb measure on X and will be denotedμX. The elements
of LX are referred to as the Loeb measurable subsets of X.

Lemma 5.9 If B ∈ LX, then

μX(B) = inf{μX(A) | A is internal and B ⊆ A}.

Proof The inequality≤ is clear. Towards the other inequality, fix ε ∈ R
>0. We need

to find internal A such that B ⊆ A and μX(A) ≤ μX(B) + ε. Fix an increasing
sequence of internal sets (An | n ∈ N) such that B ⊆ ⋃

n∈NAn and μX (An) <
μX(B)+ ε for every n ∈ N. By countable saturation, we extend this sequence to an
internal sequence (An | n ∈ ∗N). By transfer, for each k ∈ N, we have

(∀n ∈ ∗N)(n ≤ k→ (An ⊆ Ak and μX(An) < μX(B)+ ε)).

By overflow, there is K > N such that μX(AK) ≤ μX(B) + ε. This concludes the
proof.

Lemma 5.10 If B ∈ LX , then, for every ε ∈ R
>0, there are internal subsets C,A

of X such that C ⊆ B ⊆ A and μX(A\C) < ε.
Proof Fix ε > 0. By Lemma 5.9 applied to B, there is an internal set A containing
B such that μX(A) < μX(B) + ε

2 . By Lemma 5.9 applied to A\B, there is an
internal set R containing A\B such that μX (R) < μX (A\B) + ε

2 < ε. Set now
C := A\R and observe that C is an internal set contained in B. Furthermore we
have that μX (A\C) ≤ μX (R) < ε. This concludes the proof.
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There are many interesting things to say about Loeb measure. It is crucial for
applications of nonstandard analysis to many different areas of mathematics. More
information on the Loeb measure can be found in [1, 3]. We will see later in this
book that Loeb measure allows one to treat densities on the natural numbers as
measures. This makes tools from measure theory and ergodic theory applicable to
combinatorial number theory.

5.3 Lebesgue Measure via Loeb Measure

The purpose of this section is to see that Lebesgue measure can be constructed using
a suitable Loeb measure. The connection between these measures serves as a useful
motivation for the results of Chap. 12 on sumsets of sets of positive density. Our
presentation borrows somewhat from that of Goldblatt [53].

Theorem 5.11 Suppose that N > N and consider the hyperfinite set X :=
{0, 1

N
, 2
N
, . . . , N

N
= 1} and the function st : X → [0, 1]. Define a σ -algebra

A on [0, 1] by A ∈ A if and only if st−1(A) ∈ LX. For A ∈ A , define
ν(A) := μX(st−1(A)). Then A is the algebra of Lebesgue measurable subsets
of [0, 1] and ν is Lebesgue measure.

We outline the proof of this theorem in a series of steps. We denote by B the
σ -algebra of Borel subsets of [0, 1], by M the σ -algebra of measurable subsets of
[0, 1], and by λ the Lebesgue measure on M .

Exercise 5.12 Prove that A is a σ -algebra and ν is a measure on A .

Exercise 5.13 Fix a, b ∈ [0, 1] with a < b.

1. Prove that X ∩ (a, b)∗ ∈ LX and μX(X ∩ (a, b)∗) = b − a.
2. Prove that st−1((a, b)) =⋃n∈N(X ∩ (a + 1

n
, b − 1

n
)∗).

3. Prove that (a, b) ∈ A and ν((a, b)) = b − a.

We now use the fact that λ is the only probability measure on B satisfying
λ(a, b) = b − a and that is invariant under translations modulo 1 to conclude that
B ⊆ A and ν|B = λ|B .

Exercise 5.14 Conclude that M ⊆ A and ν|M = λ|M. (Hint: Use Fact 5.6.)

Exercise 5.15 Show that A ⊆ M . (Hint: if B ∈ A , then by Lemma 5.10, there
are internal C,D ⊆ X such that C ⊆ st−1(B) ⊆ D and μX(D\C) < ε. Set
C′ := st(C) and D′ := [0, 1]\ st(X\D). Notice that C′ is closed and D′ is open,
whence C′,D′ ∈ B ⊆ A . Prove that C ⊆ st−1(C′) and st−1(D′) ⊆ D. Conclude
that B ∈M .)
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5.4 Integration

There is a lot to say about the nonstandard theory of integration. We will focus on
the Loeb measure μX obtained from a hyperfinite set X. In this section, X always
denotes a hyperfinite set.

First, if F : X → ∗
R is an internal function such that F(x) is finite for μX-

almost every x ∈ X, we define st(F ) : X → R by st(F )(x) := st(F (x)) whenever
F(x) is finite. (Technically speaking, st(F ) is only defined on a set of measure 1,
but we will ignore this minor point.) If f : X → R is a function and F : X → ∗

R

is an internal function such that f (x) = st(F )(x) for μX-almost every x ∈ X, we
call F a lift of f . We first characterize which functions have lifts.

Proposition 5.16 f : X→ R has a lift if and only if f is μX-measurable.

Proof If F is a lift of f , then for any r ∈ R, we have

μX

(

{x ∈ X : f (x) < r}#
⋃

n∈N

{
x ∈ X : F(x) < r − 1

n

})

= 0.

Since the latter set is clearly measurable and μX is a complete measure, it follows
that {x ∈ X : f (x) < r} is measurable, whence f is μX-measurable.

For the converse, suppose that f is μX-measurable and fix a countable open basis
{Vn} for R. For n ∈ N, set Un := f−1 (Vn) ∈ LX. By Lemma 5.10, one can find,
for every n ∈ N, an increasing sequence

(
An,m

)
of internal subsets of Un such that

μX
(
An,m

) ≥ μX (Un)− 2−m for every m ∈ N. It follows that the subset

X0 := X\
⋃

n∈N

(

Un\
⋃

m∈N
An,m

)

of X has μX-measure 1. Observe now that, for every n,m ∈ N, there exists an
internal function F : X → ∗

R such that F
(
A�,k

) ⊂ ∗V� for k ≤ m and � ≤ n.
Therefore, by saturation, there exists an internal function F : X → ∗

R such that
F
(
An,m

) ⊂ ∗Vn for every n,m ∈ N. It is clear that f (x) = st (F (x)) for every
x ∈ X0, whence F is a lift of f .

The rest of this section is devoted towards understanding
∫
f dμX (in the case

that f is μX-integrable) and the “internal integral” 1
|X|
∑
x∈X F(x) of a lift F of f .

We first treat a special, but important, case.

Lemma 5.17 Suppose that F : X → ∗
R is an internal function such that F(x) is

finite for all x ∈ X. Then st(F ) is μX-integrable and

∫
st(F )dμX = st

(
1

|X|
∑

x∈X
F(x)

)

.
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Proof Note first that the assumptions imply that there is m ∈ N such that |F(x)| ≤
m for all x ∈ X. It follows that st(F ) is μX-integrable. Towards establishing the
displayed equality, note that, by considering positive and negative parts, that we
may assume that F is nonnegative. Fix n ∈ N. For k ∈ {0, 1, . . . ,mn − 1}, set
Ak := {x ∈ X : k

n
≤ F(x) < k+1

n
}, an internal set. Since

∑
k
k
n
χAk is a simple

function below st(F ), we have that
∑
k
k
n
μX(Ak) ≤

∫
st(F )dμX. However, we also

have

∑

k

k

n
μX(Ak) = st

⎛

⎝ 1

|X|
∑

k

∑

x∈Ak

k

n

⎞

⎠ ≥ st

⎛

⎝ 1

|X|
∑

k

∑

x∈Ak
(F (x)− 1

n
)

⎞

⎠

= st

(
1

|X|
∑

x∈X
F(x)

)

− 1

n
.

It follows that st( 1
|X|
∑
x∈X F(x)) ≤

∫
st(F )dμX + 1

n
. Since n was arbitrary, we

have that st( 1
|X|
∑
x∈X F(x)) ≤

∫
st(F )dμX.

The inequality
∫

st(F )dμX ≤ st( 1
|X|
∑
x∈X F(x)) is proved in a similar fashion,

by considering the simple function
∑
k
k+1
n
χAk .

We now seek to extend the previous lemma to cover situations when F is not
necessarily bounded by a standard number. Towards this end, we need to introduce
the appropriate nonstandard integrability assumption. A μX-measurable internal
function F : X→ ∗

R is called S-integrable if:

1. The quantity

1

|X|
∑

x∈X
|F(x)|

is finite, and
2. for every internal subset A of X with μX(A) = 0, we have

1

|X|
∑

x∈A
|F (x)| ≈ 0.

Here is the main result of this section:

Theorem 5.18 Suppose that f : X → R is a μX-measurable function. Then f
is μX-integrable if and only if f has an S-integrable lifting. In this case, for any
S-integrable lift F of f and any internal subset B of X, we have

∫

B

f dμX = st

(
1

|X|
∑

x∈B
F(x)

)

.
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Proof We first note that, by taking positive and negative parts, we may assume that
f is nonnegative. Moreover, by replacing f with f ·χB , we may assume thatB = X.

We first suppose that F : X → ∗
R is a nonnegative S-integrable function such

that F(x) is finite for μX-almost every x. For n ∈ ∗N, set Bn := {x∈X :F(x) ≥ n}.
Claim 1 For every infinite N ∈ ∗N, we have

1

|X|
∑

x∈BN
F(x) ≈ 0.

Proof of Claim 1 Observe that

N |BN |
|X| ≤ 1

|X|
∑

x∈BN
F (x) ≤ 1

|X|
∑

x∈X
F (x)

Therefore

|BN |
|X| ≤

1

N

1

|X|
∑

x∈X
F (x) ≈ 0

since, by assumption, 1
|X|
∑
x∈X F (x) is finite. It follows from the assumption that

F is S-integrable that

1

|X|
∑

x∈BN
F (x) ≈ 0.

In the rest of the proof, we will use the following notation: given a nonegative
internal function F : X → ∗

R and m ∈ ∗
N, we define the internal function Fm :

X → ∗
R by Fm (x) = min {F (x) ,m}. Observe that Fm(x) ≤ Fm+1(x) ≤ F(x)

for every m ∈ ∗
N and every x ∈ X. It follows from the Monotone Convergence

Theorem and the fact that, for μX-almost every x ∈ X, the sequence (st(Fm(x)) :
m ∈ N) converges to st(F (x)), that

∫
st(Fm)dμX →

∫
st(F )dμX.

Claim 2 We have

st

(
1

|X|
∑

x∈X
F (x)

)

= lim
m→+∞ st

(
1

|X|
∑

x∈X
Fm (x)

)

.

Proof of Claim 2 It is clear that

lim
m→∞ st

(
1

|X|
∑

x∈X
Fm (x)

)

≤ st

(
1

|X|
∑

x∈X
F (x)

)

.
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For the other inequality, fixM ∈ ∗N infinite and observe that

1

|X|
∑

x∈X
F (x) = 1

|X|
∑

x∈BM
F (x)+ 1

|X|
∑

x∈X\BM
F (x)

≈ 1

|X|
∑

x∈X\BM
F (x)

= 1

|X|
∑

x∈X\BM
FM (x)

≤ 1

|X|
∑

x∈X
FM (x) .

Thus, given any ε > 0, we have that 1
|X|
∑
x∈X F (x) ≤ 1

|X|
∑
x∈X FM (x) + ε

for all infinite M , whence, by underflow, we have that 1
|X|
∑
x∈X F (x) ≤

1
|X|
∑
x∈X Fm (x) + ε for all but finitely many m ∈ N. It follows that

st
(

1
|X|
∑
x∈X F (x)

)
≤ limm→+∞ st

(
1
|X|
∑
x∈X Fm (x)

)
, as desired.

By Lemma 5.17, Claim 2, and the discussion preceding Claim 2, we have that

st(F ) is μX-integrable and
∫

st(F )dμ = st
(

1
|X|
∑
x∈X F(x)

)
, as desired.

We now suppose that f is a nonnegative μX-integrable function. We must show
that f has an S-integrable lifting. Let F be any nonnegative lifting of f . Note that,
for every infinite M ∈ ∗

N, that FM is also a lifting of f . We will find an infinite
M ∈ ∗N such that FM is also S-integrable.

By the Monotone Convergence Theorem, for every ε > 0, we have that

∣
∣
∣
∣

∫
st(F )dμX −

∫
st(Fm)dμX

∣
∣
∣
∣ < ε

holds for all but finitely many m ∈ N. Therefore, by Lemma 5.17, we have that

∣∣
∣
∣
∣

∫
st(F )dμX − 1

|X|
∑

x∈X
Fm (x)

∣∣
∣
∣
∣
< ε

holds for all but finitely manym ∈ N. By transfer, there exists infiniteM ∈ ∗N such
that

∫
st(F )dμX = st

(
1

|X|
∑

x∈X
FM (x)

)
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and

∫
f dμX = st

(
1

|X|
∑

x∈X
FM (x)

)

.

We show that the function FM is S-integrable. Suppose that B is an internal subset
of X such that μX(B) = 0. Set

r := st

(
1

|X|
∑

x∈B
|FM (x)|

)

.

We wish to show that r = 0. Towards this end, fix m ∈ N. Then we have that

r +
∫

st(Fm)dμX = r +
∫

X\B
st(Fm)dμX ≈ r + 1

|X|
∑

x∈X\B
Fm (x)

≤ r + 1

|X|
∑

x∈X\B
FM (x) ≈ 1

|X|
∑

x∈X
FM (x) ≈

∫
st(F )dμX.

Letting m→ +∞, we obtain that r = 0, as desired.

Corollary 5.19 Suppose f ∈ L1(X,LX,μX) and ε > 0. Then there exists internal
functions F,G : X→ ∗

R such that F ≤ f ≤ G μX-almost everywhere and

max

{∣∣
∣
∣
∣

∫

B

f dμX − 1

|X|
∑

x∈B
F(x)

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

∫

B

f dμX − 1

|X|
∑

x∈B
G(x)

∣
∣
∣
∣
∣

}

≤ ε

for every internal subset B of X.

Proof Let H : X → ∗
R be a lifting of f . Set F := H − ε/2 and G := H + ε/2.

Since st (H (x)) = f (x) for μX-almost every x ∈ X, we conclude that F (x) ≤
f (x) ≤ G(x) for μX-almost every x ∈ X. Furthermore, if B is an internal subset
of X, then by Lemma 5.18, we have that

∣
∣
∣
∣∣

∫

B

f dμX − 1

|X|
∑

x∈B
F (x)

∣
∣
∣
∣∣
≤ ε/2+

∣
∣
∣
∣∣

∫

B

f dμX − 1

|X|
∑

x∈B
H (x)

∣
∣
∣
∣∣
≤ ε

and
∣∣
∣
∣
∣

∫

B

f dμX − 1

|X|
∑

x∈B
G(x)

∣∣
∣
∣
∣
≤ ε/2 +

∣∣
∣
∣
∣

∫

B

f dμX − 1

|X|
∑

x∈B
H (x)

∣∣
∣
∣
∣
≤ ε.

This concludes the proof.
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5.5 Product Measure

Suppose that (X,AX, νX) and (Y,AY , νY ) are two probability measure spaces. We
can then form their product as follows: first, set A to be the set of finite unions of
rectangles of the form A× B, where A ∈ AX and B ∈ AY . The elements of A are
called elementary sets. It is an exercise to show that A is an algebra of subsets of
X × Y and that every element of A can be written as a finite union of disjoint such
rectangles. We can then define a pre-measure ν on A by μ(

⋃n
i=1(Ai × Bi)) :=∑n

i=1(νX(Ai) · νY (Bi)). Applying the outer measure procedure, we get a measure
νX ⊗ νY : Am→ [0, 1] extending ν. We denote Am by AX ⊗AY .

The following situation will come up in Chap. 16: suppose that X and Y
are hyperfinite sets and we construct the Loeb measure spaces (X,LX,μX) and
(Y,LY , μY ). We are thus entitled to consider the product measure space (X ×
Y,LX ⊗LY , μX ⊗μY ). However,X× Y is itself a hyperfinite set, whence we can
consider its Loeb measure space (X × Y,LX×Y,L, μX×Y ). There is a connection:

Exercise 5.20 Show that LX ⊗ LY is a sub-σ -algebra of LX×Y and that
μX×Y |(LX⊗LY ) = μX ⊗ μY .

In the proof of the triangle removal lemma in Chap. 16, we will need to use the
following Fubini-type theorem for Loeb measure on a hyperfinite set.

Theorem 5.21 Suppose that X and Y are hyperfinite sets and f : X × Y → R is
a bounded LX×Y -measurable function. For x ∈ X, let fx : Y → R be defined by
fx(y) := f (x, y). Similarly, for y ∈ Y , let f y : X → R be defined by f y(x) :=
f (x, y). Then:

1. fx isLY -measurable for μX-almost every x ∈ X;
2. f y isLX-measurable for μY -almost every y ∈ Y ;
3. The double integral can be computed as an iterated integral:

∫

X×Y
f (x, y)dμX×Y (x, y) =

∫

X

(∫

Y

fx(y)dμY (y)

)
dμX(x)

=
∫

Y

(∫

X

f y(x)dμX(x)

)
dμY (y).

Proof After taking positive and negative parts, it suffices to consider the case that
f is positive. Furthermore, by the Monotone Convergence Theorem, it suffices to
consider the case that f is a step function. Then, by linearity, one can restrict to the
case that f = χE is the characteristic function of a Loeb measurable setE ⊆ X×Y .
Now Lemma 5.10 and a further application of the Monotone Convergence Theorem
allows one to restrict to the case that E is internal. In this case, for x ∈ X we have

that
∫
Y
χE(x, y)dμY (y) = st

( |Ex |
|Y |
)

, where Ex := {y ∈ Y : (x, y) ∈ E}. By
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Theorem 5.18, we thus have

∫

X

(∫

Y

χE(x, y)dμY (y)

)
dμX(x) ≈ 1

|X|
∑

x∈X

|Ex |
|Y | =

|E|
|X||Y |

≈
∫

X×Y
χE(x, y)dμX×Y (x, y).

The other equality is proved in the exact same way.

5.6 Ergodic Theory of Hypercycle Systems

Definition 5.22 If (X,B, μ) is a probability space, we say that a function T :
X → X is a measure-preserving transformation if, for all A ∈ B, T −1(A) ∈ B
and μ(T −1(A)) = μ(A). The tuple (X,B, μ, T ) is called a measure-preserving
dynamical system. A measure-preserving dynamical system (Y,C , ν, S) is a factor
of (X,B, μ, T ) if there is a function π : X → Y such that, for A ⊆ Y , A ∈ C if
and only if π−1 (A) ∈ B, ν = π∗μ—which means ν(A) = μ (π−1(A)

)
for every

A ∈ C—and (S ◦ π) (x) = (π ◦ T ) (x) for μ-almost every x ∈ X.

Example 5.23 Suppose thatX = [0, N−1] is an infinite hyperfinite interval. Define
S : X → X by S(x) = x + 1 if x < N and S(N − 1) = 0. Then S is a
measure-preserving transformation and the dynamical system (X,LX,μX, S) will
be referred to as a hypercycle system.

The hypercycle system will play an important role later in the book. In particular,
we will need to use the pointwise ergodic theorem for the hypercycle system.
While the proof of the general ergodic theorem is fairly nontrivial, the proof for the
hypercycle system, due to Kamae [81], is much simpler. In the rest of this section,
we fix a hypercycle system (X,ΩX,μX, S).

Theorem 5.24 (The Ergodic Theorem for the Hypercycle System) Suppose that
f ∈ L1(X,Ω,μ). Define

f̂ (x) := lim
n→∞

1

n

n−1∑

i=0

f (Six)

whenever this limit exists. Then:

1. f̂ (x) exists for almost all x ∈ X;
2. f̂ ∈ L1(X,Ω,μ);
3.
∫
X
f dμ = ∫

X
f̂ dμ.
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Proof Without loss of generality, we may assume that X = [0, N − 1] for some
N > N and f (x) ≥ 0 for μX-almost every x ∈ X. We set

f (x) := lim sup
n→∞

1

n

n−1∑

i=0

f (Six)

and

f (x) := lim inf
n→∞

1

n

n−1∑

i=0

f (Six).

Note that f , f are μX-measurable and S-invariant. It suffices to show that f , f ∈
L1(X,Ω,μ) and that

∫

X

f dμ ≤
∫

X

f dμ ≤
∫

X

f dμ.

Towards this end, fix ε > 0 and m ∈ N. By Lemma 5.19, we may find internal
functions F,G : [0, N − 1] → ∗

R such that:

• for all x ∈ X, we have f (x) ≤ F(x) andG(x) ≤ min{f̄ (x),m};
• for every internal subset B of X

max

{∣∣
∣
∣
∣

∫

B

f dμ− 1

N

∑

x∈B
F(x)

∣∣
∣
∣
∣
,

∣∣
∣
∣
∣

∫

B

min
{
f̄ , m

}
dμ− 1

N

∑

x∈B
G(x)

∣∣
∣
∣
∣

}

< ε.

By definition of f̄ , for each x ∈ X, there is n ∈ N such that min{f̄ (x),m} ≤
1
n

∑n−1
i=0 f (S

ix)+ ε. For such an n and k = 0, 1, . . . , n− 1, we then have that

G(Skx) ≤ min{f̄ (Skx),m} = min{f̄ (x),m} ≤ 1

n

n−1∑

i=0

f (Six)+ ε

≤ 1

n

n−1∑

i=0

F(Six)+ ε,

whence it follows that

n−1∑

i=0

G(Six) ≤
n−1∑

i=0

F(Six)+ nε. (5.1)
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Since the condition in (5.1) is internal, the function ρ : X → ∗
N that sends x to

the least n making (5.1) hold for x is internal. Note that ρ(x) ∈ N for all x ∈ K ,
whence σ := maxx∈X ρ(x) ∈ N.

Now one can start computing the sum
∑N
x=0G(x) by first computing

ρ(0)−1∑

x=0

G(x) =
ρ(0)−1∑

x=0

G(Sx0),

which is the kind of sum appearing in (5.1). Now in order to continue the
computation using sums in which (5.1) applies, we next note that

ρ(0)+ρ(ρ(0))−1∑

x=ρ(0)
G(x) =

ρ(ρ(0))−1∑

x=0

G(Sxρ(0)).

This leads us to define, by internal recursion (which is the statement obtained from
the usual principle of induction by applying transfer), the internal sequence (�j ) by
declaring �0 := 0 and �j+1 := �j + ρ(�j ). It follows that we have

�J−1∑

x=0

G(x) =
J−1∑

j=0

ρ(�j )−1∑

i=0

G(Siρ
(
�j
)
) ≤

J−1∑

j=0

ρ(�j )−1∑

j=0

F(Six)+ ρ(�j )ε

=
�J−1∑

x=0

F(x)+ �J ε.

As a result, we have that, whenever �J < N ,

1

N

�J−1∑

x=0

G(x) ≤ 1

N

�J−1∑

x=0

F(x)+ ε.

Now take J such that N − σ ≤ �J < N . Since σ ∈ N and G(x) ≤ m for every
x ∈ X, we have that

∫

X

min{f̄ , m}dμ ≤ 1

N

N−1∑

x=0

G(x)+ ε ≈ 1

N

�J−1∑

x=0

G(x)+ ε

≤ 1

N

�J−1∑

x=0

F(x)+ 2ε ≈ 1

N

N−1∑

x=0

F(x)+ 2ε ≤
∫

X

f dμ+ 3ε.

Letting m → ∞ and then ε → 0, we get that f ∈ L1(X,Ω,μ) and
∫
X f dμ ≤∫

X f dμ. The inequality
∫
X f dμ ≤

∫
X f dμ is proven similarly.
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In [81], Kamae uses the previous theorem to prove the ergodic theorem for an
arbitrary measure-preserving dynamical system. In order to accomplish this, he
proves the following result, which is interesting in its own right.

Theorem 5.25 (Universality of the Hypercycle System) Suppose that (Y,B, ν)
is a standard probability space1 and T : Y → Y is an measure-preserving trans-
formation. Then (Y,B, ν, T ) is a factor of the hypercycle system (X,ΩX,μX, S).

Proof As before, we may assume that X = [0, N − 1] for some N > N. Without
loss of generality, we can assume that (Y,B, ν) is atomless, and hence isomorphic
to [0, 1] endowed with the Borel σ -algebra and the Lebesgue measure. Consider the
Borel map r : [0, 1] → [0, 1]N given by r(y) (n) = h (T ny) and the measure r∗ν on
the Borel σ -algebra of [0, 1]N. Then r defines an isomorphism between (Y,B, ν, T )
and a factor of the unilateral Bernoulli shift on [0, 1]N. Therefore, it is enough
to consider the case when (Y,B, ν, T ) is the unilateral Bernoulli shift on [0, 1]N

endowed with the Borel σ -algebra B and some shift-invariant Borel probability
measure ν.

We now define the factor map π : X → [0, 1]N. In order to do this, we fix α ∈
[0, 1]N such that limn→∞ 1

n

∑n−1
i=0 f (T

iα) = ∫
[0,1]N f (y)dν for all f ∈ C([0, 1]N).

Such an α is called typical in [81] and is well-known to exist.2

By transfer, one can identify ∗([0, 1]N) with the set of internal functions from ∗
N

to ∗ [0, 1]. By compactness of [0, 1]N, one can deduce that, given ξ ∈ ∗([0, 1]N),
there exists a unique element st (ξ) ∈ [0, 1]N such that ξ ≈ st (ξ), in the sense that,
for every open subset U of [0, 1]N, one has that ξ ∈ ∗U if and only if st (ξ) ∈ ∗U .
(This also follows from Example 2.76 and compactness of [0, 1]N.) Concretely, one
can identify st (ξ) with the element of [0, 1]N such that st (ξ) (n) = st (ξ (n)) for
n ∈ N.

The function N → [0, 1]N, n �→ T nα has a nonstandard extension ∗
N →

∗([0, 1]N). Given i ∈ [0, N − 1], define π(i) := st(T iα). We must show that
π∗μX = ν and that (T ◦ π) (i) = (π ◦ S) (i) for μX-almost every i ∈ [0, N − 1].
For f ∈ C([0, 1]N), we have that

∫

[0,1]N
f (y)dν = lim

n→∞
1

n

n−1∑

i=0

f (T iα) ≈
1

N

N−1∑

i=0

f
(
T iα

)
≈
∫

X

(f ◦ π) dμX.

1Unfortunately, standard is used in a different sense than in the rest of this book. Indeed, here, a
standard probability space is simply a probability space which is isomorphic to a quotient of [0, 1]
endowed with the Borel σ -algebra and Lebesgue measure.
2Of course, one can use the ergodic theorem to prove the existence of typical elements. However,
we need a proof that typical elements exist that does not use the ergodic theorem. One can see, for
example, [81, Lemma 2] for such a proof.
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Note that the first step uses the fact that α is typical and the last step uses the fact
that f is continuous and Theorem 5.18. This shows that

∫

[0,1]N
f dν =

∫

X

(f ◦ π) dμX =
∫

[0,1]N
f dπ∗μX

and hence ν = π∗μX.
To finish, we show that (T ◦ π) (i) = (π ◦ S) (i) for μX-almost every i ∈ X. Fix

i ∈ [0, N − 2]. Then we have

T (π(i)) = T (st(T iα)) = st(T i+1α)) = π(S(i)),

where the second equality uses the fact that T is continuous.

From Theorems 5.24 and 5.25, we now have a proof of the ergodic theorem for
measure-preserving systems based on standard probability spaces. It only requires
one more step to obtain the ergodic theorem in general.

Corollary 5.26 (The Ergodic Theorem) Suppose that (Y,B, ν, T ) is a
measure-preserving dynamical system and f ∈ L1(X,Ω,μ). Define f̂ (x) :=
limn→∞ 1

n

∑n−1
i=0 f (T

ix) whenever this limit exists. Then:

1. f̂ (x) exists for almost all x ∈ Y ;
2. f̂ ∈ L1(Y,B, ν);
3.
∫
Y f dν =

∫
Y f̂ dν.

Proof Let τ : Y → R
N be given by τ (y)(n) := f (T ny). Let C denote the Borel

σ -algebra of RN. Let σ be the shift operator on R
N. Let g : RN → R be given by

g(α) = α(0). It is then readily verified that the ergodic theorem for (Y,B, ν, T , f )
is equivalent to the ergodic theorem for (RN,C , τ∗ν, σ, g), which, as we mentioned
above, follows from Theorems 5.24 and 5.25.

Notes and References

The Loeb measure construction was introduced by Loeb in 1973 [92]. The Loeb
measure plays a crucial role in several applications of nonstandard methods to a
wide variety of areas of mathematics, including measure theory, probability theory,
and analysis. A survey of such applications can be found in [32]. The nonstandard
proof of the ergodic theorem due to Kamae [81, 82] is just a single but insightful
example of the usefulness of Loeb measure. The Loeb measure also underpins the
nonstandard perspective on the Furstenberg correspondence theorem, which in turns
opens the gates to application of nonstandard methods to additive number theory
(see Chap. 10).
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Ramsey Theory



Chapter 6
Ramsey’s Theorem

Ramsey theory studies, generally speaking, the following problem: Suppose that
a given structure is colored using finitely many colors (equivalently, partition
into finitely many pieces). Which combinatorial configurations can be found that
are monochromatic, i.e. consisting of elements of the same color (equivalently,
entirely contained in one of the pieces)? Ramsey’s theorem from 1930, which we
will present in this chapter, can be seen as the foundational result in this area.
While remarkably simple to state, it has a large number of important consequences
and applications. Many of these applications were studied by Erdős and Rado in
the 1950s, who “rediscovered” Ramsey’s theorem and recognized it importance.
Attempts to generalize Ramsey’s theorem in different contexts and directions have
been one of the main driving forces in Ramsey theory.

6.1 Infinite Ramsey’s Theorem

Recall that a graph is a pair (V ,E)whereV is the set of vertices, and the set of edges
E ⊆ V × V is an anti-reflexive and symmetric binary relation on V . If X ⊆ V is
such that (x, x ′) ∈ E (resp. (x, x ′) /∈ E) for all distinct x, x ′ ∈ X, we say that X is
a clique (resp. anticlique) in (V ,E).

Theorem 6.1 (Ramsey’s Theorem for Pairs) If (V ,E) is an infinite graph, then
(V ,E) either contains an infinite clique or an infinite anticlique.

Proof Let ξ be an element of ∗V that does not belong to V . Consider the element
(ξ, ∗ξ) ∈ ∗∗V . There are now two possibilities: either (ξ, ∗ξ) ∈ ∗∗E or (ξ, ∗ξ) /∈
∗∗E. We only treat the first case, the second case being entirely similar. We
recursively define a one-to-one sequence (xn) in V such that the set {xn : n ∈ N}
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forms a clique in (V ,E). Towards this end, suppose that d ∈ N and x0, . . . , xd−1
are distinct elements of V such that, for all 1 ≤ i < j < d , we have

•
(
xi, xj

) ∈ E, and
• (xi, ξ) ∈ ∗E.

Consider now the statement “there exists y ∈ ∗V such that, for i < d , y is
different from xi , and (xi, y) ∈ ∗E, and (y, ∗ξ) ∈ ∗∗E”, whose truth is witnessed
by ξ . It follows by transfer that there exists xd ∈ V different from xi for i < d ,
such that (xi, xd) ∈ E for i < d , and (xd, ξ) ∈ ∗E. This concludes the recursive
construction.

In order to state the full Ramsey theorem, we need the notion of a hypergraph.
Given m ∈ N, an m-regular hypergraph is a set V of vertices together with a subset
E of V m that is permutation-invariant and has the property that (x1, . . . , xm) ∈ E
implies that x1, . . . , xm are pairwise distinct. A clique (resp. anticlique) for (V ,E)
is a subset Y of V with the property that (y1, . . . , ym) ∈ E (resp. (y1, . . . , ym) /∈ E)
for any choice of pairwise distinct elements y1, . . . , ym of Y .

Theorem 6.2 (Ramsey’s Theorem) If (V ,E) is an infinitem-regular hypergraph,
then (V ,E) contains an infinite clique or an infinite anticlique.

Exercise 6.3 Prove Theorem 6.2.

Ramsey’s theorem is often stated in the language of colorings. Given a set X
and m ∈ N, we let X[m] denote the set of m-element subsets of X. If X ⊆ N, we
often identify X[m] with the set of pairs {(x1, . . . , xm) ∈ Xm : x1 < · · · < xm}.
Given k ∈ N, a k-coloring of X[m] is a function c : X[m] → {1, . . . , k}. In this vein,
we often refer to the elements of {1, . . . , k} as colors. Finally, a subset Y ⊆ X is
monochromatic for the coloring c if the restriction of c to Y [m] is constant. Here is
the statement of Ramsey’s theorem for colorings.

Corollary 6.4 For any k,m ∈ N, any infinite set V , and any k-coloring c of V [m],
there is an infinite subset of V that is monochromatic for the coloring c.

Proof By induction, it suffices to consider the case k = 2. We identify a coloring
c : V [m] → {1, 2} with the m-regular hypergraph (V ,E) satisfying (x1, . . . , xm) ∈
E if and only if c({x1, . . . , xm}) = 1 for distinct x1, . . . , xm ∈ V . An infinite
clique (resp. anticlique) in (V ,E) corresponds to an infinite set with color 1 (resp.
2), whence the corollary is merely a restatement of our earlier version of Ramsey’s
theorem.

Remark 6.5 Ramsey’s Theorem cannot be extended to finite colorings of the infinite
parts V [∞] = {A ⊆ V | A is infinite}. Indeed, pick a copy of the natural numbers
N ⊆ V , pick an infinite α ∈ ∗N \ N, and for A ∈ V [∞] set c(A) = 1 if the internal
cardinality |∗A ∩ [1, α]| is odd, and c(A) = 2 otherwise. Then c : V [∞] → {1, 2}
is a 2-coloring with the property that X[∞] is not monochromatic for any infinite
X ⊆ V since, e.g., c(X) �= c(X \ {x}) for every x ∈ X.
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6.2 Finite Ramsey Theorem

Corollary 6.4 is often referred to as the infinite Ramsey theorem. We now deduce
from it the finite Ramsey theorem. We first need a bit of notation.

Definition 6.6 Given k, l,m, n ∈ N, we write l → (n)mk if every coloring of [l][m]
with k colors has a homogeneous set of size n.

Corollary 6.7 (Finite Ramsey Theorem) For every k,m, n ∈ N, there is l ∈ N

such that l → (k)nm.

Proof Suppose the theorem is false for a particular choice of k,m, n. Then for every
l ∈ N, there is a “bad” coloring cl : [l][m] → {1, . . . , k} with no monochromatic
subset of size n. We can form a finitely branching tree of bad colorings with the
partial order being inclusion. Since there is a bad coloring for every such l, we have
that the tree is infinite. By König’s Lemma, there is an infinite branch. This branch
corresponds to a coloring of N[m] → {1, . . . , k} with no monochromatic subset of
size n, contradicting the Infinite Ramsey Theorem.

The proof of Theorem 6.7 is a typical example of a compactness argument.
Compactness arguments are often used in combinatorics to deduce from an infinitary
combinatorial statement a corresponding finitary analogue. Implicitly, a compact-
ness argument hinges on compactness of a suitable topological space, which in the
case of Theorem 6.7 is

∏
k nk for a sequence (nk) in N.

Topological compactness is intimately connected with ultrafilters, nonstandard
methods, and compactness in first order logic. Indeed, we used topological com-
pactness to prove the existence of nonprincipal ultrafilters. In turn, nonprincipal
ultrafilters can be used, via the ultraproduct construction, to prove the compactness
principle in first order logic (and the existence of nonstandard maps, as we have
seen). These ties between different instances of compactness are reflected in the
various ways one can formulate compactness arguments in combinatorics. For
instance, in the case of Theorem 6.7, one could also conclude the argument by fixing
a nonprincipal ultrafilter U on N and then setting c(a) = liml,U cl(a) for a ∈ N

[m].
Equivalently, one can fix an infinite L ∈ ∗N and then let c be the restriction of cL to
N
[m] ⊂ ∗

N
[m].

6.3 Rado’s Path Decomposition Theorem

In this section, by a path in N we mean a (finite or infinite) injective sequence of
natural numbers. For a finite path (a0, . . . , an) from N, we refer to an as the end of
the path.

Suppose that c : N[2] → {1, . . . , r} is an r-coloring of N[2]. For i ∈ {1, . . . , r},
we say that a path P = (an) has color i if c({an, an+1}) = i for all n.
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Theorem 6.8 (Rado’s Path Decomposition Theorem) Suppose that c : N[2] →
{1, . . . , r} is an r-coloring of N

[2]. Then there is a partition of N into paths
P1, . . . , Pr such that each Pi has color i.

Proof First, fix α ∈ ∗
N. For m ∈ N and i ∈ {1, . . . , r}, we say that m has color i

if c({m,α}) = i. We now recursively define disjoint finite paths P1,k, . . . , Pr,k such
that, whenever Pi,k �= ∅, then the end of Pi,k has color i (in the sense of the previous
sentence).

To start, we define Pi,0 = ∅ for each i = 1, . . . , r . Now assume that Pi,k−1 has
been constructed for i = 1, . . . , r . If k belongs to some Pi,k−1, then set Pi,k :=
Pi,k−1 for all i = 1, . . . , r . Otherwise, let i be the color of k and let e be the end
of Pi,k−1. Since c({k, α}) = c({e, α}) = i, by transfer, we can find f ∈ N larger
than all numbers appearing in

⋃r
i=1 Pi,k−1 such that c({k, f }) = c({e, f }) = i. We

then set Pj,k := Pj,k−1 for j �= i and Pi,k := Pi,k−1
�(f, k). Note that the recursive

assumptions remain true.
For i = 1, . . . , r , we now set Pi to be the union of Pi,k for k ∈ N. It is clear that

P1, . . . , Pr are as desired.

6.4 Ultrafilter Trees

Given a set X, we let X[<∞] (resp. X[∞]) denote the set of finite (resp. infinite)
subsets ofX. Given s ∈ N

[<∞] andX ⊆ N, we say that s is an initial segment ofX,
denoted s & X, if there is i ∈ N such that s = {j ∈ X : j ≤ i}.
Definition 6.9 A subset T of N

[<∞] is called a tree on N if T �= ∅ and for all
s, t ∈ N

[<∞], if s & t and t ∈ T , then s ∈ T .

For a tree T on N, we set

[T ] := {X ∈ N
[∞] : ∀s ∈ N

[<∞](s & X⇒ s ∈ T )}.

If there is an element of T that is&-maximal with respect to the property that it is&-
comparable to every element of T , we call this (necessarily unique) element of T the
stem of T , denoted stem(T ). Finally, given s ∈ T , we set T/s := {t ∈ T : s & t}.
Definition 6.10 Let U = 〈Us : s ∈ N

[<∞]〉 be a family of nonprincipal ultrafilters
on N and let T be a tree on N. We say that T is a U -tree if it has a stem stem(T ),
T/ stem(T ) is nonempty, and for all s ∈ T/ stem(T ), we have that {n ∈ N :
s ∪ {n} ∈ T } ∈ Us .

Note that a U -tree T contains no&-maximal elements and that, for every s ∈ T ,
there is X ∈ [T ] such that s & X.

The goal of this section is to prove the following Ramsey-theoretic statement
about ultrafilter trees, recently proven by Trujillo in [126]:
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Theorem 6.11 Suppose that U = 〈Us : s ∈ N
[<∞]〉 is a sequence of non-

principal ultrafilters on N, T is a U -tree on N, and X ⊆ N
[∞]. Then there is a

U -tree S ⊆ T with stem(S) = stem(T ) such that one of the following holds:

1. [S] ⊆X ;
2. [S] ∩X = ∅;
3. for every U -tree S′ with S′ ⊆ S, we have [S′] �⊆X and [S′] ∩X �= ∅.

Using hyperfinite generators of ultrafilters, we obtain the following nonstandard
analogue of U -trees:

Definition 6.12 Let α = 〈αs : s ∈ N
[<∞]〉 be a family of infinite elements of ∗N

and let T be a tree on N. We say that T is a α-tree if, for all s ∈ T/ stem(T ), we
have that s ∪ {αs} ∈ ∗T .

Before proving Theorem 6.11, we need one key lemma:

Lemma 6.13 Fix α = 〈αs : s ∈ N
[<∞]〉 with each αs infinite. Suppose that

C ⊆ N
[<∞] is such that, for all s ∈ C, we have that s ∪ {αs} ∈ ∗C. Then for all

α-trees T , if stem(T ) ∈ C, then there is a α-tree S ⊆ T with stem(S) = stem(T )
such that S/ stem(S) ⊆ C.
Proof Suppose that T is a α-tree with stem(T ) ∈ H . We first recursively define sets
Ln ⊆ C ∩ T as follows. Set L0 := {stem(T )}. Supposing that Ln has been defined,
we set

Ln+1 := {s ∪ {m} : s ∈ Ln, m > max(s), and s ∪ {m} ∈ C ∩ T }.

We now set

S := {s ∈ N
[<∞] : s & stem(T )} ∪

∞⋃

n=0

Ln.

We claim that this S is as desired. It follows directly by induction that S is a tree on
N and that S ⊆ T . Moreover, by the hypothesis on C and the fact that T is an α-tree,
we have that S is also an α-tree. It is clear that stem(T ) & stem(S). However, since
stem(T ) ∪ {αstem(T )} ∈ ∗L1, we have that {n ∈ N stem(T ) ∪ {n} ∈ L1} is infinite,
whence it follows that stem(S) = stem(T ). Finally, S/ stem(S) =⋃∞

n=0 Ln ⊆ C.

We can now prove Theorem 6.11 in its equivalent nonstandard formulation:

Theorem 6.14 Suppose that α = 〈αs : s ∈ N
[<∞]〉 is a sequence of infinite

elements of ∗N, T is a α-tree on N, and X ⊆ N
[∞]. Then there is a α-tree S ⊆ T

with stem(S) = stem(T ) such that one of the following holds:

1. [S] ⊆X ;
2. [S] ∩X = ∅;
3. for every α-tree S′ with S′ ⊆ S, we have [S′] �⊆X and [S′] ∩X �= ∅.
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Proof We introduce the following three sets:

A := {s ∈ N
[<∞] : there is a α-tree S ⊆ T with stem(S) = s and [S] ⊆ X },

B := {s ∈ N
[<∞] : there is a α-tree S ⊆ T with stem(S) = s and [S] ⊆ N

∞ \X },

C := N
[<∞] \ (A ∪ B).

Claim If s ∈ C, then s ∪ {αs} ∈ ∗C.

Proof of Claim We argue by contrapositive, whence we assume that s ∪ {αs} ∈∗A∪ ∗B. We only treat the case that s ∪ {αs} ∈ ∗A, the other case being similar. Let
D := {n ∈ N : s ∪{n} ∈ A}. Note that αs ∈ ∗D. For each n ∈ D, let Tn be a α-tree
with stem(Tn) = s ∪ {n} and [Tn] ⊆X . Let S :=⋃

n∈D Tn. Observe that:

(i) S is a tree,
(ii) stem(S) = s,

(iii) {s ∪ {n} : n ∈ D} ⊆ S, and
(iv) [S] =⋃

n∈D[Tn] ⊆X .

It remains to show that S is a α-tree, for then s ∈ A, as desired. Thus, given
t ∈ S, we need t ∪{αt } ∈ ∗S. If t = s, then s ∪{αs} ∈ ∗S by item (iii) and the above
observation that αs ∈ ∗D. Otherwise, there is n ∈ D such that t ∈ Tn/(s ∪ {n}).
Since Tn is a α-tree, we have that t ∪ {αt } ∈ ∗Tn ⊆ ∗S. This finishes the proof of
the claim.

It is clear that if stem(T ) ∈ A (resp. stem(T ) ∈ B), then item (1) (resp. item
(2)) of the conclusion of the theorem holds. We may thus suppose that stem(T ) ∈
C. By Lemma 6.13, there is a α-tree S ⊆ T with stem(S) = stem(T ) such that
S/ stem(S) ⊆ C. We claim that this S is as desired. Indeed, suppose that S′ is a α-
tree with S′ ⊆ S. Then stem(S′) ∈ S/ stem(S) ⊆ C. It follows from the definition
of C that [S′] �⊆X and [S′] ∩X �= ∅, as desired.

We offer one application of Theorem 6.11. Given a tree T on N and n ∈ N, we
set T (n) := T ∩ N

[n].

Corollary 6.15 (Ramsey’s Theorem for U -Trees) Fix n ∈ N and A ⊆ N
[n].

Further fix a sequence U = 〈Us : s ∈ N
[<∞]〉 of nonprincipal ultrafilters on N

and a U -tree T . Then there is a U -tree S ⊆ T with stem(S) = stem(T ) such that
either S(n) ⊆ A or S(n) ∩ A = ∅.
Proof For each Y ⊆ N with |Y | ≥ n, set rn(Y ) ∈ N

[n] to be the unique s ∈ N
[n]

with s & Y . Set X := {Y ∈ N
[∞] : rn(Y ) ∈ A}. We apply Theorem 6.11 to U ,

T , and X , obtaining a U -tree S with S ⊆ T and stem(S) = stem(T ). Note that
S cannot satisfy item (3) in the conclusion of Theorem 6.11: if S′ is a U -tree with
S′ ⊆ S and | stem(S′)| ≥ n, then either rn(stem(S′)) ∈ A (whence [S′] ⊆ X ) or
rn(stem(S′)) /∈ A (whence [S′] ∩X = ∅). Consequently, either [S] ⊆X (whence
S(n) ⊆ A) or [S] ∩X = ∅ (whence S(n) ∩ A = ∅).
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Notes and References

The Ramsey theorem was proved in the foundational paper of Ramsey [111].
In fact, in this paper the theorem is obtained as an intermediate step towards
establishing a result in propositional logic, hence the title “On a problem of formal
logic”. While Ramsey’s theorem did not initially receive too much attention, it
was later “rediscovered” in the 1950s by Erdős and Rado who recognized its
fundamental importance and provided several variations and applications, such
as Rado’s decomposition theorem [110]. For more on the metamathematics of
Rado’s Decomposition Theorem, see [27], whose ultrafilter proof of the theorem
is essentially the proof given here. Ultrafilter trees were first introduced by Blass in
[17] and are part of the much larger local Ramsey theory, extensively developed in
the book [124].



Chapter 7
The Theorems of van der Waerden
and Hales-Jewett

As we have seen in the previous chapter, Ramsey’s theorem proved to be crucial
in the development of Ramsey theory, to which it gave its name. However, Ramsey
theory has another equally important root in works of Hindman, Shur, and van der
Waerden motivated by problems about rational functions and modular arithmetic:
Hilbert’s Cuble Lemma, Schur’s Lemma, and van der Waerden’s Theorem on
arithmetic progressions. Particularly, the latter is of fundamental importance, as
it paved the way to many of the later developments in Ramsey theory, including
partition regularity of diophantine equations (see Chap. 9) and density results
in additive combinatorics (see Chap. 10). The combinatorial essence of van der
Waerden’ theorem was later isolated by Hales and Jewett, who proved a powerful
abstract pigeonhole principle, later generalized further by Graham and Rothschild.
In this chapter, we will present nonstandard proofs of both van der Waerden’s
Theorem and the Hales–Jewett theorem.

7.1 The Theorem of van der Waerden

The van der Waerden theorem is one of the earliest achievements of what is
now called Ramsey theory. Indeed, it was established by van der Waerden in
1928 [130], thus predating Ramsey’s theorem itself. The theorem is concerned
with the notion of arithmetic progressions in the set N of natural numbers. More
precisely, for k ∈ N, a k-term arithmetic progression in N is a set of the form
a + d[0, k) := {a, a + d, a + 2d, . . . , a + (k − 1) d} for some a, d ∈ N. A k-
term arithmetic progression is also called an arithmetic progression of length k. An
arithmetic progression in ∗N is defined in a similar fashion, where one can actually
consider k-term arithmetic progressions for k ∈ ∗N.

Recall that, for k ∈ N, a k-coloring of a set A is a function from A to the set
[1, k] = {1, . . . , k}. A finite coloring of a A is a k-coloring for some k ∈ N.
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A subset B of A is monochromatic with respect to a coloring c if it is contained
in the preimage of i under c for some i ∈ [1, k]. A collection C of subsets of N
is partition regular if it is closed under supersets and, for any A ∈ C and finite
coloring c of A, there is a monochromatic B ⊆ A such that B ∈ C .

Theorem 7.1 The following are equivalent:

1. Every finite coloring of N admits arbitrarily long monochromatic arithmetic
progressions.

2. For every r, k ∈ N, there is l ∈ N such that every r-coloring of [1, l] admits a
monochromatic k-term arithmetic progression.

3. The property of containing arbitrarily long arithmetic progressions is partition
regular.

Proof (1)⇒(2) Suppose that (2) fails for some k, r . By overflow, there is L > N

and an internal r-coloring of [1, L] with no monochromatic k-term arithmetic
progression. By considering the restriction of c to N, we get an r-coloring of N

with no monochromatic k-term arithmetic progression, whence (1) fails.
(2)⇒(3) Suppose that (2) holds. Towards establishing (3), fix a set A containing

arbitrarily long arithmetic progressions and a partition of A into two pieces A =
B1 ' B2. Fix k ∈ N. Let l witness the truth of (2) with two colors and k-term
arithmetic progressions. Fix an arithmetic progression x+[0, l)d ⊆ A. For i = 1, 2,
let Ci := {n ∈ [0, l) : x + nd ∈ Bi}. Then there is i ∈ {1, 2} such that Ci contains
an arithmetic progression y+[0, k)e. It follows that (x+ yd)+[0, k)de is a k-term
arithmetic progression contained in Bi . Since some i must work for infinitely many
k’s, we see that some Bi contains arbitrarily long arithmetic progressions.

(3)⇒(1) This is obvious.

The following is a nonstandard presentation of the proof of van der Waerden’s
theorem from [60]; see also [106, Section 2.3]. First, some terminology. For k,m ∈
N and g, h ∈ [0, k]m, we say that g and h are equivalent, written g ≡ h, if g and h
agree up to the last occurrence of k.

Definition 7.2 For k,m ∈ N, let S(k,m, r, n) be the statement: for any r-coloring
of [1, n], there exist a, d0, . . . , dm−1 ∈ [1, n] such that a + k∑j<m dj ∈ [1, n]
and, for any g, h ∈ [0, k]m such that g ≡ h, the elements a +∑

j<m gjdj and
a +∑j<m hjdj have the same color. We then let S(k,m) be the statement: for all
r ∈ N, there is n ∈ N such that S(k,m, r, n) holds.

We first observe that even though the statement S(k,m, r, n) considers colorings
of [1, n], it is readily verified that its truth implies the corresponding statement for
colorings of any interval of length n.

We next observe that the finitary van der Waerden theorem is the statement that
S(k, 1) holds for all k ∈ N. Indeed, suppose that S(k, 1) holds and fix r ∈ N. Fix
n ∈ N such that S(k, 1, r, n) holds. Let c : [1, n] → [1, r] be an r-coloring of [1, n].
Then there is a, d ∈ [1, n] such that a+kd ∈ [1, n] and, since all elements of [0, k]1
are equivalent, we get that c(a + gd) = c(a + hd) for all g, h ∈ [0, k], whence we
get a monochromatic arithmetic progression of length k + 1.
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If ν ∈ ∗
N, then we also consider the internal statement S(k,m, r, ν) which is

defined exactly as its standard counterpart except that it only considers internal r-
colorings of [1, ν].
Lemma 7.3 S(k,m) is equivalent to the statement: for all r ∈ N and all ν ∈ ∗N\N,
we that have that S(k,m, r, ν) holds.

Proof First suppose that S(k,m) holds. Given r ∈ N, take n ∈ N such that
S(k,m, r, n) holds. Fix ν ∈ ∗

N\N and consider an internal r-coloring c of [1, ν].
Then c|[1,n] is an r-coloring of [1, n], whence the validity of S(k,m, r, n) yields
the desired conclusion. Conversely, if S(k,m, r, ν) holds for all ν ∈ ∗N\N, then by
underflow there is n ∈ N such that S(k,m, r, n) holds.

Theorem 7.4 S(k,m) holds for all k,m ∈ N.

Proof Suppose, towards a contradiction, that S(k,m) fails for the pair (k,m) and
that (k,m) is lexicographically least with this property.

Claim m = 1.

Proof of Claim Suppose the claim is false. We obtain a contradiction by showing
that S(k,m, r, ν) holds for all r ∈ N and all ν ∈ ∗N\N. Towards this end, fix r ∈ N,
ν ∈ ∗

N\N, and an internal coloring c : [1, ν] → [1, r]. Since S(k,m − 1) is true,
there is M ∈ N such that S(k,m − 1, r,M) is true. Write ν = NM + s with 0 ≤
s < M . Note that N ∈ ∗N\N. Consider the internal coloring cN : [1, N] → [1, rM ]
given by

cN(i) := (c((i − 1)M + 1), . . . , c((i − 1)M +M)).

Since S(k, 1, r,N) holds, there is an arithmetic progression b+ d, b+ 2d, . . . , b+
kd contained in [1, N] that is monochromatic for the coloring cN . Next, since
S(k,m − 1, r,M) holds, by considering c|[(b−1)M,bM], we see that there are
a, d0, . . . , dm−2 ∈ [(b − 1)M, bM] such that a + k∑j<m−1 dj ∈ [(b− 1)M, bM]
and, for any g, h ∈ [0, k]m−1 such that g ≡ h, the elements a +∑j<m gjdj and
a +∑j<m hjdj have the same color with respect to c.

Set dm−1 := dM . We claim that a, d0, . . . , dm−1 are as desired. First note that
a + k∑j<m dj ≤ bM + kdM ≤ NM ≤ ν. Next suppose that g, h ∈ [0, k]m are
such that g ≡ h. We wish to show that a +∑j<m gj dj and a +∑j<m hjdj have
the same color. If the last occurrence of k is m− 1, then this is obvious. Otherwise,
we see that g | m− 1 = h | m − 1, whence by assumption a +∑j<m−1 gjdj and
a+∑j<m−1 hjdj have the same color. Write a+∑j<m−1 gjdj = (b−1)M+pwith
p ∈ [1,M]. Then a +∑j<m gj dj = (b − 1)M + p + gM−1dM = (b + gm−1d −
1)M + p, which has the same color as (b − 1)M + p by assumption. Likewise,
a +∑j<m−1 hjdj = (b − 1)M + q with q ∈ [1,M], whence a +∑j<m hjdj =
(b − 1)M + q + hM−1dM = (b + hm−1d − 1)M + q , which has the same color
as (b − 1)M + q by assumption. Thus, a +∑j<m−1 gjdj and a +∑j<m−1 hj dj
have the same color, proving the claim.
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Since S(k, 1) fails, necessarily we have k > 1. We will arrive at a contradiction
by showing that S(k, 1) in fact holds. Fix r ∈ N, ν ∈ ∗

N infinite, and an
internal r-coloring c of [1, ν]. By minimality of (k, 1), we have that there exist
a, d0, . . . dr−1 ∈ [1, ν] such that a + r∑j<r dj ∈ [1, ν] and, for any g, h ∈
[1, k − 1]r with g ≡ h, we have a + ∑

j<r gjdj and a + ∑
j<r hj dj have the

same color. Observe that there are r + 1 r-tuples that are obtained by concatenating
a (possibly empty) r-tuple of (k − 1)’s and a (possibly empty) r-tuple of 0’s. Hence,
by the pigeonhole principle, there exist 1 ≤ s < t ≤ r such that a+(k − 1)

∑
i<s di

and a+ (k − 1)
∑
i<t di have the same color. We also have that a+ (k − 1)

∑
i<s di

and a + (k − 1)
∑
i<s di + j

∑
s≤i<t di have the same color for every j < k − 1.

Therefore, setting a′ := a + (k − 1)
∑
i<s di and d ′ := ∑

s≤i<t di , we have that
a′ + jd ′, for j < k, all have the same color. Since ν ∈ ∗

N\N and c were arbitrary,
this witnesses that S(k, 1) holds, yielding the desired contradiction.

We will see in the next section that the Hales-Jewett theorem allows us to
immediately conclude a generalization of the van der Waerden theorem.

7.2 The Hales-Jewett Theorem

Let L be a finite set (alphabet). We use the symbol x to denote a variable not in
L. We let WL denote the set of finite strings of elements of L (called words in L),
and WLx denote the set of finite strings of elements of L ∪ {x} with the property
that x appears at least once (called variable words). We denote (variable) words by
v,w, z and letters by a, b, c. If w is a variable word and a is a letter, then we denote
by w [a] the word obtained from w by replacing every occurrence of x with a. For
convenience, we also set w [x] := w. The concatenation of two (variable) words
v,w is denoted by v�w.

Definition 7.5 Fix a sequence (wn) of variable words

1. The partial subsemigroup of WL generated by (wn), denoted [(wn)]WL , is the set
of all words wn0 [a0]� · · ·�wnk−1 [ak−1], where k ∈ N, n0 < · · · < nk−1, and
a0, . . . , ak−1 ∈ L.

2. The partial subsemigroup of WLx generated by (wn), denoted [(wn)]WLx , is the
set of all words wn0 [λ0]� · · ·�wnk−1 [λk−1], where k ∈ N, n0 < · · · < nk−1,
λ0, . . . , λk−1 ∈ L ∪ {x}, and some λi = x.

Theorem 7.6 (Infinite Hales-Jewett) For every finite coloring ofWL ∪WLx there
exists an infinite sequence (wn) of variable words such that [(wn)]WL and [(wn)]WLx
are both monochromatic.

There is also a finitary version of the Hales-Jewett theorem. Suppose that
x1, . . . , xm are variables. A variable word w in the variables x1, . . . , xm in the
alphabetL is a string of symbols in L∪{x1, . . . , xm} such that, for every 1 ≤ i ≤ m,
xi occurs in w, and for every 1 ≤ i < j ≤ m, the first occurrence of xi precedes the
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first occurrence of xj . The wordw [a1, . . . , am] obtained fromw by substituting the
variable xi with the letter ai for i = 1, 2, . . . ,m is defined in the obvious way.

Corollary 7.7 (Finite Hales-Jewett) For any finite alphabet L and any
r,m ∈ N there exists n ∈ N such that for any r-coloring of the set WL (n)
of L-words of length n there exist a variable word w of length n in the
alphabet L and variables x1, . . . , xm such that the “combinatorial m-subspace”
{w [a1, . . . , am] : a1, . . . , an ∈ L} is monochromatic.

A combinatorialm-subspace for m = 1 is usually called a combinatorial line.

Proof We let WLx(n) denote the elements of WLx of length n and WL (n) denote
the elements of WL of length n. Suppose, towards a contradiction, that there is
r ∈ N such that, for each n, there is a “bad” r-coloring of WL(n) that admits
no monochromatic combinatorial line. By a compactness argument there is an r-
coloring c of WL such that the restriction of c to WL (n) is a bad r-coloring for
every n ∈ N. By the Infinite Hales-Jewett Theorem, there is a sequence (wi)
for which [(wi)]WL is monochromatic. For i = 1, 2, . . . ,m, rename the variable
x of wi by xi , and consider the variable word w := w1

�w2
� · · ·�wm in the

variables {x1, . . . , xm}. If n is the length of w, then by the choice ofw1, . . . , wm the
combinatorial subspace {w [a1, . . . , am] : a1, . . . , an ∈ L} is monochromatic. This
contradicts the fact that the restriction of c toWL (n) is a bad r-coloring.

From the Hales-Jewett theorem one can deduce a multidimensional generaliza-
tion of van der Waerden’s theorem, known as Gallai’s theorem.

Theorem 7.8 (Gallai) Fix d ∈ N, a finite F ⊂ N
d , and r ∈ N. Then there exists

n ∈ N such that, for any r-coloring of [−n, n]d , there exist a ∈ N
d and c ∈ N such

that the affine image a + cF := {a + cx : x ∈ F } of F is monochromatic.

Proof Consider the finite alphabet L = F . For n ∈ N, consider the map Ψn :
WL (n)→ N

d defined by Ψn((a1, . . . , an)) = a1+· · ·+an. Observe that Ψn maps
a combinatorial line to an affine image of F . Thus the conclusion follows from the
finitary Hales-Jewett theorem.

In the rest of the section we present the proof of Theorem 7.6. ConsiderWL and
WL ∪ WLx as semigroups with respect to concatenation. Thus their nonstandard
extensions ∗WL and ∗WL∪∗WLx have canonical semigroup operations with respect
to the nonstandard extension of the concatenation operation, which we still denote
by “�”. The elements of ∗WL can be regarded as hyperfinite strings of elements of
∗L, and similarly for ∗WLx . For every a ∈ L ∪ {x} we also denote by � �→ � [a]
the nonstandard extension of the substitution operationWLx → WL, w �→ w [a].

Lemma 7.9 There exists a u-idempotent� in ∗WLx and a u-idempotent υ ∈ ∗WL
such that��∗υ ∼ υ�∗� ∼ � and� [a] ∼ υ for every a ∈ L.
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Proof Fix an enumeration {a1, . . . , am} of L. We define, by recursion on k =
1, . . . ,m, u-idempotent elements �1, . . . ,�m of ∗WLx and υ1, . . . , υm of ∗WL
such that, for 1 ≤ i ≤ j ≤ m,

1. �j [ai] ∼ υj , and
2. �j ∼ �j�∗υi ∼ υi�∗�j .

Supposing this has been done, the conclusion of the lemma holds by taking � :=
�m and υ := υm.

To begin, we let �0 be any nontrivial u-idempotent element of ∗WLx and set
υ1 := �0 [a1], which we note is an u-idempotent element of ∗WL. Let ρ1 be an
element of ∗WLx such that ρ1 ∼ �0

�∗υ1. Observe that ρ1 [a1] ∼ υ1 and ρ1
�∗υ1 ∼

ρ1. Thus, the compact u-semigroup

{
z ∈ ∗WLx : z [a1] ∼ υ1 and z�∗υ1 ∼ z

}

is nonempty, whence it contains a u-idempotent β1. We now fix �1 ∈ ∗WLx such
that �1 ∼ υ1

�∗β1. It follows now that �1 is u-idempotent and �1 and υ1 satisfy
(1) and (2) above.

Suppose that �i, υi have been defined for 1 ≤ i ≤ k < m satisfying (1) and (2)
above. Set υk+1 := �k [ak+1]. Observe that υk+1 ∼ υk+1

�∗υi ∼ υi�∗υk+1 for 1 ≤
i ≤ k + 1. Let ρk+1 be an element of ∗WLx such that ρk+1 ∼ �k�∗υk+1. Observe
that υi

�∗ρk+1 ∼ ρk+1
�∗υi ∼ ρk+1 and ρk+1 [ai] ∼ υk+1 for 1 ≤ i ≤ k + 1. Thus,

the compact u-semigroup

{
z ∈ ∗WLx : z [ai] ∼ υk+1 and z�∗υi ∼ z for 1 ≤ i ≤ k + 1

}

is nonempty, whence it contains a u-idempotent element βk+1. Finally, fix �k+1 in
∗WLx such that �k+1 ∼ υk+1

�∗βk+1. It follows that �k+1 is u-idempotent and
(1) and (2) continue to hold for �i and υi for 1 ≤ i ≤ k + 1. This completes the
recursive construction and the proof of the lemma.

In the statement of the following proposition, we assume that � and υ are as in
the conclusion of Lemma 7.9.

Proposition 7.10 Suppose that A ⊂ WL and B ⊂ WLx are such that υ ∈ ∗A and
� ∈ ∗B. Then there exists an infinite sequence (wn) in WLx such that [(wn)]WL is
contained in A and [(wn)]WLx is contained in B.

Proof Set C := A ∪ B. Observe that � satisfies, for every a, b ∈ L ∪ {x},

� [a] ∈ ∗C

� [a]�∗� [b] ∈ ∗∗C.
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Therefore, by transfer, there exists w0 ∈ WLx that satisfies, for every a0, a1 ∈
L ∪ {x},

w0 [a0] ∈ C
w0 [a0]�� [a1] ∈ ∗C.

From this we also have, for every a0, a1, b ∈ L ∪ {x}, that,

w0 [a0]�� [a1]�∗� [b] ∈ ∗∗C.

Therefore, by transfer, there exists w1 ∈ WLx that satisfies, for every a0, a1, a2 ∈
L ∪ {x}:

w0 [a0] ∈ C
w1 [a1] ∈ C

w0 [a0]�w1 [a1] ∈ C
w0 [a0]�� [a2] ∈ ∗C
w1 [a1]�� [a2] ∈ ∗C

w0 [a0]�w1 [a1]�� [a2] ∈ ∗C.

Proceeding recursively, one can assume that at the n-th step elementsw0, . . . , wn−1
of WLx have been defined such that, for every n1 < · · · < nk < n and
a0, . . . , an−1, a ∈ L ∪ {x}, one has that

wn1

[
an1

]
� · · ·�wnk

[
ank
] ∈ C

wn1

[
an1

]
� · · ·�wnk

[
ank
]
�� [a] ∈ ∗C.

From this one deduces also that for every a, b ∈ L ∪ {x} one has that

wn1

[
an1

]
� · · ·�wnk

[
ank
]
�� [a]�∗� [b] ∈ ∗∗C.

Hence, by transfer one obtains wn ∈ WLx such that for every n1 < · · · < nk ≤ n
and a0, . . . , an, a ∈ L ∪ {x}, one has that

wn1

[
an1

]
� · · ·�wnk

[
ank
] ∈ C

wn1

[
an1

]
� · · ·�wnk

[
ank
]
�� [a] ∈ ∗C.

This concludes the recursive construction.
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Theorem 7.6 now follows immediately from Proposition 7.10. Indeed, if
{A1, . . . , Ar } is a finite coloring of WL ∪ WLx , then there exist 1 ≤ i, j ≤ r

such that υ ∈ ∗Ai and� ∈ ∗Aj .

Notes and References

Van der Waerden’s theorem [130] is chronologically one of the first results in
Ramsey theory, although preceded by the Hindman Cube Lemma [67] and by
Schur’s lemma on Schur triples [116]. Both van der Waerden’s theorem and Schur’s
lemma were motivated by problems in modular arithmetic; see also [106, Chapter 2].

The Hales-Jewett theorem [66] is an abstract Ramsey-theoretic result motivated
by the mathematical study of positional games such as “Tic-Tac-Toe” or “Go
Moku”. The original proof of Hales and Jewett from [66] was finitary and purely
combinatorial. An infinitary proof was given by Bergelson et al. in [16]; see
also [124, Chapter 2]. Combinatorial lines and combinatorial subspaces are also
the object of the Graham–Rothschild theorem [59]. This was motivated by a
conjecture of Rota on a geometric analogue of Ramsey’s theorem. The conjecture
was eventually established by Graham, Leeb, and Rothschild using similar methods
[61].



Chapter 8
From Hindman to Gowers

The seminal results of Schur (Schur’s Lemma) and Hilbert (Hilbert Cube Lemma)
eventually led to the development of a whole research area at the interface between
Ramsey theory and additive combinatorics. In this context, one studies which
additive combinatorial configurations in N are partition regular, i.e. they can be
found within a color of each finite coloring of N. While van der Waerden’s theorem
on arithmetic progressions (discussed in the previous chapter) is the most famous
early result in this area, several other additive configurations were later shown to
be partition regular. Among these there are sets of finite sums of a finite sequence,
which is the content of Folkman’s theorem.

A conceptual leap was made in 1974 by Hindman when he established the
infinitary version of Folkman’s theorem. Hindman’s theorem asserts that sets of
finite sums of infinite sequences are partition regular, a result which is strictly
stronger than its finitary counterpart. It had been observed by Galvin that such
a statement is equivalent to the existence of an idempotent ultrafilter. Idempotent
ultrafilters were not known to exist at the time and Hindman’s original proof is
purely combinatorial. It was later observed by Galvin that one can deduce the
existence of idempotents ultrafilters from Ellis’ theorem in topological dynamics,
thus obtaining a short proof of Hindman’s theorem.

Hindman’s theorem was one of the first instances where ultrafilters and infinitary
methods were shown to have a strong bearing on combinatorics in N. Several
refinements and generalizations were later obtained, almost all of which are rely on
establishing the existence of certain ultrafilter configurations. Among these results
is Gowers’ Ramey Theorem for FINk , which was motivated by a problem in the
geometry of Banach spaces (namely oscillation-stability of c0). In this chapter,
we will present these fundamental results of Hindman and Gowers as well as
the Milliken-Taylor Theorem, which is a simultaneous generalization of Ramsey’s
Theorem and Hindman’s Theorem.
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8.1 Hindman’s Theorem

Hindman’s theorem is another fundamental pigeonhole principle, which consid-
ers the combinatorial configurations provided by sets of finite sums of infinite
sequences.

Definition 8.1

1. Let (cn) be a sequence of elements of N. Given a finite nonempty subset F of N,
define cF := ∑

n∈F cn. Set FS((cn)) := {cF : F ⊆ N finite, nonempty}. One
can similarly define cF and FS(c1, . . . , ck) for a finite sequence (c1, . . . , ck) of
elements of N.

2. We say that A ⊆ N is an FS-set if there is an infinite sequence (cn) of distinct
elements from N such that FS((cn)) ⊆ A.

We begin this section by proving:

Theorem 8.2 (Folkman’s Theorem) For any m, r ∈ N, there is n ∈ N such that,
for any r-coloring of [1, n], there are d1, . . . , dm ∈ [1, n] such that FS(d1, . . . , dm)

is monochromatic.

Folkman’s theorem is a straightforward consequence of van der Waerden’s
theorem, as we show below following [117]. We say that FS(d1, . . . , dm) is weakly
monochromatic for some coloring if the color of dF depends only on maxF . Call the
version of Folkman’s theorem where monochromatic sets are replaced with weakly
monochromatic sets the weak version of Folkman’s theorem.

Exercise 8.3 The weak version of Folkman’s theorem implies Folkman’s theorem.
(Hint: If there are d1, . . . , dm such that FS(d1, . . . , dm) is weakly monochromatic
for a coloring with r colors, then there are e1, . . . , en, where n = (m/r), such that
FS(e1, . . . , en) is actually monochromatic for the coloring.)

Proof (of Theorem 8.2) By Exercise 8.3, it suffices to prove the weak version
of Folkman’s theorem, which we prove by induction on m. The weak version of
Folkman’s theorem is clearly true for m = 1. Assume now that it is true for a given
m and we prove that it is true for m + 1. Fix r and let n witness the truth of the
weak version of Folkman’s theorem for m and r , and let p witness the truth of van
der Waerden’s theorem guaranteeing progressions of length m + 1 for colorings
with r colors. We claim that p witnesses the truth of the weak version of Folkman’s
theorem form+ 1 and r . To see this, fix p′ ≥ p and an r-coloring c of [1, p′]. Take
a monochromatic subset a + id , i = 0, 1, . . . ,m, for the coloring c, say with color
q ∈ {1, . . . , r}. By the choice of m, there are i1, . . . , in ∈ {1, . . . ,m} such that,
setting xj := ij d , we have that FS(x1, . . . , xd) is weakly monochromatic for c.
Setting xd+1 := a, we see that FS(x1, . . . , xd, xd+1) is also weakly monochromatic
for c. Indeed, given F ⊆ {1, . . . , d + 1}, either d + 1 /∈ F , in which case c(xF )
depends only on maxF by assumption, or else maxF = d + 1, in which case
c(xF ) = q .
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An immediate consequence of Folkman’s theorem is the statement that, for any
finite coloring of N, there are arbitrarily large finite sequences (c1, . . . , cn) in N

such that FS(c1, . . . , cn) is monochromatic. The main result of this section, due
to Hindman, allows us to find an infinite sequence (cn) in N such that FS((cn)) is
monochromatic. Just as the infinite Ramsey theorem cannot just be deduced from its
finite form, Hindman’s theorem cannot simply be deduced from Folkman’s theorem.

Theorem 8.4 Suppose that α ∈ ∗
N is u-idempotent. Then for every A ⊆ N, if

α ∈ ∗A, then A is an FS-set.

Proof We define by recursion x0 < x1 < · · · < xn such that xF ∈ A and xF + α ∈∗A for any F ⊆ {0, 1, . . . , n}. Note that, since α is idempotent, we also have that
xF + α + ∗α ∈ ∗∗A. Suppose that these have been defined up to n. The statement
“there exists w ∈ ∗

N such that w > xn and, for every subset F of {0, 1, 2, . . . , n},
xF+w ∈ ∗A and xF+w+∗α ∈ ∗∗A” holds, as witnessed byw = α. So, by transfer
there exists xn+1 ∈ N larger than xn such that xF+xn+1 ∈ A and xF+xn+1+α ∈ ∗A
for any F ⊆ {0, 1, . . . , n}. This concludes the recursive construction.

Corollary 8.5 (Hindman) Any finite coloring of N has a monochromatic FS-set.

Proof Let N := C1 ' · · · ' Cr be a finite coloring of N. Let α be a u-idempotent
element of ∗N and let i be such that α ∈ ∗Ci . The result now follows from the
previous theorem.

Lemma 8.6 Suppose that (cn) is a sequence of distinct elements fromN. Then there
is an idempotent α ∈ ∗N such that α ∈ ∗ FS((cn)).

Proof For each m, let Um be the closed subset ∗ FS((cn)n≥m) of ∗N. We have that
S := ⋂

m Um is a closed subset of ∗N which is nonempty by compactness of ∗N
with the u-topology. We claim that S is a u-subsemigroup of ∗N. Indeed, suppose
that α, β ∈ S and let γ ∈ ∗N such that α+∗β ∼ γ . We claim that γ ∈ S. Fixm ∈ N.
We must show that γ ∈ ∗ FS((cn)n≥m) or, equivalently, α + ∗β ∈ ∗∗ FS((cn)n≥m).
Write α = cF for some hyperfinite F ⊆ {n ∈ ∗

N : n ≥ m}. By transferring the
fact that β ∈ ⋂m Sm, there is hyperfiniteG ⊆ {n ∈ ∗∗

N : n > max(F )} such that
∗β = cG, and so α + ∗β = cF + cG ∈ ∗∗ FS((cn)n≥m).

It follows that S is a nonempty closed u-subsemigroup of ∗
N, whence, by

Corollary 4.13, there is an idempotent α ∈ S, which, in particular, implies that
α ∈ ∗ FS((cn)).

Corollary 8.7 (Strong Hindman’s Theorem) Suppose that C is an FS-set and C
is partitioned into finitely many pieces C1, . . . , Cn. Then some Ci is an FS-set.

Proof Take (cn) such that FS((cn)) ⊆ C. Take α ∈ ∗
N u-idempotent such that

α ∈ ∗ FS((cn)). Then α ∈ ∗C as well, whence α ∈ ∗Ci for some i = 1, . . . , n, and
this Ci is itself thus an FS-set.

Exercise 8.8 Let Idem := {α ∈ ∗
N : α is u-idempotent}. Prove that α ∈ Idem if

and only if: for every A ⊆ N, if α ∈ ∗A, then A is an FS-set. Here, Idem denotes
the closure of Idem in the u-topology.
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8.2 The Milliken-Taylor Theorem

We denote by N
[m] the set of subsets of N of size m. We identify N

[m] with the set
of orderedm-tuples of elements of N increasingly ordered. If F,G are finite subsets
of N, we write F < G if either one of them is empty, or they are both nonempty and
the maximum of F is smaller than the minimum ofG. Recall that for F ⊆ N finite,
we use the notation xF for

∑
i∈F xi , where we declare xF = 0 when F is empty.

The goal of this section is to prove the following:

Theorem 8.9 (Milliken-Taylor) For any m ∈ N and finite coloring of N[m], there
exists an increasing sequence (xn) in N such that the set of elements of the form{
xF1, . . . , xFm

}
for finite nonempty subsets F1 < · · · < Fm of N is monochromatic.

We note that the Milliken-Taylor theorem is a simultaneous generalization of
Ramsey’s theorem (by taking the finite sets F1, . . . , Fm to have cardinality one) and
Hindman’s theorem (by taking m = 1).

The heart of the nonstandard approach is the following:

Proposition 8.10 Suppose that m ∈ N and α ∈ ∗
N is u-idempotent. If A ⊂ N

[m]

is such that
{
α, ∗α, . . . , ∗(m−1)α

} ∈ ∗mA, then there exists an increasing sequence
(xn) in N such that

{
xF1, xF2, . . . , xFm

} ∈ A for any finite nonempty subsets F1 <

· · · < Fm of N.

Proof We define by recursion an increasing sequence (xn) such that

{
xF1, xF2, . . . , xFj , α,

∗α, . . . , ∗(m−j−1)α
}
∈ ∗(m−j)A

and
{
xF1, xF2, . . . , xFj−1 , xFj + α, ∗α, ∗∗α, . . . , ∗(m−j)α

}
∈ ∗(m−j+1)A

for every 1 ≤ j ≤ m and finite F1 < · · · < Fj such that F1, . . . , Fj−1
are nonempty. It is clear that the sequence (xn) satisfies the conclusion of the
proposition.

Suppose that we have constructed x1 < · · · < xn−1 satisfying the recursive
construction (where of course now F1, . . . , Fj are subsets of {1, . . . , n− 1}). Since
α is u-idempotent, we also have, for any 1 ≤ j ≤ m and F1, . . . , Fj as above, that

{
xF1, xF2, . . . , xFj−1 , xFj + α + ∗α, ∗∗α, . . . , ∗(m−j+1)α

}
∈ ∗(m−j+2)A.

Therefore, by transfer there exists xn > xn−1 such that

{
xF1, xF2, . . . , xFj−1, xFj + xn, α, ∗α, . . . , ∗(m−j−1)α

}
∈ ∗(m−j)A
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and
{
xF1, xF2, . . . , xFj−1 , xFj + xn + α, ∗α, . . . , ∗(m−j)α

}
∈ ∗(m−j+1)A

for any 1 ≤ j ≤ m and F1 < · · · < Fj contained in {1, 2, . . . , n− 1} such that
F1, . . . , Fj−1 are nonempty. This concludes the recursive construction and the proof
of the proposition.

Theorem 8.9 follows immediately from Proposition 8.10. Indeed, suppose
N
[m] = A1 ' · · · ' Ar is a partition of N

[m]. Fix α ∈ ∗
N a u-idempotent. Let

i ∈ {1, . . . , r} be such that
{
α, ∗α, . . . , ∗m−1α

} ∈ ∗mAi . Then Ai is the desired
color.

Observe now that if λ ∈ N and α ∼ α + ∗α, then λα ∼ λα + λ∗α. Hence the
same proofs as above shows the following slight strengthening of Proposition 8.10,
and hence of the Milliken-Taylor theorem.

Proposition 8.11 Suppose that m ∈ N, λ1, . . . , λm ∈ N, and α ∈ ∗
N is u-

idempotent. If A ⊂ N[m] is such that
{
α, ∗α, . . . , ∗(m−1)α

} ∈ ∗mA, then there exists
an increasing sequence (xn) in N such that

{
λ1xF1, . . . , λmxFm

} ∈ A for any finite
nonempty subsets F1 < · · · < Fm of N.

Theorem 8.12 For any m ∈ N, λ1, . . . , λm ∈ N, and finite coloring of N[m],
there exists an increasing sequence (xn) in N such that the set of elements of the
form

{
λ1xF1, . . . , λmxFm

}
for finite nonempty subsets F1 < · · · < Fm of N is

monochromatic.

From the previous theorem, it is straightforward to deduce an “additive” version:

Corollary 8.13 For any m ∈ N, c1, . . . , cm ∈ N, and finite coloring of N,
there exists an increasing sequence (xn) in N such that the set of elements of the
form c1xF1 + · · · + cmxFm for finite nonempty subsets F1 < · · · < Fm of N is
monochromatic.

8.3 Gowers’ Theorem

The following partial semigroup was defined in Chap. 1. We recall the definition for
the convenience of the reader.

Definition 8.14 For k ∈ N, we let FINk denote the set of functions b : N →
{0, 1, . . . , k} with Supp(b) finite and such that k belongs to the range of b. Here,
Supp (b) := {n ∈ N : b(n) �= 0} is the support of b. We extend the definition of
FINk to k = 0 by setting FIN0 to consist of the function on N that is identically 0.

Note that, after identifying a subset of N with its characteristic function, FIN1
is simply the set of nonempty finite subsets of N. We endow FINk with a partial
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semigroup operation (b0, b1) �→ b0 + b1 which is defined only when Supp (b0) <

Supp (b1).
By transfer, ∗FINk is the set of internal functions b : ∗N → {0, 1, . . . , k} with

hyperfinite support that have k in their range. The partial semigroup operation on
FINk extends also to ∗FINk . We say that α ∈ ∗FINk is cofinite if its support is
disjoint from N. (This is a particular instance of Definition 4.14 in the case of the
partial semigroup FINk .) Thus, if α, β ∈ ∗FINk are cofinite and i < j , then the sum
∗iα + ∗j β exists.

Gowers’ original theorem considers the tetris operation T : FINk → FINk−1
given by T (b)(n) := max {b(n)− 1, 0}. In this section, we prove a more general
version of Gowers’ theorem by considering a wider variety of functions FINk →
FINj for j ≤ k. First, for k ∈ N, by a regressive map on k or generalized tetris
operation, we mean a nondecreasing surjection f : [0, k] → [0, f (k)]. Given a
regressive map f on k, one can define a corresponding operation f : FINk →
FINf (k) by setting f (b) := f ◦ b. Note also that if l ≤ k, then f |[0,l] is a regressive
map on l, whence we can also consider f : FINl → FINf (l).

Given n ∈ N, we set FIN[0,n] := ⋃n
k=0 FINk . Note that FIN[0,n] is also a

partial semigroup given by pointwise addition and defined on pairs of functions
with disjoint supports. If f is a regressive map on n, then as we already recalled,
f |[0,k] is a regressive map on k for 1 ≤ k ≤ n, whence f yields a function
f : FIN[0,n] → FIN[0,f (n)].

Given a regressive map f on n, we get the nonstandard extension f : ∗FINn →∗FINf (n) and f : ∗FIN[0,n] → ∗FIN[0,f (n)]. In addition, if α, β ∈ ∗FIN[0,n] are
cofinite and i < j , then ∗iα + ∗jβ exists and f (∗iα + ∗jβ) = f (∗iα)+ f (∗jβ).

If αk ∈ ∗FINk for k = 1, . . . , n, we say that a tuple 〈α1, . . . , αn〉 is coherent
if f (αk) ∼ αf (k) for all k = 1, . . . , n and all regressive maps f on n. It is easy
to verify that the set Z of all cofinite coherent tuples is a compact u-semigroup.
We note that Z is nonempty. Indeed, let α1 ∈ ∗FIN1 be any cofinite element. For
k = 2, . . . , n, let αk ∈ ∗FINk have the same support as α1 and take only the values
0 and k. It is immediate that (α1, . . . , αn) ∈ Z.

Finally, we introduce some convenient notation. Given α0, α1, . . . , αj ∈
∗FIN[0,n] and j ∈ N, we set

j⊕

i=0

αi := α0 + ∗α1 + · · · + ∗j αj .

Thus, if each αi is cofinite and f is a regressive map on n, we have the convenient
equation

f (

j⊕

i=1

αi) =
j⊕

i=1

f (αi).
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Lemma 8.15 Fix n ∈ N. Then, for k = 1, . . . , n, there exist cofinite u-idempotents
αk ∈ ∗FINk such that:

1. 〈α1, . . . , αn〉 is a coherent tuple, and
2. αj + ∗αk ∼ αk + ∗αj ∼ αk for every 1 ≤ j ≤ k ≤ n.
Proof We define, by recursion on k = 1, 2, . . . , n, a sequence of u-idempotents

α(k) = (α(k)1 , . . . , α(k)n ) ∈ Z

such that, for 1 ≤ i ≤ j ≤ k ≤ n, one has that

(a) α(k)i ∼ α(j)i ,

(b) α(k)j + ∗α(k)i ∼ α(k)j .

To begin the construction, let α(1) be any idempotent element of Z. Now suppose
now that k < n and α(1), . . . ,α(k) have been constructed satisfying (a) and (b).
Consider the closed u-semigroupZk consisting of sequences β = (β1, . . . , βk) ∈ Z
such that:

(i) βj ∼ α(k)j for 1 ≤ j ≤ k, and
(ii) βj + ∗βi ∼ βj for 1 ≤ i < j ≤ n and 1 ≤ i ≤ k.

We claim that Zk is nonempty. Indeed, we claim it contains the sequence β =
(β1, . . . , βk), where βj ∈ ∗FINj is such that

βj ∼
j−1⊕

i=0

α
(k)
j−i .

To see that β is coherent, fix a regressive map f on n. For a given j ∈ [1, k], we
have that

f
(
βj
) ∼

j−1⊕

i=0

f (α
(k)
j−i ) ∼

j−1⊕

i=0

α
(k)
f (j−i) ∼

f (j)−1⊕

i=0

α
(k)
f (j)−i ∼ βf (j).

The second equivalence uses that α(k) is coherent, while the third equivalence uses
that f is a regressive map and that α(k) is a u-idempotent. Next observe that, since
α(k) satisfies (b), we have that βj ∼ ⊕j−k

i=0 α
(k)
j−i for j = 1, . . . , n, and, moreover,

that βj ∼ α(k)j for j = 1, 2, . . . , k. Thus, if 1 ≤ i < j ≤ n and 1 ≤ i ≤ k, it follows
that

βj + ∗βi ∼
j−k⊕

i=0

α
(k)
j−i + ∗kαi ∼

j−k⊕

i=0

α
(k)
j−i ,
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where the last equivalence follows from (b). This concludes the proof that β belongs
to Zk .

Since Zk is a nonempty closed u-semigroup, it contains an idempotent α(k+1). It
is clear that α(k+1) satisfies (a) and (b). This concludes the recursive construction.

For k = 1, . . . , n, we fix αk ∈ ∗FINk such that

αk ∼
k⊕

i=1

α
(i)
i .

We claim that α1, . . . , αn are as in the conclusion of the lemma. Towards this end,
first fix a regressive map f on n. We then have that

f
(
αj
) ∼

k⊕

i=1

f (α
(i)
i ) ∼

k⊕

i=1

α
(i)
f (i) ∼

f (k)⊕

i=1

α
(i)
i ∼ αf (j),

where the second to last step uses the fact that f is a regressive map, that the α(k)i ’s
are u-idempotent, and that (a) holds. We thus have that α1, . . . , αn are coherent. We
now show that (2) holds. Fix 1 ≤ j ≤ k ≤ n. We then have

αk + ∗αj ∼
k⊕

i=1

α
(i)
i +

j⊕

i=1

α
(i)
i ∼

k⊕

i=1

α
(i)
i ∼ αk,

where the second to last equivalence repeatedly uses the fact that α(k)k +∗α(i)i ∼ α(k)k
for 1 ≤ i ≤ k. A similar computation shows that αj + ∗αk ∼ αk , establishing (2)
and finishing the proof of the lemma.

We say that a sequence (xi) in FINn is a block sequence if Supp (xi) < Supp
(
xj
)

for i < j .

Theorem 8.16 Suppose that αk ∈ ∗FINk for k = 1, 2, . . . , n are as in the previous
lemma. For k = 1, . . . , n, suppose thatAk ⊂ FINk is such that αk ∈ ∗Ak . Then there
exists a block sequence (xi) in FINn such that, for every finite sequence f1, . . . , f�
of regressive maps on n, we have f1 (x1)+ · · · + f� (x�) ∈ Amax(f1(n),...,f�(n)).

Proof By recursion on d , we define a block sequence (xd) in FINn such that, for
every sequence f1, . . . , fd+1 of regressive maps n, we have

f1 (x1)+ · · · + fd (xd) ∈ Amax(f1(n),...,fd(n))

and

f1 (x1)+ · · · + fd (xd)+ fd+1 (αn) ∈ ∗Amax(f1(n),...,fd+1(n)).
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Suppose that x1, . . . , xd has been constructed satisfying the displayed properties.
Suppose that f1, . . . , fd+2 are regressive maps on n. Then since

fd+1(αn)+ fd+2(
∗αn) ∼ αfd+1(n) + ∗αfd+2(n) ∼ αmax(fd+1(n),fd+2(n)) ∼ fd+p(αn),

where p ∈ {1, 2} is such that max(fd+1(n), fd+2(n)) = fd+p(n), the inductive
hypothesis allows us to conclude that

f1 (x1)+ · · · + fd−1 (xd)+ fd+1 (αn)+ fd+2
(∗αn

) ∈ ∗∗Amax(f1(n),...,fd+2(n)).

Therefore, by transfer, we obtain xd+1 ∈ FINn such that Supp (xd+1) > Supp (xd),
and, for any sequence f1, . . . , fd+2 of regressive maps on n, we have that

f1 (x1)+ · · · + fd (xd+1) ∈ Amax(f1(n),...,fd+1(n))

and

f1 (x1)+ · · · + fd+1 (xd+1)+ fd+2 (αn) ∈ ∗Amax(f1(n),...,fd+2(n)).

This concludes the recursive construction.

Corollary 8.17 (Generalized Gowers) For any finite coloring of FINn, there exists
a block sequence (xi) in FINn such that the set of elements of the form f1 (x1) +
· · · + f� (x�) for � ∈ N where f1, . . . , f� and regressive maps on n such that n =
max(f1(n), . . . , f�(n)), is monochromatic.

Proof If FINn = B1 ' · · · ' Br is a partition of FINn, apply the previous theorem
with An := Bi where αn ∈ ∗Bi .

Gowers’ original theorem is a special case of the previous corollary by taking
each fi to be an iterate of the tetris operation. One can also obtain a common
generalization of Gowers’ theorem and the Milliken-Taylor theorem. We let FIN[m]

k

be the set of m-tuples (x1, . . . , xm) in FINk such that Supp (xi) < Supp
(
xj
)

for 1 ≤ i < j ≤ m. Suppose that (xd) is a sequence in FINn. Suppose that
F = {a1, . . . , ar } is a finite nonempty subset of N. We let S (F, k) be the set
of tuples f = (

fj
)
j∈F such that fj : {0, 1, . . . , n} → {

0, 1, . . . , kj
}

is a

nondecreasing surjection and max
{
kj : j ∈ F

} = k. For such an element f we
let xf be the sum fa1

(
xa1

) + · · · + far
(
xar
)
. When F is empty, by convention we

let S (F, k) contain a single element f = ∅, and in such case xf = 0.

Theorem 8.18 Let 〈α1, . . . , αn〉 be as in Lemma 8.15. Suppose that Ak ⊂ FIN[m]
k

for k = 1, 2 . . . , n is such that
(
αk,

∗αk, . . . , ∗(m−1)αk
) ∈ ∗mAk . Then there exists

a block sequence (xd) in FINn such that, given k ∈ {1, . . . , n}, nonempty finite
subsets F1 < . . . < Fm of N, and fi ∈ S (Fi, k) for i = 1, . . . ,m, we have that
{xf 1

, . . . , xfm} ∈ Ak .
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Proof We define by recursion a block sequence (xd) in FINn such that, for all k ∈
{1, . . . , n}, all 1 ≤ j ≤ m, all finite F1, . . . , Fj ⊆ N with F1 < · · · < Fj and
F1, . . . , Fj−1 nonempty, and all fi ∈ S (Fi, k), we have

{
xf 1
, xf 2

, . . . , xf j , αk,
∗αk, . . . , ∗(m−j−1)αk

}
∈ ∗(m−j)Ak

and
{
xf 1
, xf 2

, . . . , xf j−1
, xf j + αk, ∗αk, ∗∗αk, . . . , ∗(m−j)αk

}
∈ ∗(m−j+1)Ak.

It is clear that the sequence (xd) is as desired.
Suppose that x1, . . . , xd have been constructed satisfying the above assumption.

From the properties of the sequence α1, . . . , αn, we see that the second condition
also implies, for all 1 ≤ s ≤ k:

{xf 1
, . . . , xf j + αk + ∗αs, ∗∗αk, . . . , ∗(m−j+1)αk} ∈ ∗(m−j+2)Ak

and

{xf 1
, . . . , xf j + αs + ∗αk, ∗∗αk, . . . , ∗∗(m−j+1)αk} ∈ ∗(m−j+2)Ak .

It follows from transfer that we can find xd+1 with Supp(xd+1) > Supp(xd) as
desired.

Notes and References

Hindman’s theorem on finite sums, initially conjectured by Graham and Rothschild
in [59], was first proved by Hindman by purely combinatorial methods [69]. It
had been previously observed by Galvin—see also [68]—that the existence of an
idempotent ultrafilter (which was unknown at the time) yields the conclusion of
Hindman’s theorem. The existence of idempotent ultrafilters was later established
by Glazer; see [30]. Remarkably, Hindman’s original combinatorial proof was
significantly more technical and required a substantial amount of bookkeeping.
Another short proof of Hindman’s theorem was also obtained shortly later by
Baumgartner [6].

Gowers’ theorem [57] was motivated by a problem on the geometry of the
Banach space c0. While Gowers’ original proof was infinitary and used ultrafilter
methods, explicit purely combinatorial proofs of the corresponding finitary state-
ment were later obtained by Ojeda-Aristizabal [105] and Tyros [127]. The more
general version of Gowers’ theorem presented in this chapter was established in
[97]. This answered a question of Bartošová and Kwiatkowska from [5], where the
corresponding finitary version is proved with different methods.



Chapter 9
Partition Regularity of Equations

Diophantine equations have been studied throughout the history of mathematics.
Initially considered by Diophantus of Alexandria, a Hellenistic mathematician from
the third century CE, they include the famous Fermat’s Last Theorem, stated by
Pierre de Fermat in the seventeenth century and eventually proved by Andrew
Wiles in 1994. Hilbert’s tenth problem asked to provide an algorithm or procedure
to decide whether a given Diophantine equation admits integer solutions. Such an
algorithm was shown not to exist by Yuri Matiyasevich in 1970, building on previous
work of Martin Davis, Hilary Putnam, and Julia Robinson.

Deciding whether a given Diophantine equation admits integer solutions is in
general a very hard problem, as made precise by Matiyasevich’s theorem. Even less
is known about the problem of deciding whether a Diophantine equation admits not
just one, but “many” integer solutions, in the sense that any finite coloring admits
a monochromatic solution (i.e. it is partition regular). Even the linear case of such
a problem is nontrivial (it has van der Waerden’s theorem as a particular case),
and it was settled by Rado in the 1930s. Progress beyond the linear case has been
scattered and only few cases are known to this day. Perhaps the most well-known
open problem concerns the Pythagorean equation x2 + y2 = z2. By means of a
computer-assisted proof, it was recently shown that it is regular for two-partitions,
but the general case remains so far unknown. It is also unknown whether there exists
an algorithm to decide whether a given Diophantine equation is partition regular.

In this chapter, we investigate how nonstandard methods can be used to prove the
partition regularity of some Diophantine equations as well as how they can be used
to establish that some Diophantine equations are not partition regular.
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9.1 Characterizations of Partition Regularity

Let F(X1, . . . , Xn) be a function (here we will be interested in the case when
F is a polynomial over Z). We begin with a proposition giving a nonstandard
characterization of ultrafilters, all of whose members contain zeroes of F .

Proposition 9.1 Suppose thatU ∈ βN. The following are equivalent:
1. For everyA ∈ U , there are [distinct] x1, . . . , xn ∈ A such that F(x1, . . . , xn) =

0.
2. There exists k ∈ N and [distinct] α1, . . . , αn ∈ k∗

N such that U = Uαi for all
i = 1, . . . , n and F(α1, . . . , αn) = 0.

Proof First assume that (1) holds. For A ∈ U , set

XA :=
{
(α1, . . . , αn) ∈ ∗Nn : [

∧

i �=j
αi �= αj ]

∧
∧

i

αi ∈ ∗A ∧ F(α1, . . . , αn) = 0

}
.

It is clear that the family {XA | A ∈ U } has the finite intersection property, so by
saturation there is (α1, . . . , αn) ∈ ⋂A∈U XA; this tuple witnesses the truth of (2)
with k = 1.

Conversely, suppose that (2) holds, and pick α1, . . . , αn ∈ k∗
N as given by the

hypotheses. Suppose that A ∈ U , and hence α1, . . . , αn ∈ k∗A. Then the statement
“there exist [distinct] x1, . . . , xn ∈ k∗A such that F(x1, . . . , xn) = 0” holds, as
witnessed by α1, . . . , αn, and the desired conclusion follows by transfer.

Definition 9.2 An ultrafilter U is a witness of the [injective] partition regularity
of the equation F(X1, . . . , Xn) = 0 when U satisfies the equivalent conditions of
Proposition 9.1. In this case, we also simply say that U is an [injective] F -witness.
Similarly, if η ∈ ∗

N is such that Uη is an [injective] F -witness, then we also say
that η is an [injective] F -witness.

We now connect this notion with the standard Ramsey-theoretic notion of
partition regular equation.

Definition 9.3 A function F(X1, . . . , Xn) is said to be [injectively] partition
regular (on the natural numbers N) if, for every finite partition N = C1 ' · · · ' Cr ,
there exists i ∈ {1, . . . , r} and there exist [distinct] x1, . . . , xn ∈ Ci such that
F(x1, . . . , xn) = 0. In this case, we also say that the equation F(x1, . . . , xn) = 0 is
[injectively] partition regular.

Proposition 9.4 F(X1, . . . , Xn) is [injectively] partition regular if and only if
there is an [injective] F -witness if and only there exists k ∈ N and [distinct] u-
equivalent α1 ∼ . . . ∼ αn in k∗N such that F(α1, . . . , αn) = 0.
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Proof First suppose that F(X1, . . . , Xn) = 0 is [injectively] partition regular. Given
A ⊆ N, consider the set

YA :={(α1, . . . , αn) ∈ ∗Nn : [
∧

i �=j
αi �= αj ]

∧
∧

i,j

(αi ∈ ∗A↔ αj ∈ ∗A) ∧ F(α1, . . . , αn) = 0}.

Observe that the family (YA)A⊆N has the finite intersection property. Indeed,
given A1, . . . , Am ⊆ N, let C1, . . . , Ck be the atoms of the Boolean algebra
generated by A1, . . . , Am. Since the equation F(X1, . . . , Xn) = 0 is [injectively]
partition regular, there is i ∈ {1, . . . , k} and [distinct] x1, . . . , xn ∈ Ci such that
F(x1, . . . , xn) = 0; it follows that (x1, . . . , xn) ∈ ⋂m

i=1 YAi . Thus, by saturation,
there is (α1, . . . , αn) ∈ ⋂

A⊆N YA. Then these α1, . . . , αn ∈ ∗
N are u-equivalent

and F(α1, . . . , αn) = 0. Clearly, U = Uαi is the desired F -witness.
The converse direction is trivial by the property of ultrafilter.

As an example, let us give a nonstandard proof of the following result, first shown
by Brown and Rődl [22].

Theorem 9.5 A homogeneous equation P(X1, . . . , Xn) = 0 is [injectively]
partition regular if and only if the corresponding equation with reciprocals
P(1/X1, . . . , 1/Xn) = 0 is [injectively] partition regular.

Proof Assume first that the homogeneous equation P(X1, . . . , Xn) = 0 is partition
regular, and let α1 ∼ . . . ∼ αn be u-equivalent hypernatural numbers such that
P(α1, . . . , αn) = 0. Pick any infinite ξ ∈ ∗N. Note that ∗ξ > αi , and so the factorial
(∗ξ)! = ∗(ξ !) is a multiple of αi for all i. Let ζi := ∗(ξ !)/αi ∈ ∗∗N. Then α1 ∼ . . . ∼
αn ⇒ ζ1 ∼ . . . ∼ ζn and P(1/ζ1, . . . , 1/ζn) = (1/∗(ξ !))dP (α1, . . . , αn) = 0,
where d is the degree of P . This shows that P(1/X1, . . . , 1/Xn) is partition regular.
Clearly, by the same argument also the converse implication follows. Finally, note
that the αi ’s are distinct if and only if the ζi’s are distinct, and so the equivalence
holds also in the injective case.

9.2 Rado’s Theorem

In this section we use the characterization of partition regularity shown above to
prove the following version of the classical theorem of Rado for a single equation1:

1The general form of Rado’s Theorem for a single equation states that c1X1 + · · · + ckXk = 0 is
partition regular if and only there exists a nonempty set of indexes I ⊆ {1, . . . , k} with

∑
i∈I ci =

0.



102 9 Partition Regularity of Equations

Theorem 9.6 Suppose that k > 2 and c1, . . . , ck ∈ Z are such that c1+ · · ·+ ck =
0. Then the equation c1X1 + · · · + ckXk = 0 is injectively partition regular.

As we will see, in this setting u-idempotent elements will play a crucial role. Let
us start with a nonstandard proof of a simple particular case, which was first proved
in [15].

Theorem 9.7 Let U be any idempotent ultrafilter. Then 2U ⊕ U is a witness of
the injective partition regularity of the equation X1 − 2X2 +X3 = 0.2

Proof Pick a u-idempotent point ξ ∈ ∗
N such that Uξ = U , and consider the

following three distinct elements of ∗∗∗N: α1 := 2ξ +∗∗ξ , α2 := 2ξ +∗ξ +∗∗ξ , and
α3 := 2ξ+2∗ξ+∗∗ξ . Then 2U ⊕U = Uα1 = Uα2 = Uα3 and α1−2α2+α3 = 0.

Let us now prove a strengthening of Rado’s theorem below, grounded on
idempotent ultrafilters. First, given a polynomial P(X) := ∑n

j=0 bjX
j ∈ Z [X]

and ξ ∈ ∗
Z, set P̃ (ξ) := ∑n

j=0 bj
j∗ξ ∈ (j+1)∗

Z. We note the following corollary
of Proposition 9.4.

Corollary 9.8 Suppose that c1, . . . , ck ∈ Z are such that there exist [distinct]
polynomials P1(X), . . . , Pk(X) ∈ Z[X] and ξ, η ∈ ∗N for which

1. c1P1(X)+ · · · + ckPk(X) = 0, and
2. P̃i (ξ) ∼ η for each i = 1, . . . , k.

Then Uη witnesses that c1X1 + · · · + ckXk = 0 is [injectively] partition regular.

Proof For each i = 1, . . . , k, let αi := P̃i (ξ); by assumption, for each i we have
Uαi = Uη. It is also clear that c1α1 + · · · + ckαk = 0. By Proposition 9.4, we have
that Uη witnesses the partition regularity of c1X1 + · · · + ckXk = 0.

Suppose in addition that the Pi ’s are distinct; to conclude injective partition
regularity, we must show that the αi’s are distinct. Suppose that αi = αj , that
is, P̃i (ξ) = P̃j (ξ). Write Pi(X) := ∑m

l=0 rlX
l and Pj (X) = ∑m

l=0 slX
l , where

at least one between rm and sm is nonzero. We then have that (rm − sm)m∗ξ =
−∑m−1

l=0 (rl − sl)l∗ξ . The only way that this is possible is that rm = sm. Continuing
inductively in this manner, we see that Pi = Pj , yielding the desired contradiction.

In light of the previous corollary, it will be useful to find a standard condition
on a family of polynomials P1, . . . , Pk ∈ Z[X] such that, for every idempotent
ξ ∈ ∗N, we have that all P̃i (ξ)’s are u-equivalent. The next definition captures such
a condition.

2This theorem is essentially the content of Exercise 4.11.
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Definition 9.9 Following [38], we define the equivalence relation ≈u on finite
strings of integers to be the smallest equivalence relation satisfying the following
three properties:

• ∅ ≈u 〈0〉;
• If a ∈ Z, then 〈a〉 ≈u 〈a, a〉;
• If σ ≈u σ ′ and τ ≈u τ ′, then concatenations σ�τ ≈u σ ′�τ ′.

If P,Q ∈ Z[X] are polynomials, then we write P ≈u Q to mean that their
strings of coefficients are u-equivalent.

Lemma 9.10 Let P,Q ∈ Z[X] have positive leading coefficient. If P ≈u Q, then
for every idempotent ξ ∈ ∗N, we have P̃ (ξ) ∼ Q̃(ξ).
Proof Fix an idempotent ξ ∈ ∗N. The lemma follows from the following facts:

•
∑m
j=0 aj

j∗ξ ∼∑i
j=0 aj

j∗ξ + ai(i+1)∗ξ +∑m
j=i+1 aj

(j+1)∗ξ ;

• If
∑m
j=0 aj

j∗ξ ∼∑m′
j=0 a

′j∗
j ξ and

∑n
j=0 bj

j∗ξ ∼∑n′
j=0 b

′j∗
j ξ , then

m∑

j=0

aj
j∗ξ +

n∑

j=0

bj
(m+j+1)∗ξ ∼

m′∑

j=0

a
′j∗
j ξ +

n′∑

j=0

b
′(m′+j+1)∗
j ξ.

We should mention that the converse of the previous lemma is true in an even
stronger form, namely that if P̃ (ξ) ∼ Q̃(ξ) for some idempotent ξ ∈ ∗

N, then
P ≈u Q. This follows from [100, Theorem T].

We can now give the nonstandard proof of the above mentioned version of Rado’s
theorem. In fact, we prove the more precise statement:

Theorem 9.11 Suppose that k > 2 and c1, . . . , ck ∈ Z are such that c1+· · ·+ck =
0. Then there exists a0, . . . , ak−2 ∈ N such that, for every idempotent ultrafilterU ,
we have that a0U ⊕ · · · ⊕ ak−2U witnesses the injective partition regularity of the
equation c1X1 + · · · + ckXk = 0.

Proof Without loss of generality, we will assume that c1 ≥ c2 ≥ · · · ≥ ck . By
Corollary 9.8 and Lemma 9.10, we need to find a0, . . . , ak−2 ∈ N and distinct
P1(X), . . . , Pk(X) ∈ Z[X] such that c1P1(X) + · · · + ckPk(X) = 0 and such that
Pi(X) ≈u ∑k−2

j=0 ajX
j for each i = 1, . . . , k. For appropriate a0, . . . , ak−2, the

following polynomials will be as needed:

• P1(X) :=∑k−2
j=0 ajX

j + ak−2X
k−1;

• Pi(X) :=∑k−i−1
j=0 ajX

j +∑k−1
j=k−i+1 aj−1X

j for 2 ≤ i ≤ k − 1,

• Pk(X) := a0 +∑k−1
j=1 aj−1X

j .

It is straightforward to check that Pi(X) ≈u ∑k−2
j=0 ajX

j for each i = 1, . . . , k.
Furthermore, since a0, . . . , ak−2 are nonzero, the polynomials P1 (X) , . . . , Pk (X)

are mutually distinct. It remains to show that there are a0, . . . , ak−2 ∈ N for which
c1P1(X)+· · ·+ckPk(X) = 0. Since c1+· · ·+ck = 0, the constant and leading terms
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of c1P1(X)+· · ·+ckPk(X) are zero. So the equation c1P1(X)+· · ·+ckPk(X) = 0 is
equivalent to the system of equations (c1 + · · · + ck−i ) ·ai−1+(ck−i+1 + · · · + ck) ·
ai−2 for i = 2, 3, . . . , k − 1. One can then easily define recursively elements
a0, a1, . . . , ak−2 satisfying all these equations.

9.3 Nonlinear Diophantine Equations: Some Examples

Although Rado’s Theorem from the 1930s completely settled the partition regularity
problem for linear Diophantine equations, progress on the nonlinear case has
been scattered. However, it is worth stressing that in the last few years, many
exciting new results have been proven, yielding promising research aimed towards
general characterization theorems. (See the notes at the end of this chapter.) In this
section, we only present a small selection of relevant nonlinear equations, and give
nonstandard proofs about their partition regularity or non-partition regularity.

Let us start with following theorem of Hindman from 2011 [71].

Theorem 9.12 For any m,n ∈ N, the equation x1 + · · · + xm = y1 · · · yn is
injectively partition regular.

The idea of the nonstandard proof presented below is due to L. Luperi Baglini
(see [94], where a generalization of that result is proved). The following proposition
is the key idea.

Proposition 9.13 Suppose that P(X1, . . . , Xn) is a homogeneous equation that is
injectively partition regular. Then there is a multiplicatively idempotent U ∈ βN
(that is, U �U = U ) that witnesses the injective partition regularity of P .

Proof Let IP be the set of P -witnesses. It suffices to show that IP is a nonempty,
closed subsemigroup of (βN,�). IP is nonempty by definition. IP is closed since it
consists of those ultrafilters whose membersA all satisfy the property of containing
a tuple that is solution of P ; see Exercise 1.13. Finally, we show that IP is closed
under multiplication. In fact, we show that IP is a two-sided ideal. Suppose that
U ∈ IP and V ∈ βN. Take distinct α1, . . . , αn such that U = Uαi for i = 1, . . . , n
and P(α1, . . . , αn) = 0. Also let β be such that V = Uβ . We then have that
α1
∗β, . . . , αn∗β are distinct generators of U � V and, setting d to be the degree of

P , we have

P(α1
∗β, . . . , αn∗β) = ∗βdP (α1, . . . , αn) = 0.

It follows that U � V belongs to IP . The proof that IP is a right-ideal is
similar and left to the reader. The proof is concluded by applying Ellis’ Theorem
(Theorem 1.23) to the compact semitopological semigroup (IP ,�).

We now prove Theorem 9.12 in the simple case m = 2 and n = 3. Since x1 +
x2 − y = 0 is homogeneous and injectively partition regular by Rado’s theorem,
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Proposition 9.13 implies that we may find a multiplicative idempotent ultrafilter
U that witnesses the injective partition regularity of such an equation. Take distinct
α1, α2, β ∈ ∗N all of which generateU and for which α1+α2 = β. For i = 1, 2, set
γi := αi∗β∗∗β. Note that γ1 and γ2 are also distinct generators of U and γ1+ γ2 =
β∗β∗∗β. Since U is multiplicatively idempotent, we have that β is multiplicatively
u-idempotent, and hence β∗β∗∗β ∼ β. It follows that γ1 ∼ γ2 ∼ β ∼ ∗β ∼ ∗∗β
are witness the injective partition regularity of x1 + x2 − y1 · y2 · y3 = 0.

Nonstandard methods have also played a role in establishing the non-partition
regularity of equations. We present here simple examples of this type of results.

Theorem 9.14 ([40]) Let P(x1, . . . , xh) := a1x
n1
1 + · · · + ahxnhh , with n1 < · · · <

nh, where each ai ∈ Z is odd and h is odd. Then P(x1, . . . , xh) = 0 is not partition
regular.

Proof Suppose, towards a contradiction, that there are u-equivalent ξ1, . . . , ξh ∈ ∗N
such that P(ξ1, . . . , ξh) = 0. Let f, g : N → N0 be such that, for all x ∈ N,
we have x = 2f (x)g(x) with g(x) odd. Then, for each i, j = 1, . . . , h, we have
f (ξi) ∼ f (ξj ). Set νi := f (ξi) and ζi := g(ξi).

We next claim that, for distinct i, j ∈ {1, . . . , h}, we have niνi �= njνj . Indeed,
if niνi = njνj , then niνi = nj νj ∼ nj νi , whence niνi = nj νi by Proposition 3.5
and hence νi = 0. Since the νk’s are all u-equivalent, it follows that νk = 0 for each
k, whence each ξi is odd. But then since h is odd, we have that P(ξ1, . . . , ξh) is odd,
contradicting that P(ξ1, . . . , ξh) = 0.

By the previous paragraph, we can let i ∈ {1, . . . , k} be the unique index for
which niνi < nj νj for all j = 1, . . . , k other than i. By factoring out 2niνi from the
equation P(ξ1, . . . , ξh) = 0, we obtain the contradiction

0 = aiζ nii +
∑

j �=i
aj2

nj νj−niνi ζ njj ≡ 1 mod 2.

From the previous theorem, we see that many “Fermat-like” equations are not
partition regular:

Corollary 9.15 Suppose that k,m, n are distinct positive natural numbers. Then
the equation xm + yn = zk is not partition regular.

In [40], the previous corollary is extended to allowm and n to be equal, in which
case the equations are shown to be not partition regular (as long as, in the case when
m = n = k − 1, one excludes the trivial solution x = y = z = 2). The methods are
similar to the previous proof.

To further illustrate the methods, we conclude by treating two simple cases of
non-partition regular equations. Let us start with a result that was first proven by
Csikivari, Gyarmati, and Sarkozy in [31]. The nonstandard proof given below uses
the same idea as in [63].

Theorem 9.16 If one excludes the trivial solution x = y = z = 2, then the
equation x + y = z2 is not partition regular.
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Proof Suppose, towards a contradiction, that α, β, γ ∈ ∗
N\N are such that α ∼

β ∼ γ and α+β = γ 2. Without loss of generality, assume α ≥ β. Let f : N→ N0
be the function defined by 2f (n) ≤ n < 2f (n)+1 for every n, and set a := f (α).
Notice that a is infinite, as otherwise α would be finite and α ∼ β ∼ γ would imply
α = β = γ = 2, contrary to our hypothesis. Now observe that

2a ≤ α < α + β = γ 2 ≤ 2α < 2 · 2a+1 ⇒ 2
a
2 < γ < 2

a
2+1.

This shows that either f (γ ) = � a2 � or f (γ ) = � a2 � + 1. Since a = f (α) ∼ f (γ ),
we have either a ∼ � a2 � or a ∼ � a2 �+1. In both cases we reach a contradiction as we
would either have a = � a2 � (which cannot occur since a is positive), or a = � a2 �+ 1
(and hence a = 1 or a = 2; the former is impossible and the latter has been excluded
by hypothesis).

Theorem 9.17 The equation x2 + y2 = z is not partition regular.
Proof Notice first that the given equation does not have constant solutions. Then
suppose, towards a contradiction, that α, β, γ are infinite hypernatural numbers such
that α ∼ β ∼ γ and α2 + β2 = γ . Notice that α, β, γ are even numbers, since they
cannot all be odd. Then we can write

α = 2aα1, β = 2bβ1, γ = 2cγ1,

with positive a ∼ b ∼ c and with α1 ∼ β1 ∼ γ1 odd.

Case 1 a < b. We then have that 22a(α2
1+22b−2aβ2

1 ) = 2cγ1. Since α2
1+22b−2aβ2

1
and γ1 are odd, it follows that 2a = c ∼ a, whence 2a = a by Proposition 3.5 and
hence a = 0, a contradiction. If b > a the proof is entirely similar.

Case 2 a = b. In this case we have the equality 22a(α2
1 + β2

1 ) = 2cγ1. Since α1, β1

are odd, α2
1+β2

1 ≡ 2 mod 4, and so 2cγ1 = 22a+1α2 for a suitable odd number α2.
But then 2a+ 1 = c ∼ a, whence 2a+ 1 = a, and we again obtain a contradiction.

Notes and References

Rado’s theorem is one of the first general results in Ramsey theory [109], building on
previous work of Hilbert and Rado’s advisor Schur. In particular, Rado’s Theorem
(in its extended version about systems of equations) subsumes van der Waerden’s
Theorem on arithmetic progressions. Since then, only fragmented and isolated
progress has been obtained in the study of partition regularity of more general
(nonlinear) equations, starting from the 1990s. Let us quickly mention here some
relevant contributions.

In 1991 [87], Lefmann studied homogeneous polynomials and proved that, for
every n ∈ N, equations c1X

1/n
1 + · · · + ckX1/n

k = 0 are partition regular if and only
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if “Rado’s condition” on coefficients hold (that is,
∑
i∈I ai = 0 for some nonempty

I ⊆ {1, . . . , k}). In 1996, grounding on a density result by Fürstenberg and Sarkozy,
Bergelson [13] showed the partition regularity of all Diophantine equationsX−Y =
P(Z) where the polynomial P(Z) ∈ Z[Z] has no constant term. In 2010, by using
algebra in the space of ultrafilters βN, Bergelson [14] proved the partition regularity
of the equationX1+X2 = Y1Y2. Independently, Hindman [71] showed the partition
regularity of all equations of the form

∑k
i=1Xi =

∏k
i=1 Yi .

In the last few years, research on the nonlinear case has made significant
progress; in particular, nonstandard methods have proven quite effective. In 2014,
Luperi Baglini [94] improved on the above mentioned result of Hindman, and, by
using nonstandard methods, proved that for every Fi ⊆ {1, . . . ,m}, the equation∑k
i=1 ciXi(

∏
j∈Fi Yj ) = 0 is partition regular whenever

∑
i∈I ci = 0 for some

nonempty I ⊆ {1, . . . ,m}. In [40], Di Nasso and Riggio used nonstandard analysis
to characterize a large class of Fermat-like equations that are not partition regular,
the simplest cases being Xm + Yn = Zk where k /∈ {n,m}. In their paper [50] of
2017, Frantzikinakis and Host showed, as consequences of their structural theorem
for multiplicative functions, that the quadratic equations 16X2 + 9Y 2 = Z2 and
X2 −XY + Y 2 = Z2 are partially partition regular in the variablesX and Y .

The study of partition regularity of Diophantine equations can be seen as
a particular instance of the more general problem of establishing the partition
regularity of arbitrary configurations. One outstanding such problem, recently
settled positively by Moreira using topological dynamics [101], was the problem
of partition regularity of the configuration {a, a+ b, ab} in N. (It is still unknown at
the time of writing whether the configuration {a, b, a+ b, ab} is partition regular in
N.) In the same paper, Moreira also showed the partition regularity of the equations
c1X

2
1 + . . .+ ckX2

k = Y where c1+ . . .+ ck = 0 (so, e.g. X2 + Y = Z2 is partition
regular). On the other hand, those equations are not partition regular when “Rado’s
condition” fails, as shown in [39]. Interesting results about exponential configura-
tions were recently proved by Sahasrabudhe [114, 115], starting from the partition
regularity of {a, b, ab}. In [28], Chow, Lindqvist, and Prendiville characterized the
partition regularity of classes of generalised Pythagorean equations by means of
Rado’s condition.

A breakthrough was obtained in [39], where general necessary criteria for
partition regularity of large classes of Diophantine equations are obtained using
nonstandard methods and iterated hyperextensions, as well as sufficient criteria
using algebra in the Stone-Čech compactification. One example is the following:

• A Diophantine equation of the form c1X1 + . . . + ckXk = P(Y ) where P
is a nonlinear polynomial with no constant term is PR if and only if “Rado’s
condition” holds in the linear part, i.e.

∑
i∈I ai = 0 for some nonempty

I ⊆ {1, . . . , k}.
So, e.g. X − 2Y = Zn is not PR (while X − Y = Zn is); and X + Y = P(Z) is not
partition regular for any nonlinear P(Z) ∈ Z[X] (while if P(Z) takes even values
on some integer, then in every finite coloring one has a solution where X and Y are
monochromatic, as shown by Khalfalah and Szemerédi [85] in 2006); and equations
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X1− 2X2+X3 = Yn are PR, so that in every finite coloring of the natural numbers
one finds monochromatic configurations of the form {a, b, c, 2a − b + cn}; and so
forth.

One of the most famous open problems in the area concerns the partition
regularity of the Pythagorean equation X2 + Y 2 = Z2. In 2016, by means of
a computer-assisted proof (dubbed “the longest mathematical proof ever” [86]),
Heule, Kullmann and Marek proved that any 2-coloring of {1, 2, . . . , 7825} contains
a monochromatic Pythagorean triple. However, the general problem with arbitrary
finite partitions remains unsolved at the time of this writing.



Part III
Combinatorial Number Theory



Chapter 10
Densities and Structural Properties

Ramsey theory initially focused on the study of combinatorial properties that are
“abundant” in the sense that can always be found in one of the pieces of any finite
partition of a given structure. Such a notion can be strengthened by considering
combinatorial configuration that can be found in any set that is “large” in a more
generous quantitative sense. Typically, largeness is expressed in terms of natural
notions of density, which are obtained via a limiting process from the relative density
within finite portions of the structure. In the case of N, the most natural choices
are the upper density and the Banach density, which naturally arise in the study of
dynamical systems and combinatorial number theory. In this chapter, we introduce
such densities as well as some structural notions of largeness for sets of natural
numbers. Along the way, we prove their nonstandard reformulations and develop
some of the basic properties of these notions needed in later chapters. The chapter
concludes with the nonstandard perspective on the Furstenberg correspondence.

10.1 Densities

In this section, A and B denote subsets of N. Recall that δ(A, n) = |A∩[1,n]|
n

.

Definition 10.1

1. The upper density of A is defined to be

d(A) := lim sup
n→∞

δ(A, n).

2. The lower density of A is defined to be

d(A) := lim inf
n→∞ δ(A, n).
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3. If d(A) = d(A), then we call this common value the density of A and denote it
by d(A).

The following exercise concerns the nonstandard characterizations of the afore-
mentioned densities.

Exercise 10.2 Prove that

d (A) = max{st(δ(A,N)) : N ∈ ∗N\N} = max{μN(∗A) : N ∈ ∗N\N},

where μN is the Loeb measure on [1, N]. State and prove the corresponding
statement for lower density.

The previous exercise illustrates why the nonstandard approach to densities is so
powerful. Indeed, while densities often “feel” like measures, they lack some of the
key properties that measures possess. However, the nonstandard approach allows
us to treat densities as measures, thus making it possible to use techniques from
measure theory and ergodic theory.

There is something artificial in the definitions of upper and lower density in that
one is always required to take samples from initial segments of the natural numbers.
We would like to consider a more uniform notion of density which allows one to
consider sets that are somewhat dense even though they do not appear to be so when
considering only initial segments. This leads us to the concept of (upper) Banach
density. In order to defined Banach density, we first need to establish a basic lemma
from real analysis, whose nonstandard proof is quite elegant.

Lemma 10.3 (Fekete) Suppose that (an) is a subadditive sequence of positive real

numbers, that is, am+n ≤ am+ an for allm,n. Then the sequence
(

1
n
an

)
converges

to inf
{

1
n
an : n ∈ N

}
.

Proof After normalizing, we may suppose that a1 = 1. This implies that 1
n
an ≤ 1

for every n ∈ N. Set � := inf{ 1
n
an : n ∈ N}. By transfer, there exists ν0 ∈ ∗

N

infinite such that 1
ν0
aν0 ≈ �. Furthermore st

(
1
ν
aν

)
≥ � for every ν ∈ ∗

N. Fix an

infinite μ ∈ ∗
N and observe that for ν ≥ μν0 one can write ν = rν0 + s where

r ≥ μ and s < ν0. Therefore

1

ν
aν ≤ raν0 + as

rν0 + s ≤ aν0

ν0
+ as

μs
≤ aν0

ν0
+ 1

μ
≈
aν0

ν0
≈ �.

It follows that 1
ν
aν ≈ � for every ν ≥ μν0, whence by transfer we have that, for

every ε > 0, there exists n0 ∈ N such that
∣
∣∣ 1
n
an − �

∣
∣∣ < ε for every n ≥ n0.

Therefore the sequence
(

1
n
an

)
converges to �.
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For each n, set

Δn(A) := max{δ(A, I) : I ⊆ N is an interval of length n}.

It is straightforward to verify that (Δn(A)) is subadditive, whence, by Fekete’s
Lemma, we have that the sequence (Δn(A)) converges to infn Δn(A).

Definition 10.4 We define the Banach density of A to be

BD(A) = lim
n→∞Δn(A) = inf

n
Δn(A).

Remark 10.5 Unlike upper and lower densities, the notion of Banach density
actually makes sense in any amenable (semi)group, although we will not take up
this direction in this book.

If (In) is a sequence of intervals in N such that limn→∞ |In| = ∞ and BD(A) =
limn→∞ δ(A, In), then we say that (In) witnesses the Banach density of A.

Here is the nonstandard characterization of Banach density:

Exercise 10.6 For any N ∈ ∗N\N, we have

BD(A) = max{st(δ(∗A, I)) : I ⊆ ∗
N is an interval of length N}.

As above, if I is an infinite hyperfinite interval such that BD(A) = st(δ(A, I)),
we also say that I witnesses the Banach density of A.

Exercise 10.7 Give an example of a setA ⊆ N such that d(A) = 0 but BD(A) = 1.

Exercise 10.8 Prove that Banach density is translation-invariant: BD(A + n) =
BD(A), where A+ n = {a + n : a ∈ A}.

Banach density is also subadditive:

Proposition 10.9 For any A,B ⊆ N, we have BD(A ∪ B) ≤ BD(A)+ BD(B).

Proof Let I be an infinite hyperfinite interval witnessing the Banach density of
A ∪ B. Then

BD(A ∪ B) = st(δ(A ∪ B, I)) ≤ st(δ(A, I)) + st(δ(B, I)) ≤ BD(A)+ BD(B).

The following “fattening” result is often useful.

Proposition 10.10 If BD(A) > 0, then limk→∞ BD(A+ [−k, k]) = 1.

Proof Set r := BD(A). For each k, set ak := maxx∈N |A ∩ [x + 1, x + k]|, so
r = limk→∞ ak/k. By the Squeeze Theorem, it suffices to show that BD(A +
[−k, k]) ≥ r ·k

ak
for all k. Towards this end, fix k ∈ N and N ∈ ∗

N\N and take
x ∈ ∗N such that s := |∗A∩ [x+ 1, x+N · k]|/N · k ≈ r . For i = 0, 1, . . . , N − 1,
set Ji := [x + ik + 1, x + (i + 1)k]. Set Λ := {i | ∗A ∩ Ji �= ∅}; observe that Λ is
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internal. We then have

s = |∗A ∩ [x + 1, x +N · k]|
N · k =

∑
i∈Λ |∗A ∩ Ji |
N · k ≤ |Λ| · ak

N · k ,

whence we can conclude that |Λ| ≥ s · N · k/ak. Now note that if i ∈ Λ, then
Ji ⊆ ∗A+ [−k, k], so

|(∗A+ [−k, k]) ∩ [x + 1, x +N · k]|
N · k ≥ |Λ| · k

N · k ≥ s · k/ak.

It follows that BD(A+ [−k, k]) ≥ r · k/ak.

10.2 Structural Properties

We now move on to consider structural notions of largeness. In this section, A
continues to denote a subset of N.

Definition 10.11 A is thick if and only if A contains arbitrarily long intervals.

Proposition 10.12 A is thick if and only if there is an infinite hyperfinite interval I
contained in ∗A.

Proof The backwards direction follows directly from transfer. The forwards direc-
tion follows from the overflow principle applied to the internal set {α ∈ ∗

N :
∗A contains an interval of length α}.
Corollary 10.13 A is thick if and only if BD(A) = 1.

Proof The forwards direction is obvious. For the backwards direction, let N ∈ ∗
N

be divisible by all elements of N and let I be a hyperfinite interval of length N
witnessing the Banach density of A. If A is not thick, then there is m such that
m | N and A does not contain any intervals of length m. Divide I into N/m many
intervals of lengthm. By transfer, each such interval contains an element of ∗N\∗A.
Thus

BD(A) = st(δ(A, I)) ≤ st

(
N −N/m

N

)
= 1− 1/m.

Definition 10.14 A is syndetic if N\A is not thick.

Equivalently,A is syndetic if there ism such that all gaps ofA are of size at most
m.

Proposition 10.15 A is syndetic if and only if all gaps of ∗A are finite.
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Proof The forward direction is immediate by transfer. For the backwards direction,
consider the set

X := {α ∈ ∗N : all gaps of ∗A are of size at most α}.

By assumption, X contains all elements of ∗N\N, so by underflow, there is m ∈
X ∩ N. In particular, all gaps of A are of size at most m.

Definition 10.16 A is piecewise syndetic if there is a finite set F ⊆ N such that
A+ F is thick.

Proposition 10.17 If A is piecewise syndetic, then BD(A) > 0. More precisely, if
F is a finite set such that A+ F is thick, then BD(A) ≥ 1/|F |.
Proof Take finite F ⊆ N such that A + F is thick. Since Banach density is
translation invariant, by Proposition 10.9, we have

1 = BD(N) = BD(
⋃

x∈F
(A+ x)) ≤ |F | · BD(A).

The notion of being piecewise syndetic is very robust in that it has many
interesting reformulations:

Proposition 10.18 For A ⊆ N, the following are equivalent:

1. A is piecewise syndetic;
2. there is m ∈ N such that A+ [0,m] is thick;
3. there is k ∈ N such that for every N > N, there is a hyperfinite interval I of

length N such that ∗A has gaps of size at most k on I ;
4. for every N > N, there is a hyperfinite interval I of length N such that all gaps

of ∗A on I are finite;
5. there is k ∈ N and there is an infinite hyperfinite interval I such that ∗A has gaps

of size at most k on I ;
6. there is an infinite hyperfinite interval I such that all gaps of ∗A on I are finite;
7. there is k ∈ N such that, for every n ∈ N, there is an interval I ⊆ N of length n

such that the gaps of A on I are of size at most k;
8. there is a thick set B and a syndetic set C such that A = B ∩ C.
Proof Clearly (1) and (2) are equivalent and (3) implies (4). Now assume that (3)
fails. In particular, if X is the set of k ∈ ∗N for which there is a hyperfinite interval
I of length greater than k on which ∗A has gaps of size greater than k, then X
contains all standard natural numbers. By , there is an infinite element ofX, whence
(4) fails. Thus, (3) and (4) are equivalent. (5) clearly implies (6) and (6) implies
(5) follows from a familiar underflow argument. (5) and (7) are also equivalent by
transfer-overflow.

We now show (2) implies (3). FixN > N. By (2) and transfer, there is an interval
[x, x +N) ⊆ ∗A+ [0,m]. Thus, on [x, x + N), ∗A has gaps of size at most m.
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Clearly (3) ⇒ (5). Now suppose that (5) holds. Choose k ∈ N and M,N ∈ ∗
N

such that M < N and N − M > N such that ∗A has gaps of size at most k on
[M,N]. Then [M + k,N] ⊆ ∗A + [0, k]. It follows by transfer that A + [0, k] is
thick, whence (2) holds.

Thus far, we have proven that (1)–(7) are equivalent. Now assume that (7) holds
and take k ∈ N and intervals In ⊆ N of length n such thatA has gaps of size at most
k on each In. Without loss of generality, the In’s are of distance at least k + 1 from
each other. Let B := A∪⋃n In and let C := A∪ (N\B). Clearly B is thick. To see
that C is syndetic, suppose that J is an interval of size k + 1 disjoint from C. Then
J is disjoint from A and J ⊆ B, whence J ⊆ ⋃

n In. Since the In’s are of distance
at least k + 1 from each other, J ⊆ In for some n. Thus, J represents a gap of A on
In of size k + 1, yielding a contradiction. It is clear that A = B ∩ C.

Finally, we prove that (8) implies (7). Indeed, suppose that A = B ∩ C with B
thick and C syndetic. Suppose that k ∈ N is such that all gaps of C are of size at
most k. Fix n ∈ N and let I be an interval of length n contained in B. If J is an
interval contained in I of size k + 1, then J ∩ C �= ∅, whence J ∩ A �= ∅ and (7)
holds.

Item (7) in the previous proposition explains the name piecewise syndetic. The
following is not obvious from the definition:

Corollary 10.19 The notion of being piecewise is partition regular, meaning that if
A is piecewise syndetic and A = A1 ' A2, then Ai is piecewise syndetic for some
i = 1, 2.

Proof Suppose that I is an infinite hyperfinite interval such that all gaps of ∗A on
I are finite. Suppose that I does not witness that A1 is piecewise syndetic. Then
there is an infinite hyperfinite interval J ⊆ I such that J ∩ ∗A1 = ∅. It then follows
that any gap of ∗A2 on J must be finite, whence J witnesses that A2 is piecewise
syndetic.

Remark 10.20 We note that neither thickness nor syndeticity are partition regular
notions. Indeed, if A is the set of even numbers and B is the set of odd numbers,
then neither A nor B is thick but their union certainly is. For syndeticity, let (xn) be
the sequence defined by x1 = 1 and xn+1 := xn + n. Set C := ⋃

n even[xn, xn + n)
and D := ⋃

n odd[xn, xn + n). Then neither C nor D are syndetic but their union is
N, a syndetic set.

The following is a nice consequence of the partition regularity of the notion of
piecewise syndetic.

Corollary 10.21 van der Waerden’s theorem is equivalent to the statement that
piecewise syndetic sets contain arbitrarily long arithmetic progressions.

Proof First suppose that van der Waerden’s theorem holds and let A be a piecewise
syndetic set. Fix k ∈ N; we wish to show that A contains an arithmetic progression
of length k. Take m such that A + [0,m] is thick. Let l be sufficiently large such
that when intervals of length l are partitioned into m + 1 pieces, then there is a



10.3 Working in Z 117

monochromatic arithmetic progression of length k. Let I ⊆ A+[0,m] be an interval
of length l. Without loss of generality, we may suppose that the left endpoint of I is
greater than m. Let c be the coloring of I given by c(x) := the least i ∈ [0,m] such
that x ∈ A+i. Then there is i ∈ [0,m] and x, d such that x, x+d, . . . , x+(k−1)d ∈
A+ i. It follows that (x − i), (x − i)+ d, . . . , (x − i)+ (k − 1)d ∈ A.

Conversely, suppose that piecewise syndetic sets contain arbitrarily long arith-
metic progressions. Fix a finite coloring c of the natural numbers. Since being
piecewise syndetic is partition regular, some color is piecewise syndetic, whence
contains arbitrarily long arithmetic progressions by assumption.

10.3 Working in Z

We now describe what the above densities and structural properties mean in the
group Z as opposed to the semigroup N. Thus, in this section, A now denotes a
subset of Z.

It is rather straightforward to define the appropriate notions of density. Indeed,
given any sequence (In) of intervals in Z with limn→∞ |In| = ∞, we define

d(In) := lim sup
n→∞

δ(A, In)

and

d(In) := lim inf
n→∞ δ(A, In).

When In = [−n, n] for each n, we simply write d(A) (resp. d(A)) and speak of
the upper (resp. lower) density of A. Finally, we define the upper Banach density of
A to be

BD(A) = lim
n→∞max

x∈N
δ(A, [x − n, x + n]).

Of course, one must verify that this limit exists, but this is proven in the exact same
way as in the case of subsets of N.

Exercise 10.22 Prove that

BD(A) := max{d(In)(A) : (In) a sequence of intervals with lim
n→∞ |In| = ∞}.

The notions of thickness and syndeticity for subsets of Z remains unchanged:A
is thick if A contains arbitrarily long intervals and A is syndetic if Z\A is not thick.
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Similarly, A is piecewise syndetic if there is a finite set F ⊆ Z such that A + F is
thick. The following lemma is almost immediate:

Lemma 10.23 A is piecewise syndetic if and only if there is a finite set F ⊆ Z such
that, for every finite L ⊆ Z, we have

⋂
x∈L(A+ F + x) �= ∅.

Exercise 10.24 Formulate and verify all of the nonstandard equivalents of the
above density and structural notions developed in the previous two sections for
subsets of Z.

The following well-known fact about difference sets has a nice nonstandard
proof.

Proposition 10.25 Suppose that A ⊆ Z is such that BD(A) > 0. Then A − A is
syndetic. In fact, if BD(A) = r , then there is a finite set F ⊆ Z with |F | ≤ 1

r
such

that (A− A)+ F = Z.

First, we need a lemma.

Lemma 10.26 Let N ∈ ∗
N\N. Suppose that E ⊆ [1, N] is an internal set such

that δ(E,N) ≈ r . Then there is a finite F ⊆ Z with |F | ≤ 1/r such that Z ⊆
(E − E)+ F .
Proof Fix x1 ∈ N. If Z ⊆ (E − E) + x1, then take F = {x1}. Otherwise, take
x2 /∈ (E−E)+{x1}. If Z ⊆ (E−E)+{x1, x2}, then take F = {x1, x2}. Otherwise,
take x3 /∈ (E − E)+ {x1, x2}.

Suppose that x1, . . . , xk have been constructed in this fashion. Note that the sets
E + xi , for i = 1, . . . , k, are pairwise disjoint. Since each xi ∈ Z and N is infinite,
we have that δ((E + xi),N) ≈ r . It follows that

δ

(
k⋃

i=1

(E + xi),N
)

=
∑k
i=1 |(E + xi) ∩ [1, N]|

N
≈ kr.

It follows that the process must stop after k-many steps, with k ≤ 1
r
.

Proof (of Proposition 10.25) Set r := BD(A). Fix and infinite N and take x ∈ ∗
N

such that δ(∗A, [x+1, x+N]) ≈ r . SetE := (∗A−x)∩[1, N]. Then δ(E,N) ≈ r ,
whence there is finite F ⊆ Z with |F | ≤ 1/r such that Z ⊆ (E−E)+F . It follows
that Z ⊆ (∗A− ∗A)+ F , whence it follows by transfer that Z = (A− A)+ F .

The analog of Proposition 10.10 for Z is also true:

Proposition 10.27 If BD(A) > 0, then limk→∞ BD(A+ [−k, k]) = 1.

However, for our purposes in Sect. 12.5, we will need a more precise result. Note
that, a priori, for every ε > 0, there is kε and infinite hyperfinite interval Iε such
that δ(∗A + [−kε, kε], Iε) > 1 − ε. The next proposition tells us that we can take
a single interval I to work for each ε. The proof is heavily inspired by the proof of
[8, Lemma 3.2].
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Proposition 10.28 Suppose that BD(A) > 0. Then there is an infinite hyperfinite
interval I ⊆ Z such that, for every ε > 0, there is k for which δ(∗A+ [−k, k], I ) >
1− ε.
Proof Pick (In) a sequence of intervals in Z witnessing the Banach density of A
and such that, for every k, we have that limn→∞ δ(A + [−k, k], In) exists. (This
is possible by a simple diagonalization argument.) Fix an infinite N and, for each
α ∈ ∗N, set Gα := (∗A+ [−α, α]) ∩ IN . Set r := supk∈N μIN (Gk).

Claim There is K > N such that:

(i) For every l ∈ Z, |(l+GK)#GK ||GK | ≈ 0.

(ii) |GK ||IN | ≈ r .
Proof of Claim For each l ∈ Z, set Xl to be the set of α ∈ ∗N such that:

(a) α ≥ l;
(b) For all x ∈ Z with |x| ≤ l, we have |(x+Gα)#Gα ||Gα | < 1

l
;

(c)
∣
∣∣ |Gα ||IN | − r

∣
∣∣ < 1

l
.

Since each Xl is internal and unbounded in N, by saturation there is K ∈ ⋂l Xl .
This K is as desired.

Fix K as in the Claim and set G := GK and μ := μG. For k ∈ N, we then have
that

δ(∗A+ [−k, k],G) = |(
∗A+ [−k, k]) ∩ IN |

|G| ≈ δ(∗A+ [−k, k], IN ) · 1

r
,

whence we see that δ(∗A+ [−k, k],G)→ 1 as k→∞.1

Now take J to be an infinite hyperfinite interval such that |(l+GK)#GK ||GK | ≈ 0 for
all l ∈ J ; this is possible as a consequence of the overflow principle. We claim that
there is t ∈ G such that I := t + J is as desired.

For each k, take nk such that δ(∗A + [−nk, nk],G) > 1 − 1
k

; without loss
of generality, we may assume that (nk) is an increasing sequence. Set Bk :=∗A + [−nk, nk] and set gk : G → [0, 1] to be the LG-measurable function
given by gk(t) := st(δ(Bk, t + J )). For each t ∈ G, we have that (gk(t)) is
a bounded nondecreasing sequence, whence converges to a limit g(t). By the
Dominated Convergence Theorem, we have that

∫
G
g(t)dμ = limk→∞

∫
G
gk(t)dμ.

1At this point, we may note that G satisfies the conclusion of the proposition except that it is not
an interval but instead a Følner approximation for Z. While this would suffice for our purposes in
Sect. 12.5, we wanted to avoid having to introduce the theory of Følner approximations and instead
opted to work a bit harder to obtain the above cleaner statement.
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Now note that
∫

G

gk(t)dμ ≈ 1

|G|
∑

t∈G
δ(Bk, t + J ) = 1

|I |
∑

x∈J
δ(Bk, x +G) ≈ δ(Bk,G) > 1− 1

k
.

It follows that
∫
G
g(t)dμ = 1, whence g(t) = 1 for some t ∈ G. It is then clear that

I := t + J is as desired.

We call I as in the conclusion of Proposition 10.28 good for A. One can also
prove the previous proposition using a Lebesgue Density Theorem for cut spaces;
see [41].

10.4 Furstenberg’s Correspondence Principle

We end this chapter by explaining the nonstandard take on Furstenberg’s correspon-
dence principle.

Theorem 10.29 (Furstenberg’s Correspondence Principle) Suppose thatA ⊆ Z

is such that BD(A) > 0. Then there is a measure-preserving dynamical system
(X,B, ν, T ) and a measurable set A0 ∈ B such that ν(A0) = BD(A) and such
that, for any finite set F ⊆ Z, we have:

BD

(
⋂

i∈F
(A− i)

)

≥ ν
(
⋂

i∈F
T −i (A0)

)

.

Proof Fix I ⊆ ∗
Z witnessing the Banach density of A. It is easy to verify that

the hypercycle system (I,Ω,μ, S) introduced in Sect. 5.6 of Chap. 5 and the set
A0 := ∗A ∩ I are as desired.

Let us mention the ergodic-theoretic fact that Furstenberg proved:

Theorem 10.30 (Furstenberg Multiple Recurrence Theorem) Suppose that
(X,B, ν, T ) is a measure-preserving dynamical system, A ∈ B is such
that ν(A) > 0, and k ∈ N is given. Then there exists n ∈ N such that
ν(A ∩ T −n(A) ∩ T −2n(A) ∩ · · · ∩ T −(k−1)n(A)) > 0.

Notice that the above theorem, coupled with the Furstenberg Correspondence
Principle, yields Furstenberg’s proof of Szemerédi’s Theorem .

Theorem 10.31 (Szemeredi’s Theorem) If A ⊆ Z is such that BD(A) > 0, then
A contains arbitrarily long arithmetic progressions.

Szemeredi’s Theorem is the density version of van der Waerden’s theorem and
was originally proven by Szemeredi in [119].
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We end this chapter giving a simpler application of the correspondence principle
used by Bergelson in [12] to give a quantitative version of Schur’s Theorem.

Suppose that c : N → {1, . . . ,m} is an m-coloring of N. Then Schur’s theorem
states that there is i ∈ {1, . . . ,m} and a, b ∈ N such that c(a) = c(b) = c(a + b)
= i. (Note that Schur’s theorem is an immediate corollary of Rado’s Theorem.) It
is natural to ask whether or not a quantitative Schur’s theorem could hold in the
sense that there should be some color Ci such that there are many a, b ∈ N with
c(a) = c(b) = c(a+b) = i. In [12], Bergelson proved the following precise version
of that result:

Theorem 10.32 Suppose that c : N → {1, . . . ,m} is an m-coloring of N and
Ci := {n ∈ N : c(n) = i}. For i ∈ {1, . . . , n} and ε > 0, set

Ri,ε := {n ∈ Ci : d(Ci ∩ (Ci − n)) ≥ d(Ci)2 − ε}.

Then there is i ∈ {1, . . . , n} such that, for every ε > 0, we have d(Ri,ε) > 0.

We more or less follow Bergelson’s original proof except we use the nonstandard
version of the Furstenberg correspondence principle.

Definition 10.33 We call R ⊆ N a set of nice recurrence if: given any dynamical
system (X,B, μ, T ), any μ(B) > 0, and any ε > 0, there is n ∈ R such that
μ(A ∩ T −nA) ≥ μ(A)2 − ε.
Proposition 10.34 Let S ⊆ N be an infinite set. Then S − S is a set of nice
recurrence.

Proof Let (si ) be an enumeration of S in increasing order. It is straightforward to
check that there must exist i < j such that μ(T −siA ∩ T −sj A) ≥ μ(A)2 − ε. It
follows that μ(A ∩ T −(sj−si )A) ≥ μ(A)2 − ε, as desired.

Exercise 10.35 If E ⊆ N is thick, then there is an infinite set S ⊆ N such that
S − S ⊆ E.

Corollary 10.36 Suppose thatE ⊆ N is thick and E = C1 ∪ · · · ∪Ck is a partition
of E. Then some Ci is a set of nice recurrence.

Proof By Exercise 10.35, we may take S ⊆ N such that S − S ⊆ E. Define a
coloring c : S → {1, . . . , k} by declaring, for s, s′ ∈ S with s < s′, that c({s, s′})
:= i if c(s − s′) = i. By Ramsey’s theorem, there is an infinite S′ ⊆ S and
i ∈ {1, . . . , k} such that c([S′]2) = {i}. It follows that S′ − S′ ⊆ Ci . By
Proposition 10.34, S′ − S′, and hence Ci , is a nice set of recurrence.

We are now ready to give the proof of Theorem 10.32. First, without loss of
generality, we may assume that there is k ∈ {1, . . . ,m} such that d(Ci) > 0 for
i = 1, . . . , k and C1 ∪ · · · ∪ Ck is thick. For ease of notation, for p ∈ N, let
Ri,p := Ri,1/p. It suffices to show that, for each p ∈ N, there is ip ∈ {1, . . . , k}
such that d(Rip,p) > 0. Indeed, if this is the case, then by the Pigeonhole Principle,
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there is some i ∈ {1, . . . ,m} such that ip = i for infinitely many p; this i is as
desired.

Towards this end, fix p ∈ N and, again for ease of notation, set Ri := Ri,p .
Suppose, towards a contradiction, that d(Ri) = 0 for each i = 1, . . . , k. Set Di :=
Ci\Ri . Then d(Di) = d(Ci) and D1 ∪ · · ·Dk is thick. By Corollary 10.36, there
is i ∈ {1, . . . , k} such that Di is a nice set of recurrence. Take N > N such that
d(Di) = μN(∗Di). By applying the fact that Di is a nice set of recurrence to the
hypercycle system based on [1, N] and the measurable set A := ∗Di ∩ [1, N], we
get that there is n ∈ Di such that

d(Ci∩(Ci−n)) ≥ d(Di∩(Di−n)) ≥ μN(A∩T −nA) ≥ μ(A)2−ε = d(Ci)2−ε,

contradicting the fact that n /∈ Ri .

Notes and References

The first appearance of nonstandard methods in connection with densities and
structural properties seems to be Leth’s dissertation and subsequent article [88].
Proposition 10.10 was first proven by Hindman in [70]. Partition regularity of
piecewise syndeticity was first proven by Brown in [21]. Proposition 10.25 was
first proven by Følner in [49]; the nonstandard proof is due to Di Nasso [36].
Furstenberg’s Correspondence Principle was first established in [52] where he gave
his ergodic-theoretic proof of Szemerédi’s theorem. The nonstandard approach to
the Furstenberg Correspondence Principle seems to have a somewhat nebulous
history. Indeed, while it was surely known to many experts that one could use
hypercycle systems to prove the Furstenberg Correspondence Principle, the first
appearance of this idea in the literature seems to be generalizations of the Fursten-
berg Correspondence due to Townser appearing in the paper [125].



Chapter 11
Working in the Remote Realm

In this chapter, we present a technique, due to Jin, of converting some theorems
about sets of positive upper asymptotic density or Shnirelmann density (to be
defined below) to analogous theorems about sets of positive Banach density. The
novel idea is to use the ergodic theorem for hypercycles applied to characteristic
functions of nonstandard extensions. Deviating from Jin’s original formulation, we
present his technique using the more recent notion of finite embeddability of subsets
of natural numbers due to Di Nasso.

11.1 Finite Embeddability Between Sets of Natural Numbers

A useful combinatorial notion is the following:

Definition 11.1 Let X,Y be sets of integers. We say that X is finitely embeddable
in Y , and write X � Y , if every finite configuration F ⊆ X has a shifted copy
t + F ⊆ Y .

Finite embeddability preserves most of the fundamental combinatorial notions
that are commonly considered in combinatorics of integer numbers.

Proposition 11.2

1. A set is �-maximal if and only if it is thick.
2. If X contains an arithmetic progression of length k and distance d and X � Y ,

then also Y also contains an arithmetic progression of length k and distance d .
3. If X is piecewise syndetic and X � Y , then also Y is piecewise syndetic.
4. If X � Y , then BD(X) ≤ BD(Y ).
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Proof (1) Clearly X is maximal if and only if N � X if and only if every finite
interval [1, n] has a shifted copy [x + 1, x + n] ⊆ X. (2) is trivial. We leave the
proofs of (3) and (4) to the reader.

We stress the fact that while piecewise syndeticity is preserved under finite
embeddability, the property of being syndetic is not. Similarly, the upper Banach
density is preserved or increased under finite embeddability, but the upper asymp-
totic density is not. A list of basic properties is itemized below.

Proposition 11.3

1. If X � Y and Y � Z, then X � Z.
2. If X � Y and X′ � Y ′, then X − X′ � Y − Y ′.
3. If X � Y , then

⋂
t∈G(X − t)�

⋂
t∈G(Y − t) for every finite G.

Proof

(1) is straightforward from the definition of �.
(2). Given a finite F ⊆ X − X′, let G ⊆ X and G′ ⊆ X′ be finite sets such that

F ⊆ G − G′. By the hypotheses, there exist t, t ′ such that t + G ⊆ Y and
t ′ +G′ ⊆ Y ′. Then, (t − t ′)+ F ⊆ (t +G)− (t ′ +G′) ⊆ Y − Y ′.

(3). Let a finite set F ⊆⋂
t∈G(X− t) be given. Notice that F +G ⊆ X, so we can

pick an element w such that w + (F +G) ⊆ Y . Then, w + F ⊆⋂
t∈G Y − t .

Definition 11.4 LetA ⊆ N and a ∈ ∗N. The remote realm ofA at α is the following
subset of ∗N:

Aα := (∗A− α) ∩ N = {n ∈ N | a + n ∈ ∗A}.

In a nonstandard setting, the finite embeddabilityX�Y means thatX is contained
in some remote realm of Y . This notion can be also characterized in terms of
ultrafilter-shifts, as defined by Beiglböck [7].

Proposition 11.5 Let X,Y ⊆ N. Then the following are equivalent:

1. X � Y .
2. There exists a ∈ ∗N such that X ⊆ Ya (that is, a +X ⊆ ∗Y ).
3. There exists an ultrafilter U on N such that X ⊆ Y − U , where the ultrafilter

shift Y −U := {x : Y − x ∈ U }.
Proof (1) ⇒ (2). Enumerate X = {xn | n ∈ N}. By the hypothesis, the finite
intersection

⋂n
i=1(Y − xi) �= ∅. Then, by overspill, there exists an infinite N ∈ ∗

N

such that
⋂N
i=1(

∗Y − xi) is non-empty. If a ∈ ∗N is in that intersection, then clearly
a + xi ∈ ∗Y for all i ∈ N.
(2)⇒ (3). Let U = Ua be the ultrafilter generated by a ∈ ∗N. For every x ∈ X,

by the hypothesis, a + x ∈ ∗Y ⇒ a ∈ ∗(Y − x), and hence Y − x ∈ U , i.e.,
x ∈ Y −U , as desired.
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(3) ⇒ (1). Given a finite F ⊆ X, the set
⋂
x∈F (Y − x) is nonempty, because it

is a finite intersection of elements of U . If t ∈ Z is any element in that intersection,
then t + F ⊆ Y .

One can also considers a notion of dense embeddabilityX�d Y when every finite
configuration F ⊆ X has “densely-many” shifted copies included in Y , i.e., if the
intersection

⋂
x∈F (Y−x) = {t ∈ Z | t+F ⊆ Y } has positive upper Banach density

(see [36]).
The notion of finite embeddability has a natural generalization to ultrafilters.

Definition 11.6 Let U and V be ultrafilters on N. We say that U is finitely
embeddable in V , and write U � V , if for every B ∈ V there exists A ∈ U
with A� B.

Proposition 11.7 Let U ,V be ultrafilters on N. Then U � V if and only if V
belongs to the closure of {U ⊕W | W ∈ βN} in βN.
Proof First assume that Uα � Uβ . We want to show that for every B ∈ Uβ there
exists γ ∈ ∗

N such that B ∈ Uα ⊕ Uγ . By assumption, we can pick A ∈ Uα
with A � B. By the nonstandard characterization of finite embeddability of sets
given above, this means that there exists γ ∈ ∗

N such that γ + A ⊆ ∗B. Then, by
transfer, ∗γ + ∗A ⊆ ∗∗B and so ∗γ + α ∈ ∗∗B. This gives the desired property that
B ∈ Uα ⊕Uγ .1

Conversely, if Uβ is in the closure of {Uα ⊕ Uγ | γ ∈ ∗
N}, then for every

B ∈ Uβ there exists γ such that B ∈ Uα ⊕Uγ , that is, α ∈ ∗Bγ . But then we have
found a set Bγ ∈ Uα with Bγ � B, as desired.

Theorem 11.8 Let V be an ultrafilter on N. Then V is maximal with respect to
� (that is, U � V for every U ∈ βN) if and only if every B ∈ V is piecewise
syndetic.2

Proof Assume first that every B ∈ V is piecewise syndetic. By assumption, there a
finite union T := ⋃k

i=1(B − ni) that is thick. Pick γ ∈ ∗N such that γ + N ⊆ ∗T ,
and set Ai := {m ∈ N | γ +m ∈ ∗B−ni}. Note that N =⋃k

i=1 Ai . Fix an arbitrary
ultrafilter U on N. Take i such that Ai ∈ U . This means that γ + ni + Ai ⊆ ∗B,
and we conclude that Ai � B. It follows that U � V , as desired.

Conversely, assume that V is maximal, and pick any ultrafilter U that only
contains piecewise syndetic sets. By the hypothesis, for every B ∈ V there
exists A ∈ U such that A � B. Since A is piecewise syndetic, it follows from
Proposition 11.2, that B is also piecewise syndetic.

Several other results about finite embeddability between ultrafilters and its
generalizations are found in [96].

1Recall that by Proposition 4.5 we have that X ∈ Uα ⊕Uβ ⇔ α + ∗β ∈ ∗∗B.
2The property that every B ∈ V is piecewise syndetic is equivalent to the property that V belongs
to the closure of the smallest ideal K(βN,⊕) (see [72, Theorem 4.40]).
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11.2 Banach Density as Shnirelmann Density in the Remote
Realm

The title in this chapter refers to looking at copies of N starting at some infinite
element a ∈ ∗

N and then connecting some density of the set of points of this copy
of N that lie in the nonstandard extension of a set A and some other density of the
original set A itself. In this regard, given A ⊆ N and a ∈ ∗N, we set d(∗A− a) :=
d((∗A− a)∩N) and likewise for other notions of density. We warn the reader that,
in general, we do not identify ∗A − a and (∗A − a) ∩ N as sets, but since we have
not defined the density of a subset of ∗N, our convention should not cause too much
confusion.

The key observation of Renling Jin is that there is a strong converse to item (3)
of Proposition 11.2.

Proposition 11.9 Suppose thatA ⊆ N is such that BD(A) = r . Let I be an interval
of infinite hyperfinite length witnessing the Banach density ofA. Then for μI -almost
all x ∈ I , we have d(∗A− x) = r .
Proof Write I = [H,K] and consider the hypercycle system (I,Li , μI , S). Let
f denote the characteristic function of ∗A ∩ I . It follows that, for x ∈ I # :=⋂
n∈N[H,K − n], we have that

1

n

n−1∑

m=0

f (Sm(x)) = δ(∗A, [x, x + n− 1]).

By the ergodic theorem for hypercycles (Theorem 5.24), there is a LI -measurable
function f̂ such that, for μI -almost all x ∈ I , we have that

lim
n→∞

1

n

n−1∑

m=0

f (Sm(x)) = f̂ (x).

Since I # is a μI -conull set, we will thus be finished if we can show that f̄ is μI -
almost everywhere equal to r on I #.

Towards this end, first note that f̂ (x) ≤ r for μI -almost all x ∈ I #. Indeed, if
f̂ (x) > r for a positive measure set of x ∈ I #, then there would be some x ∈ I #

with d(∗A− x) > r , whence BD(A) > r by transfer, yielding a contradiction.
Next note that, by the Dominated Convergence Theorem, we have that

∫

I

f̂ (x)dμI = lim
n→∞

∫

I

1

n

n−1∑

m=0

f (Sm(x))dμI = r,



11.2 Banach Density as Shnirelmann Density in the Remote Realm 127

where the last equality follows from the fact that S is measure-preserving and that∫
I
f̂ (x)dμI = μI (∗A) = r . By a standard measure theory argument, we have that

f̂ (x) = r for almost all x ∈ I #.

Remark 11.10 In the context of the previous proposition, since μI (∗A) > 0, we
can conclude that there is x ∈ ∗A such that d(∗A− x) = r .

Summarizing what we have seen thus far:

Theorem 11.11 For A ⊆ N, the following are equivalent:

1. BD(A) ≥ r .
2. There is B � A such that d(A) ≥ r .
3. For any infinite hyperfinite interval I witnessing the Banach density of A, we

have d(∗A− x) ≥ r for μI -almost all x ∈ I .
We now introduce a new notion of density.

Definition 11.12 For A ⊆ N, we define the Shnirelman density of A to be

σ(A) := inf
n≥1
δ(A, n).

It is clear from the definition that d(A) ≥ σ(A). Note that the Shnirelman density
is very sensitive to what happens for “small” n. For example, if 1 /∈ A, then σ(A) =
0. On the other hand, knowing that σ(A) ≥ r is a fairly strong assumption and
thus there are nice structural results for sets of positive Shnirelman density. We will
return to this topic in the next section.

A crucial idea of Jin was to add one more equivalence to the above theorem,
namely that there is B � A such that σ(B) ≥ r; in this way, one can prove Banach
density parallels of theorems about Shnirelman density. To add this equivalence,
one first needs a standard lemma.

Lemma 11.13 Suppose that A ⊆ N is such that d(A) = r . Then for every ε > 0,
there is n0 ∈ N such that σ(A− n0) ≥ r − ε.
Proof Suppose that the lemma is false for a given ε > 0. In particular, σ(A) < r−ε,
so there is n0 ∈ N such that δ(A, n0) < r− ε. Since n0 does not witness the truth of
the lemma, there is n1 ∈ N such that δ((A−n0), n1) < r−ε. Continuing in this way,
we find a sequence (ni) of natural numbers such that, for all i, we have δ(A, [n0 +
. . .+ni +1, n0+ . . .+ni +ni+1]) < r − ε for all i. In consequence, the increasing
sequence (

∑
i≤k ni) witnesses that d(A) ≤ r − ε, yielding a contradiction.

Proposition 11.14 Suppose that BD(A) ≥ r . Then there is B � A such that
σ(B) ≥ r .
Proof We seek x ∈ ∗N such that σ(∗A−x) ≥ r . Take y ∈ ∗N such that d(∗A−y) ≥
r . By the previous lemma, for each n ∈ N, there is zn ∈ ∗

N with zn ≥ y such that
σ(∗A− zn) ≥ r − 1/n. By overflow, for each n ∈ N, there is infiniteKn ∈ ∗N such
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that, for each m ≤ Kn, we have

δ((∗A− zn),m) ≥ r − 1/n.

Take an infiniteK ∈ ∗N such thatK ≤ Kn for each n. (This is possible by countable
saturation.) Let

D := {α ∈ ∗N : (∃z ∈ ∗N)(∀m ≤ K)δ((∗A− z),m) ≥ r − 1/α}.

Then D is internal and N ⊆ D, whence by overflow there is infinite N ∈ D. Take
x ∈ ∗

N such that δ((∗A − x),m) ≥ r − 1/N for all m ≤ N . In particular, for all
m ∈ N, we have δ((∗A− x),m) ≥ r , whence this x is as desired.

Theorem 11.11 and Proposition 11.14 immediately yield:

Corollary 11.15 BD(A) ≥ r if and only if there is B � A such that σ(B) ≥ r .
We end this section with a curious application of Proposition 11.14. We will

make more serious use of this technique in the next section.

Proposition 11.16 Szemeredi’s Theorem is equivalent to the following (apparently
weaker statement): There exists ε > 0 such that every set A ⊆ N with σ(A) ≥ 1− ε
contains arbitrarily long arithmetic progressions.

Proof FixA ⊆ N with BD(A) > 0; we wish to show thatA contains arbitrarily long
arithmetic progressions. By Proposition 10.10, there is k ∈ N such that BD(A +
[0, k]) ≥ 1− ε. If A+ [0, k] contains arbitrarily long arithmetic progressions, then
by van der Waerden’s theorem, there is i ∈ [0, k] such thatA+ i contains arbitrarily
long arithmetic progressions, whence so doesA. It follows that we may assume that
BD(A) ≥ 1− ε.

By Proposition 11.14, we have B � A such that σ(B) ≥ 1 − ε, whence, by
assumption, we have that B contains arbitrarily long arithmetic progressions, and
hence so does A.

11.3 Applications

We use the ideas from the preceding section to derive some Banach density versions
of theorems about Shnirelman density. We first recall the following result of
Shnirleman (see, for example, [65, page 8]):

Theorem 11.17 Suppose that A ⊆ N0 is such that 0 ∈ A and σ(A) > 0. Then A is
a basis, that is, there is h ∈ N such that Σh(A) = N.
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Using nonstandard methods, Jin was able to prove a Banach density version of
the aforementioned result:

Theorem 11.18 Suppose that A ⊆ N is such that gcd(A − min(A)) = 1 and
BD(A) > 0. Then A is a Banach basis, that is, there is h ∈ N such that Σh(A) is
thick.

Note that we must assume that gcd(A−min(A)) = 1, for if gcd(A−min(A)) =
c > 1, then hA ⊆ {hmin(A) + nc : n ∈ N}, which does not contain arbitrarily
long intervals.

Proof (of Theorem 11.18) Suppose BD(A) = r and gcd(A − min(A)) = 1. The
latter property guarantees the existence of m ∈ N such that Σm(A − min(A))
contains two consecutive numbers, whence c, c + 1 ∈ Σm(A) for some c ∈ N.
By Proposition 11.14, there is a ∈ ∗

N such that σ(∗A − a + 1) ≥ r . In particular,
a ∈ ∗A. Consequently, we have

σ(Σ1+m(∗A)− a − c) ≥ σ(∗A+ {c, c+ 1} − a − c) ≥ σ(∗A− a + 1) ≥ r.

Since 0 ∈ Σ1+m(∗A)−a−c, Shnirleman’s theorem implies that there is n such that
N ⊆ Σn(Σ1+m(∗A)− a − c). By , there is N such that [0, N] ⊆ Σn(Σ1+m(∗A)−
a − c). Set h := n(1 +m), so [0, N] + n(a + c) ⊆ ∗(Σh(A)). By transfer, Σh(A)
contains arbitrarily long intervals.

With similar methods, one can prove the Banach density analogue of the
following theorem of Mann (see, for example, [65, page 5]):

Theorem 11.19 Given A,B ⊆ N0 such that 0 ∈ A ∩ B, we have σ (A+ B) ≥
min {σ (A)+ σ (B) , 1}.

Observe that the exact statement of Mann’s theorem is false if one replaces
Shnirelman density by Banach density. Indeed, if A and B are both the set of even
numbers, then BD (A+ B) = 1

2 but BD (A)+BD (B) = 1. However, if one replaces
A+ B by A+ B + {0, 1}, the Banach density version of Mann’s theorem is true.

Theorem 11.20 Given A,B ⊆ N, we have BD (A+ B + {0, 1}) ≥ min {BD (A)
+BD (B) , 1}.

The idea behind the proof of Theorem 11.20 is, as before, to reduce to the case of
Shnirelman density by replacing the given sets with hyperfinite shifts. In the course
of the proof of Theorem 11.20, we will need to use the following fact from additive
number theory (see, for example, [65, page 6]):

Theorem 11.21 (Besicovitch’s Theorem) Suppose A,B ⊆ N and s ∈ [0, 1] are
such that 1 ∈ A, 0 ∈ B, and |B ∩ [1, n]| ≥ s (n+ 1) for every n ∈ N. Then
σ (A+ B) ≥ min {σ (A)+ σ (B) , 1}.
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Proof (of Theorem 11.20) Set r := BD (A) and s := BD (B). We can assume,
without loss of generality, that r ≤ s ≤ 1/2. By Proposition 11.14, one can find
a ∈ ∗A and b ∈ ∗B such that σ (∗A− a + 1) ≥ r and σ (∗B − b + 1) ≥ s.
Claim For every n ∈ N, one has that |(∗B + {0, 1}) ∩ [b + 1, b + n]| ≥ s (n+ 1).

Proof of Claim Let [1, k0] be the largest initial segment of N contained in
(∗B + {0, 1} − b) ∩ N (if no such k0 exists, then the claim is clearly true) and let
[1, k1] be the largest initial segment of N disjoint from ((∗B + {0, 1})− (b + k0))∩
N. We note the following:

• For 1 ≤ n ≤ k0, we have that

∣∣(∗B + {0, 1}) ∩ [b + 1, b + n]∣∣ = n ≥ (n+ 1)/2 ≥ s (n+ 1) .

• For k0 + 1 ≤ n < k0 + k1, since σ (∗B − b + 1) ≥ s, we have that

∣
∣(∗B + {0, 1}) ∩ [b + 1, b + n]∣∣ ≥ ∣

∣∗ (B + 1) ∩ [b + 1, b + n]∣∣
= ∣∣∗ (B + 1) ∩ [b + 1, b + n+ 1]∣∣
≥ s (n+ 1) .

• For n ≥ k0 + k1, since k0 + k1 + 1 ∈ ∗B, k0 + k1 + 1 /∈ ∗B + 1, and
σ (∗B − b + 1) ≥ s, we have that

∣∣(∗B + {0, 1}) ∩ [b + 1, b + n]∣∣ ≥ ∣∣∗ (B + 1) ∩ [b + 1, b + n]∣∣+ 1

≥ sn+ 1 ≥ s (n+ 1) .

These observations conclude the proof of the claim.

One can now apply Besicovitch’s theorem to ∗A − a + 1 and ∗B + {0, 1} − b
(intersected with N) to conclude that

σ
((∗A− a + 1

)+ (∗B + {0, 1} − b)) ≥ min
{
σ
(∗A− a + 1

)+ s, 1} ≥ r + s.

Finally, observe that

(∗A− a + 1
)+ (∗B + {0, 1} − b) = ∗ (A+ B + {0, 1})− (a + b) .

Hence

BD (A+ B + {0, 1}) ≥ σ (∗ (A+ B + {0, 1})− (a + b)) ≥ r + s.
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Notes and References

The notion of finite embeddability was isolated and studied in [36], although it was
implicit in several previous papers of additive number theory. The idea of extending
the finite embeddability relation to ultrafilters is due to Luperi Baglini, and it was
studied jointly with Blass and Di Nasso in [18, 96]). The material in Sections 11.2
and 11.3 is from Jin’s paper [77].



Chapter 12
Jin’s Sumset Theorem

In this chapter, we state and prove Jin’s Sumset Theorem, which is one of the
earliest results in combinatorial number theory proven using nonstandard methods.
We present Jin’s original nonstandard proof, as well as an ultrafilter proof due to
Beiglböck and an alternative nonstandard proof due to Di Nasso. In the final section,
we prove a recent quantitative strengthening of Jin’s Sumset Theorem.

12.1 The Statement of Jin’s Sumset Theorem and Some
Standard Consequences

Definition 12.1 An initial segment U of ∗N0 is a cut if U+ U ⊆ U.

Exercise 12.2 If U is a cut, then either U is external or else U = ∗
N.

Example 12.3

1. N is a cut.
2. If N is an infinite element of ∗N, then UN := {x ∈ ∗N : x

N
≈ 0} is a cut.

Fix a cut U of ∗N and suppose that U ⊆ [0, N). Given x, y ∈ ∗
N, we write

x ∼U y if |x − y| ∈ U; note that ∼U is an equivalence relation on ∗
N. We let

[x]U,N , or simply [x]N if no confusion can arise, denote the equivalence class of x
under ∼U and we let [0, N)/U denote the set of equivalence classes. We let πU :
[0, N) → [0, N)/U denote the quotient map. The linear order on [0, N) descends
to a linear order on [0, N)/U. Moreover, one can push forward the Loeb measure
on [0, N) to a measure on [0, N)/U, which we also refer to as Loeb measure.
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Example 12.4 Fix N ∈ ∗
N infinite and consider the cut UN from Example 12.3.

Note that the surjection f : [0, N)→ [0, 1] given by f (β) := st(β/N) descends to
a bijection of ordered sets f : [0, N)/UN → [0, 1]. The discussion in Sect. 5.3
of Chap. 5 shows that the measure on [0, 1] induced by the Loeb measure on
[0, N)/UN via f is precisely Lebesgue measure.

For any cut U contained in [0, N), the set [0, N)/U has a natural topology
induced from the linear order, whence it makes sense to talk about category notions
in [0, N)/U. (This was first considered in [84].) It will be convenient to translate the
category notions from [0, N)/U back to [0, N]:
Definition 12.5 A ⊆ [0, N) is U-nowhere dense if πU(A) is nowhere dense in
[0, N)/U . More concretely: A is U-nowhere dense if, given any a < b in [0, N)
with b−a > U, there is [c, d] ⊆ [a, b]with d−c > U such that [c, d] ⊆ [0, N)\A.
If A is not U-nowhere dense, we say that A is U-somewhere dense.

Recall the following famous theorem of Steinhaus:

Theorem 12.6 If C,D ⊆ [0, 1] have positive Lebesgue measure, then C + D
contains an interval.

For x, y ∈ [0, N), set x ⊕N y := x + y mod N . For A,B ⊆ [0, N), set

A⊕N B := {x ⊕N y : x ∈ A, y ∈ B}.

In light of Example 12.4, Theorem 12.6 says that whenever A,B ⊆ [0, N) are
internal sets of positive Loeb measure, then A ⊕N B is UN -somewhere dense.
Keisler and Leth asked whether or not this is the case for any cut. Jin answered
this positively in [78]:

Theorem 12.7 (Jin’s Sumset Theorem) If U ⊆ [0, N) is a cut and A,B ⊆ [0, N)
are internal sets with positive Loeb measure, then A⊕N B is U-somewhere dense.

Exercise 12.8 Prove Theorem 12.6 from Theorem 12.7.

We will prove Theorem 12.7 in the next section. We now prove the following
standard corollary of Theorem 12.7, which is often also referred to as Jin’s sumset
theorem, although this consequence was known to Leth beforehand.

Corollary 12.9 Suppose that A,B ⊆ N have positive Banach density. ThenA+B
is piecewise syndetic.

Proof Set r := BD(A) and s := BD(B). Fix N ∈ ∗
N infinite and take x, y ∈ ∗

N

such that

δ(∗A ∩ [x, x +N)|) ≈ r, δ(∗B ∩ [y, y +N)) ≈ s.

Let C := ∗A− x andD := ∗B − y, so we may view C andD as internal subsets of
[0, 2N) of positive Loeb measure. By Jin’s theorem applied to the cut N, we have
that C⊕2N D = C+D is N-somewhere dense, that is, there is a hyperfinite interval
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I such that all gaps of C+D on I have finite length. By , there ism ∈ N such that all
gaps ofC+D on I have length at mostm. Therefore, x+y+I ⊆ ∗(A+B+[0,m]).
By transfer, for any k ∈ N, A+B + [0,m] contains an interval of length k, whence
A+ B is piecewise syndetic.

It is interesting to compare the previous corollary to Proposition 10.25. It is also
interesting to point out that Corollary 12.9 can also be used to give an alternative
proof of Theorem 11.18. Indeed, suppose BD(A) > 0 and gcd(A − min(A)) = 1.
Then there is h ∈ N such thatA+A+[0, h] is thick. It follows thatA+A+[x, x+h]
is thick for all x ∈ N. As in the proof of Theorem 11.18, take m and consecutive
a, a + 1 ∈ Σm(A). Note that, for all i = 0, 1, . . . , h, we have that ha + i =
i(a+ 1)+ (h− i)a ∈ Σhm(A). It follows that A+A+ [ha, ha+ h] ⊆ Σhm+2(A),
whenceΣhm+2(A) is thick.

12.2 Jin’s Proof of the Sumset Theorem

We now turn to the proof of Theorem 12.7 given in [78]. Suppose, towards a
contradiction, that there is a cut U for which the theorem is false. If H > U and
A,B ⊆ [0,H) are internal, we say that (A,B) is (H,U)-bad ifμH (A),μH (B) > 0
and A⊕H B is U-nowhere dense. We set

r := sup{μH(A) : (A,B) is (H,U) bad for some H > U and some B ⊆ [0,H)}.

By assumption, r > 0. We fix ε > 0 sufficiently small. We then set

s := sup{μH(B) : (A,B) is (H,U)-bad for some H > U

and some A ⊆ [0,H) with μH(A) > r − ε}.

By the definition of r , we have that s > 0. Also, by the symmetry of the definition
of r , we have that r ≥ s. The following is slightly less obvious:

Claim 1 s < 1
2 + ε.

Proof of Claim 1 Suppose, towards a contradiction, that s ≥ 1
2 + ε. We may thus

find H > N and an (H,U)-bad pair (A,B) with μH(A) > 1
2 and μH(B) > 1

2 .
Since addition modulo H is translation invariant, it follows that for any x ∈ [0,H),
we have that A∩ (x -H B) �= ∅, whenceA⊕H B = [0,H − 1), which is a serious
contradiction to the fact that A⊕H B is U-nowhere dense.

We now fix δ > 0 sufficiently small, H > U and an (H,U)-bad (A,B) such that
μH(A) > r − ε and μH (B) > s − δ. We will obtain a contradiction by producing
K > U and (K,U)-bad (A′, B ′) such that μK(A′) > r − ε and μK(B ′) > s + δ,
contradicting the definition of s.
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We first show that it suffices to find K > U such that K/H ≈ 0 and such that
there are hyperfinite intervals I, J ⊆ [0,H) of lengthK for which

st

( |A ∩ I |
K

)
> r − ε and st

( |B ∩ J |
K

)
> s + δ.

Indeed, suppose that I := [a, a + K) and J := [b, b + K) are as above. Let
A′ := (A∩I)−a and B ′ := (B∩J )−b. ThenμK(A′) > r−ε and μK(B ′) > s+δ.
It remains to see that (A′, B ′) is (K,U)-bad. Since A ⊕H B is U-nowhere dense,
it is clear that (A ∩ I) ⊕H (B ∩ J ) is also U-nowhere dense. Since A′ ⊕H B ′ =
((A∩ I)⊕H (B ∩ J ))- (a+ b), we have that A′ ⊕H B ′ is U-nowhere dense. Since
K/H is infinitesimal, we have that A′ ⊕H B ′ = A′ ⊕2K B

′. It follows thatA′ ⊕K B ′
is the union of two U-nowhere dense subsets of [0,K), whence is also U-nowhere
dense, and thus (A′, B ′) is (K,U)-bad, as desired.

We now work towards finding the appropriateK . By the definition of U-nowhere
dense, we have, for every k ∈ U, thatA⊕H (B⊕H [−k, k])) = (A⊕HB)⊕H [−k, k]
is U-nowhere dense. By the definition of s, it follows that μH(B ⊕H [−k, k]) ≤ s
for each k ∈ U. Since U is external and closed under addition, it follows that there
is K > U with K/H infinitesimal such that

|B ⊕H [−K,K]|
H

≤ s + δ
2
.

We finish by showing that this K is as desired.
Let I := {[iK, (i+1)K) : 0 ≤ i ≤ H/K−1} be a partition of [0,H −1) into

intervals of lengthK (with a negligible tail omitted). Let X := {i ∈ [0,H/K− 1] :
[iK, (i + 1)K − 1) ∩ B = ∅}.
Claim 2 |X|

|I | >
1
3 .

Proof of Claim 2 Suppose, towards a contradiction, that |X||I | ≤ 1
3 . Fix i /∈ X and

x ∈ [iK, (i + 1)K). Write x = iK + j with j ∈ [0,K − 1]. Since i /∈ X, there
is l ∈ [0,K − 1) such that iK + l ∈ B. It follows that x = (iK + l) + (j − l) ∈
B ⊕H [−K,K]. Consequently,

|B ⊕H [−K,K]| ≥
∑

i /∈X
K ≥ 2

3
(H/K − 1) ·K = 2

3
H − 2

3
K,

whence

|B ⊕H [−K,K]|
H

≥ 2

3
− 2

3

K

H
≈ 2

3
,

which, for sufficiently small ε and δ, contradicts the fact that |B⊕H [−K,K]|
H

≤ s + δ
2 .
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Let I ′ := {[iK, (i + 1)K) : i /∈ X}. As explained above, the following claim
completes the proof of the theorem.

Claim 3 There are I, J ∈ I such that

st

( |A ∩ I |
K

)
> r − ε and st

( |B ∩ J |
K

)
> s + δ.

Proof of Claim 3 We only prove the existence of J ; the proof of the existence of I
is similar (and easier). Suppose, towards a contradiction, that st( |B∩J |

K
) ≤ s + δ for

all J ∈ I . We then have

s − δ < |B ∩ [0,H − 1)|
H

= 1

H

∑

J∈I ′
|B ∩ [iK, (i + 1)K)|

≤ 1

H
· 2

3
· (H/K) · (s + δ)K = 2

3
(s + δ).

If δ ≤ s
5 , then this yields a contradiction.

12.3 Beiglböck’s Proof

It is straightforward to verify that Corollary 12.9 is also true for subsets of Z:

Corollary 12.10 If A,B ⊆ Z are such that BD(A),BD(B) > 0, then A + B is
piecewise syndetic.

In this section, we give Beiglböck’s ultrafilter proof of Corollary 12.10 appearing
in [7]. We first start with some preliminary facts on invariant means on Z.

Definition 12.11 An invariant mean on Z is a linear functional � : B(Z)→ R that
satisfies the following properties:

1. � is positive, that is, �(f ) ≥ 0 if f ≥ 0;
2. �(1) = 1; and
3. �(k.f ) = �(f ) for all k ∈ Z and f ∈ B(Z), where (k.f )(x) := f (x − k).

There are many invariant means on Z:

Exercise 12.12 Suppose that (In) is a sequence of intervals in Z with |In| → ∞
as n → ∞. Fix U ∈ βN. Define, for f ∈ B(Z), �(f ) = limU (

1
|In|

∑
x∈In f (x)).

Show that � is an invariant mean on Z.

In fact, we have:

Lemma 12.13 For every A ⊆ Z, there is an invariant mean � on Z such that
�(1A) = BD(A).
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Proof Let (In) be a sequence of intervals witnessing the Banach density of A. Fix
nonprincipal U ∈ βZ. Define � as in Exercise 12.12 for these choices of (In) and
U . It is clear that �(1A) = BD(A).

Lemma 12.14 For every invariant mean � onZ, there is a regular Borel probability
measure ν on βZ such that �(1A) = ν(A) for every A ⊆ Z.

Proof Fix a mean � on Z. Since f �→ βf yields an isomorphism B(Z) ∼= C(βZ),
the Riesz Representation Theorem yields a regular Borel probability measure ν on
βZ such that �(f ) = ∫

βZ(βf )dν for all f ∈ B(Z). In particular,

�(1A) =
∫

βZ

(β1A)dν = ν(A).

The following lemma is the key to Beiglböck’s proof of Corollary 12.10.

Lemma 12.15 For anyA,B ⊆ Z, there isU ∈ βZ such that BD(A∩ (B−U )) ≥
BD(A) · BD(B).

Proof Fix an invariant mean � on Z such that �(1B) = BD(B) and let ν be the
associated Borel probability measure on βZ. Let (In) be a sequence of intervals
witnessing the Banach density of A. Define fn : βZ→ [0, 1] by

fn(U ) := δ((A ∩ (B −U ), In) = 1

|In|
∑

k∈A∩In
1B−k(U ).

Set f (U ) := lim supn fn(U ) and note that f (U ) ≤ BD(A ∩ (B − U )) for all
U ∈ βZ. Fatou’s Lemma implies

∫

βZ

f dν ≥ lim sup
n

∫

βZ

1

|In|
∑

k∈A∩In
1UB−k dν = lim sup

n

1

|In|
∑

k∈In∩A
�(1B−k).

Since � is invariant, the latter term is equal to lim supn δ(A, In) · �(1B) = BD(A) ·
BD(B). Thus, we have shown

∫
βZ f dν ≥ BD(A) · BD(B). In particular, there is

some U ∈ Z such that f (U ) ≥ BD(A) · BD(B), as desired.

Notice that, in the notation of the above proof, μ(Z) = 0, whence we can take
U as in the conclusion of the lemma to be nonprincipal.

We can now give Beiglböck’s proof of Corollary 12.10. Assume that
BD(A),BD(B) > 0. Apply the previous lemma with A replaced by−A (which has
the same Banach density), obtaining U ∈ βZ such that C := (−A) ∩ (B − U )
has positive Banach density. By Lemma 10.25, C − C is syndetic; since
C − C ⊆ A+ (B −U ), we have that A+ (B −U ) is also syndetic.

Suppose s ∈ A + (B − U ). Then for some a ∈ A, B − (s − a) ∈ U , whence
a + B − s ∈ U and hence A + B − s ∈ U . Thus, for any finite set s1, . . . , sn ∈
A + (B − U ), we have

⋂n
i=1(A + B − si ) ∈ U , and, in particular, is nonempty,
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meaning there is t ∈ Z such that t+{s1, . . . , sn} ⊆ A+B. We claim that this implies
thatA+B is piecewise syndetic. Indeed, takeF ⊆ Z such that F+A+(B−U ) = Z.
We claim that F + A+ B contains arbitrarily long intervals. To see this, fix n ∈ N

and, for i = 1, . . . , n take si ∈ A+ (B −U ) such that i ∈ F + si . Take t ∈ Z such
that t+{s1, . . . , sn} ⊆ A+B. Then t+[1, n] ⊆ t+F+{s1, . . . , sn} ⊆ F+(A+B),
completing the proof.

12.4 A Proof with an Explicit Bound

A proof of Corollary 12.10 can be given by using a simple counting argument of
finite combinatorics in the nonstandard setting. In this way, one also obtains an
explicit bound on the number of shifts of the sumset that are needed to produce a
thick set.

Lemma 12.16 Let C ⊆ [1, n] and D ⊆ [1,m] be finite sets of natural numbers.
Then there exists k ≤ n such that

|(C − k) ∩D|
m

≥ |C|
n
· |D|
m

− |D|
n
.

Proof If χ : [1, n] → {0, 1} is the characteristic function of C, then for every
d ∈ D, we have

1

n
·
n∑

k=1

χ(k + d) = |C ∩ [1+ d, n+ d]|
n

= |C|
n
+ e(d)

n

where |e(d)| ≤ d . Then:

1

n
·
n∑

k=1

(
1

m
·
∑

d∈D
χ(k + d)

)

= 1

m
·
∑

d∈D

(
1

n
·
n∑

x=1

χ(k + d)
)

= 1

m
·
∑

d∈D

|C|
n
+ 1

nm
·
∑

d∈D
e(d) = |C|

n
· |D|
m
+ e

where

|e| =
∣∣
∣
∣
∣

1

nm

∑

d∈D
e(d)

∣∣
∣
∣
∣
≤ 1

nm

∑

d∈D
|e(d)| ≤ 1

nm
·
∑

d∈D
d ≤ 1

nm

∑

d∈D
m = |D|

n
.

By the pigeonhole principle, there must exist at least one number k ≤ n such that

|(C − k) ∩D|
m

= |(D + k) ∩ C|
m

= 1

m
·
∑

d∈D
χ(k + d) ≥ |C|

n
· |D|
m

− |D|
n
.
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Theorem 12.17 Let A,B ⊆ Z have positive Banach densities BD(A) = α > 0
and BD(B) = β > 0. Then there exists a finite set F with |F | ≤ 1

αβ
such that

(A+ B)+ F is thick. In particular, A+ B is piecewise syndetic.

Proof Pick infinite ν,N ∈ ∗N such that ν/N ≈ 0, and pick intervals [Ω+1,Ω+N]
and [Ξ + 1,Ξ + ν] such that

|∗A ∩ [Ω + 1,Ω +N]|
N

≈ α and
|(−∗B) ∩ [Ξ + 1,Ξ + ν]|

ν
≈ β.

By applying the nonstandard version of the previous lemma to the hyperfinite sets
C = (∗A −Ω) ∩ [1, N] ⊆ [1, N] and D = (−∗B − Ξ) ∩ [1, ν], one obtains the
existence of a number ζ such that

|(C − ζ ) ∩D|
ν

≥ |C|
N
· |D|
ν

− |D|
N

≈ αβ.

Finally, apply Lemma 10.26 to the internal set E = (C − ζ ) ∩ D ⊆ [1, ν]. Since
|E|/ν ≈ αβ, there exists a finite F ⊂ Z with |F | ≤ 1

αβ
and such that Z ⊆ (E −

E)+F , and hence, by overflow, I ⊆ (E−E)+F for some infinite interval I . Since
E ⊆ ∗A −Ω and E ⊂ −∗B − Ξ , it follows that ∗(A + B + F) = ∗A + ∗B + F
includes the infinite interval I +Ω +Ξ + ζ , and hence it is thick.

12.5 Quantitative Strengthenings

We end this chapter by proving some technical strengthenings of Corollary 12.10.
Indeed, in light of Lemma 10.23, the following theorem can be viewed as a
“quantitative” strengthening of Corollary 12.10:

Theorem 12.18 Suppose that (In) is a sequence of intervals with |In| → ∞ as
n→∞. Suppose that A,B ⊆ Z and BD(B) > 0. Then:

1. If d(In)(A) ≥ r , then there is a finite set F ⊆ Z such that, for every finite set
L ⊆ Z, we have

d(In)

(
⋂

x∈L
(A+ B + F + x)

)

≥ r.

2. If d(In)(A) ≥ r , then for every ε > 0, there is a finite set F ⊆ Z such that, for
every finite set L ⊆ Z, we have

d(In)

(
⋂

x∈L
(A+ B + F + x)

)

≥ r − ε.
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In connection with item (2) of the previous theorem, it will turn out that F
depends only on B and ε (but not on A or (In)). Moreover, item (2) is false if
r − ε is replaced by r; see [43].

In order to prove Theorem 12.18, we need a preparatory counting lemma.

Lemma 12.19 Suppose that (In) is a sequence of intervals inZ such that |In| → ∞
as n→∞. Further suppose I is an infinite hyperfinite interval in ∗Z andA ⊆ Z.

1. If d(In) (A) ≥ r , then there is N > N such that

δ(∗A, IN) � r and
1

|IN |
∑

x∈IN
δ(x − (∗A ∩ IN), I) � r . (†)

2. If d(In) (A) > r , then there is N0 > N such that (†) holds for all N ≥ N0.

Proof For (1), first apply transfer to the statement “for every finite interval J ⊆ Z

and every natural number k, there exists n ≥ k such that

δ(A, In) > r − 2−k and
1

|In|
∑

x∈J
|(In − x)# In| < 2−k .”

FixK > N and let N be the result of applying the transferred statement to I andK .
Set C = ∗A ∩ IN and let χC denote the characteristic function of C. We have

1

|IN |
∑

x∈IN
δ((x − C), Y ) = 1

|IN |
∑

x∈IN

1

|I |
∑

y∈I
χC(x − y)

= 1

|I |
∑

y∈I

|C ∩ (IN − y)|
|IN |

≥ |C|
|IN | −

∑

y∈I

|(IN − y)# IN |
|IN |

≈ r .

For (2), apply transfer to the statement “for every finite interval J ⊆ Z and every
natural number k, there exists n0 ≥ k such that, for all n ≥ n0,

δ(A, In) > r − 2−n0 and
1

|In|
∑

x∈J
|(In − x)# In| < 2−n0 .”

Once again, fixK > N and letN0 be the result of applying the transferred statement
to I and K . As above, this N0 is as desired.

Proof (of Theorem 12.18) Fix an infinite hyperfinite interval I that is good for B.
(See Proposition 10.28.)
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For (1), assume that d(In)(A) ≥ r . Let N be as in part (1) of Lemma 12.19
applied to I and A. Once again, set C := ∗A ∩ IN . Consider the μIN -measurable
function

f (x) = st(δ(x − C, I)).
By Lemma 5.18, we have that

∫

IN

f dμIN = st

⎛

⎝ 1

|IN |
∑

x∈IN
δ(x − C, I)

⎞

⎠ ≥ r,

whence there is some standard s > 0 such that μIN ({x ∈ IN : f (x) ≥ 2s}) ≥ r .
Setting Γ = {x ∈ IN : δ(x − C, I) ≥ s}, we have thatμIN (Γ ) ≥ r . Since I is good
for B, we may take a finite subset F of Z such that

δ(∗(B + F), I) > 1− s
2
.

Fix x ∈ Z. Since I is infinite, we have that

δ(∗ (B + F + x) , I) = δ(∗ (B + F) , (I − x)) ≈ δ(∗ (B + F) , I),

whence δ(∗ (B + F + x) , I) > 1 − s. Thus, for any y ∈ Γ , we have that (y −
C) ∩ ∗(B + F + x) �= ∅. In particular, if L is a finite subset of Z, then Γ ⊆
∗ (⋂

x∈L A+ B + F + x
)

. Therefore

d(In)

(
⋂

x∈L
A+ B + F + x

)

≥ μIN
(
∗(
⋂

x∈L
A+ B + F + x)

)

≥ μIN (Γ ) ≥ r .

This establishes (1).
Towards (2), note that we may suppose that d(In)(A) > r . Fix N0 > N as in

part (2) of Lemma 12.19 applied to I and A. Fix N ≥ N0 and standard ε > 0 with
ε < r . Set

Λ := {x ∈ IN : δ((x − C), I) ≥ ε}

and observe that |Λ|
|IN | > r − ε. Since I is good for B, we may fix a finite subset F

of Z such that

δ(∗(B + F), I) > 1− ε
2

.

Fix x ∈ Z. Since I is infinite, arguing as in the proof of part (1), we conclude that

δ∗ (B + F + x) , I) > 1− ε.
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Fix L ⊆ Z finite. As in the proof of part (1), it follows that Λ ⊆
∗ (⋂

x∈L A+ B + F + x
)

whence

δ

(
∗
(
⋂

x∈L
A+ B + F + x

)

, IN

)

≥ |Λ|
|IN | > r − ε.

Since the previous inequality held for every N ≥ N0, by transfer we can conclude
that there is n0 such that, for all n ≥ n0, we have

δ

((
⋂

x∈L
A+ B + F + x

)

, In

)

≥ r − ε,

whence it follows that

d(In)

(
⋂

x∈L
A+ B + F + x

)

≥ r − ε.

Notes and References

The space of cuts was first studied in the paper [78] and Jin’s Sumset Theorem
solved Problem 9.13 in that paper negatively. Jin gives a purely standard, finitary
version of his proof of the Sumset Theorem in [79]; a simplified elementary
standard proof was then given in [35]. The proof given in Sect. 12.4 is due to Di
Nasso [36]. The original proof of Theorem 12.18 given in [41] used a Lebesgue
Density Theorem for the cut spaces [0,H ]/U. Indeed, one can give a nice proof
of Theorem 12.6 using the standard Lebesgue density theorem and Example 12.4
suggested that perhaps a general Lebesgue density theorem holds for cut spaces.
Once this was established, the fact that one has many density points was used to
strengthen the sumset theorem in the above manner. The proof given in this chapter
follows [43], which actually works for all countable amenable groups rather than
just Z; other than the fact that Proposition 10.10 is more difficult to prove for
amenable groups than it is for Z, there is not much added difficulty in generalizing
to the amenable situation. We should also mention that the amenable group version
of Corollary 12.10 was first proven by Beiglböck et al. in [8].



Chapter 13
Sumset Configurations in Sets
of Positive Density

In this section, we discuss a conjecture of Erdős, which states that a set of natural
numbers of positive lower density contains the sum of two infinite sets. We begin
with the history of the conjecture and discuss its nonstandard reformulation. We
then present a proof of the conjecture in the “high density” case, which follows
from a “1-shift” version of the conjecture in the general case. We conclude with
a discussion of how these techniques yield a weak density version of Folkman’s
theorem.

13.1 Erdős’ Conjecture

Just as Szemeredi’s theorem is a “density” version of van der Waerden’s theorem,
it is natural to wonder if the density version of Hindman’s theorem is true, namely:
does every set of positive density contain an FS set? It is clear that the answer to this
question is: no! Indeed, the set of odd numbers has positive density, but does not
even contain PS(B) for any infinite set B. Here, PS(B) := {b+b′ : b, b′ ∈ B, b �=
b′}. This example is easily fixed if we allow ourselves to translate the original set,
so Erdős conjectured that this was the only obstruction to a weak density version
of Hindman’s theorem, namely: if A ⊆ N has positive density, then there is t ∈ N

and infinite B ⊆ A such that t + FS(B) ⊆ A. Strauss provided a counterexample to
this conjecture1 (see [45]), whence Erdős changed his conjecture to the following,
which we often refer to as Erdős’ sumset conjecture (see [103] and [46, p. 85]):

1It still seems to be open whether or not a set of positive density (of any kind) must contain a
translate of PS(B) for some infinite B.
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Conjecture 13.1 Suppose that A ⊆ N is such that d(A) > 0. Then there exist
infinite sets B and C such that B + C ⊆ A.

It will be convenient to give a name to sets satisfying the conclusion of
Conjecture 13.1.

Definition 13.2 We say thatA ⊆ N has the sumset property if there are infinite sets
B,C ⊆ N such that B + C ⊆ A.

Many sets that are structurally large have the sumset property as indicated by
the following proposition. While this result follows from standard results in the
literature, we prefer to give the following elegant argument of Leth.2

Proposition 13.3 If A is piecewise syndetic, then A has the sumset property. More
precisely, there is an infinite set B ⊆ N and k ∈ N such that PS(B)− k ⊆ A.
Proof SinceA is piecewise syndetic, there existsm and an interval [a, b] in ∗N with
a and b − a infinite such that ∗A has no gaps of size larger than m on [a, b]. Set
L := (∗A− a)∩N, so that a+L ⊆ ∗A. Let l be the first element in ∗L greater than
or equal to a. Set k := l − a. Since L contains no gaps of size larger than m, we
know that 0 ≤ k ≤ m. We now have:

l − k + L ⊆ ∗A and l ∈ ∗L.

Take b0 ∈ L arbitrary. Assume now that b0 < b1 < · · · < bn ∈ L have been
chosen so that bi + bj − k ∈ A for 1 ≤ i < j ≤ n. Since the statement “there is
l ∈ ∗L such that l > bn and l − k + bi ∈ ∗A for i = 1, . . . , n” is true, by transfer
there is bn+1 ∈ L such that bn+1 > bn and bi + bn−1− k ∈ A for i = 1, . . . , n. The
set B := {b0, b1, b2, . . .} defined this way is as desired.

The first progress on Erdős’ conjecture was made by Nathanson in [103], where
he proved the following:

Theorem 13.4 (Nathanson) If BD(A) > 0 and n ∈ N, then there are B,C with
BD(B) > 0 and |C| = n such that B + C ⊆ A.

This theorem follows immediately by induction using the following lemma. We
take the opportunity here to give a short nonstandard proof.

Lemma 13.5 (Kazhdan) Suppose that BD(A) > 0 and t ∈ N. Then there is B ⊆
A with BD(B) > 0 and c ≥ t such that B + c ⊆ A.
Proof Let I be an infinite interval such that μI (∗A) = BD(A). It follows that
μI (

∗A + t), μI (∗A + 2t), . . . cannot all be pairwise almost everywhere disjoint,
whence there are k ≤ l such that μI ((∗A + kt) ∩ (∗A + lt)) > 0, whence

2Indeed, if A is piecewise syndetic, then A+ [0, k] is thick for some k ∈ N. Thick sets are easily
seen to contain FS-sets, whence, by the Strong version of Hindman’s theorem (Corollary 8.7),A+i
contains an FS-set for some i ∈ [0, k]. It follows immediately that A has the sumset property.
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BD((A + kt) ∩ (A + lt)) > 0. Let c := |k − l|t , so BD(A ∩ (A + c)) > 0.
Let B := (A ∩ (A+ c))− c. Then this B and c are as desired.

After Nathanson’s result, there had been very little progress made on proving
Conjecture 13.1. In 2015, Di Nasso, Goldbring, Leth, Lupini, Jin, and Mahlburg
proved the following result [42]:

Theorem 13.6

1. If BD(A) > 1
2 , then A has the sumset property.

2. If BD(A) > 0, then there is k ∈ N such thatA∪ (A+k) has the sumset property.
In the same paper, the authors establish that pseudorandom sets also satisfy the

sumset property. Very recently, significantly building upon the ideas from [42],
Moreira, Richter, and Robertson proved Conjecture 13.1 in a very strong form [102]:

Theorem 13.7 If BD(A) > 0, then A has the sumset property.

The proof of the previous theorem is significantly beyond the scope of this book.
However, we believe that there is value in giving the proof of Theorem 13.6 as it is
a perfect example of the utility of nonstandard techniques in combinatorial number
theory; the proof will be given in the next section.

We end this section by establishing a nonstandard reformulation of the sumset
property. We will actually need the following more general statement:

Proposition 13.8 Given A ⊆ N and k ∈ Z, the following are equivalent:

1. there exists B = {b1 < b2 < · · · } and C = {c1 < c2 < · · · } such that
bi + cj ∈ A for i ≤ j and bi + cj ∈ A+ k for i > j ;

2. there exist nonprincipal ultrafilters U and V on N such that A ∈ U ⊕ V and
A+ k ∈ V ⊕U ;

3. there exist infinite β, γ ∈ ∗N such that β + ∗γ ∈ ∗∗A and γ +∗ β ∈ ∗∗A+ k.
Proof First suppose that (1) holds as witnessed by B and C. By assumption, the
collection of sets

{B} ∪ {A− c : c ∈ C}

has the finite intersection property with the Frechét filter, whence there is a non-
principal ultrafilter U on N extending this family. Likewise, there is a nonprincipal
ultrafilter V on N extending the family {C − k} ∪ {A− b : b ∈ B}. These U and
V are as desired.

Next, given (2), take β, γ ∈ ∗N such that U = Uβ and V = Uγ . These β and γ
are as desired.

Finally, suppose that β, γ ∈ ∗
N are as in (3). We define B = {b1 < b2 < b3 <

· · · } and C = {c1 < c2 < c3 < · · · } recursively as follows. Suppose that bi and cj
for i, j = 1, . . . , n have been constructed so that, for all i, j we have:

• bi + cj ∈ A if i ≤ j ;
• bi + cj ∈ A+ k if i > j ;
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• bi + γ ∈ ∗A;
• cj + β ∈ ∗A+ k.
Applying transfer to the statement “there is x ∈ ∗

N such that x + cj ∈ ∗A + k for
j = 1, . . . , n and x > bn and x + ∗γ ∈ ∗∗A” (which is witnessed by β), we get
bn+1 ∈ N such that bn+1 > bn, bn+1 + cj ∈ A+ k for j = 1, . . . , n and for which
bn+1 + γ ∈ ∗A. Next, apply transfer to the statement “there is y ∈ ∗

N such that
bi + y ∈ ∗A for i = 1, . . . , n + 1 and y > cn and y + ∗β ∈ ∗∗A + k” (which is
witnessed by γ ), we get cn+1 ∈ N such that cn+1 > cn and for which bi+ cn+1 ∈ A
for i = 1, . . . , n + 1 and for which cn+1 + β ∈ ∗A. This completes the recursive
construction.

Taking k = 0 in the previous proposition yields a nonstandard reformulation of
the sumset property.

Corollary 13.9 Given A ⊆ N, the following are equivalent:

1. A has the sumset property;
2. there exist nonprincipal ultrafilters U and V on N such that A ∈ (U ⊕ V ) ∩
(V ⊕U );

3. there exist infinite ξ, η ∈ ∗N such that ξ + ∗η, η +∗ ξ ∈ ∗∗A.

13.2 A 1-Shift Version of Erdős’ Conjecture

In this section, we prove Theorem 13.6. We first show how the first part of that
theorem, together with Proposition 13.8, yields the second item of the theorem,
which we state in an even more precise form.

Proposition 13.10 Suppose that BD(A) > 0. Then there exists B = {b1 < b2 <

· · · }, C = {c1 < c2 < · · · }, and k ∈ N such that bi + cj ∈ A for i ≤ j and
bi + cj ∈ A+ k for i > j .
Proof By Proposition 10.10, we may fix n ∈ N such that BD(A + [−n, n]) > 1

2 .
By Theorem 13.6(1) and Corollary 13.9, we may take infinite β, γ ∈ ∗

N such that
β + ∗γ, γ + ∗β ∈ ∗∗A+ [−n, n]. Take i, j ∈ [−n, n] such that β + ∗γ ∈ ∗∗A+ i
and γ + ∗β ∈ ∗∗A + j . Without loss of generality, i < j . Set k := j − i. Then
β + ∗(γ − i) ∈ ∗∗A and (γ − i)+ ∗β ∈ ∗∗A+ k, whence the conclusion holds by
Proposition 13.8.

In order to prove the first item in Theorem 13.6, we need one technical lemma:

Lemma 13.11 Suppose that BD(A) = r > 0. Suppose further that (In) is a
sequence of intervals with witnessing the Banach density of A. Then there is L ⊆ N

satisfying:

1. lim supn→∞
|L∩In||In| ≥ r;

2. for all finite F ⊆ L, A ∩⋂x∈F (A− x) is infinite
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Proof First, we note that it suffices to find L satisfying (1) and

(2’) there is x0 ∈ ∗A\A such that x0 + L ⊆ ∗A.

Indeed, given finite F ⊆ L and K ⊆ N, x0 witnesses the truth of “there exists
x ∈ ∗A such that x + F ⊆ ∗A and x /∈ K” whence, by transfer, such an x can be
found in N, establishing (2).

In the rest of the proof, we fix infinite H ∈ ∗
N and let μ denote Loeb measure

on IH . In addition, for any α ∈ ∗
N and hyperfinite X ⊆ ∗

N, we set dα(X) := |X|
|Iα | .

Finally, we fix ε ∈ (0, 1
2 ).

Next we remark that it suffices to find a sequence X1,X2, . . . of internal subsets
of IH and an increasing sequence n1 < n2 < · · · of natural numbers such that, for
each i, we have:

(i) μ(Xi) ≥ 1− εi and,
(ii) for each x ∈ Xi , we have dni (

∗A ∩ (x + Ini )) ≥ r − 1
i
.

Indeed, suppose that this has been accomplished and set X := ⋂
i Xi . Then X

is Loeb measurable and μ(X) > 0. Fix y0 ∈ X\N arbitrary and set x0 to be the
minimum element of ∗A that is greater than or equal to y0; note that x0 − y0 ∈ N

since y0 ∈ X. Set L := (∗A−x0)∩N; note that (2’) is trivially satisfied. To see that
(1) holds, note that

lim sup
i→∞

dni (L∩Ini ) = lim sup
i→∞

dni (
∗A∩(x0+Ini )) = lim sup

i→∞
dni (

∗A∩(y0+Ini )) ≥ r,

where the last inequality follows from the fact that y0 ∈ X.
Thus, to finish the lemma, it suffices to construct the sequences (Xi) and (ni).

Suppose that X1, . . . , Xi−1 and n1 < · · · < ni−1 have been constructed satisfying
the conditions above. For α ∈ ∗N, set

Yα := {x ∈ IH : dα(∗A ∩ (x + Im)) ≥ r − 1

i
}.

Set Z := {α ∈ ∗
N : ni−1 < α and dH (Yα) > 1 − εi}. Note that Z is internal. It

will be enough to show that Z contains all sufficiently small infinite elements of ∗N,
for then, by underflow, there is ni ∈ Z ∩ N. Setting Xi := Yni , these choices of Xi
and ni will be as desired.

We now work towards proving that Z contains all sufficiently small infinite
elements of ∗N. First, we remark that we may assume, without loss of generality,
that the sequences (|In|) and (bn) are increasing, where bn denotes the right endpoint
of In. Fix K ∈ ∗N\N such that 2bK/|IH | ≈ 0. We finish the proof of the lemma by
proving that K ∈ Z, which we claim follows from the following two facts:

(a) for all x ∈ IH , st(dK(∗A ∩ (x + IK))) ≤ r;
(b) 1

|IH |
∑
x∈IH dK(

∗A ∩ (x + IK)) ≈ r .
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To see that these facts imply that K ∈ Z, for x ∈ IH , set f (x) := dK(
∗A ∩

(x + IK)). It is enough to show that f (x) ≈ r for μ-almost all x ∈ IH . Given
n, let An := {x ∈ IH : f (x) < r − 1

n
}. Suppose, towards a contradiction, that

μ(An) = s > 0. By (a), we may fix a positive infinitesimal η such that f (x) ≤ r+η
for all x ∈ IH . We then have

1

|IH |
∑

x∈IH
f (x) = 1

|IH |

⎡

⎣
∑

x∈An
f (x)+

∑

x /∈An
f (x)

⎤

⎦ < s(r − 1

n
)+ (1− s)(r + η).

Since the right-hand side of the above display is appreciably less than s, we get a
contradiction to (b).

It remains to establish (a) and (b). (a) follows immediately from the fact that
BD(A) = r . To see (b), we first observe that

1

|IH |
∑

x∈IH
dK(

∗A ∩ (x + IK)) = 1

|IK |
∑

y∈IK

1

|IH |
∑

x∈IH
χ∗A(x + y).

Fix y ∈ IK . Since |∑x∈IH χ∗A(x + y)− |∗A ∩ IH || ≤ 2y ≤ 2bK , we have that

∣∣
∣
∣
∣
∣

1

|IH |
∑

x∈IH
χ∗A(x + y)− dH (∗A)

∣∣
∣
∣
∣
∣
≈ 0.

Since a hyperfinite average of infinitesimals is infinitesimal, we see that

1

|IH |
∑

x∈IH
dK(

∗A ∩ (x + IK)) ≈ 1

|IK |
∑

y∈IK
dH (

∗A) ≈ r,

establishing (b).

Remark 13.12 A significant strengthening of the previous lemma was one of the
main ingredients in the full resolution of Conjecture 13.1 given in [102].

Proof of Theorem 13.6 Set r := BD(A). Let (In) witness the Banach density of A
and let L := (ln) be as in the previous lemma. We may then define an increasing
sequence D := (dn) contained in A such that li + dn ∈ A for i ≤ n.3 Now take N
such that μIN (

∗L) ≥ r . Note also that μIN (
∗A− dn) ≥ r for any n. Since r > 1/2,

for any n we have that μIN (
∗L ∩ (∗A− dn)) ≥ 2r − 1 > 0. By a standard measure

theory fact, by passing to a subsequence ofD if necessary, we may assume that, for

3Notice that at this point we have another proof of Nathanson’s Theorem 13.4: if we set B :=
{dn, dn+1, . . .} and C := {l1, . . . , ln}, then B + C ⊆ A.
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each n, we have that μIN (
∗L ∩⋂i≤n(∗A− di)) > 0. In particular, for every n, we

have that L ∩⋂i≤n(A− di) is infinite.
We may now conclude as follow. Fix b1 ∈ L arbitrary and take c1 ∈ D such that

b1 + c1 ∈ A. Now assume that b1 < · · · < bn and c1 < · · · < cn are taken from L
andD respectively such that bi + cj ∈ A for all i, j = 1, . . . , n. By assumption, we
may find bn+1 ∈ L∩⋂i≤n(A−ci) with bn+1 > bn and then we may take cn+1 ∈ D
such that bi + cn+1 ∈ A for i = 1, . . . , n+ 1.

13.3 A Weak Density Version of Folkman’s Theorem

At the beginning of this chapter, we discussed the fact that the density version of
Hindman’s theorem is false. In fact, the odd numbers also show that the density
version of Folkman’s theorem is also false. (Recall that Folkman’s theorem stated
that for any finite coloring of N, there are arbitrarily large finite sets G such that
FS(G) are monochromatic.) However, we can use Lemma 13.11 to prove a weak
density version of Folkman’s theorem. Indeed, the proof of Lemma 13.11 yields the
following:

Lemma 13.13 Suppose that A ⊆ N is such that BD(A) ≥ r . Then there is α ∈
∗A\A such that BD(A− α) ≥ r .

One should compare the previous lemma with Beiglbock’s Lemma 12.15.
Indeed, a special case of (the nonstandard formulation of) Lemma 12.15 yields
α ∈ ∗

N\N such that BD(∗A − α) ≥ BD(A); the previous lemma is stronger in
that it allows us to find α ∈ ∗A. We can now prove the aformentioned weak version
of a density Folkman theorem.

Theorem 13.14 Fix k ∈ N and suppose A ⊆ N is such that BD(A) > 0. Then
there exist increasing sequences (x(i)n ) for i = 0, 1, 2, . . . , k such that, for any i and
any ni ≤ ni+1 ≤ · · · ≤ nk , we have x(i)ni + x(i+1)

ni+1 + · · · + x(k)nk ∈ A.
The reason we think of the previous theorem as a weak density version of

Folkman’s theorem is that if all of the sequences were identical, then we would
in particular have a set of size k all of whose finite sums belong to A.

Proof of Theorem 13.14 Set A = A(k). Repeatedly applying Lemma 13.13, one can
define, for i = 0, 1, . . . , k, subsets A(i) of N and αi ∈ ∗A(i) such thatA(i)+αi+1 ⊆
∗A(i+1)for all i < k. We then define the sequences (x(i)n ) for i = 0, 1, 2, . . . , k and
finite subsets A(i)n of A(i) so that:

• for i = 0, 1, . . . , k and any n, we have x(i)n ∈ A(i)n ,
• for i = 0, 1, . . . , k and any n ≤ m, we have A(i)n ⊆ A(i)m , and
• for i = 0, 1, . . . , k − 1 and any n ≤ m, we have A(i)n + x(i+1)

m ⊆ A(i+1)
m .
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It is clear that the sequences (x(i)n ) defined in this manner satisfy the conclusion
of the theorem. Suppose that the sequences (x(i)n ) and A(i)n have been defined for
n < m. We now define x(i)m and A(i)m by recursion for i = 0, 1, . . . , k. We set x(0)m to
be any member of A(0) larger than x(0)m−1 and set A(0)m := A(0)m−1∪{x(0)m−1}. Supposing
that the construction has been carried out up through i < k, by transfer of the fact
that A(i)m + α(i+1) ⊆ ∗A(i+1), we can find x(i+1)

m ∈ A(i+1) larger than x(i+1)
m−1 such

thatA(i)m +x(i+1)
m ⊆ A(i+1). We then defineA(i+1)

m := A(i+1)
m−1 ∪ (A(i)m +x(i+1)

m ). This
completes the recursive construction and the proof of the theorem.

The usual compactness argument gives a finitary version:

Corollary 13.15 Suppose that k ∈ N and ε > 0 are given. Then there existsm such
that for any interval I of length at least m and any subset A of I such that |A| >
ε |I |, there exist (x(i)n ) for i, n ∈ {0, 1, . . . , k} such that x(i)ni +x(i+1)

ni+1 +· · ·+x(k)n�−1 ∈ A
for any i = 0, 1, . . . , k and any 0 ≤ ni ≤ ni+1 ≤ · · · ≤ n�−1 ≤ k.

Notes and References

The proof of Corollary 13.10 from Theorem 13.6 given in [42] proceeds via
Ramsey’s theorem. The ultrafilter reformulation of the sumset property was first
observed by Di Nasso and was used to give this alternate derivation of Corol-
lary 13.10 from Theorem 13.6. The paper [42] also presents a version of Theo-
rem 13.6 and Corollary 13.10 for countable amenable groups. Likewise, the paper
[102] presents a version of the solution to Conjecture 13.1 for countable amenable
groups.



Chapter 14
Near Arithmetic Progressions
in Sparse Sets

Szemeredi’s theorem says that relatively dense sets contain arithmetic progressions.
The purpose of this chapter is to present a result of Leth from [89] which shows
that certain sparse sets contain “near” arithmetic progressions. We then detail
the connection between the aforementioned theorem of Leth and the Erdős-Turán
conjecture.

14.1 The Main Theorem

We begin by making precise the intuitive notion of “near” arithmetic progression
mentioned in the introduction.

Definition 14.1 Fix w ∈ N0 and t, d ∈ N.1 A (t, d,w)-progression is a set of the
form

B(b, t, d,w) :=
t−1⋃

i=0

[b + id, b + id + w].

By a block progression we mean a (t, d,w)-progression for some t, d,w.

Note that a (t, d, 0)-progression is the same thing as a t-term arithmetic progression
with difference d .

1In this chapter, we deviate somewhat from our conventions so as to match up with the notation
from [89].
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Definition 14.2 If A ⊆ N, we say that A nearly contains a (t, d,w)-progression if
there is a (t, d,w)-progression B(b, t, d,w) such thatA∩[b+ id, b+ id+w] �= ∅
for each i = 1, . . . , t − 1.

Thus, if A nearly contains a (t, d, 0)-progression, then A actually contains a
t-term arithmetic progression. Consequently, when A nearly contains a (t, d,w)-
progression with “small” w, then this says that A is “close” to containing an
arithmetic progression. The main result of this chapter allows us to conclude
that even relatively sparse sets with a certain amount of density regularity nearly
contain block progressions satisfying a further homogeneity assumption that we
now describe.

Definition 14.3 Suppose that A ⊆ N, I is an interval in N, and 0 < s < 1. We say
that A nearly contains a (t, d,w)-progression in I with homogeneity s if there is
some B(b, t, d,w) contained in I such that the following two conditions hold for
all i, j = 0, 1, . . . , t − 1:

(i) δ(A, [b + id, b + id +w]) ≥ (1− s)δ(A, I)
(ii) δ(A, [b + id, b + id +w]) ≥ (1− s)δ(A, [b + jd, b + jd +w]).

Thus, for small s, we see that A meets each block in a density that is roughly the
same throughout and that is roughly the same as on the entire interval.

The density regularity condition roughly requires that on sufficiently large
subintervals of I , the density does not increase too rapidly. Here is the precise
formulation:

Definition 14.4 Suppose that I ⊆ N is an interval, r ∈ R, r > 1, and m ∈ N.
We say that A ⊆ I has the (m, r)-density property on I if, whenever J ⊆ I is an
interval with |J |/|I | ≥ 1/m, then δ(A, J ) ≤ rδ(A, I).

Of course, given any m ∈ N and A ⊆ I , there is r ∈ R such that A has the
(m, r)-density property on I . The notion becomes interesting when we think of r as
fixed.

Given a hyperfinite interval I ⊆ ∗
N, r ∈ ∗R, r > 1, andM ∈ ∗N, we say that an

internal set A ⊆ I has the internal (M, r)-density property on I if the conclusion of
the definition above holds for internal subintervals J of I .

Lemma 14.5 Suppose that A ⊆ [1, N] is an internal set with the internal (M, r)-
density property for someM > N. Let f : [0, 1] → [0, 1] be the (standard) function
given by

f (x) := st

( |A ∩ [1, xN]|
|A ∩ [1, N]|

)
.

Then f is a Lipschitz function with Lipschitz constant r .

Proof Fix x < y in [0, 1]. Write x := st(K/N) and y := st(L/N). Since y−x �= 0,
we have that L−K

N
is not infinitesimal; in particular, L−K

N
> 1/M . Since A has

the (M, r)-density property on [1, N], we have that δ(A, [K,L]) ≤ rδ(A, [1, N]).
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Thus, it follows that

f (y)− f (x) = st

( |A ∩ [K,L]|
|A ∩ [1, N]|

)
= st

(
δ(A, [K,L] L−K

|A ∩ [1, N]|
)

≤ r st

(
L−K
N

)
= r(y − x).

Here is the main result of this section:

Theorem 14.6 (Leth) Fix functions g, h : R>0 → R
>0 such that h is increasing

and g(x)→∞ as x →∞. Fix also s > 0, r > 1, and j, t ∈ N. Then there is m =
m(g, h, s, r, t, j) ∈ N such that, for all n > m, whenever I is an interval of length
n and A ⊆ I is nonempty and has the (m, r)-density property on I , then A contains
a (t, d,w)-almost progression with homogeneity s such that w/d < h(d/n) and
1/g(m) < d/n < 1/j .

Roughly speaking, if A has sufficient density regularity, then A contains an
almost-progression with “small” w (small compared to the distance of the progres-
sion).

The proof of the theorem relies on the following standard lemma; see [89,
Lemma 1].

Lemma 14.7 Suppose thatE ⊆ R has positive Lebesgue measure and t ∈ N. Then
there is v > 0 such that, for all 0 < u < v, there is an arithmetic progression in E
of length t and difference u.

We stress that in the previous lemma, u and v are real numbers.

Proof of Theorem 14.6 Fix g, h, s, r, j, t as in the statement of Theorem 14.6. We
show that the conclusion holds for all infiniteM , whence by underflow there exists
m ∈ N as desired. Thus, we fix M > N and consider N > M , an interval I ⊆ ∗

N

of length N , and a hyperfinite subset A ⊆ I that has the internal (M, r)-density
property on I . Without loss of generality, we may assume that I = [1, N]. Suppose
that we can find B,D,W ∈ ∗

N and standard c > 0 such that [B,B + (t − 1)D +
W ] ⊆ [1, N] and, for all i = 0, 1, . . . , t − 1, we have:

δ(A, [1, N])(c− s
2
) ≤ δ(A, [B + iD,B + iD+W ]) ≤ δ(A, [1, N])(c+ s

4
). (†)

We claim that A nearly contains the internal (t,D,W)-progression B(B, t,D,W)
with homogeneity s. Indeed, item (i) of Definition 14.3 is clear. For item (ii), observe
that

δ(A, [B + iD,B + iD +W ]) ≥ δ(A, [1, N])(c − s
2
)

≥ δ(A, [B + jD,B + jD +W ])(c −
s
2

c + s
4
)
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and note that
c− s2
c+ s4 > 1 − s. Thus, it suffices to find B,D,W, c satisfying (†) and

for whichW/D < h(D/N) and 1/g(M) < D/N < 1/j .
Let f be defined as in the statement of Lemma 14.5. Set b := st(B/N), d :=

st(D/N), and w := st(W/N). Assume that w �= 0. Then we have that

st

(
δ(A, [B + iD,B + iD +W ])

δ(A, [1, N])
)
= f (b + id +w)− f (b + id)

w
.

We thus want to find B,D,W and c satisfying

c − s
2
<
f (b + id + w)− f (b + id)

w
< c + s

4
. (††)

Now the middle term in (††) looks like a difference quotient and the idea is
to show that one can bound f ′(b + id) for i = 0, 1, . . . , t − 1. Indeed, by
Lemma 14.5, f is Lipschitz, whence it is absolutely continuous. In particular, by
the Fundamental Theorem of Calculus, f is differentiable almost everywhere and
f (x) = ∫ x

0 f
′(u)du. Since f (0) = 0 and f (1) = 1, it follows that {x ∈ [0, 1] :

f ′(x) ≥ (1− s
4 )} has positive measure. In particular, there is c > 1 such that

E := {x ∈ [0, 1] : c − s
4
≤ f ′(x) ≤ c}

has positive measure. By Lemma 14.7, there is b ∈ E and 0 < u < 1/j such
that b, b + u, b + 2u, . . . , b + (t − 1)u ∈ E. Take B,D ∈ [1, N] such that b =
st(B/N) and u = st(D/N). Note that g(M) is infinite andD/N is noninfinitesimal,
so 1/g(M) < D/N < 1/j . It remains to chooseW . Since f is differentiable on E,
there is w > 0 sufficiently small so that for all i = 0, 1, . . . , t − 1, we have |f ′(b+
id)− f (b+id+w)−f (b+id)

w
| < s

4 . For this w, (††) clearly holds; we now takeW such
that w = st(W/N). Since h(D/N) is nonfinitesimal (as D/N is noninfinitesimal),
if w is chosen sufficiently small, thenW/D < h(D/N).

Theorem 14.6 implies a very weak form of Szemeredi’s theorem.

Corollary 14.8 Suppose that BD(A) > 0. Suppose that g, h, s, t, j are as in the
hypothesis of Theorem 14.6. Then for n sufficiently large, there is an interval I of
length n such that A ∩ I contains a (t, s, d)-almost progression in I with w/d <
h(d/n) and 1/g(m) < d/n < 1/j .

Proof Take r ∈ R with r > 1 satisfying BD(A) > 1/r . Let m := m(g, h, s, r, t, j)
as in the conclusion of Theorem 14.6. Let n > m and take an interval I of length
n such that δ(A, I) > 1/r . It remains to observe that A ∩ I has the (m, r)-density
property on I .
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14.2 Connection to the Erdős-Turán Conjecture

Leth’s original motivation was the following conjecture of Erdős and Turán from
[47]:

Conjecture 14.9 (Erdős-Turán) Suppose that A = (an) is a subset of N such that∑
1/an diverges. Then A contains arbitrarily long arithmetic progressions.

Leth first observed the following standard fact about the densities of sequences
satisfying the hypotheses of the Erdős-Turán conjecture.

Lemma 14.10 Suppose that A = (an) is enumerated in increasing order and
is such that

∑
1/an diverges. Then, for arbitrarily large n, one has δ(A, n) >

1/(logn)2.

Proof We argue by contrapositive. Suppose that δ(A, n) ≤ 1/(logn)2 for all n ≥
n0 ≥ 4. We first show that this implies that an ≥ 1

2n(logn)2 for all n > n0. Suppose
otherwise and fix n ≥ n0. Then |A ∩ [1, 1

2n(log n)2]| ≥ n. On the other hand, by
our standing assumption, we have that

|A ∩ [1, 1

2
n(logn)2]) ≤ 1/2n(logn)2

(log((1/2n(logn))2
≤ 1

2
n,

yielding the desired contradiction.
Since an ≥ 1

2n(logn)2 eventually, we have that

∑ 1

an
≤
∑ 2

n(logn)2
,

whence
∑ 1

an
, converges.

The truth of the following conjecture, together with the theorem that follows it,
would imply that, for sets satisfying the density condition in the previous lemma,
the existence of almost arithmetic progressions implies the existence of arithmetic
progressions.

Conjecture 14.11 (Leth) Fix t ∈ N and c > 0. Then there is n0 := n0(t, c) such
that, for all n ≥ n0, whenever A ⊆ N is such that δ(A, n) > 1/(c logn)2 log logn,
then A nearly contains a (t, d,w)-progression on [1, n] with w/d < d/n where d
is a power of 2.

We should remark that requiring that d be a power of 2 is not much of an extra
requirement. Indeed, our proof of Theorem 14.6 shows that one can take d there to
be a power of 2. For any t and c, we let L(t, c) be the statement that the conclusion
of the previous conjecture holds for the given t and c. We let L(t) be the statement
that L(t, c) holds for all c > 0.
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Theorem 14.12 Suppose that L(t) is true for a given t ∈ N. Further suppose that
A ⊆ N is such that there is c > 0 for which, for arbitrarily large n, one has
δ(A, n) > c/(logn)2. Then A contains an arithmetic progression of length t .

Before we prove this theorem, we state the following standard combinatorial fact,
whose proof we leave as an exercise to the reader (alternatively, this is proven in [89,
Proposition 1]).

Proposition 14.13 Let m,n ∈ N be such that m < n, let A ⊆ N, and let I be
an interval of length n. Then there is an interval J ⊆ I of length m such that
δ(A, J ) > δ(A, I)/2.

Proof of Theorem 14.12 For reasons that will become apparent later in the proof, we
will need to work with the set 2A rather thanA. Note that 2A satisfies the hypothesis
of the theorem for a different constant c′ > 0.

By overflow, we may findM > N such that δ(∗(2A),M) > c′
(logM)2

. TakeL > N

such that 22L ≤M < 22L+1
and set N := 22L . If we apply Proposition 14.13 to any

n ≤ N and I = [1, N], we can find an interval In ⊆ [1,M] of length n such that

|∗(2A) ∩ In| > c′M
2(logM)2

≥ c′M
2(log 22L+1

)2
= c′/8
(logN)2

.

For 1 ≤ k ≤ L, write I
22k = [xk, yk].

We will now construct an internal set B ⊆ [1, N] such that δ(B,N) >
1

(c′′ logN)2 log logN , where c′′ := √
8/c′. Since we are assuming that L(t) holds, by

transfer we will be able to find an internal (t, d,w)-progression nearly inside of B
with w/d < d/N and w and d both powers of 2. The construction of B will allow
us to conclude that ∗(2A) contains a t-termed arithmetic progression of difference
d , whence so does 2A by transfer, and thus so does A.

Set B0 := [1, N] and, for the sake of describing the following recursive
construction, view B0 as the union of two subintervals of length N/2 = 22L−1 =
22L−20

; we refer to these subintervals of B0 as blocks. Now divide each block in B0
into 2 = 220

intervals of length 22L−20
/220 = 22L−21

and, for each 0 ≤ j < 220
,

we place the j th subblock of each block in B0 into B1 if and only if x0 + j ∈ ∗2A.
Now divide each block in B1 into 221

intervals of length 22L−21
/221 = 22L−22

and, for each 0 ≤ j < 221
, we place the j th subblock of each block in B1 into B2 if

and only if x1 + j ∈ ∗2A.
We continue recursively in this manner. Thus, having constructed the hyperfinite

set Bk , which is a union of blocks of length 22L−2k , we break each block of Bk into
22k many intervals of length 22L−2k /22k = 22L−2k+1

and we place the j th subblock
of each block in Bk into Bk+1 if and only if xk + j ∈ ∗2A.
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We set B := BL. Since |Bk+1|/|Bk| > c′/8
(logN)2

for each 0 ≤ k < L, it follows
that

|B| > (c′/8)LN
(logN)2L

= N

(c′′ logN)2 log logN .

By applying transfer toL(t), we have thatB nearly contains an internal (t, d,w)-
progression B(b, t, d,w) contained in [1, N] such that w/d < d/N and d is a
power of 2. Take k such that 22L−2k+1 ≤ d < 22L−2k . Note that this implies that
22L−2k+1 | d . Also, we have

w < (d/N) · d < (2−2k )22L−2k = 22L−2k+1
.

We now note that B(b, t, d,w) must be contained in a single block C of Bk .
Indeed, since d | 22L−2k and w | 22L−2k+1

, we have d + w < ( 1
2 + 1

22k
)(22L−2k ),

whence the fact that [b, b + w] and [b + d, b + d + w] both intersect Bk would
imply that [xk−1, yk−1] contains consecutive elements of ∗2A, which is clearly a
contradiction.

Now write d = m ·22L−2k+1
. Take 0 ≤ j < 22k so that [b, b+w] intersects Bk+1

in the j th subblock of C so xk+ j ∈ ∗2A. Since [b+d, b+d+w]∩Bk+1 �= ∅, we
have that at least one of xk + j + (m− 1), xk + j +m, or xk + j + (m+ 1) belong
to ∗(2A). However, since xk + j and m are both even, it follows that we must have
xk + j +m ∈ ∗(2A). Continuing in this matter, we see that xk + j + im ∈ ∗2A for
all i = 0, 1, . . . , t − 1. It follows by transfer that 2A contains a t-term arithmetic
progression, whence so does A.

Putting everything together, we have:

Corollary 14.14 The Erdős-Turán conjecture follows from Leth’s Conjecture.

Leth used Theorem 14.6 to prove the following theorem, which is similar in spirit
to Conjecture 14.6, except that it allows sparser sequences but in turn obtains almost
progressions with weaker smallness properties relating d and w.

Theorem 14.15 Suppose that s > 0 and t ∈ N
>2 are given. Further suppose that

h is as in Theorem 14.6. Let A ⊆ N be such that, for all ε > 0, we have δ(A, n) >
1/nε for sufficiently large n. Then for sufficiently large n, A nearly contains an
(t, d,w)-progression on [1, n] of homogeneity s with w/d < h(log d/ logn), where
d is a power of 2.

Proof Suppose that the conclusion is false. Then there is N such that ∗A does not
nearly contain any internal (t, d,w)-progression on [1, N] of homogeneity s with
w/d < h(log d/ logN). It suffices to show that there is ε > 0 such that δ(∗A,N) <
1/Nε . Letm be as in the conclusion of Theorem 14.6 with r = 2 and g(x) = x (and
h as given in the assumptions of the current theorem).
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Claim If I ⊆ [1, N] is a hyperfinite interval with |I | > √N , then ∗A does not have
the (m, 2)-density property on I .

We will return to the proof of the claim in a moment. We first see how the claim
allows us to complete the proof of the theorem. Let K > N be the maximal k ∈ ∗N
such that m2k ≤ N , so m2K ≤ N < m2K+2. We construct, by internal induction,
for i = 0, 1, . . . ,K , a descending chain of hyperfinite subintervals (Ii) of I of
lengthm2K−i as follows. By Proposition 14.13, we may take I0 to be any hyperfinite
subinterval of I of length m2K such that δ(∗A, I0) ≥ δ(∗A,N)/2. Suppose that
i < K and Ii has been constructed such that |Ii | = m2k−i . Since ∗A does not have
the (m, 2) density property on Ii , there is a subinterval Ii+1 of length |Ii |/m2k−i−1

with δ(∗A, Ii+1) ≥ 2δ(∗A, Ii). Notice now that IK is a hyperfinite interval of length
mK ≤ √N < mK+1 and δ(∗A, IK) ≥ 2Kδ(∗A, I0). It follows that

δ(∗A,N) ≤ 2δ(A, I0) ≤ 2−(K−1)δ(A, IK) ≤ 2−(K−1).

It follows that

|A ∩ [1, N]| ≤ 2−(K−1)N ≤ 2−(K−1)m2K+2 = m2K+2−(K−1) log 2
logm = (m2K)1−z.

if we set z := (K−1) log2
2K logm − 1

K
. If we set ε := st(z/2) = log 2

4 logm , then it follows that

|A ∩ [1, N]| ≤ N1−ε , whence this ε is as desired.
We now prove the claim. Suppose, towards a contradiction, that I ⊆ [1, N] is a

hyperfinite interval with |I | > √N and is such that ∗A does have the (m, 2)-density
property on I . By the choice of m, ∗A nearly contains an internal (t, d,w)-almost
progression of homogeneity s with w/d < h(d/|I |) and d > |I |/m >

√
N/m.

Notice now that st
(

logd
logN

)
≥ st

(
1/2 logN−logm

logN

)
= 1

2 . Note that we trivially have

that d/|I | < 1/t , whence d/|I | < log d/ logN ; since h is increasing, we have that
w/d < h(log d/ logN), contradicting the choice of N . This proves the claim and
the theorem.

In [90, Theorem 3], Leth shows that one cannot replace (log d)/(logn) with d/n
in the previous theorem.

Notes and References

There are other generalizations of arithmetic progressions appearing in the liter-
ature, e.g. the notion of quasi-progression appearing in [131]. It should be noted
that they use the term (t, d,w)-progression in a related, but different, manner than
it is used in this chapter. The Erdős-Turan conjecture, first formulated in [48],
is one of the most important open problems in combinatorial number theory. A
positive solution would immediately generalize both Szemeredi’s Theorem and the
Green-Tao theorem on the existence of arbitrarily long arithmetic progressions in
the primes [64].



Chapter 15
The Interval Measure Property

In this chapter, we define the notion, due to Leth, of internal subsets of the
hypernatural numbers with the Interval Measure Property. Roughly speaking, such
sets have a tight relationship between sizes of gaps of the set on intervals and
the Lebesgue measure of the image of the set under a natural projection onto the
standard unit interval. This leads to a notion of standard subsets of the natural
numbers having the Standard Interval Measure Property and we enumerate some
basic facts concerning sets with this property.

15.1 IM Sets

Let I := [y, z] be an infinite, hyperfinite interval. Set stI := st[y,z] : I → [0, 1] to
be the map stI (a) := st( a−y

z−y ). For A ⊆ ∗
N internal, we set stI (A) := stI (A ∩ I).

We recall that stI (A) is a closed subset of [0, 1] and we may thus consider λI (A) :=
λ(stI (A)), where λ is Lebesgue measure on [0, 1].

We also consider the quantity gA(I) := d−c
|I | , where [c, d] ⊆ I is maximal so

that [c, d] ∩ A = ∅.
The main concern of this subsection is to compare the notions of making gA(I)

small (an internal notion) and making λI (A) large (an external notion). There is
always a connection in one direction:

Lemma 15.1 If λI (A) > 1− ε, then gA(I) < ε.
Proof Suppose that gA(I) ≥ ε, whence there is [c, d] ⊆ I such that [c, d] ∩A = ∅
and d−c

|I | ≥ ε. It follows that, for any δ > 0, we have (stI (c) + δ, stI (d) − δ) ∩
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stI (A) = ∅, whence

λI (A) ≤ 1−
(

st

(
d − c
|I |

)
− 2δ

)
≤ 1− ε + 2δ.

Letting δ→ 0 yields the desired result.

We now consider sets where there is also a relationship in the other direction.

Definition 15.2 We say that A has the interval-measure property (or IM property)
on I if for every ε > 0, there is δ > 0 such that, for all infinite J ⊆ I with
gA(J ) ≤ δ, we have λJ (A) ≥ 1− ε.

If A has the IM property on I , we let δ(A, I, ε) denote the supremum of the δ’s
that witness the conclusion of the definition for the given ε.

It is clear from the definition that if A has the IM property on an interval, then it
has the IM property on every infinite subinterval. Also note that it is possible that
A has the IM property on I for a trivial reason, namely that there is δ > 0 such
that gA(J ) > δ for every infinite J ⊆ I . Let us temporarily say that A has the
nontrivial IM property on I if this does not happen, that is, for every δ > 0, there
is an infinite interval J ⊆ I such that gA(J ) ≤ δ. It will be useful to reformulate
this in different terms. In order to do that, we recall an important standard tool that
is often employed in the study of sets with the IM property, namely the Lebesgue
density theorem. Recall that for a measurable set E ⊆ [0, 1], a point r ∈ E is a
(one-sided) point of density of E if

lim
s→r+

μ(E ∩ [r, s])
s − r = 1.

The Lebesgue density theorem asserts that almost every point ofE is a density point
of E.

Proposition 15.3 Suppose that A ⊆ ∗
N is internal and I is an infinite, hyperfinite

interval such thatA has the IM property on I . Then the following are equivalent:

1. There is an infinite subinterval J of I such that A has the nontrivial IM property
on J .

2. There is an infinite subinterval J of I such that λJ (A) > 0.

Proof First suppose that J is an infinite subinterval of I such that A has the
nontrivial IM property on J . Let J ′ be an infinite subinterval of J such that
gA(J

′) ≤ δ(A, J, 1
2 ). It follows that λJ ′(A) ≥ 1

2 .
Now suppose that J is an infinite subinterval of I such that λJ (A) > 0. By the

Lebesgue density theorem, there is an infinite subinterval J ′ of J such that λJ ′(A) >
1− δ. By Lemma 15.1, we have that gA(J ′) < δ, whence gA(J ) < δ. It follows that
A has the nontrivial IM property on J .
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In practice, the latter property in the previous proposition is easier to work with.
Consequently, let us say that A has the enhanced IM property on I if it has the IM
property on I and λI (A) > 0.1

We now seek to establish nice properties of sets with the IM property. We first
establish a kind of partition regularity theorem.

Theorem 15.4 Suppose that A has the enhanced IM property on I . Further
suppose that A ∩ I = B1 ∪ · · · ∪ Bn with each Bi internal. Then there is i and
infinite J ⊆ I such that Bi has the enhanced IM property on J .

Proof We prove the theorem by induction on n. The result is clear for n = 1. Now
suppose that the result is true for n−1 and supposeA∩I = B1∪· · ·∪Bn with each
Bi internal. If there is an i and infinite J ⊆ I such that Bi ∩ J = ∅ and λJ (A) > 0,
then we are done by induction. We may thus assume that whenever λJ (A) > 0, then
each Bi∩J �= ∅. We claim that this implies that each of the Bi have the IM property
on I . Since there must be an i such that λI (Bi) > 0, for such an i it follows that Bi
has the enhanced IM property on I .

Fix i and set B := Bi . Suppose that J ⊆ I is infinite, ε > 0, and gB(J ) ≤
δ(A, I, ε); we show that λJ (B) ≥ 1 − ε. Since gA(J ) ≤ gB(J ) ≤ δ(A, I, ε), we
have that λJ (A) ≥ 1− ε. Suppose that [r, s] ⊆ [0, 1]\ stJ (B). Then r = stJ (x) and
s = stJ (y) with y−x

|J | ≈ s − r and B ∩ [x, y] = ∅. By our standing assumption, this
implies that λ[x,y](A) = 0, whence it follows that λJ (A ∩ [x, y]) = 0. It follows
that λJ (B) = λJ (A) ≥ 1− ε, as desired.

If A has the IM property on an interval I and we have a subinterval of I on
whichA has small gap ratio, then by applying the IM property, the Lebesgue density
theorem, and Lemma 15.1, we can find a smaller, but appreciably sized, subinterval
on which A once again has small gap ratio. Roughly speaking, one can iterate this
procedure until one finds a finite subinterval of I on whichA has small gap ratio; the
finiteness of the subinterval will be crucial for applications. We now give a precise
formulation.

Fix internal sets A1, . . . , An and intervals I1, . . . , In. Fix also δ > 0. A δ-
configuration (with respect to A1, . . . , An, I1, . . . , In) is a sequence of subintervals
J1, . . . , Jn of I1, . . . , In respectively such that each |Ji | has the same length and
such that gAi (Ji) ≤ δ for all i. We call the common length of the Ji’s the length of
the configuration. There is an obvious notion of δ-subconfiguration, although, for
our purposes, we will need a stronger notion of subconfiguration. Indeed, we say
that a δ-subconfiguration J ′1, . . . , J ′n of J1, . . . , Jn is a strong δ-subconfiguration if
there is some c ∈ ∗

N such that, writing ai for the left endpoint of Ji , we have that
ai + c is the left endpoint of J ′i . Note that the strong δ-subconfiguration relation is
transitive.

Theorem 15.5 Suppose that A1, . . . , An are internal sets that satisfy the IM
property on I1, . . . , In respectively. Fix ε > 0 such that ε < 1

n
. Take δ > 0 with

1This terminology does not appear in the original article of Leth.
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δ < mini=1,...,n δ(Ai, Ii , ε). Then there is w ∈ N such that any δ-configuration has
a strong δ-subconfiguration of length at most w.

Proof Let A1, . . . , An, I1, . . . , In, ε and δ be as in the statement of the theorem.
The entire proof rests on the following:

Claim Any δ-configuration of infinite length has a proper strong δ-subconfiguration.

Given the claim, the proof of the theorem proceeds as follows: let C denote the
internal set of δ-configurations. Let f : C → ∗

N be the internal function given
by f (J1, . . . , Jn) = the minimal length of a minimal strong δ-subconfiguration of
J1, . . . , Jn. By the claim, the range of f is contained in N. Thus, there is w ∈ N

such that the range of f is contained in [1, w], as desired.
Thus, to finish the proof of the theorem, it suffices to prove the claim.

Proof of Claim Write Ji := [ai, ai+b] for i = 1, . . . , n. By assumption, λJi (Ai) ≥
1− 1

n
, whence λ(

⋂n
i=1 stJi (Ai)) > 0. Let r be a point of density for

⋂n
i=1 stJi (Ai).

Thus, there is s < 1− r such that

λ

((
n⋂

i=1

stJi (Ai)

)

∩ [r, r + s]
)

≥ (1− δ)s.

Set c := �r · b� and b′ := �s · b�. Then c + b′ ≤ b and, by Lemma 15.1, we have

gAi ([ai + c, ai + c + b′]) ≤ δ for all i = 1, . . . , n.

Thus, the [ai + c, ai + c + b′] form the desired proper strong δ-subconfiguration.

A special case of Theorem 15.5 is worth singling out:

Corollary 15.6 Let A1, . . . , An, I1, . . . , In, ε, and δ be as in Theorem 15.5. Then
there is w ∈ N such that, whenever [ai, ai + b] is a δ-configuration, then there is
c ∈ ∗N such that

Ai ∩ [ai + c, ai + c +w] �= ∅ for all i = 1, . . . , n.

By refining the proof of Theorem 15.5, we obtain the following:

Corollary 15.7 IfA has the IM property on I , then there isw ∈ N and a descending
hyperfinite sequence I = I0, I1, . . . , IK of hyperfinite subintervals of I such that:

• |IK | ≤ w;
• |Ik+1|

|Ik | ≥ 1
w
;

• whenever Ik is infinite, we have λIk (A) > 0.

Proof First note that the proof of the Claim in Theorem 15.5 actually yields that
every δ-configuration has a proper strong δ-subconfiguration where the ratio of
lengths is non-infinitesimal. Thus, a saturation argument yields ε > 0 such that
every δ-configuration has a proper strong δ-subconfiguration with ratio of lengths
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at least ε. The corollary follows easily from this, specializing to the case of a single
internal set on a single interval.

Definition 15.8 For any (not necessarily internal) A ⊆ ∗
N, we set

D(A) := {n ∈ N : n = a − a′ for infinitely many pairs a, a′ ∈ A}.

The following corollary will be important for our standard application in the next
section.

Corollary 15.9 Suppose that A has the enhanced IM property on I . Then D(A) is
syndetic.

Proof Let w ∈ N be as in Corollary 15.6 for A1 = A2 = A and I1 = I2 = I . It
suffices to show that for all m ∈ N, there are infinitely many pairs (x, y) ∈ A2 such
that y − x ∈ [m−w,m+ w] (as then [m−w,m+w] ∩D(A) �= ∅).

By considering countably many distinct points of density of stI (A) and using
Lemma 15.1 and overflow, we may find pairwise disjoint infinite subintervals Jn :=
[an, bn] ⊆ I such that gA(Jn) ≈ 0. Note also that gA(Jn + m) ≈ 0. Thus, by the
choice of w, for each n, there is cn ∈ ∗N such that

A ∩ [an + cn, an + cn +w], A ∩ [an +m+ cn, an +m+ cn +w] �= ∅.

If xn ∈ A∩ [an + cn, an + cn +w] and yn ∈ A∩ [an +m+ cn, an +m+ cn +w],
then yn − xn ∈ (A− A) ∩ [m−w,m+ w]. By construction, the pairs (xn, yn) are
all distinct.

15.2 SIM Sets

We now seek to extract the standard content of the previous section.

Definition 15.10 A ⊆ N has the standard interval-measure property (or SIM
property) if:

• ∗A has the IM property on every infinite hyperfinite interval;
• ∗A has the enhanced IM property on some infinite hyperfinite interval.

Example 15.11 LetA =⋃n In, where each In is an interval, |In| → ∞ as n→∞,
and there is k ∈ N such that the distance between consecutive In’s is at most k. Then
A has the SIM property.

We now reformulate the definition of SIM set using only standard notions.
(Although recasting the SIM property in completely standard terms is not terribly
illuminating, it is the polite thing to do.) First, note that one can define gA(I)
for standard A ⊆ N and standard finite intervals I ⊆ N in the exact same
manner. Now, for A ⊆ N and 0 < δ < ε < 1, define the function Fδ,ε,A :
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N → N as follows. First, if gA(I) > δ for every I ⊆ N of length ≥ n, set
Fδ,ε,A(n) = 0. Otherwise, set Fδ,ε,A(n) = the minimum k such that there is an
interval I ⊆ N of length ≥ n such that gA(I) ≤ δ and there are subintervals
I1, . . . , Ik ⊆ I with Ii ∩ A = ∅ for all i = 1, . . . , k and

∑k
i=1 |Ii | ≥

ε|I |.
Theorem 15.12 A has the SIM property if and only if: for all ε > 0, there is δ > 0
such that limn→∞ Fδ,ε,A(n) = ∞.

Proof First suppose that there is ε > 0 such that lim infn→∞ Fδ,ε,A(n) < ∞ for
all δ > 0; we show that A does not have the SIM property. Towards this end, we
may suppose that λI (∗A) > 0 for some infinite hyperfinite interval I and show that
∗A does not have the IM property on some infinite interval. Fix 0 < δ < ε. By
the Lebesgue density theorem and Lemma 15.1, we have that g∗A(J ) ≤ δ for some
infinite subinterval J ⊆ I . By transfer, there are intervals Jn ⊆ N of length ≥ n
such that gA(Jn) ≤ δ, whence 0 < lim infn→∞ Fδ,ε,A(n) for all 0 < δ < ε. For
every k ≥ 1, set mk := 1 + lim infn→∞ F 1

k
,ε,A(n). Consequently, for every n ∈ N,

there are intervals I1,n, . . . , In,n of length ≥ n such that, for each k = 1, . . . , n,
gA(Ik,n) ≤ 1

k
and the sum of the lengths of mk many gaps of A in Ik,n is at least

ε · |Ik,n|. Set In := I1,n ∪ · · · ∪ In,n. By overflow, there is an infinite, hyperfinite
interval Ĩ that contains infinite subintervals Ik such that g∗A(Ik) ≤ 1

k
and yet the

sum the lengths of mk many gaps of A on Ik have size at least ε|Ik|. It follows that
∗A does not have the IM property on Ĩ .

Now suppose that for all ε > 0, there is δ > 0 such that limn→∞ Fδ,ε,A(n) = ∞
and that I is an infinite, hyperfinite interval such that g∗A(I) ≤ δ. By transfer,
it follows that no finite number of gaps of ∗A on I have size at least ε · |I |. Since
stI (∗A) is closed, we have that λI (∗A) ≥ 1−ε. Consequently,A has the IM property
on any infinite, hyperfinite interval. Since, by transfer, there is an infinite, hyperfinite
interval I with g∗A(I) ≤ δ, this also shows that ∗A has the enhanced IM property
on this I . Consequently,A has the SIM property.

Exercise 15.13 Suppose that A ⊆ N has the SIM property. Show that, for each
ε > 0, there is a δ > 0 such that δ ≤ δ(∗A, I, ε) for every infinite hyperfinite
intervals I ⊆ ∗

N.

The next lemma shows that the SIM property is not simply a measure of
“largeness” as this property is not preserved by taking supersets.

Lemma 15.14 Suppose that A ⊆ N is not syndetic. Then there is B ⊇ A such that
B does not have the SIM property.

Proof For each n, let xn ∈ N be such that [xn, xn + n2] ∩ A = ∅. Let

B := A ∪
⋃

n

{xn + kn : k = 0, 1, . . . n}.
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Fix ε > 0. Takem ∈ N such thatm > 1
ε

and take N > N. Set I := [xN, xN +mN].
Indeed, g∗B(I) = N

mN
< 1
ε

while

stI (∗B) =
{

st

(
kN

mN

)
: k = 0, . . . ,m

}
=
{
k

m
: k = 0, . . . ,m

}

is finite and thus has measure 0. It follows that ∗B does not have the IM property on
I , whence B does not have the SIM property.

The previous lemma also demonstrates that one should seek structural properties
of a set which ensure that it contains a set with the SIM property. Here is an example:

Lemma 15.15 If B is piecewise syndetic, then there is A ⊆ B with the SIM
property.

Proof For simplicity, assume that B is thick; the argument in general is similar,
just notationally more messy. Let A := ⋃

n In, with In intervals contained in B,
|In| → ∞ as n→ ∞, and such that, setting gn to be the length in between In and
In+1, we have gn+1 ≥ ngn for all n. We claim thatA has the SIM property. It is clear
that λI (∗A) > 0 for some infinite hyperfinite interval I ; indeed, λIN (

∗A) = 1 for
N > N. Now suppose that I is an infinite hyperfinite interval; we claim that ∗A has
the IM property on I as witnessed by δ = ε. Suppose that J is an infinite subinterval
of I such that g∗A(J ) ≤ ε. Suppose that In, . . . , IM+1 is a maximal collection of
intervals from ∗A intersecting J . Since gM

|J | ≤ ε, for k = N, . . . ,M − 1, we have
gk|J | = gk

gM
· gM|J | ≈ 0, whence the intervals In, . . . , IM merge when one applies stJ . It

follows that λJ (∗A) ≥ 1− ε.
In connection with the previous result, the following question seems to be the

most lingering open question about sets that contain subsets with the SIM property:

Question 15.16 Does every set of positive Banach density contain a subset with the
SIM property?

The next result shows that many sets do not have the SIM property.

Proposition 15.17 Suppose that A = (an) is a subset of N written in increasing
order. Suppose that limn→∞(an+1 − an) = ∞. Then A does not have the SIM
property.

Proof Suppose that A has the SIM property. Take I such that λI (∗A) > 0. Then by
the proof of Corollary 15.9, we can find x, y ∈ ∗A\A such that x < y and y − x ≤
2w. Then, by transfer, there are arbitrarily largem,n ∈ N with 0 < m− n ≤ 2w. It
follows that limn→∞(an+1 − an) �= ∞.

The following theorem provides a connection between the current chapter and
the previous one. The proof follows immediately from Theorem 15.5.

Theorem 15.18 Suppose that A ⊆ N is a SIM set. Fix t ∈ N and 0 < ε < 1
t
.

Let δ > 0 be as in Exercise 15.13 for ε. Then there is j ∈ N such that whenever
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A nearly contains a (t, d,w)-progression B(b, t, d,w), then A nearly contains a
subprogression2 B(b′, t, d, j) of B(b, t, d,w).

We end this section with a result concerning a structural property of sets with the
SIM property. A direct consequence of Corollary 15.9 is the following:

Corollary 15.19 If A has the SIM property, then D(A) is syndetic.

Leth’s original main motivation for studying the IM property was a general-
ization of the previous corollary. Stewart and Tijdeman [118] proved that, given
A1, . . . , An ⊆ N with BD(Ai) > 0 for all i = 1, . . . , n, one has D(A1) ∩ · · · ∩
D(An) is syndetic. Leth proved the corresponding statement for sets with the SIM
property:

Theorem 15.20 If A1, . . . , An ⊆ N all have the SIM property, then D(A1) ∩ · · · ∩
D(An) is syndetic.

Proof We break the proof up into pieces.

Claim 1 There are infinite hyperfinite intervals I1, . . . , In, all of which have the
same length, such that λIi (

∗Ai) = 1 for all i = 1, . . . , n.

Proof of Claim 1 By the definition of the SIM property and Corollary 15.7, we
may find infinite, hyperfinite intervals J1, . . . , Jn whose length ratios are all finite
and for which stJi (

∗Ai) > 0 for i = 1, . . . , n. By taking points of density in each
of these intervals, for any ε > 0, we may find equally sized subintervals J ′i of Ji
such that λJ ′i (

∗Ai) ≥ 1 − ε, whence g∗Ai (J
′
i ) ≤ ε. Since this latter condition is

internal, by saturation, we may find equally sized subintervals Ii of Ji such that
each g∗Ai (Ii ) ≈ 0, whence, by the fact that ∗Ai has the IM property on Ji , we have
λIi (

∗Ai) = 1.

We now apply Corollary 15.6 toA1, . . . , An, I1, . . . , In and ε := 1
n+1 . Letw ∈ N

be as in the conclusion of that corollary. Write Ii := [xi, yi] and for i = 1, . . . , n,
set di := xi − x1. We then set

B := {a ∈ ∗A1 ∩ I1 : ∗Ai ∩ [a + di −w, a + di + 2w] �= ∅ for all i = 1, . . . , n}.

Claim 2 Suppose that J ⊆ I1 is infinite and r is a point of density of

n⋂

i=1

stJ+di (∗Ai).

Then r ∈ stJ (B).

2Here, subprogression means that every block [b′+id, b′+id+j ] is contained in the corresponding
block [b + id, b + id + w].



15.2 SIM Sets 169

Proof of Claim 2 By a (hopefully) by now familiar Lebesgue density and overflow
argument, there is an infinite hyperfinite interval [u, v] ⊆ J such that stJ (u) =
stJ (v) = r and

g∗Ai ([u+ di, v + di]) ≈ 0 for all i = 1, . . . , n.

This allows us to find c ∈ ∗
N such that u+ di + c + w ≤ vi and ∗Ai ∩ [u+ di +

c, u+ di + c + w] �= ∅ for i = 1, . . . , n. Take a ∈ ∗A1 ∩ [u+ c, u + c + w], say
a = u+ c+ j for j ∈ [0, w]. It follows that

∗Ai ∩ [a + di − j, a + di + j +w] �= ∅ for all i = 1, . . . , n

whence a ∈ B. Since u ≤ u + c ≤ a ≤ u + c + w ≤ v, we have that stJ (a) =
stJ (v) = r , whence r ∈ stJ (B), as desired.

Claim 3 B has the enhanced IM property on I1.

Proof of Claim 3 Taking J = I1 in Claim 2 shows that λI1(B) = 1. We now show
that B has the IM property on I1. Fix ε > 0. Let δ = mini=1,...,n δ(

∗Ai, Ii , εn ).
Suppose J ⊆ I1 is such that gB(J ) ≤ δ. Then g∗Ai (J + di) ≤ δ, whence

λ

(
n⋂

i=1

stJ+di (∗Ai)
)

≥ 1− ε.

By Claim 2, we have λJ (B) ≥ 1− ε, as desired.

For −w ≤ k1, . . . , kn ≤ 2w, set

B(k1,...,kn) := {b ∈ B : b + di + ki ∈ ∗Ai for all i = 1, . . . , n}.

By the definition of B, we have that B is the union of these sets. Since B has the
enhanced IM property on I1, by Theorem 15.4, there is such a tuple (k1, . . . , kn)

and an infinite J ⊆ I1 such that B ′ := B(k1,...,kn) has the enhanced IM property on
J . By Corollary 15.9, D(B ′) is syndetic. Since B ′ − B ′ ⊆ ⋂n

i=1(
∗Ai − ∗Ai), by

transfer we have that D(A1) ∩ · · · ∩D(An) is syndetic.

Notes and References

The material in this chapter comes from the paper [88], although many of the proofs
appearing above were communicated to us by Leth and are simpler than those
appearing in the aforementioned article. In a recent preprint [55], Goldbring and
Leth study the notion of a supra-SIM set, which is simply a set that contains a
SIM set. They show that these sets have very nice properties such as being partition
regular and closed under finite-embeddability. They also show that SIM sets satisfy
the conclusions of the Sumset Theorem 12.7 and Nathansons’ Theorem 13.4.
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Chapter 16
Triangle Removal and Szemerédi
Regularity

In this chapter, we give nonstandard proofs of two of the more prominent results
in extremal graph theory, namely the Triangle Removal Lemma and the Szemerédi
Regularity Lemma.

16.1 Triangle Removal Lemma

The material in this section was not proven first by nonstandard methods. However,
the nonstandard perspective makes the proofs quite elegant. We closely follow
[123].

Suppose thatG = (V ,E) is a finite graph. We define the edge density ofG to be
the quantity

e(G) := |E|
|V × V |

and the triangle density of G to be the quantity

t (G) := |{(x, y, z) ∈ V × V × V : (x, y), (y, z), (x, z) ∈ E}|
|V × V × V | .

Theorem 16.1 (Triangle Removal Lemma) For every ε > 0, there is a δ > 0
such that, whenever G = (V ,E) is a finite graph with t (G) ≤ δ, then there is a
subgraph G′ = (V ,E′) of G that is triangle-free (so t (G′) = 0) and such that
e(G\G′) ≤ ε.
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In short, the triangle removal lemma says that if the triangle density of a graph
is small, then one can remove a few number of edges to get one that is actually
triangle-free. We first show how the Triangle Removal Lemma can be used to prove
Roth’s theorem, which was a precursor to Szemerédi’s theorem.

Theorem 16.2 (Roth’s Theorem) For all ε > 0, there is n0 ∈ N such that, for all
n ≥ n0 and all A ⊆ [1, n], if δ(A, n) ≥ ε, then A contains a 3-term arithmetic
progression.

Proof Fix n and form a tripartite graphG = G(A, n) with vertex set V = V1∪V2∪
V3, where each Vi is a disjoint copy of [1, 3n]. If (v,w) ∈ (V1 × V2) ∪ (V2 × V3),
we declare (v,w) ∈ E ⇔ w − v ∈ A. If (v,w) ∈ V1 × V3, then we declare
(v,w) ∈ E ⇔ (w − v) ∈ 2A. Note then that if (v1, v2, v3) is a triangle in G, then
setting a := v2 − v1, b := v3 − v2, and c := 1

2 (v3 − v1), we have that a, b, c ∈ A
and a − c = c − b. If this latter quantity is nonzero, then {a, b, c} forms a 3-term
arithmetic progression in A.

Motivated by the discussion in the previous paragraph, let us call a triangle
{v1, v2, v3} in G trivial if v2 − v1 = v3 − v2 = 1

2 (v3 − v1). Thus, we aim to
show that, for n sufficiently large, if δ(A, n) ≥ ε, then G(A, n) has a nontrivial
triangle. If a ∈ A and k ∈ [1, n], then (k, k + a, k + 2a) is a trivial triangle in G.
Since trivial triangles clearly do not share any edges, one would have to remove at
least 3 · |A| · n ≥ 3εn2 many edges of G in order to obtain a triangle-free subgraph
of G. Thus, if δ > 0 corresponds to 3ε in the triangle removal lemma, then we can
conclude that t (G) ≥ δ, that is, there are at least 27δn3 many triangles in G. Since
the number of trivial triangles is at most |A| · (3n) ≤ 3n2, we see that G must have
a nontrivial triangle if n is sufficiently large.

We now turn to the proof of the triangle removal lemma. The basic idea is
that if the triangle removal lemma were false, then by a now familiar compact-
ness/overflow argument, we will get a contradiction to some nonstandard triangle
removal lemma. Here is the precise version of such a lemma:

Theorem 16.3 (Nonstandard Triangle Removal Lemma) Suppose that V is a
nonempty hyperfinite set and E12, E23, E13 ∈ LV×V are such that

∫

V×V×V
1E12(u, v)1E23(v,w)1E13(u, v)dμ(u, v,w) = 0. (†)

Then for every ε > 0 and (i, j) ∈ {(1, 2), (2, 3), (1, 3)}, there are hyperfinite Fij ⊆
V × V such that μV×V (Eij\Fij ) < ε and

1F12(u, v)1F23(v,w)1F13(u, v) = 0 for all (u, v,w) ∈ V × V × V. (††)

Proposition 16.4 The nonstandard triangle removal lemma implies the triangle
removal lemma.
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Proof Suppose that the triangle removal lemma is false. Then there is ε > 0 such
that, for all n ∈ N, there is a finite graph Gn = (Vn,En) for which t (Gn) ≤ 1

n
and

yet there does not exist a triangle-free subgraph G′ = (Vn,E
′
n) with |En\E′n| ≤

ε|Vn|2. Note that it follows that |Vn| → ∞ as n → ∞. By , there is an infinite
hyperfinite graph G = (V ,E) such that t (G) ≈ 0, whence (†) holds, and yet there
does not exist a triangle-free hyperfinite subgraph G′ = (V ,E′) with |E\E′| ≤
ε|V |2. We claim that this latter statement yields a counterexample to the nonstandard
triangle removal lemma. Indeed, if the nonstandard triangle removal held, then there
would be hyperfinite Fij ⊆ V × V such that μV×V (E\Fij ) < ε

6 and for which

(††) held. If one then sets E′ := E ∩ ⋂ij (Fij ∩ F−1
ij ), then G′ = (V ,E′) is

a hyperfinite subgraph of G that is triangle-free and μ(E\E′) < ε, yielding the
desired contradiction.1

It might look like the nonstandard triangle removal lemma is stated in a level of
generality that is more than what is needed for we have E12 = E23 = E13 = E.
However, in the course of proving the lemma, we will come to appreciate this added
level of generality of the statement.

Lemma 16.5 Suppose that f ∈ L2(LV×V ) is orthogonal to L2(LV ⊗LV ). Then
for any g, h ∈ L2(LV×V ), we have

∫

V×V×V
f (x, y)g(y, z)h(x, z)dμV×V×V (x, y, z) = 0.

Proof Fix z ∈ V . Let gz : V → R be given by gz(y) := g(y, z). Likewise, define
hz(x) := h(x, z). Note then that gz · hz ∈ L2(LV ⊗LV ). It follows that

∫

V×V
f (x, y)g(y, z)h(x, z)dμV×V (x, y)

=
∫

V×V
f (x, y)gz(y)hz(x)dμV×V (x, y) = 0.

By Theorem 5.21, we have that

∫

V×V×V
f (x, y)g(y, z)h(x, z)dμV×V×V (x, y, z)

=
∫

V

[∫

V×V
f (x, y)g(y, z)h(x, z)dμV×V (x, y)

]
dμV (z) = 0.

1Given a binary relation R on a set X, we write R−1 for the binary relation on X given by (x, y) ∈
R−1 if and only if (y, x) ∈ R.
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Proof of Theorem 16.3 We first show that we can assume that each Eij belongs to
LV ⊗LV . Indeed, let fij := E[1Eij |LV ⊗LV ].2 Then by three applications of the
previous lemma, we have

∫

V×V×V
f12f23f13dμV×V×V =

∫

V×V×V
f12f23113dμV×V×V

=
∫

V×V×V
f12123113dμV×V×V

=
∫

V×V×V
112123113dμV×V×V = 0. (∗)

Let Gij := {(u, v) ∈ V × V : fij (u, v) ≥ ε
2 }. Observe that each Gij belongs to

LV ⊗LV and

μ(Eij\Gij ) =
∫

V×V
1Eij (1− 1Gij )dμV×V =

∫

V×V
fij (1− 1Gij )dμV×V ≤

ε

2
.

By (∗) we have

∫

V×V
1G121G231G13dμV×V = 0.

Thus, if the nonstandard triangle removal lemma is true for sets belonging to LV ⊗
LV , we can find hyperfinite Fij ⊆ V × V such that μ(Gij\Fij ) < ε

2 and such that
(††) holds. Since μ(Eij\Fij ) < ε, the Fij are as desired.

Thus, we may now assume that each Eij belongs to LV ⊗ LV . Consequently,
there are elementary sets Hij such that μ(Eij#Hij ) < ε

6 . By considering the
boolean algebra generated by the sides of the boxes appearing in the description
of Hij , we obtain a partition V = V1 ' · · · ' Vn of V into finitely many hyperfinite
subsets of V such that each Hij is a union of boxes of the form Vk × Vl for
k, l ∈ {1, . . . , n}. Let

Fij :=
⋃
{Vk × Vl : Vk × Vl ⊆ Hij , μ(Vk × Vl) > 0,

and μ(Eij ∩ (Vk × Vl)) > 2

3
μ(Vk × Vl)}.

Clearly each Fij is hyperfinite. Note that

μ(Hij\Fij ) = μ((Hij\Fij ) ∩ Eij )+ μ((Hij\Fij )\Eij ) ≤ 2

3
μ(Hij\Fij )+ ε

6
,

2Here, for f ∈ L2(LV×V ), E[f |LV ⊗ LV ] denotes the conditional expectation of f onto the
subspace L2(LV ⊗LV ).
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whence μ(Hij\Fij ) ≤ ε
2 and thus μ(Eij\Fij ) ≤ ε

6 + ε
2 < ε. It remains to show

that (††) holds. Towards a contradiction, suppose that (u, v,w) witnesses that (††)
is false. Take k, l,m ∈ {1, . . . , n} such that u ∈ Vk, v ∈ Vl , and w ∈ Vm. Since
(u, v) ∈ F12, we have that μ(E12 ∩ (Vk × Vl)) > 2

3μ(Vk × Vl). Consequently,
μ(E12×Vm) > 2

3μ(Vk ×Vl ×Vm). Similarly, we have that μ(E23×Vk), μ(E13×
Vl) >

2
3μ(Vk×Vl×Vm). Thus, by elementary probability considerations, it follows

that
∫

V×V
1E121E231E13dμV×V > 0,

contradicting (†).

16.2 Szemerédi Regularity Lemma

Suppose that (V ,E) is a finite graph. For two nonempty subsets X, Y of V , we
define the density of arrows between X and Y to be the quantity

d(X, Y ) := δ(E,X × Y ) = |E ∩ (X × Y )|
|X||Y | .

For example, if every element of X is connected to every element of Y by an edge,
then d(X, Y ) = 1. Fix ε ∈ R

>0. We say that X and Y as above are ε-pseudorandom
if whenever A ⊆ X and B ⊆ Y are such that |A| ≥ ε|X| and |B| ≥ ε|Y |, then
|d(A,B) − d(X, Y )| < ε. In other words, as long as A and B contain at least an ε
proportion of the elements of X and Y respectively, then d(A,B) is essentially the
same as d(X, Y ), so the edges between X and Y are distributed in a sort of random
fashion.

IfX = {x} and Y = {y} are singletons, then clearlyX and Y are ε-pseudorandom
for any ε. Thus, any finite graph can trivially be partitioned into a finite number
of ε-pseudorandom pairs by partitioning the graph into singletons. Szemerédi’s
Regularity Lemma essentially says that one can do much better in the sense that
there is a constantC(ε) such that any finite graph has an “ε-pseudorandom partition”
into at most C(ε) pieces. Unfortunately, the previous sentence is not entirely
accurate as there is a bit of error that we need to account for.

Suppose that V1, . . . , Vm is a partition of V into m pieces. Set

R := {(i, j) | 1 ≤ i, j ≤ m, Vi and Vj are ε-pseudorandom}.
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We say that the partition is ε-regular if
∑
(i,j)∈R

|Vi ||Vj |
|V |2 > (1 − ε). This says that,

in some sense, almost all of the pairs of points are in ε-pseudorandom pairs. We can
now state:

Theorem 16.6 (Szemerédi’s Regularity Lemma) For any ε ∈ R
>0, there is a

constant C(ε) such that any graph (V ,E) admits an ε-regular partition into m ≤
C(ε) pieces.

As in the previous section, the regularity lemma is equivalent to a nonstandard
version of the lemma. We leave the proof of the equivalence as an exercise to the
reader.

Proposition 16.7 Szemerédi’s Regularity Lemma is equivalent to the following
statement: for any ε and any hyperfinite graph (V ,E), there is a finite partition
V1, . . . , Vm of V into internal sets and a subset R ⊆ {1, . . . ,m}2 such that:

• for (i, j) ∈ R, Vi and Vj are internally ε-pseudorandom: for all internal A ⊆ Vi
and B ⊆ Vj with |A| ≥ ε|Vi| and |B| ≥ ε|Vj |, we have |d(A,B)−d(Vi, Vj )| <
ε; and

•
∑
(i,j)∈R

|Vi ||Vj |
|V |2 > (1− ε).

We will now prove the above nonstandard equivalent of the Szemerédi Regularity
Lemma. Fix ε and a hyperfinite graph (V ,E). Set f := E[1E|LV ⊗ LV ]. The
following calculation will prove useful: Suppose thatA,B ⊆ V are internal and |A|

|V |
and |B|

|V | are noninfinitesimal. Then (♣):
∫

A×B
f d(μV ⊗ μV ) =

∫

A×B
1EdμV×V by the definition of f

= st

( |E ∩ (A× B)|
|V |2

)

= st

( |E ∩ (A× B)|
|A||B|

)
st

( |A||B|
|V |2

)

= st(d(A,B)) st

( |A||B|
|V |2

)
.

Fix r ∈ R
>0, to be determined later. Now, since f is μV ⊗ μV -integrable, there

is a μV ⊗ μV -simple function g ≤ f such that
∫
(f − g)d(μV ⊗ μV ) < r . Set

C := {ω ∈ V × V | f (ω)− g(ω) ≥ √r} ∈ sV ⊗ sV . Then (μV ⊗ μV )(C) < √r ,
for otherwise
∫
(f−g)d(μV⊗μV ) ≥

∫

C

(f−g)d(μV⊗μV ) ≥
∫

C

√
rd(μV⊗μV ) ≥

√
r
√
r = r.



16.2 Szemerédi Regularity Lemma 179

By Fact 5.10, there is an elementary set D ∈ sV ⊗ sV that is a finite, disjoint union
of rectangles of the form V ′ × V ′′, with V ′, V ′′ ⊆ V internal sets, such that C ⊆ D
and (μV ⊗ μV )(D) < √r . In a similar way, we may assume that the level sets of
g (that is, the sets on which g takes constant values) are elementary sets (Exercise).
We now take a finite partition V1, . . . , Vm of V into internal sets such that g and
1D are constant on each rectangle Vi × Vj . For ease of notation, set dij to be the
constant value of g on Vi × Vj .
Claim IfμV (Vi), μV (Vj ) �= 0 and (Vi×Vj )∩D = ∅, then Vi and Vj are internally
2
√
r-pseudorandom.

Proof of Claim Since C ⊆ D, we have that (Vi × Vj ) ∩ C = ∅, whence

dij ≤ f (ω) < dij +
√
r for ω ∈ Vi × Vj . (♣♣).

Now suppose that A ⊆ Vi and B ⊆ Vj are such that |A| ≥ 2
√
r|Vi| and |B| ≥

2
√
r|Vj |. In particular, |A||Vi | and |B|

|Vj | are noninfinitesimal. Since μV (Vi), μV (Vj ) >

0, it follows that |A||V | and |B|
|V | are noninfinitesimal and the calculation (♣) applies.

Integrating the inequalities (♣♣) on A× B yields:

dij st

( |A||B|
|V |2

)
≤ st(d(A,B)) st

( |A||B|
|V |2

)
< (dij +

√
r) st

( |A||B|
|V |2

)
.

We thus get:

|d(A,B)− d(Vi, Vj )| ≤ |d(A,B)− dij | + |d(Vi, Vj )− dij | < 2
√
r.

By the Claim, we see that we should choose r < (ε2 )
2, so Vi and Vj are internally

ε-pseudorandom when Vi and Vj are non-null and satisfy (Vi × Vj ) ∩ D = ∅. It
remains to observe that the ε-pseudorandom pairs almost cover all pairs of vertices.
Let R := {(i, j) | Vi and Vj are ε-pseudorandom}. Then

st

⎛

⎝
∑

(i,j)∈R

|Vi ||Vj |
|V |2

⎞

⎠ = μV×V
⎛

⎝
⋃

(i,j)∈R
(Vi × Vj )

⎞

⎠

≥ μV×V ((V × V )\D)
> 1−√r
> 1− ε.

This finishes the proof of the Claim and the proof of the Szemerédi Regularity
Lemma.
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Notes and References

The triangle removal lemma was originally proven by Ruzsa and Szemerédi in
[113] and their proof used several applications of an early version of the Szemerédi
regularity lemma. Nowadays, the most common standard proof of the triangle
removal lemma goes through a combination of the Szemerédi regularity lemma
and the so-called Counting lemma; see, for example, [58]. Szemerédi’s regularity
lemma was a key ingredient in his proof in [119] that sets of positive density
contain arbitrarily long arithmetic progressions (which we now of course call
Szemerédi’s theorem). Analogous to the above proof of Roth’s Theorem from the
Triangle Removal Lemma, one can prove Szemeredi’s theorem by first proving
an appropriate removal lemma called the Hypergraph removal lemma and then
coding arithmetic progressions by an appropriate hypergraph generalization of the
argument given above. For more details, see [58] for the original standard proof and
[120] and [56] for simplified nonstandard proofs.



Chapter 17
Approximate Groups

In this chapter, we describe a recent application of nonstandard methods to
multiplicative combinatorics, namely to the structure theorem for finite approximate
groups. The general story is much more complicated than the rest of the material in
this book and there are already several good sources for the complete story (see [20]
or [128]), so we content ourselves to a summary of some of the main ideas. Our
presentation will be similar to the presentation from [128].

17.1 Statement of Definitions and the Main Theorem

In this chapter, (G, ·) denotes an arbitrary group and K ∈ R
≥1. (Although using K

for a real number clashes with the notation used throughout the rest of this book,
it is standard in the area.) One important convention will be important to keep in
mind: for X a subset of G and n ∈ N, we set Xn := {x1 · · · xn : x1, . . . , xn ∈ X}
(so Xn does not mean the n-fold Cartesian power of X).

By a symmetric subset ofG, we mean a set that contains the identity of G and is
closed under taking inverse.

Definition 17.1 X ⊆ G is a K-approximate group if X is symmetric and X2 can
be covered by at most K left translates of X, that is, there are g1, . . . , gm ∈ G with
m ≤ K such that X2 ⊆⋃m

i=1 giX.

Example 17.2

1. A 1-approximate subgroup of G is simply a subgroup of G.
2. If X ⊆ G is finite, then X is a |X|-approximate subgroup of G.

The second example highlights that, in order to try to study the general structure
of finite K-approximate groups, one should think of K as fixed and “small” and
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then try to classify the finite K-approximate groups X, where X has cardinality
much larger than K .

Exercise 17.3 Suppose that (G,+) is an abelian group. For distinct v1 . . . , vr ∈ G
and (not necessarily distinct) N1, . . . , Nr ∈ N, set

P(v,N) := {a1v1 + · · · + arvr : ai ∈ Z, |ai| ≤ Ni}.

Show that P(v,N) is a 2r -approximate subgroup of G.

The approximate subgroups appearing in the previous exercise are called sym-
metric generalized arithmetic progressions and the number r of generators is called
the rank of the progression. The Freiman Theorem for abelian groups (due to due
to Freiman [51] for Z and to Green and Ruzsa [62] for a general abelian group)
says that approximate subgroups of abelian groups are “controlled” by symmetric
generalized arithmetic progressions:

Theorem 17.4 There are constants rK,CK such that the following hold: Suppose
thatG is an abelian group and A ⊆ G is a finite K-approximate group. Then there
is a finite subgroup H of G and a symmetric generalized arithmetic progression
P ⊆ G/H such that P has rank at most rK , π−1(P ) ⊆ Σ4(A), and |P | ≥ CK · |A||H | .

Here, π : G → G/H is the quotient map. For a while it was an open
question as to whether there was a version of the Freiman theorem that held for
finite approximate subgroups of arbitrary groups. Following a breakthrough by
Hrushovski [75], Breuillard et al. [20] were able to prove the following general
structure theorem for approximate groups.

Theorem 17.5 There are constants rK, sK ,CK such that the following hold:
Suppose thatG is a group andA ⊆ G is a finiteK-approximate group. Then there is
a finite subgroup H ⊆ G, a noncommutative progression of rank at most rK whose
generators generate a nilpotent group of step at most sK such that π−1(P ) ⊆ A4

and |P | ≥ CK · |A||H | .
Here, π : G→ G/H is once again the quotient map. To understand this theorem,

we should explain the notion of noncommutative progression.
Suppose that G is a group, v1, . . . , vr ∈ G are distinct, and N1, . . . , Nr > 0

are (not necessarily distinct) natural numbers. The noncommutative progression
generated by v1, . . . , vr with dimensions N1, . . . , Nr is the set of words on the
alphabet {v1, v

−1
1 , . . . , vr , v

−1
r } such that the total number of occurrences of vi

and v−1
i is at most Ni for each i = 1, . . . , r; as before, r is called the rank of

the progression. In general, noncommutative progressions need not be approximate
groups (think free groups). However, if v1, . . . , vr generate a nilpotent subgroup of
G of step s, then forN1, . . . , Nr sufficiently large, the noncommutative progression
is in fact a K-approximate group for K depending only on r and s. (See, for
example, [123, Chapter 12].)
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17.2 A Special Case: Approximate Groups of Finite
Exponent

To illustrate some of the main ideas of the proof of the Breuillard-Green-Tao
theorem, we prove a special case due to Hrushovski [75]:

Theorem 17.6 Suppose that X ⊆ G is a finite K-approximate group. Assume that
X2 has exponent e, that is, for every x ∈ X2, we have xe = 1. Then X4 contains a
subgroup H of 〈X〉 such that X can be covered by L left cosets of H , where L is a
constant depending only on K and e.

Here, 〈X〉 denotes the subgroup of G generated by X. Surprisingly, this theorem
follows from the simple observation that the only connected Lie group which has an
identity neighborhood of finite exponent is the trivial Lie group consisting of a single
point. But how do continuous objects such as Lie groups arise in proving a theorem
about finite objects like finite approximate groups? The key insight of Hrushovski
is that ultraproducts of finite K-approximate groups are naturally “modeled” in a
precise sense by second countable, locally compact groups and that, using a classical
theorem of Yamabe, this model can be perturbed to a Lie model.

More precisely, for each i ∈ N, suppose that Xi ⊆ Gi is a finite K-approximate
group. We set X := ∏

U Xi , which, by transfer, is a hyperfinite K-approximate
subgroup of G := ∏

U Gi . In the rest of this chapter, unless specified otherwise,
X and G will denote these aforementioned ultraproducts. By a monadic subset of
G we mean a countable intersection of internal subsets of G. Also, 〈X〉 denotes the
subgroup ofG generated by X.

Theorem 17.7 There is a monadic subset o(X) of X4 such that o(X) is a normal
subgroup of 〈X〉 such that the quotient G := 〈X〉/o(X) has the structure of a
second countable, locally compact group. Moreover, letting π : 〈X〉 → G denote
the quotient map, we have:

1. The quotient 〈X〉/o(X) is bounded, meaning that for all internal setsA,B ⊆ 〈X〉
with o(X) ⊆ A, finitely many left translates of A cover B.

2. Y ⊆ G is compact if and only if π−1(Y ) is monadic; in particular, π(X) is
compact.

3. If Y ⊆ G is internal and contains o(X), then Y contains π−1(U) for some open
neighborhood of the identity in G .

4. π(X2) is a compact neighborhoods of the identity in G .

Let us momentarily assume that Theorem 17.7 holds and see how it is used to
prove Theorem 17.6. As usual, we first prove a nonstandard version of the desired
result.

Theorem 17.8 Suppose that X ⊆ G is a hyperfinite K-approximate group such
that X2 has exponent e. Then X4 contains an internal subgroup H of G such that
o(X) ⊆ H .
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Proof Let U be an open neighborhood of the identity in G with π−1(U) ⊆ X4 such
that U is contained in π(X2), whence U has exponent e. By the Gleason-Yamabe
theorem [132], there is an open subgroup G ′ of G and normal N � G ′ with N ⊆ U
such that H := G ′/N is a connected Lie group. Let Y := X ∩ π−1(G ′) and let
ρ : 〈Y 〉 → H be the composition of π with the quotient map G ′ → H . Since
G ′ is clopen in G , π−1(G ′) is both monadic and co-monadic (the complement of a
monadic, also known as galactic), whence internal by saturation; it follows that Y
is also internal. Since the image of U ∩G ′ in H is also open, it follows that H is a
connected Lie group with an identity neighborhood of finite exponent. We conclude
that H is trivial, whence ker(ρ) = Y = 〈Y 〉 is the desired internal subgroup of G
contained in X4.

Remark 17.9 The passage from G to the Lie subquotient G ′/N is called the
Hrushovski Lie Model Theorem. More precisely, [20] abstracts the important
properties of the quotient map π : 〈X〉 → G and calls any group morphism onto a
second countable, locally compact group satisfying these properties a good model.
In the proof of Theorem 17.8, we actually showed that the good model π : 〈X〉 → G
can be replaced by a good model ρ : 〈Y 〉 → H onto a connected Lie group. One
can show that Y is also an approximate group (in fact, it is aK6-approximate group)
that is closely related to the original approximate group X, whence the Hrushovski
Lie model theorem allows one to study ultraproducts of K-approximate groups by
working with the connected Lie groups that model them. For example, the proof of
Theorem 17.4 actually proceeds by induction on the dimension of the corresponding
Lie model. To be fair, the proof of Theorem 17.4 actually requires the use of local
Lie groups and, in particular, uses the local version of Yamabe’s theorem, whose
first proof used nonstandard analysis [54].

Proof of Theorem 17.6 Suppose, towards a contradiction, that the theorem is false.
For eachL, letGL be a group andXL ⊆ GL a finiteK-approximate group such that
X2
L has exponent e and yet, for any finite subgroupH of 〈XL〉 contained in X4

L, we
have thatXL is not covered byL cosets ofH . LetX :=∏

U XL andG :=∏
U GL.

By transfer, X is a K-approximate subgroup of G such that X2 has exponent e. By
Theorem 17.8, X4 contains an internal subgroup H ⊇ o(X) of 〈X〉. Without loss
of generality, we may write H := ∏

U HL with HL a subgroup of GL contained
in X4

L. Since the quotient is bounded by Theorem 17.7, there is M ∈ N such that
M left translates of H cover X4. Thus, for U -almost all L,M left translates of HL
coverXL; taking L > M yields the desired contradiction.

We now turn to the proof of Theorem 17.7. Hrushovski’s original proof used
some fairly sophisticated model theory. A key insight of Breuillard-Green-Tao was
that a proof that relied only on fairly elementary combinatorics and nonstandard
methods could be given. The following result is the combinatorial core of their
proof. It, and the easy lemma after it, do not follow the convention that X is a
hyperfinite K-approximate group; proofs of both of these results can be found, for
example, in [128].
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Theorem 17.10 (Sanders-Croot-Sisask) Given K and δ > 0, there is ε > 0 so
that the following holds: Suppose that X is a finite K-approximate subgroup of G.
Suppose that Y ⊆ X is symmetric and |Y | ≥ δ|X|. Then there is a symmetricE ⊆ G
such that |E| ≥ ε|X| and (E16)X ⊆ Y 4.

Lemma 17.11 Let X ⊆ G be a finite K-approximate group and S ⊆ G symmetric
such that S4 ⊆ X4 and |S| ≥ c|X| for some c > 0. Then X4 can be covered by
K7/c left cosets of S2.

We now return to our assumption thatX is a hyperfiniteK-approximate subgroup
of G.

Proposition 17.12 There is a descending sequence

X4 =: X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ · · ·

of internal, symmetric subsets of G such that:

(i) X2
n+1 ⊆ Xn;

(ii) XXn+1 ⊆ Xn;
(iii) X4 is covered by finitely many left cosets of Xn.

Proof Suppose that Y ⊆ G is internal, symmetric, Y 4 ⊆ X4, andX4 can be covered
by finitely many left cosets of Y . We define a new set Ỹ with these same properties.
First, take δ > 0 such that |Y | ≥ δ|X4|; such δ exists since X4 can be covered by
finitely many left cosets of Y . By the transfer of Theorem 17.10, there is an internal,
symmetric S ⊆ Y 4 such that |S| ≥ ε|X4| and (S16)X ⊆ Y 4. Let Ỹ := S2. Note that
Ỹ has the desired properties, the last of which follows from the preceding lemma.

We now define a sequence Y0, Y1, Y2, . . . , of internal subsets of X4 satisfying
the above properties by setting Y0 := X and Yn+1 := Ỹn. Finally, setting Xn := Y 4

n

yields the desired sequence.

Proof of Theorem 17.7 Take (Xn) as guaranteed by Proposition 17.12. We set
o(X) := ⋂

n Xn, a monadic subset of X4. It is clear from (i) and (ii) that o(X)
is a normal subgroup of 〈X〉. We can topologize 〈X〉 by declaring, for a ∈ 〈X〉,
{aXn : n ∈ N} to be a neighborhood base for a. The resulting space is not
Hausdorff, but it is clear that the quotient space 〈X〉/o(X) is precisely the separation
of 〈X〉. It is straightforward to check that the resulting space is separable and yields
a group topology on G . Now one uses the boundedness property (proven in the next
paragraph) to show that G is locally compact; see [128] for details.

To show that it is bounded, suppose that A,B ⊆ 〈X〉 are such that o(X) ⊆ A.
We need finitely many left cosets of A to cover B. Take n such that Xn ⊆ A and
takem such that B ⊆ (X4)m. SinceX4 is aK4-approximate group, (X4)m ⊆ E ·X4

for some finite E. By (iii), we have that X4 ⊆ F · Xn for some finite F . It follows
that B ⊆ EFA, as desired.

The proof that Y ⊆ G is compact if and only if π−1(Y ) is monadic is an exercise
left to the reader (or, once again, one can consult [128]). To see the moreover part,
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note that

π−1(π(X)) = {x ∈ 〈X〉 : there is y ∈ X such that x−1y ∈
⋂

n

Xn}.

In particular, π−1(π(X)) ⊆ X5 and, by saturation, we actually have

π−1(π(X)) = {x ∈ X5 : for all n there is y ∈ X such that x−1y ∈ Xn}.

From this description of π−1(π(X)), we see that it is monadic, whence π(X) is
compact.

To prove (3), suppose that Y is an internal subset of G containing o(X). Take n
such that Xn ⊆ Y . Thus, π−1(π(Xn+1)) ⊆ Xn ⊆ Y and π(Xn+1) is open in G .

Finally, to see that π(X2) is a neighborhood of the identity in G , first observe that
since X4 is covered by finitely many left cosets of X, the neighborhood π(X4) of
the identity is covered by finitely many left cosets of the compact set π(X), whence
π(X) has nonempty interior and thus π(X2) = π(X) · π(X)−1 is a neighborhood
of the identity in G .

Exercise 17.13 In the notation of the previous proof, show that the space G is
separable and the topology on it is indeed a group topology.

Exercise 17.14 In the notation of the previous proof, show that Y ⊆ G is compact
if and only if π−1(Y ) is monadic.

Notes and References

Although many notions closely related to approximate groups appeared in the
literature and were seriously studied, the formal definition of an approximate group
appearing above was introduced by Terence Tao in [121] and was in part motivated
by its use in the work of Bourgain and Gamburd [19] on superstrong approximation
for Zariski dense subgroups of SL2(Z). The classification of approximate subgroups
of Z was proven by Freiman in [51] and then extended to all abelian groups by
Green and Ruzsa [62]. Hrushovski’s breakthrough article [75] used sophisticated
tools from model theory to make serious progress on the classification of arbitrary
approximate groups and these techniques were simplified by Breuillard, Green, and
Tao in [20] and extended to complete the classification. While [20] is extremely
readable (and includes many interesting and illustrative examples of ultraproducts
of finite approximate groups), the Séminaire Bourbaki article of van den Dries
[128] provides another thorough treatment, simplifying some of the steps in order
to achieve a somewhat weaker conclusion which is still strong enough for many
of the combinatorial applications, including a strengthening of Gromov’s theorem
on groups with polynomial group (whose “standard” proof is nowadays often
considered to be the nonstandard one given by van den Dries and Wilkie [129]).



Appendix A
Foundations of Nonstandard Analysis

A.1 Foundations

In this appendix we will revise all the basic notions and principles that we presented
in Chap. 2 and put them on firm foundations. As it is customary in the foundations of
mathematics, we will work in a set-theoretic framework as formalized by Zermelo-
Fraenkel set theory with choice ZFC. Since the purpose of this book is not a
foundational one, we will only outline the main arguments, and then give precise
bibliographic references where the interested reader can find all proofs worked out
in detail.

A.1.1 Mathematical Universes and Superstructures

Let us start with the notion of a mathematical universe, which formalizes the idea
of a sufficiently large collection of mathematical objects that contains all that one
needs when applying nonstandard methods.

Definition A.1 A universe U is a nonempty collection of “mathematical objects”
that satisfies the following properties:

1. The numerical sets N,Z,Q,R,C ∈ U;
2. If a1, . . . , ak ∈ U then also the tuple {a1, . . . , ak} and the ordered tuple
(a1, . . . , ak) belong to U;

3. If the family of sets F ∈ U then also its union
⋃

F =⋃
F∈F F ∈ U;

4. If the sets A,B ∈ U then also the Cartesian product A × B, the powerset
P(A) = {A′ | A′ ⊆ A}, and the function set Fun(A,B) = {f | f : A → B}
belong to U;

5. U is transitive, that is, a ∈ A ∈ U⇒ a ∈ U.
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Notice that a universe U is necessarily closed under subsets; indeed if A′ ⊆
A ∈ U, then A′ ∈ P(A) ∈ U, and hence A′ ∈ U, by transitivity. Thus, if the
sets A,B ∈ U then also the intersection A ∩ B and the set-difference A\B belong
to U; moreover, by combining properties 2 and 3, one obtains that also the union
A ∪ B =⋃{A,B} ∈ U.

Remark A.2 It is a well-known fact that all “mathematical objects” used in the
ordinary practice of mathematics, including numbers, sets, functions, relations,
ordered tuples, and Cartesian products, can all be coded as sets. Recall that, in ZFC,
an ordered pair (a, b) is defined as the Kuratowski pair {{a}, {a, b}}; in fact, it is
easily shown that by adopting that definition one has the characterizing property
that (a, b) = (a′, b′) if and only if a = a′ and b = b′. Ordered tuples are defined
inductively by letting (a1, . . . , ak, ak+1) = ((a1, . . . , ak), ak+1). A binary relation
R is defined as a set of ordered pairs; so, the notion of a relation is identified with the
set of pairs that satisfy it. A function f is a relation such that every element a in the
domain is in relation with a unique element b of the range, denoted b = f (a); so, the
notion of a function is identified with its graph. As for numbers, the natural numbers
N0 of ZFC are defined as the set of von Neumann naturals: 0 = ∅ and, recursively,
n+1 = n∪{n}, so that each natural number n = {0, 1, . . . , n−1} is identified with
the set of its predecessors; the integers Z are then defined as a suitable quotient of
N× N, and the rationals Q as a suitable quotient of Z × Z; the real numbers R are
defined as suitable sets of rational numbers, namely the Dedekind cuts; the complex
numbers C = R × R are defined as ordered pairs of real numbers, where the pair
(a, b) is denoted a + ib. (See, e.g., [74].)

We remark that the above definitions are instrumental if one works within
axiomatic set theory, where all notions must be reduced to the sole notion of a set;
however, in the ordinary practice of mathematics, one can safely take the ordered
tuples, the relations, the functions, and the natural numbers as primitive objects of a
different nature with respect to sets.

For convenience, in the following we will consider atoms, that is, primitive
objects that are not sets.1 A notion of a universe that is convenient to our purposes
is the following.

Definition A.3 Let X be a set of atoms. The superstructure over X is the union
V(X) := ⋃

n∈N0
Vn(X), where V0(X) = X, and, recursively, Vn+1(X) = Vn(X) ∪

P(Vn(X)).

Proposition A.4 Let X be a set of atoms that includes (a copy of) N. Then the
superstructure V(X) is a universe in the sense of Definition A.1.2

1The existence of atoms is disproved by the axioms of ZFC, where all existing objects are sets;
however, axiomatic theories are easily formalized that allow a proper class of atoms. For instance,
one can consider a suitably modified versions of ZFC where a unary predicate A(x) for “x is an
atom” is added to the language, and where the axiom of extensionality is restricted to non-atoms.
2Clearly, the transitivity property “a ∈ A ∈ V(X)⇒ a ∈ V(X)” applies provided A /∈ X.
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Proof See [25, §4.4].

Remark A.5 In set theory, one considers the universe V = ⋃
γ Vγ given by the

union of all levels of the so-called von Neumann cumulative hierarchy, which is
defined by transfinite recursion on the class of all ordinals by letting V0 = ∅, Vγ+1 =
P(Vγ ), and Vλ = ⋃

γ<λ Vγ if λ is a limit ordinal. Basically, the Regularity axiom
was introduced in set theory to show that the above class V is the universal class of
all sets.

Instead, the superstructures are defined by only taking the finite levels Vn(X)
constructed over a given set of atoms X. The main motivation for that restriction
is that if one goes beyond the finite levels and allows the first infinite ordinal ω to
belong to the domain of the star map, then ∗ω would contain ∈-descending chains
ξ 0 ξ − 1 0 ξ − 2 0 . . . for every ξ ∈ ∗ω\ω, contradicting the Regularity axiom.
Since Vω =⋃

n∈ω Vn would not be suitable, as it only contains finite sets, one takes
an infinite set of atoms X as the ground level V0(X) = X, so as to enclose (a copy
of the) natural numbers in the universe.

However, we remark that if one drops the Regularity Axiom from the axioms
of ZFC, and replace it with a suitable Anti-Foundation Axiom (such as Boffa’s
superuniversality axiom), then one can construct star maps ∗ : V → V from the
universe all sets into itself that satisfies the transfer principle and κ-saturation for
any given cardinal κ . (This is to be contrasted with the well-known result by Kunen
about the impossibility in ZFC of non-trivial elementary extensions j : V → V.)
This kind of foundational issues are the subject matter of the so-called nonstandard
set theory (see Remark A.15).

A.1.2 Bounded Quantifier Formulas

In this section we formalize the notion of “elementary property” by means of
suitable formulas. It is a well-known fact that virtually all properties of mathematical
objects can be described within first-order logic; in particular, one can reduce to
the language of set theory grounded on the usual logic symbols plus the sole
membership relation symbol. Here is the “alphabet” of our language.3

• Variables: x, y, z, . . . , x1, x2, . . .;
• Logical Connectives: ¬ (negation “not”); ∧ (conjunction “and”); ∨ (disjunction

“or”);⇒ (implication “if . . . then”);⇔ (double implication “if and only if”);
• Quantifiers: ∃ (existential quantifier “there exists”); ∀ (universal quantifier “for

all”);
• Equality symbol =;
• Membership symbol ∈.

3To be precise, also parentheses “ ( ” and “ ) ” should be included among the symbols of our
alphabet.



190 A Foundations of Nonstandard Analysis

Definition A.6 An elementary formula σ is a finite string of symbols in the above
alphabet where it is specified a set of free variables FV (σ) and a set of bound
variables BV (σ), according to the following rules.

• Atomic formulas. If x and y are variables then “(x = y)” and “(x ∈ y)” are
elementary formulas, named atomic formulas, where FV (x = y) = FV (x ∈
y) = {x, y} and BV (x = y) = BV (x ∈ y) = ∅;

• Restricted quantifiers. If σ is an elementary formula, x ∈ FV (σ) and y /∈
BV (σ), then “(∀x ∈ y) σ” is an elementary formula where FV ((∀x ∈ y) σ) =
(FV (σ)\{x}) ∪ {y} and BV ((∀x ∈ y) σ) = BV (σ) ∪ {y}. Similarly with the
elementary formula “(∃x ∈ y) σ” obtained by applying the existential quantifier;

• Negation. If σ is an elementary formula then (¬ σ) is an elementary formula
where FV (¬σ) = FV (σ) and BV (¬σ) = BV (σ);

• Binary connectives. If σ and τ are elementary formulas whereFV (σ)∩BV (τ) =
FV (τ) ∩ BV (σ) = ∅, then “(σ ∧ τ )” is an elementary formula where FV (σ ∧
τ ) = FV (σ) ∪ FV (τ) and BV (σ ∧ τ ) = BV (σ) ∪ BV (τ); and similarly with
the elementary formulas (σ ∨ τ ), (σ ⇒ τ ), and (σ ⇔ τ ) obtained by applying
the connectives ∨,⇒, and⇔, respectively.

According to the above, every elementary formula is built from atomic formulas
(and this justifies the name “atomic”). in that an arbitrary elementary formula is
obtained from atomic formulas by finitely many iterations of restricted quantifiers,
negations, and binary connectives, in whatever order. Only quantifiers produces
bound variables, and in fact the bound variables are those that are quantified. Notice
that a variable can be quantified only if it is free in the given formula, that is, it
actually appears and it has been not quantified already.

It is worth stressing that quantifications are only permitted in the restricted
forms (∀x ∈ y) or (∃x ∈ y), where the “scope” of the quantified variable x is
“restricted” by another variable y. To avoid potential ambiguities, we required that
the “bounding” variable y does not appear bound itself in the given formula.

As it is customary in the practice, to simplify notation we will adopt natural short-
hands. For instance, we will write “x �= y” to mean “¬(x = y)” and “x /∈ y” to
mean “¬(x ∈ y)”; we will write “∀x1, . . . , xk ∈ y σ” to mean “(∀x1 ∈ y) . . . (∀xk ∈
y) σ”, and similarly with existential quantifiers. Moreover, we will use parentheses
informally, and omit some of them whenever confusion is unlikely. So, we may
write “∀x ∈ y σ” instead of “(∀x ∈ y) σ ; or “σ ∧ τ” instead of “(σ ∧ τ )”; and so
forth.

Another usual agreement is that negation ¬ binds more strongly than conjunc-
tions ∧ and disjunctions ∨, which in turn bind more strongly than implications ⇒
and double implications ⇔. So, we may write “¬σ ∧ τ” to mean “((¬σ) ∧ τ )”;
or “¬σ ∨ τ ⇒ υ” to mean “(((¬σ) ∨ τ ) ⇒ υ)”; or “σ ⇒ τ ∨ υ” to mean
“(σ ⇒ (τ ∨ υ))”.

When writing σ(x1, . . . , xk) we will mean that x1, . . . , xk are all and only the
free variables that appear in the formula σ . The intuition is that the truth or falsity
of a formula depends only on the values given to its free variables, whereas bound
variables can be renamed without changing the meaning of a formula.
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Definition A.7 A property of mathematical objectsA1, . . . , Ak is expressed in ele-
mentary form if it is written down by taking an elementary formula σ(x1, . . . , xk),
and by replacing all occurrences of each free variable xi by Ai . In this case we
denote

σ(A1, . . . , Ak),

and we will refer to objects A1, . . . , Ak as constants or parameters.4 By a slight
abuse, sometimes we will simply say elementary property to mean “property
expressed in elementary form”.

The motivation of our definition is the well-known fact that virtually all
properties considered in mathematics can be formulated in elementary form. Below
is a list of examples that include the fundamental ones. As an exercise, the reader can
easily write down by him- or herself any other mathematical property that comes to
his or her mind, in elementary form.

Example A.8 Each property is followed by one of its possible expressions in
elementary form.5

1. “A ⊆ B”: (∀x ∈ A)(x ∈ B);
2. C = A ∪ B: (A ⊆ C) ∧ (B ⊆ C) ∧ (∀x ∈ C)(x ∈ A ∨ x ∈ B);
3. C = A ∩ B: (C ⊆ A) ∧ (∀x ∈ A)(x ∈ B ⇔ x ∈ C);
4. C = A\B: (C ⊆ A) ∧ (∀x ∈ A)(x ∈ C ⇔ x /∈ B);
5. C = {a1, . . . , ak}: (a1 ∈ C)∧. . .∧(ak ∈ C)∧(∀x ∈ C)(x = a1∨. . .∨x = ak);
6. {a1, . . . , ak} ∈ C: (∃x ∈ C)(x = {a1, . . . , ak});
7. C = (a, b): C = {{a}, {a, b}}6;
8. C = (a1, . . . , ak) with k ≥ 3: Inductively,C = ((a1, . . . , ak−1), ak);
9. (a1, . . . , ak) ∈ C: (∃x ∈ C)(x = (a1, . . . , ak));

10. C = A1 × . . . × Ak: (∀x1 ∈ A1) . . . (∀xk ∈ Ak)((a1, . . . , ak) ∈ C) ∧ (∀z ∈
C)(∃x1 ∈ A1) . . . (∃xk ∈ Ak)(z = (x1, . . . , xk));

11. R is a k-place relation on A: (∀z ∈ R)(∃x1, . . . , xk ∈ A)(z = (x1, . . . , xk));
12. f : A → B: (f ⊆ A × B) ∧ (∀a ∈ A)(∃b ∈ B)((a, b) ∈ f ) ∧ (∀a, a′ ∈

A)(∀b ∈ B)((a, b), (a′, b) ∈ f ⇒ a = a′);
13. f (a1, . . . , ak) = b: ((a1, . . . , ak), b) = (a1, . . . , ak, b) ∈ f ;
14. x < y in R: (x, y) ∈ R, where R ⊂ R× R is the order relation on R.

It is worth remarking that a same property may be expressed both in an
elementary form and in a non-elementary form. The typical examples involve the
powerset operation.

4In order to make sense, it is implicitly assumed that in every quantification (∀x ∈ Ai) and (∃x ∈
Ai), the object Ai is a set (not an atom).
5For simplicity, in each item we use short-hands for properties that have been already considered
in previous items.
6Recall that ordered pairs (a, b) = {{a}, {a, b}} were defined as Kuratowski pairs.
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Example A.9 “P(A) = B” is trivially an elementary property of constants P(A)
and B, but cannot be formulated as an elementary property of constantsA and B. In
fact, while the inclusion “B ⊆P(A)” is formalized in elementary form by “(∀x ∈
B)(∀y ∈ x)(y ∈ A)”, the other inclusionP(A) ⊆ B does not admit any elementary
formulation with A and B as constants. The point here is that quantifications over
subsets “(∀x ⊆ A)(x ∈ B)” are not allowed by our rules.

A.1.3 Łos’ Theorem

The ultrapower construction of the hyperreals is naturally extended to the whole
superstructure.

Definition A.10 Let U be an ultrafilter on the set of indexes I . The bounded
ultrapower of the superstructure V(X) modulo U is the union

V(X)Ib/U :=
⋃

n

Vn(X)
I /U

where Vn(X)I /U = {[f ] | f : I → Vn(X)} contains the equivalence classes
modulo U of the I -sequences f that take values in the finite level Vn(X). The
pseudo-membership relation ∈U on V(X)Ib/U is defined by setting:

[f ] ∈U [g] ⇐⇒ {i ∈ I | f (i) ∈ g(i)} ∈ U .

So, the bounded ultrapower consists of the equivalence classes modulo U of the
“bounded” I -sequences (that is, of those sequences f : I → V(X) whose range is
included in some finite level Vn(X)); and the pseudo-membership holds when the
actual membership holds pointwise for U -almost all indexes.

In bounded ultrapowers, properties expressed in elementary form can be inter-
preted in a natural way.

Definition A.11 Let P be a property expressed in elementary form with constant
parameters in Vb(X)

I /U . The satisfaction relation “V(X)Ib/U |2 P ” (read: “the
property P holds in V(X)Ib/U ”) is defined according to the following rules7:

• “V(X)Ib/U |2 [f ] = [g]” when [f ] = [g], that is, when {i ∈ I | f (i) = g(i)} ∈
U .

• “V(X)Ib/U |2 [f ] ∈ [g]” when [f ] ∈U [g], that is, when {i ∈ I | f (i) ∈
g(i)} ∈ U .

7Following classic logic, we agree that the disjunction “or” is inclusive, that is, “A or B” is always
true except when both A and B are false; and the implication “A ⇒ B” is true except when A is
true and B is false.
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• “V(X)Ib/U |2 ¬P ” when “V(X)Ib/U �|2 P .”
• “V(X)Ib/U |2 (P1∧P2)” when both “V(X)Ib/U |2 P1” and “V(X)Ib/U |2 P2.”
• “V(X)Ib/U |2 (P1 ∨ P2)” when “V(X)Ib/U |2 P1” or “V(X)Ib/U |2 P2.”
• “V(X)Ib/U |2 (P1 ⇒ P2)” when if “V(X)Ib/U |2 P1” then also “V(X)Ib/U |2
P2.”

• “V(X)Ib/U |2 (P1 ⇔ P2)” when both “V(X)Ib/U |2 P1 ⇒ P2” and
“V(X)Ib/U |2 P2 ⇒ P1.”

• “V(X)Ib/U |2 (∃x ∈ [g]) σ (x, [f1], . . . , [fn])” when “V(X)Ib/U |2
σ([h], [f1], . . . , [fn])” for some [h] ∈U [g].

• “V(X)Ib/U |2 (∀x ∈ [g]) σ (x, [f1], . . . , [fn])” when “V(X)Ib/U |2
σ([h], [f1], . . . , [fn])” for every [h] ∈U [g].
Łos’ Theorem is a fundamental result in model theory stating that an ultrapower

satisfies the same elementary properties as the initial structure. In the case of
bounded ultrapowers of superstructures, one has the following formulation.

Theorem A.12 (Łos) Let V(X)Ib/U be a bounded ultrapower of the superstruc-
ture V(X) and let σ([f1], . . . , [fn]) be a property expressed in elementary form
with constant parameters from V(X)Ib/U . Then

V(X)Ib/U |2 σ([f1], . . . , [fn]) ⇐⇒ {i ∈ I | σ(f1(i), . . . , fn(i)) holds} ∈ U .

Corollary A.13 Let d : V(X) → V(X)Ib/U be the diagonal embedding A �→
[〈A | i ∈ I 〉] of a superstructure into its bounded ultrapower. Then for every
property σ(A1, . . . , An) expressed in elementary form with constant parameters
Aj ∈ V(X) one has

σ(A1, . . . , An) ⇐⇒ V(X)Ib/U |2 σ(d(A1), . . . , d(An)).

Usually, in nonstandard analysis one considers a superstructureV(X), named the
standard universe, takes a bounded ultrapower V(X)Ib/U of it, and then defines an
injective map π : V(X)Ib/U → V(Y ), where V(Y ) is a suitable superstructure
called the nonstandard universe. Such a map π , called the Mostowski collapse, has
the important property that it transforms the pseudo-membership ∈U into actual
membership, that is, [f ] ∈U [g] ⇔ π([f ]) ∈ π([g]). As a result, the star map
∗ = π ◦ d : V(X) → V(Y ) obtained by composing the diagonal embedding with
the Mostowski collapse satisfies the transfer principle. All details of the construction
can be found in §4.4 of [25].

Triples 〈∗,V(X),V(Y )〉 where the map ∗ : V(X)→ V(Y ) satisfies the transfer
principle and ∗X = Y are called superstructure models of nonstandard analysis.8

8Typically, one takes (a copy of) the real numbers R as X.
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A.1.4 Models That Allow Iterated Hyper-Extensions

In applications, we needed iterated hyper-extensions, but in the usual superstructure
approach to nonstandard analysis (recalled in the previous section), such extensions
cannot be accommodated directly. To this end, one would need to construct a
different standard universe each time, which contains the previous nonstandard
universe. A neat way to overcome this problem is to consider a superstructure model
of nonstandard analysis 〈∗,V(X),V(X)〉 where the standard and the nonstandard
universe coincide. Clearly, in this case a hyper-extension also belongs to the
standard universe, and so one can apply the star map to it.9

In the following we will assume that arbitrarily large sets of atoms are avail-
able.10

Theorem A.14 Let κ,μ be infinite cardinals. Then there exist sets of atomsX0 ⊂ X
of cardinality |X0| = |X| = μκ and star maps ∗ : V(X)→ V(X) such that:

1. (a copy of) the real numbers R ⊂ Y ;
2. ∗x = x for every x ∈ X0, and hence ∗r = r for every r ∈ R;
3. ∗X = X;
4. transfer principle. For every bounded quantifier formula ϕ(x1, . . . , xn) and for

every a1, . . . , an ∈ V(X):

ϕ(a1, . . . , an)⇐⇒ ϕ(∗a1, . . . ,
∗an);

5. The κ+-saturation principle holds.

Proof Since μκ ≥ c has at least the size of the continuum, we can pick a set of
atoms X of cardinality μκ that contains (a copy of) the real numbers R, and such
that the relative complement X0 = X\R has cardinality μκ . For every x ∈ κ , let
〈x〉 = {a ∈ Fin(κ) | x ∈ a} be the set of all finite parts of κ that contains x. It is
readily seen that the family {〈x〉 | x ∈ κ} has the finite intersection property, and
so it can be extended to an ultrafilter U on I = Fin(κ). We now inductively define
maps Ψn : Vn(X)I /U → Vn(X) as follows.

Since μκ = |X| ≤ |XI/U | ≤ |X||I | = (μκ)κ = μκ , we have |X| = |XI/U |
and we can pick a bijection Ψ0 : X→ XI /U with the property thatΨ0(x) = [cx]U
for every x ∈ X0. At the inductive step, let f : I → Vn+1(X) be given. If f (i) ∈
Vn(X) U -a.e., let Ψn+1([f ]U ) = Ψn([f ]U ); and if f (i) /∈ Vn(X) U -a.e., that is,
if f (i) ∈P(Vn(X)) U -a.e., define

Ψn+1([f ]U ) = {Ψn([g]U ) | g(i) ∈ f (i) U -a.e.} .

9We remark that the notion of “iterated hyper-image” does not make sense in Nelson’s Internal Set
Theory IST, as well as in other axiomatic theories elaborated upon that approach.
10We remark that this is just a simplifying assumption; indeed, in ZFC one can easily construct sets
X of arbitrarily large cardinality that behaves like sets of atoms with respect to the corresponding
superstructures V(X), that is, such that ∅ /∈ X and x ∩ V(X) = ∅ for every x ∈ X. Such sets are
named base sets in [25, §4.4].
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By gluing together the above functions Ψn, we obtain a map Ψ : V(X)Ib/U →
V(X) from the bounded ultrapower of our superstructure into the superstructure
itself. Finally, define the star map ∗ : V(X) → V(X) as the composition Ψ ◦ d ,
where d is the diagonal embedding:

V(X) V(X)

V(X)Ib/

d Ψ

∗

By the definition of Ψ0, for every x ∈ X0 we have that ∗x = Ψ (d(x)) =
Ψ0([cx]U ) = x. Moreover, the map ∗ satisfies the transfer principle for bounded
quantifier formulas, as one can show by using the same arguments as in [25,
Theorem 4.4.5]. In brief, the diagonal embedding d preserves the bounded quantifier
formulas by Łos’ Theorem; moreover it is easily verified from the definition that also
Ψ preserves the bounded quantifier formulas. Finally, the range of Ψ is a transitive
subset of V(X), and bounded quantifier formulas are preserved under transitive
submodels.

Remark A.15 The so-called nonstandard set theories study suitable adjustments of
the usual axiomatic set theory where also the methods of nonstandard analysis are
incorporated in their full generality. The most common approach in nonstandard
set theories is the so-called internal viewpoint as initially proposed independently
by Nelson [104] and Hrbacek [73] where one includes in the language a unary
relation symbol st for “standard object”. The underlying universe is then given
by the internal sets, and the standard objects are those internal elements that are
hyper-extensions. As a consequence, external sets do not belong to the universe,
and can only be considered indirectly, similarly as proper classes are treated in ZFC
as extensions of formulas.

An alternative external viewpoint, closer to the superstructure approach, is to
postulate a suitably modified version of Zermelo-Fraenkel theory ZFC, plus the
properties of an elementary embedding for a star map ∗ : S → I from the
sub-universe S of “standard” objects into the sub-universe I of “internal” objects.
Of course, to this end one needs to include in the language a new function
symbol ∗ for the star map. We remark that if one replaces the regularity axiom
by a suitable anti-foundation principle, then one can actually construct bounded
elementary embeddings ∗ : V → V defined on the whole universe into itself, thus
providing a foundational framework for iterated hyper-extensions that generalizes
the superstructure models that we have seen in this section; see [4, 34].

A simple axiomatic presentation to nonstandard analysis that naturally accom-
modates iterated hyper-extensions is the Alpha-Theory proposed by V. Benci and
M. Di Nasso (see the book [10]).
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46. P. Erdős, R.L. Graham, Old and New Problems and Results in Combinatorial Number

Theory. Monographies de L’Enseignement Mathématique, vol. 28 (Université de Genève,
L’Enseignement Mathématique, Geneva, 1980)
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