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Preface

The romanticized view of mathematics is that it proceeds in sudden bursts
of brilliant insight. Sometimes it happens just that way. Van der Waer-

den’s theorem, the central result of Ramsey theory, was proven in 1926.
As van der Waerden recalled:

£ 325 Yai: [elws Gwaievii 2 Qlab

After lunch we went into Artin’s office in the Mathematics Department of
the University of Hamburg, and tried to find a proof. We drew some
diagrams on the blackboard. We had what the Germans call “Einfalle™:

sudden ideas that flash into one’s mind. Several times such new ideas gave

the discussion a new turn, and one of the ideas finally led to the solution.
[van der Waerden 1971]

Van der Waerden’s proof used a subtle double induction and when
expressed quantitatively led to an extremely fast growing function.
Mathematicians—we three included—searched for a different proof tech-
nique without these features. In 1987 Saharon Shelah was shown van der

\ o
Waerden’s theorem and within a day or two found a new proof. Whether

Einfille or not, Shelah’s proof avoids the double induction, involves only
“reasonably” fast growing functions, and—best of all—is totally elemen-
tary. In this edition we give a complete treatment of Shelah’s proof as
well as the original proof of van der Waerden.

The response to the first edition of this volume has been most
gratifying. Before its publication this subject matter had been generally
regarded as a collection of loosely tied results. Today it is recognized for
what it is—a cohesive subdiscipline of Discrete Mathematics. We are
particularly pleased with the name given to this subdiscipline: Ramsey
theory!

RonaLD L. GrRAHAM
BRrUCE L.. ROTHSCHILD
JoEL H. SPENCER

Murray Hill, New Jersey
Los Angeles, California
New York, New York
July, 1989






Preface to First Edition

The classic theorems of Ramsey theory are known to many mathemati-
cians, for there is an elegance in thelr statement. Van der Waerden: If the
positive integers are finitely colored then one color class contains arith-
metic progressions of arbitrary length. Schur: If the positive integers are
finitely colored then one color class contains x, y, z with x + y =z,
namsey' Ifa grapu contains S‘LiuiCiei“lu'y’ many vertices \uependem oil n)
then it must contain either a complete set or an independent set of
vertices of size k. The proofs are not so widely known. Our intent is to
remedy this situation.

The origins of Ramsey theory are diffuse. Frank Ramsey was inter-
ested in decision procedures for logical systems. Issac Schur wanted to
solve Fermat’s last theorem over finite fields. B. L. van der Waerden
solved an amusing problem—and immediately returned to his researches
in algebraic geometry. The emergence of Ramsey theory as a cohesive
subdiscipline of combinatorial analysis occurred only in the last decade.

The central role of the Hales—Jewett theorem (the pure form of van der

W/ A th Y\ hae h
Waerden’s theorem) has been recognized and exploited. The work of

Walter Deuber (on the shoulders of Richard Rado), Jarik Nesetfil and
Vojtech Rodl, Klaus Leeb, and others has given sharp definition to the
subject. The field is alive and exciting. We indicate possible courses for
future research but make no predictions.

In the first four chapters we attempt to give clear, seif-contained
expositions of the central results of Ramsey theory. The only requirement
for the reader is that elusive ‘‘mathematical maturity.” Chapter 5 deals on
a more technical level with recent developments in the field. In the final
chapter we explore the influence of outside disciplines, including the
applications of topological dynamics spearheaded by Furstenberg and
a combinatorial approach to the undecidability results of Paris and
Harrington. There are general reference citations at the end of each of

the first four chapters. In the last two chapters references are cited in the
text.

vii



viii Preface to First Edition

We wish to make special acknowledgment of our debts to Paul Erdos,
who provided us with constant encouragement and who can rightfully be
considered the father of modern Ramsey theory, and to Ernst Straus,
whose wisdom transcends the area of mathematics.

Finally, the junior author again wishes to thank his wife, Maryann, for
her assistance, encouragement, and understanding. Without her, this
enterprise would have had little meaning.

RONALD L. GRAHAM
BRruUcE L. RoTHsCHILD
JoEL H. SPENCER

Murray Hill, New Jersey
Los Angeles, California

Stony Brook, New York
July 1980
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Notation

A few specialized notations are particularly useful throughout Ramsey
+h v Wa ait tham hare
L .

heory. We give them here
N={1,2,...} =the positive integers.
| X| = cardinality of X.
[n]={1,..., n}, defined for n € N. Often we use [n] when we wish to
refer to an arbitrary set of cardinality n.
[X]*={Y:YCX, |Y|=k}.
[X]™*={Y:YCX, |Y|<k}.
[X]7“={Y: YCX, Y finite}.

When X = [n] we remove the second set of brackets. Thus:

[n]*={Y:YC{1,...,n},|Y]|=k}.
We write {x,,...,x,}_foraset {x,,...,x, }suchthatx, <---<x,.
If y is a map with domain [A]" we write x(a,,...,a,) for
x({a,,...,a,}) when there is no danger of confusion.

K, denotes a complete graph on n points.

Arithmetic Progression is abbreviated AP.

The Pigeon-Hole principle: If m pigeons roost in n holes and m > n
then at least two pigeons must share a hole. More prosaically: If m

objects are colored with n colors and m > n then some two objects
have the same color.
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‘Of three ordinary people, two must have the same sex.’

D. J. KLEITMAN

1.1 RAMSEY’S THEOREM ABRIDGED

In any collection of six people either three of them mutually know each
other or three of them mutually do not know each other.

This “puzzle problem’ may be considered the first nontrivial example
of what we shall call Ramsey theory. We begin this volume with an
expository proof of this result.

We have tacitly assumed that the relation of “knowing’ is symmetric;
that is, if A knows B then B knows A. We do not assume transitivity; if A
knows B and B knows C then A may or may not know C.

Fix one person, say A, and consider his or her relation to the other
five, say B, C, D, E, and F. He or she must either know at least three of
them or not know at least three of them (2 +2<5). Suppose that A
knows three of them, say C, E, and F. If some pair of these three, say C
and F, know each other then A, C, and F are three people who mutually
known each other. If no pair of the three know each other then those
three IIIULUduy do not know each other. In either case we have found a
threesome with the desired property. Of course, if A does not know three
of the others the argument is identical.

As this is a mathematics book it will be necessary to adopt some
formalisms. An r-coloring of a set § is a map

x:S—|r].

For s€ S, x(s) is called the color of s. We say that a set TC S is
monochromatic (under y) if y is constant on T.

At this point we introduce the arrow notation, which has proved
particularly useful in Ramsey theory.
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Sets

1S monochromatic. When

A0 RAAV AL NAARURLACGIRIN ., ¥Yoiival

if, given any 2-coloring of [n]’, there is a set T C [n]
[ ; ) |
L !
monochromatic K.

Our original problem is equivalent to the assertion 6— (3). Identify
the six people A, ..., F with elements 1, .. ., 6. respectively, and iden-
tify the statement “A and B know (do not know) each other” with the
relation x(1,2)=1 (x(1,2)=2). We shall, of course, work with the
more mathematical format. The arrow relation is generalized in a number
of ways.

DEerINITION.  We write n— (I, ..., ) if, for every r-coloring of [n]’
there exists /, 1 <i=<r. and aset T C[n], |T| =1/ so that [T]* is colored i.

For example, 10— (4, 3) is the assertion that, given anv ten peo le,
P )
either four of them mutually know each other or three mutually do not

know each other. In the case I, =--- =1 =1 we use the shorthand
n—(l),,

that is, every r-coloring of [n]’ yields a monochromatic [/]°. If the number
of colors r is not indicated it is assumed to be 2. Thus n— (D), n—(1),,
and n— (/,!) denote the same thing.

AIIN G 1Tt o LI SN
We note the fOﬂuwuls important trivialities.

LIfli<l,1<is<r,and n—(l,...,[) thenn—(l, ... 0I).
2. m=nand n—(/, A, )then m—(1,,...,1).
3

ff

.+ Let o be a permutation of [r]. Then n—(l,,... 1) i
n—)(lal’ e ’lcrr)'

4. n—(,...,1)iffn—(,,...,1,2). In particular, [ —(1,,2).

To illustrate, the statement 10— (4, 3) logically implies 10— (3, 3), for if
four people mutually know each other, one may be deleted. Similarly,
10— (4, 3) implies 11— (4, 3) since the eleventh person may be ignored.
If 10—(4,3) then 10— (3,4), as we may interchange the roles of
knowing and not knowing. Finally, if 10— (4, 3) then 10— (4, 3, 2), for

suppose that every pair is either loving, hating or avoiding—and these
categories are mutually exclusive! One avoiding pair will form the desired
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monochromatic 2-set. If no pair is avoiding then all pairs are loving or
hating so that 10— (4, 3) implies the existence of the dewired mono-
chromatic set.

DerNITION. The Ramsey function R(I,,...,1,) denotes the minimal n
such that

n— (‘l]’ T ’r)
We let R(l;r) denote R(!,...,[l ), where [;=---=1 and R(/)=
R(1;2)=R(l,1).
From trivialities 1-4 we note that R({,,...,[,) is monotonic in each
variable and totally symmetric, R({/,,...,[,,2)=R(,,...,[ ), and

R(1,2)=1.

Theorem 1 (Ramsey’s Theorem—Abridged). The function R is well
defined; that is, for all /, ..., [, there exists n so that

n—>(,,...,1).
We first give two proofs of this theorem for the case r = 2.

Proof 1. Use a double induction on /; and /,. Note that R(l,2)=
R(2,1) =1 by triviality 4. Now assume, by induction, that R(/,,/, — 1)
and R(I, — 1, 1,) exist.

Claim. R(l,,1,—1)+ R, — [, L)— (I, L,).

Proof. Fix a 2-coloring x of [n]}, n=R(l,,1,—1)+ R(I, —1,1,). Fix
one element x € [n] and set

I ={y€(n]: x(x, y)=1},

H.={y€&€[n]: x(x, y)=2},

=[n] =1 —{x}.
Then || +|II | = n —1 so that either
a) |I|=R(I,-1,1,)
or
(o) [IL|=R(I,, 1, —1).
Assume (a). By the definition of R either there exists TC I, |T|=1,,



[
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3 Sets

such that [T)° is colored 2 (which is as desired) or there exists SC /.,
|S| =1, =1, so that [S]* is colored 1. In the latter case set $* = S U {x}.
(Here is the critical point of the proof. Since S C I all {x,s}, sES. are
colored 1.) Then |S*| =1, and [§*])’ is colored 1, as desired. Case (b) is
symmetric.

[It may help the reader to see the following expository proof that
10— (4, 3). Consider any group of ten people (Fig. 1.1) Any one of these
ten, say J, either knows at least six or does not know at least four of the
remaining nine people. If J knows six then of those six either three know
each other or three do not. In the former case, these three together with J
are four who know each othcr. If there are four people J does not know
either two of them do not know cach other, and together with J make
three, or the four mutually know each other.]

Proof 2. We show directly that
22— 1—=().

211

Fix 8, {$,/=2""" — 1 and a 2-coloring y of [S,]> Define, for | <<
21—1, sets S, and elements x, € S, as follows (Fig. 1.2):

(i) Having chosen S, select x, € S, arbitrarily.

. "a 0 %53\9
\ Y X /
N4 / N S

'
Figure 1.1 10— (4, 3).
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Red [ Blue Red

\\-//
\_,/

X

Figure 1.2 Proof 2 of Ramsey’s theorem.

(i1) Having selected x, € §,, set
T,={u€s;: x(x;,u)=j}, j=1,2.

Set S ., equal to the larger (in cardinality) of T,, T,. Since |T,| +|T,| =
|Sil -1, Si+l‘ = (|Si! —1)72.

Since |S,| was sufficiently large we may select x,, . . ., x,,_, before this
procedure terminates (when §, =(J). We define a new coloring

K
A

_

{xio. - xy = {12}
Let x*(x,) be that j (equal to 1 or 2) such that y(x,, y)=jfory€S,,,.
Since the coloring x* splits the 2/ — 1 points into two groups we can find /
points x, , ..., x, so that
X (x,)=] forlss<|.

Then, forany 1ss<t</,x, €S, CS,  and {x,, ..., x;} is the desired
monochromatic /-set.

A proof for an arbitrary number of colors r can be given along the

lines of either of the preceding proofs. One may replace Proof 1 by an
induction on [, . .., [, showing

or replace Proof 2 by the result
SRR B (2

The details are left to the reader.
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Our Proof 2 embodies a basic method of proof that we shall encounter
frequently. We shall call it the Induced Coloring method. We 2-color the
subobjects of a certain type of large structure S. Here S is the complete
graph on n points, and the subobjects are edges—more generally, we call
them snargles. We find a substructure 7, perhaps much smaller than S but
still very large, on which the coloring is canonical in some sense. There
will be a subobject—let us call it a turble—so that the coloring of the
snargles of 7" depends only on the leading tarble contained in the snargle.
(The turbles will be ordered explicitly.) In our example, turble = point
and on T the coloration of {x, y}_ depends only on x. Now we define a
coloring of the turbles of 7, coloring a turble by the color of all the
snargles of which it is the leading turble. Assume that at some previous
point we have proved a Ramsey theorem for turbles. Then we know there
1s a substructure U of T that is still large on which all the turbles are the
same color in the induced coloring. But then, in the original colorings, all
of the snargles of U have the leading turble in U and hence all are the
same color.

The reader might note that Category theory could provide an appro-
priate vocabulary for the preceding discussion. Indeed, a number of
authors have approached Ramsey theory from a Category theory point of
view with some impressive results. In this volume, however. we have
consciously attempted to avoid Category theory notation. We do this both
for reasons of personal preference and in an attempt not to limit the
readership of this book.

A detailed analysis of Proofs 1 and 2 shows that Proof 1 gives a better
upper bound on R(n) than Proof 2. In Chapter 4 we take a detailea look

at the value of the Ramsey function and associated functions. However.
outside of that chapter, we are generaily interested not in the exact values
of the Ramsey functions but rather in their existence. hence we usually
shall not employ methods such as Proof 1. We shall sacrifice an improve-
ment in the upper bounds on these functions in favor of clarity of
exposition of the proofs of these existence theorems. As we shall see in
Section 2.7, the functions associated with the theorems of later sections
(e.g., van der Waerden’s theorem or the Hales-Jewett theorem) appar-
ently increase so rapidly that no moderate upper bound is currently
known for them.

The existence of n= R(a, b) has a special interpretation in Graph
theory terms. Let G be an arbitrary graph on n vertices. We may
associate G with the 2-coloring of the complete graph K, obtained by
coloring {i, j} red iff {i, j} is an edge of G, and blue otherwise. Clearly
this gives a bijective correspondence between 2-colorings of K, and
graphs G on n vertices. We rephrase Ramsey’s theorem in the case as
follows:
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h G on n = R(a, b) vertice:

n
r= AT =7
n in dependcnt set of b vertices.

wn
o
('.‘J
1-4
[=<]
5
[q']
=
fmnd
4'0
o
o)
-
3
-
32
-
=g
(@]
(4]
w

1.2 RAMSEY’S THEOREM UNABRIDGED

. . k . . . .
We now consider colorations of [n]", where k is an arbitrary integer This
generalizes the case k =2 of Section 1.1.

DefINITION.  n— (1, . .., 1,)* if, for every r-coloring of [n]". there exists
i,1<i<r,and aset T, |T|=1 so that [T]" is colored i.

In the case /,=---=1[ =1 we use the shorthand

Wa cav 1in thic ]k

TYe OQ AL LiLLS \/(.l.\J

[7]*. If the number of colors r is not 1nd1cated it is assumed to be 2. Thus

n— ()", n—(I)5, and n— (I, [)" are identical relations. This is consistent

with previous notations—if &k is not given it is also assumed to be 2.
The Ramsey function for k-sets is indicated by R

("D
o=
j==n
Q
=
_‘

vielde a mnnnr*hrnmat
lull\.«

Ll 1 Avxuu T LRI AIN VLA U

R.(,,...,t)=min{n, for n=ny, n—>(,,...,1)},
R (I; r) =min{n,: for n=n,, n— ()},

R,(1) = min{n,: for n=n,, n—(1)*}.

Theorem 2 (Ramsey’s Theorem). The function R is well defined; that is,
for all k,1,,...,1 there exists n, so that, for n=n,,
1),

* tr

n—=>(,,...

Proof. We use induction on k, following the lines of Proof 2 for each k.
For k =1 Ramsey’s theorem becomes a triviality. We have

1+ 2 (- 1)—(,, ..., 1),
1=1

thatis, if n=1+ X _, (I, — 1) elements are r-colored, some color i is used
at least /, times. This is a general form of the Pigeon-Hole principle,
defined earlier under ‘‘Notation,” and Ramsey’s theorem is often consid-



ered a generalization of it. For k =2 we have already

theorem, though the induction argument includes that case.
Assume that the result holds for k — 1; it suffices to find n so that

=

n— ()~

Basically, the k-clement subsets become snargles, and the (k —
1)-element subsets become turbles, as in our general discussion following
Proof 2 of the Abridged Ramsey theorem.

Let n be “sufficiently large” (more on that later), and fix an r-coloring
x of [n]" Set r=R, ,(I;r), which exists by induction. Select distinct
elements a,,...,a,_,€[n] arbitrarily, and define S, ,=[n]-
{a,....a. ).

Now we select a,, S, as follows:

(i) S, having been defined, we select a,,, € S, arbitrarily.
(i) Having selected a,,,, we split S, — {a,,,} into equivalence classes

by
x =y iff for every TC{a,,...,a,,,}, |IT|=k—-1,
X(TU{x})=x(TU{y}).
(i+1)
The equivalence class is therlefore determined by the color of ( K — 1)

sets so there are at most » *~'" such classes. We define S, ., as the largest

of those classes. Hence §,., C S, — {q,.,} and

FRN IS Y

1S, = (8] —1)r 1

We choose n sufficiently large so that the procedure may be continued
until a, is defined. For definiteness, we select n so that the sequence with

initial condition u, _, = n — (k — 2) and recursion

()

U = (ui - l)r—
satisfies u, = 1. Certainly
t—1 .
i+1
S
n=2r c z=§—1 k-1

will suffice. (The calculation is important for bounding the Ramsey
function—see Section 4.7—but not for proving Ramsey’s theorem.)
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We now restrict our attention to the sequence a,.....u Suppose that
Isi <i,<--<i_,<sst Then a€S§_,CS . The color
x({a,,...,a,_,a;}) remains the same if a, is replaced by any x €
S, ,+1 (by the definition of the equivalence classes). including any

tk

x=a, k—1<r<t We define a coloring x* on (A — li-subsets of
{a,,...,a,} by

LY ™
A 4,

N

vooesa, B =x{a, . oo,a, La))
for all iy, ,<s=1t (A technical point: when i, ;=1 we define y~
arbitrarily.) By the definition of ¢ there is a subsequence {b,... .. b} of
{a,,...,a,}, which is monochromatic under y*—say that all (k-
1)-subsets are red. Then, for any 1=<j <---<j,_ <j. </,

— % —_
x({b,,....b, b Y)=x"({b,,.... b, })) =red,
and so {b,,..., b,} is the desired monochromatic /-set.
1.3 VIEWS OF RAMSEY THECRY

We are concerned here with “*Ramsey-type theorems.” Rather than
formally define this concept we state six major theorems and then
consider their similarities. Formal definitions, proofs, and detailed discus-
sion for Results 2—-6 are given in later chapters.

Super Six

1. Ramsey’s theorem (Sections 1.1 and 1.2): For all /, r, k there exists
n, so that, for n=n,, if [n)* is r-colored there exists a mono-
chromatic [/]".

. Van der Waerden’s theorem {Section 2.1): For all /, r there exists n,
so that, for n = n, if [n] is r-colored there exists a monochromatic
arithmetic progression {a,a+d,...,a+ (Il —1)d} C[n] of length
l.

3. Schur’s theorem (Section 3.1): For all r there exists n, so that, for

n<n,, if [n] is r-colored there exist x, y, z € [n], having the same
color, so that

("]

Xty=z.

A system of equations ¥ on variables x,, ..., x,, is called regular if, for
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all r, there exists n, so that, for n=n,, if [n] is r-colored there exist
Xy,...,x%, €[n], all the same color, satisfying ¥.

4. Rado’s theorem (Section 3.2): The single equation

R e S £
1

is regular iff some nonempty subset o
5. Hales-Jewett theorem (Section 2.2): For all r, k there exist n, so
that, for n = n,, if the n-dimensional cube

the ¢, sums to zero.

{(x;,...,x):x,€{0.1,...  k-1},1si<n)

is r-colored there exi

6. Graham-Leeb-Rothschild theorem (Section 2. 4) Fix a finite field

Fon g elements. For all k. !, r there exists n, so that the following

holds for n=n,. Let V be an n-dimensional vector space over F.

Color the k-dimensional subspaces of V with r colors. Then there

exists an /-dimensional subspace of V all of whose k-dimensional
subspaces have the same color,

Segments of Ramsey theory may be described in the language of
Lattice theory. Let L, CL,C---CL,C--+ be a sequence of graded
lattices with a rank function denoted by p. The sequence is called Ramsey
if, for all ¢, k, [, there exists n, so that, forn = n,, if {x E L: p(x) =k} is

nf\‘r\'-nrl ol-. a i 4L s

c-colored there exis LbyCLn,p[y}“lbU Lnadt
{(xeL :px)=k.x=y}

is monochromatic. For the original theorem of Ramsey, L. _is the Boolean
lattice of subsets of an n-element set with p(A) = | A|. For the Graham—
Leep Rothschild theore <1, Ln is the buuapa\.c lattice of an n-dimensional
vector space over a fixed finite field F and p(V) is the dimension of V.

One might also view portions of Ramsey theory as statements about
certain bipartite graphs (Fig. 1.3). A bipartite graph G consists of two
sets T (top) and B (bottom) and a family E(G) of edges {t, b}, t€ T,
be B. We call G r-Ramsey if, given any r-coloring of B, there exists
t € T such that

(b€ B: (1, b) € E(G))

is monochromatic. We call a sequence {G,} Ramsey if, for all r, there
exist n, so that, for n=n,, G, is r-Ramsey.
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Figure 1.3 6— (3) in bipartite graph format.

For fixed k =/ and lattice L, we may generate a bipartite graph ¢ by
restricting our attention to ranks k, /, Formally, set

Then {L,} is Ramsey exactly when, for all , /, the corresponding {G,} is
Ramsey.

Van der Waerden’s theorem may be expressed in this terminology. For
a given / define g, by

=|nl,
T = the family of arithmetic progressions
S={a,a+d,...,a+(-1)d}CBHB,
E(G),={{x,S}:x€B,SET, xES}.

Then {G,} is Ramsey.

A third approach to Ramsey theory utilizes the language of hy-
pergraphs. A hypergraph H consists of a vertex set V(H) and a family
E(H) of subsets of V(H). The elements X € E(H) are called hyperedges.
An r-coloration of H is a map

such that no X € E(H) is monochromatic. The chromatic number x(H)

of the hvnprcranh is the minimal r such that an r-coloration of H exists.

Tial i pNa padagiia a3 WAL saRlIRRIRIGL 7 ORRAL AL &8 AL QR VA 22 RALS

We note that if all X € E(H) have | X| =2 the hypergraph reduces to our
usual concept of a graph, and chromatic number is as usually defined.

All “Ramsey theory” results may be expressed in hypergraph ter-
minology. Let us take the Hales-Jewett theorem as an example. For a




12 Sets
given k,n we may construct a hypergraph H = H, , with vertex set
V(H) = C}, the n-dimensional cube over {k], and E(H) equal to the set
of “lines” in C;. Then for all k, r, if n is sufficiently large y(H, ;)= r. In

lim x(H, .x) = T for every k .

1.4 RAMSEY THEOREMS AND DENSITY Tl 1
DeriNiTION.  Let H=(V, E) be a hypergraph. We define the Turdn

function T(H) as the minimal 7 such that any set of vertices of cardinality
at least 7 necessarily contains a hyperedge. We set 7(H) = T(H)/V(H).

Paul Turan found the exact value for T(H), where H = ([n]’, {[S]
S €[n}*}). Here, in classical Graph theory terminology, T(H ) is the
minimal number of edges on n points that ensure a clique on k points.

For a hypergraph H = (V, E) we consider the following statements:

A x(H)>r,
B:r(H)<r".

For a sequence of hypergraphs H, =(V,, E,) we have the analogous
statements:

A* x(H,)— += as n—
B*: 7(H,)—0 as n— oo,

Statements B and B* are density statements; B says that any sufficient-
ly large set of vertices contains a hyperedge. Statements A and A* are
Ramsey statements; A says that if the vertex set is partitioned into r

classes one class contains a hyperedge.

Theorem 3. (i) B implies A. (ii) B* implies A*.

Proof

(i) Assume B. Let y be an r-coloring of V. Some color must have
been used on at least ' of the vertices. That color contains a
hyperedge.

(i) Assume B*. For a given r there exists n, so that 7(H, )<r~' for
n=n,. Thus x(H,)=r for n= n,—hence A*.
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The converses, A implies B and A* implies B*, are fulse. Consider
their interpretation for some of our basic Ramsey theorems.
For fixed ! consider the sequence H =(V E ). where V) :[n]z,

11 kL ns —

E, = {[S] SE[n]} Here )((H Y>ris identical to n— (/). Bv Ram-

sey’s theorem (for k =2) the sequence {H, } satisfies A~ The classical
Turan’s theorem states that the maximal graph on n vertices without an
[-cliquie is achieved by splitting the n vertices into /—1 sets of car-
dinalities [n/(/ — 1)] and {n/(/ — 1)] + 1 and placing an edge between any
pair of vertices in different sets. In our terminology, if

n=(-1)m+r, Osr<i—1,

=1+ (3) ") -a-1-n(5)

and

1

_1
1

lim 7(H,)=1-

7
4

 :
that B* is false!

Van der Waerden’s theorem may also be interpreted in this light. For
fixed / the statements A*, B* become as follows:

: For all r there exists n,(r) so that if n = ny(r) and [n] is r-colored

M merso PR ST Y PN P o |

there exists a monochromatic arithmetic Pro gresswn O1 1engm L.

B*: For all £ >0 there exists n,(&) so that if n=n,(¢) and S C[n],
|S| = ne then S contains an arithmetic progression of length I.

Van der Waerden’s theorem, A*, was proved in 1927. Statement B*
was conjectured by P. Erdos and P. Turan in 1936. The case [ =2 is
trivial, / =3 was settled positively by K. Roth in 1952, and /=4 by E.
Szemerédi in 1969. Finally, in 1973, Szemerédi proved B* for all [; this
vacslt Aicriroe ~rl Qantinem 7 & Tha amm~ o L Llo.

resuit m aiscussca lu oe\.,uuu 2.5. The full plUUL lb ulgluy LUlllplC)&, ib
supremely ingenious, and is by no means a ‘“simple corollary” of A*.

1.5 THE COMPACTNESS PRINCIPLE

In most of our Ramsey theorems we prove that, for n sufficiently la arg

an r—colormg of [n] (or [n] ) has a certain property. In this section w
[A

?:‘('Dv

N P PRy P,

bllUW that it is often sufficient to prove LIld[ any r- COlOI‘lng of N or

has the property.

V]
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DEerINITION. Let H = (V. E) be a hypergraph, W C V. The restriction of
H to W, denoted by H. ts the hypergraph H,, = (W, E,,), where

E,={XeEE XCW}.

Theorem 4 (Compactness Principle). Let H=(V, E) be a hypergraph
where all X € E are finite (but V need not be). Suppose that, for all
W CV, W finite,

x(Hy)sr.
Then
x(Hy=sr.

The theorem is often expressed in contrapositive form: If y(H)>r
there exists a finite W such that x(Hy)>r.

We give two proofs. The first proof is for the case V countable. (The
case V finite is tautological—take W= V.) The second proof works for
arbitrary V but requires the Axiom of Choice (in fact, the Compactness
principle cannot be proved from the usual axioms of set theory without
the Axiom of Choice).

Proof 1. We assume that V is countable in this proof. Our proof is

essentially a diagonal argument. For convenience consider V= N. For all
n € N there exists a coloring

so that no A € E, A C[n], is monochromatic. We define a function

x**N—={1,...,r}
by induction. We assume that y*(1), ..., y*(j— 1) have been defined so
that
S.a={nmn=j—1and y*(i)= x,(i) for tsi<j—1)}
is infinite. We partition S, ; — {j — 1} (j — 1 may or may not be in Si1)

into r classes, dependmg on the value of x,(j). For some color c,

I={nes, ;: x,(j)=c}

is infinite. Then we set y*(j) = c and §=T.
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We claim that x* is the desired r-coloring of H let X=
{x,,....x,}.€EE. Since S, # there exists n=x _ so that y (i) =
x *(i) for all i =< n, in particular for all x; € X. Since y, is an r-coloring of
[7], X is not monochromatic under y, and thus X is not monochromatic
under y.

Proof 2. Let T be the set of all functions f: V—{[r]. We topologize T by
giving [r] the discrete topology and giving T the induced function space
topology. In other words, for allv,,...,v, €V, ¢,..., ¢, €]r].

Sor. ene. e, =1 flv)=¢,1sisn}
(a “slice”) is bot
topology. Tis t
and hence forms a compact topological space. The Tychonoff theorem
(and here we are using the Axiom of Choice) states that the product of
compact spaces is compact. Hence T is compact.

For every finite W C V let Fy, denote the set of functions f € T so that
no Xe€ £, XCW is monochromatic. The set F,, consists of those
functions that are r-colorations when restricted to W. Each F,, is closed
(and open) since it is the union of a finite number of slices
Swii o wpen. e (W={w,, ..., w,}). Each Fy, # since, by assump-
tion, there is an r-coloring of each finite set W. Clearly, if W C W’,
F, D F,,.. Applying this, we find that if W, ..., W _ are finite subsets of
V then

open and closed, and these § form a basis for the

h
Adiract nradiect af ClUV1 caniae af [e1 ?? Tha cat 121 ic An
Gif 1% ]

Airi
lle wei Pluuuut i UUl}l\.«D i l'J. 1110 3¢t 11] 1> lllllte

Fwy o0 Fy D Fyoow, -

Now W, U --- UW,_, a finite union of finite sets, is finite so Fiy ... w_ #
. Thus {E,: WCV, W finite} is a family of closed sets satisfying the
finite intersection property: any finite intersection of the F,, is nonvoid. In
a compact topological space, if a family of closed sets F satisfies the finite
intersection property then N ¥ #J; that is, there exists f: V—[r],
fEF,, for all WCV, W finite. This f is the desired coloring, for if
XeE, so X is finite, f € F,, and therefore X is not monochromatic
under f.

In most applications of the Compactness principle to Ramsey results,
V=N or [N]". We restate our theorem for these particular cases.

Compactness Principle (Version B). Let k be a fixed positive integer. Let
A be a family of finite subsets of N. Suppose that. for anv r-colorine of

G AKRIARL) AiiEAv De s Sw v WA PP Yow wai, 1Ui J VLV g VL

[N], there is an A € & so that [A]* is monochromatic. Then there exists
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Compactness Principle (Version C). Let k be a fixed finite positive
integer. Let &/ be a famlly of finite subsets of N. Suppose that for any
finite coloring of [N]* there is an A € « such that [A]"is monochromatlc
Then for all r, there exists ny(r) such that, for n>n0(r) if {n]*

r-colored there is an A € o, A C[n], such that [A]" is monochromatlc.
Often technical details in the proof of a Ramsey theorem (e.g., just how

large n has to be that . ..) vanish in the “infinite case.”

Proof (Followmg Proof 2 of Ramsey’s theorem rldged) Define, for

- e - — C .

(1) S, =N.
(ii) Having chosen §,, choose x, € S, arbitrarily.
(iii) Having selected x, € S,, set

T, = {WES,: x(x,, 1) = j} .

The T, give a finite partition of S, — {x,}, assumed infinite. Set S, ., equal

i Bimita T
to one of the infinite 7 -

The sequence x,, x,, ... has the property that, for i <j, k

b

vix x)= vix ¥\
(x,, *;) AKX Xy

[since x, €5, CS,.,, x, €8, CS,.,, and y(x,, u) is constant over u €

S,+1). Induce a coloring x* of the singletons x,: x*(x,) = that color equal

to x(x;, x;) for all j >i. Now x* forms a finite partition of an infinite set

so there is a color j and an mﬁmt subsequence X' =x, , x,, ... such that

X*x)=j for all s

For any 1=<s <1,

o [X']" is monochromatic.
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Corollary 6. For all [, r there exists n, so that, for n=n .

Proof. Compactness principle (Version C).

It is interesting that proofs using the Compactness principie do not give
any specific n, such that, for n = n,, the Ramsey property holds. In actual
practice we are usually able to replace the argument on N with an
argument that works for all n = n, for some specific n,. In Section 6.3 we
discuss a situation where such a replacement is not possible in a certain

1 inal
10gila1 SCiisc.

Questions about extensions of Ramsey-type theorems to infinite sets
are interesting per se. The subject of “‘Infinite Ramsey theory” has a
long, interesting literature. We give some glimpses into the field in
Section 6.4.

1.6 A BROADER PERSPECTIVE

H. Burkill and L. Mirsky state, “There are numerous theorems in
mathematics which assert, crudely speaking, that every system of a
certain class possesses a large subsystem with a higher degree of organiza-
tion than the original system.” The existence of the Ramsey number
n = R(k) is their first example. For any graph G on n vertices there is a
large (size k) subsystem (subgraph) of a high degree of organization
(either comp]ete or independent). Their class of problems includes, for
exampw the Bolzano—Weierstrass theorem that Every bounded sequence
of complex numbers contains a convergent subsequence. This class is thus
far broader than the Ramsey theory to which we are attempting to restrict
our attention. We do wish to mention some of the result in this broader
class that both are interesting in their own right and seem close in spirit to
our Ramsey theory.

R. P. Dilworth proved that any partial order P on at least ab + 1
elements contains either a chain of length a + 1 or an antichain of size
b + 1. Dilworth’s theorem is of fundamental importance and clearly fits
into the Burkill-Mirsky setting. Let us note that if ab + 1 is replaced by
the Ramsey function R(a + 1, b + 1) the result is a corollary of Ramsey’s
theorem. Given a partial order p, we color a pair {x, y} red if x, y are
comparable, and blue if they are not. A red (a + 1)-set yields the desired
chain; a blue (b + 1)-set yields the desired antichain.

P. Erdos and G. Szekeres proved that any sequence of length n” + 1
contains a monotone subsequence of length n + 1. Again, with n® + 1
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replaced by R(n + 1. n + 1) this follows from Ram
sequence {a,}, we color {1 J}< red if a,<a;, and blue othermse The
Infinite Ramsey theorem similarly 1mp11es that any infinite sequence
contalns an mﬁmte monommc quhqenuence_

P. Erdos and L. Moser proved that every tournament on »n players
contains a transitive subtournament on v(n) players, where v(n) is a
function tending to infinity with n. Here a tournament is a directed graph
on n points so that. for all distinct x, y either (x, y) &€ Tor (y, x) € T, but
not both, and a tournament is transitive if there exists a total ordering <
such that (x, y)€ T iff x <y. Again the existence of v(n) follows from
Ramsey’s theorem though the actual bounds achieved by Erdos and

Polrd nl 7 nt s R nTal

ORIGINAL PAPERS: RAMSEY AND ERDOS-SZEKERES

Frank Plumpton Ramsey was a remarkable man. He was a child of
Cambridge (his father was president of Magdalene) and spent nearly ali
his life there. He worked in several areas, always with keen insight and
intelligence. He did in 1930 as he was approaching his twenty-eighth
birthday, at the height of his intellectual powers.

One of Ramsey’s many interests was economics, and he was part of the
Cambridge circle headed by J. M. Keynes. He wrote only two papers in
the field, “A Contribution to the Theorem of Taxation” (March 1927,
The Economic Journal) and “*A Mathematical Theory of Savings” (De-
cember 1928, ibid.). Keynes said of the latter paper: “[It] is one of the
most remarkable contributions to mathematical economics ever made

1111 AR,

both in respect of the intrinsic 1mp0rtance and difficulty of its subject, the
power and elegance of the technical methods employed, and the clear
purity of illumination with which the writer’s mind is felt by the reader to
play about its subject.” Indeed, Keynes s judgment has stood the test of
time, and today Ramsey’s work is widely quoted in mathematical
economics literature.

Ramsey’s main interests were philosophy and mathematical logic. He
was deeply influenced by Russell and Whitehead’s Principia Mathematica
and proposed a Theory of Types with certain advantages over that used
by Russell and Whitehead. He helped translate and was greatly interested

in the work of Wittgenstein. G. E. Moore wrote:

[Ramsey] combined very exceptional brilliance with very great soundness of
judgment in philosophy. He was an extraordinarily clear thinker: no one
could avoid more easily than he the sort of confusions of thought to which
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even the b he was capable of apprehending
clearly, and observing consistently, the subtlest distinctions. [ always
felt with regard to any subject which we discussed, that he understood it
much better than I did, and where (as was often the case) he failed to
convince me, I generally thought the probability was that he was nght and I
wrong and that my failure to agree with him was due to a lack of mental
powers on my part.

One feels, reading commentary on Ramsey’s philosophical work. that he
was only beginning to make major contributions to the subject at the time
of his death.

And now we come to Ramsey’s theorem. His paper [Ramsey. 1930)] is
indeed “On a Problem of Formal Logic.”” Although he recognized that
Ramsey’s theorem had independent interest, he was mainly concerned
with its application to logic. Perhaps his view speaks of a time when
combinatorial analysis was still regarded as ‘“‘bargain basement topology™
by the mainstream of mathematical thought. Yet it seems eminently
suitable that this branch of combinatorial analysis be graced with the
name of Frank Plumpton Ramsey.

Ramsey begins his paper with the infinite version of Ramsey’s
thecorem. We include below his original proof. Brevity was not an
admirable trait in that era, and authors preferred a lengthy discussion to
the terse Theorem—Proof—Corollary style of today. Despite the 50-year
gap in notation the paper reads with remarkable clarity.

THEOREM A.  Let I be an infinite class, and w and r positive integers; and let
all those sub-classes of I' which have exactly r members, or, as we may say,
let all r-combinations of the members of I be divided in any manner into p
mutually exclusive classes C, (i = 1,2, ..., ), so that every r-combination is
a member of one and only one C; then, assuming the Axiom of Selections, I’
must contain an infinite sub-class A such that all the r-combinations of the
members of A belong to the same C,.

Consider first the case u =2. (If u =1 there is nothing to prove.) The
theorem is trivial when r is 1, and we prove it for all values of r by
induction. Let us assume it, therefore, when r=p —1 and deduce it for
r = p, there being, since u =2, only two classes C,, namely C, and C,.

It may happen that " contains a member x, and an infinite sub-class I',,
not including x,, such that the p-combinations consisting of x, together with
any p — 1 members of I';, all belong to C,. If so, I', may similarly contain a
member x, and an infinite sub-class I',, not including x,, such that all the
p-combinations consisting of x, together with p — 1 members of T',, belong
to C,. And, again, I', may contain an x, and a I'; with similar properties,
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and so on indefinitely. We thus have two possibilities: either we can select
in this way two infinite sequences of members of I'(x,, x,,...,x,,...),
and of infinite sub-classes of I'(I',, I,,...,I',,...), in which x is always a
member of I'__ . and I'| a sub-class of T',_, not including x,, such that all
the p-combinations consisting of x,, together with p —1 members of I,
belong to C,; or cise the process of selection will fail at a certain stage, say
the n-th, because I', | (or if n =1, I itself) will contain no member x, and
infinite sub- ciass [, not including x, such that all the p-combinations

n
consistine of ¥ tosether with o — 1 member

consisting of x_ together with p — 1 members of I', belong to C|. Let us take
these p0551b111tles in turn

If the process goes on forever let A be the class (x,,x,,...,x,,...).
Then all these x's are distinct, since if r > s, x_is a member of I'_, and so of
r,,.r .. .. and ultlmately of I, Wthh does not contain x, Hence Ais

mﬁmte Also all p-combinations of members of A belong to Cl, for if x_is
the term of such a combination with least suffix s, the other p — 1 terms of
the combination belong to I, and so form with x, a p-combination
belonging of C,. I therefore contains an infinite sub-class A of the required
kind.

Suppose, on the other hand, that the process of selecting the x’s and s
fails at the n-th stage, and let y, be any member of I', ,. Then the
(p—1)- combinations of members of [',_, —(y,) can be divided into two

n—
itrialls, ol olageag 77 and 7 ar nnrr]iﬂn tha mhinatin
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formed by adding to them y, belong to C, or C,, and by our theorem (A),
which we are assuming true when r=p—1 (and p =2), I’ _, — (y,) must
contain an infinite sub-class A, such that all (p — 1)-combinations of the
members of A, belong to the same C/; i.e. such that the p-combinations
formed by joining v, to p — 1 members of A, all belong to the same C,.
Moreover, this C, cannot be €, or y, and A, could be taken to be x, and
I',, and our previous process of selection would not have failed at the n-th
stage. Consequently the p-combinations formed by joining y, to p ~1
members of A, all belong to C,. Consider now A, and let y, be any of its
members. By repeating the preceding argument A, — (y,) must contain an
infinite sub-class A, such that all the p-combinations got by joining y, to
p — 1 members of A, belong to the same C,. And, again, this C, cannot be
C,, or, since y, is a member and A, a sub-class of A, and so of F ., which
includes A,, y, and A, could have been chosen as x, and I', and the process
of selectmg these WO'uld not have failed at the n-th stage Now let V3 be any
member of A,; then A, — (y,;) must contain an infinite sub-class A; such
that all p-combinations consisting of y, together with p — 1 members of A,,
belong to the same C,, which, as before, cannot be C, and must be C,. And
by continuing in this way we shall evidently find two infinite sequences
Yis¥Y2soor ¥,,...and A A,, ..., A, ... consisting respectively of mem-
bers and sub-classes of I, and such that y_ is always a member of A, ,,A a
sub-class of A,_, not including y,, and all the p-combinations formed by
joining y, to p — 1 members of A belong to C,; and if we denote by A the
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class (y,, ¥;,...,¥,,...) we have, by a previous argument. that all
p-combinations of members of A belong to C,.

Hence, in either case, I' contains an infinite sub-class A ot the reguired
kind, and Theorem A is proved for all values of r, provided thut u =2 For
higher values of u we prove it by induction; supposing it already ¢~tabhshed
for p =2 and u = v~ 1, we deduce it for u = ».

The r-combinations of members of I" are then divided into 1 classes €

(1=1,2,...,v). We define new classes C, fori=1,2,....v—1 b
=C(i=12,...,v-2),
¢ =c +cC
~ -1 RS A
Then by the theorem for u = v — 1, I' must contain an infinite sub-class A
such that ll -combinations of the members of A belong to the same . If.

in this C), i < v - 2, they all belong to the same C,, which is the result to be
proved; 0therw1$e they ail belong to CV 1» 1.e. eitherto C, , orto C,.

this case, by the theorem for u =2, A must contain an infinite sub- class A’
such that the r-combinations of members of A’ either all belong to C, | or
all belong to C,; and our theorem is thus established.

Ramsey then proceeds to the finite analogue. He does not mention the
possibility of a Compactness argument. We paraphrase his argument in
modern language.

Theorem 7. Yr n, k,n+ k=r, Am, so that, for m=m,, if {m] is
2-colored there exist S, T C[m], |S|=n, |T|=k, SN T=(, so that all
r-subsets of § U T containing at least one x € § are the same color.

Proof. We shall define m(r, n, k) for all r, n, k. We use induction on r.
The case r =1 is trivial; take max(2n—1,n + Assume the result
0

for all r' <r.
For n=1, all k, we prove we may take my(r,1,k)=1+ my(r -
1,k,0). Let |U| =1+ my(r — 1, k,0) and fix a 2-coloring

x: [U] — {red, blue} .
Select x € U arbitrarily, and define a 2-coloring y’ of [U— {x}]""' b

x'(V)=x(VU{x}).

As |U - {x}|- o(r—1,k,0), we find T, |T|= k so that y' is constant

on [T]"". The theorem follows for n =1 by settmg S ={x}.
Fix _r>'|_ n>1, k. By induction assume that the theorem holds

LAY L3322 2438 vaaN i
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r'<r, all n,k and for r"=r,n"<n, and all k, Defined F(k)=
d e tth iterate of . F© is defined for all

AL 11]1\.« L ul

my(r, 1, x),

t. Now let

and fix a 2-coloring
x:[U] — {red, blue} .

We can find disjoint S, T, |[S| = n — 1, |T| = F™(max(r — 1, k)) by t
induction hypothesis so that y is monochromatic, say red, on all XCS
T. |X|=r, XNS#. We find €T, T,CT-{}, |T,|

F- ”(max(r—1 ](“ so that all X C «r)‘ 1 w Tl |Y| =r, t; € X are mono-
chromatic. If they are red then our theorem is satlsﬁed by §'=SU/{s}
and T’ equal to any subset of T, of cardinality k. We assume that they are
blue. Now we find 1,, T,, ET.E = F" (max(r — 1, k)), where all X C
{t,}UT,, |X|=r, t,€ X are monochromatic. Agam we are finished if
they are red so we assume that they are blue. We continue to find
ts - , T, with |T, | =max(r—1, k) so that if UC{¢,,...,1,}UT,
and U ﬂ {tl, ces i) £ then X(U) is blue. The sets {tl, ... t,yand T,
(or, rather, any k-clement subset of T,) satisfy the induction hypothesis.
This completes the proof.

This theorem with £ =0 gives Ramsey’s theorem for two colors—a
simple induction on the number of colors gives the full result.

Ramsey oted that application of this proof gives

Il Cifo

NN -Anln-—112
R(n)y=2 ,

but he improves this to

R(n) < n!
He states, intriguingly, “But this value is, I think, still much too high.”
There is no evidence that he was aware either the exponential upper
bound or the exponentlal lower bound.

Rau,w,’° original application, and purpose, for Ramsey’s theorem is
of interest in its own right. We rephrase it, placing the combinatorial

character in the following two theorems.

Theorem 8. For all n,, ..., n,,t there exists m’ so that if m > m’' the
following holds: Let |$|=m, and let [S]' be n,-colored for 1<i=<k.
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is &l

rma o1 fa IV — |
Then there exists T C S, |7
monochromatic.

| PR T, P : . .
| =1 so that, for each /. 1= 1=K, |

Proof. Define a sequence m,, ..., m, inductively so that
1
ml - (t)nl ’
i .
mz_“—)(mlfl)n’ 2S_l§_k

We prove we may take m’ = m,. Let {S|=m >m, and fix a colormg of
[S]7". We find S, _, CS, |S,_,|=m,_, so that [S,_,]" is monochromatic.
We then find S,_,CS, ,, |S, ,|=m,_, so that [§,_,]*"" is mono-
chromatic. Continuing, we find a sequence $=5, 28, ,2---25,25,.
where |S,| =7 and, for all 1si=<k, [S,]' is monochromatic (since S, C
S50 [Sol' €[S, .1])-

It is surprising to find such a sophisticated use of Ramsey’s theorem in
the original paper of Ramsey. We now require a definition. All elemen

are considered integers (or, more generally, members of a set totally
ordered by <).

DEFINITION.  (x;, ..., X )~ (¥, ..., y,) if for all i, j,

(x, <x iff y,<y,), (x,=x; iff y, = y,), and

]

X(x;>x iff y,>y,).

Then ~ is clearly an equivalence relation. Intuitively it means ‘“‘has the
same ordering as.”

DEerFINITION. Let R be a k-ary relation. we say that R is canonical on a
set S if

forall x,,...,x,,¥,..., V., ES.
For example, there are exactly eight canonical binary relations:
“false,77 6‘>’11 “=’71 G£<”7 “._<__,” G‘#,’, G(;,” “true,”

Theorem 9. Forall b, ..., b,,t there exists m’ so that, for m > m’, the
following holds: Let R be a set of relations on [m] consisting of b, i-ary

relations, 1=<i<k. There exists §,|S|=¢ on which all RENR are

canonical.

[
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Proof. We define an equivalence class on [m] for 1<i=<1. Let

X={x,.....x},Y={y,....y}.€[m].

We say that X~ Y if. for every j i<j<k, for every sequence
Wi, ..., w;such that {w,,...,w}={1,..., i} (though perhaps with
repetitions), and for every j-ary R € R,

Rx, ... ,xwl)<:>R(ywl, Ce yw]).

This gives a finite number of equivalence classes. For example, if R
consists solely of binary relations R,, ..., R, then {x, y}_ is “‘colored”
by the truth values of R.(x, y) and _R (v x) fm- 1=<i<b. Hence there are
exactly 2°” possible equwalence ciasses Smgletons {x} are colored by the
truth values of R, (x, x) for 1 <i < b, with 2° possible equivalence classes.

By Theorem 8 we select m’ in such a way that there exists S, S| = 1 so
that, for 1<i=<k, all X€[S]' are in the same equivalence class—hence
all R& M are canonical on S. This completes the proof.

Now we come to the application of these combinatorial theorems to
mathematical logic.* Let Q be an axiom system in first-order logic
involving Boolean expressions, equality, k-ary relations. and no existen-
tial quantifiers—that is, all statements are universally quantified. Here are
two examples.

Qi V.V (x=y)¥ (xRv)V(
V.V.V {xRy A vRz} = xR

Q,: V. ¥ x#yv=>[xRyv ¥ xBy]
V.V [xRy < yRx] A [xBy < yBx]

V.V.V.x#y##z#x>(~[xRy A yRz A xRz])

—
—

vR )

A (~[xBy A yBz A xBz])

Let #(Q) denote the number of variables used in Q: here « =
HQ,)=3 (i.e., x,y,2z). A model m of Q is called canonical if al
relations in the model are canonical.

j—

Theorem 10. For all b,. ..., b, t there exists m’ so that for m > m’ the

following holds: Let Q be an axiom system with b, i-ary relations,

* These results require some familiarity with mathematical logic. They are not required for
the remainder of the book.
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1=i=k, Q) =1t Then there exists a model m,
a canonical model ', |m’| =1

= m 1tt there exists

Proof. The m’ is taken identically as in Theorem 9.

The “if” part is immediate as a canonical model m’ can be extended to
any ordered set in the ‘‘canonical” way. As an illustration. () has
canonical model m' = {1,2,3} where R is <. For any m we define a
model m on [m], R being <.

The “only if” part follows from Theorem 9. Assume the existence of
m, |m| = m. There exists a subset S of cardinality ¢ on which all relations
are canonical so that the restriction of m to S is a canonical model. Here.
critically, there are no existential quantifiers so that the restriction of a
model to a subset is still a model. ¢, provides a good example as one can

see quickly that there are no canonical models, and we trust that by this
elements.

Although Ramsey’s theorem is accurately attributed to Frank Ramsey.
its popularization stems from the classical 1935 paper of P. Erdos and G.
Szekeres. Esther Klein (later to become Esther Szekeres) had discovered
the following curious result: Given five points in a plane, some four form
a convex quadrilateral. A generalization was conjectured: For all n there
exists N such that for any N points in a plane there are n that form a
convex n-gon. Szekeres, in a forward to the collected combinatorial
works of Erdos, gives an account of the climate, social and mathematical,
surrounding their discoveries. We quote from his account:

I have no clear reco}lection how the generalization actually came about; in
the paper we attributed it to Esther, but she assures me that Paul and much

more to do with it. We soon realized that a simple-minded argument would
not do and there was a feeling of excitement that a new type of geometric
problem emerged from our circle which we were only too eager to solve.
For me the fact that it came from Epszi [Paul’s nickname for Esther, short
for “epsilon”] added a strong incentive to be the first with a solution and

13
affpr a Fp\u uuaplrc T was nh‘p to r‘nnfran Paul with a ‘Humyhant E‘P’, Gpen

your wise mind.” What I really found was Ramsey’s Theorem, from which
it easily followed thai there exists a number N < such that out of N points
in the plane it is possible to select n points which from a convex n-gon. Of

course at that time none of us knew about Ramsey.
Here is Szekers’ argument in our notation. Select N so that

N—(n,5)*
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Now color a four-element subset red if it forms a convex quadrilateral,
and blue otherwise. Since there are no blue 5-sets there must be a red

n-set. But it is not difficult to prove that, if every four points from a
convex quadrilateral. the n points must form a convex n-eon

w12 MGG Al PPrAratS LRIWASL AUk & VULIY W T VL.

Recently, another proot along similar lines was given by M. Tarsy.
Select N so that N—(n)". Now let N points in the plane be given, and
number them 1, ... . N arbitrarily. Color {i,j, k) _redif traveling from i

wriraaial LS LV IEEAS s Al ¥V vz LAANL b

tojtoktoiisina clockwnse dlrectlon, and blue if counterclockw1se (both

if collinear). Then there are n points ordered so that every triple has the
same orientation. from which it follows easily that the n points form a

vLARA N (23

convex n-gon. Tarsy was at the time an Israeh student who had been
given this problem in an examination. Fortunately, he had been absent
from class when the relevant material was discussed and so was forced to
rely on his own imagination.

The c1a551c 1935 paper also includes the result that any sequence of
length n° + 1 contains a monotone subsequence of length n + 1. Strictly
speaking, this result was not germane to the original problem, but the
method of proof generalized and gave the second proof for the existence
of N.

Let N(n) denote the minimal value of N so that, for any N points in a
plane, there are n that form a convex n-gon. This second proof (which
Szekeres attributes entirely to Erdos) vielded the upper bound

2n—4)+1_

N(n)<( 5

One can show that N(n) >2" ' by a direct construction. Erdés, Szekeres,
and Klein believe that N(n)=2"""+ 1 is the correct value. This remains
an open problem.

It is difficult to overestimate the effect of this paper. The rediscovery
of Ramsey’s theorem and that of the Monotone Subsequence theorem
were each of fundamental importance. Together they opened a new era
in combinatiorial analysis. Both Szekeres and Turin consider these
results to have been a decisive stage in Erdos’ combinatorial studies. And
certainly a major share of the interest in Ramsey theory in this generation
is due to its popularization by Erdos.

REMARKS AND REFERENCES
Ramsey [1930], Skolem [1933], and Erdos, Szekeres [1935] are the basic

early references for Ramsey’s theorem. We have generally followed the
proofs of Skolem [1933].
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§4.

§5.

§6.

§7.

Turan’s theorem may be found in almost any textbook on Graph
theorem. See Turan [1954] or Turan [1941] (but in Hunganan) for
the original proof. Motzkin and Straus [1965] give a <hort proof.
Erdos and Sos [1969] discuss the relationship between Rumseyv
theorems and density theorems.

The Compactness principle has no single discoverer. Sce Frdos
“Q‘;ﬂ] Rado HQAQ] and Gottschalk 119511 and the npnm—xl Jisous-

[ | AN MFULLOVAIGLL (AU A Qe L

sion in DeBruljn and Erdos [1951]. The Compactness principle is
often called the Rado Selection principle.

The quotation is from Burkill and Mirsky [1973]. Dilworth [1930],
Erdos and Szekeres [1935], Erdos and Moser [1964] give cated
results. Seidenberg [1959] gives a particularly elegant proof of the
Erdos-Szekeres Monotone Subsequence theorem.

Comments of Szekeres are quoted from Erdos [1973]. Erdos and

Szekeres [1962] give an interesting follow-up of their original paper.
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“Complete disorder is impossible.”

T. §S. MoTZKIN

In 1927 B. L. van der Waerden published a proof of the following
unexpected result.

Theorem 1 (Van der Waerden’s Theorem). If the positive integers are
partitioned into two classes then at least one of the classes must contain
arbitrarily long arithmetic progressions.

This result, conjectured by 1. Schur several years earlier, has turned out
to be the seed to which much of the development of Ramsey theory may
be traced. We examine several proofs of this theorem of van der Waerden
and see how it leads naturally to various generalizations. Van der

psychology of problem solving. We attempt to introduce the basic ideas as
they actually occurred according to this account.

Historical Note. 1. Schur, working on the distribution of quadratic residues
in Z,, first conjectured the result proved by van der Waerden. Van der
Waerden heard of the conjecture through Baudet, a student at Gottingen at
the time, and has referred to his result as Baudet’s Conjecture in the
literature. A brief account of Schur’s contribution is given by A. Brauer in
the preface to I. Schur-Gesammelte Abhandlungen (Springer-Verlag, 1973).

There are two rather harmless looking modifications we make in the
statement of van der Waerden’s theorem, both of which have a major
impact on the proof. First, for each k we allow only a finite initial
segment of integers (depending on k) to be partitioned so that at least
one class is forced to contain an arithmetic progression of k terms. This

29



Progressions

modification, attributed to O. Schreier. is equivalent to the original
assertion by the Compactness principle. Second, we allow the sets of
integers to be partitioned 1nto r classes instead of just two. This idea was
suggested by E. Artin and is crucial to all known proofs of van der
Waerden’s theorem. Thus modified the statement is as follows:

For all positive integers & and r. there exists an integer W(k, r) so that, if
the set of integers 1.2, W(k, r}} is partitioned into r classes, then at
least one class contains a k-term arithmetic progression.

To motivate the proof of the general theorem, we first examine a few
small cases. Of course. for kK =2 and any r, the result is immediate [in
fact, we may take W(2. r) =r+1]. Let us consider the case k = 3, r=2,
We claim that we can take W(3,2)=325. To see this, assume that
integers {1.2. ... . 325} =1, 325] are arbitrarily partitioned into two
classes. Divide them into 65 blocks of length 5, that is,

15T

[1,325] =1, 5] U6, 10] U - - - U321, 325]

3

which we can write symbolically as

MRS B A
B, B, B,

Since these integers are being split into r =2 classes, that is, they are
2-colored, there are just 27 =32 possible ways to 2-color a block B;.
Thus, of the first 33 blocks B,. some pair of blocks must be 2-colored in
exactly the same way (by the Pigeon-Hole principle), say B,; and B,,.
Look at this 2-coloring of B,, = {51.52.53,54,55}. Of the first three
clements of B,,, that is, {51, 52, 53}. at least two of them must have the
same color, say j and j + 4. Since jand j + d belong to {51, 52, 53}, j + 24
belongs to B,,. (This is why we choose B, to have length 5.) If j + 24 has
the same color as j (and j + d). we are done. Thus we may assume that it
has the other color. A typical picture of the situation is shown in Fig. 2.1,
where @ denotes red and O denotes blue. But now we are done, for if the
integer 205 € B,, is blue then 55. 130, 205 is a blue arithmetic progression
(AP), and if 205 is red then 51, 128,205 is a red AP.

What we have really done is to “focus” two two-term APs having
different colors on the integer 205 so that, no matter what color it has, it
must form the third term of some monochromatic AP,
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51 52 53 54 55 126127 128129130 205
e . o ‘ . o] . . (o] L ] @ O '] -
B11 B‘zﬁ B,
Figure 2.1
Let us use the same idea to find a value for W(3,3). This ume.
however, we start with an arbitrary 3-coloring of the first 7(2-3 -1 H
372370 1) integers! We first divide these integers into 2 - 30—

ks B. of 7(2- 7 + 1\ each. Now, there are onlv 17(23 b different

i AV I \L: Wil LAEAW L W SLRRY

ways to 3-color each B, so that, among the first 37* 4D 4 1 of them. at
least two, say B, and B, ., , have exactly the same 3-colorings. (The
reason we use 2- 37(2 3+1)] + 1 blocks is to ensure that the block B, .., 1s
well defined; we shall soon need to select an element from it.) Next for
each i, we divide the 1ntegers in B, into 2+ 37 + 1 subblocks B, ;of7 each
Since there are just 3 wavs of 3- colonng each B , among the first 37 + 1
blocks B, |, 1<j<3 +1, at least two, say B, ; and B, , .. have
exactly tne same 3-colorings. Finally, in the first fUut elements of B, ; |
some color must occur twice; say that i, and i, + d, each are red. Since

iy +2d, is also in B, , . i, +2d, must have some other color, say blue.
The situation is chnwn in FIQ 2 2.

(AU TARE LUSE 111

Consider the block B, iy 2 By the choice of i, and dz, this is a

P T

subblock of B, . Also, smce ﬁ; i and Dl iptds have the same 3-coloring,
the integers z3+7d and z3+d +7d, must be red and the integer
i, +2d, +7d, must be blue. Thus the corresponding element i, + 2d, +
144, of B, , .24, must be, say, yellow, not red nor blue, because of the
arlthmetlc progressmns i,+2d,,i,+2d,+7d,,i,+2d,+14d, and
iy,iy+d,+7d,, i, +2d,+14d,. Of course, since B, and B, ,, have
exactly the same 3- colorlng exactlv the same color pattern oceurs in
B, ,,; that is, the integers i+ 723 +1)d,, i, +d; + 72 37+
l)d], 13 +7d,+7(2-3 +1)d,, and so on are red, the integers i, + 2d, +
7(2-3"+ 1)d,, iy +2d, +7d, + 7(2-3" + 1)d,, and so on are blue, and
the integers i, + 2d, + 14d, and i, +2d, + 14d, + 7(37 + 1)d, are yellow.

Now consider fhp 1ntpgpr

m=i,+2d, +14d, + 143" + 1)d,

There are three monochromatic two-term APs “focused” on m, each
having a different color. lne situation is shown in Fig. 2.3. If m is red
then i,,i,+d, +7d, +7(3 +1)d,, m is a monochromatic AP. If m is
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32 Progressions
i3 1+ 7d,
iy~ d, / 1t dy +7d,
r[_xf 24, /v/—:'3+2d3 +7d,
h een eemnm A iy + 24y + 144,
_// 1/ \
B‘1 5} .ty d?—/ B*'1, irt 2d,
E‘l *d‘ . . = . . . A
i)+ dy, 1+ “'2_/
BL| + 2d, @-—- m
/
/
Bi, + 2d1_, ;‘2 + 2d2 —/
Figure 2.2 Forcing a three-term arithmetic progression.
RR B, RRB Y
N X
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Figure 2.3 Red, blue, and yellow progressions focus on m.
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blue then i, +2d,, i, +2d, +7d,+ 7(3” + 1)d,, m is a monochromatic
AP. If m is yellow then i, +2d; + 14d,, i, +2d; + 14d, + (3 -~ 1d,, m
is a monochromatic AP. There are no other p0551b111t1es We have shown
that we may take wW(3,3) =7(2- 3+ 1)(2- ’37(23 Dy 1).

The proof of the general theorem is now just a double induction on k.
the length of the progression desired, and r, the number of colors. Not
only do we assume that W(k, r—1) exists, but we also assume that
W(k — 1, r') exists for all values of r'. We need the very large values ot r'
since, in general, we shall always divide the original set of integers into
equal-sized blocks B, of consecutive integers and apply the induction

:"iyp(‘/fh esis to the h)‘nnbc which for our purposes behave in the same way

i3 IV T viveng YYLIIWAL AW WUl Pl PO D alis

that FDF integers do. If the integers are bemg r-colored then the blocks
are r'"“'-colored (where |5| denotes the cardinality of B). For this reason
the values we obtain for W(k, r) are gigantic. (see Section 2.5.)

The one additional difficulty remaining to be overcome to complete
the proof of van der Waerden’s theorem along the lines just outlined is

the choice of comprehensible notation. The interested reader will prob-

l-.1 . e ~ Q
ably find it profitable at this point to complete this proof before going on.
A Short Proof. 1t is perhaps not surprising that, by strengthening the

hypothesis of van der Waerden s theorem. we obtain a somewhat stronger
result that at the same time is a bit easier to prove. However, the basic
structure of the proof is essentially the same as that of van der Waerden’s
original proof.

We define m + 1 l-equivalence classes of [0, I]™. For 0< i < m the set of

(x,,...,x,)E[0,!]" in which [ appears in the  rightmost positions and
nowhere else forms an [l-equivalence class. [For i=0 this is all
(x,,...,x,) in which / does not appear.| (Figure 2.4 shows the /-

equivalence classes for /=4 and m =2.) The [-equivalence classes are
disjoint. They partition a proper subset of [0, /]”; the remaining se-
quences are not used. For any /,m =1 we define a statement S(/, m).

I
31 . . . .
2| . . . . .
1] - . . .
0 . . . .

0 1 2 3 4 Figure 2.4 Critical equivalence classes.
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For any r, there exists N(/.m.r) so that for any function
C:[1, N(/.m, r)]—[1.r] there exist positive integers a, d,...,d, such

that C(a+ X", m.d ) 1s constant on each [-equivalence class of [0, /]™.

The statement S(/. 1) is equivalent to van der Waerden’s theorem for
[-term arithmetic progressions.

Theorem 2. S(/.m) holds for all I, m=1.

Proof.
(i) S(L.m)=> S, .m+1).

For a ﬁved r, let M=N(,m,r)y, M' = N(l, 1, rM) and suppose
that C:[1. ]—~>{ , r] is given. Define C': [1, M'}—[1, r™] so
that C'(k) = C (k') iff C(kM —j)=C(k'M —j) forall 0sj<M
By the inductive hypothesis, there cxists a’' and 4’ such that
C(a +xd’) is constant for x€[0,/~1]. Let I={a'M — (M -
1), a’M]. Since S(I, m) can apply to the interval [ then, by choice
of M, there exist (renumbering for convenience) a, d,, . . ., d, .

with all sums a+ 275" xd,, x, €[0,1], in I and with C(a +
£m%" x,d,) constant on l~equ1valence classes. Set d)=d, for 2<
z<m+1 and d{ =d'M. Then S(/, m + 1) holds.

(i) S(I,m) forall m=1=>8(+1,1).

For a fixed r, let C:[1, N(Il. r. r)]—[1, r] be given. Then there
exists a.d,, ... .d such that, for x, €[0./],a + X]_, x,d, is boun-
ded above bv N(l r.r) and C(a+‘” _, Xx,d,) is constant on [-
equivalence classes. By the Pigeon-Hole principle there exist
I=su<wv=r+1 such that

cla+S )= cla- 2 ,).

P u

Therefore
r v—1
clfa+ 1) +x(2 d,))
is constant for x € [0, /]. This proves S(/ + 1, 1).

2.2 THE HALES-JEWETT THEOREM

In its essence, van der Waerden’s theorem should be regarded, not as a
result dealing with integers, but rather as a theorem about finite se-
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quences formed from finite sets. The Hales—Jewett theorem ~tnips van der
Waerden’s theorem of its unessential elements and reveals the heart of
Ramsey theory. It provides a focal point from which many results can be
derived and acts as a cornerstone for much of the more adyunced work.
Without this result, Ramsey theory would more properly be called
Ramseyian theorems.

VW Liaaie with mefatinm L
we begin with notation. We

Cl={(x;,...,x,):x€{0,1,...,t—1}}.

By a line in C; we mean a set of (suitably ordered) points x,,. N
x, = (x;,,...,x,,) so that in each coordinate j, 1 <j < n, either
Xojp =Xy = T Xy
or
X, =S§ forO0ss<t,

57

and the latter occurs for at least one j (otherwise the x, would be
constant). For example, with r=4, n =3, {020, 121.222.323} forms a
line, as does {031, 131, 231, 331}. (In examples. parentheses and commas
may be removed for clarity.)

Our definition differs from the ordinary geometric definition as, for
example {02, 11, 20} is not a line in C 2. The reason for this is that the
cube is mean to be independent of the underlying set {0,1,...,¢t—1}.1In
other words, for any set A= {a,,...,a,} we may define

Cl={(x;,...,x,):x,E A}

and lines of C7 as those x,, ..., X,_, so that in each coordinate j either
the x, are constant or x,;=ga, All such cubes are combinatorially
isomorphic. In this section we shall write our underlying set as
{0,1,...,t—1} solely to facilitate the exposition.

For 1 < k < n we define what we mean by a k-dimensional subspace of
C'. Let {1,...,n}=B,+ B, + -+ B, where B #J for isi<k.
(B, may be null.) Let

f: B,—{0,1,...,t—1}

by any function. We define a map f: Ck> " by
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_f(_\'l.,...yk)=(x1,...,x,,),
where
x, = f(i) for i€ B,,
X, =Y, for i€ B, .

A k-dimensional subspace is defined as a set that is the range of f for
some choice of B . B,...., B,, [.

The real meaning of “k dlmensmnal subspace’” may be gleaned from

the following example, where t=3, n=7, k=2, B, ={1, 2} B,
{3,4,5}. B,=1{6.7}, f{6)=2, f{(7) =0. The range ij ‘s given by

0000020 1100020 2200020
0011120 1111120 2211120
0022220 1122220 2222220

The concept of k-dimensional subspace is clearly independent of the
underlying set A. A line is a one-dimensional subspace.
A k-dimensional subspace S of C with underlying partition

B,,B,,..., B, in some fixed order is canonically isomorphic to C*. In
the example given above

¢: 85— C:

given by

¢: (aabbb20) = ab ,

is the isomorphism

In all of our work there will be a clear ordering of the dimensions
By, B,, ..., B,. Technically, we should refer to ordered k-dimensional
subspaces. This will be tacitly assumed throughout.

Now we are in a position to state our fundamental result.

Theorem 3 (Hales—Jewett Theorem). For all r,r there exists N' =
HI(r, t) so that, for N = N’, the following holds: If the vertices of C ,N are
r-colored there exists a monochromatic line.

We begin our proof with the equivalence classes of Section 2.1. For
O<i=<n the set of (x,,...,x,)€C,, in which ¢ appears in the i
rightmost positions and nowhere else forms an equivalence class. We call
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a coloring of C7,, layered if it is constant on all equivalence classes. (In a
layered C> the enclosed sets of Fig. 2.4 are monochromauc Also, a
layered C; looks much like Fig. 2.2, minus any unessentials.) An
(ordered) k dimensional subspace is layered iff the coloration 1s lavered
when the subspace is identified canonically with C¥,,. (In the preceding
example, 0000020, 0011120, 1100020, 1111120 would be the same
color, and 0022220, 1122220 the same color.) A line is lavered iff the

first ¢ pr\n‘\fc are monochromatic. When we say that a space 1s laver

wiir waaaliviw GG

always tacitly assume that it has a given coloranon.

d we

re
L
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English alphabet A, B, . ..., Z and B (space). The elements of (. are
then strings of length n. A string is left justified if all the spaces appear in
the rightmost positions. In a layered coloring any two left-justified strings
with the same number of letters have the same color. The line
{aAa: a € A} is layered if AAA, BAB, ..., ZAZ are the same color
(with no restriction on the color of HAM). If the two-dimensional space
{aABB: a, B € A} is layered then BALL, MASS, and PARR are the
same color and MAEER, PARA, and LAMEB are the same color.

We define two statements dependent on !, the cardinality of the
underlying set:

Example. Set =27, and set the underlying set & equal to the 6-letter

HJ(1): For all r there exists N' = HJ(r, t) so that, for N = N’, if CYis
r-colored there exists a monochromatic line.

LHIJ(t): For all r, k there exists M' = LHJ(r, t, k) so that, for M = M’, if
C¥ ., is r-colored there exists a layered k-dimensional subspace.

Our proof is by induction on ¢. We shall show that

HI(t)=> LHI(t) (Theorem 4) ,
LHI(t)=> HI(t+1) (Corollary 6).

Proof of HJ(2). Set HJ(r,2)=r. Consider the N+ 1 points of C5
formed by a (possibly void) sequence of 1’s followed by a (possibly void)
sequence of 0’s (e.g., for N =3, the points 000, 100, 110, 111). For N=r
some two of these points must be the same color, and they form a

R, ML SR I‘Dam
monocnromatic ine. (KRen ember }‘ deﬁﬂitl(}nauu

form a line!)
Technically, the induction argument we give can start at =1, and the
reader might check that the inductive proof of HJ(2) is essentially the

¢-+
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proof we have given. However, as C} is practically pointless (joke), the
arguments HJ(2) = LHJ(2)= HJ(3) might give fuller understanding.

Theorem 4. HJ(1)=> LHI(1).

Proof. Assume HJ(t). We prove LHJ(t) by induction on k. As in van
H7r

der WnPrdPn < fh_Pn‘l‘Pm we

™
L y YTV P

neously.

rove LHJ(t) for given k for all r simulta-

M
k=1 Let M' = H.,’( . ) Let M= M', and #-color C:+1 Inside (-”1+1

lies C¥, those pomts without coordinate value ¢. There is a mono-
chromatic line in C¥ that is a layered line in CY .

k= k + 1. Here is the heart of the proof. Use the Induced Color
method. Let m= LHJ(r,t, k). Let s=r"""" the number of r-colora-
tions of C7,,. Set m' = LHJ(s, ¢, 1), that is, HJ(s t). (Here m may be
gigantic, but m’ is unbelievably larger') Take LHI(r,t.k+1)=m' + m.
Let C:"Hm be r-colored by y. C:’i;’m = CJ,, X C7", in a natural way. For

XEC!, and y€C", write xy for their concatenauon [e.g.,

(2,7, 5)(3 6)=1(2,7,5,36)]. Define a _coloring x* on C!",, coloring

x € C7, by the color of xy for all yE C ;- Formally

X*(x)=x*(x") iff x(xy) = x(x'y)  forallyecCr,,.

As there are only(!) s colors. there exists a layered line
Xos Xisenoo s X, 14 X, ECM under x*. Now color C | by

X*(y) = x(x,y) (O=i=1—1, as constant for those ).

By induction there is a layered k-dimensional subspace S C €7\, under

. Let
T={xs:0<i<tseSjccr'n.
Let § have equivalence classes S, S,,...,S,. Then T has equivalence
classes

zj{xts:0€i<t,sESj}, Osj=<k,

tog er with a 7, ., consisting of a single point beginning with x,. Let
K sETW1thO j=<k. Then

x(x;8) = x**(s) = x**(s') = x(x,.5") .
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The middle equality holds because s, s’ are equivalent under y **. and the
other equalities hold by the definition of xy**. Hence T iv 4 lavered
(k + 1)-dimensional space, completing the induction.

Some intuition, going down instead of up, is useful here Select
M = CH(r, t, k) so large that it may be written as m; + m.. where m, is
gigantic and m] is much, much bigger. An r- coloring of C¥.=(7 x
C7), induces an s-coloring of C,+1(s>m1 but s <m!) for which there
exists a layered line L, = {x{",. .., x"’}. On L, x C", the color of
x"y is independent of i if i # 1. Color y€ Cl} by the colorof v v.i=
t. As m, is gigantic, write m, = m; + m,, where m; > m, but m, 1s snll
gigantic. The r-coloring of y € C™ = C7% x C", induces an s- ualonng
of C™ for which there exists a layered line L, = {x{*,....x."'} On
L, x L, x C7, the color of x{"x{*y is mdependent of i if i=1 and is
mdependent of both i and j zf i#t and j#t. Continue the entire

L+
proccagure x imes.

Theorem 5. A layered k-dimensional space with at most k colors
monochromatic line.

I’rOOf /‘\ll Or(lere(] K (llmemal(mdl bdeCb over | + 1 tltlIlCIllb arc coim-
binatorially isomorphic. Hence it is sufficient to prove this result for Ck. .
This result corresponds to the focusing of progressions in van der
Waerden’s theorem. Pictorially this theorem is obvious; note in Fig. 2.4
that a layered 2-coloration of C? yields a monochromatic line. More
formally, let C¥,, be a layered space and consider the special points
x,,0=<i=<k, defined by

s N “:ft if j<i,
X (C PRI 07 % ) Ay 10 lf_]>l
In C3:00,40,44.) By the Pigeon-Hole principle for some u <wv, x, and
x, are the same color, say red. Then the line y,, ..., y,, given by
(¢ ifi<u
Vo= Yor- oY) ya=yS  Hu<isv,
0 if u<<i,

is red. (In CZ, if 00 and 44 are red the line 00, 11, 22, 33, 44 is red.)
Corollary 6. LHJ(t)=> HJ(t+1).

Proof. Given r, pick N’ so that, for N = N’, any r-coloring of Cflﬂ
contains a layered r-dimensional subspace. By Theorem 5 there must be a
monochromatic line.

This completes the inductive proof of the Hales—Jewett theorem.
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2.3 EXTENSIONS AND IMPLICATIONS

Theorem 7 (Extended Hales—Jewett Theorem). For all n, t, r there exists
N’ so that, for N = N’, the following holds: If the points of CV are
r-colored there exists a monochromatic n-dimensional subspace.

Proof. We identity C7’ with C},. The underlying t"-set is C;. We break
(x;,...,x,)EC” into consecutive blocks of length n. Each block
hPmmPc a single mmf‘mate thus giving a set bijection between the two
objects. A lme in C. is 1dent1ﬁed under the bijection, with an n-
dimensional subspace of C}’. (For example, the line 00, 11,22, 33 in Clis
identified with the two-dimensional space 0000, 0101, 1010, 1111 in C3)
We set s = HJ(r, ") and take N’ = ns. An r-coloring of C/ is 1dent1ﬁed
with an r-cmormg in C; . that, by definition of s, has a monochromatlc
line. This line is identified with an n- dimensxonal subspace of C7°,
monochromatic under the original coloring. For N = N/, C¥ contains C
so the monochromatic subspace still exists.

=t

Van der Waerden’s theorem may be obtained as a corollary of t
Hales-Jewett theorem. We identify the integers a, 0 < a < ¢", with the
N—tuples (a], ...,ay) formed from the base-t representation a
2N al"! s a,<t. An r-coloring of {0,1,...,t"~1} induces an
r- colormg of C* in which, for N sufficiently large, there is a mono-
chromatic line that. in turn. translates back to a monochromatic AP of

+1
le engin /.

Let V={v,,...,v,_,} be a subset of R™. We say that W=
{wo, ..., w,_ }is homothetic to V if, under suitable ordering of W, there
exist cE R, ¢#0, and b € R™ so that

w, =cv,+ b, O=si<r.

In this case we may also write W—cV+b In geometric terms,

homothetic means “similar without rotating.”

Theorem 8 (Gallai’s Theorem). Let the vertices of R” be finitely col-
ored. For all finite V C R™ there exists a monochromatic W homothetic to
V.

Proof The method of van der Waerden’s theorem may be use d to prove
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of the Hales—Jewett theorem. Fix the number of colors r and the set
V,|V|=t. Let N= HI(r,t). Consider C) to have underlving ~et V. so
that the elements are sequences (x,,...,xy), x; € V. Detine 4 map

- Cfv—> R™

Dy

N
Y(x,,...,xy)= > k.x,
i=1

for real constants k,, . .., k,. Assume that ¥ is injective. An r-coloring
of R™ [actually, of range (¥)] induces an r-coloring of CY for which there
i1s a monochromatic line that corresponds to a monochromatic W C R”™

We require ¥ to be injective, as otherwise a line in C could
correspond to a single point in R™. To achieve injectivity we appropri-
ately choose {k,}. For every (x,,...,x,)#(x},....x.). bothin C . we
must have

N
> k(x,—x) #0.
=1

The {k,} must be chosen to avoid only a finite set of equalities. Almost
all choices of {k,} will suffice.

can assure a monochromatic W= cV + b, where cE N.

An important exampie of Gallai’s theorem is V={(i, j): 0=, j<i}.
We may then show the following: If N° is finitely colored there exist
Xy, Yo, d so that all ¢’ points of the form (xg +id, y,+jd), 0<i, j<1u,
are the same color. Gallai’s theorem may be considered a generalization
of van der Waerden’s theorem to higher dimensions.

A. W. Hales and R. I. Jewett, in their original paper, considered
generalizations of tic-tac-toe, the classic children’s game. In the original

game (Fig. 2.5) two players alternately choose distinct elements of C3,

and a player wins if he or she has chosen an entire line (under the

broader geometric definition). This game is well known to be a draw
when properly played. Very recently the corresponding game for Cj
(again with the geometric definition of a line) has finally been resolved
(the first player can always win). However, the winning strategy is
extremely complicated. For all r, ¢, if N is sufficiently large the r-person
*N-dimensional tic-tac-toe f-in a row” cannot end in an draw, even under
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the more restrictive definition of a line. For r = 2 we may say more: for N
sufficiently large the first player has a winning strategy. This is a standard
Game theory argument: In a finite two-person, perfect information game
with no draws, one of the two players must have a winning strategy. But
in this game it cannot hurt to piay first so that someone must be the first
player! Let GHJ(¢) be the minimal N' so that, for N > N, the first player

wins tic-tac-toe on CY. Then GHJ(1) < HJ(2 t). However, the mequahty

need not be chqrp

C)

HJ remains a puzzle.

2.4 SPACES—AFFINE AND VECTOR

Let A be an arbitrary, but fixed, finite field. We regard A" as an

i 1 ' . ANt o 4 cmnn £V 1. -
n-dimensional space over A. We say that X C A" is a r-space if X is a

t-dimensional affine subspace of A" (i.e., a translate of a vector subspace
of dimension t) The singleton sets are called O-spaces. For this section
only, let [V]" denote the class of t-spaces T CV. Our object is the
following result.

Theorem 9 (Affine Ramsey Theorem). For all r, ¢, k there exists n =
N (k: r) so that if the ¢ spaces of A" are r-colored there exists a k-space
all of whose r-spaces have the same color.

Let dim(B)=u+1 and p: B— A" be a surjective projection. Let T &
[B}. Then p(T) has dimension either ¢ or ¢t — 1. If dim( p(7T)) = t we call
T transverse (relative to p). If dim(p(T))=¢~1 then T=p ' (p(T)),
and we call T vertical. Intuitively, p defines a vertical direction on B.
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DEFINITION. A coloring x: [B]'— [r] is called special (relative to y. p) if
the color of a transverse r-space is determined by its projection. More
formally p(T,) = p(T>)= x(T,) = x(T>).

Lemma. For all u,r,t there exists m = M“(u: r) with the following
property. Fix p: A“"™— A" the projection onto the first u coordinates.
For anv colorino v: [Au+mlr-—>[r] there exists a (u + 1)-space B special

1y coloring x: }'—[r] there exists a (1 + 1)-space B special

relative to y, p.

Proof. Let F, denote the family of u-variable affine linear functions
fix...,x,)=c,tex, +-+ex, ¢,...,c, €EA (possibly (). We
prove the lemma for

m=HI(|F,|,r"),

where v is the number of t-subspaces of a u-space and HJ 1s the

au+mit

Hales—Jewett function. Fix x:[A" "} — [r].
Let f (fi»---. 1), [ EF,. We define a lifting

. £ Ean 3

;‘ Au__) Au+m
J i
by
fxy, oo x )=, o X Vi Ym) s y,=flx,,...,x,).

Clearly, f is injective, linear, and inverse to p. We define (and this is the
critical step) a coloring x’ on (F,)" by

v Y= v'( &) iff, for all T €[A“), ¥(f(T)) = x(&(T)).
\NJJ \57 L i ANONE /s

A /l iand ST 1Y AT

.
~,

In other words, we color the lifting f by the coloring of the range f{A") of
the lift. To be excessively formal we may define x'( f) as the function
with domain [A“]’ given by

(X (HXT)=x(AT)) .

As y' is an r’-coloring there exists (and this is the central use of the

~

Hales— Jewett theorem) in (F,)™ a “line” L monochromatic under x'. By

.

renumbering coordinates we may write
L={(f.....fifosrs- s L) FEFRY,

where f,,,,. .., f, are fixed. We set



44 Progressions

B=J f(A")
fer
=10 X YY) Y= 2SiSs, y, = f
X (X o, X)), s<ism}.

B is the desired (u + 1)-space. Any transverse t-space T C A“*™ may, by
elementary linear algebra, by written as T = g( p(T)) for some g=
(8-, 8,)E(F,)". When TCB,T= g(p(T))r= f(p(T)), where f=
(8- + & frye. - f)EL. Let T,, T,€[B], p(T)) = p(T,) = T'€
[A“]. Then T, = f,(T), T, = fo(T), fi- € L. Hence

X(T)) = x(F(T) = x(F(T)) = x(T3) .

Now the Affine Ramsey theorem is proved by a straightforward
“induction on everything.” We prove a strengthened result, as follows:
For all ¢, k,,..., k, there exists n= N(’)(kl, ..., k) so that if the
t-spaces of A" are r-colored there exists, for some l<i<r, a k,-space all
of whose t-spaces are colored i.

The proof is a double induction, first on ¢ [for all (ky,...,k,)] and
then on (k,,...,k,). For t=0 the Affine Ramsey theorem follows
directly from the Extended Hales—Jewett theorem. Assume the existence
of n for ' <t [all (k,,... k)] and ¢ =1¢, (k},..., k)<(k,... k).
We set

s:lmaxN“)(kl ..... k,—1...., k),
u=N""Y(s:r),

m=M"u:r),

n=u+m.

Let the r-spaces of A" be r-colored arbitrarily by y. By the definition of m
(i.e., by the lemma) there is a (u + 1)-space B that is special under a
projection p: B— A" Induce a coloring y’' of [A*]"! by x(T)=
x(p~'(T)). By the definition of u (i.e., induction on ¢) there exists an
s-space § C A" monochromatic, say color 1, under x'- Then p~'(8) is a
special (s + 1)-space all of whose vertical t-spaces are color 1. Define a
coloring x” of [S]’ by

xX"(TY=x(T"), where p(T')=T .
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This is well defined since S is special, (i.e., project y onto S). As
l‘r(f\lll

s=N"(k, —1,k,,...,k,)[l.e., induction on (k,,....k, )| there exists
W'C S so that either

(1) dim(W')=k, —1; W' is color 1 under x",
or
(i) 2<i<r,dim(W')=k,; W’ is color i under x".

In case (ii), by linear algebra there exists a k-space W C p~ (W) <o that
p(W)=W’' (i.e., we may lift W’ to W). Then W is color / under y. In
case (i) (the moment of induction) we set W=p (W'). W is a vertical
k,-space of B. Let T €{W]" If T is transverse, x(T)= x"(p(T)) = 1. If T

— o _ ombletes the 5106
is vertical X(T) X (p'”r)\ 1. This com picics the pluuf.

Corollary 10 (Vector Space Ramsey Theorem). For ail r t, k=1 there

exists n = _N(")”( r\ so that if the #-dimensional vector spaces of A" are

Sh¥3 U4

r-colored there ex1sts a k-dimensional vector space all of whose t-
dimensional vector subspaces have the same color.

Proof. Choose n to satisfy the Affine Ramsey theorem. A coloring y of

vector spaces 7T induces a colorine v’ of affine spaces h‘ \//("T-{— U);

CLLOf alcs 1 HIQULCS a COIOTN O1 ailill alls
e

x(T). (Every affine space 7' may be written as 7' = T + v, where Tis a
uniquely determined vector space.) There exists an affine k-space W' =
W + v monochromatic under y'. Then W is monochromatic under y.

The Vector Space Ramsey theorem was first conjectured by G.-C.
Rota. One may view (see Section 1.3) Ramsey’s theorem as a statement
about the lattice of subsets of a set. The Vector Space Ramsey theorem is
then the analogous statement for the lattice of subspaces of a vector space
over a fixed finite field. This result was first shown by R. L. Graham, K.
Leeb and B. L. Rothschild. The proof given is a simplified version due to

- e e

I . \)PCHLCI

2.5 ROTH’S THEOREM AND SZEMEREDI'S THEOREM

class that contains arbitrarily long arithmetic progressions, does not
specify which class is the appropriate one. In 1936, P. Erdos and P. Turan
proposed the following conjecture:

The theorem of van der Waerden, while asserting the existence of a color

If A is a set of positive integers with positive upper density, that is,
satisfying
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APs.

then A contains arbitrarily long

Thus this conjecture would imply that long APs always occur in the
“most frequently occurring” color. In 1952, K. F. Roth proved that (*)
implies that A must always contain at least a three- term AP. It was not
until 1969 that E. Szemerédi showed that, in fact, (*) implies that A
contains a four-term AP. In 1974, Szemerédi, in a masterpiece of
combinatorial reasoning, settled the general conjecture affirmatively. In
1977, H. Furstenberg gave another proof, using methods of ergodic
theory, of the Erdoés-Turdn conjecture. In Section 6.1 we discuss the
relationships between the Szemerédi and Furstenberg proofs. However,
both results are beyond the scope of this book.

In this section we prove Roth’s theorem twice. We first give a
combinatorial proof, duc to Szemerédi, which contains many of the
essentials of his general result. We follow this with Roth’s original proof
(slightly modified). This proof is one of the gems of Analytic Number
theory, and the contrast with Szemerédi’s proof is quite striking. We

conclude with some further conjectures.

Theorem 11 (Roth’s Theorem). If A is a set of
positive upper density, then A contains a three
gression.

ositive integers with

LS

D
r
-term arithmetic pro-

Proof (Szemerédi). We call M C N a k-cube if there exist a >0 and

k
M=M(a:d1,...,dk)={a+zsid,.:s,=0,l}.

1=1

t n, a, k be such that the sequence a = ay, ag, . .., a,

N

/{n— l)I has @y = 1. If A C[n] with | A| = a, there
exists a k-cube M C A. In particular, if |A| = cn, ¢ fixed, there exists a
k-cube M C A with k =loglog n + O(1).

\\,__/\.

a .
Proof. Among the (2) positive differences ¢’ — a with a,a' € A, at
“)
least ( 5 ) /(n — 1) must be equal. Setting 4, equal to the most frequently
occurring difference, and A, ={a € A: a+ d, € A}, we have
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A CA, d,+A, CA, |A1|2u
Applying this argument to A, yields d,, A, with

(AL
S

A,CA,, d,+A,CA,, §A7!;;l.»u_
> > 2 "

and, by induction, d,, A, with
ACA |, d+ACA, _, |A,|= e,

Since «a, =1, there exists a€ A,. Now M(a:d,,....d,)C A by u
simple backward induction on i so that

is the desired k-cube.

The analytic result (we really need only that k& approaches infinity with
n) is indicated by noting that «,_, ~a;/2n so that loglog(n/a,)~
i+ O(1). We omit the details.

TTII1

Historical Note. 1n 1892 D. Hilbert proved that, for any A=1, if N is
finitely colored then there exists in one color infinitely many translates of a
k-cube.

For every [ >0 let S(!/) denote the largest number of elements of [1, /]
that can be chosen so that no three-term AP is formed. Our objective,
then, is to show that lim S§(/)// = 0. The function S satisfies

SU+L)=S(0) + 5()
as we may split [1,/, + /,] into disjoint intervals of sizes {, and /,. Such

functions are called subadditive, and we require a general lemma on
them.

Subadditivity Lemma. If S: N— R" is subadditive, then @ = lim S(n)/n
exists and S(n)/n=a for all ne N.

Proof. Set a =limsup S(n)/n. Let n € N. Any x € N may be written as
x=gn+r,0sr<n. Then
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SO that

S@) _ (q+1)S(n)

X gn

Thus a < S(n)/n. Since n was arbitrary, o < lim inf S(n)/n so that @ =
lim S(n)/n.

We prove Roth’s theorem by a reductio ad absurdum. Assuming its
negation, there exists ¢ >0 so that ¢ = lim S(1)/I and S(I) = ¢l for all [.
Let £>0 be very small, £ =10 °¢? to be specific. Let /, be such that

S(1
cs(—,)<c+s forall <], .
i

Let [ be sufficiently large so that all asymptotic approximations we shall
make are justified and so that (looking ahead) 0.01¢° log log!>1,. Let
AC|[I], |A|=cl, contain no three-term AP.

Let us show the existence of a large-dimensional cube M C A of small
diameter not near the edges of [/]. On [1, 0.49/] and [0.5/, I] A has a total
of at most 0.99/(c + £) elements. Since |A] = cl and ¢ is so small, 4 has
density >c/2 on (0.49/,0.5/). (In fact, A has density “‘nearly” ¢ on every
“large” interval.) We split (0.49/,0.5/) into disjoint subintervals of size
1'? + O(1). On one of these, A has density =¢/2. In that interval there
exists a k-cube M so that

(ii) k=loglog '+ O(1)=InIn [+ O(1),
(iii) M C(0.49/,0.5/) (a convenience),
V) d <

Set M_, ={a}, M;=M(a:d,,...,d,_,) for 0<i<k. Set
N={Zm-x:x€EA,x<a,meM).

The y=2m —x €N, are third terms of progressions {x, m, y} with

x,mEA. Hence ANN,=J. A has density at least ¢/2 on [1,0.49/] so

that

INJ=|N_,|=]AN(1, a)| =0.245¢ .
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Since M, =M, UM, +d,), N, =NU(N,+2d;). The N form an
ascending sequence with |N, | < [. Thus, critically, there exists ;. which we

fix so that

[
IN;+1 o Nil < P
Let us call an AP with difference 2d; a block. There is « bijective
correspondence between maximal blocks {x, x +2d,,.... v~ s(2d 1 of
N and elements x + (c + 1M 24dYof N — ]\] Thue NN mav he nartitinned

AAAAAAAAAAAA [ AT A gl A A | A11U0 LY aay UL prat LIy

1nto at most //k blocks. We split [/] into the 2d, re&due classes modulo
2d,. On each class, if N, is partitioned into t blocks then [/]— N 15
partitioned into at most ¢ + 1 blocks (the gaps plus the ends). In toto.
[/] — N, is partitioned into at most

i-;-’)d i

o) = !—!—n{'l\\
k * loglog!* g

YA +J)

(recall that d, <2I''*) blocks.

Now we may begin. We cail a block of [{]— N, small if it is
<0.01¢’ loglog /, and large otherwise. All of the small blocks together
have at most only 0.01¢’/ + o(/) elements. We have defined / so that A
has density <c + ¢ on every large block, hence on their union. Every
element of A (since AN N, =) is in either a large block or a small
block:

Al =AU (] - Ny
<(c+ &)l —|N,}|)+0.01c’L + o(])
<l — ¢(0.245¢l) + €1 + 0.01¢* + o(l)

<cl,

contradicting our assumption. Hence Roth’s theorem is proved.

Dot Af Tlensnsas 11 £ 1. sl T ~+ CF n A N as PR . g PR '« I

r j ] 4 CU’ fre L (IO LU o) e lll P CCCuUlll g P[UU L

m S(n)/n. We may assume, as bgfg e, that hs limit exists, ¢ >0,

and S(n)/n = ¢ for all n. Let ¢ =107 "¢”, and let m be large enough so
that

for2Zm+1<n

c< S)
n
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Let 2N be sufficiently large so that the asymptotic inequalities we shall
write are valid. Let A C[2N], |A] = ¢(2N) contain no three-term AP, It
1 L P

will be convenient to let u,, ..., u, denote all the elements of A, and
2v,...,2v,, the even elements of A. Then

c2N)Y=r=(c+&)(2N), (c—e)N=s=<(c+ ¢)N,

the latter as (with N=2m + 1) A can have density at most ¢ + ¢ on the
odd or even numbers. We define two complex valued functions:

e S Ll

r

fla)=2 e(aw;)), e(x)=e"™ " =cosx+ V=Tsin x :

1=

Let L* denote throughout the sum over a = i/2N,0<i<2N —|. (In

Roth’s original paper, equivalent integrals were used.) If u = t/2N, where
|t} <2N and ¢ is integral, then

. _[2N if u=0,
2 e(‘”‘)‘{o if w0,

We use this to sieve for progressions in A:

5

* n
DA e(a(u;, —v, —v,))
=1

b1~
-

X* fla)g (- a)= v,

I
—_
~.

I
—
ES

=5(2N) <3cN? (1)
as u; — v, — v, =0 implies that {2v,, u;, 2v,} forms a progresion in A

except in the s trivial cases 2v; = u, = 2v,. The functions f, g “spike” at
a =0 with

f(0)g* () =rs*> N7 (2)
Our main effort will be to bound | f(a)| when a # 0. First, we require a

general theorem on Diophantine approximation: For a arbitrary, M >0
integral, there exist p, g integral with

a=‘§+ﬁ, Isg<sM and gq|B|<M'. (3)
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(We outline the proof. Calculated modulo 1, two of the M - | numbers

ia,0< i< M, are within M, say ia and ja. Set g = |i — j <o that ga is

within M ™" of an integer p. Thus |ge — p| < M~ '; now divide by ¢.)
Second, from elementary calculus

2

|3(e(x) + e(—x))— 1| =|cosx — 1] = % ,
from which it readily follows that
2
l > eliy) - 1| ,.) )
1Zm+1 [2, 2
and thus, multiplying through by e(«), we obtain
! . (my)’
lZm 1 liém e(a +iy)—e(a)| < >

Set M=[N""?]. (Any M in a wide range will do.) For a # 0. let p. g. B
satisfy (3). Then

e(a(u + iq)) = e(au + i(Bq))

so that
N v (mBa)
elau) — e(a(u + zq))
‘ 2m+1 li|=m I
m*M?
=
2
Now we may “smear” f(a):
Alm*M 2
2 e(au) — 5 2 E e(a(u + ig))| < u—z—w
ucA uEA||<m
m°NM ?
=
2

Let us rewrite

2 2 e(a(u +iq)) = 2 e(as)

2m+1 WeA Hl=m s=0 2m+1 7’
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where W, = {s + iq: |i| = m}, calculated modulo 2N. Our objective is to
show that [W, N A|~ c(2m + 1), on the average, so that the above sum is

grminall Cas

oSillail. JICL

W N A
FE=—"———¢.
s 2m+1

For mg <s <N —mgq, W, forms an AP of length 2m + 1 in [2N]. Thus
|W, N A|<(2m + 1)(c + £) so that E, < . For the 2mq other values of s

we have the trivial bound E_ < 1. We have no good lower bound on E_, as

W, N A= is quite possible. Each a € A appears in exactly 2m + 1 sets

W, so, double counting,

IN-1

WnNnA
Eo’ s l=[Af2m+1=|A|

2m + 1 2m +1 '
Hence the average value of E_,
2N21

E
s=0 ’ — |A| -
2N 2N ’

is nonnegative. Let L~ denote a summation restricted to positive terms.

Th A-
11IC1H]

IN-1 2N -1
> |E|<2 2 E <2(2Ne+2mgq)
s=0 ¢ =0

<d4eN +4mM = 5eN

for N sufficiently large. For a #0, LY, ' ¢(as) = 0 so that

2N-1 IW ﬂA‘ 2N—1

elas) =——| =
2 (as) 55 E e(as)E,
2N-1
< >, |EJ<S5Ne.
s=0
and

m°M 2

| fla)| < 5— N+5Ne

<6eN
(for N sufficiently large) provides the desired upper bound.
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Now w

gates, |g’(—

. As g{a) and g(—a) are compicy conju-

[¢°]
[w)

/\
Q o
e

E*lg'(-a)| =L* g(a)g(—a)

22 5% e(a(v, - v,))

=2Ns <3cN?

as the inner summation in nonzero exactly when v, = v,. We bound

1Ak

< (D2 1@l 27 g

<18ecN” .

Combining this with (1) and (2) gives

N’ < f(0)g*(0)
<|27 fl@g’-a) + |2 fla)gi- )
<3cN’ + 18ecN7,
which is impossible for N sufficiently large

In the first edition we asked if the following result holds. It is a
strengthened version of a conjective of L. Moser and would bear the
same relation of the Hales—-Jewett theorem that Szemerédi’s thecorem

| NP P
vcaid v va

cL
']
-
=
N
o
o]
j
o
wn
-
jan
=
g}
Q
)
a

Conjecture. For all t=2 and & >0 there exists N = N(¢, £) so that, if
n=N and S C C7 has at least £¢" elements, then S contains a line.

This conjecture holds for |A| =2, by Sperner’s lemma on maximal
families of incomparable subsets of a set. it would clearly imply
Szemerédi’s theorem. Very recently H. Furstenberg and G. Katznelson
have reported proving this conjecture, using powerful extensions of the
methods of Section 6.1. Their proof has not yet appeared.

In connection with Szemerédi’s theorem, we remark that Erdos has
conjectured the following stronger result (for proof of which he currently

11 LU 2L VAAsYE A A2iNwaa vuo‘.vl.a.!.lj

offers 3000 U.S. dollars).
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Conjecture E. If A is a set of positive integers satisfying

S L=,

agA a

then A contains arbitrarily long APs.

An affirmative answer to Conjecture E would imply the existence of
arbitrarily long APs of primes.

mIr OTITY

2.6 THE SHELA

H PROOF

In 1987 the Israeli logician Saharon Shelah shocked the combinatorial
world by finding a fundamentally new proof of the Hales-Jewett
theorem, and hence of van der Waerden’s theorem. Shelah’s proof gives
upper bounds for the associated functions HJ(r, 1) and W(k, r) that are
fundamental improvements over the previous proofs—a topic we defer to
Section 2.7. Shelah’s proof unlike that of van der Waerden, does not
require a double induction. The number of colors » may be considered
fixed, but arbitrary, throughout the proof. Indeed, the reader may set
r =2 throughout this section without any loss of the depth and ingenuity

of the argument. Most surprisingly, Shelah’s proof does not reqmre an

claborate technical apparatus but rather is totally elementary in nature.

In this section we give Shelah’s proof of the Hales—Jewett theorem.
The proof will be totally self-contained.

It is convenient to make a slight change of notation from previous
sections and let the underlying alphabet of ¢ symbols be denoted
{1,...,1t}. We define
" = {( c

Y v\-v
oy \Al,...,/\,n}..&‘

(1 11
\is - eayigy

DEFINITION. L C C/ is a Shelah line if there is an ordering of L by

Lisby ..., Lwith ] = (x,,,...,x,,) and there exist i, jwithO0=<i<j=<n
so that
(t—1, sS<1i,
x,(jzj k. i<s<j,
r, J<s.

Example. In all examples in this section we shall set = 26 and associate

{1,...,26} with the English alphabet o/ ={A,B,C,...,X,Y,Z)}
under the usual ordering. With n =9, ;=2 ;=5 the Shelah line L has

J
the form
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Y Y Z2 72 72 Z 7Z Z Z
Y Y Y Y Y Z Z Z Z
Y Y X X X Z Z2 Z Z

Y Y B B B Z Z Z Z
Y Y A A A Z Z Z Z

Here, and throughout this section, parentheses and commas have been
removed for clarity.

We call /=(x,,...,x,)€C] a Sheluh poini if it belongs 10 ~ome
Shelah line. A Shelah point’s coordinates must consist of a (possibily
empty) block of t — 1 followed by a nonempty constant block followed by
a (possibly empty) block of r. Observe that a Shelah point is determined
by i, j,k with O0si<j=<n and 1<k =1t so that C] contains at most

(n+ 1) *
( ) )t Shelah points.

Now suppose #,. . . ., n, are given. n=n, + -+ n_and associate (
with CT' x C? x+--x ). For 1=j=<5 let L, be a Shelah line of (7.
Then we call L, X -+ X L_a Shelah s-space of C.

Example. With n, =5, n,=9
(Y «a a«a Z Z Y Y B B B Z Z Z Z:ia BeEH}

forms a Shelah plane.
Tat - J X---XT —° denote the ¢
AL w. 1_41 N N .l..ds i \/' AW LEIVLW LLdw W

setting @(£€) = a, - - a, Where ¢, is the value of the moving coordinates
the jth block. In the example above

ical icomornhiam oiven hy
AdANCL3 .k’UlllU‘t"lll’.ll blvvll UJ
mn

oY a « Z Z Y Y B B B Z Z Z Z)=ap

property: Let P, Q be any two points of C; that have exactly the same
coordinates except in one position and suppose that in that position they
have values t — 1 and t. Then P and Q have the same color.

DerNITION. A coloring y of C; is called fliptop if it has the following

Example. With s =5 BAZOO and BAYOO have the same color. Also
ZEZAK, ZEYAK, YEZAK, and YEY AK have the same color. YYYYY,
ZYYYY, ZZYYY, ZZZYY, ZZZZY have the same color. No conditions
are made on the color of ERDOS, TETEL, or any word with neither Y
nor Z.
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DEFINITION.  Let L, x -+ x L_be a Shelah s-space with @: L, X---X
L,— C; the canomcal 1som0rphlsm A coloring y of L, X -+ X L
called ﬂlptop if the derived coloring x’ of C; given by y (P) X[qo (P)]
is fliptop.

Example, With the Shela r‘ane givsn above
Y YY ZZYYYYY ZZZZ
Y Z 27 Z ZY Y Y Y Y Z Z Z Z
Y'Y Y Z ZY Y Z Z Z Z Z Z Z
Y 2 Z 72 ZYY ZZZZZ7Z 2z

will have the same color.

The condition for a Shelah line L to be fliptop under X 1s particularly
simple: We require only that the final and penultimate points of L have
the same color.

Example. The Shelah line given above is fliptop if
Y Y Y Y Y zZ Z Z 7
and

Y'Y Z Z Z 7Z Z Z Z

have the same color.

Lemma. Assume n=c. let C! be c-colored arbitrarily. Then there exists
a fliptop Shelah line.

Proof. For 0< i< n define P,=(x,,...,x,) by
_fr=-1, =i,
Xy = t, J>i.

As n + 1> c by the Pigeon-Hole principle some two of these points P,, P,
have the same color. These are the last two points of the Shelah lme
l, 1, with [, = (x, 4n) defined by

12 AR 5, 'Kl"""" (9233 L wi

ft_,]_, s=1
Xpo = k, i<s<j,
l t, ]<S
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Example. With n=c =5 some two of the points ZZ/77 YZZZZ,
YYZZZ, YYYZZ, YYYYZ, and YYYYY have the same color If. say,
YZZZZ and YYYZZ are the same color then L ={Yaa/ZZ «< 4} is
fliptop.

Mighty oaks form little acorns grow, though it did take &0 vears and
Saharon Shelah to find the right acorn!

Theorem 12. Let r, s, t be fixed positive integers. Define n.. .. . n by
!J—l
n,=r
n1+1 —1
rS
n,= r( 2|

4 I'H/nl_-!r-lﬂd_1
= t
! I_]Si K 2 )J
and
A .
n,., =r. Isi<s.
Set n=n, + -+ n,. let an arbitrary r-coloring x of C; be given. Then
there is a fliptop Shelah s-space.
Proof. We associate C7 with C7' X --- X C’ and write a point y € C) as
=Y¥:,....,y, where y, € C}". We define an equivalence relation = on

y=>y
C}* by setting

o=y iff x(yi, oo Yo ¥ =XV Yo Y9)
for all Shelah points y,, ...,y _;

There are at most A, _, choices for y,y,,..., y,_, and hence at most
n, = r*:-t equivalence classes. The equivalence relation = may be consid-
ered an n,-coloring y of C;*. Applying the lemma there exists a Shelah
line L, C C, fliptop under y.

Suppose, by reverse induction, L, L,_,,..., L,,, have been found.
We define an equivalence relation = on C;" by setting y, = y! if and only
if

X(yl""7yi—1’ yi’zﬁ-l"" ’zs)=X(y13‘ "’yi—19 y;’zj+1a- ..,ZS)




n
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for all Shelah points y,,....,y,, and all choices of z,., E
(”1 + 1) _ o
L..\,...,z,€L_. There are 5 ¢ choices for each yi.lsj=si-1

There are only t choices for each z,10 + l=<j=ysasthe hnes L,H, .., L,
have already been determined. (Thxs is an absolutely critical juncture in
the proof as we cannot have n, depend on the later values n[H, S hyg)
Altogether there are A o choices of y,, ... v, 1, 2,,(\... Hence
there are at most n, = r+' equivalence classes so we may cons1der = as
an n;-coloring y of C!. Applying the lemma there exists a Shelah line
L,C Cf", fliptop under this .

We claim that L, X --- x L_is the desired fliptop Shelah s-space. Fix
i,1<i<ys and let y,, vy, be the last two points of L.. By construction
y; =y, and so

J— ! -

X(yl""’yi—lv y,',z,-_”,---,zs)_X(yl,---7_}’,-“1, yf:‘-,+1~'-‘szg)
for all Shelah points y,, s Y,,andall z,,, €L _,, .z, € L. But
for 1<j<iall y, € L, are surely Shelah points and so

J— ?
X2 2o Y Zigs oo s 2) =Xy 2 Y 2 z,)

forall z € L, 1<j<s, j+#i, completing the proof.

, 27+ 1y,
Example. r=2,5=2,1=26. Set n, =2 A= ( 5 )2“h ,=2"
n=n, +n,. Each point of C, may be uniquely written in the form xy

with xE C, y€ CH.

L x I L Y

We first find y’, y" € C72, each of the form Y,..., Y, Z... .. Z so that
xy' and xy have the same color for all Shelah points x € C5i. These
points y’, y” lie on a Shelah line L,

Y Y Z zZz Z=y"

Y. Y Y Y Z Z=y

Y- Y X Xz z
LY Y A AZ z,

L,
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Now we find x’, x" € C3}, eachof theform Y, ... YZ.. . . Z-othatx'y
and x"y have the same color for all y € L,. These points v .+ he on a
Shelah line L,.

Y Y Z zz zZ Y Y Z Z 7 Z-

Y Y ¥ Y Z zZ Y Y Y Y Z Z =

Y Y X—X Z zZ Y Y X—X Z Z

Y Y A AZ zZ, Y Y A AZ Z
Ll LZ

For any y € L,, x'y and x"y have the same color. Fo

£ Qhal : ny 1 "
for any Shelah point x € C}}) xy’ and xy” have t

L, X L, is a Shelah plane.

Lemma. Let s= HJ(r,t— 1) be such that given any r-coloring of C,_,
there exists a monochromatic line. Then under any fliptop r-coloring of
C; there exists a monochromatic line.

Proof. Restricting the domain to C,_, C C, there is a monochromatic
line/,,...,I . Let/ be the point of C; given by setting all the moving
coordinates of the line equal to ¢. Then /,,...,/,_,,{ is aline in C;. The
point /. may be derived from /,_, by changing a subset of the coordinate
values (namely, on the moving coordinates) from r—1 to r. As the
coloring is fliptop each such change on a single coordinate preserves the
color and hence any sequence of such changes preserves the color so that
l._, and I, have the same color. As l,,...,[,_, already have the same
color the set /,,...,{,_,, I, forms a monochromatic line in C;.

Example. Suppose that with ¢ =26, s = 3 under a fliptop coloring ABA,
BBB, CBC, ..., XBX, YBY had the same color. The YBY, ZBY, ZBZ
would have the same color so {aBa:a € %} would form a mono-
chromatic line.

Theorem 13 (The Hales—Jewett Theorem). For all r, ¢t there exists n =
HJ(r, t) so that if C} is r-colored there exists a monochromatic line.

Proof (Shelah). We fix r and use induction on . Trivially we may take
HJI(r,1)=1. Suppose, by induction, s = HJ(r,t—1) exists. Let n be
given by Theorem 12. Given an r-coloring xy of C; there is a fliptop
Shelah s-space L, x - +-x L_. Define the derived coloring x' of C; by
x'(y)= x(0 '(y)) where ¢: L, X---x L —C; is the canonical iso-
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morphism. Then y' is fliptop so by the lemma above there is a mono-
Ch;umat.\, 1111\.« LC C: Then @ (L) C LI XX Ls IS the derived

monochromatic line in C.

2.7 EEEEENORMOUS UPPER BOUNDS

Why is Shelah’s proof of the Hales-Jewett theorem considered an
improvement of fundamental importance. The answer comes from ex-
amining the growth rates of the functions HJ(r, r) given by the proofs of

van der Waerden and Shelah. For convenience we shall look particularly
at the case r = 2. The functions involved grow so rapidly that we must
first discuss a special language—called the Ackermann hierarchy—
devised by logicians to deal with rapidly growing functions.

The Ackermann hierarchy is a sequence of functions fis f5y oo, with
domain and range the positive integers. (There are several equivalent
formulations in the literature; we have chosen a formulation hopefully
more readily comprehen51ble to mathematicians.) The first function, f;,

we call DOUBLE and is defined simply by
fi(x) = DOUBLE(x) =

The second function, f,, we call EXPONENT and may be defined by

SE AN

£.(x) = EXPONENT( x) = 2°
VAR AN

More critical, however, is that we may derive EXPONENT from DOU-
BLE as follows: To find EXPONENT (x) start at 1 and apply DOUBLE
x times. It is this notion of iteration that allows us to describe very rapidly
growing functions. The third function, f,, we call TOWER and is derived
from EXPONENT in the same way: To find TOWER(x) start at 1 and

apply EXPONENT x times. TOWER(x) may be written 2> with x

twos in the “tower,” hence the name. More generally, and formally, we

hence the More generall
define f,,, by
frn(®)=£7(1)

where £ denotes the xth iterate of f- Alternatively, we define f,,
inductively by

fin(1)=2
fae+ D)= £l (0]
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Note that this is really a double induction. By induction on ;. we define
the function f,. With the function f; already defined we then denne £ (x)
by induction on x.

The first few values of f(x) are given in Table 2.1 Nouce that
£,(5)=2%%" is already a number with nearly 20,000 decimal digits. In
comparison, a googol has only 100 digits. The number f.(6) then has
(log,,2)f;(5) decimal digits, far larger than a googolplex. well beyvond any
conceivable physical interpretation. We call f, the WOW funcuon This
fanciful description comes from trying to grasp the magnitude of f.14)—u
tower of twos of size 65,536—what can we say but “oh wow!"”

Diagonalization allows an even faster growing function. The Acker-
mann function, denoted by f, or ACKERMANN, is defined by

f.,(x) = ACKERMANN(x) = f(x) .

A simple induction shows that f.(x) is monotone in both x and i. For any
n if x=n then ACKERMANN(x) =f, (x)>f (x). That is, ACKER-
MANN grows more rapidly than any of the f,. Logicians can prove that
ACKERMANN grows more rapidly than any primitively recursive func-
tion—which means, roughly, that a double induction is essential for its
definition. (To go beyond ACKERMANN, see Section 6.3.)

We say that a function g(x) is a level { function (including i = w) if

el .

there are ¢’, ¢”" > 0 so that for x sufficiently large
fi(e'x) < g(x) <f,(c"x) .

For i=1,2,3,4, w we use the words lirear, exponential towerian, wow-
zer, and ackermanic (the last coined by John Conway) to describe g{x).

Tabie 2.1 Beginnings of the Ackermann Hierarchy

1 2 3 4 5
DOUBLE fi 2 4 6 8 10 12
EXPONENT £, 2 4 8 16 32 64
TOWER L 2 4 16 65536  2°°°%°
WOW f, 2 4 65536 WOW!

fi 2 4 WOW! .

ACKERMANN £ 2 4 16  WOW!
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We may now describe succintly the breakthrough given by the Shelah
proof. All previous proofs to the van der Waerden or Hales—Jewett
theorems gave as an upper bound (with r =2 colors), an ackermanic
function; Shelah's proof gives a wowzer function.

Lets examine the arguments of Sections 2.1 and 2.6 in some detail. Let
W.(r) be the value n given by the proof of Section 2.1 so that if
{1,...,n} is r-colored there exists a monochromatic k-term AP. We
took W,(r)=r+ 1. To find W__,(r) we first set

¢, =2W,(r)—1

so that any block of length ¢, contains a monochromatic k-term progres-
sion plus a (k + 1)-st term. There are 7! ways to color such a block. We
set

c,=2W, (r'\)y—1

so that with ¢, such blocks there would be a k-term progression of
identically colored blocks plus a (k + 1)-st block. That is, we have a level
2 block consisting of ¢, level 1 blocks. More generally, we set

— Yy .
Civ1 =2W (r'y—1, 1si<r

1

so that an (/ + 1)-level block consists of ¢, i-level blocks. We stopped
with a level r biock and set

W, (rN=ci,.....c

r

the number of elements in such a block. (For example, one may check
that W,(2) =5 x 65 =325))

We shall use some rather crude estimates to bound W.(2). First note
that £, (1) =2, f,(2) =4 for all k; f,(r) is monotone in both k and r; and
for x=4, k=3, f,(x) = f,(x) = 5x" with “room to spare,” a euphemism
for “left to the reader.”

Lemma. Forr=2
Llr+ )z Wi(n<fGr-1).
Proof. As W,(r)=r+1 we set
c,=2r+1

¢y =g(c;)  withg(x)=2r"+1,
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and Wy(r)=c, ¢, ¢, =4=f,(2). As
11\ "3\ w L»- " J3\} A

1’ Y17

f3(i +1) so that W. (r) =c, =fi(r

The upper bound holds for r = 2 by ispection. For r =3« = 2" =
foi(r)<f,(r). As all ¢, =r when x = ¢,

.
=

3
-
W

+

X

L4 -~2¥
X t1=4

A
[\
A

g(x)

with “room to spare.” Thus ¢, < f;(a) implies ¢,, , < f;(a +2). By induc-
tion c, = f(?r—’)\ Then

TANSRL A RAW/ER

W, (r)<c <2% (with room to spare)

< f,(3r—1).
Lemma. For k=3, r=2
f(r+ 1)y sW ()= f(5r).

Proof. We have shown this for kK =3. Now assume. by induction, that
the result holds for k. Then

c,zW.(n=f(r+1)
by induction. For each i
a =W (r)y =W (c,)=f(c)
so by induction on i

e, zf(r+1).

W(n=zc,zflr+ )= =" ()= fin(r+1).

For the upper bound

as f(x)>2x. Asc¢,>r
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€, S 2W (r) s2W, (c)
= 2f,(5¢;") (induction on k)
S APATACHI

3r—-1
5x*. Thus ¢, < £ ""(5r) and

Y o
vy . i1 r l} all

Wi(r)sc <f(c,) (with room to spare)

(3r
<f7(5r).
For all r=2, f, ,(r+1)=4r with room to spare so that

W <7 fon(r+ 1) = fo (Ar+ 1) <, (5).
Claim. For k=10
ACKERMANN(k — 2) < W,(2) =< ACKERMANN(X) .
Proof

W, (2) < £,(10) < f, (k) = ACKERMANN(k)
W)= £ G)=f e (DI} = £ (4)
=fi A Sl fi (D)
=fi-a(fi 2(4))

But f,(4) = ¢ with room to spare so
W, (2)=f, _,(k —2)= ACKERMANN(k — 2)

Note that the robustness of ACKERMANN is such that even with
these extremely rough bounds the value of W.(2) is fourd “within 2.”
The appearance of precision is deceptive because of the growth rate of
ACKERMANN—in another sense the bounds on W,.(2) are two full
levels apart.

Now we turn to Section 2.6 and let S(¢) be that number n given by

Shelah’s proof so that if C] is 2-colored there exists a monochromatic

line. The recursion is as follows. Set S(1) = 1. Suppose S(t— 1) =5 has

been defined. Set
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and for 1 =i <ys set

where

n
W)

Finally, set

Sty=n=n,+--+n,.
Roughly, n, will be a tower of size i so that S(¢) will be a tower of size
s = 8(t — 1), hence § will be a wowzer function. When =2, s = §(1)=1.

1

n=n = > =2, (Some two of the points 11,12, 22 are the same color

giving the monochromatic line.) When r=3, s=8(2)=2,n,=2" =8,
+1

A = (8 5 )32 =288, n, =2 §(3)=8+2""

Claim. Fort=3
WOW(1) < S(1) < WOW(t +1).

We first show the lower bound by induction. For =3 it holds by
inspection. Assume it true for t —1 and let n,,...,n, be as defined.
n,=2=TOWER(1). As A,=n,, n,,,=2"% so by induction on i, n,=
TOWERC(i). Thus

S(t) = n, = TOWER(s) = TOWER[WOW(r — 1)] = WOW(¢) .

For the upper bound we prove the stronger hypothesis S(¢) <
WOW(r + 1)/6 by induction on ¢. For t =3 it holds by inspection—indeed
WOW(4) was our “wow!” number. Assume the hypothesis for ¢ — 1.

n,=2"" <s" <TOWER(s)

with room to spare. For any i, bounding ¢ and all n, by n,

n
2 3n, 2
A snn’sn"<2
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M PO, N eims e | Y P
with room to spare. If n, <TOW

hence n, < TOWER(s + 3(s — 1))

7 -~

ER(a) then n,,, < TOWER(a + 3).
TOWER(4s —2) and

S(ty=n, +- - +n,<sn <2 <TOWER(4s — 1)

SAALAVE

[This may be tightened to S(r) < TOWER (s(1 + o(1)), but su

A 72N 1
ences at the TOWER level evaporate at the WOW level.] By induction

o =2 WML . Fd A PRELASTaS

SEWOW(IE+1)/60s045 —-2< WOW(r+1)—1 and

ch differ-

(1) < TOWER(WOW(z + 1) — 1) = log,(WOW(z + 2))
< WOW(t +2)/6

completing the argument,

Striking in these detailed arguments is the robustness of a wowzer or
ackermanic function. One can do *just about anything” to such a
function and it retains its level. Dealing with bounds on combinatorial
functions at this level requires a particular feeling for these functions—
often seemingly gross improvements give no change in the function level.
This robustness had led many mathematicians to speculate that the
Hales—Jewett function was intrinsically ackermanic. In the first edition of
this work we wrote: “Perhaps van der Waerden’s function or. more
naturally, the Hales—Jewett function HJ(r, t) can be proven to grow very
quickly. Such a proof may come from mathematical logicians; indeed,
several logicians believe that a model-theoretic argument is possible.
Perhaps, in some precise way, the Hales-Jewett theorem for r = 2 colors
cannot be proved without a proof for all r." As the time we hardly
imagined that a proof would come from a logician—but a proof that the
Hales—Jewett function was not ackermanic using totally combinatorial
methods!

Let W(k) denote the true value of van der Waerden’s function for two
colors—the least n so that if {1,...,n} is 2-colored then there exists a
monochromatic arithmetic progression with k-terms. The lower bounds
on W(k) (see Section 4.3) are exponential. Shelah’s upper bound (using
the translation from the Hales—Jewett theorem to van der Waerden’s
theorem given in Section 2.2) is wowzer. A large gap still remains. For a
number of years the senior author has had a standing offer of $1000 for a
proof (or disproof) of the following.

Conjecture. W(k)<TOWER(k) for all k .

It was felt that Shelah’s bound was such an improvement over what
was previously available that he was awarded half of the offered prize.
The conjecture is still open, however, and the original prize offer still
stands to anyone (including Shelah) who settles it.
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Further Improvement? Can Shelah’s proof be “tightened™ to give. say a
towerian upper bound to HJ(2, t). If we knew for sure we would rush to
publication ourselves. Still—let’s Speculate'

Let F(d, r) be the least n with the following property. Let y be an
arbitrary r-coloring of all d-tuples:
_1}’2 {x.,,v..‘l_uulx, Voo, =)

L7 (+1> 71+ " " "7 VTt Ol

Here all values lie in {1,...,n}, 1<i=<d, and x;# y forall j =i Then
there exist {x,, y,}, 1<j<d, with x;#y,, all j, so that for each i

xy yids oo {x,_1, Yio1)s X, {Xots Vierds o oo e {xgeyal)

and

({x;, yibs oo Ax s Yio1hs Yis {X, 00 Yierts oo o {xg, ya})

and the same color.

-1

Claim. Let s= HJ(2,t—1). Then HJ(2,1)<sF(s,2" ).

Proof. Setn, =---=n = F(s, ZH_]), n=n, +---+n and fix a 2-color-
ing of C!' = C" x---x CJs. To the d-tuple (*) we associate a Shelah
(s—I) space L, X - ><L41><w><L+1 ><LS as follows. Let w be

the string consisting of z, (t — 1)’s followed by (n, — z,) 's. Forj# ilet L,

be the Shelah line c0n51st1ng of all strings with (letting x; <y, )x; (1 —1)’s
followed by y, — x, k’s and then n, —y, t’s, where k runs from 1 to n.
Induce a coloring of the d-tuples by the way the associated Shelah space
is colored. Since the Shelah space has ¢’ ! points there are at most 2"
induced “colors.” A family {x;, y,}, 1=<j=<d with the given property
then corresponds to a fliptop Shelah s-space L, X -+ X L.
Any roughly exponential bound on F, for example, F(d, r) <2

i1ld translate into a towerian bound on HJ(2 r\ The known upper

would translate into a towerian bound HI(2, The
bounds on F(d,2) (following the proof of Theorem 12—mdeed, thlS was
the original argument of Shelah) are towerian in d.

The function F(2, r) has an interesting interpretation. Let S, be the set
of lattice points (i, j) in th plane with 1<i, j<n. Define the mesh
clique graph G, on S, by letting two points be adjacent if they have either
the same first or the same second coordinate. F(2, r) is then the least n so
that given any r-coloring of G, there is a “rectangle” (i, j), (i, j'), (', j),
(i', j') so that the vertical edges [from (i, j) to (i, j') and from (i', j) to
(i', j’)] are the same color and the horizontal edges [from (i, j) to (i', j)

¢ max(d, r]
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and from (i, j') to (i". j')] are the same color. [The connection is given by
associating ({i,i'}. j) with {(i, j), (i, ])} and (i, {/,j'}) with

{(i, j), (i, j')}.] A polynomial upper bound to F(2, r) might well lead to
a towerian upper bound to HJ(2,¢). Even if not, it is certainly an
interesting problem for its own sake.

REMARKS AND REFERENCES

§81. Proofs of van der Waerden’s theorem are found in van der Waerden
[1927] (the original paper), van der Waerden [1971] (the expository
account), and Graham and Rothschild [1974] (the short proof).

§2. Hales and Jewett [1963] provide the basic reference.

§3. Gallai’s theorem is found in Rado [1933a].

§4. Graham, Leeb, and Rothschild [1972] and Spencer [1979] provide
the original and simplified proofs of the Affine and Vector Space
Ramsey theorems. Cates and Hindman [1975] show that extension
of the vector Space Ramsey theorem to the “‘infinite case” is usually
false. In particular, they show that it is possible to finitely color the
t-spaces of an infinite-dimensional space so that there is no infinite-
dimensional monochromatic subspace.

8§85, Roth’s proof appears in Roth [1952] and Roth [1953]. The full proof
of Szemered1 s theorem is given in Szemerédi [1975]. Moser’s

conjecture appears in Moser [1970)].
86. Shelah’s proof appears in Shelah [1988].



3.1 SCHUR’S THEOREM

In this chapter we prove theorems of the following form: Given any finite
coloring of N, there exist x,,...,x, € N having the same color that
satisfy some prescrlbed condition. Our prototype result was proved by .
Schur in 1916. It may perhaps be considercd the earliest result in Ramsey

theory.

S

Theerem 1 (Schl..r’s Theorem). If N finitely colored there exist x. v.z
S

= »
s¥]
<
K
=
e
HI
=l
[¢]
B
o
o
Q
—
Q
-t
c
e
=
-
0
ja¥]
-

x+y=1z. (1)

Proof. Assume that r colors are used. Let n be such that

n+1—=(3),.
An r-coloring y of [n] induces an r-coloring x* of K, ,, on vertex set
{0, 1, n} by x*(i, j) = x(|i = j|). There must exist a monochromatic

trlangle in K ; that is, i>j>k such that x*(i, )= x*(i, k). Setting
x‘t—l,y—f—k z=1i—k gives x(x)=x(y)=x(z) and x + y = z.

Historical Note: Schur's Paper. Schur’s original paper was motivated by
Fermat’s Last Theorem. He actually proved the following result.

THEOREM. For all m, if p is prime and sufficiently large the equation
has a nonzero solution in the integers modulo p.

Proof. Let p be prime and sufficiently large (using the finite form of
Schur’s theorem) so that if (1, ..., p— 1} is m-colored there exist a, b, ¢

69
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colored identically with a ~ b =¢. Let H={x": x & Z*}; H is a subgroup
of Z7 of index n= gedim. p - 1)<m. The cosets of Z} define an n-

coloring y of Z} with the property that y(a) = y(b) iff ab~' € H. There
exista,b,c€{1,....p— 1} with x{a)=x(b)=x(c)and a+ b =c¢. In Z,

-1 —1
l-a b=a ¢,

and 1,a 'b, and a~ ¢ are all nonzero mth powers in Z,.
Schur never again touched on this problem.

Although the proof of Schur’s theorem is appealing in its simplicity, it will
not serve for the extensions of the result. For this we need a result that
strengthens both Schur’s theorem and van der Waerden’s theorem.

Theorem 2. For all k, r. 5 =1 there exists n = n(k, r, s) so that, if [n] is
r-colored, there exist a, d >0 so that

{a,a+d,a+2d,...,a+kd}U{sd} (2)
1S monochromatic.

Proof. We use induction on r. We may clearly take n(k, 1, s) = max[k +
1, s]. Let W(z, r) be the minimal W such that if [W] is r-colored there
exists a monochromatic arithmetic progression of length ¢. (Here, of
course, we are using van der Waerden’s theorem.)

For given &, r, s we claim that we may take n = sWikn(k, r —1.s),r).
We fix an r-coloring of [n]. Among the first W(kn(k, r — 1, s), r) integers
we find a monochromatic, say red, set

{a+id:0<i<kn(k,r—1,s)}.

If, for some j, 1<j<n(k,r—1,s), sd'j is red then (2) is red with d = jd'.
Otherwise {sd'j:1<j<n(k,r—1,s5)) is (r —1)-colored. Using the
equivalence between colorings of [n] and sd '[r], we find that a mono-
chromatic set of type (2) exists.

Corollary 3. For all k, r, s =1 there exists n = n(k, r, s) so that, if [n] is
r-colored, there exist a, d >0 so that

{a+ Ad:|A|<sk} U {sd) (3)
is monochromatic.

Proof. Apply Theorem 2 with k' =2k, finding a',d’ so that g’ +
Ad',0< A=<2k, and sd’ are the same color. Set d=d anda=a' + kd".
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3.2 REGULAR HOMOGENEOUS EQUATIONS

-t e du Al mAN AASNTLTASNASFIS I SEVR RN DAL E/IR A ERFINY

(RADO’S THEOREM—ABRIDGED)

Let S=58(x,,...,x,) denote a system of equations in the suanables

X,,...,x,. Let A be a set on which § is defined. We ~av that S is
r-regular on A if, given any r-coloring of A, there exist ... 1. = A
(not necessarily dlstlnct) so that S(x,, ... ,xn) holds and x . SV ure

the same color. We say that S is regular on A if it is r-regular for ull
positive integers r. Schur’s theorem states that the condition

is regular on N. Theorem 2 states that, for all k, the condition
X, =x,+d
x,=x, +d
X, =Xx,.,+d

on the variables {x,....,x,,d} is regular on N.

A comprehensive study of regular systems on N was the dissertation
topic of one of Schur’s most illustrious students—Richard Rado.

Theorem 4 (Rado’s Theorem—Abridged). Let S(x,,...,x,) be given
by a single linear homogeneous constraint:

cx,+--+cx,=0, c,€EZ. (4)
Then S is regular on N iff some nonempty subset of the ¢, sums to zero.
Proof. We first assume, reordering for convenience, that
c,t--+c¢. =0,

and fix a finite coloring of N. We need to find a monochromatic solution
to (4). if k = n we may take x;, = -+ = x,, = 1. We assume that ¥ <7 and
set

A=ged(c,,...,c),

B:Ck+1+"'+Cn,

A

A

" ged(A, B)
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(If B=0, ¢,+---+¢, =0 so that X;=---=x,=1 gives a mono-
chromatic solution.) By elementary number theory we find 1 € Z so that
At+ Bs=0

and A, ..., A, € Z so that
Attt A = At
Now (4) has a parametric solution:
_Ia+)t‘.d, Il=si=sk,
X1 \sd, k<i. )

By Corollary 3 we can find a, d so that {x;: 1=<i=<n} is monochromatic,
completing the “if” section of Theorem 4.
We illustrate this method with the equation

X, +3x, —dx;+x,+x,=0.

Here k=3, 4=1, B=2so0s=1,t=-2, and we can take A =2,1,=0,
Ay =1 to satisty ¢ A, + -+ + ¢, A = At. The parameteric solution is then

X, =a+2d,
x,=a,
x,=a+d,
x,=d,
Xq=
We now show the “only if”’ part of Theorem 4. Let ¢,...,c, be fixed

with no subset summing to zero. We shall give a coloring of Q — {0} so
that (4) has no monochromatic solution.

We introduced a special coloring of Q — {0}. Let p >0 be prime. Any
q € Q — {0} may be uniquely expressed as

J
q:l%a JEZ,a€Z bEN, ged(a, b) =1,

pta, ptb.

We define rank(q) to be the above-determined J, and we define the
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", by
a

F.(q)= b (modulo p). (6)

[For example, F,(2)=3 =2.] F, is 2 (p —1)-coloring of Q — (11! Note

that F,(x) = F,(y) implies that F,(ax) = F,(ay) for all a € O — 11,

Claim. Assume that p, a prime, does not divide the sum of any
nonempty subset of {c;:1<i=<n}. Then (4) has no monochromatic
solutions with the smod p coloring.

The claim clearly implies Theorem 4 since some prime p will not divide
any of the (finite number of) nonzero sums of {c;}.

We assume to the contrary that x,, ..., x, forms a monochromatic
solution to (4). For all p € Q —- {0}, ux,, ..., pux, also forms a mono-
chromatic  solution. We may thus assume that all x &€
Z, ged(x,,...,x,)=1. We reorder so that p+x,, 1<isk: plx. k<
i=<n. Here k= 1 by the relative primality (k = n is p0531ble) We reduce
(4) modulo p:

where a represents the residue class of 4 modulo p. 1! X; for
k < i< n by assumption. Since the x, are the same color the x;, 1 <i=<k,
arec equal. Thus
n k k
0= c,x,=zc, I=(E cl)x,
i=1 i=1 Ni=1
k - ~ .

Since -’11 = U, and y is }thuc, i=1 C U, contrary ssumptions

8

3.3 REGULAR HOMOGENEOUS SYSTEMS (RADO’S THEOREM
COMPLETE)

We now consider the regularity of systems of linear homogeneous equa-
tions. The results are equally complete.

DEerINITION. A matrix C = (c,) is said to satisfy the Columns condition if
one can order the column vectors ¢, ...,¢c,and find 1 sk, <k, <---<
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k, = n such that, setting

(ii) for 1<i=1r A, may be expressed as a linear combination of
T T
Theorem 5 (Rado’s Theorem). The system Cx =0 is regular on N iff C
satisfies the Columns condition.

If C has only one row, that is, a single linear homogeneous equation,
then Theorem 5 reduces to Theorem 4.

The “only if”” section of Rado’s theorem involves examining only the
smod p colorings. We can state Rado’s theorem in an alternative form.

Rado’s Theorem (restatement). The system Cx = 0 is regular iff for every
prime p there is a monochromatic solution under the smod p coloring,

Lemma 6. Let A,c,,...,c, € Z" Suppose that A is not in the vector
space (over Q) generated by the ¢,. Then, for all but a finite number of
primes p, A cannot be expressed as a linear combination of the c,
(modulo p). Moreover Ap cannot be expressed as a linear combmatxon
of the ¢, (modulo p™ ") for any m = 0.

Proof of Lemma 6. Since A is not in the vector space generated by the ¢,

Qs T 1
we find, by linear algebra, u€ Q" so that u- 2,=0,1<i<k, and

u-A=0. Mulnplymg u by a suitable constant, we may assume thatu € Z’
and urA=s€ Z - {0}. Now

Ap" =cx, + - +¢.x, (modulo p™*")

implies that

k

Spm — U'Apm - z (U'C,-)xk ={) (mOdUIO pm+1)
1=1

so that p|s, which holds for only a finite number of primes p.
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Fix a matrix C. For every subset {c,,...,¢,} of the column vectors
such thate, + -+ +¢, #0, let E(c,, . . ., ¢,) denote the sct of (exception-
al) primes for which ¢, +---+¢, =0 (modulo p). For cvery set

{e,,...,¢,,A}, where the ¢ are column vectors, and A=¢c, . - -~ ~¢
for some other column vectors ¢ and A is not a linear combination ot the
¢,,....¢;, let E(c,,...,c.;A) denote the set of primes for which ApT s
a linear combination of ¢, . .., ¢, for some m.

Let E denote the union of all E(¢,,...,c,)and E(c,.... .c A1 £

a finite union of finite sets and therefore finite.

Lemma 7. Fix C. Let E be as defined above. Let p be prime. p & £. It
Cx = 0 has a monochromatic solution under the smod p coloring then ¢

s condition.

@

o
3

=3

Proof of Lemma 7. Let x,...,x, be a monochromatic solution.

Reorder by rank (modulo p) so that

n

rank(x,) = m, , l=sis<k,,
m,., ko <isk,,
m k . <i<k

3R]

rank(x

Let a be the common color, so that all x, = ap ' + higher order terms.
For convenience we may assume that m, = 0 by replacing all x; by x, p ™™
We write the system Cx=0 as

cx, +-+c,x,=0.
Reduction modulo p gives
(¢, +---+4c,)a=0 (modulo p)
so, as p € E(c,,...,¢p),
c,+--+c,=0.

For 1 <j=<t, reducing modulo p gives

ko
2 ¢x, +ApMa=0 (modulo p™™"),
i=1

where

A=2, c, the summation over k,_, <i<k,.
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Q 1

Dividing by a, we find that Ap™ is a linear combination of c,, . . S,
(modulo p™™'} so. since p¥E, A is a linear comblantlon of
Coevns €

Smce thls holds for 1< j=1, C satisfies the Columns condition. This
completes Lemma 7 and therefore the “only if” section of Rado’s
theorem.

[ b
The “if” section

= za i1

interest in their own right.

y
el
o]

o

o

[and

" ran:--rnn Qi svealiaea i ol o f

Theorem 8. lLet G(x,,...,x,)=0 be a linear homogeneous system of
equations that is regular. Let M >0 be fixed. If N is finitely colored there
exist x,,....x, satisfying G and d >0 so that all

x,+Ad, 1sisn|A<sM, (7)

are the same color.

Proof. Fix the number of colors r. By the Compactness principle there
exists R so that any r-coloring of [R] yields a monochromatlc solution of
system G. Let x be an r-coloring of N. Define an r -colormg x* by

* v . o . .
x*e)=x*(B) iff x(ai)=x(Bi) forl<i<R.

A

e’

Q
[o]

—

et 1 = MR" . By van der Waerden's theorem find a monochromatic AP
of length 27 + 1 under y*; that is, there exist @ and e such that

x*(a + pe)= constant . lu|<T. (9)

The r-coloring x of a[R] yields, by homogeneity, a solution ay,,...,ay,
(v, €[R]) with x(ay,) = constant. Now set

x,=ay,, I=si=n,
d=ey,
where y = lem(y,, ..., y,). Then, for |[A|<M

-
x,-=/\d=ay,.+,\ey=y,.[a+)te

o
=

~ ~

| I— |

5

)| = x@

Here |Ay/y.|<MR"™' =T so, by

i o

9

e’

RS

X*[a + Ae(

=
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and therefore

which is constant, independent of i.

An example should help to illustrate the beautiful ideas underlving
Theorem 8. Suppose that r =2, R =10. We define a 1024 = 2" -coloring
of N, coloring i with the color of i[10]. We find an “enormous AP under
this coloring, say

S =1{10"-300,..., 10° —3,10%10° +3,...,10° + 300,

Now, in the coloring of [10] given by the coloring of s[10] for all s € §. we
find a solution, say y, = 2,y,=3, y,=5 of G. Then x, =2-10".

3-10° x,=5-10" is a monochromatic solution. Each x; is in the mlddlL of
an AP of length 200. Unfortunately the progressions have different

SRR AR LY LN § LW 15 adll)

periods—6, 9, and 15, respectively. Fortunately they have a common
perlocl iem(6,9, 15) = 90. We set d = 90, and since the AP § was “enorm-
ous” we can take M ‘“large.”

Corollary 85. Let G(x,...,x,)=0 be a linear homogeneous system
of equations. The following are equivalent:

(i) Under any finite coloring of N there exist distinct x,, . . . , x,, of the
same color satisfying G(x,,...,x,}=0.

(ii) The system G(x,,...,x,)=0 is regular on N, and there exist
distinct A,, ..., A, € Z such that G(A;,...,A,)=0.

Proof. Clearly (i)= (ii). Let A, ..., A, be distinct integers satisfying
G. Let K=max,_,_,|A,|. Under any finite coloring of N we find, by
Theorem 8, x,, ..., x, satisfying G and d >0 so that all

x, + Ad|A| < Kn®

are the same color. For all u, || < n’ the values

| —
x'=x,+ prd
ki L. T N . Y - . - v! = 1!
satisfy G(x, , X0 )= G(x,, s X, )+ wdG(A, , A,)=0. Ifai—”
ny
el o Y SN - XIS o PRI . ~w o 11 n Paarats {
then p =(x, —x,)/(A; — A;)d is determined. For all but at most \y )/

e
values of u, all x; # x}. This is the desired distinct solution.
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Corollary 9. Let G(x,....,x,)=0 be a linear homogeneous system of
equations that is regular. Let M >0 and ¢ >0 be fixed. if N is finitely
colored there exist x,, ..., x, satisfying G and d > 0 such that ail
x, +Ad, I<i=sn|A<M, (10)
and
cd

have the same color.

Proof. Corollary 9 will follow from Theorem 8 in much the same way as
Theorem 2 follows from van der Waerden’s theorem. We use induction
on the number of colors r. We assume that there exists T = T(r—1,M,s)
so that if [T] is r-colored there exist x,, ..., x, satisfying (10). Given an
r-coloring of N, we find, by Theorem 8, Xy, ..., x, satisfying G and

I’ ~ e

a’ > U such that ali
x;+Ad',  |A=TM,

are the same color. If any ucd’, u < 7T, has that color we set d = pd' to
satisfy (10). Otherwise cd'[T] is (r — 1)-colored so that (10) is satisfied by
induction.
The critical conditions on G in Theorem 8§ and Corollary 9 are
regularity and homogeneity. Call a family s/ of finite subsets of N
homogeneous if A€ &, a€ N imply a4 € o, and call « regular if,
whenever N is finitely colored, there exists a monochromatic A € «.

Corollary 9'. Let & be homogeneous and regular, M, c>0. If N is
finitely colored there exist A € &/, d >0 so that all
a+Ad, a€A|AN=sM,
and
cd

hav the same

LAY ¢ L)

The proof is identical to that for Corollary 9, replacing “solution to G”
by “member of &.”
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Regular Homogeneous Systems (Rado’s Theorem Compiete)
Now we introduce some notation due to W. Deuber.

DEFINITION. ={(A,...sA,q) some A, 7 0. the nist nonzero
A, = c, all other |A,|<p}.
A set S of positive integers is called an (m, p, ¢)-sct 1t

m+1

< |
:i %‘l /\:yr: (Al’ R4 /\m+1)ENm.p.Lj
for some y,,...,y,>0. For example, {x,x+d,x—d. v~ ld 1~
2d,d} is a (1,2, 1)-set.

Theorem 10. For all m, p, ¢ >0, if N is finitely colored there exists
monochromatic (m, p, c)-set S.

Proof. We have shown this result for m =1 in Theorem 2. Assume the
result for m, p, ¢ so that the family & of (m, p, c¢)-sets 1s regular and.

clearly, homogeneous. By Corollary 9’ the result now holds for (m —
1, p, c)-sets so by induction we are finished.

Completion of Rado’s Theorem. If C has the Columns condition then
the system Cx =0 is regular.

Proof. We show that if C has the Columns condition then the equation
Cx =0 has a parametric solution

X, = )‘iiyl Tt 'A'inyn ;
where all A, € Z and, for each i, the first nonzero A, , equals ¢, a constant
As the general case involves cumbersome notatlon yet is quite elemen-

tary, we shall only illustrate it with an example:

X, — X, +3x, + x5 =0,
2x,—2x, +2x; +4x, +x,=0,
3x, = 3x,+ x;+8x,+ x5 =0.
Here
¢, =(1,2,3),
c,=(—-1,-2,-3), A, =¢ +¢c,=0
c,=(3,2,1),
c,=(0,4,8) A,=c¢,tc,=3¢c,,
¢, =(1,0,1),
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Now we may read off

( 0,0)
.’091,'1)

as rational solutions to Cx=0. We multiply each vector by 4 so as to
make all coefficients integral and the “leading” A; = 4. Then

x1:4)’1—12}’2_ Y3

X, =4y,

X3 = 4y, = ¥,
X4 = 4y,

Xs = 4y,
Xe = 4y,

is a parametric solution of the desired form.

Let C be any matrix satisfying the Columns condition. Let p=
max|A,|; m, ¢ be as above. Any finite coloring of N yields a mono-
chromatic (m, p, c)-set that contains a solution to Cx = 0.

Much as Rado’s dissertation extended Schur’s work, the 1973 disserta-
tion of Deuber extended and polished Rado’s results. Recall that a
system of homogeneous linear equations G is called regular if every finite
coloring of N has a monochromatic solution to G. Now call a set A CN
large if every regular system G has a solution in A.

Deuber proves that A is large iff A contains (m, p, c)-sets for all
m, p, c. We have already given the main ideas. The condition is neces-
sary since an (m, p, ¢)-set may be expressed as the solution of a
homogeneous G. It is sufficient, as any regular system G may be
parameterized so that solutions to G are contained in some (m, p, c)-set.

Deuber goes on to show that, for all m, p, c and r, there exist M, P, C
so that an r-coloring of an (M, P, C )-set always contains a mono-
chromatic (m, p, c)-set.

Deuber then shows (proving a conjecture of Rado) that the large sets
have a surprising partition property. If A is largeand A=A U---U A,
then one of the A, is large. In particular, if N is finitely colored there
exists in one color a solution to all regular equations. These results are
not proved in this book.

Deuber has examined the regularity of systems of homogeneous linear
equations over arbitrary Abelian groups. (Here we assume that the
identity is not colored.) We defer his results to Section 5.4,
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3.4 FINITE SUMS AND FINITE UNIONS (FOLKMAN'S THEOREM)

Rado’s theorem completely determines the regular systems of homoge-
neous equations. One special case is of particular interest.

DEerFINITION. Let SCN.

P(S) is called the sum-set of §. For example,
?({2,3,7})=12,3,5,7,9,10, 12} .

Theorem 11 (Folkman’s Theorem). If N is finitely colored there exist
arbitrarily large finite sets § such that 2(S) is monochromatic.

Folkman’s theorem may be derived as a corollary of Rado’s theorem.
It is equivalent to the regularity of the system

xT=Ex{,}, J# T C|k],

which satisfies b elementary,

danan Satede

Rado’s theorem. However, th result is of sufficient spemal mterest that
we shall give a different proof. Although this result was proved indepen-
dently by several mathematicians, we choose to honor the memory of our
friend Jon Folkman by associating his name with the result.

CD:D

We shall a\.t'\lall_y pIrove Folkman’s theorem in the funo‘v‘v’xng “finite”’
form: For a sequence {a,} and a finite nonempty set I, let a(l) denote

Liesd;

Folkman’s Theorem (restatement). For all ¢ and there exists M = M(c, k)
so that, if [M] is c-colored, there exist a,, . . , a, so that all a(/) arc colored
identically.

The following critical lemma is based on van der Waerden’s theorem.
Let W(c, k) denote van der Waerden’s function, where c is the number of

Lemma 12, For all ¢, k& there exists n=n(c, k
c-colored, there exist a,<a,<--<a, with all a(]) < n SO th

of a(l) depends only on max(l ).
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P. prove the existence of n(c, k) for ali ¢ by induction on k. For
k=1 (even k =2) it is trivial. We claim that we may take n = n(c, k +
1) =2W(c, n(c, k)). Let a c-coloring of [n] be given. By examining only
{n/2+1,...,n} we find a, ,,d with n(c, k)< a,., (actually n/2<
a,.,) so that

{a, , +Ad: 0= A= n(c, k)}

is monochromatic. say. red. Now, identifying d[n(c, k)] with [n(c, k)], we
can find a, <--- <a,. all g, divisible by d and their sum at most dn(c, k),
so that {a,..... a,} satisfies the induction hypothesis. Consider A =
{a;,....a.,,}. For j<k+1 the a(/) where max(I)=; are mono-
chromatic by the induction hypothesis. If max(/)=k + 1 then a(l)=
a,., + Ad. where 0 < A< n(c, k), so that a(I) is red. Thus A satisfies the
induction hypothesis for k + 1, completing the induction.

Proof of Folkman’s Theorem. Our lemma allows us to use the Induced
Color method. We take M = M(c, k)= n(c,(c — 1)k +1). Given a c-
coloring on {M], we find a, < - < A(.—1yk+» Satislying the lemma. Now
we define a coloring on [(¢ — 1)k + 1] by coloring i with the color of all
a(l), with max(l)=i. By the Pigeon-Hole principles we find a subset
S C[(c—1)k +1], |S| = k, monochromatic under the induced coloring.
We set A={a;: i€ S§}. Then P(A) is monochromatic.

Folkman’s theorem has an analogue in set theory, with set union
taking the place of sum. Call a family of sets & a disjoint collection if the
elements of & are pairwise disjoint finite sets. Write 9 = {D,},_,, where I
is a finite indexing set. Let FU(Z ) denote the family of all finite unions of
the D € &, that is,

FU(@)I{U D:O#TCI, Tﬁnite}.

Mer

1

Let 2(X) denote the family of nonempty finite subsets of X, and let P,

denote P([n]).

Theorem 13 (Finite Unions Theorem). If the finite subsets of N are
finitely colored there exist arbitrarily large & so that FU(2) is mono-
chromatic. Again, we shall prove the finite form.

Finite Unions Theorem. For all k, ¢ there exists F = F(k, ¢) such that,
if n=F and P, is c-colored, there exists a disjoint collection & of

cardinality k£ such that FU(9) is monochromatic.
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show that Folkman’'s theorem and the Finite Unions theorems are
equivalent in the imprecise sense that each can be quickly deduced from
the other. There is a natural correspondence between N and .#( N ). given

We shall outline two proofs of the Finite Unions theorem We first
3

Assuming the Fini e Unions theorem, we shnw that M(k.c)=2"" A
c-coloring of [27*} corresponds under ¢ ' to a c-coloring of #, in
which there is a disjoint collection & of cardinality k. For which FL ( VAR
monochromatic. But union of disjoint sets corresponds, under ¢. to
addition of integers so that, in the original coloring, all finite sums of

o (7
\9) are the same color.

The converse is less obvious. Assume Folkman’s theorem, and fix . c.
Select F so large (by Chapter 1, Theorem 10) that if n=F and #, is
c-colored there exists B C [n), |B| = M(k, ¢), where, for 1 <i< M(k. c).
[B}' is monochromatic. For such F and’a coloring of #,, n= F, we find B
as above. We define a coloring on [M(k, c¢)] by giving i the color of ail
X €[B]" In the induced coloring we find a,, . . ., @, so that all finite sums
are monochromatic. Now we simply set @ = {D,, ..., D, }, where the D,
are pairwise disjoint subsets of B with |D | = a,. Any finite union of the
D, is a subset of B so that its cardinality determines its color. But the
cardinality of a finite union of disjoint sets is just the finite sum of the
cardinalities so that, indeed, FU(2) is monochromatic.

A second proof of the Finite Unions theorem is based on the Hales-
Jewett theorem. The vertices of the n-cube [0, 1]" may be placed in a
natural correspondence with ?,. We then interpret the Extended Hales—
Jewett theorem (Chapters 2, Theorem 7) as follows: For all k, ¢ there
exists n so that, if the subsets of [n] (including the null set) are c-colored,
there exist disjoint A,, A4,,..., A, so that all

Ic(1,...,k}

are monochromatic. If A, were the null set we would be finished.
However, the result obtained above bears exactly the same relation to the
Finite Unions theorem as van der Waerden’s theorem does to Folkman’s
theorem, and the proof follows exactly the same lines. We omit the
details.

We may replace adding by multiplication in Folkman’s theorem.
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P(S)= s, g, =0,1;e =1

(11 . for a finite nonzero |
| Lt s number of s

For example, 2'({2.3,7})=1{2,3,6,7, 14,21,42}, the set of finite
products.

s finitely colored there exist arbitrarily large S such

1
1ochromatic,

114k

Theorem 14. If N
that 2'(S) is mono
Proof. 'We need only examine the coloring of {2": n = 1}. Here multipli-
cation mirrors addition (recall that ancient instrument—the slide rule) so
this result is a corollary of Folkman’s theorem.

Conjecture. If N is finitely colored there exist arbitrarily large S so that
P(S)U 2'(S) is monochromatic.

This conjecture has proved surprisingly intractable. Even for 1S1=21t
IS an open question whether, if N is finitely colored, there must exist a

monochromatic {x, y, x + y, xy}. N. Hindman has given a 2-coloring of
N for which no infinite § exists with 2(S) U #'(S) monochromatic.

3.5 INFINITE SETS OF SUMS (HINDMAN’S THEOREM)

It was natural to ask, and was conjectured for some time, whether Folk-
man’s theorem could be extended to infinite sets . An affirmative answer
is given in the next theorem. Although this infinite result is technically
beyond the scope we have set for this book, we believe that the result and
proof are so interesting as to warrant this exception.

Theorem 15 (Hindman’s Theorem). If N is finitely colored there exists
§ C N S infinite, such that 2(S) is monochromatic.

We emphasize that Hindman’s theorem is not a corollary of Folkman’s
theorem. Compaciness does not work “in reverse’’; the existence of finite
arbitrarily large monochromatic structures does not imply the existence of
infinite monochromatic structures. For example, if N is finitely colored
there does not necessarily exist an infinite monochromatic arithmetic
progression.

This result is due to Hindman. The proof was greatly simplified,
though the same basic ideas were used, by J. Baumgartner, and it is his
proof we present. In Sections 6.1 and 6.2 we give alternative proofs
involving noncombinatorial methods.
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In proving Theorem 15, Baumgartner considers a set-theoretic Ramsey
theorem. We shaii cnange our notation buguuy from the finite results.
Call % a disjoint collection if & is an infinite collection of di~joint finite

sets, and let FU(QD) denote the family of all finite unions of clements of 7

Theorem 16. Let [N]™“ = %, + ---+ %,. Then there exist ] <: <& and
a disjoint collection & with

%, D FU(D).

Theorem 16 implies Hindman’s theorem by a use of the canonical
bijection between N and [N]“, letting n=1 ¢2' correspond with
{i: &; = 1}. The proof of Theorem 16 will require a sequence of lemmas.

On the class of disjoint collections we define a partial order < by
D, < P iff @, C FU(D). The crucial definition is that € is large for s it
€N FU(9,)#C for all 9, < 9.

Remarks
.-..!/1 < bl/ llllplle I’U(le)
€ large for ¥ and &, < &% 1mply {51 large for &
FU(9D) is large for J. In particular, [N] “is ldrge for [N]".
€ is large for @ iff € N FU(D) is large for &
€ large for ¥ and € C €' imply €’ large for &

Lemma 17 (Decomposition Lemma). Assume that € is large for & and
f@ €, + ++ €,. Then there exist 1<i<k and %, <% so that €, is

Proof. Let k=2. If 4, is not large for & then €, N FU(D,)=O for
some %, < @. For any 9, < %,, € N FU(2,) # D so that €, N FU(%,) #
& and hence 4, is large for 2,.

The general case follows by induction.

Theorem 18. If € is large for & there exists @T<@ so that € 2
FU(2?Y).

T
The proof requires a scries o

1mphes Theorem 16. Let [N] Y=€ 4+ ‘€k. Since [N]~“ is large for
[N]' there exists @ <[N]' and i so that €, is large for &. Theorem 18
then implies €, D FU(9,) for some 2, < %. Define
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Lemma 19. € large for & and S finite imply € — § large for 9.

ose that f? <% with (€ — S)ﬂF T(w])——x} Let .-.JJz

{(DEZ,:.DNS=0C). (EZ2 is infinite since S is finite.) Then €N
(%,) =4, but r. < %, and we reach a contradiction.

e
c
o~
S
3=
p——
I

Lemma 20. Assume € large for &. There exists S€ FU(%), 9, <
% — S, so that

€ ={Te€: TNS=J, TUSE ¥} is large for 2, .

Proof. There must exist n, D,,..., D, € 3@ disjoint so that, for every
D, ., € FU(Z) disjoint from D, U---UD,, some D, , U D, E € (where
IC{l,... . n}, 1+, and we define D, = U ,_,D,). Otherwise we could
construct & ’={D[,D2,. .} so that %OFU(@ )= and never get
“stuck.” We fix n, D,...,D,D*=D U- "UD,. For J#1C
{1,...,n} we define

={CEC:CND*#J, CUD,E¥€}.
The €, give a finite decomposmon of € — D*, and € — D* is large for

g — D* so some €, is large for some B, <D—D*<G — D,, implying
the lemma with § = D,.

Lemma 21. Assume that € is large for %. There exists S’ € € N FU(%),
D' <%, so that

€' ={TEC:TNS' =L, TUS' €€} islarge for ¥'.
Proof. The requirement S’ € € distinguishes Lemmas 21 and 20. We
apply Lemma 20 repeatedly. Beginning with €, = €, 9, = 2, we find, for
i=1,8,%€,9 with S, , € FU(Z,) so that
€. ={TEC:TNS,, =, TUS,,,E¢E)

is large for %,,, <Z,and DN U'_, §, = Qﬁ for all D € FU(9,,,). The §,
form a disjoint collection SO we ﬁnd <o <i,,

§'=S, U---US €%
Now, if 7€ 6, TUS’E%(by the definition of the €, T U § € ¥ for all

partial unions S of the Sip s S;), and Lemma 21 holds with &’ = QD
as €' D C@
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Proof of Theorem 18 (and hence Theorems 15 and 16) By repeated

applications of Lemma 21 we find ', €', @' so that '~ =+ =~ FL{7")

nAd
anad

ot +1 1+ 1 i+1 i
€ €

o

I, T C T C i Varae foyr
MY BN ) U } is large tor

—_Ir — X
={1 & =, =

Then @* ={S', §% ...} is the desired set.

The resuits on nonhomogeneous linear systems are far simpler than those
for the homogeneous case. We express our results in a fashion that will be
particularly appropriate for Section 5.6. We restrict our attention to u
single equation; the straightforward generalization to systems can be
found in Rado’s original paper.

Lemma 22. There is a (2n)-coloring y of O so that

L=

(yo—y)=1 (1)

has no solution with y(v )= x(y!). 1=i=n.

Proof. Define y by setting, for O0sj<2n—1,

-5

x(y)=7j if’ytL4m+ =.2m+

—,

=
=

Then x(v,) = x(y') implies that y, — y/=2m, +©,, |0, <n"’, so

(y,—y)=22m+0,

=1

L0=

where
®=i®i and |(é)|<§1 ©,]<1.
Theorem 23. Let Q be any field of characteristic zero, ¢;,...,c,,bE
Q, b#0. There is a (2n)"-coloring x* of {1 so that
> c{x,—x))=b (13)

=

—

has no solution with x*(x,) = x*(x}), 1si=n.
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Proof. Considering {} as a vector space over J, we may find a linear
mapping

Y: Q= Q,

W(b)=1.

Define x by (12) and y* by
X*a@)=x"(B) iff x(y(c;a)) = x(¢¥(c,B)) forl<i<n.

Then x* is a (2n)"-coloring of . If (13) holds with x*(x;) = x*(x)),
1=<i=n, then

Z [d(cx,) — dlcx)Dl=w(b)=1,

and x(¢(c,x;)) = x(¢¥(c,x})), 1 <i<n, contradicting Lemma 20.
The proof of Theorem 23 involves the Axiom of Choice (to find ).
For {} = R, Lemma 22 may be extended directly.

Corollary 24. Let () be a field of characteristic zero. The equation
CXptCx;+---+c,x, =b, c,beQ, b#0, (14)
is regular on £ iff £ ¢, #0.

Proof. It L' jc,= A#0 then x, =---=x, =b/A is always a mono-
chromatic solution to (14). If £7_ ¢, =0 then (14) becomes X7, c¢,(x, -
x,) = b so that there is no monochromatlc solution under the (2n)

* 712
coloring x* of Theorem 23.

REMARKS AND REFERENCES

§1. Schur [1916] provides the original reference. Mirsky [1975]
gives a tribute to Schur and an overview of the work on Schur’s
theorem.

§2,3,6. See Rado [1943] and also Rado [1933a], [1933b}, [1936], and
[1969], as well as Deuber [1973]

Independent proofs of Folkman’s theorem are given by Sanders
[1969] and Rado [1969].

§5. Hindman [1974] and Baumgartner [1974] present proofs of

Hinderman’s theorem. Milliken [1975] gives an interestin ing

generalization,
§6. Straus [1975] extends these results to arbitrary Abelian groups.

urn
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Numbers

Most of the results of Chapters 1-3 state that an r-coloring of any
sufficiently large structure contains a monochromatic substructure of a
certain size. In this chapter we concern ourselves with precisely how large
such a structure need be. To the existential results of the preceding
chapters we associate functions. Evaluation of these functions has proved
to be extremely difficult. Our best results, for Ramsey’s theorem itself,
are still far from the original expectations.

4.1 RAMSEY NUMBERS—EXACT

A prodigious amount of effort has gone into finding the exact values of
the Ramsey function R(k,!/) for small values of k,/. [The Ramsey
functions are defined in Section 1.1. In graph-theoretic terms R(k, [} is
the minimal n so that any graph on n vertices contains either a clique of
size k or an independent set of size 1.] In 1955, R. E. Greenwood and A.
M. Gleason found the vaiues for (k,[)=(3,3), (3,4), (3,5), {(4,4).
[Trivially, R is symmetric and R(k,2) = k.] Since then, only two other
exact values have been found. Table 4.1 gives all known exact bounds
and some upper and lower bounds on the function R. It is unlikely that
substantial improvement will be made on this table. Even evaluation of
R(5,5) appears well beyond current man-machine capabilities.

Proof 1 of Ramsey’s theorem—abridged (Chapter 1, Theorem 1) gives

Rk, )< R(k,[— 1)+ R(k —1,1). (1)

A close examination reveals a slight improvement. Let n = R(k, [ — 1) +
R(k—1,1)—1. If [n]® is 2-colored with neither a red K, nor a blue K,
then each point x is connected to the remaining n — 1 points by precisely
R(k—1,1)~1 red lines and R(k,!—1)—1 blue lines. Hence the total
number of red lines is exactly n(R(k —1,1)—1)/2, which must be an

89
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Table 4.1 The Ramsey Function R(k, /)

B

3 4 5 6 7 8 9

6 9 14 18 23 28/29 36
18 25/28 34/44
43/55 51/94
102/178

N s W

integer. This is impossible if R(k —1,/) and R(k,!— 1) are even. Thus,
in that case, inequality (1) is strict.

The foregoing arguments are sufficient to give the upper bounds for
R(3,3). R(3,4), R(3,5), and R(4,4). More precise techniques are
required, however, for larger values. A lower bound R(k, ) > n requires
the construction of a graph on n vertices containing neither k-clique nor
l-independent set. For these four values the graphs are given in Fig. 4.1.

These graphs have considerable structure. In Fig. 4.1d, the vertices are
Zy;and {i, j} is an edge iff / — j is a square in Z,,. Figure 4.1a is defined
identically over Z;. In Fig. 4.1c, the vertices are Zyand {i, j} is an edge
iff i — j is a cubic residue. Figure 4.1b consists of the vertices of Fig. 4.1¢
not adjacent to 0.

These resuits were all known to Greenwood and Gleason. Many
unsuccessful efforts were made to extend them. It appears likely (though
not certain) that the structure of these maximal Ramsey graphs is illusory.
Perhaps combinatorialists have again been victimized by the Law of Small
Numbers: Patterns discovered for small k evaporate for k sufficiently
large to make calculation difficult.

When the number of colors is arbitrary. the proof of Ramsey’s
theorem gives

Rk, o k) <2+ 2 [Rlky, .o ko k= Lk, k)= 1], (2)
i=1

Since R(k,, k,,2) = R(k,, k,), this implies that R(3,3,3)<17. Green-
wood and Gleason define a 3-coloring of K, labeling the vertices by
GF(16) and coloring {«, B} by the cubic character of a — 8. They prove

that there are no monochromatic triangles; hence R(3, 3, 3)=17. This is
the only nontrivial Ramsey number known for more than two colors.
In Section 1.2 we defined R, the Ramsey function for coloring
s-tuples. For s >2 no exact values of R, are known. The first nontrivial
case is R;(4): the minimal n so that, given any 2-coloring of [#]’, there

exists a four-element set all of whose three-element subsets are the same
color. The best bounds as of this writing are 13 < R,(4)=15.
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(@) R(3,3)>5
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(b) R(43)>8
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(¢) R(53)>13

n

(d) R(4,4)>17

Figure 4.1 Small Ramsey graphs.
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4.2 RAMSEY NUMBERS—ASYMPTOTICS

From recursion (1) we may derive
k+1-2
R(k,1 s( ; (3)
(k= (*r12) 3
so that R(k) < c4*k™""% The second proof of Ramsey’s theorem gives
only R(k) < c4*. (In this section ¢ denotes an appropriate constant.) For
the lower bound we use an Existence argument. This method of proof,
also called the probabilistic or nonconstructive method, enables one to
prove the existence of finite structures having certain properties without
actually constructing the structures themselves.

Theorem 1. R(k)> k2"*[(1/eV2) + o(1)).

Proof. More precisely, we show that if

(2)21‘(5) <1 (4)

then R(k)>n; that is, there exists a 2-coloring of K, without mono-
chromatic K. Consider a random 2-coloring of K, where the color of
each edge is determined by the toss of a fair coin. More precisely, we
have a probability space whose elements are the 2-colorings of K, and
whose probabilities are determined by setting

P[{i, j} is red] = ; (5)

for all i, j and making these probabilities mutually independent. Thus

there are 2(2) colorings, each with probability 27(2). For any set of
vertices S, |S| = k, let A denote the event ““S is monochromatic.” Then

PlA{]=2

, (6)

k o .
as the ( 2) “coin flips” to determine the colors of [S]° must be the same.
The event “some k-element set of vertices S is monochromatic” is
represented by \/ A:
IS1=k
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under assumption (4). Thus some coloring is in the complement o1 this
event. That is the desired coloring.

We have shown that
V2 <liminf R(k, k)'"* <lim sup R(k, k)''“ < 4. (N)

The value of lim R(k, k)''* is not known and is the major open problem
involving the asymptotics of the Ramsey function. (Even the existence of
the limit is not known.) Another problem is the nonconstructive nature of
the Existence argument. It would be of great interest to construct
(“construct” is not precisely defined) a 2-coloring of K, for n large
containing no monochromatic K, . For example, as mentioned previously.
if n=4¢r+1 is prime one can 2-color Z, by coloring {i.j} by the
quadratic character of i — j. Although this appears to give good results for

small n, the number-theoretic problems raised by asymptotic considera-

tions seem (at present) unresolvable.

Theorem 2. If, for some p,0<=p=<1,

(n\n(g)-{-(n\(l—
N

\k/ "

N—
o~
.
s

ok
~
O
f—

then R(k, 1) > n.

Proof. We use the Existence argument of Theorem 1, replacing (5) by

2 IR
i

[f; 4\ ic
Lies Jf 12

-

adl — 10N
CGj iv

f \ 1Y)

For S, |S| = k let A be the event “[§
be the event “[T]’ is blue.” Then

I BN g
PV AV V By |<1 (11)
S T

J*is red,” and for T, |T|=1let B,

so the desired coloring of K, exists.
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The following probability result, due to L. Lovasz, fundamentally

improves the Existence argument in many instances. Let 4,,..., 4, be
events in a probability space (). A graph G on [n] is said to be a

dependency graph of { A} if, for all i, the event A, 1s mutually indepen-
dent of {A;: {i, j} € E(G)]}. A, must be not only independent of each A;
but of any combination of the A,

Theorem 3 (Lovasz Local Lemma). Let A, ..., A, be events with a
dependency graph G. Suppose that there exists X0, x,,0<x, <1, s0
that, for all i,

P(A)<x, Il (1-x). (12)

{61} EEG)

Then P( A A,)>0.

Proof. We show that
P(All A A,) < x, (13)
S

for all i and S with i & S. If § = &, (13) follows directly from (12). We use
induction on |S]. Fix i, S. Let

U={j:{i. ]} € E(G)},

T=SnNnuU.
Renumber so that 7= {1, ..., t}. Then
i P(Al A /\fi]” A,
Plal A 4)- L ST (14)
S - _
P(A Ail AJ)
T §-T

by the general equality P(A|BC) = P(AB|C)/P(B|C). We bound

\sP(Ail A Ai\ =P(A))

/ \ s_r 1/

A~
(S
L

v’

Pla, N NAJA A
A T s-r

A

by the assumption of independence. The denominator satisfies
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P4, ... A N\ 4)= Hp(,a A AN DA

S T

>l (1-x) (16)

reT

by the induction assumption (13). Combining the two bounds gives

P(A, _
(Al/\A\ _____4(——&——<xi H (1~x,)$xi, (17)
s Y ll (1 - xr) rel-T
reT
completing the induction. Finally,
PA,...A)=11PAJA, ... A_)>0. (18)
1=1

A special case of particular interest occurs when the A, are symmetric

in some sense and all x. are chosen to be pqnnl
~i

s L3 ¥ s L)

Corollary 4. LetA,,..., A, be events with P(A,) < p for all i and with
a dependency graph G of maximal degree at most d, that is, for all i,
If

ep(d +1)<1 (19)
then P( A A,)>0.
Proof. We apply Theorem 3 with x, =---=x, =1/(d +1). Condition
(12) then becomes

dd
< —_—
p (d + 1)d+1 3

which we have weakened slightly to facilitate applications.

We apply this method to the proof of Theorem 1. We define a
dependency graph on the events A, defined in the proof by joining $ to
T if |SN T|=2. The dependency graph is regular, and
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p=2
If ep(d + 1) <1 then R(k)> n. Thus (after an asymptotic analysis)
k/zr V2 1
R(k)> k2 [ —+ o(l)J . (20)

The best asymptotic bounds on R(k, I) are obtained in the case / = 3.

Theorem 5. ckz/(log k) < R(3, k)< c'k’/log k.

We do not prove Theorem 5 in this book. References may be found at
the end of this chapter.

For fixed />3 it is conjectured that R(k, ! )= k"ol asymptotically
in k.

4.3 VAN DER WAERDEN NUMBERS

Recall that W(k, r) denotes the minimal integer so that if [W] is t-colored
there exists a monochromatic arithmetic progression of k-terms. The
nontrivial exact values of W known are W(3,2)=9, W(4,2)=35,
W(3,3) =27, W(3,4) =76, W(5,2)=178.

Let W(k) = W(k,2). The best known upper bound for W(k) is a
wowzer function (see Section 2.7) given by adapting the Shelah proof of
Section 2.6 to van der Waerden’s theorem. Nearly identical asymptotic
lower bounds for W(k) are achieved by the following two theorems, with
completely different methods of proof. Perhaps W(k) is actually of this
order of magnitude—though this is scant evidence on which to base a
conjecture!

Theorem 6. If p is prime, W(p + 1) = p2°.

Proof. We show only the slightly weaker result Wip+1 - 1).
Let GF(2”) denote the finite field with 2” elements, and fix « €
GF(2”), @ primitive [i.e., a generates the cyclic multiplicative group
GF(27)*]. Fix a basis v, v,, . . ., v, for GF(2?) over Z,. For any integer
j set

a’ = av +a,ttau,, a,€Z,. (21)

Let
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G
~

C0={j:a1j=0,1stp(2‘”—1)},
C,={ja,=1,1<j<sp2"-1)}. (22)

Claim. (C,, C,) is a 2-coloring of {1,..., p(2° — 1)} with no mono-
chromatic AP of length p + 1. Suppose that {a,a+b,a+2b... . .u-
phtCC,, k=0or 1. Set B=a’, y=a'. Smce1<a<a+pb<p:2"—
1) b< 21p - 1 so y # 1. Then B, By, ..., By” have the same first coordi-

nate as vectors.

Casge 1. k=0. Then B, By,...,By" ' are p vectors in a (p -
1)-dimensional space (since the first coordinate is 0), and hence they are

dependent. Thus there exist ay, a,,...,4, 1€ Z,, not all 0, such that
p—1
2 a,(By')=0,
=0
and hence
p—1

But y € GF(2”), v #0, 1, so y has degree p over GF(2), a contradiction.

CASE 2. Assume that B, By, ..., By” have first coordinate 1. Now
E{y—1), B(y>—1),..., B(y" —1) lie in (p — 1)-dimensional space so

E a[B(y' - 1)]=

where a, € Z,, and some «, # 0. Dividing by B(y — 1), we again find y
satlsfymg a polynomial of degree at most p — 1, a contradiction.

Theorem 7. W(k) > [(2%/2ek)(1 + o(1)].

Proof. Randomly 2-color [n], each i being colored red with probability
L For each AP S of k-terms let A be the event “S is monochromatic.”
Define a dependency graph, joining § and T iff SNT#J. If n<

LI IAYE! ha
(2“/2e)(1 — €) then, when Corollary 4 with d = nk is applied, the event

/\ A has nonzero probability so that there is a 2-coloring of [n] without
monochromatic APs of size k.

The straightforward Existence argument in this instance would yield
the much weaker result W(k)>2*/2+°),
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Asymptotic evaluation of W(k, ¢) for fixed & is closed connected to the
corresponding Turan problems. Define

v.(n) =max|S|: SC[n], S does not contain an AP of k-terms.

We shall consider only the case k=3 and set v(n) = v,(n) for con-
venience,

—cVlogn

Theorem 8. ne <w(n)<cn/loglog n.

The upper bound is duc to K. Roth. The proof requires a relatively small
modification of his proof given in Section 2.5 and is not presented here.

We give the lower bound due to F. A. Behrend. For d = 1 we may write
any a, 1< a=<n, to the base (2d + 1):

a=ayta,2d+ 1)+ - +a,(2d+1), 0Os<a <24

Set

1/2
N(a)=[2 af] , where a=(a,,...,a,).

1=0

For s =1 set
A=A, ={al<a<n0sa,<d foralli, N@)i=s). (23)

For all n, d, s the set A contains no three-term arithmetic
suppose that

a=2. a(2d+1)",
b=2b(2d+1),

c=> ¢(2d + 1V

— T AT J 2

1 awn i A

1are in A and a+ b =2c. Since all a,,b,c,<d, there is no
ina+bor2csoa +b =2 for 0<i<k. Then

U

carryin
N(a) = N(b) = N[3(a + b)],
which is possible only if a and b are proportiona

identical, that is, a=b =¢. The proof now becom
a given d

nd, since N(a) = N(b)

o &
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log n
log(2d + 1)’

and there are at most d’k possible values for s. The union of the 4.
over all s pnntmnq all sums X a,(2d + 1\1 < n, 0=<a,=<d. This v approni-

[# 8 3 1 S coniains SR222

mately n2~* elements. Consequently, for some s

n

vim=|A, 2.
Al = g2k

(24H
Selecting d so that k ~V/log n maximizes the inequality, completing the
proof.

vz As ~
DUULIU> U

4.4 THE SYMMETRIC HYPERGRAPH THEOREM

In Section 1.4 we compared Ramsey theorems and Density theorems. We
noted that Density theorems of the appropriate form implied their
COI‘I‘@SpOHClmg Kamsey theorems. We now extend these results and show
how results on density functions yield both upper and lower bounds on

the corresponding Ramsey functions under appropriate circumstances.
Let {S’ Q) be a hvnprornnh This means only that 92 is a famllv of

pergraph. This means only tha
subsets of S. Assume that S is finite, set m = | S|, and assume that 2 does
not contain the null set or singleton sets. Call T C § free if it contains no
subset A € 2. Set:

v = v(S) = the maximal |T|, TCS,T free,
x = x(8) = the minimal ¢ so that one may partition
S=T,+---T,, all 7, free.

Here x(S) is the usual definition of the chromatic number of a hy-
pergraph. If S is y-colored some color is used at least m/x times. Hence
we have the following theorem.

Theorem 9. m/v =< y.

We call (S, f/l) 'yTTt‘:tue if the automorpumu group G of S is
transitive. (A permutation o of § is called an automorphism if A€ 2
implies cA € 2. The group G is transitive if, for all 5, 5" € §, there exists
o € G so that s = s'.) For symmetric hypergraphs the following theorem
allows us to use v to get upper bounds on y.
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Theorem 10 (Symmetric Hypergraph Theorem). If (8, 2) is a symmetric
hypergraph with m. v. y, G as defined above, then

\" m ’
that is,
log m
=1t 5ea =i (25)
—logil—vim)
We note that, for v/m <1, we may use the approximation
m
xX<-—logm. (26)
14

Lemma. Let U and T be arbitrary subsets of a symmetric hypergraph §
with automorphism group G. There exists o € G so that

IUTﬂU’BI—TM.
m

Proof. We double-count triples (oot,u), c€G, t€T, u€ U, so that
of=u. We fix 1, u. By the transitivity of G, ot = u for precisely |G|/m
automorphisms o € G. This gives precisely |T||U||G|/m triples. For
some fixed o, at least |7||U|/m pairs (1, u) satisfy ot = u and each pair
has a distinct ¥ € 0T N U. (This proof does not construct an appropriate
o but only establishes its existence.)

Proof of Theorem 10. Fix TCS. |T| =, T free. Let r be that integer
satisfying

v r
m(l - —-) <1
m
and
r—1
14
m(l - —) =1. (27)
m
We define a sequence o, 0, . . . inductively. Having defined Tpy ooy Oy
we set
U={seS:s#ar for jsi,teT},

We define U, = S. By Lemma 11 we find o

1

+1 SO that
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I

14
U, < (1- 2
for all i so that U, = (J. This implies that

S=o0,TU---Uo,T, (28)
and, since each o € G is an automorphism, each o, T is free. The o T are
not necessarily disjoint, but we may set 7, = o, 7T — U _, o, T to get an
r-coloration of S. Thus y < r, and Theorem 10 follows from the definition
of r.

lculations we often have a sequence of hypergraphs
not necessarily defined for all m), and functions

~
C/;
?\')S
\-/
TE
II
,..\l")

V(m) X(m) bet
R,(t) = minimal m’ so that, for m=m’, y(m)>1.

Define f(m) = m/v(m) and g(m) = f(m) log m. Assume that f(m) tends to
infinity. Then, essentially,

g '(N=R,(=<f"'(0). (29)

The precise statement involves merely an unraveling of the definitions.
The inequality (29) is correct within a [1 + o(1)] factor if the sequence is
reasonably smooth. Even when f(m) is bounded a careful examination of
the Symmetrlc Hypergraph theorem glves a lower bound for R, (1),

>
-~

theorem may fail to hold.

In Graph Ramsey theory (see Section 5.7) the results obtained above
are often useful. Let G be a finite graph. Set T;(n) equal to the maximal
number of edges that a graph on » points may have and not contain a

copy of G. Let t,(n) = T;(n) / ( n) for convenience. Let y;(n) equal the

minimal number of colors required to edge-color K, without Iormmg a
monochromatic G. We form a hypergraph (S, 2). Let §= [n]’, that is,
the edges of K are the vertices of S. A set X C S is a hyperedge if X is
the set of edges of a copy of G. (S, 2) is a symmetric hypergraph, as the
full symmetric group on [n] acts transitively on S. A direct application of
the Symmetric Hypergraph theorem yields the following corollary.
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(1+ o(1)) 1n(;)

1;(n)

thn) = XG(n) <

For example, when G is the 4-cycle it is known that To(n)~cn’'? so

cnl'? <

wre

1/2
n) < cn

Xc(n log n

and

2
ct
s <R (1) <el?,

(log 1)

where R;(#) is the minimal n so that if K, is t-colored there always exists
a monochromatic G.

Applying the Symmetric Hypergraph theorem to the function W(@3, 1)

PR P |

of Section 4.3 requires some further preparation. We define a hypergraph
(S,,2,) with S =[n] and A€ 2 _iff A is a three-term AP in [7]. We
embed S, into a symmetric hypergraph S . The vertex set of § s Z, .
A set A is a hyperedge of S’ iff A is a three-term AP in Z,,_, and is
contained in a block of n consecutive terms. For example, if n =50,
{3,5,7} and {98,1,3} are hyperedges but {0, 40, 80} is not. Now the
maps o;: x—>x + [ defined in Z,,
symmetric hypergraph.

From the original problem, let v(n) be the maximal cardinality of a
three-term progression-free subset of [n], and y(n) be the minimal
number of colors required to color [#] so that there is no monochromatic
three-term AP. From Theorem 9,

are automorphisms so that S is a

-1 <t L paaidiia 1 s a

v(n)

immeditately. Let »'(n) and x'(n) be the v and y values for the Z,, _
hypergraph. First note that

x(n) = (30)

1

v(n)<v'(n)<2v(n). (3D

The first inequality is immediate since S, 1s a subhypergraph of S’. For the
second, note that if T is free in S, then TN{1,..., n} and TN
{ﬂ+1,__.,7n—l}hﬂtfen M .

7 AlL Y 110
1) <2wv(n).

nreée-
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Theorem 12. x(n) <2(nlogn)/v(n)(1+ o(1)).

Proof. x(n)<x'(n) as S, is a subhypergraph of §,. By the Symmetric
Hypergraph theorem

x'(n) < 23(;)1 log(2n —1)(1 + o(1))
< ———“V(‘:)’ =~ (1+o(1)).

Applying the bounds of Theorem 8 and (29), we obtain the following
theorem.

Theorem 13. ™' <W(3, 1) <2"".

4.5 SCHUR AND RADO NUMBERS

Let f(t) denote the maximal n so that it is possible to t-color [n] with no
monochromatic solution to the equation x + y = z. The finiteness of f(¢)
is guaranteed by Schur’s theorem. An examination of Proof 1 of Schur’s
theorem yields

AO<RG,...,3)-2, (32)

where R is the Ramsey function and there are ¢ 3’s. Schur notes that a
t-coloring

[r]=C,+---+C,
without a monochromatic x + y = z induces a similar coloring

T |

Brn+1]=C,+---+C,+C,,
by setting
C/=CU(C +(2n+1)), 1=<sist,
Cl,={n+1,n+2,...,2n+1}. (33)
Since f(1) = 1 the construction outlined above gives f(r)= (3" —1)/2. Itis

not known whether f(r)'"* is bounded. The known exact values for f are
f(1)=1, f(2) =4, f(3) =13, and f(4) = 44, the last requiring a computer.
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The evaluation of f(5) appears to be a difficult computational problem.

For any integral m by n matrix A, let f,(¢) denote the analogous
function defined for the system Ax =0 and let f/(¢) denote this function
when a distinct solution (i.e., with x,, ..., x, all different) is required.
Rado’s theorem (Chapter 3, Theorem 4, Corollary 8/2) gives conditions
for f, and f} to be defined for all +. Few general results on the growth
rate of these functions are known. If A4 is not regular no general means is
known to determine the minimal ¢ for which there exists a t-coloring of N
without a monochromatic solution.

Let v,(n)(vy(n)) be the maximal |T|, T C[n], T not containing a

n
v.

Theorem 14. v,(n)/n— 0 iff A1=0. Furthermore, if A1=0 and there
exists a distinct solution (A, ..., A,), then v (n)—0.

- e al

Proof. If A1#0 then, for some m € N, A1 # 0 (modulo m). For any n,
T={i:1<i<n,i=1 (modulo m)}

contains no solution so v,(n)/n=m"". If A1= 0 then v,(n) =0 since, for
any a, x; = a gives a solution. Furthermore, if (A,,..., A ) is a distinct
solution, set k = 1+ max|A, — A |. If T C[#] contains an AP of length k it
contains a distinct solution x, = a + A.d. Now Szemerédi’s theorem (Sec-
tion 6.1) implies that »,(n)— 0.

In the special case A = (1,1, —1), the equation x + y = z, one can show
that v, (n) = [(n + 1)/2].

4.6 PROPERTY B

Ramsey theory may be examined as the study of the chromatic number of
certain hypergraphs. Valuable information may be gleaned from some
general results on the chromatic number of hypergraphs. A hypergraph o/
is called n-uniform if all A € 2 have | A| = n. Define m(n) as the minimal
cardinality of an n-uniform hypergraph with chromatic number >2. A
hypergraph is said to have Property B if its chromatic number is <2. It is
known that m(2)=3, m(3)=7, the minimal hypergraphs being as
follows:

s r

9,=({1,2}, {1, 3}, (2,3} ,

2,={{i,i +1,i+3)},i€ Z,, addition in Z,} .
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Evaluation of m(4) also appears to be a difficult computational problem.
Asymptotic lower bounds on m(n) are given by an Existence argument.

k",
o)
D
>
=
tl—i
¢
p
A
Il
ot
2!

} be an n-family. Consider a random 2
coloring of U %, each x independently colored red or blue with probabili-
ty 3. Since |§,| = n,

-n
,

Probl[ S, is monochromatic] =
Prob{some S, is monochromatlc) sm2'”

For m <2"~' this probability is less than unity; hence it must be possible
to 2-color ¥ so that no S, is monochromatic.
The best asymptotic bounds currently known are
n_1/3

2"'n'P < m(ny<c'2'n’ (34)

Many Ramsey function bounds can be derived from Theorem 15. We
examine R(k) as an example. Given k and n, let § = [n]” and

~ ([T |7 =

/ I\ /
the cliques of size k. Then F is a (g) family, | %| = (

{n\ .
(7). )

S —

{{ kN
m((3)
the family % may be properly 2-colored, that is, R(k) > n.

The Lovasz Local lemma has an important implication for Property B.

Theorem 16. Let & be an n-family. Suppose that every § € ¥ intersects
at most d sets T € %. if

then &% may be 2-colored.
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Proof. Let & be 2-colored randomly as in the proof of Theorem 15. For
SE F let A be the event S is monochromatic.” Define a dependency

. e s

graph joining A and A, iff SN T # . Apply Coroilary 4 with p = 2!
Then P( A A)>0, and therefore % may be 2-colored.

—_
L1

T'heorem 7 is an immediate corollary of ¢

ixaa

4.7 HIGHER RAMSEY NUMBERS

We recall that R, (/) is the minimal n such that if [n]* = C, + C, there
exist i and S with S| =/ and [S]“C C,. No exact values of R (/) are
known for k = 3. In this section we find asymptotic estimates of R (1) for
k fixed. We modify slightly the function TOWER of Section 2.7.

DEFINTION.  The “tower functions™ 1,(x) are defined inductively by

L(x)=x,
N ~r () (:S(S)
tt+1(x) =20
so that, for example, #,(x) =2%. For k =2 we have shown that
(V2+o(1) <R,(I)= (4 + o(1))' .
For k fixed, the proof of Ramsey’s theorem gives
k=1
log, R, (I)s R, _,(}) (37)
for I sufficiently large. (Actually this is a gross overestimate, but it
sufficies for our purposes.) By induction

R,(D)=1,(c) (38)

for all k=2. The lower bound requires the following lemma, which
transforms a coloring of [n]* into a coloring of 2"

Lemma 17 (Stepping-Up Lemma). If n - (/)" and k=3 then
2" (2l + k-4

1 PRV, NS |
1 2 with no monocnroimatic (-
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T={(y,...,v) v=0or1}.
For e =(v,,.--»¥.) € =(y1---,7,), €#¢€’, we define
8(e, ¢')=max{i:y,# vy}
and order T by [setting { = 8(e, €')]:

e<g' ify=0,y.=1,

e'<e ify=1,v =0.

The bijection between T and [0, 2" — 1] given by associating (v,, ... ¥,)
with 7., y2' " associates the above “<” on T with the “usual <.” Note
that:

(1) if g, < &, < ¢, then 8(¢,, &,) # 8(¢,, &),
(i) if &, <, <'--<eg, then 8(g,, &,) = max, ..., 6(&,, &)

Now define a decomposition [T]*"'=1+1,, Let E-=
{6y, .., 6, - E[T]"" Set 8, =8(¢;, &.,,), 1<i<k. If the 5 are
monotonic (i.e., 8§ <8, < - <§ or §,>8,>--->§,) place EE€ L iff
{6,,...,8,} € C, that is, color the &’s by the &’s. If 5, <8, > 8§, place
E€l,. If 8 >8,<8, place E€I,. The remaining £ may be placed
arbitrarily.

Let S={¢&,, &, ..., &yx_4} < bE arbitrary. We assume that [S1“C1,,
and derive a contradiction. Set §, = 8(¢;, €,,,) for 1=<i<2/+ k —4.

Case 1. There exists j so that the subsequence
5]’ 5j+1! A 5j+l~l

is monotonic. First assume that 8,>8,,,>--->§,,,_,. Since this /-set

cannot have all its k-subsets in the same class, there exist j<i, <i, <
cee<li,=j+1—1 so that

{811’ 6

iy?

,8,1€C,.
A contradiction is found by “stepping up” to the set
A={¢e &, .., € & 41} -

For 1= ¢ <k,
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5(*9:]’5,-”1): max §

- .
L=m<i,

=46;  (by monotonicity)

and

6(8ik’ Sik+1) =85 .
The 8, are monotonic so A is colored “by the 8,” and A€,

8, <8, <---<§;, , the same argument holds with

et
=t

A={¢, ¢ £

H+10 i+l s £;k+1} :

Case 2=Nor Case 1. For 2<i<2/-3 call i a local max if §,_, <§, >

~7 Noikaa

1 4
6.1, and a local min if §,_, > §, < 8,1 There can be no local min i since
then {¢,_,6,¢6.,1,...,6,, ,} € I,. Between any two local max’s there
must be a local min (a result well known to teachers of elementary

calculus), and thus there is at most one local max ;. Either i</—-1 or
i =1 or there is no i, but all roads lead back to Case 1.

Hence [S])* Z1,. Similarly, [S)* ZI,, completing the proof of Lemma

17. We let the reader test his or her understanding by seeing why k =3
was required.

The best known bound for R,(I) is
Ry(l)=2" (39)

proved by a simple Existence argument, By the Stepping-Up lemma we
have the following theorem.

Theorem 18. R, (I)=1t, ,(ci?) for k= 4.
Open Problem. Is R,(/)=1,(cl)?

An affirmative answer would imply that R, is of the order t, for all
k= 3. The situation is surprisingly different if we allow four colors.

Theorem 19. If n—+ (1) then 2"+ (I + 1)].

2% i1

/
S C[n]. Define T, 8(¢, '), and “<” as in the proof of Lemma

. 3 . o
4-coloring [T]" =1, + I, + I, + I, is defined by

Proof.  Fix a 2-coloring [n]* = C, + C, with no monochromatic /-

1
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{€,, &, 8} €I iff {8,,8,}€C, and & <o..
{e,, 6,6} ift {8,,6,}€C, and 8§, >5..
{g,, 8, 6} €1, iff {§,,8,} €C, and §, <3,

{€,, &, &5} EI, iff {8,,8,}€C, and &, >5..

Let S={¢&,...,¢€.,,}. be arbitrary. We assume that [S] /. and
derlve a Centradlctlo}]. (The nfhnr fl‘lf‘lp cases are c1m1]qr 'z““i are
omitted.) Let 8, = 8(¢;, ¢, ) for1=<i<1. Foris<!I-1,{g, ¢, ,.¢ - E
I, so

[ - S —~ AY < Sf - AY — 8
O, T O\E;, €, 1) SO0\E; 415 842) = 04y -

The &’s thus form a monotonically increasing sequence. For arbitrary
Isi<j<l {e, €., ¢.,} €1, and hence

{6(¢,, &:41),8(¢;415 € ,-+1)} {8, ;}EC

Now {§,,..., 8} would form a monochromatic set. The contradicts our
hypothesis on the coloring of [n]>

REMARKS AND REFERENCES

§1. Gleason and Greenwood [1955] give the first values of R(k, [). Of
the plethora of papers on this topic we mention Graham and Rodl
[1987] (a survey with numerous references to earlier work); Giraud
[1973]; Burling and Reyner [1972]; Kalbfleisch [1967], [1971];
Kalbfleisch and Stanton [1968]; Walker [1971]; Grimstead and
Roberts [1982] and Exoo [1989]. For R,(4) see Isbell {1969] and
Giraud [1969]. For R(3:4) see Folkman [1974].

Erdés [1947] may be regarded as the seminal paper in the develop-
ment of the Existence argument. Erdos and Spencer [1974] discuss
this argument in detail. The Lovasz Local lemma is given in Erdos
and Loviasz [1975] and developed in Spencer [1975], [1977]. Ajtai,
Komlés, and Szemerédi [1980] give Theorem 5 (upper bound).
Erdos [1961], simplified by Spencer [1977], gives the lower bound.
Frankl [1977] gives a constructive lower bound for R(k, k).

§3. Asymptotic values for the van der Waerden function are given by
Berlekamp [1968], Erdos and Rado [1952], and Moser [1960]. Exact
values can be found in Chviétal [1970]. Roth [1953] gives the upper
bound to v,(n). Lower bounds to v,(n) are given by Salem and
Spencer [1942], Behrend [1946], and Moser [1953].

§4. We do not believe that the Symmetric Hypergraph theorem, and its
applications to Graph Ramsey theory, have been published explicit-

o
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Numbers

ly, though they have been part of the “folk literature” for some
time.

Analytic bounds on v ,(n) for certain A are given by Roth [1954],
[1967] and Choi [1971].

Basic results on Property B appear in a series of papers by Erdos

[1963a], [1964a], [1969]. The improved lower bound can be found in
Beck [1978].
Erdos and Rado [1952] give explicit upper bounds for R, (n). Lower

bounds for R, (n) are due to Erdds and Hajnal.
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5.1 BIPARTITE RAMSEY THEOREMS

Let K, , denote the complete bipartite m by n graph; that is, K, .,
consists of m + n vertices, partitioned into sets of size m and n, and the
mn edges between them. We gvie an analogue to Ramsey’s theorem for
bipartite graphs.

Theorem 1. For all a and r there exists m so that if K, ,, is r-colored
there exists a monochromatic K, .

Theorem 1 is not unexpected, and Theorem 5 gives a much stron

pelw 2122 & 8 xiiseN

result. What is surprising is that Theorem 1 may be proved as a Density

Thearoem 2 | = H .'nt

Zarankiewicz [1951] defined k, ,(m, n) as the minimal ¢ so that if G is
a subgraph of K, , and contains at least e edges then G contains a K, ..
Alternatively, it is the minimal e so that any m by n 0—1 matrix with at

least e 1's contains an a by b submatrix of all 1’s. For convenience, define
k,(n)=k, (n,n).

/ \

Theorem 3. If n(e;n) >(a— 1)(;1) then k_ (n)<e.

1xirn ol lads e {X\ Y o iy c

IVve CaiCuiation, \a/ IS a COoncave runction 1or
any positive integer a. Fix n, a, e satisfying the inequality. Let T (top)
and B (bottom) be disjoint sets of n vertices. Let G be a subgraph of the
K, . defined on A, B. Assume that G has at least e edges. For i € T, set

Proof. By

A

D,={j€B:{i, j}EG},

] |

a,=|

!
il

)

[y
ot
-y
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so that X,., d, = e. Set

U={(i, X): XCB,|X|=a,XCD,}.
; : dJ ’ -
For each i € T there are precisely a X’s such that (i, X)€ U.

Now we use a general result on concave functions. If f(x) is concave
and x = (x, + - +x,)/n, then

2 f(x)= nf(@).
. . X
We apply this result with f(x) = (a):
frrl N0 /di\> [eln\
vi=2(5)=n"").

1ET

For X C B, |X|=a we set

Ty={ieT:(i, X)EU}.

Then |U|=X|T,] so that, for at least one of the (Z) summands X,
(e/n)
vl "\ a
=

) ()

Let T3 C Ty with [T¥|=a. Then T3U X is the desired K, .
For fixed a, k,(n) = o(n®) so that Theorem 2, and hence also Theorem
i, hold.

| T, | = >a-—1.

The behavior of Zarankiewicz’s function has been studied by many
authors, including T. Kovari, V. Sés, and P. Turan [1954]; Erdos and
Rado [1956]; Guy [1968], [1969]; Guy and Znam [1969]; and Chvatal
[1969]. Erdos and Spencer [1974] discuss the asymptotic evaluation of k.
Erdos and Moon [1964] show that if K., m is 2-colored the fraction of K, ,
which is monochromatic is, at least asymptotically, 2' ™ for fixed a, b
and m, n approaching infinity.

The k-partite analogue of Ramsey’s theorem may also be proved as a
density result.
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Theorem 4. For all k, a, ¢ there exists n so that, f GC A, X - x A,
|A|=n and if |G|=en" then there exist B,C A, |B|=a so that
B, x--+x B, CG.

We do not give the proof (which is similar to that of Theorem 3). The
proof is given by Erdos [1964b]; an account is given by Erdos and
Spencer [1974].

The following more general result is proved by a simple Induced
Coloring argument.

Theorem 5. For all k>0,s,,...,5,>0,a,,...,4,>0,and all r>0
there exist n,,...,n, >0 so that, if |B|=n,, 1<i<k, and [B,]" X

X [B,]’* is r-colored, then there exist A;C B, |A,/=a; so that
[A,]'* X+ X [A,]* is monochromatic.

Proof. Use induction on k. The case k=1 is covered by Ramsey’s
theorem. Fix all parameters, and let n,, ..., n,_, be defined inductively
to meet the conditions of Theorem 5 for KySyy ooy S s @pye s @y q,T.
Define n, so that

Let |B|=n, (1f !BiE > n_ restrict attention to a subset of cardinality n,),
and let y be an r-coloring of [B,]* x - - - x [B,]’*. Define a coloring x’ on
[B,]* by

x'(U)=x'(U")
iff

x(Cy, . G U =xUC, ..., Gy, UT)) for all C; €[B,]"

Since x' is an M-coloring, there exists A, C B,, |A,| = a, so that [A,]*
is monochromatic under y'. Define x” for C; € [B,]" by

X”((Cly R Ck—])) = X((Cl’ vy Gy, U)) for any U € [Ak]Sk

By induction there exist A,, oo, A sothat [A ] X X [A4,_,
PRSTR, IR, T onrafen 1\/'.'\/r Sk

monochromatic under y” and tucwmw LA ]
is monochromatic under .

o
N

=~

—

d
>



114 Particulars
One should be careful about infinite analogues to Theorem 1. Define

Xx: N X N— {red, blue}

. . [red ifi<j,
XD =blue  ifi>j.

Clearly, there are no infinite subsets A, B so that y is monochromatic on
A X B. However, this gives essentially the only “counterexample,” as the
following result shows.

Theorem 6. Let x be a finite coloring;:

X: NXN=[r].
Then there exists an infinite set A = {a,} . C N and colors ¢, , ¢, ¢, (not
necessarily distinct) so that

c; ifi<j,
x(a;, a;)=1¢ ifi>j,
LCg ifi=j.
Also there exist infinite sets B = {b,;} ., C = {¢,} . and colors ¢, ., ¢ (not
necessarily distinct) so that

CLE ifisj,
x(b;, c ,) { ifi>;.
Proof. We define a coloring x' of [N]* by

x'(6 1Y) = (x G ), x(J, ), x(, 1) .
As x' is a finite coloring \Wl[n r colors), there exists an infinite set
A={a,}_CN so that [A])’ is monochromatic under y’. But then A
satisfies the first part of Theorem 6, and setting b,=a, _,and ¢, = a,,, we
ﬁn(‘f fh.‘:lf fhP QP"Q R =fhl =11, gati tha caonmen A

Wil ~ T Yy oauax_y uic SECONa pau.

5.2 INDUCED RAMSEY THEOREMS

A graph G = (V(G), E(G)) is an induced subgraph of H = (V(H), E(H))
if V(G)CV(H) and E(G)={{i, j} € E(H), i, j € G}. An induced sub-
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graph G consists of all edges of H on a subset of V(H ). For convenience,
if G is isomorphic to an induced subgraph of H we call G an induced
subgraph of H.

Theorem 1 (Vertex-Induced Graph Theorem). For all G,r>0 there
exists H so that if the vertices of H are r-colored there exists an induced
subgraph G with vertices monochromatic.

h Theorem), For all G, r >0 there exists

PR ey
QI X IIVUR VRERSe A Wk A

H so that if the edge of H are r-colored there exists an induced su bgraph

G with edges monochromatlc.

We present the proof of Nesetfil and Rodl [1978a]. Another proof,
using quite different techniques, is given by Deuber [1975b].

These results are immediate if the word “induced” is removed. Let
|V(G)| = v, and set H = K, where N— (v),. An r-coloring of the edges
of K, yields a monochromatic K, and G C K. For vertex coloring we set
H=K,,, where M =(v —1)r+ L.

We begin by defining a special class of graphs H, , for ali m, n>0. Let
|D|=m, |R| = n. The vertices of H, ,, are the n™ functions f: D— R.
Two vertices f, g are adjacent if they have no common point, that is,

(f. g} €EH,,) if f(xy#g(x) forallxED.

Clearly, the graph H,  is independent of the specific choice of D and R.
More generally, let |D| m, and let R be defined for each d € D so that
|R,| = n. We may define the vertices of H, . as those functions f with
domain D so that f(d) € R, for each d € D, with adjacency as before.
This gives the same graph H, ,.. Let A,CR,,|A,|=n" for d€ D. The
set of functions f such that f(d) € A, for all d € D generates a subgraph
of H, . This subgraph is called the restriction of H,, to {A,}. It is
1som0rph1c to H,. ,,

It may be helpfu] to think of the elements of H, ,, as ordered m-tuples
(x{-..,%,),x; € R. Two m-tuples are then adjacent if they have no

I
1 nate in COMinoii.

Lemma 3. For all G there exist n, m so that G is an induced subgraph of

17
11

n,m’

Proof. Let n=|V(G)|. Let D be the family of functions y;

y: V(G)—[n]
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such that if {i, j} € E(G) then yi # yj. The set D can be consi
family of n-colorations of G. Set m = |D|. Let R = [n]. Define a map
v:G->H, setting V(v) =0 ,
WICIc
v:D—R
is defined by
U(y) = y(v).

Cleary, ¥ is injective. If {v, w} € E(G) then yv # yw for all y € D so
that 6(y)# w(y) for all y € D, and hence {9, w} € E(H, ). Converse-
ly, if {v, w} & E(G) there exists y € D such that yv = yw. For example

one can color U, w udpnnmlly and all other puh.ta with distinct colors.

L LW LW A L P LD S SV L U148} §

Then v(-y) = w(y) so {0, w} £ E(H,, ). Thus G is an induced subgraph
of H,

It now suffices to prove the Induced Graph theorems for G = H,
The vertex case is immediate. By Section 5.1, Theorem 5, there exists N
so that, if Hy , is vertex r-colored, there exists a monochromatic H,
(Here we are applying Section 5.1, Theorem 5, with all s, =1 and
thinking of the elements of H,, ,, as ordered m-tuples.) To review, for any
G, r we find n, m so that G is an induced subgraph of H, . and N so that
an r-coloring of H, , yields a monochromatic H, . Then H =H, , is the
desired graph.

It is the proof of the Edge—Induced Graph theorem that is truly
remarkable. No other result in Ramsey theory makes quite as much use
of the techniques of the subject.

We will think of H,, ,, ., with D = {0} U[M]. For f, g € Hy . (e,
[, g: {0} U[M]—[N]) we write f < g if f(0) < g(0). This is not a total
ordering, but ad]acent edges are comparable We define the type of an

edge of H by

WS, g}<) ={iE[M]: f(i)> g(i)} .

An edge coloring of H, ,,., is called canonical if the color of an edge
depends only on its type, that is, if

€{f, gD =t{f, gN>xU{f g =x({f.g)).
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Lemma 4. For all n, M, r there exists N so that

Al wEEARRRES wa i

1
r-colored there exists Hn v-1 C Hy ., canonically colored.

Proof. Let x be an edge r-coloring of Hy ,,,, (N to be determined). Let
Ay, ..., A,EINT, A, ={a, b} . Hy,,, restricted to (A,...... 1,,)
is isomorphic to H, ,, ., which consists of 2" disjoint edges, one of each

type. We define an rzM-coloring x', coloring (A,, ..., A,) by the color
of the 2™ edges under y. Formally, for each S C[M] we define (depen-
dent on {A,}) an edge {f;, g5} . of Hy p,, of type § by

fs(0) = a,, gs(0) = by,
(b, iti€S,  [a ifi€s,
fS(l)_{ai itigs, &WO=1p  ifigs.

X(Ag .., Ay)=x"(4,..., A

if, for all S C[M], x{fs. &s}) = x({ fs, &5})-
Now (and, formally, this is the begmnmg of the proof), we define N so

that under any r**-coloring of [N}’ x --- x [N]’ (M + 1 factors) there
exist By, ..., B,,, |B;| = n so that [B,]” X+« % [B,,]’ is monochromatic.
The existence of N follows from Section 5.1, Theorem 5. Given any edge
r-coloring x of Hy ,.,,, we define x' as above and find a subgraph
H, ., (=Hy,,, restricted to By, ...,By) on which x' is mono-
chromatic. This subgraph is colored canonically, for let {f, g}_€
E(H, ) of type 5. Then if we set 4,={f(). g0}, (&)< =

£ ,..\\ Ane A -l -
a

‘{.Isa SSJ‘< so that X( 1) J aepen

Lemma 5. For all n,m,r there exists M so that if H_, ., is edge
r-colored canonically there exists a monochromatic H, , ., CH,_ ,.,.
Proof. We select M (by the Extended Hales-Jewett theorem) so that if
21 is r-colored there exist disjoint By, B,, ..., B,, C[M], nonempty
except possibly for B, so that all

B,UlU B,, IC[m],

i€l

are colored the same. A canonical r-coloring y of H, ,,,, induces an
r-coloring x' of 2™ coloring S C[M] by the color of all edﬁes of type S.
Let By, B,,...,B,, be as above, and set B'=[M]|—-B,—- B,—---—B,,.
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t of functions f:

note the se
atisfying the following conditions:

F {0} UM

¢

(i) fis constant on B, for each i,1<i<m;
(ii) fis constant on {0} U B’;
(iii) fis constant on B, with value n + 1 — f(0).

We first claim that H=H,, . For each (x,, x,, X)) EH, .. We
associate the f € H given by
X, ifa€B,,1<ism,
fla)=1x, ifae{0}UB’,

n+1l-—x, ifa€ B, .

Moreover, the edges of H are all of a special type. Let {f, g} € E(H),
and set

S=i({f, 8).)= {« €[M]: fla)> g(a)} .

For all a € B’,

so that a & S. For all a € B,),

flay)=n+1-f0)>n+1- g0)=g(a)

so that a € S. As f and g are constant on B,, either B, C S or BNS=0
for 1=<i=<m. Hence all types are of the form B, U B, U---U B _(where
possibly £ =0). Since y’ is constant on these sets, x Is monochromatic on
H.

Our proof of the Edge-Induced Graph theorem is now complete, but
an overview Is certainly in order. We fix G and r > 0. First, we find n, m
so that G is an induced subgraph of H Second, we find M so that if

nm+1-

H, \., is canonically edge r-colored there is a monochromatic H,, ...
Third, we find N so that if Hy y., is edge r-colored there exists a
canomcally colored H, ,,,,. H= H ~.m+1 18 the desired graph. An r edge
coloring of H= H, ,,,, yields a canonical H, .., that in turn yields a
monochromatic H, , ., within which, snug as the proverbial bug in a rug,

lies our monochromatic G.
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Restricted Ramsey Resulis
5.3 RESTRICTED RAMSEY RESULTS

Let G, H be finite graphs. We write

1
G- (H)!
if, given any r-coloring of the vertices of G, there exists a monochromatic
induced subgrap We write
2
G—(H)r

if, given any r-coloring of the edges of G, there exists a monochromatic
induced subgraph H. In Section 5.2 we showed that, for all H.r.i=1.2.
there exists G, G— (H):. Here, using different techniques, we strengthen
that result.

The first result in Ramsey theory may be Written as K,— (K,):. P.
Erdos first asked whether there existed G, G— (K,); with (G) small.
[We define w(G), the clique number of G, as the size of the maximum

complete subgraph in G.] Small G’s with that property have been found
for o GY=58 ((3raham f“lQAQT\ and /\{P\ =4 (Tﬂnng ”07’”\ Folkman

for w(G)=75 (Graham [1968]) and w(G)=4 (Irving [1973]). Folkman
{1970] constructed a gigantic graph G w1th that property and w(G)=
More generally, for all n he constructed G, o(G)=n, G—(K, ). Sur-
prisingly, Folkman’s construction worked only for two colors, and the
question of whether, for all 7, n, there existed G, w(G)=n, G— (K, )’
remained open for several years. The work of J. NeSetril and V. Rodl
[1976] answers this question affirmatively. This result constitutes the main
body of this section. In fact, the argument we give below for graphs can
be directly extended to the more general case of hypergraphs. At the end
of this section we make some comments about this extension.

In Nesetfil’'s and Rodl's argument the role of bipartite graphs is
central. Let G be a bipartite graph with vertices V(G)=V,UV,, V., N
V, =, and edges E(G) such that (x, y)E E(G) only if x€ V|, yEV,.
Then we define the “diagonal power” G as follows: V(G"™)=V7T U
vy, ond E(G™)={((%1, - -+ %)y (V1 -+ s ¥u)|(xis ) EE(G), 1=
ism}.

Lemma. For any bipartite graph G and integer r >0, there is a bipartite

72

grapn H such that H— \v),.

Proof. Let N= HJ(r, ¢), the Hales-Jewett number (see Section 2.2) for
r-colors and an e-clement set, where e = |E(G)|. Then H= G* is the
desired graph. We see this easily: By definition of G, there is a
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one-to-one correspondence between edges of G* and N-tuples of edges
of G. Let E(G)={E,, E,,...,E,}. Thus an r-coloring of E(H) yields
an r-coloring of E(G)". By the Hales-Jewett theorem, there will be a
monochromatic “line” in E(G)". This is a set of e N-tuples
(E1 o Ey . EN,) 1<i=e, where, for each j, either E, , = E, ,. for all
i,i" (we call these J’s the “constant” j’s), or E, , = E, for all L. Con51der
the vertices obtained from these edges, U = U U Uz, where

Uy ={(x), .., xy)lx, is the vertex of E, | in V,
if j is a “constant,” and x. + x. fo ull
J', j" not “‘constant’},

and U, is defined similarly. The subgraph G* C H induced by these

vertices is isomorphic to G and has exactly the edges corresponding to the
mnnn(‘hrnmafm I‘II‘IP lf‘l F{p\N T}‘“lc (?* 1ic the Adacirad nﬂhn'w At

AR AR LA RIS 193 wIv ulLolivu ulUllU\,l i1uvlliallie

subgraph.

Theorem 1. For any r >0 and graph G, with w(G) < n, there is a graph
H with o(G) < n such that H— (G).

Proof. 'The proof is obtained by an iterated construction. Let V(G) =
{vi,...,v,}. Then we start with a graph P, consisting of R levels,
L,,...,Lg, of vertices, where R= R(m;r), the Ramsey number of

R
r-coloring edges of complete graphs. We form P, from (m) disjoint

copies of G as follows: For each choice of an m-subset i, <i,<---< im
from {1,2,..., R} we introduce new vertices u, EL,, 1<j<m, and
7

edges (u, ,u ) iff (v, v,) is an edge of G. In other words, P, consists of

disjoint coples of G, one spread across each subset of m of the levels of
P;. For example, if G is a 4-cycle (see Fig. 5.1), m=4, R=R(4,4)=17

17 4 Jy frd ,.l\*l\\"l','f}_.ll,
and P, consists of ( ) disjoint 4-cycles spread over 17 levels.
We now deserlbe how to get P, from P,. Let B, be the subgraph of P,

generated by L, and L,. B, is mpamte Using the lemma, we let A, be a
bipartite graph with A, — (B ):. For each copy of B, in A, we adjom
vertices and edges to complete it to form a copy of PO, all such copies
being disjoint except for possible overlaps in A,. Then P, 1s the R-level
graph con51st1ng of the union of A, and all of these P’s. The jth level of
P, is the union of the jth level of the P,’s, for j= >3 and the first and
second levels of P, are just the two parts of A, (see Flg 5.2). If the edges
of P, are r-colored there exists, on levels 1 and 2, a monochromatic B,
that may be extended to a copy of P, with the property that all edges
between levels 1 and 2 are the same color
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L, L, Ly L, Ly le Ly,
— e —
—— o . E——

— o P——

Figure 5.1 P, for G =4-cycle.

We now iterate this construction, obtaining a sequence of R-level

graphs P,, P,, ( ) Let the (2 pairs of levels be listed, say
lexicographically, as ¢, ¢ c To get an R-level graph P, from the

Cos v v vy L( )
graph P, ,, we consider the ith pair c, of levels of P,_,, let B, be the
subgraph of P, , induced by these two levels, and let A; be the bipartite
graph such that A,—(B,)}. Then, for each copy of B,C A,, we adjoin
disjoint completions to P,_,, and the union of all of these is P,. The last
iteration of the process is P( R), and we claim that H= P( R) has the
required properties. 3 ’

We see this by sequentially applying the lemma. Let the edges of H be
r-colored. If we consider just the last pair of levels, {m, m — 1}, in P( )

we get A g.. By the lemma and the choice of A ., there is a mono-
g ( ) y

chromatic B, ., C A
(5) ="

2
3} By construction of P( By there i1s a copy
2 2

2

Q- 1)
A T N —
Copies
of B
NN e 11 - - - | ) Disjoint
- copies of
"/,’/ . P, minus
. levels 1 and 2
—
A

Figure 5.2 Construction of P, from P,.
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Thus this
dge

2 2
(induced) subgraph of P, g, is isomorphic to P( RY, an
2 2/
between the (last) pair of levels, {m, m —1}, the same color. Now we
look at the next to the last pair of levels, {m, m — 2}, in this P( R) r and
%) -

P( Ry C P( R whose last pair of levels is precisely this B (
and

=gl S

)

s all

(47
w

by the same argument get an induced copy of P, , . in it with all edges

2
between these levels the same color. The edges of P( ) 2QP( Ry
2/ 2/
between the levels m and m —1 all have one color, and the edges
between levels m and m —2 all have one color, possibly

bj
the color for levels m, m — 1.

different from

R
By repeating this argument ( ) ) times, we eventually obtain a copy of

P, as an induced subgraph of H, such that the color of an edge depends
only on the pair of levels the edge connects. This induces a coloring of the
pairs of levels, each pair having the color of (all) the edges between them.

By the choice of R, some subset of m levels has all pairs the same color.

Fmally, by construction of P, some copy of G is contained exactly among
this set of m levels. Hence G is monochromatic. This completes the proof
that H—(G):. To complete the proof of Theorem 1 we need only
observe that w(H) = w(G), since at each step in the process of construct-
ing H we never introduce cliques larger than those in G.

In fact, we observe more here. Let K be any graph for which there is
no vertex cut-set inducing a subgraph of chromatic number smaller than
3. (A cut-set is a set of vertices whose removal leaves a graph with more
than one connected component.) Call such a K 3-chromatic connected.

Theorem 2. Let K be 3-chromatic connected, and let G be a graph
containing to K. Then there is an H containing no K such that H— (G)?.

The proof is the same as that for Theorem 1. We simply note that at

P S, A R
ch step in the construction we can never introduce a subgraph of type

eacl
K, since all the copies of P, , overlap in a bipartite graph.

As mentioned earlier, Theorem 1 extends directly to hypergraphs To
prove it we need the hypergraph version of the lemma, which is simply
the same result for g-uniform, a-partite hypergraphs rather than for
bipartite ordinary graphs. The proof is essentially the same. Then the
proof of the hypergraph result (Theorem 3 below) is exactly analogous to

that of Theorem 1, where we have many copies of hypergraphs P,_, from

the (7 — 1)st step, ﬂ}S}omt except for possible overlap in a set of @ eveis at

the lth step, P,.
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Theorem 3. Let G be an a-uniform hypergraph, and r >0 and integer.
Then there is an a-uniform hypergraph H such that H— ()] and
w(H) = w(G); that is, if the edges of the hypergraph H arc r-colored,

there is a monochromatic induced subhypergraph of type G. [The clique

. m
nubmer w(H) is the maximum number m of points so that all | : )
L
a-subsets are edges. |

Just as there is an analogue to Ramsey’s theorem for vector space
over finite fields (Section 2.4. Corollary 10) so there is an analoguce to th
induced and restricted result of Theorem 3 for vector spaces. To state it
we essentially just replace the terms “set” and ‘“‘subset” by the terms
“space’ and ‘‘subspace,” respectively. More formally, we can define an
a-uniform space system H to be a family of ga-dimensional subspaces, the
“edges,” of some finite dimensional vector space V over a finite field F.
In fact, H can be thought of as a g“-uniform hypergraph on the set of
vectors of V, where edges are required to be subspaces. Then an induced
subsystem G of H is simply an a-uniform space system G that is an
induced subhypergraph of H. Now let w(H) denote the clique number of
H. by which we mean the largest dimension m of a subspace U of V so
that all of the a-dimensional subspaces of U are edges of H. Frankl,
Graham, and Rodl [1987] and Promel [1986] give the following induced
and restricted vector space version of Ramsey’s Theorem.

S
¢

Theorem 4. Let G be an a-uniform space system and r a positive
integer. Then there is an a-uniform space system H such that H—(G);
and w(H) = o(G). That is, if the edges of H are r-colored there is a
monochromatic induced subsystem G' = G. (We say G’ = G if dim(U) =
dim(U"), where U, U’ are the vector spaces for G, G’, respectively, and
there is a bijective linear map from U to U’ such that the image A’ of any
a-dimensional subspace A of U is an edge of G’ if and only if A is an edge

of G.)

5.4 EQUATIONS OVER ABELIAN GROUPS

The results of this section are from Deuber {1975a].

Let G be an Abelian group. Let A be an m by n matrix with integral
coefficients. We say that A is partition regular in G if, for every finite
coloration of G — {0}, there is a monochromatic solution x, ..., x, to
the system Ax=0.

By “solution” in this section we shall mean a monochromatic solution
to Ax=20.




124 Particulars

Recall that A satisfies the Columns condition if one can order the

column vector ¢, ..., ¢, and find 1<k <k,<--- < k,=n such that,
setting
Ai=2cy, summed over k,_, <y <k,,

we have

(i) A, =0,
and

(i) for 1<i=t, A, may be expressed as a linear combination (over

Q)ofc,,... k.

Then A is partition regular in Z if A satisfies the Columns condition. For
p prime, we say that A satisfies the p-Columns condition if (1) and (ii)
hold when their summations and linear combinations are taken modulo p.
Let:

T(A) = {p: A satisfies the p-Columns condition} ,
T'(A)={p:x,=---=x,=11is a solution to Ax =0 (modulo P},
Note that T'(A) C T(A) by setting t=1,k,=n.

One can show, similarly to the proof of Chapter 3, Lemma 6, that if A
does not satisfy the Columns condition T(A) is finite, and if A satisfies the
Columns condition T(A) is cofinite. The equation 3x —3y — z =0 [i.e.,
the matrix A =(3, -3, ~1)] provides an example of a matrix satisfying
the Columns condition but not satisfying the three-columns condition.

Let Z‘;’ be the countable infinite-dimensional vector space over Z,,
considered as an Abelian group, that is, the elements are infinite se-

quences

(a;,a,,...),a,€Z, all but finitely many a, =0,

and addition is defined componentwise modulo p- Note (from elementary
Group theory) that GC Z , iff G contains an infinite number of elements

Theorem 1. A is partition regular in G iff one of the following holds:

(1) G contains an element « of order p € T'(A).
(i) G2 Z; for some p € T(A).
(iii) A satisfies the Columns condition and G contains either an
element of infinite order or elements of arbitrarily high order.
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Proof.

We first show that any of conditions (i), (ii). or (11 imphes that

A is partition regular in G.

(i)
(ii)

(iii)

x,=-+-=x, = a is always a solution, regardless ot the colonng.

In Z, we find a parametric solution to the equation Ax = 0. ziven
by

t
=2 Ay, l<isn,
y=1

where each (A,..., A,) has the first nonzero term A = . 4
nonzero constant. (The method illustrated for Z in Section I 3
suffices here.) For convenience, we assume that ¢ = 1 by changing
all A, to A;/c. Now we let G be finitely colored and restrict our

attentlon to Z', with a specified ordered basis. For

v:(Ul,Uza---)ezz_{O}

= first v, suich that v #

n(v) = first i such that v;#0.

We define a finite coloring of the one-dimensional subspaces of
Z%, coloring a subspace {v,2v, ..., (p — 1)v} by the color of the
unique sv with A(sv) =1. By the Vector Ramsey theorem (Section
2.4; we do not require the full strength of the theorem here) there
existsaSC Z Z, s=Zz ,» monochromatic under the induced color-
ing. By standard linear algebra techniques we find a basis

w.,...,w, for § so that

Aw)=1, 1<j=1
n(w,) <n(wy) <---<n(w,).

Now

gives the desired monochromatic solution.

Let G — {0} be k-colored. If N is k-colored then, by Rado’s
theorem, there will exist a monochromatic solution to Ax = 0. By
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1e Compactness principle, for some m and k-coloration of [m]
also yields such a solution. Let @ € G have order at least m + 1
possibly infinite). Then a solution is found within the set

o 7.nf mo |

Sy &5%y o e 0y HTRR .

o —

We prove the converse (the necessity of the conditions) only in the
case where A does not satisfy the Columns condition and has exactly one
row. Let A=(c,,...,c,) so that Ax=0 is the single equation

cxy+--+cex, =0,

where no subset of {c,} sums to zero.

t d T'(A) be defined as
before. Then there exists u, dependent only on A, with the following
property: Let m be such that (m, p) =1 for all p € T(A). Then Z_ — {0)

n A oo nlioers PRGN I |
Lemma 2. Let A be as above, and 1

m
may be u-colored without forming a monochromatic solution to Ax =0

=5
(modulo m).

o

We first illustrate these ideas with the equation

1

=0 Iia A — {1 IR RY
X, +x,+x.+x,=0 e, A=, 1,1,1)].

1T otov2 M3t oAy
here T'(A)= {2}, T(A)={2,3}. [Incidentally, note the parameteric
solution x, =a, x,=x,=a+d, x,=d (modulo 3).] We can 4-color
Z — {0}, using the smod 5 coloring. This coloring may not apply to
Z,, — {0} since solutions of the form x, + x, + x, + x, = Am might ap-
pear. Let m be large, (m,2)=(m,3)=1. Write

| _m-1 m—l]
Zm‘[ ) :

Split Z,, into five intervals
I.=(a,—R,a,+R),

where R~m/10 and |a,| <m/2. We now color each interval /, without
forming a monochromatic solution to x, + x, + x, + x 4+ =0 (modulo m).

P 2

Since R < m/8 there is at most one A for which the equation x, + x, +
X3+ x,=Am (addition in N) has a solution in /.. Since lx;| = m/2,
| Al <2.If A = 0 we apply the smod 5 coloring to I.. If A # 0 we color x € I,
by the residue class of x (modulo 4). If a monochromatic solution

X1 =X, =X;=x, (modulo 4) existed in /, then 4|x, + x, + x, + X, = Am.
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we 1-color [, trivially.

Each 7, has required at most four colors. We distinguish the colors used
in each 1nterval. This gives a 20-coloring (or better) of Z, — {0} with the
desired property.

This is impossible since ( m) =1and 0< !/\! <4, Fiﬂaﬂyj if no A exists

Proof of Lemma 2. Let t be such that Z — {0} may be t-colored. Set

o
|

|Zc|#0 by assumption,

_[m]

L2D 1"

d lb‘l’ F AN

>

Let m>m', where m’ is to be determined. We write Z,, = ([—m/2],
[m/2]), and split Z  into consecutive intervals of length 2R — 1 (the last
mterval perhaps smaller), I,=(a,— R,a,+ R), 1=si=<s5. We may do this
with
| sgnr=1)
YT 2[mizp]-1)-

Now we select m’ so that, for m>m’, s < D + 1. We color each I, — {0}
separately. If x;,...,x, €I, we set

x;=a;+y,, lv,|<R
(calculations done in Z), and note that

Yex =(L ca,+Lcy,,
where

% ey | <R |c]) < %l_ :

In other words, ¥ ¢ x, lies within an interval of !.,n.gth m so there is at
most one A (dependent on j) for which ¥ c,x, = Am is possible. Since
la,| <mi2,
. o . m(C+1)
Lex,|s|lcllal+|Ley|< >

so that |A| <(C+ 1)/2<C.
If 0 <{A| < C we color x € I; according to its residue class modulo C. A
monochromatic solution would imply that C|Z ¢,x, = A,,, which is im-

m?*
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possible since (C, m)=1. If A =0 we t-color I, — {0}, using the coloring
of Z—{0}. If no A exists we 1-color /, trivially.

Each interval has used at most max(C, t) colors so that Z —{0} is
colored with s max(C, r)<(D + 1) max(C, t) colors. Finally, if m<m’
we can color each point distinctly, using at most m' — 1 colors. Thus all of
Z,. — {0} may be u-colored, where

Lemma 3. Let H, — {0} be s;-colorable for 1=<i=<k. Then the product
H, X ---x H, — {0} may be (s, +--- +s,)-colored.

Proof. Let y; denote the s,-coloring of H with color sets assumed to be
distinct. Define y on H, x -+ x H, — {0} by
Xl(hl) if h#0,
x((hy, ... k)= x2(h,) if hy =0,h,#0,
Xl(hl) ifhlz...=h1*1=0’h1?é0'

Proof of Theorem 1 (Necessity, Limited Case). Fix G and A. Let g be
such that Z — {0} may be colored by the smod q coloring. Let T(A) and
T'(A) be as before. Let ¢ be the number of g € G of order I1 p.', where
all p, € T(A). Since G Z Z;, for all p € T(A), 1 is finite. Let u be as given
in Lemma 2. We claim that G — {0} may be B-colored where B =
t+(g—1)+u

By compactness, it suffices to B-color any finite subset of G — {0}. We
do somewhat more, B-coloring any finitely generated subgroup H C G.
By the fundamental theorem of Abelian groups we can write

IT — XY ~, 7 . 72V
ll—ﬂl/\LmKL 5

where v is finite, (m, p)=1 for all p € T(A), and all k€ H, — {0} have
order IIY, where all p; € T(A). Now

H, — {0} is t-colored since |H, — {0}| <1,
Z, — {0} is u-colored by Lemma 1, and

Z" is (g — 1)-colored, coloring (x,, . .., x,) by the smod g coloring of
the first nonzero x,.

Thus, by Lemma 3, H — {0} is B-colored, completin

the proof.
A reformulation of Theorem 1 makes it clear that there are oniy three

reasons for A to be partition regular in G.

ag
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Theorem 1'. A is partition regular over G iff one of the following holds:

(i) For some a € G — {0}, A is partition regular over {a} (i.c..
X, =+++=x,=ais a solution).
(if) For some prime p, A is partition regular in Z, and G2 Z'.
(iii) A is partition regular in Z, and G contains either Z or elements
of arbitrarily high order.

£
Je

th
@)

The results of this section are due to Erdos and Rado [1950].

In this section we consider colorations in which no restrictions (not
even finiteness) is put on the number of colors used. When elements of a
set are colored we have a simple result. Call a coloring xy of a set §
canonical if y 1s either

(1) monochromatic li.e.. v(s) = v(1)
\A) RARVARM AR MRIARAREM LY A\ AN/

or all 5, 1€ S},

=37

or
(i) distinct [i.e., x(s) # x(¢) for all 5,t € S, s #1].

Theorem 1. If an infinite set S is colored then some infinite subset 7 is
canonically colored. For all k, if |§|> (k —1)* + 1 and S is colored there
exists a subset T C S, |T| = k that is canonically colored.

MM ~ldscnmdimen cssdamcn smmteon nen Arrlasad 10 covmen smtaractisaan 1 Ad 330 ractes it
1I1C SIudiloll wiicll Pdllb dl CUIULICU 1D THULC HHICTOOLILE. Ol Ud 1LV
our attention to edge colorings. We write x(i, j) for x({i, j}.). We

distinguish four special colorings of an ordered set S:

(1) distinct: x({i, j}) = x({k, 1}) iff {i, j} = {k, I},

(i) min: x({{, j}) = x{k, {}) iff min(7, j) = min(k, I),
(iii) max: x({i, j}) = x({k, I}) iff max(i, j) = max(k, I},
(iv) monochromatic: y is constant.

A coloring y is called canonical on § if it has one of these four properties.
Note that if y is canonical on S it is canonical (of the same type) on every
subset 7 C S§.

Theorem 2. For every coloration of [N]* there exists an infinite T C N
on which y is canonical. For all k there exists n so that, for every
coloration of [n]’, there is a T C[n], |T| = k on which y is canonical.
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Proof. Let x be a coloring of [N]>. To each {a,, a,,a,,a,} . €[N]* we
associate an equivalence relation = on [4]" given by

iy ={k 1y if x({a,. a}) = x({a,, a,}) .

We define a coloring x' on [N]* by defining x'({a,, a,, a;, a,} . ) to be
the equivalence relation to which it corresponds In other words, x' is the
set of equalities among the six edges of {a,, a,, a,,a,}_ under y. There
are 203 possible values (colors) for x', corresponding to the 203 partitions
of a six-element set. (For example one color class consists of all those

{a., a,, a;, d, } - on which the six colors are distinct. Another consists of

115h 18 11 =RIARTL SAALRALERW Ay 24 RLIVSULIWL WASLLIOLIW UL

all those for which x({a,, a;}) = x({a,, a,}) and the other four edges are
colored with distinct c010rs ) By Ramsey’s theorem there exist N’ C
N, N’ infinite, on which y' is constant. Let us assume that N’ = N for
convenience, since only the cardinality and ordering of N’ are 1mportant

Now we reduce the possibilities from 203 to 4. Consider the possibie
equalities:

x(a,, a,)=x(a,, a;),
(*) x(a,, a;)=x(a;,a,),
x(a,, a,)=x(a,, a,),
X(az’ 613) = X(az’ 614) *

Each of these qualities holds either for all {a,, a,, a,, a,} _ or for none of
them. Plugging in the values (in order) {2,4,6,7}, {(2,3,4,6)},
{2,4,5,6}, {1,2,4,6} for {a,,a,,a,,a,}_, we find that ech of the
equahtles given above is equivalent to the statement x(2,4)= x(2, 6).
Thus the equalities either all hold or all do not hold. Similarly the
equations

x(a;, a,) = x(a,, a,),
(**) X(azsaa):/\’(a3, a,),

X(azh a,)= x(a,, a,),

x(a, a;) = x(a,, a,)

either all

hold or all do not hold.

If systems (*) and (**) both hold then all y(a, b) = x(1, b)=x(1,2)
and y is monochromatic. If system (*) holds then y(i, J) = x(i, k) for all
i <j, k. Suppose that y is not the “min” coloring; then, for some i # i’

and Ik x(l )= x(, k). Let t=max(j, k). By (), x(i, 1) =x(i, j)=
x(i', k) = x(i’, t). But then system (**) will hold. Hence, if (*) holds but
(**) does not X 1s a “min” coloring. Similarly, if (**) holds but (*) does
not, y is a “max” coloring.

<:>
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Finally, assuming that neither (*) nor (**) hold, we need to show that
x is distinct. We illustrate this with only a single case. Assume that
x(1,2) = x(3,4). Then, for all {a,,a,,a;,a,}., x(a,,a,)= xta..a,).
Hence x(3,4) = x(1, 2) = x(3, 5), which is impossible since (*} does not
hold.

The finite version uses essentially the same proof. For all k we select n

e tha
OV LiiQ

-~

n— (max(k,7)),p; -

For any coloring y of [#]° we find T C [n], | T| = max(k, 7), on which x' is
constant and hence y is canonical.

There is a simply stated generalization to r-tuples: A coloring x of [S]’,

S ordered, is called canonical if, for some V C{1,...,r},
A P N — o H ~ — '~ 0 ;
xH{ay,...,a} y=x({b,,....b} )iffa,=b foralli€V.

Theorem 3. For every coloring of [N]" there exists an infinite T C N on
which the coloring is canonical. For all k and r, there exists n so that, for
every coloring of [r]’, there exist T C [n], |T| = k, on which the coloring
is canonical.

The proof, although following the main ideas of the case r = 2, is more
complicated and will not be given here.

Let y now be a coloring of the bipartite graph A X B. We define four
special colors.

(i) monochromatic: all x(a, b) equal;

(ii) column: y{a, b)= y(c,d) iff a=c (i.e., only

\7 v A\ V) ANV 7 \ ' 7
column are colored the same);

(iii) row: y(a, b) = x(c, d) iff b = d (i.e., only points in the same row
are colored the same);

(iv) distinct: y(a, b) = x(c, d) iff a=c and b = d (i.e., all points have
distinct colors).

points in the same

We say that y is canonical on A X B if it is of one of these four types.
Note that if y is canonical on AX B and A, C A, B,CB then y is

LY

canonical of the same type on A, X B,.

Theorem 4. For any coloring y of N X [2r° + 1] there exists N, C N, N,
infinite, and B’ C B, B'\ =r+1, such that y is canonical on N, X B'.

Proof. For each n€ N the nth column contains either r+ 1 points
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colored the same or 2r + 1 points colored distinctly. As there are only a
finite

_ 2r2+1 2r2+1“
(_( r+1 )+(2r+l//

number of choices for the row coordmates of these points, there exist
N, C N, N, infinite, and B C[2r® + 1] so that either

(i) [B|=r+1 and x(n, b,)= x(n, b,) for all n E N,
or

(i) {B|=2r+1 and x(n,b,)# x(n, b,) for all nEN,, b, # b, E B.

In either case we restrict our attention to N, X B. In case (i) we define
a coloring x' on N, by setting x'(n) equal to the constant y(n, b). We find
N, C N, N, infinite, so that y’ is either constant or distinct on it. Then y
is either monochromatic or column on N, X B.

Case (ii) is slightly more complex. We define a coloring x' on [N, ] by

x'({n, ny} ) ={(b,, b,):b,,b,€ B, x(n,, b)) = x(n,, by)}.

There are precisely 2/?1° colors for Xx'. By Ramsey’s theorem there exists
N, C N, so that x' is constant on [N,]°

Suppose that, for some n,<n,EN,, b,#b,€EB, x(n, b,)=
x(n,, b,). Then, for all m<m’ e N,, x(m, b D= X(m b,). There exists
n3EN2,n3>n2 Now X(”yb )= X(”]ab ) = x(ns, 2) X(”z,b ),
which is impossible since all columns have distinct colors. Thus elements
in distinct rows and distinct columns have distinct colors. Elements in
distinct rows and the same columns have distinct colors by assumption, so
all elements in distinct rows have distinct colors.

For each b € B, if there exist n, < , € N, so that y(n,, b) = x(n,, b),
then y(m, b) = X(m b) for all m < m' e N,, that is, y is either constant
or distinct on each row. We find B, C B, |B,|=r+1 so that either y is
constant on each row b € B, or X is dlstmct on each row b € B,. In the
latter case, y is distinct on N, X B,. In the former case, the row Constants

are dIStll’lCt since single columns are distinct, so that y is row on N, X B,.

We give a 51mple coloring that prov1des a counterexample if 2r% + 1 s
replaced by 27’ Decompose 2r’]=S8,+---+ 8 + T,+---+ T, where
alt |8,|=|T ; =r. Ifs, s’ €S, then (m, s) and (n, s") are colored 1dentlcal-
ly forall m,n. Ift,t' € T,- then (m, t) and (m, ¢') are colored identically
for all m. Otherwise, all colors are distinct.
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A Canonical Bipartite Ramsey theorem, analogous to Section 5.1,
Theorem 6, can also be given. We leave the statement and the proof of
this theorem to our readers.

Taylor [1976] generalizes Hindman’s theorem in the same way in which
Erdos and Rado generalized Ramsey’s theorem to a Canonical Ramsey
theorem. Taylor’s theorem, indeed, could be call d a Canonical Hindman
theorem

NAAWRNS R Rdd .

Let y be a finite coloration of [w]™“, the finite subsets of N. Then
Hindman’s theorem states that there exists a disjoint collection & such
that FU(%) is monochromatic. Now let us call a coloration y of FU(2)
canonical if one of the following holds:

(i) x is constant on FU(Z).

(i) x(E,) = x(E,) iff min{E,) =
(i) x(E,) = x(E,) iff max(E,) = max(E,).

(iv) x(E,) = x(E,) iff min(E,) = min(E,) and max(E,) = max(E,).
(v) x(E,)=x(E,) ift E, = E,.

m:.-.
1IEIIR

(T
\t>2 )

Theorem 5. Let y be a coloration (not necessarily finite) of [w]™“. Then
there exists a disjoint collection & such that y is canonical on FU(Z).

The proof is rather difficult and is not given in this book.
One is struck by a similarity between many of the Canonical Ramsey
theorems, a similarity that extends to the infinite case of Ramsey’s

th itcalf T ar €
theorem itself. Let S be a (possibly ordered) countably infinite set, and

F(S) be a family of structures defined on S. For example, F(S) could be
[S$]° or § X S. Call a coloring of F(S) invariant if, under that coloring,
every finite 7 C § has F(T) colored equivalently. Here two colorings are
considered equivalent if they are identical under a bijection between §
and T (preserving any ordering) and a bijection of the color names. Many
of these results state that if y is a coloring of F(S), perhaps with some

restrictions (as, e.g., limiting the number of colors to r), then there exists
an infinite 7T C S so that F(T\ 1s colored invarnantlv. We do not know

Liia L 15 PULVIWAL sV GaaQaivay AANIE KA VY

whether one can make a general statement of this type.

5.6 EUCLIDEAN RAMSEY THEORY

In a series of papers, Erdos, Graham, Montgomery, Rothschild, Spencer,
and Straus [1973, 1975a, 1975b] have examined a variety of problems that
meld Ramsey theory to the geometry of Euclidean n-space R”. Let K be a
finite configuration in Euclidean space. We define a relation R(K, n, r):
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R(K, n,r): Under any r-coloring of the points of R” there exists a
monochromatic K’ = K. (Here = is “congruence.”)

For example, let K be an equilateral triangle of unit side (more
precisely, the vertices of the triangle). We can color R” in strips of width
V3/2, that is,

f N fa /212

{redi [2y/V 3]is even,

X045 ¥) =) blue if [2y/7V/3] is odd

A simple geometry argument shows that no K’ = K is monochromatic s
that R(K, 2,2) is false. If we 2-color R* and consider five points on an
equilateral simplex of unit length, some three of these points mus
same color. Hence R(K, 4, 2) is true.

One may replace “congruence” by other notions such as “similar’” or

w

-
=7
¢}
-
=
(¢}

“translate of.”” Let H be any group of symmetries of Euclidean space. We
define:
R, (K, n,r): For any r-coloring of the vertices of R” there exists a

monochromatic K’ and ¢ € H such that oK = K'.

Gallai’s theorem, given in Section 2.3, states that if H is the homothety
group (and hence also the larger similarity group) then R (K, n, r) holds
for all finite configurations K in Euclidean n-space.

DEeriNITION. K is Ramsey if, for all 7, there exists n’ so that, for n = n’,
R(K, n, r) holds.

The main question is the determination of the Ramsey configurations.
Let K consist of two points at distance d. For all , R contains a simplex
of r +1 points, all at distance d. Any r-coloring yields a monochromatic
K. Thus R(K,r,r) holds for all r, and hence K is Ramsey. More
generally, if K is an m-point equilateral simplex then R(K, (m — 1)r, r)
holds, so K is Ramsey.

Notation. Letx=(x,,...,x,)ER", y=(y,,...,y,)ER™ Define
x*¥y=(x;,..., %, Y,..., ¥, )ER"™™,
If K; CR", K, CR"™ define K, * K, CR""™ by

Ki*K,={x*y:x€K,, yEK,}.
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Theorem 1. If K, and K, are Ramsey then K| * K, is Ramsey.

Proof. Fix K, C R", Ramsey, K, C R”, Ramsey, and r > 0. Fix « so that
R(K,, u,r) holds. By the Compactness principle there exists a finite
T C R" so that any r-coloring of T yields a monochromatic K. Letr= T
and T={x,,...,x,}. Let v be such that R(K,, v, r") holds. We claim
that R(K, * K,, u + v, r) holds. Let y be an r-coloring of R“"". Define an
r'-coloring x' of R" by

v'{\r\ ( { *\)\
A 7 LAVY] STy

We find K, C R” monochromatic over x'. Define an r-coloring x” of T by
x"(x;)=x(x*y) forany y€K,.

Let K, be monochromatic under x”. Then K, * K, is monochromatic
under Y.

Corollary 2. All bricks are Ramsey.

By a “brick” we mean a rectangular parallelopiped, that is, a set of the
form {(x,,...,x,): x,=0 or a,,1<i=<n}. Clearly, any brick is a
*-product of n two-point configurations.

Corollary 3. All subsets of bricks are Ramsey.

C]early, if Kis Ramsey all K’ C K are Ramsey This corollary includes

PP VR PR oy see mazemam]acran £Frrnt Yoo | TR

CquldLCldl ri-Simpicexcs. In fact, it gives all known Ramsey conugura-
tions.

In view of the results given above it is tempting to conjecture that all
finite sets K are Ramsey. This, however, is false. Let K = {0, 1, 2}, three
points equally spaced on a line. We show that R(K, n, 4) is false for all n
by giving an explicit 4-coloring of R". Color u € R" by [|u|*} (modulo 4),
that is, for 0 =i <4
i if|lul’=4a+i+0, aicZ, 0=0<l
Suppose that {x, y, z} = K. If we let y be the middle point there exists i,
|u| =1, so that x =y + u, z=y — u. Then

[x)” + 2" =21 y[* + 2|ul® = 2}y|* + 2.

If x(x)=x(y)=x(z)=1i there exist a,,a,,0,€EZ, 0<0,,0,,0,<1
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with
4a1+i+®f+4a2+i+®2=2(4a3+i+®3)+2
so that

which is impossible. Thus K is not Ramsey.
We extend this example. using results on nonhomogeneous linear

mple,
systems.

Theorem 4. Let K={vy,,v,,...,v,} be such that there exist
Cos .- €4y DER, b#0, satisfying

) E ci{v; —v) =0,
i=1
k
(**) 2 o,(|v)* = v ) = b0

i=1

Then K is not Ramsey.

Proof (outline). Let x' be the coloring of R, given by Chapter 3,
Theorem 23, such that the equation

k

Z Ci(xz - x()) = b

=1

has no solution with x'(x,) = x'(x,) for 1 <i< k. Define y on R" by

x(w) = x"(Jul*).

One can show that any K’ = {v}, ..., v,} = K still satisfies (*) and (**)
[by showing that the system (*), (**) is preserved under rotation around
origin and translation] so that K’ cannot be monochromatic under X-

The conditions of Theorem 4 are equivalent to saying that K is not

spherical; that is, the vertices of K cannot be placed on a common sphere.
We omit the proof. Note that all bricks are indeed spherical.

Summary. 1If K is a subset of a brick it is Ramsey
fKisn is n

aTvoaer

v

Since publication of the first edition of this volume additional Ramsey
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configurations have been found. Let k <s and let x,, ..., x, be nonzero
reals and let S be the set of points in R® with precisely & nonzero
coordinates having values x,, ..., x, in that order. For example. with
k=2,5=3,x,=1,x,=-1,5={(1,-1,0), (1,0, -1), (0,1, —1)} is an
obtuse triangle.

Claim. § is Ramsey.
Let the number of colors r be arbitrary. Let n satisfy
n—(s);

For each k-set A C[n] let x, denote the point with nonzero coordinates
X,,...,x, in positions A. An r-coloring of the points x, induces an
r-coloring of [n]*. A monochromatic s-set B of coordinates gives a
monochromatic S.

Combining this result with Theorem 1, Frankl and Rodl [1986] have
greatly extended the class of known Ramsey configurations. In particular,
they have shown that all triangles are Ramsey. A complete characteriza-
tion of Ramsey configurations has remained elusive.

Many of the finite questions R(K, n,r) are very interesting. For
example, it is conjectured that R(K, 2, 2) is true for all K, |K| = 3, except
the equilateral triangle. For many particular K’s this is known to be true.

Finally, we explore Euclidean Ramsey questions where H is the group
of translations. The results are negative. Let us call a set 7 achromatic if

(el
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Theorem 5. Let ¢ = (;) + 1. For all k-element sets S C R there exists a

c-coloring of R so that all transiates § + x are achromatic.

Proof. We first c-color any finite set Y C R so that no translate of §
contains two points with the same color. We color the points of Y in
ascending order. To color yEY we note that y lies on a common

translate with at most (g) previously colored points of Y [the points
y+(x'—x") with x,x"€ S, x'<x"] and so may be given a distinct
coloring.

The Compactness principle implies that there exists a c-coloring of R.
Note that the application of the Compactness principle renders this proof
essentially nonconstructive.

Corollary 6. Let c¢= (k)+1. For all k-element configurations S =

2
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{vi,- .., v} CR", with n-arbitrary, there exists a c-coloring of R" so that
all translates § + x are achromatic.

Proof. Select a coordinate system so that the points of S have distinct
first coordinates x,. ..., x, By Theorem 5 there is a c-coloring of R so
that all translates of x, . . ., x, are achromatic. We color points of R* by
the colors of their first coordinates.

5.7 GRAPH RAMSEY THEORY

Graph Ramsey theory has grown from nonexistence 20 years ago to
become one of the presently most active areas in Ramsey theory. Rather
than attempt to present an encyclopedic collection of the wealth of results
currently available, we will instead (following our usual philosophy)
discuss a selection of those that we believe illustrates the variety of
questions considered and techniques used in this area.

A major impetus behind the carly development of Graph Ramsey
theory was the hope that it would eventually lead to methods for
determining larger values of the classical Ramsey numbers R(m, n).
However, as so often happens in mathematics, this hope has not been
realized; rather, the field has blossomed into a discipline of its own. In
fact, it is probably safe to say that the results arising from Graph Ramsey
theory will prove to be more valuable and interesting than knowing the
cxact value of R(5,5) [or even R(m, n)].

The idea behind Graph Ramsey theory is basically as follows. For an
arbitrary (fixed) graph G, we would like to determine the smallest integer
r=r(G) so that, no matter how the edges of K, are 2-colored, a
monochromatic subgraph isomorphic to G is always formed. For the
classical Ramsey numbers, G itself is taken to be a complete graph. When
k colors are used instead of two, we will denote the corresponding value
of r by r(G; k).

Just as in the classical case, it is convenient to consider the more
general “off-diagonal” situation. For graphs G, G, ...,G,, we let
Gy, Gy, ..., G,) denote the least integer r so that, no matter how the
edges of K, are k-colored, for some i a copy of G; occurs in the ith color.
Of course, the existence of (G, G,, . . ., G,) Is guaranteed by Ramsey’s
original theorem.

To begin with, one of the simplest and most general results in Graph
Ramsey theory is the following: For a graph G (which we will always
assume has no isolated vertices), let y(G) denote the chromatic number
of G and let ¢(G) denote the cardinality of the largest connected
component of G.
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Theorem 1 (Chvatal-Harary [1972]).
r(G,H)=(x(G) —1)(c(H)-1)+1. (1)

Proof. Let m=(x(G)—1)(c(H)~ 1), and consider K, to be made up
of x(G)—1 copies of K, , with edges interconnecting all pairs of
vertices in the different copies of K, ;. Celor all the edges within a
copy of K, with color 2 and all remaining (interconnecting) edges
with color 1. Certainly, there is no copy of G with color 1 since, if there
were, we could color the vertices of this copy of G with x(G) — 1 colors,
corresponding to the copies of K, _, they lie in, and this contradicts the
definition of x(G). On the other hand, no copy of H with color 2 can
occur, since the largest connected component in K with color 2 has
c¢(H) — 1 vertices.

Theorem 1 can be applied to yield one of the most elegant results of
Graph Ramsey theory, due to Chvatal [1977].

Theorem 2. For any tree T,, with m vertices
(T, ,K)=(m-1)(n—1)+1. (2)
Proof. The lower bound follows from (1). It remains to show that
n(T,,K)s(m-1)(n—1)+1. (3)

For m =2 or n =2, (3) is immediate. Assume that (3) holds for all values
of m’ and n’ with m' + n’ <m + n. Consider a 2-colored K ,,_;),,_1y+1»
using the colors red and blue, say. Let T’ be a tree formed from T by the
removal of some endpeint x (where x is connected by y in T). By the
induction hypothesis, this K, y.,-1y+, contains either a blue K, (and we
are done) or a red T'. Thus we may assume that there is a red T’ in
K 1yn-1y+1- We remove the m —1 points of this red T, leaving a
2-colored K, _;),—2)+1- Again by the induction hypothesis, this graph
contains either a red T or a blue K, _,; we may clearly assume the latter.

Consequently, in the original K(m_l)(n_l)+1 we have a red 7' and a
blue K, , disjoint from it. Finally, we examine the edges emanating from
y to the blue K, _,. If any of these edges is red then we have a red T. If
not then all these edges are blue and there is a blue K. This completes
the induction step, and the proof is finished.

There are still relatively few exact nontrivial values known for
r(G, H). One of the more interesting is the following.
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Theorem 3 (Burr [1974]). Let T,, be a tree with m vertices, and assume
that m — 1 divides n — 1. Then

(T, K, ,)=m+n—1. (4)

T, K ,)zm+n-1. (5)

Let k=(n- 1)/(m —1). Form a 2- colormg of K, ., , by taking k + 1
copies of K, _; (all having all red edges) interconnected by all blue edges.
Nored T, has been formed, since 7, has m vertices. Also, no blue K, ,
has been formed since the largest blue degree in the K, ,is k(m —
1) = n —1. This proves (5).

Next, we show that

T _,K, )sm+n-1. (6)

i, 071/

For m =2, (6) is immediate. As in the proof of Theorem 2, we form the

tree T’ by removing an endpomt x of T, (which we assume is connected
toyin T,). In a 2-colored K, _, we can assume by induction that there
is either a blue K, , (in which case we are done) or a red T'. We may
assume the latter. Smce there are m+n —1—(m — 1) = n vertices v; of
K, .,-, that are not vertices of the red 7' and K, ... contains no blue
K, ., some edge from y to some v, must be red. But this forms a red T in

1'('m+,,_1 Thus by induction (6) holds, and the proof is complete.

The corresponding results when m — 1 does not divide n — 1 are much

more comphcated and are not completely understood. However, in this
6\ QfI" hﬂ]l’"Q in fact faor alm
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n7,,K ,)=m+n-2

for n sufficiently large

A special case that has received particular attention is the one in which
G consists of a number of disjoint copies of a particular graph. A
particularly nice result of this type is due to Burr, Erdos, and Spencer

[1975] for the graph nK, consisting of n disjoint triangles.

Theorem 4

rnK,)=5n forn=2. (7)
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Proof Recall that, for n =1, we already know that 7(K;) =6. To see
that /{(nK,) = 5n, consider the 2 coloring of K, _, shown in Fig. 5.3. It 1s
easily verified that this 2-coloring of K, ; contains no monochromatic
nk,.

We next show by induction on n that

r(nK,)<5n forn=2. (8)

The case n =2 requires a detailed case analysis, which we omit. Fix a
2-coloring of K.,, n=3. We may find {(Sn - 5)/ } vertex disjoint
monochromatic mangies by merely selecting triangles until fewer than six
points remain. As {(5n —5)/3} = n we may assume that at least one of
these triangles is in each color, say {1, 2, 3} is colored red and {4, 5, 6} is
colored blue.

By a “bow tie” we mean a pair of triangles of different colors that
share a common vertex (see Fig. 5.4). Assume, by symmetry, that at least
five of the edges between {1,2,3} and {4, 5, 6} are blue. Then at least
one of 1,2, 3, say 1, is joined by blue edges to at least two of 4, 5, 6, say 4
and 5, and {1,2,3,4,5} forms a bow tic. When these five points are
deleted, there exists, by induction, a monochromatic (n — 1)K, on the
remaining 51 — 5 points. This, together with the appropriate K in the
bow tie, gives a monochromatic nk,.

The bow tie argument may be generalized to yield asymptotic results

on IU’IU) and 'r‘\iﬁu, nG) for arburary G.
We next sample a few results when the number k of color classes is
allowed to be larger than 2. Detailed proofs, unless otherwise attributed,

can be found in Erdés and Graham [1975].

N A
>
l/ \l Figure 5.4 A bow tie.
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Theorem 5. For a tree T, with m edges

k+1
(m—l)[T:l<r(Tm;k)$2mk+l. )]
Proof. To prove the lower bound in (9), let ¢ denote [(k+1)/2].
Consider K, _,, as ¢ copies of K,,_,, labeled as K’ | K&, ... KY .

Assign the color i to all edges between K | and K forlsi<js<t
Assign the color t~1+i to all edges within KY . This is a (2t —
1)-coloring of K, ,, containing no monochromatic copy of T, . Since
2t — 1 <k, the left-hand side of (9) follows.

To prove the right-hand side of (9), apply the elementary fact that, for
all d, any graph G with d vertices and md edges contains as a subgraph

any tree T, with m edges (easily proved by induction). In any k-coloring

s o~ \

of K,;,.+1, at least (1/k)(u;m

Since this is a (monochromatic) graph with 2km + 1 vertices and at least

m(2km + 1) edges, by the above observation, it contains a mono-

chromatic copy of T, and the right-hand side of (9) follows.

+ 1) edges must have the same color.

If the conjecture of P. Erdés and V. T. Sos (see Erdos [1964b]) that
any T, always occurs as a subgraph of any graph with d vertices and
[3(m—-1)d]+1 edges were known to hold, then the upper bound of (9)
could be strengthened to

nT,;k)<(m-1)k+4 (9")

for k sufficiently large. It may well be that the right-hand side of (9')
gives the correct asymptotic growth of r( T,.; k). One reason for believing
this is given by the following result.

Theorem 6. For a tree T,, with m edges
r(T,; k)>(m~ 1)k — m?

for k suff
Proof. For a given large &, let k, denote the largest integer not
exceeding k& which is congruent to 1 modulo m. By a deep result of
Ray-Chaudhuri and Wilson [1973], there will always exist a resolvable
balanced incomplete block design D, ., having (m — 1)k, + 1 points and
ko(kom — ky + 1+ 1)/m blocks of size m, provided only that k, is suffici-
ently large. Identify the points of D, . with vertices of K1)k, +1- Assign
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the color i to all edges of K that correspond to a pair of points
occurring in the ith parallel class of D, .. This is a ky-coloring of
K(pi_1)k,+1, Which contains no monochromatic connected subgraph with
m + 1 vertices. Since k, > k — m, this induces a k-coloring of K, |,
with no monochromatlc T .

For special trees, much more exact results are known. For example.
for P,, the path with three edges, Irving [1974] has shown that the
following theorem holds.

Theorem 7
[2k+2 if k=1 (mod 3),
r(Py; ky=12k+1 if k=2 (mod 3), (10)

2k or 2k +1 if k=0 (mod 3).

The proof of (10) also relies on the results for resolvable balanced
incomplete block designs. In fact, it is not uncommon for the exact values
of many of the known graph Ramsey numbers to depend on the existence
(or nonexistence) of certain special combinatorial designs or algebraic
structures. We see this, for example, in the determination of the classical
Ramsey numbers R(3,3,3) and R(4,4).

It is instructive to compare the Ramsey numbers of P, and the
apparently closely related graph C,, the cycle of four vertices. In fact, the
Ramsey numbers for C, grow much more rapidly than those for P;.

Theorem 8 (Chung—Graham [1975])
HC;kysk>+k+2 forall k. (11)
If k-1 is a prime power then
HC k)=k —k+2. (12)
Proof. We first need an estimate for the maximum number e of edges

that a graph G with n vertices can have if G contains no C, as a subgraph.
Let A =(a,) denote the adjacency matrix of such a G. Since C, ZG,

> a

a, ;<1 (13)

4; 4=

~.
—

for any choice of 1 =i <i'=<n. If ¢, denotes L_, a, then, summing (13)
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over all choices of i and i’, we obtain
Z] ¢i(c;—1)<n(n—1). (14)
i=

Applying the Schwarz inequality to (14), we have

+nyn—

2e=]§ ¢; =< > (15)

4]

NS T

which is the sought after bound.
Suppose now that the edges of K., x+2 are k-colored. Then at least

/L2 L L AN

one of the colors occurs on at least (1/ k)( A 2“ . L) edges. However, if
we take

k2+k+2)
2

1
n=k'+k+2, e;E(

we find that (15) is (barely) violated. This proves (11).

To prove (12), it is well known that since k — 1 is a prime power there
exists a simple difference set D = {d,, ..., d,} (modulo k> — k + 1). For
cach t,1<t<k, we form a cyclic (symmetric) matrix B, =(b,(i, j)) as

follows:

b (i .)2{1 ifi+j+d=d(modk’-k+1) forsomed €D,
b J 0  otherwise .

Since D is a difference set, it follows that, for any choice of i, j€
Zi2_ iy, there exists ¢ such that b,(i, j) = 1. Furthermore, for each ¢ no
two rows of B, have a common pair of 1's.

We now form a k-colored K,._,,, as follows. The vertices of the
K2 .y will be the elements of Z,>_, . Fori, j€ Zi2_y.q, We color the
edge {i, j} with color ¢, where ¢ is the least integer such that b,(i, j) = 1.
It follows from the preceding remarks that this is a k-coloring of K
having no monochromatic C,, and (12) is proved.

Again, note the appearance of combinatorial structures (in this case
difference sets) in the lower bound proof. It follows from ( 11) and (12)

UL AL IR0 \

and the fact that the prime powers are sufficiently dense that

k2—k+1

r(C,; k)~ k*

as k— x,
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One might be tempted to guess that, since €, is smaller than C,, it
should in some sense occur more readily in a k-coloring of a complete
graph, and hence r(C;; k) would be substantially smaller than r(C,; k). In
fact, however, exactly the opposite is true, as the following result shows.

Theorem 9
2% < r(Cy; k) < 3k! (16)

Proof. The lower bound in (16) follows easily by induction on k. When
k=1, it is certainly valid. If there exists a k-coloring of K,« with no
monochromatic C, then, by joining two such copies of K, by edges of
color k + 1, we have a (k + 1)-colored K,«+: with no monochromatic C;.
To prove the upper bound, suppose that the edges of K, are
arbitrarily k-colored. Some vertex v has at least 3(k —1)! edges of the
same color, say color k, joining v to vertices X, ..., X3;_;y. If the
complete graph spanned by the x,’s had an edge with color k, we would
be done. Hence the x,’s must form a (k —1)-colored K, ;). By an
induction assumption (which we did not actually make), this K, _,,, must
have a monochromatic K,. The proof is completed by noting that the
right-hand side of (16) holds for kK =1 (to start the induction).

,
=

The reason behind the enormous difference between the growth rates
of H(C,; k) and r(C,; k) is the fact that the much stronger Density
theorem holds for C, but not for C;. In fact, we have seen from (15) that
if G has m vertices and Im’? + im edges then G must already contain C,
as a subgraph. In contrast to this, as Turan’s theorem shows, G can have
essentially m”/4 edges without containing a C,.

Of course, the difference between even and odd cycles occurs fre-
quently in Graph theory. It should not be surprising to find it appearing
here as well.

For larger even cycles, the following is known.
Theorem 10. For any k and m,

r(C,,;k)>(k—-1)(m—1).

If Xk <10™/201m then
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Finally, there exist « >0 and a positive function g such that, for any
£>0,

ak1+l/2m < r(sz; k) <g(m’ 8)k1+[(1+£)/(m—1)} )

What this result says is that 7(C,,; k) grows linearly in £ out to a
rather large value, and thereafter grows roughly like a power (exceeding
1) of k.

For odd cycles, the following analogue of Theorem 9 holds.
Theorem 11. For any k and m,
2m<rC,,, s k)<2(k+2)'m.

An old question of Erdés asks whether or not, for some A, it is true that
r(Cy; k) ;Ak .
It is not known whether
r(Cs; k) > r(Cs; k)
or even whether
HCypi1s k) > r(Cy; k)

for m fixed and k large. In fact, Erdds has suggested that it might actually
be easier to show that

r(C2m+i; k) < Ak

true!)
true!).
Anyone who would like to study more slowly growing Ramsey num-
bers is naturally led to the consideration of r(F; k), where F is a forest
(= acyclic graph) of some type. Some information is available in this case,

although the known results are far from complete.

for some m > 1 (especially if it is

Theorem 12. If F, is a forest with m edges then

kKvm-—-1)
5 <r(F,; k)<4km.
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pR— 4 I'arn
r(f,.K)=>aVKkm
for a suitable positive constant a.

We omit the proof. For every forest F,r(F;k) grows essentially
linearly in k for large k [similarly to the behavior of r(T; k) for trees T
over the whole range k]. However, the second bound allows for the
possibility that r(F; k) can grow only as fast as Vk for small k. The next
result shows that this can really happen.

Theorem 13. For a suitable constant « if kK < m then

r(mK, ,,; k)< aVikm®.

1,.m?

r(mK, ,.; k)<3km .
Note that, except for values of k between m and m’, the upper and
lower bounds for r(mK, ,,; k) differ just by a constant factor.
Instead of letting k — %, we might ask how slowly r(G) can grow as
the number of vertices of G grows. Here fairly precise results are

available.

Theorem 14 (Burr-Erdés [1976]). If G is connected graph with m
vertices then

Furthermore, for each m =3 there is such a G for which the bound is
achieved.

If G is allowed to be disconnected (still without isolated vertices,
though) then r(G) can be smaller, as the following result shows.

Theorem 15 (Burr—Erdos [1976]). For a suitable positive constant «, if
G has m vertices then
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Also, there is a graph G with m vertices and a constant 8 such that

J—

m+ gvim.

rHG)

i

Again, it is conjectured that the lower bound is essentially the truth.

We conclude this section with an assortment of results, comjectures,
and remarks that suggest the variety of directions researchers in this field
are currently pursuing. Most of these deal with the two-color case; the
analogous statements for the k-color cases will be left to the reader.

To begin with, let us call a set $={G,, G,, ...} of graphs an L-set if
h

there is a constant « = a(%) such that
r(G,) < ap(G)

for all i [where we recall that p(G,) denotes the number of vertices of G.].
We define the edge density p(G) of a graph G by

where e(H) denotes the number of edges of H. The following strong
conjecture is due to P. Erdos.

Conjecture. If p(G) is bounded for G € ¥, then % is an L-set.

Although the conjecture is far from being established at present, some
supporting results are known; for example, any set of trees is an L-set,
and for any m the set {C["} of mth powers of cycles is an L-set. A set of
particular interest that is not yet known to be an L-set is the set {Q,} of
cubes.

A very general result that is particularly useful for relatively dense
graphs is the following.

Theorem 16 (Chvatal-Harary). Let G be a graph with p vertices and g
edges, and let s be the order of the automorphism group of G. Then

r(G; k)= (sk? 7, (17)

Proof. The proof will be accomplished by a simple but effective use of

the “‘probabilistic method.” Let us (arbitrarily) label the vertices of G by
Vi,--.,U,, forming the labeled graph G. It is easily seen that the
complete graph K, contains exactly



Graph Ramsey Theory 149

N = i
(n)p = n(n - 1) .

_—
3

Thus, from the definition of s as the number of symmetries of G. K,
contains = (_n\p/c copies of G, say G, G,, ..., G,. Let us say that a
k-coloring of K, is G, bad if all the edges in the subgraph G, of K, have

been assigned the same color. Since there are k 2 k-colorings altogether,

- 1
there are just k2 - G.-bad colorings. Therefore there are altogether

(M)-g+1
at most tk'2’ © colorings that are G,-bad for some i. Hence, if

n

tk(z)’qﬂ <k(;) ’

then some k-coloring must form no monochromatic copy of G in K, . This
condition certainly holds if

s ) t,
s §
that 1s,
n<(sk?H'".
Thus

HG; k)= (sk? ',
and the theorem is proved.

An interesting variation is to determine for a given graph G the
minimum number of edges a graph H can have so that any 2-coloring of
the edges of H always results in a monochromatic copy of G. Let us
denote this minimum number of edges by r.(G). It is obvious that

6)=("7). (19)

When G is a complete graph then in fact, equality holds in (18) (see
Erdos, Faudree, Rousseau, and Schelp [1978]). It is not known whether
this can happen for noncomplete graphs. In the other direction it is not

hard to show that

m-1 f

(2m
re(Kl,m)—Jtzm f
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Thus
re(KI.m) -
(r(KI,m))

\ Z /

One of the most interesting open questions dealing with r, is whether (19)
holds when K, , is replaced by the path P, . At present we can rule out
neither r,(P,)<cm nor r,(P,)>cm® as a possibility.

Finally, one can consider the class €(G) of graphs H for which
H— (G, G) but such that for any proper subgraph H'C H, H' -
(G, G). Such graphs are called Ramsey-minimal for G by Burr, Faudree,
and Schelp [1977]. It is known (see also Nesetfil and Rédl [1978b]) that
€(G) is infinite in any of the following cases:

(i) G is 3-connected,
(i) G has a chromatic number of at least 3,

.....

The proof of (iii) is particularly illuminating since it incorporates
several ideas that recur constantly in Graph Ramsey theory.

Theorem 17 (Nesetril-Rodl [1978b]). Suppose that G is forest that is not

AR Ty ~ .
a umon of stars. Then 4(G) is infinite.

Proof. What we show is that, for any given integer ¢, there is a graph
H € €(G) that has more than ¢ vertices. Let n denote the number of
vertices of G.

To begin with, we know by a classic result of Erdos [1959] that there
exists a graph K with chromatic number x(K) exceeding n’ and girth
exceeding ¢. In any 2-coloring of the edges of K, the edges of at least one
of the colors form a graph K' with x(K')>n. [More generally, if
E(K) = E(K,)U E(K,) then x(K) =< x(K,)x(K,), since the product of
the two vertex colorings that achieve x(K,) and x(K,), respectively, gives
a valid y(K;)x(K,)-coloring of the vertices of K .] By sequentially
removing edges from K’, we can form a minimal subgraph K" C K' with
x(K")=n+ 1. In particular, all the vertices of K" must have degree at
least n, [If v is a vertex of K" with degree less than n, then, by
minimality, K" — {v} can be n-colored, and since v is adjacent to at most
n—1 of the vertices of K" — {v}, this n-coloring can be extended to a
valid n-coloring of K” (which is impossible).] Furthermore, it is easy to

see that K" contains every forest F with n vertices as a subgraph (we
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simply start embedding F anywhere in K”; since all degrees in K" are at
least n, we never get ‘“‘stuck’).

Thus we have shown that K— G. Therefore K contains a (minimal)
subgraph K* € €(G). Note that K* itself cannot be a forest since the
edges of any forest can always be 2-colored so that no monochromatic
path P, of three edges is formed (and by assumption, since G is not a
union of stars, it contains P, as a subgraph). Thus the girth of K* is finite;
of course, it is greater than ¢, the girth of K. But this implies that K* has

more than ¢ vertices, and the proof is complete.

Conjecture. If G, has chromatic number m then

nG,)=rK,).






6
U
Beyond Combinatorics

6.1 TOPOLOGICAL DYNAMICS

In this section we outline the applications of topological dynamics to
Ramsey theory. We shall prove van der Waerden’s theorem and Hind-

man’s theorem by these methods. We shall show the implication of

Smeeredl s thegrem from the Frgndur‘ theorem of Pnrefpnhprg

We assume a rudimentary knowledge of topology. Let us review the
product topology in the form we will require. Let B be a topological
space, A a set. Set

X={f;A—> B},

We shall often write X = B*; X forms a topological space under the
a € AU, , U, C B open,

roduct topology. For every a,,.. ., AU, ..., L

p UL VUPIY _‘r a

U={fEX: fla)EU,1<i<s)

is an open set, and these sets form a basis for the product topology. When
B =[c], with the discrete topology, a basis for the open sets about f € X
is given by these sets:

[I={o€CE
U={8¢€

(%)
—

When (B, p) is a metric space a basis is given by the sets:
U={g€ X: g(a;)E B(f(a;), ), 1 si=s},

where £ >0 and B(z, £) denotes a ball of radius £ about z.
Let B be a compact space. (In our example B will be elther [c] or a
compact metric space.) By the Tychonoff theorem X = B“ is compact

under the product topology. This property is central to all applications.

153
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We observe that the Tychonoff theorem requires the Axiom of Choice so
that all results will be nonconstructive.

We begin with construction of a topological space. Fix a number of
colors ¢ =2. A c-coloring of Z is a function

x: Z—|c].

Let X denote the set of all such colorings; X is called the bisequence
ly i

space, as its elements may be represente

(=8
o-‘ -
(=]

G r=-
j =
o o]
=
=h
=
=
o

wl

o
£L

=

o

=

O

¢']

w

(o

x=(--,x(—1), x(0), x(1),---).

(n+1)"" if n =0 is minimal so that
p(x, y) = x(i) = y(i) forlil<n,
0 fx=y.
If x(0) # y(0) then n =0 and p(x, y) = 1. The distance p(x, y) is small iff

x, y are identical near the origin. We may easily show that x, — x, under
the metric p, iff x,(i)— x, (i) for all i € Z. Topologically, X = [c]” forms
a compact space by the Tychonoff theorem. (Alternatively, any sequence

{x,} contains a convergent subsequence by a diagonalization process. )
lF‘f T: X——) Y he AdAefined hy

o
| BV, % T <32 Ubvw uGilliivu U-y

(Tx)(i)=x(i+ 1),

where T is called the shift operator, and Tx is the coloring x moved one
space to the left. T is bijective. It is uniformly continuous, as plx, y) <
(n + 1) ' implies that p(Tx, Tv) <n '. Hence T is a homeomorphism
(though it does not preserve the metric). For s€ Z, let T* denote, as

usual, the sth iterate of T, given by
(T°x)(i)=x(i +5).
Let x € X. Define the orbital closure of x, denote by x, by
x=c{Tx:s€ 27},
ological closure. Then x is a compact subspace of X.

(S P
As T(T°x)=T""'x€x, T(X)C % by continuity. Similarly, T (%) C z;
bijectively on x.
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) is a dynamical system if Y is a compact metric space
a bijective homeomorphism.

1oN. (Y,
T Y—>Yis

Theorem 1 (Topological Van Der Waerden Theorem). Let (Y, 7T) be a
dynamical system, r =1, £ >0. Then there exist y € Y, n >0 so that

o(T"y, y)<e  (p=nmetric of Y)
Theorem 2. Theorem 1 implies van der Waerden’s theorem.

Proof. Let x € X be a c-coloring of Z. Apply Theorem 1 with Y = x.
For some yEx, n>0

p(T"y, y)<1, 1<sis<r,
that is,
y(0) =T y(0)=---=T"y(0)
or
y(0)y=y(m)=--=y(mn).

As y Ex, there exists s € Z, p(y, T’x)<(rn + 1)7', that is, y and T"x are
identical on [—rn, +rn] so that

T’x(0)= T'x(n)=---=T'(rn)
or
x(s)=x(s+n)=---=x(s+rm),

a monochromatic arithmetic progression of length ». We have shown that
an arbitrary finite coloring of Z contains arbitrarily long monochromatic
APs. The replacement of Z by N is a simple exercise (either using the
Compactness principle or considering symmetric colorings of Z ).
DerNITION.  Let x € X. A sequence of length r of x is an ordered r-tuple
(x(i),...,x(i +r—1)), i€ Z. Let Seq(x) denote the family of all se-
quences of a coloration x.
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Theorem 3. y € x iff Seq(y) C Seq(x).

Proof. Lety€x, (y(i),..., y(i + r—1))ESeq(y). For some s € Z
p(T7x, y) <[1+ max(|il, [i + r~1)]"
so that y and T’x agree on [i, i+ r — 1] and
(y(i),...,y(i+r—1))=(x(i+s),...,x(i+s+r—1))ESeq(x).

Conversely, assume that Seq(y) C Seq(x), and let n =1 be arbitrary.
Then

(y(_n)a R y(n))eseq(x)

(y(=n),...,y(n)=(x(—n+ys),... , x(n + 5))

Theorem 4. The following conditions on x € X are equivalent:

(i) Seq(x) is minimal in the sense that, for no y € X, is Seq(y)C
Seq(x).
(i) yExXx> y=nx.
(iii) x is minimal in the sense that, for no y € X, is yCx.
(iv) (Bounded Gaps condition) For every (x(i), ..., x(i+r—1)€
Seq(x) there exists M so that, for every f€ Z, there exists
SE[t,t+ M — ] so that

(x(i),...,x(i+r—1))=(x(s),x(s+1),...,x(s+r—1)),

that is, the sequence occurs as a subsequence of every interval of
length M.

We call x € X minimal if conditions (i)—(iv) hold. Conditions (i) and
(iv) apply when X is the bisequence space; (ii) and (iii) apply for any
compact space X and homeomorphism T.
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Proof. The equivalences (i) < (ii) < (iii) are immediate from Theorem 3.

Let x satisfy (iv) and y € x. Let (x(i), ..., x(i + s — 1)) € Seq(x) with M
given by (iv). Then (y(1), ..., y(M)) € Seq(x) so

(y(1), ..., (M) =(x(0), ... . x(t+M~1))

for some t€ Z. For some sE€E[t,t + M —r]

Y SN { Lo AW — N wf oo 1) { L owe A%

\.fl\l}, ,L\tTI 1)}—\5\0},4&\07‘1), ,L\ T r })
=(y(s—t+1),...,y(s—t+r)
€ Seq( y)

Hence (iv) = (ii).

Inversely, let s = (x(i), ..., x(i + r — 1)) €Seq(x), and let ¢t,, be de-
fined for all odd (for convenience) M=2N+1 so that s is not a
subsequence of x on [¢,,,t,, + 2N]. Let x,, = T**Nx so that s is not a
subsequence of x,, on [ N N]. By the Compactness principle (i.e.,
Diagonal argument) there exists a convergent subsequence x, —y,
M,=2N,+1. Asx, €x, yEx. For every N there exists i so that N =N
and x v, 1s identical with y on [—N, N]. Thus y does not contain s as a
subsequence on [—N, NJ. As N is arbitrary, s ZSeq(y) so x does not

satisfy (ii).

Theorem 5 (Minimal Property). For every x € X there exists yEx, y
minimal.

Proof. We use condition (iii). Let % = {y: y € X}. Suppose that € C U

forms a chain under containment. Any finite subfamily y,,..., y, €%

has a minimal set, so Ny, #J. € is a family of closed sets of X. As X
satisfies the Finite Intersection property (equivalent to Compactness),

N y#<,

JEE

that is, there exists z € y for all y € €. Thu

us z
In O every chain ¥ ic Aaminatad (lindar canta
A T UVULY viialll U 10 UULHalcU (unuci Luritaniian

By Zorn’s lemma (logically equivalent to the Axi
x € U is dominated by some minimal element y C

Cyforallye €.
41“1*ent) by some
m of Choice) every

— o0
< W,

I‘Q|

Xi0
x

.
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The Minimal property has a combinational interpretation. Let & be a
set of sequences. Suppose that one wishes to show that, for all colorings
x€ X, Seq(x)N o #J. Then, using condition (i), it suffices to show
that, for all minimal colorings x € X, Seq(x) N & # . Observe that van
der Waerden’s theorem is a statement of thls type. The minimal color-
ings, unfortunately, may have a complicated structure. We note, for
example, that, for all real « and n € N, the coloring

x(i) = [ai] (modulo n)
gives a minimal coloring When a is irrational x is not periodic.

the Minimal property, for all dynamncal systems (Y T) there exlsts a
nonempty A C Y so that (A, T) is minimal.

Proof of Theorem 1. By the above remarks, we may assume that (Y, T)

is a minimal dynamical system. Consider the following sequence of
statements:
(A): YVe>03x, y,n p(T"x, y)<e, JIES IS
(B/): Ve>0Vz3x,n p(T"x,2)<e, Isis<r
(B,): Ve>0Vz3x,n,e' >0,
T"[B(x,e')C (z, €), Ilsisr
(C.): Ye>03w,n p(T"w,w)<e, Isisr

We shall show that (A,)=>(B,)=>(B])=>(C,)=>(A,,,). Observe that
(A,) is trivial, taking x, n arbitrary, y = T"x.

Theorem 6. Let (Y, T) be minimal. For all £ >0 there exists M > 0 so
that, for ali x, yE€ Y,

:Hsliﬂ p(T'x, y)<e.
Proof. When Y is a set of colorations, the existence of M follows from
the Bounded Gaps condition. In general, if no m existed, there would be
sequences x;, y, € Y so that p(T"x;, y,) > ¢ for all |s| < i. On an appropri-
ate subsequence X;, y; would s:multaneously converge to x, y and
p(T’x, y)= ¢ for all s € Z. But then y £x, contradicting the minimality

assumption.

+
)‘

{ \—\{R T at

\“Rp )72, A

such that p(x, y) <

>0 be

fixed a
implies p(T’x, u) < ¢ for | =M (s ex1sts by the

~ 0
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uniform continuity of the 7°). Let x, y, n satisfy (A, ) fore" Let - € ¥ be
arbitrary. For some s, [s|<M, p(T’y,z)<e. As p(I'"v.v) <&,
p(T""°x, T’y) < & so that p(T"x*, z) <2e, where x*=T"x. As ¢ was
arbitrary, (B,) follows.

(B,)=>(B}). Fix ¢>0, zE€Y. Select, by (B,), x,n so that T"x &
B(z,€/2), I<si=<r. Select, by continuity, an ¢ =<¢g such that x' €
B(x, ¢') implies T"x' € B(T"x, ¢/2), 1<i=<r. (Note that g’ depends
strongly on n.) Then x' € B(x, ¢') implies that

o(T"x', 2) < p(T"x', T"x) + p(T"x, 2) < & ,

desired.
!
!

ag A
(B (C,). Let g, < e€/2 and z, E Y be arbitrary. Let z,, n,, £, < ¢,
satisfy

T [B(z,, &) C B(zy, &), 1sisr.
By induction, select z_, n_, £, < ¢,_, so that

T‘E”x[B(zs’ 35)} (; B(zs~17 1)

By the Compactness principle, from the infinite sequence {z,} we may
find ¢ <s such that p(z,,z,) <ég, (The perspicacious reader will note
here the focusing of progressions, as in the combinatorial proof of van der
Waerden'’s theorem.) By a simple induction

mr(ns+ns PSRRI | )

T -1 "l"i’lz[B(Z

s s

Thus (C,) is satisfied by n=n +---+n,, and w=2z.
C.,=> A_,,. Let £ >0 be arbitrary and w, n satisfy (C,). Set x = T "w,
y=w. Forlsisr+1,

o(T"x, y)=p(T " "w, w)<e,
completing the proof of Theorem 1.

For SC Z let P(S) denote the set of nonempty finite sums of S.
Hindman’s theorem states that if N is finitely colored there exists an
infinite S C N such that 2(S) is monochromatic. Let (X, T) be a dynami-
cal system.



160 Beyond Combinatorics

DerFINITION.  We say that x, y € X are proximal if

T T"u) =
p(T'x, T"y) =

v
Ay

h
N"‘"’

6

3;..-

ai o

If X is the bisequence space then x, y € X are proximal iff there are
arbitrarily long intervals I C Z such that x(i) = y(i) for i € I.

Theorem 7 (Topological Hindman’s Theorem). Let (X, T) be a dynami-
cal system xEX, x=X. Let Y C X be minimal. Then there exists y € Y
such that x, y are proximal.

Note that if X itself is minimal (e.g., X = unit circle, T = rotation by 8
with 8/2 irrational) then Y= X so we may take y = x.

Theorem 8, Theorem 7 implies Hindman’s theorem.

Proof. Letx: N— [c] be arbltrary For technical reasons extend x to Z
be settmg x(—iy=x(i), iEN, x(0) arbitrary. In the bisequence space set

=x. Let Y be a minimal subset of X [which exists by the Minimal
erty (Theorem 5)]. Let y € Y be given by Theorem 7. We use two

pro
properties:

(i) x, y are proximali,
and
(i) y has the Bounded Gaps property.

Either inf, .y p(T"x, T"y)=0 or inf,__, p(T"x, T"y) =0. Assume the
former. (One says that x, y are positively proximal. ) Let y(0) =red. For
some M, every M-interval of y contains a red point. Let / be an
M-interval, />0, on which x, y coincide. Then, for some a, €I, x(a,) =
y(a,) =red. Now, by induction, assume 0<a, <---<a, have been
found. Set u =a, + - -+ a,. For some M, every M-interval of y contains
a u-interval 1dentlcal to [0, u] More formally:

annamE{n,nﬁ-M*“‘V(m + l)

Hyjs N

y(i), O<isu.

5

There exists an M-interval ] > a, on which x, y coincide. Set a,,,equal to
the minimal element of 1. Thus

y(as+1+i)=x(as+1+i)= Osi<u.
Let ,BEQ‘-‘([H »o--54a.,a..,1). Either ,(;’E?}‘({al, ,a,p) or B=
a,.1 % a, where a € P({a,,...,a,}), or B=a,,,. In the first case
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x(B)=red
by induction. In the second case

X(B) = x(as+1 + a) = y(as+1 + a) = y(a) = red
by induction. In the third case

x(B)=x(a,,)=ya,.)=y(0)=red,

AN Py

completing the induction step. The infinite set §={a,,a,,"-*} is the
desired infinite monochromatic set.
As SCN, ?(S) is monochromatic under the original x. When

fl n
“1{;16 NP\‘ X, T )’}_0 the above Qrgnmpnf wnnld y191(1 an Q(_ N

LV LY

such that #(S) is monochromatic. But then —S C N, and ?(—S) would
be monochromatic under the original coloring.

For completeness (and for the edification of topology buffs) we prove
Theorem 7. Let (X, T) be a dynamical system. Let X' ={f: X— X}

42, 1cal SLCl

with the product topology As X is compact, X" is compact. X" forms a
semigroup under composition. [Notation: ( fg)(x) = f(g(x)).] The sets

O={he€ X": p(h(x), y) <&}

form a subbasis for the topology. For any g € X”, the right multiplication
V. : X*— X%, given by ¥,(f) = fg, is continuous, for with @ given above

v (0)={fEX": p(f(g(x)), y) < e}
={fEX": p(fx"),y)<e}, x =g(x),

is open. The left multiplication @ : X*— X", given by ®,(f)=gf, is
continuous if g is, for in that case

V. (0)={fEX": p(g(f(x)), y) <&}
={fEX": flx)Eg (B(y, &)}
is open as g~ '(B(y, €)) is. Set
E=cd{T":neZ}CX".

Then f € E iff, for all x,,...,x, € X, £>0, there exists n € N so that
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p(flx,). T"(x,))<e, 1<iss

(the existence of f € E other then f= T" is nonconstructive). E is a
closed subset of compact X*, hence E is compact.

We claim that E is closed under composition. Set f, g€ E, and let
Xy,...,%X €X, >0 be arbitrary. For some n€ Z

pf(8(x). T (g < 5, 1<iss.

There exists § >0 so that p(x, y) < & implies that p(T"x, T"y) < £/2. For
some meE Z

p(g(x,), T™(x,)) <86, lsis<s.
Hence
o(T"(x), T'T"(x))< =, lsis<s,
and so
p(fe(x), T"""(x))<e, 1<i<s.

Therefore fg € E, and E is thus a semigroup. It is called the enveloping
semigroup of (X, T).

Theorem 9 (Idempotent Theorem). Let E be a compact semigroup for
which right multiplication V,: E— E, given by ¥ (f) = fg, is continuous

for all g € E. Then there exists g € E such that g° = g.

Proof. Let 4 denote the family of compact semigroups A C E. o # &
asEed f €CAisachainthen N€E A (NE€#Dasall AE € are
compact.) By Zorn’s lemma there exists a minimal A € &f. Let g € A.

Then Ag is a semigroup ((f,g)(f.8)=(f,gf,)g) and is compact by
continuity. As AgC A, Ag = A by minimality. Set B={f € A: fg=g)}.
As Ag=A, B#(J. B is a semigroup (f,g=g and f,g=g imply that
fif,8=g) and is compact by continuity. Thus B = A by minimality. As
gEB, g’ =3

Proof of Theorem 7. Fix (X, T),x€E X withx=Xand Y C X minimal.
Let E be the enveloping semigroup of (X, T). Set

F={fEE: fxeY)}.
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We first show F is nonempty. Let x' € Y be arbitrary. As x' € x thereis a
sequence n, with T""x— x'. As E is compact the T"m cluster at some
fEE. Then fx=x' so fE€F. F is closed, hence compact, from the

X
+
tnnnlr\g:yr Gf 1‘( .

Let z€Y, f € E. For all £ >0 there exists n,

p(fz, T"z2)<e.

But T"z€ Y so p(fz, Y) <. As ¢ was arbitrary and Y closed, fz€ Y.
that is f(Y)C Y for all f€ E. Now let f, f,€EF

Hence f, f, € F. We have shown that F is a compact semigroup. Let g € F
be the idempotent guaranteed by Theorem 9.

We claim that gx is proximal to x. Note that gx € Y since g € F. Let
e >0. Since g € F, there exists n so that

p(gx. T"x) <

p(g(gx), T"(gx)) <

Nlm Nlﬁn

p(T'x, T"gx) < ¢,

completing the proof.

Let S C Z. We say that S has positive asymptotic density if, for some
a >0, there is a sequence of intervals [n,, m;) C Z such that m, — n,—»
and

m IS N [n;, mi)l _
m[-An,-

Szemerédi’s Theorem. If S C Z has positive asymptotic density then it
contains arithmetic progressions of length k for all k.

Furstenberg’s Theorem. Let (Y, %, u) be a probability space and
T: X— X a measure preserving bijection. For all ACY with u(A)>0

and all k there exists n such that

p[ANTAN---NT"*VA]>0.
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The proof of Furstenberg’s theorem involves recondite methods of
Ergodic theory and will not be considered here. We shall only show the
implication of Szemerédi’s theorem from Furstenberg’s theorem. Demon-
stration of the equivalence of this statement of Szemerédi’s theorem to
that of Section 2.5 (via the Compactness principle) is left to the reader.

A map L:2%—][0,1] is called a norm if L(Z)=1 and L(AUB)=
L(A)+ L(B) for all CllS_]Olnt A, B. Also, L is called shift invariant if
L{T+iy=L{(T) for all TCZ, iEZ. We require the existence of a
shift-invariant norm L (often called a Banach norm) with L(S)=a.

Let % = {f: 2> [0, 1]}. Under the product topology (giving [0, 1] the

i PPN P g
usual topology) % is compact by the Tychonoff theorem. Let ¥ C %

denote the set of all norms. We claim that ¥ is a closed set. Let
L €cl(&), and A, B be arbitrary disjoint sets. For all £ >0 there exists
M € ¥ so that

as M(A) + M(B) = M(A U B),
|L(AU B) — L(A) — L(B)} <3e¢.
Since ¢ was arbitrary, L(AU B) — L(A) — L(B) = 0. Similarly, L(Z) =1

so that L € . Under the subset topology, £ forms a compact space
Define L, € £ by

le[nz’ mz)l

L(X)= mo—n

By compactness, {L,} has an accumulation point L. For some sub-
sequence I,

L(S)=lim L,(S).

As lim L(S) = a, L(S)=a. Let XC Z be arbitrary. For some sub-
sequence i,

L(X) = tim L,.(X),

L(X +1)=lim L,(X)

i’ '

For all ¢,
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X+ D0, m = X0 m)] 2

lr 7w 1\ r 7w
LA T 1) LA = .
IL,( )~ Li{A) m,—n m—n
Therefore
imL, {(X+1)—L.(X)=0  for every subsequence i’.

Hence L(X)= L(X +1), and L is the desired shift-invariant norm. Set
Y ={0,1}% Fori€ Z set

Y, ={yeY:yi)=1}.
Define u by
p,(Y,‘ﬂ~--ﬁY,.!)=L((S+i1)ﬂ---ﬂ(S-%—is)).

This generates a measure w on the o-algebra % generated by the Y.
(Here p is a probability distribution on the finite algebra generated by
Y .,...,Y, by the finite additivity of L. The extension of u to U is
given by the classic Kolmogoroff Extension theorem.)

Now we may begin. Let T: Y— Y be the shift operator, given by
(Ty)(i)=y(i + 1). As L is shift invariant, T is measure preserving. Set
A=Y, sothat u(A)= L(S) = a. Let k >0 be arbitrary. By Furstenberg’s

theorem there exists n so that

0<pu[ANTAN---NT* V4]
=L[SN(S+nn---N(S+(k-1n)].

There exists a so that

P ;
ac s tin, 0=

i
I\

k-1,

and {a,a—n,...,a—(k—1)n} C S is the desired AP for Furstenberg’s
theorem.

Note. We have followed the approach of Furstenberg and Weiss [1978].
Furstenberg [1977] and Szemerédi [1975] present full proofs of
Szemerédi’s theorem. Veech [1977] gives a survey of developments in
topological dynamics. Bergelson and Hindman [in press] explore the
connections between topological dynamics and Ramsey theory. The book
of Furstenberg [1981] is highly recommended.
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6.2 ULTRAFILTERS

An ultrafilter on a set X is a zero-one finitely additive measure u defined
on all subsets of X, that is,

(1) u(A)=0or 1 for all AC X and

(i) w(A,U--UA)=u(A)+---
disjoint.

For all i € X the measure u, given by

is called a principal ultrafilter. If w is not of this form, it is called a
nonprincipal ultrafilter. Equivalently, a nonprincipal ultrafilter u satisfies
the condition

(i) w(A)=0 if A is finite

Alternatively, an ultrafilter can be described as a family «f c2¥
satisfying the conditions

(iv) Xed, O& A,
(v) for all AC X either A € of or A° € & [not both, by (iv) and (vi)];
(vi) A, B € o implies that AN B € «.

Also, for nonprincipal ultrafilters,

(vii) A finite implies that A & .
The equivalence is readily seen by setting
A={ACX: u(A)=1}.
Theorem 1. There exist nonprincipal ultrafilters on any infinite set X.

Proof. We call B C2% a filter if it satisfies conditions (iv) and (vi). Let
F denote the set of filters. If € C & is a chain under containment, then
U % is a filter that contains all & € €. By Zorn’s lemma (which is
required for this result) every filter is contained in a maximal filter. Let «f
be a maximal filter, BC X, B & &. Then

A ' =dU{ANB:AE A}
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is a filter, so, by maximality, & " =& and B € &. In concise terms
maximal filters are ultrafilters.

Now set B ={AC X: X — A is finite}. Since & is a filter (we require
X to be infinite so that @& ), it is contained in an ultrafilter &/ If A is
finite, X — A€ B C of so that AZ o. Thus & is a nonprincipal ultra-
filter.

Theorem 2. Let y:[N]’—>[r] be arbitrary. There exists an infinite
monochromatic A C N.

Proof. Fix a nonprincipal ultrafilter u on [N]>. Define x': N—[r] by

x'(x) =that i so that u({y: x({x, y})=i}})=1.
As i ranges over [r], the above sets partition N — {x} (of unit measure
since u is nonprincipal) so that exactly one such i has this property. Now

N is partitioned by x' so that there exists a unique i such that
w(B)=1,  where B={x: x'(x)=1i}.

We next find an infinite set of color i. Choose a, € B arbitrarily. Having
chosen a,, ..., a,, set

$=B00) (y x({a, )=i)

Since S is the intersection of n + 1 sets of unit measure, u(S) = 1. Choose
a €S, distinct froma,,...,a,. Then A={a,: n€ N} is the desired
monochromatic set.

We have actually proved the existence of an infinite monochromatic set
in the color most often used—where “most often” is in terms of the
ultrafilter!

Our next result, noted by N. Hindman, gives a general connection

between ultrafilters and Ramsey theory.

Theorem 3. Let ¥ be a family of nonempty subsets of X. The following
are equivalent:
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(i) If X is finitely colored there exists a monochromatic G € &.

(ii) There exists an ultrafilter & on X such that, for all 4 € A, ADG
for some G € .

Proof

(ii)é(i) If X is finitely colored then the set A of points of some
particular color is in the ultrafilter and the G € ¥ with G C A is mono-
chromatic.

(i)=>(ii). Set
B={ACX:ANG#Dforal GE 4} .

Let Aj,..., A, € B be arbitrary. Partition X into 2" parts by the Venn
diagram of the A;. Some G € ¥ is contained in one part. Since GN A, #
D, 1<si<k, wemusthaveGCAﬂ "MNA, sothat A,N---NA, #

P cnbo [ TN 57\'*’ [
. Now let B be the set of finite u'itcaocuuuub of sets in 9. Then B is

A NWYY AL O

a filter, so it is contained in an ultrafilter &. If A€ o then A° & &,
AEB, A°NG = for some G € %, and thus AD G.

We now present Glazer’s startling proof of Hindman’s theorem (Chap-
ter 3, Theorem 15). The product topology 7 on the set of all zero-one
functions on 2" forms a compact space by the Tychonoff theorem. Let %
denote the set of ultrafilters over N. % is a closed subspace of 7. Since I
is compact, % is compact under the product topology. The sets

1> LU LRSS LV L

{(LEU: u(A)=¢}, e=0,1, ACN,

from a subbasis for the topology on %.
We define a binary operation + on % by

(e +v)(A)=p({n: v(A-n)=1}).

3

(RvA—nwp mean {XEIY]:XJI-IE }\T ShO'WL, osure, let,u,,vbe
arbltary ultrafilters. Clearly (u + v)(N) =1, (u + »)(@) =0. Let A, BC
N be disjoint. Then (AU B)~n=(A - n) U (B — n), and at most one of

these disjoint sets may have unit measure under v. Thus

-

{n: v(AUB—n)=1}={n:V(A—n)=1}U{n:v(B—n)=1},

a disjoint union. Hence
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(n+v)(AUB)=p({n: v(AUB—-n)=1})
=p({n:v(A-—n)=1})+ p({n: v(B-m=1})
=(un+ v)(A) + (n +v)(B),

and so g + v is an ultrafilter. The operation is associative, as

(p+ @+ o)(A)=((pnt+v)+o)(A)
= u({m: v({n: o(A—n)=1})=1}).

For fixed v the right addition ¥ : % — %, given by ¥, (u)=p + v, is
continuous since

(w:(n+v)(A)=¢e}={u: u(B)=¢},

where B = {n: v(A —n)=1}.

We apply the Idempotent theorem (Section 6.1, Theorem 9) to deduce
the existence of an ultrafilter u such that x4 + u = u. Since the principal
ultrafilters satisfy u, + i, = pt,; # , for all i € N, p is nonprincipal. Fix
this w.

With the existence of the appropriate ultrafilter established, the re-
mainder of the proof is brief. Let N be finitely colored. The set of points
colored some particular color has unit measure under u; let A, denote
that set. For any B C N define B* = {n: u(B—n)=1}. If u(B)=1 then

1=(p+up)B)=pn(B*) and u(BNB*)=1.

Selecta, € A, N A%, andset A, = A, N (A, ~a;) — {a,} sothat A, C
A,, a,+ A, CA,, and u(A,)=1. Having defined A, of unit measure,
selecta, ., EA, NA*andset A, ,,=A,N(A,~ a,,;)—{a,..} so that
A, CA,, a,,,tA,,,CA, and u(A,.,)=1. Then all sums of X =
{a,: n € N} are clearly the same color. Well, perhaps not so clearly; take
a, + a, + a5, for example. Since a;€ A, C A;, a; +45€ A,CA,,a +
a,+ as € A,, as are all sums from X.

Note. Comfort [1977] provides an overview of ultrafilter methods.

6.3 AN UNPROVABLE THEOREM

We define a set S C N to be large if | S| > min(S) (e.g., {3,7, 56,914} is
large, but {4, 7, 8} is not). Let us modify the Ramsey arrow notation and
write



170 Beyond Combinatorics

m- (n); (1)

r

. . k . .
if for any r-coloring of [n. m]" there exists a large monochromatic set. We
define a statement (PH), initially considered by J. Paris and L. Har-
rington:

SART YN ) —-— PN ‘_l(

(l’ﬂ) vn,k,rdmm_*)(n)r '

Let us prove (PH). Fix n, k, r. Let & be the family of finite large sets
S Cln, ). If [n, )" is r-colored there exists. by Ramsey’s theorem, an
infinite monochromatic set 7 C [n, *). Let § denote the first min(7)
elements of 7. Then S € «/, and § is monochromatic. The existence of a
finite m now follows directly from the Compactness principle (Section
1.5, especially Version C).

Theorem 1 (Paris—Harrington). In Peano arithmetic (PH) is unprov-

QAUiIV .

GoOdel’s Incompleteness theorem implies the existence of statements
about the integers that are true but unprovable in Peano arithmetic. The
statement (PH) is the first natural example of such a statement.

Let LR(n, k, r) denote the minimal m satisfying (1). [To simplify the
presentation we shall deal with a modified statement (PH'), where
“large™ is replaced by |X|= h(min(X)) for a function A. In fact, only
technical modifications would be required for the Paris—Harrington
theorem.] R. Solovay has shown that the function LR grows extremely
rapidly. From a classic result in proof theory this implies that (PH) is
unprovable in Peano arithmetic. We shall, for our modified (PH"),
employ Selovay’s methods. A lower bound on the analogous functions
will be found by the construction of specific colorations. Our approach is
self-contained, with the exception of the critical application of proof
theory to show unprovability.

We first examine (PH) and LR for k=2. Define LR(n,r)=
LR(n,2, r). Here there wiil be no logical difficuities. The statement (PH)
restricted to k =2 (in fact, to any fixed k) is provable in Peano arith-
metic. Technically these results are not necessary fot the Paris—Harring-
ton theorem, but they are of interest in their own right and provide a
“warm-up” for the general case.

We define an Ackermann hierarchy of functions:
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filx)=2x,
— §x)
fn+1(x) _fnx (X) ’

where f* denotes the xth iterate of f. This is a slight modification of the
hierarchy defined in Section 2.7.

Theorem 2. LR(n,r)=f(n).

Proof. We give an explicit r-coloring of [n, ()]’ Let nsx<y<
f.(n). We define Xy to be the minimal i so that, for some j,

A1) . ~

X,y €Lf (), £ ().

We color {x, v} by Xv. Observe that Xy < r since we may take i = . j = 0.
X={x,,x,,...,%,} bea monochromatic set colored i. Then

{xi .. x, b Cls, fi68))

. VIR I T T . .

where s =f\'(n). If i=1 then m=<f(s)— s=s,so X is not lar
. k k

i>1,s=f"%(n) for some k and f(s)=f%"(n). Thus

(¢}
T
Q
=

s+k-1
s, AN = U L% £25700)
=
a decomposition into s subintervals. Since all X x, =i>i—1, the ele-
ments of X belong to distinct subintervals. Hence m=s, and X 1s not

laroe

arge.

Observe that the function LR(n,n) grows at least as fast as the
Ackermann function, hence faster than any primitive recursive function.
In fact (though we do not show it here), LR(n, n) may be bounded in
both directions in terms of the Ackermann function.

We now outline some necessary prerequisites on ordinal numbers. Let
yy=w, =0y, =0 fors=1 Set &, = lim v,. As ordinal a < g, has
a unique representation, called the Cantor normal form, as

a=no+ne?t - +tne”, (2)

where o, > a,> ">, =0, n,EN. If @ <4y,,, then all exponents «, <
y,. For convenience we set Ug (a) equal to the coefficient of 0 in a,
vgla) =0, if ©® does not appear in the representation. In dealing with
ordinals we use the standard notation

def

()X (B: p<a}.
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DEerFINITION.  For a < g, we define

aof ~
v

number of term o

t lllls
[=tif « is given by (2)],
N(a) =1+ the maximal integer to appear in the Cantor

normal form of «a.

T(a) = |{B: v,(a)>0}| = th

L3 s

l &

For example,

;
LW +1 :__w+4'|7
N[3w + Sw 1= 8.

Technically, we define N inductively by N(n)=n + 1 for n < w and
N(a)=max(n, +1,...,n,+1, N(a,), ..., N(a,)))
for a given by (2).
Let e (n) be defined inductively by e,(n) = n, e,,,(n) = n*™, that is,

e,(n) is a tower of n’s of height s. The following property follows from a
simple induction.

If a <y
Let a < g, be represented as in (2). Observe that « is a limit ordinal iff
a,>0. For every such limit ordinal we define a particular countable
sequence approaching a with the nth term denoted by a(n) as follows.
Case 1.« is not a limit ordinal. Write @, = 8, + 1. Set
a(n)=nmo™+ - +n_ 0% +(n -1+ ne .
CasE 2. @, is a limit ordinal. By induction a,(n) has been defined. Set

a(n)=n o+ - +tn_ o' +(n-1o+ o,

These are the ‘“‘natural sequences.” Some examples are as follows:

a=w’, a(n) = nw ,
a=w2-l;3w, cx(n)=(,1)24;2(0-!-11,2
a=50"""" a(n) =4 T 4+ petern

Property 2. N(a(n)) <max|N(a), n].

Again the proof is a simple induction. it may occur that a(n) is itself a
limit ordinal. Let « be a limit ordinal, n € N. Consider the sequence
@, @y, . . ., defined by a; =@, @, = a,(n), the sequence terminating
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when «a, is not a limit ordinal. As this is a decreasing sequence of

- - i I~

ordinals, it must eventually terminate. We let a((n)) denote the final term
of the sequence. For example,

w’((5)=4w +5,
" ((3)) has 43 terms.

Property 2. N(a((n))) <max[N(a), n].

fi(x)y=2x,
— £
fa+1("’) - fcx (r) ’
L) =Ffx), a a limit ordinal .

Equivalently, when « is a limit ordinal we may define

fo(x) = fa((x))(x) .

This transfinite sequence of functions is sometimes called the Grzegor-
czyk or Wainer hierarchy.

We say that a function f dominates a function g if, for some c,
f(n) > g(n) for all n = c. Let P(s, 1) be a two-variable statement such that

v.3,P(s, 1) (3)

is prnvnble (and can be statpd) in Peano arithmetic. Assume P is provably
recursive; that is, there is an algorithm for dec1dmg if P(s, t) is true and a
proof in Peano arithmetic that the algorithm always terminates. Let fy.(s)
denote the minimal ¢ such that P(s, t) holds. A classical proof theory
result (and this is the only place where we require mathematical logic)
states that f, is dominated by f, for some a < ¢g,.

We define g,(n) = v, and extend the Ackermann hierarchy by defining

fe(m) =1, (n).
Property 3.  f, dominates ail f,a<g,.

Although this property appears obvious, the proof requires an exami-

nation of the limit sequences. We observe that if & < B <¢g,, Nla)=m,
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and B is a limit ordinal then o < B(m). We claim that if a < < €.
2=m, and N(a)<m then f (m)<f,(m). The proof uses transfinite
induction on B. If B8 is not a limit ordinal, say 8 =8 + 1, then

fo(m) = £ (f(m)) > f,(m) > f, (m)

by induction. If B is a limit ordinal then @ < 8(m) by our observation so
that f;(m) = f,,,,(m) > f, (m) by induction. Hence we have shown that f,
is dominated by f, whether a < B < ¢,. Finally, let a < ¢, be arbitrary,
and s be such that a« < y,. For m > max(s, N(a))

f (m)=f, (m)> f,(m)
so that £, dominates f, .
Remark. Consider the mathematical parlor game of describing, on a

single sheet of paper, as large an integer as you can. Extend the
Ackermann hierarchy to a < ¢, + w by the inductive definition. Now

fey+9(9)

should win against all nonlogicians. Indeed, by the proof theory results,
the function f, lies “beyond the scope” of Peano arithmetic. We empha-
size that these functions are recursive. There is a computer program that,
given input n, computes—theoretically, of course!—f, ,(n).

Let P(s, t) be a statement such that

(PHO) P(s, t) is expressible in Peano arithmetic;
(PH1) P is provably recursive;

(PH2) P(s, t) is false for all 1< f, ,(8);

(PH3) for all s, P(s, t) is true for some f.

Combining our previous remarks, statement (3) is a formula of Peano
arithmetic that is unprovable in Peano arithmetic but true for the natural
numbers. We shall construct a statement P of this form.

We begin by defining a sequence of colorings on ordinals. Our
objective is to find colorings so that, if S is monochromatic, then § may
be bounded by max(S).

DEfFINITION. Let B<a < £,

aB = max(8: v,(a) # v,y(B)} .
Observe that 8 = ap is well defined and v,(a) > v,(B).
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Property 4. 1f o, > >, then &ja, =max, ., q,q, ..

We define a 3-coloring x* on [g,]’ by

(0 ifaB>By,
x*({a, B y}) =11 ifaB=py.
) iF A RAy
LL’ 11 UP \P,
For the remainder of this section let S, a,, . . ., a,, r satisfy the following:
S={a,...,a,}, a, = max(S), (4)
a, > >a,, r=|8}.

Property 5. 1If x*(S) =1 then r < N(a,).

Proof. Setd = a; a, . | <i<r. Then vg(a,)>" - >vs(a,) s0 v(a)=
r—1and N(a,)=1+v,(a;)=r.

Property 6. 1f x*(S) =2 then r < T(a,) + 1. If, in addition, a < v,., then
r<e(Na))+ 1.

Proof. Let B, =aja,,
increasing, hence di
statement follows from Property 1.
Property 7. If
Proof. Let w’'<a<o’”, s<w. Set B,=wd,,,, 1=<i<r, as before.
Thens=8,> -->B,_,=0sor<s+2<N(e)+1.

Note. The assumption a < w” is essential for Property 7. For example,

S={w", 00" , @}
has x*(§)=0, a = 0*“, and |S| arbitrarily large.
We define, for s =2, (25 — 1)-colorings

X[ —={0,1,2,...,2s-3,2s -2}

and monotone functions h: N— N such that, if § is monochromatic
under y,, then r < h (N(a,)). For s =2

X [0°]—{0,1,2)
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is the restriction of y*. Bv Properties 5, 6, and 7 we may take h,(x) =
v+ 1. We define y;, in detail before proceeding to the inductive step.
Let T={a), &, a5. a,} €[0T\ If x*({a,, a, a,})=1 or 2 set

x3(T)=3 or 4 (the “new" colors), respectively. Otherwise set a! =
afai+i7 1 Sl<4 If Q’[> a:>aé set

x{(T)=x,({ay, a;, a})

observe that a, <y, implies a/ < v, so that this is well defined). If not,
set x,{T) =0 (actually. anything but 3 or 4 will do).

Let §, given by (4). be monochromatic under X;- If x5(8)=3 and 4
then § — {a,} is 1 or 2 under y* so

r—1=N(a,) or r—1=se,(Na))+1,

\NTTH/

respectively, by Property 5 or 6. Assume that § is another color, and set
a;=aa,, 1<si<r. For isr-3, x*({q, a,,,, @ .., & ,51)=0 so
a;>a; g, thatis, a;>-->a]_,. Let i, </, <iy=r—2 be arbitrary.
ML A
111CIE

Xz({a:'l’ 0!:2, a:.3}) = X3({a11’ Qi Qs ai3+1})

(i.e., the @' “minor” the a). Hence {a/, ..., a,_,} is monochromatic
under y, so

r—2<hy(N(a})) < hy(N(a,))

[as #, is monotone and N(a|) < N(a,)]. Setting

hy(x) = max[x + 1, e,(x) + 2, h(x) + 2],

we have r < h;(N(«,)) in all cases.

Now we give the general inductive step. Assume that X;» h, have been
defined for 2= <s. Let

T= {al’ et a3+1}> E[YS]J+] ’

If x*({a, &, 0z})=1or2set (T)=2s—30r2s—2 (the new colors),

respectively. Otherwise, set /=@, I<i<s. If a; > >al set

X(T)=x,_,({aj,...,a}). (This is well defined as all a;<vy,_,.)If not,
set x,(T)=0. (Actually, anything but 25 —3 or 2s — 2 will do.)
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Let S, given by (4), be monochromatic under y,. If x,(S)=2s -3 or

2 ~2then S—{a, ,,4, ..., is 1 or 2 under x* [as every triple 1s the
itial three elements of an !v + 1)-set of §] so

wiwRiivaavs Ssa Kas

r—s+2<N(e,) or r—s+2<e,_,(Na))+1

by Property 5 or 6, respectively. Assume that § is some other color, and
set @' =@a,,;, 1<i<r Forisr—s, x*({a, &, -, a,})=0s0
a'>a',,, that is, a{>-->a, . Let ij<---<i,_;<r—s+1 be
arbitrary. Then

12 t —
X {al el D=xe, e sag )
so that {a}, ..., a._,,,} is monochromatic under y,_,. By induction
’r‘—S-i-lShS_l(f\v’( ){‘- lis 1(; ’(al }

[since h, , is monotone and N(a;) < N(a,)]. Setting
h(x)=max[x+s—2,e ,(x)+s—1,h_(x)+s—-1],

we have r < h (N(a,)) in all cases, completing the induction step. [In fact,
h(x)=e,_,(x)+s—1forx=3bya simple calculation. But our concern
here is only to find some function /i  having the desired property.]

To apply the above colorings to sets of integers we shall define a
correspondence between integers and ordinals. Let a <g, n€N. We

define an ordinal valued function T = T%", called the (n, ) translation
function, inductively as follows. Set 7(n) = a. Assume that T(m) B has
been defined. If B >0 is not a limit ordinal set T(m +1)=g - 1. if 3 >0
is a limit ordinal set T(m + 1) = B((m)) — 1. When T(u) = 0 terminate the
definition. Define U(n, a) as the value u such that 7%"(u) =0. Such a u
exists, as otherwise T(n), T(n + 1),- -+ would be an infinite descending
sequence of ordinals.

Example. o« =", n=5. Then T(5) = 0’ T(6) =40 +4, T(10) = 4o,
T(11)=3w+9, T(20)=3w, T(40)=2w, T(80)=w, T(160)=0.
U(s, o) =160.

Property 8. N[T*"(m)]<max[N(a), m] for all a,n,m for which
T*"(m) is defined. In particular, when a = vy,, N[T""(m)] < m.

The proof uses a simple induction on n, applying Property 2.
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Property 9. Forall lsa<g,, n€N,

Un, @) =f,(n),

where f is the Ackermann function

o 2 A1 L8 L 222 232 ezl i

Proof. 'We use transfinite induction on a. For a =1
U(n, w)=2n

trivially. Assume that Property 9 holds for all ¢’ <a. If a is a limit
ordinal then w*(n) = ™™, s0 w*((n)) = “(”’((n)) and hence the (n %)

) ‘el s AV s TANNEL S - SR We N Y TPV,
and (." w aln ‘ *"anslat i0n fuupuuuo are identical at n +1. A blllglt: value

of a translatlon function determines all succeeding values. Hence

Uln, ") =U(n, @*™) = f,.,(n) = f.(n) .
Now assume that « = 8 + 1. We observe that, in general,
T i) = s0® + TGy, 1<i< UL )= f(1),

as the so” term remains fixed in defining the translation function. By
induction on s

U(t, so®) = £5)(1) .

The (t, w*™") and (t, tw”) translation functions are identical at ¢+ 1.
hence

U(e, “’ﬁﬂ) = U, twﬁ) =fg)(f) =f,3+1(t) .

completing the induction.
Our preliminaries are complete. Now consider the following
statement:

P(s, m,n): n>m, and if {m, n]""" is (25 ~ 1)-colored there exists a mono-
chromatic set X such that | X|= A (min(X)).

Property 10. The statement P(s, m, n) is expressible in Peano arith-
metic

Since this is not a book on logic, we dismiss Property 10 as
“obvious”—as indeed it is.
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Drnrfu"l VV:P(C’VHH)

s m=n BENLLT LAY X

The proof is a simple application of the Compactness theorem. identi-
cal to the proof of (PH) at the beginning of this section.

Property 12. P(s, m, n) is false for n<f, (m).
o

Proof. Let T be the (m, y,(m)) translation function. 7(x) is defined for
m<x<U(m, y,(m))=U(m,y,)=f, (m), hence for m<x=<n. Recall
that x < y implies T(x) > T(y). Also "recall that N(T(x)) = x (Property 8).
Let y, be as previously defined. Define

xm, ) - {0,1,...,25 =2}

xi({xp, X ) = T, s Tl )Y

(i.e., identify x € [m, n] with T(x) € [y,]). Let X ={x,,...,x,,}. be
monochromatic under x,. Then T(X)={T(x;),..., T(x,,,)}. (with
order reversed) is monochromatic under x,. Hence

u=|X|=|T(X)|<h,(N(T(x))))
<h(x,),

since h, is monochromatic; that is, x, gives a counterexample to the
statement P(s, m, n).
Finally, for ease of expression, define

Then P(s, t) is false, for t<f, (s) = f, (s). P is provably recursive as the
veracity of P(s, t) can be determined by checking all (25 + 1)-colorings of
[s {]"*% Combining our remarks, we find that P satisfies (PHO), (PH1),
(PH2), and (PH3) so the statement

(PH')
For all s there exists ¢ so that, if [s, ] "% is (25 + 1)-colored, there exists a

monochromatic set X such that | X|= h_,  (min(X))

is true for the integers but not provable in Peano arithmetic.
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Paris and Harrington [1977] give a modei-theoretic proof that
(PH) is undecidable in Peano arithmetic. Our approach is based on
Ketonen and Solovay [1981]. G. Kreisel [1952] gives the proof theory

result. Spencer [1983] gives an expository overview of these results.

L
Noleés.

- —

6.4 THE INFINITE

In this book we have purposely restricted our attention to finite Ramsey
results, proving infinite results only to show, via a Compactness argu-
ment, a finite theorem. However, there is an enormous literature on
Infinite Ramsey theorems per se. In this section we mention a few

. . . A e + e AV Y/
esthetically appealing, self-contained results from thi ure. We

s literat
assume the Axiom of Choice throughout.
Let a, B be cardinals. We define

B—(a)’

if, whenever | A| = g8 and [A]® is 2-colored, there exists BC A, |B|= e,
with [B]* monochromatic.
Let ¢ denote the cardinality of the set of real numbers.

2
Theorem 1. c-#(c)"
Proof. Let < be the usual ordering of R and <’ a well ordering. We
2
2-color [R]" by

red fx<'y,
X({x’y}<):{blue it y<'x.

Assume that [S] is red. Then S is well ordered by <. For all x€ §
(except the maximal element m, if one exists) there exists x' € §, x <x”
so that SN(x,x")=. Let A, ={x:x' —x>n""}. Clearly, A, is
countable so S=U;_; A, U{m} is also countable. Similarly, if [S]" is
blue then § is countable. Thus we have proved the stronger result
c—% (w,)’, where o, is the first uncountable cardinal.

Theorem 2. For all & there exists B8 so that 8 — (). In particular, if « is
an infinite cardinal then

(2°)" = (a)*.
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Proof. Let |A|=(2%)", and fix a 2-coloring y: [A]°— {0, 1}. As only
the cardinality of A is of importance, set

A={0,10} = (8:8<Q27)'),

the set of ordinals up to (2%)". By transfinite induction, define for each
i€ A a well-ordered sequence S(i) of 0's and 1’s. Define S(0) to be the
null sequence. Assume that S(7) has been defined for i <n. The first term
of (i), that is, (S(:))(1), is defined by

($())(1) = x(0, ) .

FINJF 7

the sequence S(a) is equal to the portion of S(i) already constructed then
we define

Now assume that (S(i))(j) has been defined for j <t. If, for some « <j,

(S()(1) =x(a, i). (*)

If no such a exists we terminate the sequence S(i). The process is
illustrated in Fig. 6.1. To each i € A is associated a distinct sequence
S(i), for if i <j and S(i) = S(j) then the sequence S(j) was terminated
when it should not have been. Note also that this implies that the a in (*)
is uniquely defined if it exists. There are at most 2% well-ordered zero-one
sequences of length < a. Hence for some ¢ the sequence S(t) is of length
a. For all i < « there exists a, so that S(a,) forms the first i terms of S(¢).
Let i <j<a. Then

x(a;, a)=(S(HHUE+1)=(SEHE+1),

independently of j (e.g., {0,2,3,6,7} in Fig. 6.1). On A" = {a;},., we
define a point coloring x’ by

0 1 2 3 4 b 6 7
0.0 4 : 00
1:1 5 : 001
2:0 6 : 010
3: M 70101

Figure 6.1 Vertex-Sequence correspondence.
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X’(ai):X(ai’aj)’ i<j.

If a set of cardinality « is partitioned into two parts one part must have
cardinality a. Let BC A’, | B| = @, B monochromatic under y'. Then B is
monochromatic under y. This completes the proof. In fact,
(2*)" = (a )’ may be proved by a suitable modification of the proof just
given.

Erdos, Hajnal, and Rado [1965] consider Ramsey relations for cardi-
nals in great detail.

There are many combinatorial questions involving Ramsey numbers
for countable ordinals. We write

y—(a, B)

(@, B, y ordinals) if, whenever [y]” is red-blue colored, there exists either
a red [S]’, S of order type a, or a blue [T]’, T of order type B. We give

| e SR Y

one relatively simple result in this area (see also Section 6.3).

Theorem 3. w’— (w°, m) for all m < w.

x'({a,b,c,d}_)=(x(aw + b, cw + d), y(aw + ¢, bw + d),

x(aw + d, bo + ¢)) .

AT T

/¥, monochromatic under y'. For convenience

8 an infinite A
relabel so that A = N,
If all x(aw + b, co +d)=>blue then {w+2,3w+4, ... ,(2m—1)
w+2m} is a blue K.

If all x(aw+c,bw+d)=blue then {w+(m+1), 2w+ (m+2),
-e.,mw+2m} is a blue K.

If all x(aw+d,bw+c)=blue then {w+2m, 2w+ (2m - 1),
.o.ymw+(m+1)} is a blue K,

If none of the above, y' = (red, red, red) so that y(we + x, yo +z)=
red for all distinct w, x, y, z with w < x, y < z. For each prime p (this is
only a convenience to ensure distinctness), set S,={pw+p":n=2} For
each p either S, contains a blue K, (in which case we are done) or an
infinite red TP C SP. If the latter holds for all p then T=U T » is a blue set
of order type w’.

£
a
IN
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An example of a truly difficult problem in this area is the relation

@’ = (0, 3)°.

This was proved by Chang [1972}]; his proof was simplified by Larson
[1973]. Erdoés and Hajnal [1971] give numerous problems involving
ordinals.

We now consider colorations of all finite subsets of a set A. We call
B C A well-colored if [B]' is monochromatic for all integers i. (We could
not expect {B]™“ to be monochromatic since one could, for example,
color [A)’ red and [A]’ blue.) Ramsey, in his original paper (Chapter 1,
Theorem 8), showed that, for all £, r, there exists n so that if | A| = n and
[A]“ is r-colored there exists a well-colored B C A4, | B| = k. The natural

generalization to infinite B is false. Define a 2-coloring of [N]~“ by

0 if|S|ES,
X(X)={1 ;f|S|§ZS.

If B is infinite, let b, € B. There are subsets X, Y C B, |X|=Y|= b,
with b, € X and b, €Y. Thus x(X) # x(Y) so B is not well colored.

Let us call A small if there exists a 2-coloring of [A]-“ so that there i1s
no infinite well-colored B C A,

Theorem 4. If A is small, 2* is small.

Proof. Let x be a 2-coloring of [A]™* with no well-colored infinite B.
Well-order A by <. For distinct X, Y C A set

XY =min XAY ,

[\l

where A denotes symmetric difference. Order /

ting X<V iff XYEX. If X<Y<Z then XZ=max(XY, YZ) and

XY # YZ. More generally, if X, <:-+<X, then X, X, = max XX,
Now let us define ¥’ on [27]7“. Let {X,,...,X,} C2” Set g, =

X. X, |, 1<i<n.If the ¢ are monotonically increasing or decreasing, set

x(UX, . ., X D=x({e, - 6,01

Otherwise, let y' be arbitrary.
Suppose that B were an infinite well-colored subset of 2% If
(X,Y,Z}_CB and ZY<YZ we call {X,Y, Z}_ mono-up; if XY >
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’ - - = =
YZ, mono-down. By Ramsey’s theorem there is an infini
$

all {X,Y, Z}_ C C have the
is similar).

An infinite ordered set may be shown to contain a subset order
isomorphic to either N or (—N). Restrict C to such a subset, say

ite C C B where
ame orientation, say mono-up (mono-down

={X1’X2’."}<

lorder type (=N) i X;.1 € A so that g, <¢g, <-

The &’s reﬂect the behavior of the X’s, since

'
il
-
3

XU, e D=x({X, . X, X, ... X})
for all 2=<i, <---<i,. Thus {¢:2<i} would be well-colored under X

contradlctmg our assumption. Thus no infinite well-colored B exists, and
27 is small.

Theorem 5. Let A=U__, A_, where the A, are pairwise disjoint.
Assume that 7/ is small and all A are small. Then A is small.

Proof. Let X! [A,]7“—[2] denote the coloring showing A_ to be

small, and y*: [’}<“’ > [2] denote the coloring showing I to be small. We

define x on [A]™* as follows. Let X ={x,,...,x,} C A. If all x, are in

the same A, set x(X). If x, € A, and the «, are distinct set x(X)=
x*({ay, ..., a}). Otherwise let y be arbitrary.

Let BC A be mﬁmte. There exists an infinite C C B so that either all
x € C are in the same A, or all x € C are in distinct A’s. On C, x reflects
either y, or x* so that C and hence B, are not well-colored. Hence A is
small.

Are there any sets A that are not small? If the answer is yes there will
be a cardinal B, that, is the smallest cardinality of a set A that is not
small. B, is called the first Erdés cardinal. Our previous theorems have
shown that B8, # @ and that:

(i) if a < B, then 2 < B,;
(ii) ifim, ., a, = a, where a, < B, for all y € I and [ is a well-ordered
set with |I[ < By, then a < §,.

In the jargon of the set theorists, B, is power set inaccessible and limit
inaccessible; B, is what is called an inaccessible cardinal. Do inaccessible
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cardinals exist? One cannot prove their existence from the usual axioms
of set theory, for, in a nutshell, if a smallest inaccessible cardinal «,
existed the family of ordinals a < &, would provide a model for set theory
in which no inaccessible cardinals exist. It appears that the existence of BO
does not contradict the usual axioms of set theory—but only for the
heuristic reason that no contradiction has been found. In fact, the
existence - - - but enough. We have strayed into the arcane world of “large
cardinal axioms,” where questions may be answered by yes, no, and
various shades of maybe. This is a finite book on finite mathematics. We
choose to stop here.
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