Ramsey Theory

Second Edition

RONALD L. GRAHAM
BRUCE L. ROTHSCILD
JOEL H. SPENCER

WILEY

A Wiley-Interscience Publication
JOIN WILEY & SONS
New York • Chichester • Brisbane • Toronto • Singapore
WILEY-INTERSCIENCE
SERIES IN DISCRETE MATHEMATICS AND OPTIMIZATION

ADVISORY EDITORS

RONALD L. GRAHAM
AT & T Bell Laboratories, Murray Hill, New Jersey, U.S.A.

JAN KAREL LENSTRA
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands
Erasmus University, Rotterdam, The Netherlands

ROBERT E. TARJAN
Princeton University, New Jersey, and
AT & T Bell Laboratories, Murray Hill, New Jersey, U.S.A.

AARTS AND KORST
Simulated Annealing and Boltzmann Machines: A Stochastic Approach
to Combinatorial Optimization and Neural Computing

AHLSWEDE AND WEGENER
Search Problems

ANDERSON AND NASH
Linear Programming in Infinite-Dimensional Spaces: Theory and
Application

BEALE
Introduction to Optimization

FISHBURN
Interval Orders and Interval Graphs: A Study of Partially
Ordered Sets

GONDRAN AND MINOUX
Graphs and Algorithms
(Translated by S. Vajda)

GOULDEN AND JACKSON
Combinatorial Enumeration

GRAHAM, ROTHSCHILD, AND SPENCER
Ramsey Theory
Second Edition

GROSS AND TUCKER
Topological Graph Theory

HALL
Combinatorial Theory
Second Edition

LAWLER, LENSTRA, RINNOOY KAN, AND SHMOYS, EDITORS
The Traveling Salesman Problem: A Guided Tour
of Combinatorial Optimization

MINC
Nonnegative Matrices

MINOUI
Mathematical Programming: Theory and Algorithms
(Translated by S. Vajda)

MIRCHANDANI AND FRANCIS, EDITORS
Discrete Location Theory
NEMHAUSER AND WOLSEY
Integer and Combinatorial Optimization

NEMIROVSKY AND YUDIN
Problem Complexity and Method Efficiency in Optimization
(Translated by E. R. Dawson)

PALMER
Graphical Evolution: An Introduction to the Theory of Random Graphs

PLESS
Introduction to the Theory of Error-Correcting Codes
Second Edition

SCHRIJVER
Theory of Linear and Integer Programming

TOMESCU
Problems in Combinatorics and Graph Theory
(Translated by R. A. Melier)

TUCKER
Applied Combinatorics
Second Edition
Ramsey Theory

Second Edition

RONALD L. GRAHAM
BRUCE L. ROTHSCILD
JOEL H. SPENCER
Preface

The romanticized view of mathematics is that it proceeds in sudden bursts of brilliant insight. Sometimes it happens just that way. Van der Waerden’s theorem, the central result of Ramsey theory, was proven in 1926. As van der Waerden recalled:

After lunch we went into Artin’s office in the Mathematics Department of the University of Hamburg, and tried to find a proof. We drew some diagrams on the blackboard. We had what the Germans call “Einfälle”: sudden ideas that flash into one’s mind. Several times such new ideas gave the discussion a new turn, and one of the ideas finally led to the solution.

[van der Waerden 1971]

Van der Waerden’s proof used a subtle double induction and when expressed quantitatively led to an extremely fast growing function. Mathematicians—we three included—searched for a different proof technique without these features. In 1987 Saharon Shelah was shown van der Waerden’s theorem and within a day or two found a new proof. Whether Einfälle or not, Shelah’s proof avoids the double induction, involves only “reasonably” fast growing functions, and—best of all—is totally elementary. In this edition we give a complete treatment of Shelah’s proof as well as the original proof of van der Waerden.

The response to the first edition of this volume has been most gratifying. Before its publication this subject matter had been generally regarded as a collection of loosely tied results. Today it is recognized for what it is—a cohesive subdiscipline of Discrete Mathematics. We are particularly pleased with the name given to this subdiscipline: Ramsey theory!

Ronald L. Graham
Bruce L. Rothschild
Joel H. Spencer

Murray Hill, New Jersey
Los Angeles, California
New York, New York
July, 1989
Preface to First Edition

The classic theorems of Ramsey theory are known to many mathematicians, for there is an elegance in their statement. Van der Waerden: If the positive integers are finitely colored then one color class contains arithmetic progressions of arbitrary length. Schur: If the positive integers are finitely colored then one color class contains x, y, z with $x + y = z$. Ramsey: If a graph contains sufficiently many vertices (dependent on k) then it must contain either a complete set or an independent set of vertices of size k. The proofs are not so widely known. Our intent is to remedy this situation.

The origins of Ramsey theory are diffuse. Frank Ramsey was interested in decision procedures for logical systems. Issac Schur wanted to solve Fermat's last theorem over finite fields. B. L. van der Waerden solved an amusing problem—and immediately returned to his researches in algebraic geometry. The emergence of Ramsey theory as a cohesive subdiscipline of combinatorial analysis occurred only in the last decade. The central role of the Hales–Jewett theorem (the pure form of van der Waerden's theorem) has been recognized and exploited. The work of Walter Deuber (on the shoulders of Richard Rado), Jarik Nešetřil and Vojtech Rödl, Klaus Leeb, and others has given sharp definition to the subject. The field is alive and exciting. We indicate possible courses for future research but make no predictions.

In the first four chapters we attempt to give clear, self-contained expositions of the central results of Ramsey theory. The only requirement for the reader is that elusive "mathematical maturity." Chapter 5 deals on a more technical level with recent developments in the field. In the final chapter we explore the influence of outside disciplines, including the applications of topological dynamics spearheaded by Furstenberg and a combinatorial approach to the undecidability results of Paris and Harrington. There are general reference citations at the end of each of the first four chapters. In the last two chapters references are cited in the text.
We wish to make special acknowledgment of our debts to Paul Erdős, who provided us with constant encouragement and who can rightfully be considered the father of modern Ramsey theory, and to Ernst Straus, whose wisdom transcends the area of mathematics.

Finally, the junior author again wishes to thank his wife, Maryann, for her assistance, encouragement, and understanding. Without her, this enterprise would have had little meaning.

RONALD L. GRAHAM
BRUCE L. ROTHSCILD
JOEL H. SPENCER

Murray Hill, New Jersey
Los Angeles, California
Stony Brook, New York
July 1980
Contents

Notation vi

1 Sets 1
1.1 Ramsey’s Theorem Abridged 1
1.2 Ramsey’s Theorem Unabridged 7
1.3 Views of Ramsey Theory 9
1.4 Ramsey Theorems and Density Theorems 12
1.5 The Compactness Principle 13
1.6 A Broader Perspective 17
1.7 Original Papers: Ramsey and Erdős–Szekeres 18
Remarks and References 26

2 Progressions 29
2.1 Van der Waerden’s Theorem 29
2.2 The Hales–Jewett Theorem 34
2.3 Extensions and Implications 40
2.4 Spaces—Affine and Vector 42
2.5 Roth’s Theorem and Szemerédi’s Theorem 45
2.6 The Shelah Proof 54
2.7 Eeeeenormous Upper Bounds 60
Remarks and References 68

3 Equations 69
3.1 Schur’s Theorem 69
3.2 Regular Homogeneous Equations (Rado’s Theorem—Abridged) 71
3.3 Regular Homogeneous Systems (Rado’s Theorem Complete) 73
3.4 Finite Sums and Finite Unions (Folkman’s Theorem) 81
<table>
<thead>
<tr>
<th>3.5</th>
<th>Infinite Sets of Sums (Hindman's Theorem)</th>
<th>84</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Regular Nonhomogeneous Systems</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>Remarks and References</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>Numbers</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>Ramsey Numbers—Exact</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Ramsey Numbers—Asymptotics</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Van der Waerden Numbers</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>The Symmetric Hypergraph Theorem</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Schur and Rado Numbers</td>
<td>103</td>
</tr>
<tr>
<td>4.6</td>
<td>Property B</td>
<td>104</td>
</tr>
<tr>
<td>4.7</td>
<td>Higher Ramsey Numbers</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Remarks and References</td>
<td>109</td>
</tr>
<tr>
<td>5</td>
<td>Particulars</td>
<td>111</td>
</tr>
<tr>
<td>5.1</td>
<td>Bipartite Ramsey Theorems</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>Induced Ramsey Theorems</td>
<td>114</td>
</tr>
<tr>
<td>5.3</td>
<td>Restricted Ramsey Results</td>
<td>119</td>
</tr>
<tr>
<td>5.4</td>
<td>Equations over Abelian Groups</td>
<td>123</td>
</tr>
<tr>
<td>5.5</td>
<td>Canonical Ramsey Theorems</td>
<td>129</td>
</tr>
<tr>
<td>5.6</td>
<td>Euclidean Ramsey Theory</td>
<td>133</td>
</tr>
<tr>
<td>5.7</td>
<td>Graph Ramsey Theory</td>
<td>138</td>
</tr>
<tr>
<td>6</td>
<td>Beyond Combinatorics</td>
<td>153</td>
</tr>
<tr>
<td>6.1</td>
<td>Topological Dynamics</td>
<td>153</td>
</tr>
<tr>
<td>6.2</td>
<td>Ultrafilters</td>
<td>166</td>
</tr>
<tr>
<td>6.3</td>
<td>An Unprovable Theorem</td>
<td>169</td>
</tr>
<tr>
<td>6.4</td>
<td>The Infinite</td>
<td>180</td>
</tr>
<tr>
<td>References</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>
Notation

A few specialized notations are particularly useful throughout Ramsey theory. We give them here.

\[N = \{1, 2, \ldots\} = \text{the positive integers.} \]
\[|X| = \text{cardinality of } X. \]
\[[n] = \{1, \ldots, n\}, \text{defined for } n \in N. \text{ Often we use } [n] \text{ when we wish to} \]
\[\text{refer to an arbitrary set of cardinality } n. \]
\[[X]^k = \{Y: Y \subset X, |Y| = k\}. \]
\[[X]^{\leq k} = \{Y: Y \subset X, |Y| \leq k\}. \]
\[[X]^{<\omega} = \{Y: Y \subset X, Y \text{ finite}\}. \]

When \(X = [n] \) we remove the second set of brackets. Thus:

\[[n]^k = \{Y: Y \subset \{1, \ldots, n\}, |Y| = k\}. \]

We write \(\langle x_1, \ldots, x_n \rangle \) for a set \(\{x_1, \ldots, x_n\} \) such that \(x_1 < \cdots < x_n \).

If \(\chi \) is a map with domain \([A]^k\) we write \(\chi(a_1, \ldots, a_k) \) for \(\chi(\{a_1, \ldots, a_k\}) \) when there is no danger of confusion.

\(K_n \) denotes a complete graph on \(n \) points.

Arithmetic Progression is abbreviated AP.

The Pigeon Hole principle: If \(m \) pigeons roost in \(n \) holes and \(m > n \) then at least two pigeons must share a hole. More prosaically: If \(m \) objects are colored with \(n \) colors and \(m > n \) then some two objects have the same color.
Sets

"Of three ordinary people, two must have the same sex."

D. J. Kleitman

1.1 Ramsey's Theorem Abridged

In any collection of six people either three of them mutually know each other or three of them mutually do not know each other.

This "puzzle problem" may be considered the first nontrivial example of what we shall call Ramsey theory. We begin this volume with an expository proof of this result.

We have tacitly assumed that the relation of "knowing" is symmetric; that is, if A knows B then B knows A. We do not assume transitivity; if A knows B and B knows C then A may or may not know C.

Fix one person, say A, and consider his or her relation to the other five, say B, C, D, E, and F. He or she must either know at least three of them or not know at least three of them \((2 + 2 < 5)\). Suppose that A knows three of them, say C, E, and F. If some pair of these three, say C and F, know each other then A, C, and F are three people who mutually known each other. If no pair of the three know each other then those three mutually do not know each other. In either case we have found a threesome with the desired property. Of course, if A does not know three of the others the argument is identical.

As this is a mathematics book it will be necessary to adopt some formalisms. An \(r\)-coloring of a set \(S\) is a map

\[\chi: S \rightarrow [r]. \]

For \(s \in S\), \(\chi(s)\) is called the color of \(s\). We say that a set \(T \subseteq S\) is monochromatic (under \(\chi\)) if \(\chi\) is constant on \(T\).

At this point we introduce the arrow notation, which has proved particularly useful in Ramsey theory.
Definition. We write
\[n \rightarrow (l) \]
if, given any 2-coloring of \([n]^2\), there is a set \(T \subseteq [n]\), \(|T| = l\) so that \([T]^2\) is monochromatic. When \([T]^2\) is monochromatic, \(|T| = l\), \(T\) is called a monochromatic \(K_l\).

Our original problem is equivalent to the assertion \(6 \rightarrow (3)\). Identify the six people \(A, \ldots, F\) with elements \(1, \ldots, 6\), respectively, and identify the statement "A and B know (do not know) each other" with the relation \(\chi(1, 2) = 1\) (\(\chi(1, 2) = 2\)). We shall, of course, work with the more mathematical format. The arrow relation is generalized in a number of ways.

Definition. We write \(n \rightarrow (l_1, \ldots, l_r)\) if, for every \(r\)-coloring of \([n]^2\), there exists \(i, 1 \leq i \leq r\), and a set \(T \subseteq [n]\), \(|T| = l\), so that \([T]^2\) is colored \(i\).

For example, \(10 \rightarrow (4, 3)\) is the assertion that, given any ten people, either four of them mutually know each other or three mutually do not know each other. In the case \(l_1 = \cdots = l_r = l\) we use the shorthand
\[n \rightarrow (l)_r, \]
that is, every \(r\)-coloring of \([n]^2\) yields a monochromatic \([l]^2\). If the number of colors \(r\) is not indicated it is assumed to be 2. Thus \(n \rightarrow (l), n \rightarrow (l)_2\), and \(n \rightarrow (l, l)\) denote the same thing.

We note the following important trivialities.

1. If \(l'_i \leq l_i, 1 \leq i \leq r\), and \(n \rightarrow (l_1, \ldots, l_r)\) then \(n \rightarrow (l'_1, \ldots, l'_r)\).
2. If \(m > n\) and \(n \rightarrow (l_1, \ldots, l_r)\) then \(m \rightarrow (l_1, \ldots, l_r)\).
3. Let \(\sigma\) be a permutation of \([r]\). Then \(n \rightarrow (l_1, \ldots, l_r)\) iff \(n \rightarrow (l_{\sigma 1}, \ldots, l_{\sigma r})\).
4. \(n \rightarrow (l_1, \ldots, l_r)\) iff \(n \rightarrow (l_1, \ldots, l_r, 2)\). In particular, \(l_1 \rightarrow (l_1, 2)\).

To illustrate, the statement \(10 \rightarrow (4, 3)\) logically implies \(10 \rightarrow (3, 3)\), for if four people mutually know each other, one may be deleted. Similarly, \(10 \rightarrow (4, 3)\) implies \(11 \rightarrow (4, 3)\) since the eleventh person may be ignored. If \(10 \rightarrow (4, 3)\) then \(10 \rightarrow (3, 4)\), as we may interchange the roles of knowing and not knowing. Finally, if \(10 \rightarrow (4, 3)\) then \(10 \rightarrow (4, 3, 2)\), for suppose that every pair is either loving, hating or avoiding—and these categories are mutually exclusive! One avoiding pair will form the desired
monochromatic 2-set. If no pair is avoiding then all pairs are loving or hating so that $10 \rightarrow (4, 3)$ implies the existence of the desired monochromatic set.

Definition. The *Ramsey function* $R(l_1, \ldots, l_r)$ denotes the minimal n such that

$$n \rightarrow (l_1, \ldots, l_r).$$

We let $R(l; r)$ denote $R(l_1, \ldots, l_r)$, where $l_1 = \cdots = l_r$ and $R(l) = R(l; 2) = R(l, l)$.

From trivialities 1–4 we note that $R(l_1, \ldots, l_r)$ is monotonic in each variable and totally symmetric, $R(l_1, \ldots, l_r, 2) = R(l_1, \ldots, l_r)$, and $R(l, 2) = l$.

Theorem 1 (Ramsey’s Theorem—Abridged). The function R is well defined; that is, for all l_1, \ldots, l_r there exists n so that

$$n \rightarrow (l_1, \ldots, l_r).$$

We first give two proofs of this theorem for the case $r = 2$.

Proof 1. Use a double induction on l_1 and l_2. Note that $R(l_1, 2) = R(2, l) = l$ by triviality 4. Now assume, by induction, that $R(l_1, l_2 - 1)$ and $R(l_1 - 1, l_2)$ exist.

Claim. $R(l_1, l_2 - 1) + R(l_1 - 1, l_2) \rightarrow (l_1, l_2)$.

Proof. Fix a 2-coloring χ of $[n]^2$. $n = R(l_1, l_2 - 1) + R(l_1 - 1, l_2)$. Fix one element $x \in [n]$ and set

$$I_x = \{ y \in [n]: \chi(x, y) = 1 \},$$

$$II_x = \{ y \in [n]: \chi(x, y) = 2 \},$$

$$= [n] - I_x - \{x\}.$$

Then $|I_x| + |II_x| = n - 1$ so that either

(a) $|I_x| \geq R(l_1 - 1, l_2)$

or

(b) $|II_x| \geq R(l_1, l_2 - 1)$.

Assume (a). By the definition of R either there exists $T \subseteq I_x$, $|T| = l_2$,
such that $[T]^2$ is colored 2 (which is as desired) or there exists $S \subseteq I_x$, $|S| = l - 1$, so that $[S]^2$ is colored 1. In the latter case set $S^* = S \cup \{x\}$. (Here is the critical point of the proof. Since $S \subseteq I_x$, all $\{x, s\}, s \in S$, are colored 1.) Then $|S^*| = l_1$ and $[S^*]^2$ is colored 1, as desired. Case (b) is symmetric.

[It may help the reader to see the following expository proof that $10 \rightarrow (4, 3)$. Consider any group of ten people (Fig. 1.1) Any one of these ten, say J, either knows at least six or does not know at least four of the remaining nine people. If J knows six then of those six either three know each other or three do not. In the former case, these three together with J are four who know each other. If there are four people J does not know either two of them do not know each other, and together with J make three, or the four mutually know each other.]

Proof 2. We show directly that

$$2^{2^{l-1}} - 1 \rightarrow (l).$$

Fix S_1, $|S_1| \geq 2^{2^{l-1}} - 1$ and a 2-coloring χ of $[S_1]^2$. Define, for $1 \leq i \leq 2^{l-1} - 1$, sets S_i and elements $x_i \in S_i$ as follows (Fig. 1.2):

(i) Having chosen S_i, select $x_i \in S_i$ arbitrarily.

\[\text{Figure 1.1} \quad 10 \rightarrow (4, 3).\]
(ii) Having selected \(x_i \in S_i \), set
\[
T_j = \{ u \in S_i : \chi(x_i, u) = j \} , \quad j = 1, 2 .
\]
Set \(S_{i-1} \) equal to the larger (in cardinality) of \(T_1 \), \(T_2 \). Since \(|T_1| + |T_2| = |S_i| - 1, |S_{i+1}| \geq (|S_i| - 1)/2.\)

Since \(|S_1| \) was sufficiently large we may select \(x_1, \ldots, x_{2l-1} \) before this procedure terminates (when \(S_i = \emptyset \)). We define a new coloring
\[
\chi^* : \{x_1, \ldots, x_{2l-1}\} \to \{1, 2\} .
\]
Let \(\chi^*(x_i) \) be that \(j \) (equal to 1 or 2) such that \(\chi(x_i, y) = j \) for \(y \in S_{i+1} \).

Since the coloring \(\chi^* \) splits the \(2l-1 \) points into two groups we can find \(l \) points \(x_{i_1}, \ldots, x_{i_l} \) so that
\[
\chi^*(x_{i_s}) = j \quad \text{for} \ 1 \leq s \leq l .
\]

Then, for any \(1 \leq s < i \leq l, x_{i_s} \in S_{i_s} \subseteq S_{i_s+1} \) and \(\{x_{i_1}, \ldots, x_{i_l}\} \) is the desired monochromatic \(l \)-set.

A proof for an arbitrary number of colors \(r \) can be given along the lines of either of the preceding proofs. One may replace Proof 1 by an induction on \(l_1, \ldots, l_r \) showing
\[
2 + \sum_{i=1}^r R(l_1, \ldots, l_i - 1, \ldots, l_r) - 1 \to (l_1, \ldots, l_r)
\]
or replace Proof 2 by the result
\[
r^{(l-1)r+1} - 1 \to (l, r).
\]

The details are left to the reader.
Our Proof 2 embodies a basic method of proof that we shall encounter frequently. We shall call it the Induced Coloring method. We 2-color the subobjects of a certain type of large structure S. Here S is the complete graph on n points, and the subobjects are edges—more generally, we call them snargles. We find a substructure T, perhaps much smaller than S but still very large, on which the coloring is canonical in some sense. There will be a subobject—let us call it a turbule—so that the coloring of the snargles of T depends only on the leading turbule contained in the snargle. (The turbules will be ordered explicitly.) In our example, turbule = point and on T the coloration of $\{x, y\} <$ depends only on x. Now we define a coloring of the turbules of T, coloring a turbule by the color of all the snargles of which it is the leading turbule. Assume that at some previous point we have proved a Ramsey theorem for turbules. Then we know there is a substructure U of T that is still large on which all the turbules are the same color in the induced coloring. But then, in the original colorings, all of the snargles of U have the leading turbule in U and hence all are the same color.

The reader might note that Category theory could provide an appropriate vocabulary for the preceding discussion. Indeed, a number of authors have approached Ramsey theory from a Category theory point of view with some impressive results. In this volume, however, we have consciously attempted to avoid Category theory notation. We do this both for reasons of personal preference and in an attempt not to limit the readership of this book.

A detailed analysis of Proofs 1 and 2 shows that Proof 1 gives a better upper bound on $R(n)$ than Proof 2. In Chapter 4 we take a detailed look at the value of the Ramsey function and associated functions. However, outside of that chapter, we are generally interested not in the exact values of the Ramsey functions but rather in their existence, hence we usually shall not employ methods such as Proof 1. We shall sacrifice an improvement in the upper bounds on these functions in favor of clarity of exposition of the proofs of these existence theorems. As we shall see in Section 2.7, the functions associated with the theorems of later sections (e.g., van der Waerden's theorem or the Hales-Jewett theorem) apparently increase so rapidly that no moderate upper bound is currently known for them.

The existence of $n = R(a, b)$ has a special interpretation in Graph theory terms. Let G be an arbitrary graph on n vertices. We may associate G with the 2-coloring of the complete graph K_n obtained by coloring $\{i, j\}$ red iff $\{i, j\}$ is an edge of G, and blue otherwise. Clearly this gives a bijective correspondence between 2-colorings of K_n and graphs G on n vertices. We rephrase Ramsey's theorem in the case as follows:
Any graph G on $n = R(a, b)$ vertices contains either a clique on a vertices
or an independent set of b vertices.

1.2 RAMSEY'S THEOREM UNABRIDGED

We now consider colorations of $[n]^k$, where k is an arbitrary integer. This
generalizes the case $k = 2$ of Section 1.1.

Definition. $n \to (l_1, \ldots, l_r)^k$ if, for every r-coloring of $[n]^k$, there exists
i, $1 \leq i \leq r$, and a set T, $|T| = l_i$ so that $[T]^k$ is colored i.

In the case $l_1 = \cdots = l_r = l$ we use the shorthand

$$n \to (l)^k_r.$$

We say in this case that every r-coloring of $[n]^k$ yields a monochromatic
$[l]^k$. If the number of colors r is not indicated it is assumed to be 2. Thus
$n \to (l)^k$, $n \to (l)^k$, and $n \to (l, l)^k$ are identical relations. This is consistent
with previous notations—if k is not given it is also assumed to be 2.

The Ramsey function for k-sets is indicated by R_k:

$$R_k(l_1, \ldots, l_r) = \min \{ n_0 : \text{for } n \geq n_0, n \to (l_1, \ldots, l_r)^k \},$$

$$R_k(l; r) = \min \{ n_0 : \text{for } n \geq n_0, n \to (l)^k \},$$

$$R_k(l) = \min \{ n_0 : \text{for } n \geq n_0, n \to (l)^k \}.$$

Theorem 2 (Ramsey's Theorem). The function R is well defined; that is,
for all k, l_1, \ldots, l_r there exists n_0 so that, for $n \geq n_0$,

$$n \to (l_1, \ldots, l_r)^k.$$

Proof. We use induction on k, following the lines of Proof 2 for each k.
For $k = 1$ Ramsey's theorem becomes a triviality. We have

$$1 + \sum_{i=1}^{r} (l_i - 1) \to (l_1, \ldots, l_r)^1,$$

that is, if $n \geq 1 + \sum_{i=1}^{r} (l_i - 1)$ elements are r-colored, some color i is used
at least l_i times. This is a general form of the Pigeon-Hole principle,
defined earlier under "Notation," and Ramsey's theorem is often consid-
ered a generalization of it. For $k = 2$ we have already proved Ramsey's theorem, though the induction argument includes that case.

Assume that the result holds for $k - 1$; it suffices to find n so that

$$n \rightarrow (l)^k_\epsilon.$$

Basically, the k-element subsets become snargles, and the $(k - 1)$-element subsets become turbles, as in our general discussion following Proof 2 of the Abridged Ramsey theorem.

Let n be "sufficiently large" (more on that later), and fix an r-coloring χ of $[n]^k$. Set $l = R_{k-1}(l; r)$, which exists by induction. Select distinct elements $a_1, \ldots, a_{k-1} \in [n]$ arbitrarily, and define $S_{k-2} = [n] - \{a_1, \ldots, a_{k-2}\}$.

Now we select a_i, S_i as follows:

(i) S_i having been defined, we select $a_{i+1} \in S_i$ arbitrarily.
(ii) Having selected a_{i+1}, we split $S_i - \{a_{i+1}\}$ into equivalence classes by

$$x = y \text{ iff for every } T \subseteq \{a_1, \ldots, a_{i+1}\}, \quad |T| = k - 1, \quad \chi(T \cup \{x\}) = \chi(T \cup \{y\}).$$

The equivalence class is therefore determined by the color of $\binom{i + 1}{k - 1}$ sets so there are at most $r^{\binom{i + 1}{k - 1}}$ such classes. We define S_{i+1} as the largest of those classes. Hence $S_{i+1} \subseteq S_i - \{a_{i+1}\}$ and

$$|S_{i+1}| \geq (|S_i| - 1)r^{-\binom{i+1}{k-1}}.$$

We choose n sufficiently large so that the procedure may be continued until a_i is defined. For definiteness, we select n so that the sequence with initial condition $u_{k-2} = n - (k - 2)$ and recursion

$$u_{i+1} = (u_i - 1)r^{-\binom{i+1}{k-1}}$$

satisfies $u_i \geq 1$. Certainly

$$n = 2r^c, \quad c = \sum_{i=k-1}^{i-1} \binom{i+1}{k-1}$$

will suffice. (The calculation is important for bounding the Ramsey function—see Section 4.7—but not for proving Ramsey's theorem.)
We now restrict our attention to the sequence a_1, \ldots, a_t. Suppose that $1 \leq i_1 < i_2 < \cdots < i_{k-1} < s \leq t$. Then $a_s \in S_{s-1} \subseteq S_{i_{k-1}}$. The color $\chi(\{a_{i_1}, \ldots, a_{i_{k-1}}, a_s\})$ remains the same if a_s is replaced by any $x \in S_{i_{k-1}+1}$ (by the definition of the equivalence classes), including any $x = a_r$, $k-1 < r < t$. We define a coloring χ^* on $(k-1)$-subsets of $\{a_1, \ldots, a_t\}$ by

$$\chi^*(\{a_{i_1}, \ldots, a_{i_{k-1}}\}) = \chi(\{a_{i_1}, \ldots, a_{i_{k-1}}, a_s\})$$

for all $i_{k-1} < s \leq t$. (A technical point: when $i_{k-1} = t$ we define χ^* arbitrarily.) By the definition of t there is a subsequence $\{b_1, \ldots, b_{j_k}\}$ of $\{a_1, \ldots, a_t\}$, which is monochromatic under χ^*—say that all $(k-1)$-subsets are red. Then, for any $1 \leq j_1 < \cdots < j_{k-1} < j_k \leq t$,

$$\chi(\{b_{i_1}, \ldots, b_{i_{k-1}}, b_{i_k}\}) = \chi^*(\{b_{j_1}, \ldots, b_{j_{k-1}}\}) = \text{red},$$

and so $\{b_1, \ldots, b_l\}$ is the desired monochromatic l-set.

1.3 VIEWS OF RAMSEY THEORY

We are concerned here with "Ramsey-type theorems." Rather than formally define this concept we state six major theorems and then consider their similarities. Formal definitions, proofs, and detailed discussion for Results 2–6 are given in later chapters.

Super Six

1. Ramsey's theorem (Sections 1.1 and 1.2): For all l, r, k there exists n_0 so that, for $n \geq n_0$, if $[n]^k$ is r-colored there exists a monochromatic $[l]^k$.

2. Van der Waerden's theorem (Section 2.1): For all l, r there exists n_0 so that, for $n \geq n_0$, if $[n]$ is r-colored there exists a monochromatic arithmetic progression $\{a, a+d, \ldots, a+(l-1)d\} \subseteq [n]$ of length l.

3. Schur's theorem (Section 3.1): For all r there exists n_0 so that, for $n \geq n_0$, if $[n]$ is r-colored there exist $x, y, z \in [n]$, having the same color, so that

$$x + y = z.$$

A system of equations \mathcal{Q} on variables x_1, \ldots, x_m is called regular if, for
all \(r \), there exists \(n_0 \) so that, for \(n \geq n_0 \), if \([n] \) is \(r \)-colored there exist \(x_1, \ldots, x_m \in [n] \), all the same color, satisfying \(\exists ! \).

4. Rado’s theorem (Section 3.2): The single equation

\[c_1x_1 + \cdots + c_mx_m = 0 \]

is regular iff some nonempty subset of the \(c_i \) sums to zero.

5. Hales–Jewett theorem (Section 2.2): For all \(r, k \) there exist \(n_0 \) so that, for \(n \geq n_0 \), if the \(n \)-dimensional cube

\[\{(x_1, \ldots, x_n) : x_i \in \{0, 1, \ldots, k-1\}, 1 \leq i \leq n \} \]

is \(r \)-colored there exists a monochromatic “line.”

6. Graham–Leeb–Rothschild theorem (Section 2.4): Fix a finite field \(F \) on \(q \) elements. For all \(k, l, r \) there exists \(n_0 \) so that the following holds for \(n \geq n_0 \). Let \(V \) be an \(n \)-dimensional vector space over \(F \). Color the \(k \)-dimensional subspaces of \(V \) with \(r \) colors. Then there exists an \(l \)-dimensional subspace of \(V \) all of whose \(k \)-dimensional subspaces have the same color.

Segments of Ramsey theory may be described in the language of Lattice theory. Let \(L_1 \subset L_2 \subset \cdots \subset L_n \subset \cdots \) be a sequence of graded lattices with a rank function denoted by \(\rho \). The sequence is called Ramsey if, for all \(c, k, l \), there exists \(n_0 \) so that, for \(n \geq n_0 \), if \(\{ x \in L_n : \rho(x) = k \} \) is \(c \)-colored there exists \(y \in L_n, \rho(y) = l \) so that

\[\{ x \in L_n : \rho(x) = k, x \leq y \} \]

is monochromatic. For the original theorem of Ramsey, \(L_n \) is the Boolean lattice of subsets of an \(n \)-element set with \(\rho(A) = |A| \). For the Graham–Leep–Rothschild theorem, \(L_n \) is the subspace lattice of an \(n \)-dimensional vector space over a fixed finite field \(F \) and \(\rho(V) \) is the dimension of \(V \).

One might also view portions of Ramsey theory as statements about certain bipartite graphs (Fig. 1.3). A bipartite graph \(G \) consists of two sets \(T \) (top) and \(B \) (bottom) and a family \(E(G) \) of edges \(\{t, b\}, t \in T, b \in B \). We call \(G \) \(r \)-Ramsey if, given any \(r \)-coloring of \(B \), there exists \(t \in T \) such that

\[\{ b \in B : \{t, b\} \in E(G) \} \]

is monochromatic. We call a sequence \(\{G_i\} \) Ramsey if, for all \(r \), there exist \(n_0 \) so that, for \(n \geq n_0 \), \(G_n \) is \(r \)-Ramsey.
For fixed $k \approx l$ and lattice L, we may generate a bipartite graph G_i by restricting our attention to ranks k, l. Formally, set

$$T = \{ y \in L, r(y) - l \},$$
$$B = \{ x \in L, r(x) = k \},$$
$$E(G_i) = \{ \{ x, y \}, x \in B, y \in T, x \leq y \}.$$

Then $\{ L_i \}$ is Ramsey exactly when, for all k, l, the corresponding $\{ G_i \}$ is Ramsey.

Van der Waerden's theorem may be expressed in this terminology. For a given l define g_n by

$$B = \lfloor n \rfloor,$$
$$T = \text{the family of arithmetic progressions}$$
$$S = \{ a, a + d, \ldots, a + (l - 1)d \} \subseteq B,$$
$$E(G_n) = \{ \{ x, S \}: x \in B, S \subseteq T, x \in S \}.$$

Then $\{ G_n \}$ is Ramsey.

A third approach to Ramsey theory utilizes the language of hypergraphs. A hypergraph H consists of a vertex set $V(H)$ and a family $E(H)$ of subsets of $V(H)$. The elements $X \in E(H)$ are called hyperedges. An r-coloration of H is a map

$$\chi: VB(H) \rightarrow [r]$$

such that no $X \in E(H)$ is monochromatic. The chromatic number $\chi(H)$ of the hypergraph is the minimal r such that an r-coloration of H exists. We note that if all $X \in E(H)$ have $|X| = 2$ the hypergraph reduces to our usual concept of a graph, and chromatic number is as usually defined.

All "Ramsey theory" results may be expressed in hypergraph terminology. Let us take the Hales–Jewett theorem as an example. For a
given \(k, n \) we may construct a hypergraph \(H = H_{n,k} \) with vertex set \(V(H) = C_k^n \), the \(n \)-dimensional cube over \([k]\), and \(E(H) \) equal to the set of "lines" in \(C_k^n \). Then, for all \(k, r \), if \(n \) is sufficiently large \(\chi(H_{n,k}) \geq r \). In more concise form:

\[
\lim_{n \to \infty} \chi(H_{n,k}) = +\infty \text{ for every } k.
\]

1.4 RAMSEY THEOREMS AND DENSITY THEOREMS

Definition. Let \(H = (V, E) \) be a hypergraph. We define the *Turán function* \(T(H) \) as the minimal \(T \) such that any set of vertices of cardinality at least \(T \) necessarily contains a hyperedge. We set \(\tau(H) = T(H)/|V(H)| \).

Paul Turán found the exact value for \(T(H) \), where \(H = ([n]^2, \{[S]: S \subseteq [n]^k\}) \). Here, in classical Graph theory terminology, \(T(H) \) is the minimal number of edges on \(n \) points that ensure a clique on \(k \) points.

For a hypergraph \(H = (V, E) \) we consider the following statements:

\[
A: \chi(H) > r, \\
B: \tau(H) \leq r^{-1}.
\]

For a sequence of hypergraphs \(H_n = (V_n, E_n) \) we have the analogous statements:

\[
A^*: \chi(H_n) \to +\infty \quad \text{as } n \to \infty, \\
B^*: \tau(H_n) \to 0 \quad \text{as } n \to \infty.
\]

Statements \(B \) and \(B^* \) are *density* statements; \(B \) says that any sufficiently large set of vertices contains a hyperedge. Statements \(A \) and \(A^* \) are *Ramsey* statements; \(A \) says that if the vertex set is *partitioned* into \(r \) classes one class contains a hyperedge.

Theorem 3. (i) \(B \) implies \(A \). (ii) \(B^* \) implies \(A^* \).

Proof

(i) Assume \(B \). Let \(\chi \) be an \(r \)-coloring of \(V \). Some color must have been used on at least \(r^{-1} \) of the vertices. *That* color contains a hyperedge.

(ii) Assume \(B^* \). For a given \(r \) there exists \(n_0 \) so that \(\tau(H_n) \leq r^{-1} \) for \(n \geq n_0 \). Thus \(\chi(H_n) \geq r \) for \(n \geq n_0 \)—hence \(A^* \).
The Compactness Principle

The converses, A implies B and A^* implies B^*, are false. Consider their interpretation for some of our basic Ramsey theorems.

For fixed l consider the sequence $H_n = (V_n, E_n)$, where $V_n = [n]^2$, $E_n = \{ |S|^2 : S \in [n]^l \}$. Here $\chi(H_n) > r$ is identical to $n \rightarrow (l)^l$. By Ramsey's theorem (for $k = 2$) the sequence $\{H_n\}$ satisfies A^*. The classical Turán's theorem states that the maximal graph on n vertices without an l-clique is achieved by splitting the n vertices into $l - 1$ sets of cardinalities $[n/(l - 1)]$ and $[n/(l - 1)] + 1$ and placing an edge between any pair of vertices in different sets. In our terminology, if

$$n = (l - 1)m + r, \quad 0 \leq r < l - 1,$$

$$T(H_n) = 1 + \binom{n}{2} - r\binom{m + 1}{2} - (l - 1 - r)\binom{m}{2}$$

and

$$\lim_{n \rightarrow \infty} \tau(H_n) = 1 - \frac{1}{l - 1}$$

so that B^* is false!

Van der Waerden's theorem may also be interpreted in this light. For fixed l the statements A^*, B^* become as follows:

A^*: For all r there exists $n_0(r)$ so that if $n \geq n_0(r)$ and $[n]$ is r-colored there exists a monochromatic arithmetic progression of length l.

B^*: For all $\varepsilon > 0$ there exists $n_0(\varepsilon)$ so that if $n \geq n_0(\varepsilon)$ and $S \subset [n]$, $|S| \geq n\varepsilon$ then S contains an arithmetic progression of length l.

Van der Waerden's theorem, A^*, was proved in 1927. Statement B^* was conjectured by P. Erdős and P. Turan in 1936. The case $l = 2$ is trivial, $l = 3$ was settled positively by K. Roth in 1952, and $l = 4$ by E. Szemerédi in 1969. Finally, in 1973, Szemerédi proved B^* for all l; this result is discussed in Section 2.5. The full proof is highly complex, is supremely ingenious, and is by no means a "simple corollary" of A^*.

1.5 THE COMPACTNESS PRINCIPLE

In most of our Ramsey theorems we prove that, for n sufficiently large, an r-coloring of $[n]$ (or $[n]^k$) has a certain property. In this section we show that it is often sufficient to prove that any r-coloring of N or $[N]^k$ has the property.
Definition. Let $H = (V, E)$ be a hypergraph, $W \subseteq V$. The restriction of H to W, denoted by $H_{|W}$, is the hypergraph $H_{|W} = (W, E_{|W})$, where

$$E_{|W} = \{X \in E : X \subseteq W\}.$$

Theorem 4 (Compactness Principle). Let $H = (V, E)$ be a hypergraph where all $X \in E$ are finite (but V need not be). Suppose that, for all $W \subseteq V$, W finite,

$$\chi(H_{|W}) \leq r.$$

Then

$$\chi(H) \leq r.$$

The theorem is often expressed in contrapositive form: If $\chi(H) > r$ there exists a finite W such that $\chi(H_{|W}) > r$.

We give two proofs. The first proof is for the case V countable. (The case V finite is tautological—take $W = V$.) The second proof works for arbitrary V but requires the Axiom of Choice (in fact, the Compactness principle cannot be proved from the usual axioms of set theory without the Axiom of Choice).

Proof 1. We assume that V is countable in this proof. Our proof is essentially a diagonal argument. For convenience consider $V = N$. For all $n \in N$ there exists a coloring

$$\chi_n : [n] \rightarrow \{1, \ldots, r\}$$

so that no $A \in E, A \subseteq [n]$, is monochromatic. We define a function

$$\chi^* : N \rightarrow \{1, \ldots, r\}$$

by induction. We assume that $\chi^*(1), \ldots, \chi^*(j - 1)$ have been defined so that

$$S_{j-1} = \{n : n > j - 1 \text{ and } \chi^*(i) = \chi_n(i) \text{ for } 1 < i < j - 1\}$$

is infinite. We partition $S_{j-1} - \{j - 1\}$ ($j - 1$ may or may not be in S_{j-1}) into r classes, depending on the value of $\chi_n(j)$. For some color c,

$$T = \{n \in S_{j-1} : \chi_n(j) = c\}$$

is infinite. Then we set $\chi^*(j) = c$ and $S_j = T$.

Sets
We claim that χ^* is the desired r-coloring of H. Let $X = \{x_1, \ldots, x_m\} \subset E$. Since $S_{x_m} \neq \emptyset$ there exists $n \geq x_m$ so that $\chi_n(i) = \chi^*(i)$ for all $i \leq n$, in particular for all $x_j \in X$. Since χ_n is an r-coloring of $[n]$, X is not monochromatic under χ_n and thus X is not monochromatic under χ.

Proof 2. Let T be the set of all functions $f: V \rightarrow [r]$. We topologize T by giving $[r]$ the discrete topology and giving T the induced function space topology. In other words, for all $v_1, \ldots, v_n \in V$, $\varepsilon_1, \ldots, \varepsilon_n \in [r]$,

$$S_{v_1, \ldots, v_n, \varepsilon_1, \ldots, \varepsilon_n} = \{ f : f(v_i) = \varepsilon_i, 1 \leq i \leq n \}$$

(a "slice") is both open and closed, and these S form a basis for the topology. T is the direct product of $\lvert [V] \rvert$ copies of $[r]$. The set $[r]$ is finite and hence forms a compact topological space. The Tychonoff theorem (and here we are using the Axiom of Choice) states that the product of compact spaces is compact. Hence T is compact.

For every finite $W \subseteq V$ let F_w denote the set of functions $f \in T$ so that no $X \in E$, $X \subseteq W$ is monochromatic. The set F_w consists of those functions that are r-colorations when restricted to W. Each F_w is closed (and open) since it is the union of a finite number of slices $S_{v_1, \ldots, v_n, \varepsilon_1, \ldots, \varepsilon_n}$ ($W = \{w_1, \ldots, w_n\}$). Each $F_w \neq \emptyset$ since, by assumption, there is an r-coloring of each finite set W. Clearly, if $W \subseteq W'$, $F_w \supseteq F_{w'}$. Applying this, we find that if W_1, \ldots, W_m are finite subsets of V then

$$F_{W_1} \cap \cdots \cap F_{W_m} \supseteq F_{W_1 \cup \cdots \cup W_m}.$$

Now $W_1 \cup \cdots \cup W_m$, a finite union of finite sets, is finite so $F_{W_1 \cup \cdots \cup W_m} \neq \emptyset$. Thus $\{E_w : W \subseteq V, W \text{ finite}\}$ is a family of closed sets satisfying the finite intersection property: any finite intersection of the F_w is nonvoid. In a compact topological space, if a family of closed sets \mathcal{F} satisfies the finite intersection property then $\cap \mathcal{F} \neq \emptyset$; that is, there exists $f: V \rightarrow [r]$, $f \in F_w$, for all $W \subseteq V, W$ finite. This f is the desired coloring, for if $X \in E$, so X is finite, $f \in F_X$, and therefore X is not monochromatic under f.

In most applications of the Compactness principle to Ramsey results, $V = N$ or $[N]^k$. We restate our theorem for these particular cases.

Compactness Principle (Version B). Let k be a fixed positive integer. Let \mathcal{A} be a family of finite subsets of N. Suppose that, for any r-coloring of $[N]^k$, there is an $A \in \mathcal{A}$ so that $[A]^k$ is monochromatic. Then there exists
so that, for \(n \geq n_0 \), if \([n]^k\) is \(r \)-colored there is an \(A \in \mathcal{A} \), \(A \subseteq [n] \), so that \([A]^k\) is monochromatic.

Compactness Principle (Version C). Let \(k \) be a fixed finite positive integer. Let \(\mathcal{A} \) be a family of finite subsets of \(N \). Suppose that for any finite coloring of \([N]^r\) there is an \(A \in \mathcal{A} \) such that \([A]^k\) is monochromatic. Then for all \(r \), there exists \(n_0(r) \) such that, for \(n \geq n_0(r) \), if \([n]^k\) is \(r \)-colored there is an \(A \in \mathcal{A} \), \(A \subseteq [n] \), such that \([A]^k\) is monochromatic. Often technical details in the proof of a Ramsey theorem (e.g., just how large \(n \) has to be that \ldots) vanish in the “infinite case.”

Theorem 5. For any finite coloration \(\chi \) of \([N]^2\) there exists \(A \subseteq N \), \(A \) infinite, so that \([A]^2\) is monochromatic.

Proof. (Following Proof 2 of Ramsey’s theorem abridged). Define, for all \(i \in N \), infinite sets \(S_i \) and elements \(x_i \in S_i \) as follows:

(i) \(S_1 = N \).
(ii) Having chosen \(S_i \), choose \(x_i \in S_i \) arbitrarily.
(iii) Having selected \(x_i \in S_i \), set

\[
T_j = \{ u \in S_i : \chi(x_i, u) = j \}.
\]

The \(T_j \) give a finite partition of \(S_i - \{ x_i \} \), assumed infinite. Set \(S_{i+1} \) equal to one of the infinite \(T_j \).

The sequence \(x_1, x_2, \ldots \) has the property that, for \(i < j, k \),

\[
\chi(x_i, x_j) = \chi(x_i, x_k)
\]

[since \(x_j \in S_j \subseteq S_{i+1}, x_k \in S_k \subseteq S_{i+1} \), and \(\chi(x_i, u) \) is constant over \(u \in S_{i+1} \)]. Induce a coloring \(\chi^* \) of the singletons \(x_i \): \(\chi^*(x_i) \) = that color equal to \(\chi(x_i, x_j) \) for all \(j > i \). Now \(\chi^* \) forms a finite partition of an infinite set so there is a color \(j \) and an infinite subsequence \(X' = x_{i_1}, x_{i_2}, \ldots \) such that

\[
\chi^*(x_{i_s}) = j \quad \text{for all } s.
\]

For any \(1 \leq s < t \),

\[
\chi(x_{i_s}, x_{i_t}) = \chi^*(x_{i_s}) = j
\]

so \([X']^2\) is monochromatic.
Corollary 6. For all l, r there exists n_0 so that, for $n \geq n_0$,

$$n \rightarrow (l)_r.$$

It is interesting that proofs using the Compactness principle do not give any specific n_0 such that, for $n \geq n_0$, the Ramsey property holds. In actual practice we are usually able to replace the argument on N with an argument that works for all $n \geq n_0$ for some specific n_0. In Section 6.3 we discuss a situation where such a replacement is not possible in a certain logical sense.

Questions about extensions of Ramsey-type theorems to infinite sets are interesting per se. The subject of "Infinite Ramsey theory" has a long, interesting literature. We give some glimpses into the field in Section 6.4.

1.6 A BROADER PERSPECTIVE

H. Burkill and L. Mirsky state, "There are numerous theorems in mathematics which assert, crudely speaking, that every system of a certain class possesses a large subsystem with a higher degree of organization than the original system." The existence of the Ramsey number $n = R(k)$ is their first example. For any graph G on n vertices there is a large (size k) subsystem (subgraph) of a high degree of organization (either complete or independent). Their class of problems includes, for example, the Bolzano–Weierstrass theorem that every bounded sequence of complex numbers contains a convergent subsequence. This class is thus far broader than the Ramsey theory to which we are attempting to restrict our attention. We do wish to mention some of the result in this broader class that both are interesting in their own right and seem close in spirit to our Ramsey theory.

R. P. Dilworth proved that any partial order P on at least $ab + 1$ elements contains either a chain of length $a + 1$ or an antichain of size $b + 1$. Dilworth's theorem is of fundamental importance and clearly fits into the Burkill–Mirsky setting. Let us note that if $ab + 1$ is replaced by the Ramsey function $R(a + 1, b + 1)$ the result is a corollary of Ramsey's theorem. Given a partial order P, we color a pair (x, y) red if x, y are comparable, and blue if they are not. A red $(a + 1)$-set yields the desired chain; a blue $(b + 1)$-set yields the desired antichain.

P. Erdős and G. Szekeres proved that any sequence of length $n^2 + 1$ contains a monotone subsequence of length $n + 1$. Again, with $n^2 + 1$
replaced by $R(n + 1, n + 1)$ this follows from Ramsey's theorem. Given a sequence $\{a_i\}$, we color $\{i, j\} < \text{red if } a_i < a_j$, and blue otherwise. The Infinite Ramsey theorem similarly implies that any infinite sequence contains an infinite monotonic subsequence.

P. Erdős and L. Moser proved that every tournament on n players contains a transitive subtournament on $v(n)$ players, where $v(n)$ is a function tending to infinity with n. Here a tournament is a directed graph on n points so that for all distinct x, y either $(x, y) \in T$ or $(y, x) \in T$, but not both, and a tournament is transitive if there exists a total ordering $<$ such that $(x, y) \in T$ iff $x < y$. Again the existence of $v(n)$ follows from Ramsey's theorem, though the actual bounds achieved by Erdős and Moser are stronger.

1.7 ORIGINAL PAPERS: RAMSEY AND ERDŐS–SZEKERES

Frank Plumpton Ramsey was a remarkable man. He was a child of Cambridge (his father was president of Magdalene) and spent nearly all his life there. He worked in several areas, always with keen insight and intelligence. He did in 1930 as he was approaching his twenty-eighth birthday, at the height of his intellectual powers.

One of Ramsey's many interests was economics, and he was part of the Cambridge circle headed by J. M. Keynes. He wrote only two papers in the field, "A Contribution to the Theorem of Taxation" (March 1927, The Economic Journal) and "A Mathematical Theory of Savings" (December 1928, ibid.). Keynes said of the latter paper: "[It] is one of the most remarkable contributions to mathematical economics ever made, both in respect of the intrinsic importance and difficulty of its subject, the power and elegance of the technical methods employed, and the clear purity of illumination with which the writer's mind is felt by the reader to play about its subject." Indeed, Keynes's judgment has stood the test of time, and today Ramsey's work is widely quoted in mathematical economics literature.

Ramsey's main interests were philosophy and mathematical logic. He was deeply influenced by Russell and Whitehead's Principia Mathematica and proposed a Theory of Types with certain advantages over that used by Russell and Whitehead. He helped translate and was greatly interested in the work of Wittgenstein. G. E. Moore wrote:

[Ramsey] combined very exceptional brilliance with very great soundness of judgment in philosophy. He was an extraordinarily clear thinker: no one could avoid more easily than he the sort of confusions of thought to which
even the best philosophers are liable, and he was capable of apprehending clearly, and observing consistently, the subtest distinctions. I always felt with regard to any subject which we discussed, that he understood it much better than I did, and where (as was often the case) he failed to convince me, I generally thought the probability was that he was right and I wrong and that my failure to agree with him was due to a lack of mental powers on my part.

One feels, reading commentary on Ramsey’s philosophical work, that he was only beginning to make major contributions to the subject at the time of his death.

And now we come to Ramsey’s theorem. His paper [Ramsey, 1930] is indeed “On a Problem of Formal Logic.” Although he recognized that Ramsey’s theorem had independent interest, he was mainly concerned with its application to logic. Perhaps his view speaks of a time when combinatorial analysis was still regarded as “bargain basement topology” by the mainstream of mathematical thought. Yet it seems eminently suitable that this branch of combinatorial analysis be graced with the name of Frank Plumpton Ramsey.

Ramsey begins his paper with the infinite version of Ramsey’s theorem. We include below his original proof. Brevity was not an admirable trait in that era, and authors preferred a lengthy discussion to the terse Theorem—Proof—Corollary style of today. Despite the 50-year gap in notation the paper reads with remarkable clarity.

Theorem A. Let Γ be an infinite class, and μ and r positive integers; and let all those sub-classes of Γ which have exactly r members, or, as we may say, let all r-combinations of the members of Γ be divided in any manner into μ mutually exclusive classes $C_i (i = 1, 2, \ldots, \mu)$, so that every r-combination is a member of one and only one C_i; then, assuming the Axiom of Selections, Γ must contain an infinite sub-class Δ such that all the r-combinations of the members of Δ belong to the same C_i.

Consider first the case $\mu = 2$. (If $\mu = 1$ there is nothing to prove.) The theorem is trivial when r is 1, and we prove it for all values of r by induction. Let us assume it, therefore, when $r = \rho - 1$ and deduce it for $r = \rho$, there being, since $\mu = 2$, only two classes C_1, namely C_1 and C_2.

It may happen that Γ contains a member x_1 and an infinite sub-class Γ_1, not including x_1, such that the ρ-combinations consisting of x_1 together with any $\rho - 1$ members of Γ_1, all belong to C_1. If so, Γ_1 may similarly contain a member x_2 and an infinite sub-class Γ_2, not including x_2, such that all the ρ-combinations consisting of x_2 together with $\rho - 1$ members of Γ_2, belong to C_1. And, again, Γ_2 may contain an x_3 and a Γ_3 with similar properties,
and so on indefinitely. We thus have two possibilities: either we can select in this way two infinite sequences of members of \(\Gamma(x_1, x_2, \ldots, x_n, \ldots) \), and of infinite sub-classes of \(\Gamma(\Gamma_1, \Gamma_2, \ldots, \Gamma_n, \ldots) \), in which \(x_i \) is always a member of \(\Gamma_{n-1} \), and \(\Gamma_n \) a sub-class of \(\Gamma_{n-1} \) not including \(x_n \), such that all the \(\rho \)-combinations consisting of \(x_n \), together with \(\rho - 1 \) members of \(\Gamma_n \), belong to \(C_1 \); or else the process of selection will fail at a certain stage, say the \(n \)-th, because \(\Gamma_n \), (or if \(n = 1 \), \(\Gamma \) itself) will contain no member \(x_n \) and infinite sub-class \(\Gamma_n \) not including \(x_n \) such that all the \(\rho \)-combinations consisting of \(x_n \) together with \(\rho - 1 \) members of \(\Gamma_n \) belong to \(C_1 \). Let us take these possibilities in turn.

If the process goes on forever let \(\Delta \) be the class \((x_1, x_2, \ldots, x_n, \ldots)\). Then all these \(x \)'s are distinct, since if \(r > s \), \(x_r \) is a member of \(\Gamma_{r-1} \) and so of \(\Gamma_{r-2}, \Gamma_{r-3}, \ldots \), and ultimately of \(\Gamma \), which does not contain \(x_s \). Hence \(\Delta \) is infinite. Also all \(\rho \)-combinations of members of \(\Delta \) belong to \(C_1 \); for if \(x_1 \) is the term of such a combination with least suffix \(s \), the other \(\rho - 1 \) terms of the combination belong to \(\Gamma_n \), and so with \(x_1 \) a \(\rho \)-combination belonging of \(C_1 \), \(\Gamma \) therefore contains an infinite sub-class \(\Delta \) of the required kind.

Suppose, on the other hand, that the process of selecting the \(x \)'s and \(\Gamma \)'s fails at the \(n \)-th stage, and let \(y_1 \) be any member of \(\Gamma_{n-1} \). Then the \((\rho - 1)\)-combinations of members of \(\Gamma_{n-1} - (y_1) \) can be divided into two mutually exclusive classes \(C_1' \) and \(C_2' \) according as the \(\rho \) combinations formed by adding to them \(y_1 \) belong to \(C_1 \) or \(C_2 \), and by our theorem (A), which we are assuming true when \(r = \rho - 1 \) (and \(\mu = 2 \)), \(\Gamma_{n-1} - (y_1) \) must contain an infinite sub-class \(\Delta_1 \) such that all \((\rho - 1)\)-combinations of the members of \(\Delta_1 \) belong to the same \(C_1' \); i.e. such that the \(\rho \)-combinations formed by joining \(y_1 \) to \(\rho - 1 \) members of \(\Delta_1 \) all belong to the same \(C_1 \). Moreover, this \(C_1 \) cannot be \(C_1 \), or \(y_1 \) and \(\Delta_1 \) could be taken to be \(x_n \) and \(\Gamma_n \), and our previous process of selection would not have failed at the \(n \)-th stage. Consequently the \(\rho \)-combinations formed by joining \(y_1 \) to \(\rho - 1 \) members of \(\Delta_1 \) all belong to \(C_2 \). Consider now \(\Delta_1 \) and let \(y_2 \) be any of its members. By repeating the preceding argument \(\Delta_1 - (y_2) \) must contain an infinite sub-class \(\Delta_2 \) such that all the \(\rho \)-combinations got by joining \(y_2 \) to \(\rho - 1 \) members of \(\Delta_2 \) belong to the same \(C_2 \). And, again, this \(C_2 \) cannot be \(C_1 \), or, since \(y_2 \) is a member and \(\Delta_2 \) a sub-class of \(\Delta_1 \) and so of \(\Gamma_n \), which includes \(\Delta_1, y_2 \) and \(\Delta_2 \) could have been chosen as \(x_n \) and \(\Gamma_n \) and the process of selecting these would not have failed at the \(n \)-th stage. Now let \(y_2 \) be any member of \(\Delta_2 \); then \(\Delta_2 - (y_3) \) must contain an infinite sub-class \(\Delta_3 \) such that all \(\rho \)-combinations consisting of \(y_3 \) together with \(\rho - 1 \) members of \(\Delta_3 \), belong to the same \(C_3 \), which, as before, cannot be \(C_1 \) and must be \(C_2 \). And by continuing in this way we shall evidently find two infinite sequences \(y_1, y_2, \ldots, y_n, \ldots \) and \(\Delta_1, \Delta_2, \ldots, \Delta_n, \ldots \) consisting respectively of members and sub-classes of \(\Gamma \), and such that \(y_n \) is always a member of \(\Delta_{n-1} \), \(\Delta_n \) a sub-class of \(\Delta_{n-1} \) not including \(y_n \), and all the \(\rho \)-combinations formed by joining \(y_n \) to \(\rho - 1 \) members of \(\Delta_n \) belong to \(C_2 \); and if we denote by \(\Delta \) the
class \((y_1, y_2, \ldots, y_n, \ldots)\) we have, by a previous argument, that all
\(\rho\)-combinations of members of \(\Delta\) belong to \(C_2\).

Hence, in either case, \(\Gamma\) contains an infinite sub-class \(\Delta\) of the required kind, and Theorem A is proved for all values of \(r\), provided that \(\mu = 2\). For higher values of \(\mu\) we prove it by induction; supposing it already established for \(\mu = 2\) and \(\mu = \nu - 1\), we deduce it for \(\mu = \nu\).

The \(r\)-combinations of members of \(\Gamma\) are then divided into \(r\) classes \(C_i\) \((i = 1, 2, \ldots, \nu)\). We define new classes \(C'_i\) for \(i = 1, 2, \ldots, \nu - 1\) by

\[
C'_i = C_i(i = 1, 2, \ldots, \nu - 2),
\]

\[
C'_{\nu - 1} = C_{\nu - 1} + C_\nu.
\]

Then by the theorem for \(\mu = \nu - 1\), \(\Gamma\) must contain an infinite sub-class \(\Delta\) such that all \(r\)-combinations of the members of \(\Delta\) belong to the same \(C'_i\). If, in this \(C'_i\), \(i = \nu - 2\), they all belong to the same \(C'_i\), which is the result to be proved; otherwise they all belong to \(C'_{\nu - 1}\), i.e. either to \(C_{\nu - 1}\) or to \(C_\nu\). In this case, by the theorem for \(\mu = 2\), \(\Delta\) must contain an infinite sub-class \(\Delta'\) such that the \(r\)-combinations of members of \(\Delta'\) either all belong to \(C_{\nu - 1}\) or all belong to \(C_\nu\); and our theorem is thus established.

Ramsey then proceeds to the finite analogue. He does not mention the possibility of a Compactness argument. We paraphrase his argument in modern language.

Theorem 7. \(\forall r, n, k, n + k \geq r, \exists m_0\) so that, for \(m \geq m_0\), if \([m]'\) is 2-colored there exist \(S, T \subseteq [m], |S| = n, |T| = k, S \cap T = \emptyset\), so that all \(r\)-subsets of \(S \cup T\) containing at least one \(x \in S\) are the same color.

Proof. We shall define \(m_0(r, n, k)\) for all \(r, n, k\). We use induction on \(r\). The case \(r = 1\) is trivial; take \(m_0 = \max(2n - 1, n + k)\). Assume the result for all \(r' < r\).

For \(n = 1\), all \(k\), we prove we may take \(m_0(r, 1, k) = 1 + m_0(r - 1, k, 0)\). Let \(|U| = 1 + m_0(r - 1, k, 0)\) and fix a 2-coloring

\[
\chi: [U]' \to \{\text{red, blue}\}.
\]

Select \(x \in U\) arbitrarily, and define a 2-coloring \(\chi'\) of \([U - \{x\}]'\) by

\[
\chi'(V) = \chi(V \cup \{x\}).
\]

As \(|U - \{x\}| = m_0(r - 1, k, 0)\), we find \(T, |T| = k\) so that \(\chi'\) is constant on \([T]'\). The theorem follows for \(n = 1\) by setting \(S = \{x\}\).

Fix \(r > 1, n > 1, k\). By induction assume that the theorem holds for
$r' < r$, all n, k and for $r' = r$, $n' < n$, and all k, Defined $F(k) = m_0(r, 1, x)$, and set F^{r+1} equal to the rth iterate of F. $F^{(t)}$ is defined for all t. Now let

$$|U| > m_0(r, n - 1, F^{(n)}(\max(r - 1, k)))$$

and fix a 2-coloring

$$\chi: [U] \rightarrow \{\text{red, blue}\}.$$

We can find disjoint S, T, $|S| = n - 1$, $|T| = F^{(n)}(\max(r - 1, k))$ by the induction hypothesis so that χ is monochromatic, say red, on all $X \subseteq S \cup T$, $|X| = r$, $X \cap S = \emptyset$. We find $t_1 \in T$, $T_1 \subseteq T - \{t_1\}$, $|T_1| = F^{(n-1)}(\max(r - 1, k))$ so that all $X \subseteq \{t_1\} \cup T_1$, $|X| = r$, $t_1 \in X$ are monochromatic. If they are red then our theorem is satisfied by $S' = S \cup \{t_1\}$ and T' equal to any subset of T_1 of cardinality k. We assume that they are blue. Now we find t_2, T_2, $|T_2| = F^{(n-2)}(\max(r - 1, k))$, where all $X \subseteq \{t_2\} \cup T_2$, $|X| = r$, $t_2 \in X$ are monochromatic. Again we are finished if they are red so we assume that they are blue. We continue to find t_1, \ldots, t_n, T_n with $|T_n| = \max(r - 1, k)$ so that if $U \subseteq \{t_1, \ldots, t_n\} \cup T_n$ and $U \cap \{t_1, \ldots, t_n\} = \emptyset$ then $\chi(U)$ is blue. The sets $\{t_1, \ldots, t_n\}$ and T_n (or, rather, any k-element subset of T_n) satisfy the induction hypothesis. This completes the proof.

This theorem with $k = 0$ gives Ramsey’s theorem for two colors—a simple induction on the number of colors gives the full result.

Ramsey noted that application of this proof gives

$$R(n) \leq 2^{n(n-1)/2},$$

but he improves this to

$$R(n) \leq n!$$

He states, intriguingly, “But this value is, I think, still much too high.” There is no evidence that he was aware either the exponential upper bound or the exponential lower bound.

Ramsey’s original application, and purpose, for Ramsey’s theorem is of interest in its own right. We rephrase it, placing the combinatorial character in the following two theorems.

Theorem 8. For all n_1, \ldots, n_k, t there exists m' so that if $m > m'$ the following holds: Let $|S| = m$, and let $[S']$ be n_i-colored for $1 \leq i \leq k$.
Then there exists \(T \subseteq S \), \(|T| = t \) so that, for each \(i, 1 \leq i \leq k \), \([T]^i\) is monochromatic.

Proof. Define a sequence \(m_1, \ldots, m_k \) inductively so that

\[
m_1 \rightarrow (t)_n^i, \\
m_i \rightarrow (m_{i-1})_n^i, \quad 2 \leq i \leq k.
\]

We prove we may take \(m' = m_k \). Let \(|S| = m > m_k \) and fix a coloring of \([S]^{=k}\). We find \(S_{k-1} \subseteq S \), \(|S_{k-1}| = m_{k-1} \) so that \([S_{k-1}]^k\) is monochromatic. We then find \(S_{k-2} \subseteq S_{k-1} \), \(|S_{k-2}| = m_{k-2} \) so that \([S_{k-2}]^{k-1}\) is monochromatic. Continuing, we find a sequence \(S = S_k \supseteq S_{k-1} \supseteq \cdots \supseteq S_1 \supseteq S_0 \), where \(|S_0| = t \) and, for all \(1 \leq i \leq k \), \([S_0]^i\) is monochromatic (since \(S_0 \subseteq S_{i-1} \) so \([S_0]^i \subseteq [S_0]_i\)).

It is surprising to find such a sophisticated use of Ramsey’s theorem in the original paper of Ramsey. We now require a definition. All elements are considered integers (or, more generally, members of a set totally ordered by \(<\)).

Definition. \((x_1, \ldots, x_k) \sim (y_1, \ldots, y_k)\) if for all \(i, j \),

\[
(x_i < x_j \text{ iff } y_i < y_j), \quad (x_i = x_j \text{ iff } y_i = y_j), \quad \text{and} \\
\times (x_i > x_j \text{ iff } y_i > y_j).
\]

Then \(-\) is clearly an equivalence relation. Intuitively it means “has the same ordering as.”

Definition. Let \(R \) be a \(k \)-ary relation. we say that \(R \) is **canonical** on a set \(S \) if

\[
(x_1, \ldots, x_k) \sim (y_1, \ldots, y_k) \Rightarrow [R(x_1, \ldots, x_k) \Leftrightarrow R(y_1, \ldots, y_k)]
\]

for all \(x_1, \ldots, x_k, y_1, \ldots, y_k \in S \).

For example, there are exactly eight canonical binary relations: “false,” “>,” “\(= \),” “\(<\),” “\(\leq\),” “\(\neq\),” “\(\geq\),” “true.”

Theorem 9. For all \(b_1, \ldots, b_k, t \) there exists \(m' \) so that, for \(m > m' \), the following holds: Let \(\mathcal{R} \) be a set of relations on \([m]\) consisting of \(b_i \)-ary relations, \(1 \leq i \leq k \). There exists \(S, |S| = t \) on which all \(R \in \mathcal{R} \) are canonical.
Proof. We define an equivalence class on \([m]^t\) for \(1 \leq i \leq t\). Let

\[X = \{ x_1, \ldots, x_i \}, \quad Y = \{ y_1, \ldots, y_i \} \in [m]^t. \]

We say that \(X \sim Y\) if, for every \(j, 1 \leq j \leq k\), for every sequence \(w_1, \ldots, w_j\) such that \(\{w_1, \ldots, w_j\} = \{1, \ldots, i\}\) (though perhaps with repetitions), and for every \(j\)-ary \(R \in \mathfrak{R}\),

\[R(x_{w_1}, \ldots, x_{w_j}) \Leftrightarrow R(y_{w_1}, \ldots, y_{w_j}). \]

This gives a finite number of equivalence classes. For example, if \(\mathfrak{R}\) consists solely of binary relations \(R_1, \ldots, R_b\) then \(\{x, y\}_<\) is "colored" by the truth values of \(R_i(x, y)\) and \(R_i(y, x)\) for \(1 \leq i \leq b\). Hence there are exactly \(2^b\) possible equivalence classes. Singletons \(\{x\}\) are colored by the truth values of \(R_i(x, x)\) for \(1 \leq i \leq b\), with \(2^b\) possible equivalence classes.

By Theorem 8 we select \(m^t\) in such a way that there exists \(S\), \(|S| = t\) so that, for \(1 \leq i \leq k\), all \(X \in [S]^t\) are in the same equivalence class—hence all \(R \in \mathfrak{R}\) are canonical on \(S\). This completes the proof.

Now we come to the application of these combinatorial theorems to mathematical logic.* Let \(Q\) be an axiom system in first-order logic involving Boolean expressions, equality, \(k\)-ary relations, and no existential quantifiers—that is, all statements are universally quantified. Here are two examples.

\[Q_1: \forall x, \forall y, (x = y) \lor (xRy) \lor (yRx) \]

\[\forall x, \forall y, \forall z, (xRy \land yRz) \Rightarrow xRz \]

\[Q_2: \forall x, \forall y, x \neq y \Rightarrow [xRy \lor xBy] \]

\[\forall x, \forall y, [xRy \Leftrightarrow yRx] \land [xBy \Leftrightarrow yBx] \]

\[\forall x, \forall y, \forall z, x \neq y \neq z \neq x \Rightarrow (\sim [xRy \land yRz \land xRz]) \land (\sim [xBy \land yBz \land xBz]) \]

Let \(t(Q)\) denote the number of variables used in \(Q\): here \(t(Q_1) = t(Q_2) = 3\) (i.e., \(x, y, z\)). A model \(m\) of \(Q\) is called canonical if all relations in the model are canonical.

Theorem 10. For all \(b_1, \ldots, b_k, t\) there exists \(m^t\) so that for \(m > m^t\) the following holds: Let \(Q\) be an axiom system with \(b_i\) \(i\)-ary relations,

* These results require some familiarity with mathematical logic. They are not required for the remainder of the book.
$1 \leq i \leq k$, $t(Q) = t$. Then there exists a model m, $|m| = m$ if there exists a canonical model m', $|m'| = t$.

Proof. The m' is taken identically as in Theorem 9.

The "if" part is immediate as a canonical model m' can be extended to any ordered set in the "canonical" way. As an illustration, Q has canonical model $m' = \{1, 2, 3\}$ where R is $<$. For any m we define a model m on $[m]$, R being $<$.

The "only if" part follows from Theorem 9. Assume the existence of m, $|m| = m$. There exists a subset S of cardinality t on which all relations are canonical so that the restriction of m to S is a canonical model. Here, critically, there are no existential quantifiers so that the restriction of a model to a subset is still a model. Q_2 provides a good example as one can see quickly that there are no canonical models, and we trust that by this point the reader can demonstrate that there are no models on six or more elements.

Although Ramsey's theorem is accurately attributed to Frank Ramsey, its popularization stems from the classical 1935 paper of P. Erdős and G. Szekeres. Esther Klein (later to become Esther Szekeres) had discovered the following curious result: Given five points in a plane, some four form a convex quadrilateral. A generalization was conjectured: For all n there exists N such that for any N points in a plane there are n that form a convex n-gon. Szekeres, in a forward to the collected combinatorial works of Erdős, gives an account of the climate, social and mathematical, surrounding their discoveries. We quote from his account:

I have no clear recollection how the generalization actually came about, in the paper we attributed it to Esther, but she assures me that Paul and much more to do with it. We soon realized that a simple-minded argument would not do and there was a feeling of excitement that a new type of geometric problem emerged from our circle which we were only too eager to solve. For me the fact that it came from Epszi [Paul's nickname for Esther, short for "epsilon"] added a strong incentive to be the first with a solution and after a few weeks I was able to confront Paul with a triumphant "E.P., open your wise mind." What I really found was Ramsey's Theorem, from which it easily followed that there exists a number $N < \infty$ such that out of N points in the plane it is possible to select n points which from a convex n-gon. Of course at that time none of us knew about Ramsey.

Here is Szekers' argument in our notation. Select N so that

$$N \rightarrow (n, 5)^4.$$
Now color a four-element subset red if it forms a convex quadrilateral, and blue otherwise. Since there are no blue 5-sets there must be a red n-set. But it is not difficult to prove that, if every four points from a convex quadrilateral, the n points must form a convex n-gon.

Recently, another proof along similar lines was given by M. Tarsy. Select N so that $N \rightarrow (n)^3$. Now let N points in the plane be given, and number them $1, \ldots, N$ arbitrarily. Color (i, j, k) red if traveling from i to j to k to i is in a clockwise direction, and blue if counterclockwise (both if collinear). Then there are n points ordered so that every triple has the same orientation, from which it follows easily that the n points form a convex n-gon. Tarsy was at the time an Israeli student who had been given this problem in an examination. Fortunately, he had been absent from class when the relevant material was discussed and so was forced to rely on his own imagination.

The classic 1935 paper also includes the result that any sequence of length $n^2 + 1$ contains a monotone subsequence of length $n + 1$. Strictly speaking, this result was not germane to the original problem, but the method of proof generalized and gave the second proof for the existence of N.

Let $N(n)$ denote the minimal value of N so that, for any N points in a plane, there are n that form a convex n-gon. This second proof (which Szekeres attributes entirely to Erdős) yielded the upper bound

$$N(n) \leq \binom{2n - 4}{n - 2} + 1.$$

One can show that $N(n) > 2^{n - 1}$ by a direct construction. Erdős, Szekeres, and Klein believe that $N(n) = 2^{n - 2} + 1$ is the correct value. This remains an open problem.

It is difficult to overestimate the effect of this paper. The rediscovery of Ramsey's theorem and that of the Monotone Subsequence theorem were each of fundamental importance. Together they opened a new era in combinatorial analysis. Both Szekeres and Turán consider these results to have been a decisive stage in Erdős' combinatorial studies. And certainly a major share of the interest in Ramsey theory in this generation is due to its popularization by Erdős.

REMARKS AND REFERENCES

Ramsey [1930], Skolem [1933], and Erdős, Szekeres [1935] are the basic early references for Ramsey's theorem. We have generally followed the proofs of Skolem [1933].
§4. Turán's theorem may be found in almost any textbook on Graph theory. See Turán [1954] or Turán [1941] (but in Hungarian) for the original proof. Motzkin and Straus [1965] give a short proof. Erdős and Sós [1969] discuss the relationship between Ramsey theorems and density theorems.

§5. The Compactness principle has no single discoverer. See Erdős [1950], Rado [1949], and Gottschalk [1951] and the general discussion in DeBruijn and Erdős [1951]. The Compactness principle is often called the Rado Selection principle.

§7. Comments of Szekeres are quoted from Erdős [1973]. Erdős and Szekeres [1962] give an interesting follow-up of their original paper.
2

Progressions

"Complete disorder is impossible."

T. S. Motzkin

2.1 VAN DER WAERDEN'S THEOREM

In 1927 B. L. van der Waerden published a proof of the following unexpected result.

Theorem 1 (Van der Waerden's Theorem). If the positive integers are partitioned into two classes then at least one of the classes must contain arbitrarily long arithmetic progressions.

This result, conjectured by I. Schur several years earlier, has turned out to be the seed to which much of the development of Ramsey theory may be traced. We examine several proofs of this theorem of van der Waerden and see how it leads naturally to various generalizations. Van der Waerden's personal account of his discovery is a classic work on the psychology of problem solving. We attempt to introduce the basic ideas as they actually occurred according to this account.

Historical Note. I. Schur, working on the distribution of quadratic residues in \mathbb{Z}_p, first conjectured the result proved by van der Waerden. Van der Waerden heard of the conjecture through Baudet, a student at Göttingen at the time, and has referred to his result as Baudet's Conjecture in the literature. A brief account of Schur's contribution is given by A. Brauer in the preface to I. Schur-Gesammelte Abhandlungen (Springer-Verlag, 1973).

There are two rather harmless looking modifications we make in the statement of van der Waerden's theorem, both of which have a major impact on the proof. First, for each k we allow only a finite initial segment of integers (depending on k) to be partitioned so that at least one class is forced to contain an arithmetic progression of k terms. This
modification, attributed to O. Schreier, is equivalent to the original assertion by the Compactness principle. Second, we allow the sets of integers to be partitioned into \(r \) classes instead of just two. This idea was suggested by E. Artin and is crucial to all known proofs of van der Waerden's theorem. Thus modified the statement is as follows:

For all positive integers \(k \) and \(r \), there exists an integer \(W(k, r) \) so that, if the set of integers \(\{1, 2, \ldots, W(k, r)\} \) is partitioned into \(r \) classes, then at least one class contains a \(k \)-term arithmetic progression.

To motivate the proof of the general theorem, we first examine a few small cases. Of course, for \(k = 2 \) and any \(r \), the result is immediate [in fact, we may take \(W(2, r) = r + 1 \)]. Let us consider the case \(k = 3, r = 2 \). We claim that we can take \(W(3, 2) = 325 \). To see this, assume that integers \(\{1, 2, \ldots, 325\} = [1, 325] \) are arbitrarily partitioned into two classes. Divide them into 65 blocks of length 5, that is,

\[
[1, 325] = [1, 5] \cup [6, 10] \cup \cdots \cup [321, 325],
\]

which we can write symbolically as

\[
B_1 \quad B_2 \quad \cdots \quad B_{65}
\]

Since these integers are being split into \(r - 2 \) classes, that is, they are 2-colored, there are just \(2^5 = 32 \) possible ways to 2-color a block \(B_i \). Thus, of the first 33 blocks \(B_i \), some pair of blocks must be 2-colored in exactly the same way (by the Pigeon-Hole principle), say \(B_{11} \) and \(B_{26} \). Look at this 2-coloring of \(B_{11} = \{51, 52, 53, 54, 55\} \). Of the first three elements of \(B_{11} \), that is, \(\{51, 52, 53\} \), at least two of them must have the same color, say \(j \) and \(j + d \). Since \(j \) and \(j + d \) belong to \(\{51, 52, 53\} \), \(j + 2d \) belongs to \(B_{11} \). (This is why we choose \(B_j \) to have length 5.) If \(j + 2d \) has the same color as \(j \) (and \(j + d \)), we are done. Thus we may assume that it has the other color. A typical picture of the situation is shown in Fig. 2.1, where \(\bullet \) denotes red and \(\circ \) denotes blue. But now we are done, for if the integer \(205 \in B_{41} \) is blue then 55, 130, 205 is a blue arithmetic progression (AP), and if 205 is red then 51, 128, 205 is a red AP.

What we have really done is to "focus" two two-term APs having different colors on the integer 205 so that, no matter what color it has, it must form the third term of some monochromatic AP.
Let us use the same idea to find a value for $W(3, 3)$. This time, however, we start with an arbitrary 3-coloring of the first $7(2 \cdot 3^7 + 1)(2 \cdot 3^{7(2 \cdot 3^7+1)} + 1)$ integers! We first divide these integers into $2 \cdot 3^{3^7+1} - 1$ blocks B_i of $7(2 \cdot 3^7 + 1)$ each. Now, there are only $3^{7(2 \cdot 3^7+1)}$ different ways to 3-color each B_i so that, among the first $3^{7(2 \cdot 3^7+1)} + 1$ of them, at least two, say B_{i_1} and $B_{i_1+d_1}$, have exactly the same 3-colorings. (The reason we use $2 \cdot 3^{3^7+1} - 1$ blocks is to ensure that the block $B_{i_1 \cdot 2d_1}$ is well defined; we shall soon need to select an element from it.) Next, for each i, we divide the integers in B_i into $2 \cdot 3^7 + 1$ subblocks $B_{i,j}$ of 7 each. Since there are just 3^7 ways of 3-coloring each $B_{i,j}$, among the first $3^7 + 1$ blocks B_{i_1,i_j}, $1 \leq j \leq 3^7 + 1$, at least two, say B_{i_1,i_2} and B_{i_1,i_2+d_2}, have exactly the same 3-colorings. Finally, in the first four elements of B_{i_1,i_2}, some color must occur twice; say that i_1 and $i_1 + d_1$ are red. Since $i_3 + 2d_3$ is also in B_{i_1,i_2}, $i_3 + 2d_3$ must have some other color, say blue. The situation is shown in Fig. 2.2.

Consider the block B_{i_1,i_2+d_2}. By the choice of i_2 and d_2, this is a subblock of B_{i_1}. Also, since B_{i_1,i_2} and B_{i_1,i_2+d_2} have the same 3-coloring, the integers $i_3 + 7d_2$ and $i_3 + d_3 + 7d_2$ must be red and the integer $i_3 + 2d_3 + 7d_2$ must be blue. Thus the corresponding element $i_3 + 2d_3 + 14d_2$ of B_{i_1,i_2+2d_2} must be, say, yellow, not red nor blue, because of the arithmetic progressions $i_3 + 2d_3, i_3 + 2d_3 + 7d_2, i_3 + 2d_3 + 14d_2$ and $i_3 + d_3 + 7d_2, i_3 + 2d_3 + 14d_2$. Of course, since B_{i_1} and $B_{i_1+d_1}$ have exactly the same 3-coloring, exactly the same color pattern occurs in $B_{i_1+d_1}$; that is, the integers $i_3 + 7(2 \cdot 3^7 + 1)d_1, i_3 + d_3 + 7(2 \cdot 3^7 + 1)d_1$ and so on are red, the integers $i_3 + 2d_3 + 7(2 \cdot 3^7 + 1)d_1, i_3 + 2d_3 + 7d_2 + 7(2 \cdot 3^7 + 1)d_1$, and so on are blue, and the integers $i_3 + 2d_3 + 14d_2$ and $i_3 + 2d_3 + 14d_2 + 7(3^7 + 1)d_1$ are yellow.

Now consider the integer

$$m = i_3 + 2d_3 + 14d_2 + 14(3^7 + 1)d_1.$$

There are three monochromatic two-term APs "focused" on m, each having a different color. The situation is shown in Fig. 2.3. If m is red then $i_3, i_3 + d_3 + 7d_2 + 7(3^7 + 1)d_1, m$ is a monochromatic AP. If m is
Figure 2.2 Forcing a three-term arithmetic progression.

Figure 2.3 Red, blue, and yellow progressions focus on \(m \).
blue then \(i_3 + 2d_3, i_3 + 2d_3 + 7d_2 + 7(3^7 + 1)d_1, m \) is a monochromatic AP. If \(m \) is yellow then \(i_3 + 2d_3 + 14d_2, i_3 + 2d_3 + 14d_2 + 7(3^7 + 1)d_1, m \) is a monochromatic AP. There are no other possibilities. We have shown that we may take \(W(3, 3) = 7(2 \cdot 3^7 + 1)(2 \cdot 3^7(2 \cdot 3^7 + 1) + 1) \).

The proof of the general theorem is now just a double induction on \(k \), the length of the progression desired, and \(r \), the number of colors. Not only do we assume that \(W(k, r - 1) \) exists, but we also assume that \(W(k - 1, r') \) exists for all values of \(r' \). We need the very large values of \(r' \) since, in general, we shall always divide the original set of integers into equal-sized blocks \(B_i \) of consecutive integers and apply the induction hypothesis to the blocks, which for our purposes behave in the same way that the integers do. If the integers are being \(r \)-colored then the blocks are \(r^{[B_i]} \)-colored (where \(|B| \) denotes the cardinality of \(B \)). For this reason, the values we obtain for \(W(k, r) \) are gigantic. (see Section 2.5.)

The one additional difficulty remaining to be overcome to complete the proof of van der Waerden's theorem along the lines just outlined is the choice of comprehensible notation. The interested reader will probably find it profitable at this point to complete this proof before going on.

A Short Proof. It is perhaps not surprising that, by strengthening the hypothesis of van der Waerden's theorem, we obtain a somewhat stronger result that at the same time is a bit easier to prove. However, the basic structure of the proof is essentially the same as that of van der Waerden's original proof.

We define \(m + 1 \) \(l \)-equivalence classes of \([0, l]^m \). For \(0 \leq i \leq m \) the set of \((x_1, \ldots, x_m) \in [0, l]^m \) in which \(l \) appears in the \(i \) rightmost positions and nowhere else forms an \(l \)-equivalence class. [For \(i = 0 \) this is all \((x_1, \ldots, x_m) \) in which \(l \) does not appear.] (Figure 2.4 shows the \(l \)-equivalence classes for \(l = 4 \) and \(m = 2 \).) The \(l \)-equivalence classes are disjoint. They partition a proper subset of \([0, l]^m \); the remaining sequences are not used. For any \(l, m \geq 1 \) we define a statement \(S(l, m) \):
For any \(r \), there exists \(N(l, m, r) \) so that for any function \(C: [1, N(l, m, r)] \rightarrow [1, r] \) there exist positive integers \(a, d_1, \ldots, d_m \) such that \(C(a + \sum_{i=1}^{m} d_i) \) is constant on each \(l \)-equivalence class of \([0, l]^m\).

The statement \(S(l, 1) \) is equivalent to van der Waerden's theorem for \(l \)-term arithmetic progressions.

Theorem 2. \(S(l, m) \) holds for all \(l, m \geq 1 \).

Proof.

(i) \(S(l, m) \Rightarrow S(l, m + 1) \).

For a fixed \(r \), let \(M = N(l, m, r) \), \(M' = N(l, 1, r^M) \) and suppose that \(C: [1, MM'] \rightarrow [1, r] \) is given. Define \(C': [1, M'] \rightarrow [1, r^M] \) so that \(C'(k) = C'(k') \) iff \(C(kM - j) = C(k'M - j) \) for all \(0 \leq j < M \).

By the inductive hypothesis, there exists \(a' \) and \(d' \) such that \(C'(a' + xd') \) is constant for \(x \in [0, l - 1] \). Let \(I = [a'M - (M - 1), a'M] \). Since \(S(l, m) \) can apply to the interval \(I \), then, by choice of \(M \), there exist (renumbering for convenience) \(a, d_2, \ldots, d_{m+1} \) with all sums \(a + \sum_{i=2}^{m+1} x_i d_i \), \(x_i \in [0, l] \), in \(I \) and with \(C(a + \sum_{i=2}^{m+1} x_i d_i) \) constant on \(l \)-equivalence classes. Set \(d_i' = d_i \) for \(2 \leq i \leq m + 1 \) and \(d'_M = d'M \). Then \(S(l, m + 1) \) holds.

(ii) \(S(l, m) \) for all \(m \geq 1 \) \(\Rightarrow S(l + 1, 1) \).

For a fixed \(r \), let \(C: [1, N(l, r, r)] \rightarrow [1, r] \) be given. Then there exists \(a, d_1, \ldots, d_r \), such that, for \(x_i \in [0, l] \), \(a + \sum_{i=1}^{r} x_i d_i \) is bounded above by \(N(l, r, r) \) and \(C(a + \sum_{i=1}^{r} x_i d_i) \) is constant on \(l \)-equivalence classes. By the Pigeon-Hole principle there exist \(1 \leq u < v \leq r + 1 \) such that

\[
C(a + \sum_{i=u}^{v} x_i d_i) = C(a + \sum_{i=v}^{r} x_i d_i).
\]

Therefore

\[
C((a + \sum_{i=1}^{r} x_i d_i) + x(\sum_{i=u}^{v-1} d_i))
\]

is constant for \(x \in [0, l] \). This proves \(S(l + 1, 1) \).

2.2 The Hales–Jewett Theorem

In its essence, van der Waerden's theorem should be regarded, not as a result dealing with integers, but rather as a theorem about finite se-
quences formed from finite sets. The Hales–Jewett theorem strips van der Waerden's theorem of its unessential elements and reveals the heart of Ramsey theory. It provides a focal point from which many results can be derived and acts as a cornerstone for much of the more advanced work. Without this result, Ramsey theory would more properly be called Ramseyian theorems.

We begin with notation. We define C^n_t, the n-cube over t elements, by

$$C^n_t = \{(x_1, \ldots, x_n): x_i \in \{0, 1, \ldots, t-1\}\}.$$

By a line in C^n_t we mean a set of (suitably ordered) points x_i, x_{i_1}, \ldots, x_{i_n} so that in each coordinate j, $1 \leq j \leq n$, either

$$x_{i_j} = x_{i_{j-1}} = \cdots = x_{i_1}$$

or

$$x_{i_j} = s \quad \text{for} \quad 0 \leq s < t,$$

and the latter occurs for at least one j (otherwise the x_i would be constant). For example, with $t = 4$, $n = 3$, \{020, 121, 222, 323\} forms a line, as does \{031, 131, 231, 331\}. (In examples, parentheses and commas may be removed for clarity.)

Our definition differs from the ordinary geometric definition as, for example \{02, 11, 20\} is not a line in C^3_2. The reason for this is that the cube is mean to be independent of the underlying set \{0, 1, \ldots, t-1\}. In other words, for any set $A = \{a_1, \ldots, a_t\}$ we may define

$$C^n_t = \{(x_1, \ldots, x_n): x_i \in A\}$$

and lines of C^n_t as those x_0, \ldots, x_{t-1} so that in each coordinate j either the x_{i_j} are constant or $x_{i_j} = a_j$. All such cubes are combinatorially isomorphic. In this section we shall write our underlying set as \{0, 1, \ldots, t-1\} solely to facilitate the exposition.

For $1 \leq k \leq n$ we define what we mean by a k-dimensional subspace of C^n_t. Let $\{1, \ldots, n\} = B_0 + B_1 + \cdots + B_k$, where $B_i \neq \emptyset$ for $1 \leq i \leq k$. (B_0 may be null.) Let

$$f: B_0 \to \{0, 1, \ldots, t-1\}$$

by any function. We define a map $\hat{f}: C^k_t \to C^n_t$ by
\[\hat{f}(y_1, \ldots, y_k) = (x_1, \ldots, x_n), \]

where

\[x_i = f(i) \quad \text{for} \ i \in B_0, \]
\[x_i - y_j \quad \text{for} \ i \in B_j. \]

A \(k \)-dimensional subspace is defined as a set that is the range of \(\hat{f} \) for some choice of \(B_0, B_1, \ldots, B_k, f \).

The real meaning of "\(k \)-dimensional subspace" may be gleaned from the following example, where \(t = 3, \ n = 7, \ k = 2, \ B_1 = \{1, 2\}, \ B_2 = \{3, 4, 5\}, \ B_0 = \{6, 7\}, f(6) = 2, f(7) = 0. \) The range of \(\hat{f} \) is given by

\[
\begin{array}{ccc}
000000 & 22000 & 20000 & 20 \\
001111 & 22111 & 20000 & 20 \\
002222 & 22222 & 20000 & 20 \\
\end{array}
\]

The concept of \(k \)-dimensional subspace is clearly independent of the underlying set \(A \). A line is a one-dimensional subspace.

A \(k \)-dimensional subspace \(S \) of \(C_t^n \) with underlying partition \(B_0, B_1, \ldots, B_k \) in some fixed order is canonically isomorphic to \(C_{t}^k \). In the example given above

\[\varphi: S \to C_3^2 \]

given by

\[\varphi: (aabbba20) = ab, \]

is the isomorphism.

In all of our work there will be a clear ordering of the dimensions \(B_0, B_1, \ldots, B_k \). Technically, we should refer to ordered \(k \)-dimensional subspaces. This will be tacitly assumed throughout.

Now we are in a position to state our fundamental result.

Theorem 3 (Hales–Jewett Theorem). For all \(r, t \) there exists \(N' = HJ(r, t) \) so that, for \(N \geq N' \), the following holds: If the vertices of \(C_t^N \) are \(r \)-colored there exists a monochromatic line.

We begin our proof with the equivalence classes of Section 2.1. For \(0 \leq i \leq n \) the set of \((x_1, \ldots, x_n) \in C_{t+1}^n \) in which \(t \) appears in the \(i \) rightmost positions and nowhere else forms an equivalence class. We call
a coloring of \(C^n_2 \), layered if it is constant on all equivalence classes. (In a layered \(C^k_3 \) the enclosed sets of Fig. 2.4 are monochromatic. Also, a layered \(C^3_3 \) looks much like Fig. 2.2, minus any unessentials.) An (ordered) \(k \)-dimensional subspace is layered iff the coloration is layered when the subspace is identified canonically with \(C^k_{r+1} \). (In the preceding example, 00 000 20, 00 111 20, 11 000 20, 11 111 20 would be the same color, and 00 222 20, 11 222 20 the same color.) A line is layered iff the first \(t \) points are monochromatic. When we say that a space is layered we always tacitly assume that it has a given coloration.

Example. Set \(t = 27 \), and set the underlying set \(\mathcal{A} \) equal to the 26-letter English alphabet \(A, B, \ldots, Z \) and \(\oslash \) (space). The elements of \(C^3_3 \) are then strings of length \(n \). A string is left justified if all the spaces appear in the rightmost positions. In a layered coloring any two left-justified strings with the same number of letters have the same color. The line \(\{ \alpha A\alpha : \alpha \in \mathcal{A} \} \) is layered if \(AAA, BAB, \ldots, ZAZ \) are the same color (with no restriction on the color of \(\oslash A \oslash \)). If the two-dimensional space \(\{ \alpha A\beta \beta : \alpha, \beta \in \mathcal{A} \} \) is layered then \(BALL, MASS, \) and \(PARR \) are the same color and \(MA \oslash \oslash \oslash, PA \oslash \oslash, \) and \(LA \oslash \oslash \) are the same color.

We define two statements dependent on \(t \), the cardinality of the underlying set:

\[HJ(t): \text{ For all } r \text{ there exists } N' = HJ(r, t) \text{ so that, for } N \geq N', \text{ if } C^N_r \text{ is } r\text{-colored there exists a monochromatic line.} \]

\[LHJ(t): \text{ For all } r, k \text{ there exists } M' = LHJ(r, t, k) \text{ so that, for } M \geq M', \text{ if } C^M_{r+1} \text{ is } r\text{-colored there exists a layered } k\text{-dimensional subspace.} \]

Our proof is by induction on \(t \). We shall show that

\[HJ(t) \Rightarrow LHJ(t) \quad \text{(Theorem 4)}, \]

\[LHJ(t) \Rightarrow HJ(t + 1) \quad \text{(Corollary 6)}. \]

Proof of \(HJ(2) \). Set \(HJ(r, 2) = r \). Consider the \(N + 1 \) points of \(C^N_2 \) formed by a (possibly void) sequence of 1's followed by a (possibly void) sequence of 0's (e.g., for \(N = 3 \), the points 000, 100, 110, 111). For \(N \geq r \) some two of these points must be the same color, and they form a monochromatic line. (Remember the definition—not every two points form a line!)

Technically, the induction argument we give can start at \(t = 1 \), and the reader might check that the inductive proof of \(HJ(2) \) is essentially the
proof we have given. However, as C^n is practically pointless (joke), the arguments $HJ(2) \Rightarrow LHJ(2) \Rightarrow HJ(3)$ might give fuller understanding.

Theorem 4. $HJ(t) \Rightarrow LHJ(t)$.

Proof. Assume $HJ(t)$. We prove $LHJ(t)$ by induction on k. As in van der Waerden's theorem, we prove $LHJ(t)$ for given k for all r simultaneously.

$k = 1$. Let $M' = HJ(r, t)$. Let $M = M'$, and r-color C_{i+1}^M. Inside C_{i+1}^M, lies C_i^M, those points without coordinate value t. There is a monochromatic line in C_i^M that is a layered line in C_{i+1}^M.

$k \Rightarrow k + 1$. Here is the heart of the proof. Use the Induced Color method. Let $m = LHJ(r, t, k)$. Let $s = r^{(r+1)m}$, the number of r-colorations of C_{i+1}^m. Set $m' = LHJ(s, t, 1)$, that is, $HJ(s, t)$. (Here m may be gigantic, but m' is unbelievably larger!) Take $LHJ(r, t, k+1) = m' + m$.

Let C_{i+1}^m be r-colored by χ. $C_{i+1}^{m'+m} = C_{i+1}^{m'} \times C_{i+1}^m$ in a natural way. For $x \in C_{i+1}^{m'}$ and $y \in C_{i+1}^m$ write xy for their concatenation [e.g., $(2, 7, 5)(3, 6) = (2, 7, 5, 3, 6)$]. Define a coloring χ^* on $C_{i+1}^{m'}$, coloring $x \in C_{i+1}^{m'}$ by the color of xy for all $y \in C_{i+1}^m$. Formally

$$\chi^*(x) = \chi^*(x') \text{ iff } \chi(xy) = \chi(x'y) \text{ for all } y \in C_{i+1}^m.$$

As there are only(!) s colors, there exists a layered line $x_0, x_1, \ldots, x_i, \ldots, x_t, x_t \in C_{i+1}^m$ under χ^*. Now color C_{i+1}^m by

$$\chi**(y) = \chi(x, y) \text{ (} 0 \leq i < t - 1, \text{ as constant for those } i).$$

By induction there is a layered k-dimensional subspace $S \subseteq C_{i+1}^m$ under $\chi**$. Let

$$T = \{x, s: 0 \leq i < t, s \in S \} \subseteq C_{i+1}^{m'-m}.$$

Let S have equivalence classes S_0, S_1, \ldots, S_k. Then T has equivalence classes

$$T_j = \{x, s: 0 \leq i < t, s \in S_j \}, \quad 0 \leq j < k,$$

together with a T_{k+1} consisting of a single point beginning with x_i. Let $x_is, x_is' \in T_j$ with $0 \leq j < k$. Then

$$\chi(x_is) = \chi**(s) = \chi**(s') = \chi(x_is').$$

The middle equality holds because s, s' are equivalent under χ^{**}. and the other equalities hold by the definition of χ^{**}. Hence T is a layered $(k + 1)$-dimensional space, completing the induction.

Some intuition, going down instead of up, is useful here. Select $M = CH(r, t, k)$ so large that it may be written as $m'_1 + m_1$ where m'_1 is gigantic and m_1 is much, much bigger. An r-coloring of $C_{t+1}^{m'_1} \times C_{t+1}^{m_1}$ induces an s-coloring of $C_{t+1}^{m'_1}(s \gg m'_1)$ but $s \ll m'_1$ for which there exists a layered line $L_1 = \{x_0^{(1)}, \ldots, x_t^{(1)}\}$. On $L_1 \times C_{t+1}^{m_1}$ the color of $x_i^{(1)}y$ is independent of i if $i \neq t$. Color $y \in C_{t+1}^{m_1}$ by the color of $x_t^{(1)}y, t \neq t$. As m'_1 is gigantic, write $m'_1 = m'_2 + m_2$, where $m'_2 \gg m_2$ but m_2 is still gigantic. The r-coloring of $y \in C_{t+1}^{m'_1} = C_{t+1}^{m'_2} \times C_{t+1}^{m_2}$ induces an s-coloring of $C_{t+1}^{m'_1}$ for which there exists a layered line $L_2 = \{x_0^{(2)}, \ldots, x_t^{(2)}\}$. On $L_1 \times L_2 \times C_{t+1}^{m_2}$ the color of $x_i^{(1)}x_j^{(2)}y$ is independent of i if $i \neq t$ and is independent of both i and j if $i \neq t$ and $j \neq t$. Continue the entire procedure k times.

Theorem 5. A layered k-dimensional space with at most k colors contains a monochromatic line.

Proof. All ordered k-dimensional spaces over $t + 1$ elements are combinatorially isomorphic. Hence it is sufficient to prove this result for C_{t+1}^k. This result corresponds to the focusing of progressions in van der Waerden's theorem. Pictorially this theorem is obvious; note in Fig. 2.4 that a layered 2-coloration of C_4^2 yields a monochromatic line. More formally, let C_{t+1}^k be a layered space and consider the special points $x_i, 0 \leq i \leq k$, defined by

$$x_i = (x_{i_1}, \ldots, x_{i_k}) \quad x_j = \begin{cases} t & \text{if } j \leq i \\ 0 & \text{if } j > i \end{cases}$$

(In $C_4^2: 00, 40, 44$.) By the Pigeon-Hole principle for some $u < v$, x_u and x_v are the same color, say red. Then the line y_0, \ldots, y_r, given by

$$y_i = (y_{i_1}, \ldots, y_{i_k}) \quad y_s = \begin{cases} t & \text{if } i \leq u \\ s & \text{if } u < i \leq v \\ 0 & \text{if } u < i \end{cases}$$

is red. (In C_4^2, if 00 and 44 are red the line 00, 11, 22, 33, 44 is red.)

Corollary 6. $LHJ(t) \Rightarrow HJ(t + 1)$.

Proof. Given r, pick N' so that, for $N \geq N'$, any r-coloring of C_{t+1}^N contains a layered r-dimensional subspace. By Theorem 5 there must be a monochromatic line.

This completes the inductive proof of the Hales–Jewett theorem.
2.3 EXTENSIONS AND IMPLICATIONS

A simple trick gives a natural extension of the Hales–Jewett theorem.

Theorem 7 (Extended Hales–Jewett Theorem). For all n, t, r there exists N' so that, for $N \geq N'$, the following holds: If the points of C_t^N are r-colored there exists a monochromatic n-dimensional subspace.

Proof. We identify $C_t^{n^*}$ with $C_r^{n^*}$. The underlying t^n-set is C_r^n. We break $(x_1, \ldots, x_n) \in C_t^{n^*}$ into consecutive blocks of length n. Each block becomes a single coordinate, thus giving a set bijection between the two objects. A line in C_r^n is identified, under the bijection, with an n-dimensional subspace of $C_t^{n^*}$. (For example, the line $00, 11, 22, 33$ in C_t^4 is identified with the two-dimensional space $0000, 0101, 1010, 1111$ in C_2^4.)

We set $s = HJ(r, t^n)$ and take $N' = ns$. An r-coloring of $C_t^{n^*}$ is identified with an r-coloring in C_r^n, that, by definition of s, has a monochromatic line. This line is identified with an n-dimensional subspace of $C_t^{n^*}$, monochromatic under the original coloring. For $N \geq N'$, C_t^N contains $C_t^{n^*}$, so the monochromatic subspace still exists.

Van der Waerden's theorem may be obtained as a corollary of the Hales–Jewett theorem. We identify the integers $a, 0 \leq a < t^N$, with the N-tuples (a_1, \ldots, a_N) formed from the base-t representation $a = \Sigma_{i=1}^{N} a_i t^{i-1}$, $0 \leq a_i < t$. An r-coloring of $\{0, 1, \ldots, t^N - 1\}$ induces an r-coloring of C_t^N in which, for N sufficiently large, there is a monochromatic line that, in turn, translates back to a monochromatic AP of length t.

Let $V = \{v_0, \ldots, v_{t-1}\}$ be a subset of R^m. We say that $W = \{w_0, \ldots, w_{t-1}\}$ is homothetic to V if, under suitable ordering of W, there exist $c \in R$, $c \neq 0$, and $b \in R^m$ so that

$$w_i = cv_i + b, \quad 0 \leq i < t.$$

In this case we may also write $W = cV + b$. In geometric terms, homothetic means "similar without rotating."

Theorem 8 (Gallai’s Theorem). Let the vertices of R^m be finitely colored. For all finite $V \subseteq R^m$ there exists a monochromatic W homothetic to V.

Proof. The method of van der Waerden’s theorem may be used to prove Gallai’s theorem. It is simpler, however, to derive the latter as a corollary.
of the Hales–Jewett theorem. Fix the number of colors r and the set $V, |V| = t$. Let $N = HJ(r, t)$. Consider C_r^N to have underlying set V, so that the elements are sequences (x_1, \ldots, x_N), $x_i \in V$. Define a map

$$\Psi: C_r^N \rightarrow R^m$$

by

$$\Psi(x_1, \ldots, x_N) = \sum_{i=1}^N k_i x_i$$

for real constants k_1, \ldots, k_N. Assume that Ψ is injective. An r-coloring of R^m [actually, of range (Ψ)] induces an r-coloring of C_r^N for which there is a monochromatic line that corresponds to a monochromatic $W \subset R^m$ homothetic to V.

We require Ψ to be injective, as otherwise a line in C_r^N could correspond to a single point in R^m. To achieve injectivity we appropriately choose $\{k_i\}$. For every $(x_1, \ldots, x_N) \neq (x'_1, \ldots, x'_N)$, both in C_r^N, we must have

$$\sum_{i=1}^N k_i (x_i - x'_i) \neq 0.$$

The $\{k_i\}$ must be chosen to avoid only a finite set of equalities. Almost all choices of $\{k_i\}$ will suffice.

We may actually show a slightly stronger result. By selecting $k_i \in N$ we can assure a monochromatic $W = cV + b$, where $c \in N$.

An important example of Gallai’s theorem is $V = \{(i, j), 0 \leq i, j \leq t\}$. We may then show the following: If N^2 is finitely colored there exist x_0, y_0, d so that all t^2 points of the form $(x_0 + id, y_0 + jd), 0 \leq i, j < t$, are the same color. Gallai’s theorem may be considered a generalization of van der Waerden’s theorem to higher dimensions.

A. W. Hales and R. I. Jewett, in their original paper, considered generalizations of tic-tac-toe, the classic children’s game. In the original game (Fig. 2.5) two players alternately choose distinct elements of C_3^2, and a player wins if he or she has chosen an entire line (under the broader geometric definition). This game is well known to be a draw when properly played. Very recently the corresponding game for C_3^4 (again with the geometric definition of a line) has finally been resolved (the first player can always win). However, the winning strategy is extremely complicated. For all r, t, if N is sufficiently large the r-person “N-dimensional tic-tac-toe t-in-a-row” cannot end in an draw, even under
the more restrictive definition of a line. For \(r = 2 \) we may say more: for \(N \) sufficiently large the first player has a winning strategy. This is a standard Game theory argument: In a finite two-person, perfect information game with no draws, one of the two players must have a winning strategy. But in this game it cannot hurt to play first so that someone must be the first player! Let \(GHJ(t) \) be the minimal \(N' \) so that, for \(N > N' \), the first player wins tic-tac-toe on \(C_t^N \). Then \(GHJ(t) \leq HJ(2, t) \). However, the inequality need not be sharp; in fact, the exact nature of \(GHIJ \) remains a puzzle.

2.4 SPACES—AFFINE AND VECTOR

Let \(A \) be an arbitrary, but fixed, finite field. We regard \(A^n \) as an \(n \)-dimensional space over \(A \). We say that \(X \subseteq A^n \) is a \(t \)-space if \(X \) is a \(t \)-dimensional affine subspace of \(A^n \) (i.e., a translate of a vector subspace of dimension \(t \)). The singleton sets are called 0-spaces. For this section only, let \([V]^t \) denote the class of \(t \)-spaces \(T \subseteq V \). Our object is the following result.

Theorem 9 (Affine Ramsey Theorem). For all \(r, t, k \) there exists \(n = N^{(t)}(k; r) \) so that if the \(t \)-spaces of \(A^n \) are \(r \)-colored there exists a \(k \)-space all of whose \(t \)-spaces have the same color.

Let \(\dim(B) = u + 1 \) and \(p: B \to A^n \) be a surjective projection. Let \(T \in [B]^t \). Then \(p(T) \) has dimension either \(t \) or \(t - 1 \). If \(\dim(p(T)) = t \) we call \(T \) transverse (relative to \(p \)). If \(\dim(p(T)) = t - 1 \) then \(T = p^{-1}(p(T)) \), and we call \(T \) vertical. Intuitively, \(p \) defines a vertical direction on \(B \).
Definition. A coloring \(\chi : [B'] \to [r] \) is called special (relative to \(\chi, p \)) if the color of a transverse \(t \)-space is determined by its projection. More formally, \(p(T_1) = p(T_2) \Rightarrow \chi(T_1) = \chi(T_2) \).

Lemma. For all \(u, r, t \) there exists \(m = M^{0}(u; r) \) with the following property. Fix \(p : A^{u+m} \to A^{u} \), the projection onto the first \(u \) coordinates. For any coloring \(\chi : [A^{u+m}]' \to [r] \) there exists a \((u+1)\)-space \(B \) special relative to \(\chi, p \).

Proof. Let \(F_u \) denote the family of \(u \)-variable affine linear functions \(f(x_1, \ldots, x_u) = c_0 + c_1 x_1 + \cdots + c_u x_u, \ c_0, \ldots, c_u \in A \) (possibly 0). We prove the lemma for

\[
m = HJ([F_u], r^u),
\]

where \(v \) is the number of \(t \)-subspaces of a \(u \)-space and \(HJ \) is the Hales–Jewett function. Fix \(\chi : [A^{u+m}]' \to [r] \).

Let \(\tilde{f} = (f_1, \ldots, f_m), f_i \in F_u \). We define a lifting

\[
\tilde{f} : A^u \to A^{u+m}
\]

by

\[
\tilde{f}(x_1, \ldots, x_u) = (x_1, \ldots, x_u, y_1, \ldots, y_m), \quad y_i = f_i(x_1, \ldots, x_u).
\]

Clearly, \(\tilde{f} \) is injective, linear, and inverse to \(p \). We define (and this is the critical step) a coloring \(\chi' \) on \((F_u)^m\) by

\[
\chi'(\tilde{f}) = \chi'(\tilde{g}) \quad \text{iff, for all } T \in [A^u]', \chi(\tilde{f}(T)) = \chi(\tilde{g}(T)).
\]

In other words, we color the lifting \(\tilde{f} \) by the coloring of the range \(\tilde{f}(A^u) \) of the lift. To be excessively formal we may define \(\chi'(\tilde{f}) \) as the function with domain \([A^u]'\) given by

\[
(\chi'(\tilde{f}))(T) = \chi(\tilde{f}(T)).
\]

As \(\chi' \) is an \(r^u \)-coloring there exists (and this is the central use of the Hales–Jewett theorem) in \((F_u)^m\) a "line" \(L \) monochromatic under \(\chi' \). By renumbering coordinates we may write

\[
L = \{(f, \ldots, f, f_{s+1}, \ldots, f_m) : f \in F_u\},
\]

where \(f_{s+1}, \ldots, f_m \) are fixed. We set
\[B = \bigcup_{f \in \mathcal{L}} \tilde{f}(A^n) \times (x_1, \ldots, x_u), \quad s \leq i < m \]

\[\{(x_1, \ldots, x_u, y_1, \ldots, y_m) : y_i - y_j \leq 2 \Rightarrow s \leq i \leq j \} \times (x_1, \ldots, x_u), \quad s < i \leq m \].

\[B \] is the desired \((u + 1)\)-space. Any transverse \(t\)-space \(T \subset A^{n+m}\) may, by elementary linear algebra, be written as \(T = \tilde{g}(p(T))\) for some \(\tilde{g} = (g_1, \ldots, g_m) \in \langle F \rangle^m\). When \(T \subset B\), \(T = \tilde{g}(p(T)) = \tilde{f}(p(T))\), where \(f = (g_1, \ldots, g_1, f_{i+1}, \ldots, f_m) \in L\). Let \(T_1, T_2 \in [B]^t\), \(p(T_1) = p(T_2) = T \in [A^n]^t\). Then \(T_1 = \tilde{f}_1(T), T_2 = \tilde{f}_2(T), \tilde{f}_1, \tilde{f}_2 \in L\). Hence

\[\chi(T_1) = \chi(\tilde{f}_1(I)) = \chi(\tilde{f}_2(I)) = \chi(T_2)\].

Now the Affine Ramsey theorem is proved by a straightforward "induction on everything." We prove a strengthened result, as follows: For all \(t, k_1, \ldots, k_r\) there exists \(n = N^{(r)}(k_1, \ldots, k_r)\) so that if the \(t\)-spaces of \(A^n\) are \(r\)-colored there exists, for some \(1 \leq i \leq r\), a \(k_i\)-space all of whose \(t\)-spaces are colored \(i\).

The proof is a double induction, first on \(t\) [for all \((k_1, \ldots, k_r)\)] and then on \((k_1, \ldots, k_r)\). For \(t = 0\) the Affine Ramsey theorem follows directly from the Extended Hales–Jewett theorem. Assume the existence of \(n\) for \(t' < t\) [all \((k_1, \ldots, k_r)\)] and \(t' = t\), \((k_1', \ldots, k_r') < (k_1, \ldots, k_r)\).

We set

\[s = \max_{1 \leq i \leq r} N^{(r)}(k_1, \ldots, k_i - 1, \ldots, k_r), \]

\[u = N^{(r-1)}(s; r), \]

\[m = M^{(r)}(u; r), \]

\[n = u + m. \]

Let the \(t\)-spaces of \(A^n\) be \(r\)-colored arbitrarily by \(\chi\). By the definition of \(m\) (i.e., by the lemma) there is a \((u + 1)\)-space \(B\) that is special under a projection \(p : B \to A^n\). Induce a coloring \(\chi'\) of \([A^n]^{t-1}\) by \(\chi'(T) = \chi(p^{-1}(T))\) [by the definition of \(u\) (i.e., induction on \(t\)) there exists an \(s\)-space \(S \subset A^n\) monochromatic, say color 1, under \(\chi'\). Then \(p^{-1}(S)\) is a special \((s + 1)\)-space all of whose vertical \(t\)-spaces are color 1. Define a coloring \(\chi''\) of \([S]^t\) by

\[\chi''(T) = \chi(T'), \quad \text{where} \ p(T') = T. \]
This is well defined since S is special, (i.e., project χ onto S). As $s = N^{(r)}(k_1 - 1, k_2, \ldots, k_r)$ [i.e., induction on (k_1, \ldots, k_r)], there exists $W' \subseteq S$ so that either

(i) $\dim(W') = k_1 - 1$; W' is color 1 under χ'', or

(ii) $2 \leq i \leq r$, $\dim(W') = k_i$; W' is color i under χ''.

In case (ii), by linear algebra there exists a k-space $W \subseteq p^{-1}(W')$ so that $p(W') = W'$ (i.e., we may lift W' to W). Then W is color i under χ. In case (i) (the moment of induction) we set $W = p^{-1}(W')$. W is a vertical k_1-space of B. Let $T \in [W]'$. If T is transverse, $\chi(T) = \chi''(p(T)) = 1$. If T is vertical $\chi(T) = \chi'(p(T)) = 1$. This completes the proof.

Corollary 10 (Vector Space Ramsey Theorem). For all $r, t, k \geq 1$ there exists $n = N^{(r)}(k; r)$ so that if the t-dimensional vector spaces of A^n are r-colored there exists a k-dimensional vector space all of whose t-dimensional vector subspaces have the same color.

Proof. Choose n to satisfy the Affine Ramsey theorem. A coloring χ of vector spaces T induces a coloring χ' of affine spaces by $\chi'(T + v) = \chi(T)$. (Every affine space T' may be written as $T' = T + v$, where T is a uniquely determined vector space.) There exists an affine k-space $W' = W + v$ monochromatic under χ'. Then W is monochromatic under χ.

The Vector Space Ramsey theorem was first conjectured by G.-C. Rota. One may view (see Section 1.3) Ramsey's theorem as a statement about the lattice of subsets of a set. The Vector Space Ramsey theorem is then the analogous statement for the lattice of subspaces of a vector space over a fixed finite field. This result was first shown by R. L. Graham, K. Leeb and B. L. Rothschild. The proof given is a simplified version due to J. Spencer.

2.5 Roth’s Theorem and Szemerédi’s Theorem

The theorem of van der Waerden, while asserting the existence of a color class that contains arbitrarily long arithmetic progressions, does not specify which class is the appropriate one. In 1936, P. Erdős and P. Turán proposed the following conjecture:

If A is a set of positive integers with positive upper density, that is, satisfying
\[(*) \quad \limsup_{N} \frac{|A \cap [1, N]|}{N} > 0, \]

then \(A \) contains arbitrarily long APs.

Thus this conjecture would imply that long APs always occur in the "most frequently occurring" color. In 1952, K. F. Roth proved that (*) implies that \(A \) must always contain at least a three-term AP. It was not until 1969 that E. Szemerédi showed that, in fact, (*) implies that \(A \) contains a four-term AP. In 1974, Szemerédi, in a masterpiece of combinatorial reasoning, settled the general conjecture affirmatively. In 1977, H. Furstenberg gave another proof, using methods of ergodic theory, of the Erdős–Turán conjecture. In Section 6.1 we discuss the relationships between the Szemerédi and Furstenberg proofs. However, both results are beyond the scope of this book.

In this section we prove Roth's theorem twice. We first give a combinatorial proof, due to Szemerédi, which contains many of the essentials of his general result. We follow this with Roth's original proof (slightly modified). This proof is one of the gems of Analytic Number theory, and the contrast with Szemerédi's proof is quite striking. We conclude with some further conjectures.

Theorem 11 (Roth's Theorem). If \(A \) is a set of positive integers with positive upper density, then \(A \) contains a three-term arithmetic progression.

Proof (Szemerédi). We call \(M \subseteq N \) a \(k \)-cube if there exist \(a > 0 \) and \(d_1, \ldots, d_k > 0 \) so that

\[M = M(a; d_1, \ldots, d_k) = \left\{ a + \sum_{i=1}^{k} e_i d_i : e_i = 0, 1 \right\}. \]

Cube Lemma. Let \(n, \alpha, k \) be such that the sequence \(\alpha = \alpha_0, \alpha_1, \ldots, \alpha_k \) satisfying \(\alpha_{i+1} = \left(\left(\frac{\alpha_i}{2} \right) \right) / (n-1) \) has \(\alpha_k \geq 1 \). If \(A \subseteq [n] \) with \(|A| = \alpha \), there exists a \(k \)-cube \(M \subseteq A \). In particular, if \(|A| = cn \), \(c \) fixed, there exists a \(k \)-cube \(M \subseteq A \) with \(k = \log \log n + O(1) \).

Proof. Among the \(\left(\frac{\alpha}{2} \right) \) positive differences \(a' - a \) with \(a, a' \in A \), at least \(\left(\frac{\alpha}{2} \right) / (n-1) \) must be equal. Setting \(d_i \) equal to the most frequently occurring difference, and \(A_1 = \{ a \in A : a + d_i \in A \} \), we have
Applying this argument to \(A_1 \) yields \(d_2, A_2 \) with

\[
A_2 \subseteq A_1, \quad d_2 + A_2 \subseteq A_1, \quad |A_2| \geq \left(\frac{|A_1|}{2} \right)^{\frac{n}{n-1}} < \alpha.
\]

and, by induction, \(d_i, A_i \) with

\[
A_i \subseteq A_{i-1}, \quad d_i + A_i \subseteq A_{i-1}, \quad |A_i| \geq \alpha_i.
\]

Since \(\alpha_k \geq 1 \), there exists \(a \in A_k \). Now \(M(a: d_1, \ldots, d_k) \subseteq A \) by a simple backward induction on \(i \) so that

\[
M = M(a: d_1, \ldots, d_k) \subseteq A
\]

is the desired \(k \)-cube.

The analytic result (we really need only that \(k \) approaches infinity with \(n \)) is indicated by noting that \(\alpha_{i+1} \sim \alpha_i^2/2n \) so that \(\log \log(n/\alpha_i) \sim i + O(1) \). We omit the details.

Historical Note. In 1892 D. Hilbert proved that, for any \(k \geq 1 \), if \(N \) is finitely colored then there exists in one color infinitely many translates of a \(k \)-cube.

For every \(l > 0 \) let \(S(l) \) denote the largest number of elements of \([1, l]\) that can be chosen so that no three-term AP is formed. Our objective, then, is to show that \(\lim S(l)/l = 0 \). The function \(S \) satisfies

\[
S(l_1 + l_2) \leq S(l_1) + S(l_2)
\]

as we may split \([1, l_1 + l_2]\) into disjoint intervals of sizes \(l_1 \) and \(l_2 \). Such functions are called subadditive, and we require a general lemma on them.

Subadditivity Lemma. If \(S: N \to R^+ \) is subadditive, then \(\alpha = \lim S(n)/n \) exists and \(S(n)/n \geq \alpha \) for all \(n \in N \).

Proof. Set \(\alpha = \lim sup S(n)/n \). Let \(n \in N \). Any \(x \in N \) may be written as \(x = qn + r, 0 \leq r < n \). Then
$S(x) \leq S((q + 1)n) \leq (q + 1)S(n)$

so that

$$\frac{S(x)}{x} \leq \frac{(q + 1)S(n)}{qn}$$

Thus $\alpha \leq S(n)/n$. Since n was arbitrary, $\alpha \leq \lim \inf S(n)/n$ so that $\alpha = \lim S(n)/n$.

We prove Roth's theorem by a reductio ad absurdum. Assuming its negation, there exists $c > 0$ so that $c = \lim S(l)/l$ and $S(l) \geq cl$ for all l. Let $\varepsilon > 0$ be very small, $\varepsilon = 10^{-10}c^2$ to be specific. Let l_0 be such that

$$c \leq \frac{S(l)}{l} < c + \varepsilon \quad \text{for all } l \leq l_0.$$

Let l be sufficiently large so that all asymptotic approximations we shall make are justified and so that (looking ahead) $0.01c^2 \log \log l > l_0$. Let $A \subseteq [l]$, $|A| \geq cl$, contain no three-term AP.

Let us show the existence of a large-dimensional cube $M \subseteq A$ of small diameter not near the edges of $[l]$. On $[1, 0.49l]$ and $[0.5l, l] A$ has a total of at most $0.99l(c + \varepsilon)$ elements. Since $|A| \geq cl$ and ε is so small, A has density $> c/2$ on $(0.49l, 0.5l)$. (In fact, A has density "nearly" c on every "large" interval.) We split $(0.49l, 0.5l)$ into disjoint subintervals of size $l^{1/2} + O(1)$. On one of these, A has density $\geq c/2$. In that interval there exists a k-cube M so that

(i) $M = M(a; d_1, \ldots, d_k) \subseteq A$,

(ii) $k = \log \log l^{1/2} + O(1) = \ln \ln l + O(1)$.

(iii) $M \subset (0.49l, 0.5l)$ (a convenience),

(iv) $d_i \leq 2l^{1/2}, 1 \leq i \leq k$.

Set $M_{-1} = \{a\}$, $M_i = M(a; d_1, \ldots, d_{i-1})$ for $0 \leq i \leq k$. Set

$N_i = \{2m - x: x \in A, x < a, m \in M_i\}$.

The $y = 2m - x \in N_i$ are third terms of progressions $\{x, m, y\}$ with $x, m \in A$. Hence $A \cap N_i = \emptyset$. A has density at least $c/2$ on $[1, 0.49l]$ so that

$|N_i| \geq |N_{-1}| = |A \cap (1, a)| \geq 0.245cl$.
Since $M_{i+1} = M_i \cup (M_i + d_i)$, $N_{i+1} = N_i \cup (N_i + 2d_i)$. The N_i form an ascending sequence with $|N_k| < l$. Thus, critically, there exists i which we fix so that

$$|N_{i+1} - N_i| < \frac{l}{k}.$$

Let us call an AP with difference $2d_i$ a block. There is a bijective correspondence between maximal blocks \{x, x + 2d_i, \ldots, x + s(2d_i)\} of N_i and elements $x + (s + 1)(2d_i)$ of $N_{i+1} - N_i$. Thus N_i may be partitioned into at most l/k blocks. We split $[l]$ into the $2d_i$ residue classes modulo $2d_i$. On each class, if N_i is partitioned into t blocks then $[l] - N_i$ is partitioned into at most $l + 1$ blocks (the gaps plus the ends). In total, $[l] - N_i$ is partitioned into at most

$$\frac{l}{k} + 2d_i = \frac{l}{\log \log l} (l + o(1))$$

(recall that $d_i < 2l^{1/2}$) blocks.

Now we may begin. We call a block of $[l] - N_i$ small if it is $< 0.01 c^2 \log \log l$, and large otherwise. All of the small blocks together have at most only $0.01 c^2 l + o(l)$ elements. We have defined l so that A has density $< c + \varepsilon$ on every large block, hence on their union. Every element of A (since $A \cap N_i = \emptyset$) is in either a large block or a small block:

$$|A| = |A \cup ([l] - N_i)|$$

$$< (c + \varepsilon)(l - |N_i|) + 0.01 c^2 l + o(l)$$

$$< c l - c(0.245 cl) + \varepsilon l + 0.01 c^2 l + o(l)$$

$$< c l ,$$

contradicting our assumption. Hence Roth's theorem is proved.

Proof of Theorem 11 (Roth). Let $S(n)$ be as in the preceding proof. Set $c = \lim S(n)/n$. We may assume, as before, that this limit exists, $c > 0$, and $S(n)/n \geq c$ for all n. Let $\varepsilon = 10^{-10} c^2$, and let m be large enough so that

$$c \leq \frac{S(n)}{n} < c + \varepsilon \quad \text{for} \ 2m + 1 \leq n .$$
Let $2N$ be sufficiently large so that the asymptotic inequalities we shall write are valid. Let $A \subseteq [2N], |A| \geq c(2N)$ contain no three-term AP. It will be convenient to let u_1, \ldots, u_r denote all the elements of A, and $2v_1, \ldots, 2v_s$, the even elements of A. Then
\[
c(2N) \leq r \leq (c + \varepsilon)(2N), \quad (c - \varepsilon)N \leq s \leq (c + \varepsilon)N,
\]
the latter as (with $N \geq 2m + 1$) A can have density at most $c + \varepsilon$ on the odd or even numbers. We define two complex valued functions:
\[
f(\alpha) = \sum_{i=1}^r e(\alpha u_i), \quad e(x) = e^{2\pi \sqrt{-1} x} = \cos x + \sqrt{-1} \sin x,
\]
\[
g(\alpha) = \sum_{j=1}^s e(\alpha v_j).
\]
Let Σ^* denote throughout the sum over $\alpha = i/2N, 0 \leq i \leq 2N - 1$. (In Roth’s original paper, equivalent integrals were used.) If $u = t/2N$, where $|t| < 2N$ and t is integral, then
\[
\Sigma^* e(\alpha u) = \begin{cases} 2N & \text{if } u = 0, \\ 0 & \text{if } u \neq 0. \end{cases}
\]
We use this to sieve for progressions in A:
\[
\Sigma^* f(\alpha)g^2(-\alpha) = \sum_{i=1}^r \sum_{j=1}^s \sum_{k=1}^s \Sigma^* e(\alpha (u_i - v_j - v_k))
\]
\[
= s(2N) < 3cN^2 \quad (1)
\]
as $u_i - v_j - v_k = 0$ implies that $\{2v_j, u_i, 2v_k\}$ forms a progression in A except in the s trivial cases $2v_j = u_i = 2v_k$. The functions f, g "spike" at $\alpha = 0$ with
\[
f(0)g^2(0) = rs^2 > c^3N^3. \quad (2)
\]

Our main effort will be to bound $|f(\alpha)|$ when $\alpha \neq 0$. First, we require a general theorem on Diophantine approximation: For α arbitrary, $M > 0$ integral, there exist p, q integral with
\[
\alpha = \frac{p}{q} + \beta, \quad 1 \leq q \leq M \quad \text{and} \quad q|\beta| \leq M^{-1}. \quad (3)
\]
We outline the proof. Calculated modulo 1, two of the $M - 1$ numbers $i\alpha, 0 \leq i \leq M$, are within M^{-1}, say $i\alpha$ and $j\alpha$. Set $q = |i - j|$ so that $q\alpha$ is within M^{-1} of an integer p. Thus $|q\alpha - p| \leq M^{-1}$; now divide by q.

Second, from elementary calculus
\[
\left| \frac{1}{2} (\cos(x) + \cos(-x)) - 1 \right| = \left| \cos x - 1 \right| \leq \frac{x^2}{2},
\]
from which it readily follows that
\[
\left| \frac{1}{2m + 1} \sum_{|i| \leq m} e(iy) - 1 \right| \leq \frac{(my)^2}{2},
\]
and thus, multiplying through by $e(\alpha)$, we obtain
\[
\left| \frac{1}{2m + 1} \sum_{|i| \leq m} e(\alpha + i\gamma) - e(\alpha) \right| \leq \frac{(my)^2}{2}.
\]

Set $M = \lfloor N^{1/2} \rfloor$. (Any M in a wide range will do.) For $\alpha \neq 0$, let p, q, β satisfy (3). Then
\[
equiv
\]
so that
\[
\left| e(\alpha u) - \frac{1}{2m + 1} \sum_{|i| \leq m} e(\alpha(u + iq)) \right| \leq \frac{(m\beta q)^2}{2}
\]
\[
\leq \frac{m^2 M^{-2}}{2}.
\]

Now we may “smear” $f(\alpha)$:
\[
\left| \sum_{u \in A} e(\alpha u) - \frac{1}{2m + 1} \sum_{u \in A} \sum_{|i| \leq m} e(\alpha(u + iq)) \right| \leq \frac{|A|m^2 M^{-2}}{2}
\]
\[
\leq \frac{m^2 NM^{-2}}{2}.
\]

Let us rewrite
\[
\frac{1}{2m + 1} \sum_{u \in A} \sum_{|i| \leq m} e(\alpha(u + iq)) = \sum_{s=0}^{2N-1} e(\alpha s) \frac{|W_s \cap A|}{2m + 1},
\]
where \(W_s = \{ s + iq : |i| \leq m \} \) calculated modulo \(2N \). Our objective is to show that \(|W_s \cap A| \sim c(2m + 1)\), on the average, so that the above sum is small. Set

\[
E_s = \frac{|W_s \cap A|}{2m + 1} - c.
\]

For \(mq < s < N - mq \), \(W_s \) forms an AP of length \(2m + 1 \) in \([2N] \). Thus \(|W_s \cap A| \leq (2m + 1)(c + \varepsilon)\) so that \(E_s \leq \varepsilon \). For the \(2mq \) other values of \(s \) we have the trivial bound \(E_s \leq 1 \). We have no good lower bound on \(E_s \), as \(W_s \cap A = \emptyset \) is quite possible. Each \(a \in A \) appears in exactly \(2m + 1 \) sets \(W_s \), so, double counting,

\[
\sum_{s=0}^{2N-1} \frac{|W_s \cap A|}{2m + 1} = |A| \frac{2m + 1}{2m + 1} = |A|.
\]

Hence the average value of \(E_s \).

\[
\frac{1}{2N} \sum_{s=0}^{2N-1} E_s = \frac{|A|}{2N} - c,
\]

is nonnegative. Let \(\Sigma^+ \) denote a summation restricted to positive terms. Then

\[
\sum_{s=0}^{2N-1} E_s \leq 2 \sum_{s=0}^{2N-1} E_s \leq 2(2N\varepsilon + 2mq) = 4\varepsilon N + 4mM \leq 5\varepsilon N
\]

for \(N \) sufficiently large. For \(\alpha \neq 0 \), \(\sum_{s=0}^{2N-1} e(\alpha s) = 0 \) so that

\[
\left| \sum_{s=0}^{2N-1} e(\alpha s) \frac{|W_s \cap A|}{2m + 1} \right| = \left| \sum_{s=0}^{2N-1} e(\alpha s) E_s \right| \leq \sum_{s=0}^{2N-1} |E_s| \leq 5N\varepsilon,
\]

and

\[
|f(\alpha)| \leq \frac{m^2 M^{-2}}{2} N + 5N\varepsilon
\]

\[
\leq 6\varepsilon N
\]

(for \(N \) sufficiently large) provides the desired upper bound.
Now we complete the proof. As $g(\alpha)$ and $g(-\alpha)$ are complex conjugates, $|g^2(-\alpha)| = g(\alpha)g(-\alpha)$ so that

$$
\Sigma^* |g^2(-\alpha)| = \Sigma^* g(\alpha)g(-\alpha)
$$

$$
= \sum_{j=1}^{\delta} \sum_{k=1}^{N} \sum_{e(\alpha v_j - \alpha v_k)}^* e(\alpha v_j - \alpha v_k)
$$

$$
= 2Ns \lesssim 3cN^2
$$
as the inner summation in nonzero exactly when $v_j = v_k$. We bound

$$
\left| \sum_{\alpha \neq 0}^* f(\alpha)g^2(-\alpha) \right| \leq \left(\max_{\alpha \neq 0} |f(\alpha)| \right) \sum_{\alpha \neq 0}^* |g^2(-\alpha)|
$$

$$
\lesssim 18\varepsilon cN^3.
$$

Combining this with (1) and (2) gives

$$
c^2 N^3 \lesssim f(0)g^2(0)
$$

$$
< \left| \sum_{\alpha \neq 0}^* f(\alpha)g^2(-\alpha) \right| + \left| \sum_{\alpha \neq 0}^* f(\alpha)g^2(-\alpha) \right|
$$

$$
\lesssim 3cN^2 + 18\varepsilon cN^3,
$$

which is impossible for N sufficiently large.

In the first edition we asked if the following result holds. It is a strengthened version of a conjecture of L. Moser and would bear the same relation of the Hales–Jewett theorem that Szemerédi’s theorem bears to van der Waerden’s theorem.

Conjecture. For all $t \geq 2$ and $\varepsilon > 0$ there exists $N = N(t, \varepsilon)$ so that, if $n \geq N$ and $S \subseteq C^n$ has at least εt^n elements, then S contains a line.

This conjecture holds for $|A| = 2$, by Sperner’s lemma on maximal families of incomparable subsets of a set. it would clearly imply Szemerédi’s theorem. Very recently H. Furstenberg and G. Katzenelson have reported proving this conjecture, using powerful extensions of the methods of Section 6.1. Their proof has not yet appeared.

In connection with Szemerédi’s theorem, we remark that Erdős has conjectured the following stronger result (for proof of which he currently offers 3000 U.S. dollars).
Conjecture E. If A is a set of positive integers satisfying
\[\sum_{a \in A} \frac{1}{a} = \infty, \]
then A contains arbitrarily long APs.

An affirmative answer to Conjecture E would imply the existence of arbitrarily long APs of primes.

2.6 THE SHELAH PROOF

In 1987 the Israeli logician Saharon Shelah shocked the combinatorial world by finding a fundamentally new proof of the Hales–Jewett theorem, and hence of van der Waerden’s theorem. Shelah’s proof gives upper bounds for the associated functions $HJ(r, t)$ and $W(k, r)$ that are fundamental improvements over the previous proofs—a topic we defer to Section 2.7. Shelah’s proof, unlike that of van der Waerden, does not require a double induction. The number of colors r may be considered fixed, but arbitrary, throughout the proof. Indeed, the reader may set $r = 2$ throughout this section without any loss of the depth and ingenuity of the argument. Most surprisingly, Shelah’s proof does not require an elaborate technical apparatus but rather is totally elementary in nature.

In this section we give Shelah’s proof of the Hales–Jewett theorem. The proof will be totally self-contained.

It is convenient to make a slight change of notation from previous sections and let the underlying alphabet of t symbols be denoted $\{1, \ldots, t\}$. We define

\[C^n_t = \{(x_1, \ldots, x_n) : x_i \subseteq \{1, \ldots, t\}\} \]

Definition. $L \subseteq C^n_t$ is a *Shelah line* if there is an ordering of L by l_1, l_2, \ldots, l_i with $l_i = (x_{k_1}, \ldots, x_{k_n})$ and there exist i, j with $0 < i < j < n$ so that

\[x_{k_s} = \begin{cases} t - 1, & s \leq i, \\ k, & i < s \leq j, \\ t, & j < s. \end{cases} \]

Example. In all examples in this section we shall set $t = 26$ and associate $\{1, \ldots, 26\}$ with the English alphabet $\mathcal{A} = \{A, B, C, \ldots, X, Y, Z\}$ under the usual ordering. With $n = 9$, $i = 2$, $j = 5$ the Shelah line L has the form
Here, and throughout this section, parentheses and commas have been removed for clarity.

We call \(t - (x_1, \ldots, x_n) \in C^*_t \) a Shelah point if it belongs to some Shelah line. A Shelah point's coordinates must consist of a (possibly empty) block of \(t - 1 \) followed by a nonempty constant block followed by a (possibly empty) block of \(t \). Observe that a Shelah point is determined by \(i, j, k \) with \(0 \leq i < j \leq n \) and \(1 \leq k \leq t \) so that \(C^*_t \) contains at most \(\binom{n+1}{2} t \) Shelah points.

Now suppose \(n_1, \ldots, n_s \) are given, \(n = n_1 + \cdots + n_s \), and associate \(C^*_t \) with \(C^{n_1}_t \times C^{n_2}_t \times \cdots \times C^{n_s}_t \). For \(1 \leq j \leq s \) let \(L_j \) be a Shelah line of \(C^{n_j}_t \). Then we call \(L_1 \times \cdots \times L_s \) a Shelah s-space of \(C^*_t \).

Example. With \(n_1 = 5, n_2 = 0 \)

\[
\{ Y \quad \alpha \quad \alpha \quad Z \quad Z \quad Y \quad Y \quad \beta \quad \beta \quad \beta \quad Z \quad Z \quad Z \quad Z ; \quad \alpha, \beta \in \mathcal{A} \}
\]

forms a Shelah plane.

Let \(\varphi : L_1 \times \cdots \times L_s \to C^*_t \) denote the canonical isomorphism given by setting \(\varphi(\xi) = \alpha_1 \cdots \alpha_s \) where \(\alpha_i \) is the value of the moving coordinates in the \(j \)th block. In the example above

\[
\varphi(Y \quad \alpha \quad \alpha \quad Z \quad Z \quad Y \quad Y \quad \beta \quad \beta \quad \beta \quad Z \quad Z \quad Z \quad Z) = \alpha \beta
\]

Definition. A coloring \(\chi \) of \(C^*_t \) is called fliptop if it has the following property: Let \(P, Q \) be any two points of \(C^*_t \) that have exactly the same coordinates except in one position and suppose that in that position they have values \(t - 1 \) and \(t \). Then \(P \) and \(Q \) have the same color.

Example. With \(s = 5 \) BAZOO and BAYOO have the same color. Also ZEZAK, ZEYAK, YEZAK, and YEYAK have the same color. YYYYY, ZYYYY, ZZYZZY, ZZZZY, ZZYY have the same color. No conditions are made on the color of ERDOS, TETEL, or any word with neither Y nor Z.
Definition. Let $L_1 \times \cdots \times L_s$ be a Shelah s-space with $\varphi : L_1 \times \cdots \times L_s \to C^s_i$ the canonical isomorphism. A coloring χ of $L_1 \times \cdots \times L_s$ is called fliptop if the derived coloring χ' of C^s_i given by $\chi'(P) = \chi[\varphi^{-1}(P)]$ is fliptop.

Example. With the Shelah plane given above

\[
\begin{array}{cccccccccccc}
\end{array}
\]

will have the same color.

The condition for a Shelah line L to be fliptop under χ is particularly simple: We require only that the final and penultimate points of L have the same color.

Example. The Shelah line given above is fliptop if

\[
Y \ Y \ Y \ Y \ Y \ Z \ Z \ Z \ Z \\
\]

and

\[
Y \ Y \ Z \ Z \ Z \ Z \ Z \ Z \\
\]

have the same color.

Lemma. Assume $n \geq c$. Let C^s_i be c-colored arbitrarily. Then there exists a fliptop Shelah line.

Proof. For $0 \leq i \leq n$ define $P_i = (x_{i,1}, \ldots, x_{in})$ by

\[
x_{ij} = \begin{cases}
 t - 1, & j < i, \\
 t, & j > i.
\end{cases}
\]

As $n + 1 > c$ by the Pigeon-Hole principle some two of these points P_i, P_j have the same color. These are the last two points of the Shelah line l_1, \ldots, l_t with $l_s = (x_{k1}, \ldots, x_{kn})$ defined by

\[
x_{ks} = \begin{cases}
 t - 1, & s = i, \\
 k, & i < s \leq j, \\
 t, & j < s.
\end{cases}
\]
Example. With \(n = c = 5 \) some two of the points \(ZZZZZ, YZZZZ, YYYZZ, YYYYZ, \text{ and } YYYYY \) have the same color. If, say, \(YZZZZ \) and \(YYYZZ \) are the same color then \(L = \{ \alpha \in \mathcal{A} | \alpha \in \mathcal{A} \} \) is fliptop.

Mighty oaks form little acorns grow, though it did take \(\omega \) years and Saharon Shelah to find the right acorn!

Theorem 12. Let \(r, s, t \) be fixed positive integers. Define \(n_1, \ldots, n_s \) by
\[
\begin{align*}
 n_1 &= r^{t-1} \\
 n_s &= r^{\frac{\binom{n_s + 1}{2}}{2} + 1} \\
 \end{align*}
\]
and, in general, with \(n \) having been defined set
\[
A_i = \left[\prod_{j \leq i} \left(\frac{n_j + 1}{2} \right) \right]^{t-1}
\]

and
\[
n_{i-1} = r^{A_i}, \quad 1 \leq i < s.
\]

Set \(n = n_1 + \cdots + n_s \), let an arbitrary \(r \)-coloring \(\chi \) of \(C^n \) be given. Then there is a fliptop Shelah \(s \)-space.

Proof. We associate \(C^n \) with \(C^n_1 \times \cdots \times C^n_s \) and write a point \(y \in \mathcal{C}^n_i \) as \(y = y_1, \ldots, y_s \) where \(y_i \in C^n_i \). We define an equivalence relation \(\equiv \) on \(C^n_i \) by setting
\[
y_s \equiv y'_s \iff \chi(y_1, \ldots, y_{s-1}, y_s) = \chi(y_1, \ldots, y_{s-1}, y'_s)
\]
for all Shelah points \(y_1, \ldots, y_{s-1} \).

There are at most \(A_{s-1} \) choices for \(y_1, y_2, \ldots, y_{s-1} \) and hence at most \(n_s = r^{A_{s-1}} \) equivalence classes. The equivalence relation \(\equiv \) may be considered an \(n_s \)-coloring \(\hat{\chi} \) of \(C^n_s \). Applying the lemma there exists a Shelah line \(L_s \subseteq C^n_s \), fliptop under \(\hat{\chi} \).

Suppose, by reverse induction, \(L_s, L_{s-1}, \ldots, L_{i+1} \) have been found. We define an equivalence relation \(\equiv \) on \(C^n_i \) by setting \(y_i \equiv y'_i \) if and only if
\[
\chi(y_1, \ldots, y_{i-1}, y_i, z_{i+1}, \ldots, z_s) = \chi(y_1, \ldots, y_{i-1}, y'_i, z_{i+1}, \ldots, z_s)
\]
for all Shelah points \(y_1, \ldots, y_{i-1} \) and all choices of \(z_{i+1} \in L_{i+1}, \ldots, z_s \in L_s \). There are \(\binom{n_j + 1}{2} \) choices for each \(y_j, 1 \leq j \leq i - 1 \). There are only \(t \) choices for each \(z_j, i + 1 \leq j \leq s \) as the lines \(L_{i+1}, \ldots, L_s \) have already been determined. (This is an absolutely critical juncture in the proof as we cannot have \(n_i \) depend on the later values \(n_{i+1}, \ldots, n_s \).) Altogether there are \(A_i \) choices of \(y_1, \ldots, y_{i-1}, z_{i+1}, \ldots, z_s \). Hence there are at most \(n_i = r^{4i} \) equivalence classes so we may consider each as an \(n_i \)-coloring \(\hat{\chi} \) of \(C_{n_i}^n \). Applying the lemma there exists a Shelah line \(L_i \subset C_{n_i}^n \), flitpop under this \(\hat{\chi} \).

We claim that \(L_1 \times \cdots \times L_s \) is the desired flitpop Shelah \(s \)-space. Fix \(i, 1 \leq i \leq s \) and let \(y_i, y'_i \) be the last two points of \(L_i \). By construction \(y_i = y'_i \) and so

\[
\chi(y_1, \ldots, y_{i-1}, y_i, z_{i+1}, \ldots, z_s) = \chi(y_1, \ldots, y_{i-1}, y'_i, z_{i+1}, \ldots, z_s)
\]

for all Shelah points \(y_1, \ldots, y_{i-1} \) and all \(z_{i+1} \subset L_{i+1}, \ldots, z_s \in L_s \). But for \(1 \leq j < i \) all \(y_j \in L_j \) are surely Shelah points and so

\[
\chi(z_1, \ldots, z_{i-1}, y_i, z_{i+1}, \ldots, z_s) = \chi(y_1, \ldots, z_{i-1}, y'_i, z_{i+1}, \ldots, z_s)
\]

for all \(z_j \in L_j, 1 \leq j \leq s, j \neq i \), completing the proof.

Example. \(r = 2, s = 2, \ t = 26 \). Set \(n_1 = 2^{26}, A_1 = \binom{2^{26} + 1}{2} 2^{26}, n_2 = 2^{A_1} \), \(n = n_1 + n_2 \). Each point of \(C_{26}^n \) may be uniquely written in the form \(xy \) with \(x \in C_{26}^{n_1}, y \in C_{26}^{n_2} \).

We first find \(y', y'' \in C_{26}^{n_2} \), each of the form \(Y, \ldots, Y, Z, \ldots, Z \) so that \(xy' \) and \(xy'' \) have the same color for all Shelah points \(x \subset C_{26}^{n_1} \). These points \(y', y'' \) lie on a Shelah line \(L_2 \)

\[
\begin{align*}
Y & --- Y & Z & --- & Z & Z & --- & Z = y'' \\
Y & --- Y & Y & --- & Y & Z & --- & Z = y' \\
Y & --- Y & X & --- & X & Z & --- & Z
\end{align*}
\]

\[
\begin{align*}
\vdots
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
Y \\
Y \ \ \ \ \ A \ \ \ \ \ A \ \ \ \ \ Z \ \ --- \ \ \ Z
\end{array}
\end{align*}
\]

\(L_2 \)
Now we find \(x', x'' \in C_{26}^n \), each of the form \(Y, \ldots, YZ, \ldots, Z \), so that \(x'y' \) and \(x''y' \) have the same color for all \(y \in L_2 \). These points \(x, x' \) lie on a Shelah line \(L_1 \).

\[
\begin{array}{ccc}
Y & Y & Z \quad Z \quad Z \quad Z \quad Z = y'
\end{array}
\]
\[
Y \quad Y \quad Y \quad Y \quad Y \quad Z \quad Z = y'
\]
\[
Y \quad Y \quad X \quad X \quad Z \quad Z
\]
\[
Y \quad Y \quad A \quad A \quad Z \quad Z \quad Z
\]
\[
L_1
\]
\[
L_2
\]

For any \(y \in L_2 \), \(x'y' \) and \(x''y' \) have the same color. For any \(x \in L_1 \) (indeed, for any Shelah point \(x \in C_{26}^n \)) \(xy' \) and \(xy'' \) have the same color. Hence \(L_1 \times L_2 \) is a Shelah plane.

Lemma. Let \(s = HJ(r, t - 1) \) be such that given any \(r \)-coloring of \(C_r^t \), there exists a monochromatic line. Then under any flip-top \(r \)-coloring of \(C_r^t \) there exists a monochromatic line.

Proof. Restricting the domain to \(C_{r-1}^t \subset C_r^t \) there is a monochromatic line \(l_1, \ldots, l_{r-1} \). Let \(l_t \) be the point of \(C_r^s \) given by setting all the moving coordinates of the line equal to \(t \). Then \(l_1, \ldots, l_{t-1}, l_t \) is a line in \(C_r^t \). The point \(l_t \) may be derived from \(l_{t-1} \) by changing a subset of the coordinate values (namely, on the moving coordinates) from \(t - 1 \) to \(t \). As the coloring is flip-top each such change on a single coordinate preserves the color and hence any sequence of such changes preserves the color so that \(l_{t-1} \) and \(l_t \) have the same color. As \(l_1, \ldots, l_{t-1} \) already have the same color the set \(l_1, \ldots, l_{t-1}, l_t \) forms a monochromatic line in \(C_r^t \).

Example. Suppose that with \(t = 26, s = 3 \) under a flip-top coloring \(ABA, BBB, CBC, \ldots, XBX, YBY \) had the same color. The \(YBY, ZBY, ZBZ \) would have the same color so \(\{ \alpha B \alpha : \alpha \in \mathcal{A} \} \) would form a monochromatic line.

Theorem 13 (The Hales–Jewett Theorem). For all \(r, t \) there exists \(n = HJ(r, t) \) so that if \(C_r^t \) is \(r \)-colored there exists a monochromatic line.

Proof (Shelah). We fix \(r \) and use induction on \(t \). Trivially we may take \(HJ(r, 1) = 1 \). Suppose, by induction, \(s = HJ(r, t - 1) \) exists. Let \(n \) be given by Theorem 12. Given an \(r \)-coloring \(\chi \) of \(C_r^t \) there is a flip-top Shelah \(s \)-space \(L_1 \times \cdots \times L_s \). Define the derived coloring \(\chi' \) of \(C_r^t \) by \(\chi'(y) = \chi(\phi^{-1}(y)) \) where \(\phi : L_1 \times \cdots \times L_s \to C_r^t \) is the canonical iso-
morphism. Then χ' is fliptop so by the lemma above there is a monochromatic line $L \subseteq C_i\setminus\chi'$. Then $\varphi^{-1}(L) \subseteq L_1 \times \cdots \times L_s$ is the derived monochromatic line in $C_i\setminus\chi'$.

2.7 EEEEEENOMOROUS UPPER BOUNDS

Why is Shelah's proof of the Hales–Jewett theorem considered an improvement of fundamental importance. The answer comes from examining the growth rates of the functions $HJ(r, t)$ given by the proofs of van der Waerden and Shelah. For convenience we shall look particularly at the case $r = 2$. The functions involved grow so rapidly that we must first discuss a special language—called the Ackermann hierarchy—devised by logicians to deal with rapidly growing functions.

The Ackermann hierarchy is a sequence of functions f_1, f_2, \ldots with domain and range the positive integers. (There are several equivalent formulations in the literature; we have chosen a formulation hopefully more readily comprehensible to mathematicians.) The first function, f_1, we call DOUBLE and is defined simply by

$$f_1(x) = \text{DOUBLE}(x) = 2x.$$

The second function, f_2, we call EXPONENT and may be defined by

$$f_2(x) = \text{EXPONENT}(x) - 2^x.$$

More critical, however, is that we may derive EXPONENT from DOUBLE as follows: To find EXPONENT (x) start at 1 and apply DOUBLE x times. It is this notion of iteration that allows us to describe very rapidly growing functions. The third function, f_3, we call TOWER and is derived from EXPONENT in the same way: To find TOWER(x) start at 1 and apply EXPONENT x times. TOWER(x) may be written $2^{2^{\cdots 2}}$ with x twos in the "tower," hence the name. More generally, and formally, we define f_{i+1} by

$$f_{i+1}(x) = f_i^{(x)}(1)$$

where $f^{(x)}$ denotes the xth iterate of f. Alternatively, we define f_{i+1} inductively by

$$f_{i+1}(1) = 2,$$

$$f_{i+1}(x + 1) = f_i[f_{i+1}(x)].$$
Note that this is really a double induction. By induction on i, we define
the function f_i. With the function f_i already defined we then define $f_{i-1}(x)$
by induction on x.

The first few values of $f_i(x)$ are given in Table 2.1. Notice that
$f_3(5) = 2^{65536}$ is already a number with nearly 20,000 decimal digits. In
comparison, a googol has only 100 digits. The number $f_4(6)$ then has
$(\log_{10}2)f_3(5)$ decimal digits, far larger than a googolplex, well beyond any
conceivable physical interpretation. We call f_4 the WOW function. This
fanciful description comes from trying to grasp the magnitude of $f_4(4)$—a
tower of twos of size 65,536—what can we say but "oh wow!"

Diagonalization allows an even faster growing function. The Ackermann function, denoted by $f_ω$ or ACKERMANN, is defined by

$$f_ω(x) = \text{ACKERMANN}(x) = f_x(x).$$

A simple induction shows that $f_i(x)$ is monotone in both x and i. For any
n if $x \geq n$ then $\text{ACKERMANN}(x) = f_n(x) \geq f_n(x)$. That is, ACKERMANN grows more rapidly than any of the f_n. Logicians can prove that
ACKERMANN grows more rapidly than any primitively recursive function—which means, roughly, that a double induction is essential for its
definition. (To go beyond ACKERMANN, see Section 6.3.)

We say that a function $g(x)$ is a level i function (including $i = ω$) if
there are $c', c'' > 0$ so that for x sufficiently large

$$f_i(c'x) < g(x) < f_i(c''x).$$

For $i = 1, 2, 3, 4, ω$ we use the words linear, exponential, towerian, wowzer, and ackermanic (the last coined by John Conway) to describe $g(x)$.

<table>
<thead>
<tr>
<th>Table 2.1</th>
<th>Beginnings of the Ackermann Hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DOUBLE</td>
<td></td>
</tr>
<tr>
<td>f_1</td>
<td>2</td>
</tr>
<tr>
<td>EXPONENT</td>
<td></td>
</tr>
<tr>
<td>f_2</td>
<td>2</td>
</tr>
<tr>
<td>TOWER</td>
<td></td>
</tr>
<tr>
<td>f_3</td>
<td>2</td>
</tr>
<tr>
<td>WOW</td>
<td></td>
</tr>
<tr>
<td>f_4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ACKERMANN</td>
<td>$f_ω$</td>
</tr>
</tbody>
</table>
We may now describe succinctly the breakthrough given by the Shelah proof. *All previous proofs to the van der Waerden or Hales–Jewett theorems gave as an upper bound (with \(r = 2 \) colors), an ackermanic function; Shelah’s proof gives a wowzer function.*

Let examine the arguments of Sections 2.1 and 2.6 in some detail. Let \(W_k(r) \) be the value \(n \) given by the proof of Section 2.1 so that if \(\{1, \ldots , n\} \) is \(r \)-colored there exists a monochromatic \(k \)-term AP. We took \(W_k(r) - r + 1 \). To find \(W_k(r+1) \) we first set

\[
c_1 = 2W_k(r) - 1
\]

so that any block of length \(c_1 \) contains a monochromatic \(k \)-term progression plus a \((k+1)\)-st term. There are \(r^{c_1} \) ways to color such a block. We set

\[
c_2 = 2W_k(r^{c_1}) - 1
\]

so that with \(c_2 \) such blocks there would be a \(k \)-term progression of identically colored blocks plus a \((k+1)\)-st block. That is, we have a level 2 block consisting of \(c_2 \) level 1 blocks. More generally, we set

\[
c_{i+1} = 2W_k(r^{c_i}) - 1, \quad 1 \leq i < r
\]

so that an \((i+1)\)-level block consists of \(c_{i+1} \) \(i \)-level blocks. We stopped with a level \(r \) block and set

\[
W_{k-1}(r) = c_1c_2\ldots c_r
\]

the number of elements in such a block. (For example, one may check that \(W_3(2) = 5 \times 65 = 325 \).)

We shall use some rather crude estimates to bound \(W_k(2) \). First note that \(f_k(1) = 2, f_k(2) = 4 \) for all \(k \); \(f_k(r) \) is monotone in both \(k \) and \(r \); and for \(x \geq 4, k \geq 3 \), \(f_k(x) \geq f_3(x) \geq 5x^3 \) with “room to spare,” a euphemism for “left to the reader.”

Lemma. For \(r \geq 2 \)

\[
f_3(r + 1) \geq W_3(r) \leq f_3(3r - 1).
\]

Proof. As \(W_2(r) = r + 1 \) we set

\[
c_1 = 2r + 1
\]

\[
c_{i+1} = g(c_i) \quad \text{with} \quad g(x) = 2r^x + 1,
\]
and \(W_3(r) = c_1 \cdots c_r \). \(c_1 \geq 4 = f_3(2) \). As \(g(x) \geq x^r \) by induction on \(r \), \(c_i \geq f_3(i + 1) \) so that \(W_3(r) \geq c_r \geq f_3(r + 1) \).

The upper bound holds for \(r = 2 \) by inspection. For \(r \geq 3 \), \(c_r \leq 2^r = f_3(r) \leq f_3(r) \). As all \(c_i \geq r \) when \(x = c_i \)

\[
g(x) \leq 2x^r + 1 \leq 2^r
\]

with "room to spare." Thus \(c_i \leq f_3(a) \) implies \(c_{i+1} \leq f_3(a + 2) \). By induction \(c_r \leq f_3(3r - 2) \). Then

\[
W_3(r) \leq c_r \leq 2^r \text{ (with room to spare)} \\
\leq f_3(3r - 2).
\]

Lemma. For \(k \geq 3 \), \(r \geq 2 \)

\[
f_k(r + 1) \leq W_k(r) \leq f_k(5r).\]

Proof. We have shown this for \(k = 3 \). Now assume, by induction, that the result holds for \(k \). Then

\[
c_i \geq W_k(r) \geq f_k(r + 1)
\]

by induction. For each \(i \)

\[
c_{i+1} \geq W_k(r^i) \geq W_k(c_i) \geq f_k(c_i)
\]

so by induction on \(i \)

\[
c_i \geq f_k^{(i)}(r + 1).
\]

Thus

\[
W_k(r) \geq c_r \geq f_k^{(i)}(r + 1) \geq f_k^{(i)}(2) = f_k^{(r+1)}(1) = f_k(r + 1).
\]

For the upper bound

\[
c_1 < 2W_k(r) < f_k[f_k(5r)]
\]

as \(f_k(x) > 2x \). As \(c_i > r \).
\[c_{r', 1} \leq 2W_k(r'^r) \leq 2W_k(c_r^r) \leq 2f_k(5c_r^r) \quad \text{(induction on } k) \leq f_k \{ f_k[f_k(c_r)] \} \]
as \(f_k(x) \geq 2x, 5x^r \). Thus \(c_r \leq f_k^{(3r-1)}(5r) \) and

\[W_k(r) \leq c_r^r \leq f_k(c_r) \quad \text{(with room to spare)} \leq f_k^{(3r)}(5r) . \]

For all \(r \geq 2, f_k(r + 1) \geq 4r \) with room to spare so that

\[W_k(r) \leq f_k^{(3r)}(f_k(r + 1)) = f_k(r + 1)(4r + 1) < f_k(5r) . \]

Claim. For \(k \geq 10 \)

\[\text{ACKERMANN}(k - 2) \leq W_k(2) \leq \text{ACKERMANN}(k) . \]

Proof

\[W_k(2) \leq f_k(10) \leq f_k(k) = \text{ACKERMANN}(k) \]

\[W_k(2) \geq f_k(3) = f_{k-1}\{f_{k-1}(f_{k-1}(1))\} = f_{k-1}(4) = f_{k-2}(f_{k-2}(1)) = f_{k-2}(4) \]

But \(f_i(4) \geq i \) with room to spare so

\[W_k(2) \geq f_{k-2}(k - 2) = \text{ACKERMANN}(k - 2) \]

Note that the robustness of \(\text{ACKERMANN} \) is such that even with these extremely rough bounds the value of \(W_k(2) \) is found "within 2." The appearance of precision is deceptive because of the growth rate of \(\text{ACKERMANN} \)—in another sense the bounds on \(W_k(2) \) are two full levels apart.

Now we turn to Section 2.6 and let \(S(t) \) be that number \(n \) given by Shelah’s proof so that if \(C_n \) is 2-colored then there exists a monochromatic line. The recursion is as follows. Set \(S(1) = 1 \). Suppose \(S(t - 1) - s \) has been defined. Set
\[n_1 = 2^{t-1} \]

and for \(1 \leq i < s \) set
\[n_{i+1} = 2^{A_i} \]

where
\[A_i = \left[\prod_{j \leq i} \left(\frac{n_j + 1}{2} \right) \right] t^{s-1}. \]

Finally, set
\[S(t) = n = n_1 + \cdots + n_s. \]

Roughly, \(n_i \) will be a tower of size \(i \) so that \(S(t) \) will be a tower of size \(s = S(t-1) \), hence \(S \) will be a wowzer function. When \(t = 2, s = S(1) = 1 \),
\[n_1 = 2^{t-1} = 2. \] (Some two of the points 11, 12, 22 are the same color giving the monochromatic line.) When \(t = 3, s = S(2) = 2, n_1 = 2^{t-1} = 8 \),
\[A_1 = \left(\frac{8 + 1}{2} \right)^3 = 288, n_2 = 2^{288}, S(3) = 8 + 2^{288}. \]

Claim. For \(t \geq 3 \)
\[\text{WOW}(t) \leq S(t) \leq \text{WOW}(t+1). \]

We first show the lower bound by induction. For \(t = 3 \) it holds by inspection. Assume it true for \(t - 1 \) and let \(n_1, \ldots, n_s \) be as defined. \(n_1 \geq 2 = \text{TOWER}(1) \). As \(A_i \geq n_i, n_{i+1} \geq 2^{n_i} \) so by induction on \(i, n_i \geq \text{TOWER}(i) \). Thus
\[S(t) \geq n_s \geq \text{TOWER}(s) \geq \text{TOWER}[\text{WOW}(t-1)] = \text{WOW}(t). \]

For the upper bound we prove the stronger hypothesis \(S(t) \leq \text{WOW}(t+1)/6 \) by induction on \(t \). For \(t = 3 \) it holds by inspection—indeed \(\text{WOW}(4) \) was our “wow!” number. Assume the hypothesis for \(t - 1 \).
\[n_1 = 2^{t-1} < s^s \leq \text{TOWER}(s) \]

with room to spare. For any \(i, \) bounding \(t \) and all \(n_j \) by \(n_i \),
\[A_i \leq n_i^t n_i^{2^t} \leq n_i^{3n_i} < 2^{2n_i} \]
with room to sparc. If \(n_i \leq \text{TOWER}(a) \) then \(n_{i+1} \leq \text{TOWER}(a+3) \), hence \(n_s \leq \text{TOWER}(s+3(s-1)) = \text{TOWER}(4s-2) \) and

\[
S(t) = n_1 + \cdots + n_s < sn_s < 2^{n_s} \leq \text{TOWER}(4s-1)
\]

[This may be tightened to \(S(t) < \text{TOWER}(s(1+o(1))) \), but such differences at the TOWER level evaporate at the WOW level.] By induction \(s \leq \text{WOW}(t+1)/6 \) so \(4s-2 < \text{WOW}(t+1)-1 \) and

\[
S(t) \leq \text{TOWER}(\text{WOW}(t+1)-1) = \log_2(\text{WOW}(t+2)) < \text{WOW}(t+2)/6
\]

completing the argument.

Striking in these detailed arguments is the robustness of a wowzer or ackermanic function. One can do "just about anything" to such a function and it retains its level. Dealing with bounds on combinatorial functions at this level requires a particular feeling for these functions—often seemingly gross improvements give no change in the function level. This robustness had led many mathematicians to speculate that the Hales–Jewett function was intrinsically ackermanic. In the first edition of this work we wrote: "Perhaps van der Waerden’s function or, more naturally, the Hales–Jewett function \(HJ(r, t) \) can be proven to grow very quickly. Such a proof may come from mathematical logicians; indeed, several logicians believe that a model-theoretic argument is possible. Perhaps, in some precise way, the Hales–Jewett theorem for \(r = 2 \) colors cannot be proved without a proof for all \(r. \)" As the time we hardly imagined that a proof would come from a logician—but a proof that the Hales–Jewett function was \emph{not} ackermanic using totally combinatorial methods!

Let \(W(k) \) denote the true value of van der Waerden’s function for two colors—the least \(n \) so that if \(\{1, \ldots, n\} \) is 2-colored then there exists a monochromatic arithmetic progression with \(k \)-terms. The lower bounds on \(W(k) \) (see Section 4.3) are exponential. Shelah’s upper bound (using the translation from the Hales–Jewett theorem to van der Waerden’s theorem given in Section 2.2) is wowzer. A large gap still remains. For a number of years the senior author has had a standing offer of $1000 for a proof (or disproof) of the following.

\textbf{Conjecture.} \(W(k) \leq \text{TOWER}(k) \) for all \(k. \)

It was felt that Shelah’s bound was such an improvement over what was previously available that he was awarded half of the offered prize. The conjecture is still open, however, and the original prize offer still stands to anyone (including Shelah) who settles it.
Further Improvement? Can Shelah’s proof be “tightened” to give, say a
towerian upper bound to \(HJ(2, t) \). If we knew for sure we would rush to
publication ourselves. Still—let’s speculate!

Let \(F(d, r) \) be the least \(n \) with the following property. Let \(x \) be an
arbitrary \(r \)-coloring of all \(d \)-tuples:

\[
\{(x_1, y_1), \ldots, (x_{i-1}, y_{i-1}), z_i, (x_{i+1}, y_{i+1}), \ldots, (x_d, y_d)\}. \tag{\star}
\]

Here all values lie in \(\{1, \ldots, n\} \), \(1 \leq i \leq d \), and \(x_j \neq y_j \) for all \(j \neq i \). Then
there exist \(\{x_j, y_j\}, 1 \leq j \leq d \), with \(x_j \neq y_j \), all \(j \), so that for each \(i \)

\[
\{(x_1, y_1), \ldots, (x_{i-1}, y_{i-1}), x_i, (x_{i+1}, y_{i+1}), \ldots, (x_d, y_d)\}
\]

and

\[
\{(x_1, y_1), \ldots, (x_{i-1}, y_{i-1}), y_i, (x_{i+1}, y_{i+1}), \ldots, (x_d, y_d)\}
\]

and the same color.

Claim. Let \(s = HJ(2, t - 1) \). Then \(HJ(2, t) \leq sF(s, 2^{r-1}) \).

Proof. Set \(n_1 = \cdots = n_s = F(s, 2^{r-1}), n = n_1 + \cdots + n_s \) and fix a \(2 \)-coloring
of \(C^n = C^n_r \times \cdots \times C^n_r \). To the \(d \)-tuple \((\star) \) we associate a Shelah
\((s - 1)\)-space \(L_1 \times \cdots \times L_{i-1} \times w \times L_{i+1} \times \cdots \times L_s \) as follows. Let \(w \) be
the string consisting of \(z_i (t - 1)'s \) followed by \((n_i - z_i) t \)'s. For \(j \neq i \) let \(L_j \)
be the Shelah line consisting of all strings with \((\text{letting } x_j < y_j) x_j (t - 1)'s \follo
by \(y_i - x_i \) \(k \)'s and then \(n_i - y_i \), \(t \)'s, where \(k \) runs from 1 to \(n \).
Induce a coloring of the \(d \)-tuples by the way the associated Shelah space
is colored. Since the Shelah space has \(t^{r-1} \) points there are at most \(2^{t^{r-1}} \)
induced “colors.” A family \(\{x_j, y_j\}, 1 \leq j \leq d \) with the given property
then corresponds to a flippable Shelah \(s \)-space \(L_1 \times \cdots \times L_s \).

Any roughly exponential bound on \(F \), for example, \(F(d, r) < 2^{\text{max}[d, r]} \),
would translate into a towerian bound on \(HJ(2, t) \). The known upper
bounds on \(F(d, 2) \) (following the proof of Theorem 12—indeed, this was
the original argument of Shelah) are towerian in \(d \).

The function \(F(2, r) \) has an interesting interpretation. Let \(S_n \) be the set
of lattice points \((i, j)\) in \(t^d \) plane with \(1 \leq i, j \leq n \). Define the mesh
clique graph \(G_n \) on \(S_n \) by letting two points be adjacent if they have either
the same first or the same second coordinate. \(F(2, r) \) is then the least \(n \) so
that given any \(r \)-coloring of \(G_n \) there is a “rectangle” \((i, j), (i, j'), (i', j),
(i', j') \) so that the vertical edges [from \((i, j)\) to \((i, j')\) and from \((i', j)\) to
\((i', j')\)] are the same color and the horizontal edges [from \((i, j)\) to \((i', j)\)]
and from \((i, j')\) to \((i', j')\) are the same color. [The connection is given by associating \(\{(i, i'), j\}\) with \(\{(i, j), (i', j)\}\) and \((i, \{j, j'\})\) with \(\{(i, j), (i, j')\}\).] A polynomial upper bound to \(F(2, r)\) might well lead to a towerian upper bound to \(HJ(2, t)\). Even if not, it is certainly an interesting problem for its own sake.

REMARKS AND REFERENCES

§1. Proofs of van der Waerden's theorem are found in van der Waerden [1927] (the original paper), van der Waerden [1971] (the expository account), and Graham and Rothschild [1974] (the short proof).

§2. Hales and Jewett [1963] provide the basic reference.

§3. Gallai's theorem is found in Rado [1933a].

§4. Graham, Leeb, and Rothschild [1972] and Spencer [1979] provide the original and simplified proofs of the Affine and Vector Space Ramsey theorems. Cates and Hindman [1975] show that extension of the vector Space Ramsey theorem to the "infinite case" is usually false. In particular, they show that it is possible to finitely color the \(t\)-spaces of an infinite-dimensional space so that there is no infinite-dimensional monochromatic subspace.

§5. Roth's proof appears in Roth [1952] and Roth [1953]. The full proof of Szemerédi's theorem is given in Szemerédi [1975]. Moser's conjecture appears in Moser [1970].

3

Equations

3.1 Schur's Theorem

In this chapter we prove theorems of the following form: Given any finite coloring of \(N \), there exist \(x_1, \ldots, x_n \in N \) having the same color that satisfy some prescribed condition. Our prototype result was proved by I. Schur in 1916. It may perhaps be considered the earliest result in Ramsey theory.

Theorem 1 (Schur's Theorem). If \(N \) finitely colored there exist \(x, y, z \) having the same color such that

\[
x + y = z.
\]

(Proof. Assume that \(r \) colors are used. Let \(n \) be such that

\[
n + 1 \rightarrow (3)_r.
\]

An \(r \)-coloring \(\chi \) of \([n]\) induces an \(r \)-coloring \(\chi^* \) of \(K_{n+1} \) on vertex set \(\{0, 1, \ldots, n\} \) by \(\chi^*(i, j) = \chi(|i - j|) \). There must exist a monochromatic triangle in \(K_n \); that is, \(i > j > k \) such that \(\chi^*(i, j) = \chi^*(i, k) \). Setting \(x = i - j, y = j - k, z = i - k \) gives \(\chi(x) = \chi(y) = \chi(z) \) and \(x + y = z \).

Historical Note: Schur's Paper. Schur's original paper was motivated by Fermat's Last Theorem. He actually proved the following result.

Theorem. For all \(m \), if \(p \) is prime and sufficiently large the equation

\[
x^m + y^m = z^m
\]

has a nonzero solution in the integers modulo \(p \).

(Proof. Let \(p \) be prime and sufficiently large (using the finite form of Schur's theorem) so that if \((1, \ldots, p - 1) \) is \(m \)-colored there exist \(a, b, c \)
colored identically with \(a - b = c\). Let \(H = \{x^m : x \in \mathbb{Z}_p^*\}\); \(H\) is a subgroup of \(\mathbb{Z}_p^*\) of index \(n = \gcd(m, p - 1) \leq m\). The cosets of \(\mathbb{Z}_p^*\) define an \(n\)-coloring \(\chi\) of \(\mathbb{Z}_p^*\) with the property that \(\chi(a) = \chi(b)\) iff \(ab^{-1} \in H\). There exist \(a, b, c \in \{1, \ldots, p - 1\}\) with \(\chi(a) = \chi(b) = \chi(c)\) and \(a + b = c\). In \(\mathbb{Z}_p\),

\[1 - a^{-1}b = a^{-1}c,\]

and 1, \(a^{-1}b\), and \(a^{-1}c\) are all nonzero \(m\)th powers in \(\mathbb{Z}_p\).

Schur never again touched on this problem.

Although the proof of Schur's theorem is appealing in its simplicity, it will not serve for the extensions of the result. For this we need a result that strengthens both Schur's theorem and van der Waerden's theorem.

Theorem 2. For all \(k, r, s \geq 1\) there exists \(n = n(k, r, s)\) so that, if \([n]\) is \(r\)-colored, there exist \(a, d > 0\) so that

\[\{a, a + d, a + 2d, \ldots, a + kd\} \cup \{sd\}\]

is monochromatic.

Proof. We use induction on \(r\). We may clearly take \(n(k, 1, s) = \max[k + 1, s]\). Let \(W(t, r)\) be the minimal \(W\) such that if \([W]\) is \(r\)-colored there exists a monochromatic arithmetic progression of length \(t\). (IIcrc, of course, we are using van der Waerden's theorem.)

For given \(k, r, s\) we claim that we may take \(n = sW(kn(k, r - 1, s), r)\).

We fix an \(r\)-coloring of \([n]\). Among the first \(W(kn(k, r - 1, s), r)\) integers we find a monochromatic, say red, set

\[\{a + jd' : 0 \leq i \leq kn(k, r - 1, s)\}.\]

If, for some \(j, 1 \leq j \leq n(k, r - 1, s),\) \(sd'j\) is red then (2) is red with \(d = jd'\). Otherwise \(\{sd'j : 1 \leq j \leq n(k, r - 1, s)\}\) is \((r - 1)\)-colored. Using the equivalence between colorings of \([n]\) and \(sd'[n]\), we find that a monochromatic set of type (2) exists.

Corollary 3. For all \(k, r, s \geq 1\) there exists \(n = n(k, r, s)\) so that, if \([n]\) is \(r\)-colored, there exist \(a, d > 0\) so that

\[\{a + \lambda d : |\lambda| \leq k\} \cup \{sd\}\]

is monochromatic.

Proof. Apply Theorem 2 with \(k' = 2k\), finding \(a', d'\) so that \(a' + \lambda d', 0 \leq \lambda \leq 2k\), and \(sd'\) are the same color. Set \(d = d'\) and \(a = a' + kd'\).
3.2 REGULAR HOMOGENEOUS EQUATIONS
(RADO'S THEOREM—ABRIDGED)

Let \(S = S(x_1, \ldots, x_n) \) denote a system of equations in the variables \(x_1, \ldots, x_n \). Let \(A \) be a set on which \(S \) is defined. We say that \(S \) is \(r \)-regular on \(A \) if, given any \(r \)-coloring of \(A \), there exist \(x_1, \ldots, x_n \in A \) (not necessarily distinct) so that \(S(x_1, \ldots, x_n) \) holds and \(x_1, \ldots, x_n \) are the same color. We say that \(S \) is regular on \(A \) if it is \(r \)-regular for all positive integers \(r \). Schur's theorem states that the condition

\[
 x_1 + x_2 - x_3 = 0
\]

is regular on \(N \). Theorem 2 states that, for all \(k \), the condition

\[
 x_1 - x_0 + d \\
 x_2 - x_1 + d \\
 \vdots \\
 x_k = x_{k-1} + d
\]

on the variables \(\{x_0, \ldots, x_k, d\} \) is regular on \(N \).

A comprehensive study of regular systems on \(N \) was the dissertation topic of one of Schur's most illustrious students—Richard Rado.

Theorem 4 (Rado's Theorem—Abridged). Let \(S(x_1, \ldots, x_n) \) be given by a single linear homogeneous constraint:

\[
 c_1 x_1 + \cdots + c_n x_n = 0, \quad c_i \in \mathbb{Z}. \tag{4}
\]

Then \(S \) is regular on \(N \) iff some nonempty subset of the \(c_i \) sums to zero.

Proof. We first assume, reordering for convenience, that

\[
 c_1 + \cdots + c_k = 0,
\]

and fix a finite coloring of \(N \). We need to find a monochromatic solution to (4). If \(k = n \) we may take \(x_1 - \cdots - x_n = 1 \). We assume that \(k < n \) and set

\[
 A = \gcd(c_1, \ldots, c_k),
\]

\[
 B = c_{k+1} + \cdots + c_n,
\]

\[
 s = \frac{A}{\gcd(A, B)}.
\]
(If $B = 0$, $c_1 + \cdots + c_n = 0$ so that $x_1 = \cdots = x_n = 1$ gives a monochromatic solution.) By elementary number theory we find $t \in \mathbb{Z}$ so that

$$At + Bs = 0$$

and $\lambda_1, \ldots, \lambda_k \in \mathbb{Z}$ so that

$$c_1\lambda_1 + \cdots + c_k\lambda_k = At.$$

Now (4) has a parametric solution:

$$x_i = \begin{cases} a + \lambda_i d, & 1 \leq i \leq k, \\ sd, & k < i. \end{cases} \quad (5)$$

By Corollary 3 we can find a, d so that $\{x_i: 1 \leq i \leq n\}$ is monochromatic, completing the "if" section of Theorem 4.

We illustrate this method with the equation

$$x_1 + 3x_2 - 4x_3 + x_4 + x_5 = 0.$$

Here $k = 3$, $A = 1$, $B = 2$ so $s = 1$, $t = -2$, and we can take $\lambda_1 = 2$, $\lambda_2 = 0$, $\lambda_3 = 1$ to satisfy $c_1\lambda_1 + \cdots + c_k\lambda_k = At$. The parameteric solution is then

$$x_1 = a + 2d,$$

$$x_2 = a,$$

$$x_3 = a + d,$$

$$x_4 = d,$$

$$x_5 = d.$$

We now show the "only if" part of Theorem 4. Let c_1, \ldots, c_n be fixed with no subset summing to zero. We shall give a coloring of $\mathbb{Q} - \{0\}$ so that (4) has no monochromatic solution.

We introduced a special coloring of $\mathbb{Q} - \{0\}$. Let $p > 0$ be prime. Any $q \in \mathbb{Q} - \{0\}$ may be uniquely expressed as

$$q = \frac{p^j a}{b}, \quad j \in \mathbb{Z}, a \in \mathbb{Z}, b \in \mathbb{N}, \gcd(a, b) = 1,$$

$$p \nmid a, \ p \nmid b.$$

We define $\text{rank}(q)$ to be the above-determined j, and we define the
Regular Homogeneous Systems (Rado's Theorem Complete)

\[\text{smod } p \text{ (smod = super modulo) coloring } F_p \text{ by} \]
\[F_p(q) = \frac{a}{b} \pmod{p}. \] \(6\)

[For example, \(F_p(\frac{15}{4}) = \frac{3}{4} = 2 \).] \(F_p \) is a \((p-1)\)-coloring of \(Q - \{0\} \). Note that \(F_p(x) = F_p(y) \) implies that \(F_p(\alpha x) = F_p(\alpha y) \) for all \(\alpha \in Q - \{0\} \).

\textbf{Claim.} Assume that \(p \), a prime, does not divide the sum of any nonempty subset of \(\{c_i; 1 \leq i \leq n\} \). Then (4) has no monochromatic solutions with the smod \(p \) coloring.

The claim clearly implies Theorem 4 since some prime \(p \) will not divide any of the (finite number of) nonzero sums of \(\{c_i\} \).

We assume to the contrary that \(x_1, \ldots, x_n \) forms a monochromatic solution to (4). For all \(\mu \in Q - \{0\}, \mu x_1, \ldots, \mu x_n \) also forms a monochromatic solution. We may thus assume that all \(x_i \in \mathbb{Z}, \gcd(x_1, \ldots, x_n) = 1 \). We reorder so that \(p \nmid x_i, 1 \leq i \leq k; p | x_i, k < i \leq n \). Here \(k \geq 1 \) by the relative primality \((k = n \) is possible). We reduce (4) modulo \(p \):

\[\sum_{i=1}^{n} \tilde{c}_i \tilde{x}_i = \tilde{0} \pmod{\tilde{Z}_p}, \]

where \(\tilde{a} \) represents the residue class of \(a \) modulo \(p \). Now \(\tilde{x}_i = \tilde{0} \) for \(k < i \leq n \) by assumption. Since the \(x_i \) are the same color the \(\tilde{x}_i, 1 \leq i \leq k \), are equal. Thus

\[\tilde{0} = \sum_{i=1}^{n} \tilde{c}_i \tilde{x}_i = \sum_{i=1}^{k} \tilde{c}_i \tilde{x}_i = \left(\sum_{i=1}^{k} \tilde{c}_i \right) \tilde{x}_i. \]

Since \(\tilde{x}_i \neq \tilde{0} \), and \(p \) is prime, \(\sum_{i=1}^{k} \tilde{c}_i = \tilde{0} \), contrary to assumptions.

This completes the claim, and therefore Theorem 4 is proved.

3.3 \textbf{REGULAR HOMOGENEOUS SYSTEMS (RADO'S THEOREM COMPLETE)}

We now consider the regularity of systems of linear homogeneous equations. The results are equally complete.

\textbf{Definition.} A matrix \(C = (c_{ij}) \) is said to satisfy the \textit{Columns condition} if one can order the column vectors \(e_1, \ldots, e_n \) and find \(1 \leq k_1 < k_2 < \cdots <
\(k_i = n \) such that, setting

\[
A_i = \sum_{j=k_{i-1}+1}^{k_i} c_j,
\]

we have

(i) \(A_1 = 0 \),

and

(ii) for \(1 < i < t \), \(A_i \) may be expressed as a linear combination of \(c_1, \ldots, c_{k_{i-1}} \).

Theorem 5 (Rado’s Theorem). The system \(Cx = 0 \) is regular on \(N \) iff \(C \) satisfies the Columns condition.

If \(C \) has only one row, that is, a single linear homogeneous equation, then Theorem 5 reduces to Theorem 4.

The “only if” section of Rado’s theorem involves examining only the smod \(p \) colorings. We can state Rado’s theorem in an alternative form.

Rado’s Theorem (restatement). The system \(Cx = 0 \) is regular iff for every prime \(p \) there is a monochromatic solution under the smod \(p \) coloring.

Lemma 6. Let \(A, c_i, \ldots, c_k \in Z' \). Suppose that \(A \) is not in the vector space (over \(Q \)) generated by the \(c_i \). Then, for all but a finite number of primes \(p \), \(A \) cannot be expressed as a linear combination of the \(c_i \) (modulo \(p \)). Moreover \(Ap^m \) cannot be expressed as a linear combination of the \(c_i \) (modulo \(p^{m-1} \)) for any \(m \neq 0 \).

Proof of Lemma 6. Since \(A \) is not in the vector space generated by the \(c_i \), we find, by linear algebra, \(u \in Q' \) so that \(u \cdot \Xi_i = 0 \), \(1 < i < k \), and \(u \cdot A \neq 0 \). Multiplying \(u \) by a suitable constant, we may assume that \(u \in Z' \) and \(u \cdot A = s \in Z - \{0\} \). Now

\[
Ap^m = c_1 x_1 + \cdots + c_k x_k \pmod{p^{m+1}}
\]

implies that

\[
sp^m = u \cdot Ap^m = \sum_{i=1}^{k} (u \cdot c_i) x_k \equiv 0 \pmod{p^{m+1}}
\]

so that \(p \mid s \), which holds for only a finite number of primes \(p \).
Fix a matrix C. For every subset $\{c_1, \ldots, c_k\}$ of the column vectors such that $c_1 + \cdots + c_k \neq 0$, let $E(c_1, \ldots, c_k)$ denote the set of (exceptional) primes for which $c_1 + \cdots + c_k = 0$ (modulo p). For every set $\{c_1, \ldots, c_k, A\}$, where the c are column vectors, and $A = c_1 + \cdots + c_i$ for some other column vectors c and A is not a linear combination of the c_1, \ldots, c_k, let $E(c_1, \ldots, c_k; A)$ denote the set of primes for which Ap^m is a linear combination of c_1, \ldots, c_k for some m.

Let E denote the union of all $E(c_1, \ldots, c_k)$ and $F(c_1, \ldots, c_k; A)$. F is a finite union of finite sets and therefore finite.

Lemma 7. Fix C. Let E be as defined above. Let p be prime, $p \not\in E$. If $C x = 0$ has a monochromatic solution under the smod p coloring then C satisfies the Columns condition.

Proof of Lemma 7. Let x_1, \ldots, x_n be a monochromatic solution. Reorder by rank (modulo p) so that

\[
\begin{align*}
\text{rank}(x_i) &= m_1, & 1 \leq i \leq k_1, \\
&= m_2, & k_1 < i \leq k_2, \\
&= \vdots, \\
&= m_r, & k_{r-1} < i \leq k_r.
\end{align*}
\]

Let a be the common color, so that all $x_i = ap^{\text{rank}(x_i)} + \text{higher order terms.}$

For convenience we may assume that $m_1 = 0$ by replacing all x_i by $x_i p^{-m_i}$. We write the system $C x = 0$ as

\[
c_1 x_1 + \cdots + c_n x_n = 0.
\]

Reduction modulo p gives

\[
(c_1 + \cdots + 4c_k) a = 0 \pmod{p}
\]

so, as $p \not\in E(c_1, \ldots, c_k)$,

\[
c_1 + \cdots + c_k = 0.
\]

For $1 < j \leq t$, reducing modulo p gives

\[
\sum_{i=1}^{k_{j-1}} c_i x_i + Ap^{m_j} a = 0 \pmod{p^{m_j+1}}.
\]

where

\[
A = \sum c_i, \quad \text{the summation over } k_{j-1} < i \leq k_j.
\]
Dividing by a, we find that $A p^{m_i}$ is a linear combination of $c_1, \ldots, c_{k_{j+1}}$ (modulo p^{m_i+1}) so, since $p \not\in E$, A is a linear combination of $c_1, \ldots, c_{k_{j+1}}$.

Since this holds for $i < j < t$, C satisfies the Columns condition. This completes Lemma 7 and therefore the "only if" section of Rado's theorem.

The "if" section of Rado's theorem requires some preliminaries of interest in their own right.

Theorem 8. Let $G(x_1, \ldots, x_n) = 0$ be a linear homogeneous system of equations that is regular. Let $M > 0$ be fixed. If N is finitely colored there exist x_1, \ldots, x_n satisfying G and $d > 0$ so that all

$$x_i + \lambda d, \quad 1 \leq i \leq n, \quad |\lambda| \leq M,$$

(7)

are the same color.

Proof. Fix the number of colors r. By the Compactness principle there exists R so that any r-coloring of $|R|$ yields a monochromatic solution of system G. Let χ be an r-coloring of N. Define an r^R-coloring χ^* by

$$\chi^*(\alpha) = \chi^*(\beta) \quad \text{iff} \quad \chi(\alpha i) = \chi(\beta i) \quad \text{for} \quad 1 \leq i \leq R.$$ \hspace{1cm} (8)

Set $T = MR^{n-1}$. By van der Waerden's theorem find a monochromatic AP of length $2T + 1$ under χ^*; that is, there exist a and e such that

$$\chi^*(a + \mu e) = \text{constant}, \quad |\mu| \leq T.$$ \hspace{1cm} (9)

The r-coloring χ of $a[R]$ yields, by homogeneity, a solution $a y_1, \ldots, a y_n$ $(y_i \in [R])$ with $\chi(a y_i) = \text{constant}$. Now set

$$x_i = ay_i, \quad 1 \leq i \leq n,$$

$$d = ey,$$

where $y = \text{lcm}(y_1, \ldots, y_n)$. Then, for $|\lambda| \leq M$,

$$x_i = \lambda d = ay_i + \lambda ey = y_i \left[a + \lambda e(\frac{y}{y_i}) \right].$$

Here $|\lambda y/y_i| \leq MR^{n-1} = T$ so, by (9),

$$\chi^* \left[a + \lambda e \left(\frac{y}{y_i} \right) \right] = \chi^*(a)$$
and therefore
\[\chi(x_i + \lambda d) = \chi(ay_i), \]
which is constant, independent of i.

An example should help to illustrate the beautiful ideas underlying Theorem 8. Suppose that \(r = 2, \) \(R = 10. \) We define a \(1024 = 2^10 \) coloring of \(N, \) coloring i with the color of \(i[10]. \) We find an "enormous" AP under this coloring, say
\[S = \{10^9 - 300, \ldots, 10^9 - 3, 10^9, 10^9 + 3, \ldots, 10^9 + 300\}. \]
Now, in the coloring of \([10]\) given by the coloring of \(s[10]\) for all \(s < S, \) we find a solution, say \(y_1 = 2, y_2 = 3, y_3 = 5\) of \(G. \) Then \(x_0 = 2 \cdot 10^9, \) \(x_1 = 3 \cdot 10^9, x_3 = 5 \cdot 10^9\) is a monochromatic solution. Each \(x_i \) is in the middle of an AP of length 200. Unfortunately the progressions have different periods—6, 9, and 15, respectively. Fortunately they have a common period \(\text{lcm}(6, 9, 15) = 90. \) We set \(d = 90, \) and since the AP \(S \) was "enormous" we can take \(M \) "large."

Corollary 8. Let \(G(x_1, \ldots, x_n) = 0 \) be a linear homogeneous system of equations. The following are equivalent:

(i) Under any finite coloring of \(N \) there exist distinct \(x_1, \ldots, x_n \) of the same color satisfying \(G(x_1, \ldots, x_n) = 0. \)

(ii) The system \(G(x_1, \ldots, x_n) = 0 \) is regular on \(N, \) and there exist distinct \(\lambda_1, \ldots, \lambda_n \in \mathbb{Z} \) such that \(G(\lambda_1, \ldots, \lambda_n) = 0. \)

Proof. Clearly (i) \(\Rightarrow \) (ii). Let \(\lambda_1, \ldots, \lambda_n \) be distinct integers satisfying \(G. \) Let \(K = \max_{1 \leq i \leq n} |\lambda_i|. \) Under any finite coloring of \(N \) we find, by Theorem 8, \(x_1, \ldots, x_n \) satisfying \(G \) and \(d > 0 \) so that all
\[x_i + \lambda d |\lambda| \leq Kn^2 \]
are the same color. For all \(\mu, |\mu| \leq n^2, \) the values
\[x'_i = x_i + \mu \lambda_i d \]
satisfy \(G(x'_1, \ldots, x'_n) = G(x_1, \ldots, x_n) + \mu d G(\lambda_1, \ldots, \lambda_n) = 0. \) If \(x'_i - x'_j \)
then \(\mu - (\lambda_i - \lambda_j)/(\lambda_j - \lambda_i)d \) is determined. For all but at most \(\binom{n}{2} \)
values of \(\mu, \) all \(x'_i \neq x'_j. \) This is the desired distinct solution.
Corollary 9. Let $G(x_1, \ldots, x_n) = 0$ be a linear homogeneous system of equations that is regular. Let $M > 0$ and $c > 0$ be fixed. If N is finitely colored there exist x_1, \ldots, x_n satisfying G and $d > 0$ such that all
\[x_i + \lambda d, \quad 1 \leq i \leq n, |\lambda| \leq M, \tag{10} \]
and
\[cd \]

have the same color.

Proof. Corollary 9 will follow from Theorem 8 in much the same way as Theorem 2 follows from van der Waerden's theorem. We use induction on the number of colors r. We assume that there exists $T = T(r - 1, M, s)$ so that if $[T]$ is r-colored there exist x_1, \ldots, x_n satisfying (10). Given an r-coloring of N, we find, by Theorem 8, x_1, \ldots, x_n satisfying G and $d' > 0$ such that all
\[x_i + \lambda d', \quad |\lambda| \leq TM, \]
are the same color. If any $\mu cd', \mu \leq T$, has that color we set $d = \mu d'$ to satisfy (10). Otherwise $cd'[T]$ is $(r - 1)$-colored so that (10) is satisfied by induction.

The critical conditions on G in Theorem 8 and Corollary 9 are regularity and homogeneity. Call a family \mathcal{A} of finite subsets of N homogeneous if $A \in \mathcal{A}, a \in N$ imply $aA \in \mathcal{A}$, and call \mathcal{A} regular if, whenever N is finitely colored, there exists a monochromatic $A \in \mathcal{A}$.

Corollary 9'. Let \mathcal{A} be homogeneous and regular, $M, c > 0$. If N is finitely colored there exist $A \in \mathcal{A}, d > 0$ so that all
\[a + \lambda d, \quad a \in A, |\lambda| \leq M, \]
and
\[cd \]

have the same color.

The proof is identical to that for Corollary 9, replacing "solution to $G" by "member of $\mathcal{A}"."
Now we introduce some notation due to W. Deuber.

Definition. \(N_{m, p, c} = \{ (\lambda_1, \ldots, \lambda_{m+1}) : \text{some } \lambda_i \neq 0, \text{ the first nonzero } \lambda_i = c, \text{ all other } |\lambda_j| \leq p \} \).

A set \(S \) of positive integers is called an \((m, p, c)\)-set if

\[
S = \left\{ \sum_{i=1}^{m+1} \lambda_i y_i : (\lambda_1, \ldots, \lambda_{m+1}) \in N_{m, p, c} \right\}
\]

for some \(y_1, \ldots, y_m > 0 \). For example, \(\{x, x + d, x - d, x + 2d, x - 2d, d\} \) is a \((1, 2, 1)\)-set.

Theorem 10. For all \(m, p, c > 0 \), if \(N \) is finitely colored there exists a monochromatic \((m, p, c)\)-set \(S \).

Proof. We have shown this result for \(m = 1 \) in Theorem 2. Assume the result for \(m, p, c \) so that the family \(\mathcal{A} \) of \((m, p, c)\)-sets is regular and, clearly, homogeneous. By Corollary 9' the result now holds for \((m + 1, p, c)\)-sets so by induction we are finished.

Completion of Rado's Theorem. If \(C \) has the Columns condition then the system \(Cx = 0 \) is regular.

Proof. We show that if \(C \) has the Columns condition then the equation \(Cx = 0 \) has a parametric solution

\[
x_i = \lambda_{ij} y_j + \cdots + \lambda_{in} y_n,
\]

where all \(\lambda_{ij} \in \mathbb{Z} \) and, for each \(i \), the first nonzero \(\lambda_{ij} \) equals \(c \), a constant. As the general case involves cumbersome notation, yet is quite elementary, we shall only illustrate it with an example:

\[
\begin{align*}
x_1 - x_2 + 3x_3 + x_5 &= 0, \\
2x_1 - 2x_2 + 2x_3 + 4x_4 + x_6 &= 0, \\
3x_1 - 3x_2 + x_3 + 8x_4 + x_5 &= 0.
\end{align*}
\]

Here

\[
\begin{align*}
c_1 &= (1, 2, 3), \\
c_2 &= (-1, -2, -3), \\
c_3 &= (3, 2, 1), \\
c_4 &= (0, 4, 8), \\
c_5 &= (1, 0, 1), \\
c_6 &= (0, 1, 0),
\end{align*}
\]

\[
\begin{align*}
A_1 &= c_1 + c_2 = 0, \\
A_2 &= c_3 + c_4 = 3c_1, \\
A_3 &= c_5 + c_6 = \frac{1}{4}c_1 + \frac{1}{3}c_3.
\end{align*}
\]
Now we may read off

\[
(1, 1, 0, 0, 0, 0) \\
(-3, 0, 1, 1, 0, 0) \\
(-\frac{1}{4}, 0, -\frac{1}{4}, 0, 1, 1)
\]

as rational solutions to \(Cx = 0 \). We multiply each vector by 4 so as to make all coefficients integral and the "leading" \(\lambda_{ij} = 4 \). Then

\[
x_1 = 4y_1 - 12y_2 - y_3 \\
x_2 = 4y_1 \\
x_3 = 4y_2 - y_3 \\
x_4 = 4y_2 \\
x_5 = 4y_3 \\
x_6 = 4y_3
\]

is a parametric solution of the desired form.

Let \(C \) be any matrix satisfying the Columns condition. Let \(p = \max|\lambda_{ij}|; m, c \) be as above. Any finite coloring of \(N \) yields a monochromatic \((m, p, c)\)-set that contains a solution to \(Cx = 0 \).

Much as Rado's dissertation extended Schur's work, the 1973 dissertation of Deuber extended and polished Rado's results. Recall that a system of homogeneous linear equations \(G \) is called regular if every finite coloring of \(N \) has a monochromatic solution to \(G \). Now call a set \(A \subseteq N \) large if every regular system \(G \) has a solution in \(A \).

Deuber proves that \(A \) is large iff \(A \) contains \((m, p, c)\)-sets for all \(m, p, c \). We have already given the main ideas. The condition is necessary since an \((m, p, c)\)-set may be expressed as the solution of a homogeneous \(G \). It is sufficient, as any regular system \(G \) may be parameterized so that solutions to \(G \) are contained in some \((m, p, c)\)-set.

Deuber goes on to show that, for all \(m, p, c \) and \(r \), there exist \(M, P, C \) so that an \(r \)-coloring of an \((M, P, C)\)-set always contains a monochromatic \((m, p, c)\)-set.

Deuber then shows (proving a conjecture of Rado) that the large sets have a surprising partition property. If \(A \) is large and \(A = A_1 \cup \cdots \cup A_n \) then one of the \(A_i \) is large. In particular, if \(N \) is finitely colored there exists in one color a solution to all regular equations. These results are not proved in this book.

Deuber has examined the regularity of systems of homogeneous linear equations over arbitrary Abelian groups. (Here we assume that the identity is not colored.) We defer his results to Section 5.4.
3.4 finite sums and finite unions (folkman's theorem)

rado's theorem completely determines the regular systems of homogeneous equations. one special case is of particular interest.

definition. let \(S \subseteq N \).

\[
\mathcal{P}(S) = \left\{ \sum_{i \in S} \epsilon_i s_i \mid \epsilon_i = 0, 1; \epsilon_i = 1 \right\} \text{ for a finite nonezero number of } S.
\]

\(\mathcal{P}(S) \) is called the sum-set of \(S \). for example,

\[
\mathcal{P}(\{2, 3, 7\}) = \{2, 3, 5, 7, 9, 10, 12\}.
\]

theorem 11 (folkman's theorem). if \(N \) is finitely colored there exist arbitrarily large finite sets \(S \) such that \(\mathcal{P}(S) \) is monochromatic.

folkman's theorem may be derived as a corollary of rado's theorem. it is equivalent to the regularity of the system

\[
x_T = \sum_{i \in T} x_{i}, \quad \emptyset \neq T \subseteq [k],
\]

which satisfies by elementary, albeit nontrivial, methods the conditions of rado's theorem. however, the result is of sufficient special interest that we shall give a different proof. although this result was proved independently by several mathematicians, we choose to honor the memory of our friend jon folkman by associating his name with the result.

we shall actually prove folkman's theorem in the following "finite" form: for a sequence \(\{a_i\} \) and a finite nonempty set \(I \), let \(a(I) \) denote \(\sum_{i \in I} a_i \).

folkman's theorem (restatement). for all \(c \) and there exists \(M = M(c, k) \) so that, if \([M] \) is \(c \)-colored, there exist \(a_1, \ldots, a_k \) so that all \(a(I) \) are colored identically.

the following critical lemma is based on van der waerden's theorem. let \(W(c, k) \) denote van der waerden's function, where \(c \) is the number of colors and \(k \) is the desired length of the ap.

lemma 12. for all \(c, k \) there exists \(n = n(c, k) \) so that, if \([n] \) is \(c \)-colored, there exist \(a_1 < a_2 < \cdots < a_k \) with all \(a(I) \leq n \) so that the color of \(a(I) \) depends only on \(\text{max}(I) \).
Proof. We prove the existence of \(n(c, k) \) for all \(c \) by induction on \(k \). For \(k = 1 \) (even \(k = 2 \)) it is trivial. We claim that we may take \(n = n(c, k + 1) = 2W(c, n(c, k)) \). Let a \(c \)-coloring of \([n]\) be given. By examining only \(\{n/2 + 1, \ldots, n\} \) we find \(a_{k+1}, d \) with \(n(c, k) < a_{k+1} \) (actually \(n/2 < a_{k+1} \)) so that
\[
\{a_{k-1} + \lambda d : 0 \leq \lambda \leq n(c, k)\}
\]
is monochromatic, say, red. Now, identifying \(d[n(c, k)] \) with \([n(c, k)]\), we can find \(a_1 < \cdots < a_{\lambda} \), all \(a_i \) divisible by \(d \) and their sum at most \(dn(c, k) \), so that \(\{a_1, \ldots, a_{\lambda}\} \) satisfies the induction hypothesis. Consider \(A = \{a_1, \ldots, a_{\lambda+1}\} \). For \(j < k + 1 \) the \(a(I) \) where \(\max(I) = j \) are monochromatic by the induction hypothesis. If \(\max(I) = k + 1 \) then \(a(I) = a_{\lambda+1} + \lambda d \), where \(0 \leq \lambda \leq n(c, k) \), so that \(a(I) \) is red. Thus \(A \) satisfies the induction hypothesis for \(k + 1 \), completing the induction.

Proof of Folkman's Theorem. Our lemma allows us to use the Induced Color method. We take \(M = M(c, k) = n(c, (c - 1)k + 1) \). Given a \(c \)-coloring on \([M]\), we find \(a_1 < \cdots < a_{(c-1)k+1} \), satisfying the lemma. Now we define a coloring on \([((c-1)k + 1]\) by coloring \(i \) with the color of all \(a(I) \), with \(\max(I) = i \). By the Pigeon-Hole principle we find a subset \(S \subseteq [(c-1)k + 1] \). \(|S| = k \), monochromatic under the induced coloring. We set \(A = \{a_i : i \in S\} \). Then \(\mathcal{P}(A) \) is monochromatic.

Folkman's theorem has an analogue in set theory, with set union taking the place of sum. Call a family of sets \(\mathcal{D} \) a disjoint collection if the elements of \(\mathcal{D} \) are pairwise disjoint finite sets. Write \(\mathcal{D} = \{D_i : i \in I\} \), where \(I \) is a finite indexing set. Let \(FU(\mathcal{D}) \) denote the family of all finite unions of the \(D \in \mathcal{D} \), that is,
\[
FU(\mathcal{D}) = \left\{ \bigcup_{i \in I} D_i : \emptyset \neq T \subseteq I, T \text{ finite} \right\}.
\]
Let \(\mathcal{P}(X) \) denote the family of nonempty finite subsets of \(X \), and let \(\mathcal{P}_n \) denote \(\mathcal{P}([n]) \).

Theorem 13 (Finite Unions Theorem). If the finite subsets of \(N \) are finitely colored there exist arbitrarily large \(\mathcal{D} \) so that \(FU(\mathcal{D}) \) is monochromatic. Again, we shall prove the finite form.

Finite Unions Theorem. For all \(k, c \) there exists \(F = F(k, c) \) such that, if \(n \geq F \) and \(\mathcal{P}_n \) is \(c \)-colored, there exists a disjoint collection \(\mathcal{D} \) of cardinality \(k \) such that \(FU(\mathcal{D}) \) is monochromatic.
We shall outline two proofs of the Finite Unions theorem. We first show that Folkman’s theorem and the Finite Unions theorems are equivalent in the imprecise sense that each can be quickly deduced from the other. There is a natural correspondence between N and $\mathcal{P}(N)$, given by

$$\varphi(i) = \sum_{i \in I} 2^{i+1}.$$

Assuming the Finite Unions theorem, we show that $M(k, c) \leq 2^k$. A c-coloring of $[2^{F(k, c)}]$ corresponds under φ^{-1} to a c-coloring of \mathcal{P}_n, in which there is a disjoint collection \mathcal{D} of cardinality k. For which $FU(\mathcal{D})$ is monochromatic. But union of disjoint sets corresponds, under c, to $\varphi(\mathcal{D})$ are the same color.

The converse is less obvious. Assume Folkman’s theorem, and fix k, c. Select F so large (by Chapter 1, Theorem 10) that if $n \geq F$ and \mathcal{P}_n is c-colored there exists $B \subseteq [n]$, $|B| = M(k, c)$, where, for $1 \leq i \leq M(k, c)$. $|B|$ is monochromatic. For such F and a coloring of \mathcal{P}_n, $n \geq F$, we find B as above. We define a coloring on $[M(k, c)]$ by giving i the color of all $X \in [B]$. In the induced coloring we find a_1, \ldots, a_k so that all finite sums are monochromatic. Now we simply set $\mathcal{D} = \{D_1, \ldots, D_k\}$, where the D_i are pairwise disjoint subsets of B with $|D_i| = a_i$. Any finite union of the D_i is a subset of B so that its cardinality determines its color. But the cardinality of a finite union of disjoint sets is just the finite sum of the cardinalities so that, indeed, $FU(\mathcal{D})$ is monochromatic.

A second proof of the Finite Unions theorem is based on the Hales–Jewett theorem. The vertices of the n-cube $[0, 1]^n$ may be placed in a natural correspondence with \mathcal{P}_n. We then interpret the Extended Hales–Jewett theorem (Chapters 2, Theorem 7) as follows: For all k, c there exists n so that, if the subsets of $[n]$ (including the null set) are c-colored, there exist disjoint A_0, A_1, \ldots, A_k so that all

$$A_0 \cup \bigcup_{i \in I} A_i, \quad I \subseteq \{1, \ldots, k\}$$

are monochromatic. If A_0 were the null set we would be finished. However, the result obtained above bears exactly the same relation to the Finite Unions theorem as van der Waerden’s theorem does to Folkman’s theorem, and the proof follows exactly the same lines. We omit the details.

We may replace adding by multiplication in Folkman’s theorem.
Define
\[\mathcal{P}'(S) = \left\{ \prod_{s \in S} s^{\varepsilon_s} : \varepsilon_s = 0, 1; \text{ for a finite nonzero number of } s \right\}. \]

For example, \(\mathcal{P}'(\{2, 3, 7\}) = \{2, 3, 6, 7, 14, 21, 42\} \), the set of finite products.

Theorem 14. If \(N \) is finitely colored there exist arbitrarily large \(S \) such that \(\mathcal{P}'(S) \) is monochromatic.

Proof. We need only examine the coloring of \(\{2^n : n \geq 1\} \). Here multiplication mirrors addition (recall that ancient instrument—the slide rule) so this result is a corollary of Folkman's theorem.

Conjecture. If \(N \) is finitely colored there exist arbitrarily large \(S \) so that \(\mathcal{P}(S) \cup \mathcal{P}'(S) \) is monochromatic.

This conjecture has proved surprisingly intractable. Even for \(|S| - 2 \) it is an open question whether, if \(N \) is finitely colored, there must exist a monochromatic \(\{x, y, x + y, xy\} \). N. Hindman has given a 2-coloring of \(N \) for which no infinite \(S \) exists with \(\mathcal{P}(S) \cup \mathcal{P}'(S) \) monochromatic.

3.5 INFINITE SETS OF SUMS (HINDMAN'S THEOREM)

It was natural to ask, and was conjectured for some time, whether Folkman's theorem could be extended to infinite sets \(S \). An affirmative answer is given in the next theorem. Although this infinite result is technically beyond the scope we have set for this book, we believe that the result and proof are so interesting as to warrant this exception.

Theorem 15 (Hindman's Theorem). If \(N \) is finitely colored there exists \(S \subseteq NS \) infinite, such that \(\mathcal{P}(S) \) is monochromatic.

We emphasize that Hindman's theorem is not a corollary of Folkman's theorem. Compactness does not work "in reverse"; the existence of finite arbitrarily large monochromatic structures does not imply the existence of infinite monochromatic structures. For example, if \(N \) is finitely colored there does not necessarily exist an infinite monochromatic arithmetic progression.

This result is due to Hindman. The proof was greatly simplified, though the same basic ideas were used, by J. Baumgartner, and it is his proof we present. In Sections 6.1 and 6.2 we give alternative proofs involving noncombinatorial methods.
In proving Theorem 15, Baumgartner considers a set-theoretic Ramsey theorem. We shall change our notation slightly from the finite results. Call \mathcal{D} a disjoint collection if \mathcal{D} is an infinite collection of disjoint finite sets, and let $FU(\mathcal{D})$ denote the family of all finite unions of elements of \mathcal{D} (excluding the empty union).

Theorem 16. Let $[\aleph]^\omega = \mathcal{C}_1 + \cdots + \mathcal{C}_k$. Then there exist $1 \leq i \leq k$ and a disjoint collection \mathcal{D} with

$$\mathcal{C}_i \supseteq FU(\mathcal{D}).$$

Theorem 16 implies Hindman's theorem by a use of the canonical bijection between N and $[\aleph]^\omega$, letting $n = \sum \epsilon_i 2^i$ correspond with $\{i: \epsilon_i = 1\}$. The proof of Theorem 16 will require a sequence of lemmas.

On the class of disjoint collections we define a partial order $< \mathcal{D}_1 < \mathcal{D}$ iff $\mathcal{D}_1 \subseteq FU(\mathcal{D})$. The crucial definition is that \mathcal{C} is large for \mathcal{D} if $\mathcal{C} \cap FU(\mathcal{D}) = \emptyset$ for all $\mathcal{D}_1 < \mathcal{D}$.

Remarks

$\mathcal{D}_1 < \mathcal{D}$ implies $FU(\mathcal{D}_1) \subseteq FU(\mathcal{D})$.

\mathcal{C} large for \mathcal{D} and $\mathcal{D}_1 < \mathcal{D}$ imply \mathcal{C} large for \mathcal{D}_1.

$FU(\mathcal{D})$ is large for \mathcal{D}. In particular, $[\aleph]^\omega$ is large for $[\aleph]^1$.

\mathcal{C} is large for \mathcal{D} iff $\mathcal{C} \cap FU(\mathcal{D})$ is large for \mathcal{D}.

\mathcal{C} large for \mathcal{D} and $\mathcal{C} \subseteq \mathcal{C}'$ imply \mathcal{C}' large for \mathcal{D}.

Lemma 17 (Decomposition Lemma). Assume that \mathcal{C} is large for \mathcal{D} and $\mathcal{C} = \mathcal{C}_1 + \cdots + \mathcal{C}_k$. Then there exist $1 \leq i \leq k$ and $\mathcal{D}_1 < \mathcal{D}$ so that \mathcal{C}_i is large for \mathcal{D}_1.

Proof. Let $k = 2$. If \mathcal{C}_1 is not large for \mathcal{D} then $\mathcal{C}_1 \cap FU(\mathcal{D}_1) = \emptyset$ for some $\mathcal{D}_1 < \mathcal{D}$. For any $\mathcal{D}_2 < \mathcal{D}_1$, $\mathcal{C} \cap FU(\mathcal{D}_2) \neq \emptyset$ so that $\mathcal{C}_2 \cap FU(\mathcal{D}_2) \neq \emptyset$ and hence \mathcal{C}_2 is large for \mathcal{D}_1.

The general case follows by induction.

Theorem 18. If \mathcal{C} is large for \mathcal{D} there exists $\mathcal{D}_1 < \mathcal{D}$ so that $\mathcal{C} \supseteq FU(\mathcal{D}_1^*)$.

The proof requires a series of lemma. We first show that Theorem 18 implies Theorem 16. Let $[\aleph]^\omega = \mathcal{C}_1 + \cdots + \mathcal{C}_k$. Since $[\aleph]^\omega$ is large for $[\aleph]^1$ there exists $\mathcal{D} < [\aleph]^1$ and i so that \mathcal{C}_i is large for \mathcal{D}. Theorem 18 then implies $\mathcal{C}_i \supseteq FU(\mathcal{D}_1)$ for some $\mathcal{D}_1 < \mathcal{D}$. Define

$$\mathcal{C} - \mathcal{S} = \{C \in \mathcal{C}: C \cap \mathcal{S} = \emptyset\}.$$
Lemma 19. \mathcal{C} large for \mathcal{D} and S finite imply $\mathcal{C} - S$ large for \mathcal{D}.

Proof. Suppose that $\mathcal{D}_1 < \mathcal{D}$ with $(\mathcal{C} - S) \cap FU(\mathcal{D}_1) = \emptyset$. Let $\mathcal{D}_2 = \{D \in \mathcal{D}_1 : D \cap S = \emptyset\}$. ($\mathcal{D}_2$ is infinite since S is finite.) Then $\mathcal{C} \cap FU(\mathcal{D}_2) = \emptyset$, but $\mathcal{D}_2 < \mathcal{D}$, and we reach a contradiction.

Lemma 20. Assume \mathcal{C} large for \mathcal{D}. There exists $S \in FU(\mathcal{D})$, $\mathcal{D}_1 < \mathcal{D} - S$, so that

$$\mathcal{C}_1 = \{T \in \mathcal{C} : T \cap S = \emptyset, T \cup S \in \mathcal{C}\}$$

is large for \mathcal{D}_1.

Proof. There must exist $n, D_1, \ldots, D_n \in \mathcal{D}$ disjoint so that, for every $D_{n+1} \in FU(\mathcal{D})$ disjoint from $D_1 \cup \cdots \cup D_n$, some $D_{n+1} \cup D_I \in \mathcal{C}$ (where $I \subseteq \{1, \ldots, n\}$, $I \neq \emptyset$, and we define $D_I = \bigcup_{j \in I} D_j$). Otherwise we could construct $\mathcal{D}' = \{D_1, D_2, \ldots\}$ so that $\mathcal{C} \cap FU(\mathcal{D}') = \emptyset$ and never get "stuck." We fix $n, D_1, \ldots, D_n, D^* = D_1 \cup \cdots \cup D_n$. For $\emptyset \neq I \subseteq \{1, \ldots, n\}$ we define

$$\mathcal{C}_I = \{C \subseteq \mathcal{C} : C \cap D^* \neq \emptyset, C \cup D_I \in \mathcal{C}\}.$$

The \mathcal{C}_I give a finite decomposition of $\mathcal{C} - D^*$, and $\mathcal{C} - D^*$ is large for $\mathcal{D} - D^*$ so some \mathcal{C}_I is large for some $\mathcal{D}_I < \mathcal{D} - D^* < \mathcal{D} - D_I$, implying the lemma with $S = D_I$.

Lemma 21. Assume that \mathcal{C} is large for \mathcal{D}. There exists $S' \in \mathcal{C} \cap FU(\mathcal{D})$, $\mathcal{D}' < \mathcal{D}$, so that

$$\mathcal{C}' = \{T \in \mathcal{C} : T \cap S' = \emptyset, T \cup S' \in \mathcal{C}\}$$

is large for \mathcal{D}'.

Proof. The requirement $S' \in \mathcal{C}$ distinguishes Lemmas 21 and 20. We apply Lemma 20 repeatedly. Beginning with $\mathcal{C}_0 = \mathcal{C}$, $\mathcal{D}_0 = \mathcal{D}$, we find, for $i \geq 1$, $S_i, \mathcal{C}_i, \mathcal{D}_i$ with $S_{i+1} \in FU(\mathcal{D}_i)$ so that

$$\mathcal{C}_{i+1} = \{T \in \mathcal{C}_i : T \cup S_{i+1} = \emptyset, T \cup S_{i+1} \in \mathcal{C}_i\}$$

is large for $\mathcal{D}_{i+1} < \mathcal{D}_i$ and $D \cap \cup_{j=1}^i S_i = \emptyset$ for all $D \in FU(\mathcal{D}_{i+1})$. The S_i form a disjoint collection so we find $i_1 < \cdots < i_k$,

$$S' = S_{i_1} \cup \cdots \cup S_{i_k} \in \mathcal{C}$$

Now, if $T \in \mathcal{C}_{i_k}, T \cup S' \in \mathcal{C}$ (by the definition of the \mathcal{C}_i, $T \cup S \in \mathcal{C}$ for all partial unions S of the S_{i_1}, \ldots, S_{i_k}), and Lemma 21 holds with $\mathcal{D}' = \mathcal{D}_{i_k}$ as $\mathcal{C}' \supseteq \mathcal{C}_{i_k}$.

Equations
Proof of Theorem 18 (and hence Theorems 15 and 16). By repeated applications of Lemma 21 we find \(S^i, \mathcal{C}^i, \mathcal{D}^i \) so that \(S^i = S^i \cup (\mathcal{D}^i) \) and

\[
\mathcal{C}^{i+1} = \{ T \in \mathcal{C}^i : T \cap S^{i+1} = \emptyset, T \cup S^{i+1} \subseteq \mathcal{C}^i \} \quad \text{is large for } i.
\]

Then \(\mathcal{D}^* = \{ S^1, S^2, \ldots \} \) is the desired set.

3.6 REGULAR NONHOMOGENEOUS SYSTEMS

The results on nonhomogeneous linear systems are far simpler than those for the homogeneous case. We express our results in a fashion that will be particularly appropriate for Section 5.6. We restrict our attention to a single equation; the straightforward generalization to systems can be found in Rado’s original paper.

Lemma 22. There is a \((2n)\)-coloring \(\chi \) of \(Q \) so that

\[
\sum_{i=1}^{n} (y_i - y'_i) = 1
\]

has no solution with \(\chi(y_i) = \chi(y'_i), 1 \leq i \leq n \).

Proof. Define \(\chi \) by setting, for \(0 \leq j \leq 2n - 1 \),

\[
\chi(y) = j \quad \text{iff } y \in \left[2m + \frac{j}{n}, 2m + \frac{j+1}{n} \right) \quad \text{for some } m \in \mathbb{Z}.
\]

Then \(\chi(y_i) = \chi(y'_i) \) implies that \(y_i - y'_i = 2m_i + \Theta_i, |\Theta_i| < n^{-1} \), so

\[
\sum_{i=1}^{n} (y_i - y'_i) = 2 \sum_{i=1}^{n} m_i + \Theta,
\]

where

\[
\Theta = \sum_{i=1}^{n} \Theta_i \quad \text{and} \quad |\Theta| < \sum_{i=1}^{n} |\Theta_i| < 1.
\]

Theorem 23. Let \(\Omega \) be any field of characteristic zero, \(c_1, \ldots, c_n, b \in \Omega, b \neq 0 \). There is a \((2n)^n\)-coloring \(\chi^* \) of \(\Omega \) so that

\[
\sum_{i=1}^{n} c_i (x_i - x'_i) = b
\]

has no solution with \(\chi^*(x_i) = \chi^*(x'_i), 1 \leq i \leq n \).
Proof. Considering Ω as a vector space over Q, we may find a linear mapping
\[
\psi: \Omega \to Q,
\]
\[
\psi(b) = 1.
\]
Define χ by (12) and χ^* by
\[
\chi^*(\alpha) = \chi^*(\beta) \text{ iff } \chi(\psi(c_i\alpha)) = \chi(\psi(c_i\beta)) \text{ for } 1 \leq i \leq n.
\]
Then χ^* is a $(2n)^n$-coloring of Ω. If (13) holds with $\chi^*(x_i) = \chi^*(x'_i)$,
$1 \leq i \leq n$, then
\[
\sum_{i=1}^{n} [\psi(c_i x_i) - \psi(c_i x'_i)] = \psi(b) = 1,
\]
and $\chi(\psi(c_i x_i)) = \chi(\psi(c_i x'_i))$, $1 \leq i \leq n$, contradicting Lemma 20.
The proof of Theorem 23 involves the Axiom of Choice (to find ψ) For $\Omega = R$, Lemma 22 may be extended directly.

Corollary 24. Let Ω be a field of characteristic zero. The equation
\[
c_n x_n + c_1 x_1 + \cdots + c_n x_n = b, \quad c_i, b \in \Omega, b \neq 0.
\]
is regular on Ω iff $\Sigma_{i=0}^{n} c_i \neq 0$.

Proof. If $\Sigma_{i=0}^{n} c_i = A \neq 0$ then $x_1 = \cdots = x_n = b/A$ is always a monochromatic solution to (14). If $\Sigma_{i=0}^{n} c_i = 0$ then (14) becomes $\Sigma_{i=0}^{n} c_i (x_i - x_0) = b$ so that there is no monochromatic solution under the $(2n)^n$-coloring χ^* of Theorem 23.

REMARKS AND REFERENCES

§2, 3, 6. See Rado [1943] and also Rado [1933a], [1933b], [1936], and [1969], as well as Deuber [1973].

§4. Independent proofs of Folkman’s theorem are given by Sanders [1969] and Rado [1969].

§6. Straus [1975] extends these results to arbitrary Abelian groups.
4

Numbers

Most of the results of Chapters 1–3 state that an r-coloring of any sufficiently large structure contains a monochromatic substructure of a certain size. In this chapter we concern ourselves with precisely how large such a structure need be. To the existential results of the preceding chapters we associate functions. Evaluation of these functions has proved to be extremely difficult. Our best results, for Ramsey's theorem itself, are still far from the original expectations.

4.1 Ramsey Numbers—Exact

A prodigious amount of effort has gone into finding the exact values of the Ramsey function $R(k, l)$ for small values of k, l. [The Ramsey functions are defined in Section 1.1. In graph-theoretic terms $R(k, l)$ is the minimal n so that any graph on n vertices contains either a clique of size k or an independent set of size $l.$] In 1955, R. E. Greenwood and A. M. Gleason found the values for $(k, l) = (3, 3), (3, 4), (3, 5), (4, 4).$ [Trivially, R is symmetric and $R(k, 2) = k.$] Since then, only two other exact values have been found. Table 4.1 gives all known exact bounds and some upper and lower bounds on the function R. It is unlikely that substantial improvement will be made on this table. Even evaluation of $R(5, 5)$ appears well beyond current man-machine capabilities.

Proof 1 of Ramsey's theorem—abridged (Chapter 1, Theorem 1) gives

$$R(k, l) \equiv R(k, l-1) + R(k-1, l). \tag{1}$$

A close examination reveals a slight improvement. Let $n = R(k, l-1) + R(k-1, l) - 1$. If $[n]^2$ is 2-colored with neither a red K_k nor a blue K_l then each point x is connected to the remaining $n-1$ points by precisely $R(k-1, l) - 1$ red lines and $R(k, l-1) - 1$ blue lines. Hence the total number of red lines is exactly $n(R(k-1, l) - 1)/2$, which must be an
Table 4.1 The Ramsey Function $R(k, l)$

<table>
<thead>
<tr>
<th>l</th>
<th>k</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28/29</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>25/28</td>
<td>34/44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>43/55</td>
<td>51/94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>102/178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

integer. This is impossible if $R(k - 1, l)$ and $R(k, l - 1)$ are even. Thus, in that case, inequality (1) is strict.

The foregoing arguments are sufficient to give the upper bounds for $R(3, 3)$, $R(3, 4)$, $R(3, 5)$, and $R(4, 4)$. More precise techniques are required, however, for larger values. A lower bound $R(k, l) > n$ requires the construction of a graph on n vertices containing neither k-clique nor l-independent set. For these four values the graphs are given in Fig. 4.1.

These graphs have considerable structure. In Fig. 4.1d, the vertices are Z_{17} and $\{i, j\}$ is an edge iff $i - j$ is a square in Z_{17}. Figure 4.1a is defined identically over Z_5. In Fig. 4.1c, the vertices are Z_{13} and $\{i, j\}$ is an edge iff $i - j$ is a cubic residue. Figure 4.1b consists of the vertices of Fig. 4.1c not adjacent to 0.

These results were all known to Greenwood and Gleason. Many unsuccessful efforts were made to extend them. It appears likely (though not certain) that the structure of these maximal Ramsey graphs is illusory. Perhaps combinatorialists have again been victimized by the Law of Small Numbers: Patterns discovered for small k evaporate for k sufficiently large to make calculation difficult.

When the number of colors is arbitrary, the proof of Ramsey's theorem gives

$$R(k_1, \ldots, k_s) \leq 2 + \sum_{i=1}^{s} [R(k_1, \ldots, k_{i-1}, k_i - 1, k_{i+1}, \ldots, k_s) - 1]. \quad (2)$$

Since $R(k_1, k_2, 2) = R(k_1, k_2)$, this implies that $R(3, 3, 3) \leq 17$. Greenwood and Gleason define a 3-coloring of K_{16}, labeling the vertices by $GF(16)$ and coloring $\{\alpha, \beta\}$ by the cubic character of $\alpha - \beta$. They prove that there are no monochromatic triangles; hence $R(3, 3, 3) = 17$. This is the only nontrivial Ramsey number known for more than two colors.

In Section 1.2 we defined R_s, the Ramsey function for coloring s-tuples. For $s > 2$ no exact values of R_s are known. The first nontrivial case is $R_3(4)$: the minimal n so that, given any 2-coloring of $[n]^3$, there exists a four-element set all of whose three-element subsets are the same color. The best bounds as of this writing are $13 \leq R_3(4) \leq 15$.
Figure 4.1 Small Ramsey graphs.
4.2 RAMSEY NUMBERS—ASYMPTOTICS

From recursion (1) we may derive

$$R(k, l) \leq \binom{k + l - 2}{k - 1}$$

so that $R(k) \leq c4^k k^{-1/2}$. The second proof of Ramsey's theorem gives only $R(k) \leq c4^k$. (In this section c denotes an appropriate constant.) For the lower bound we use an Existence argument. This method of proof, also called the probabilistic or nonconstructive method, enables one to prove the existence of finite structures having certain properties without actually constructing the structures themselves.

Theorem 1. $R(k) > k2^{k/2}[(1/e\sqrt{2}) + o(1)]$.

Proof. More precisely, we show that if

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1$$

then $R(k) > n$; that is, there exists a 2-coloring of K_n without monochromatic K_k. Consider a random 2-coloring of K_n where the color of each edge is determined by the toss of a fair coin. More precisely, we have a probability space whose elements are the 2-colorings of K_n and whose probabilities are determined by setting

$$P[\{i, j\} \text{ is red}] = \frac{1}{2}$$

for all i, j and making these probabilities mutually independent. Thus there are $2^\binom{n}{2}$ colorings, each with probability $2^{-\binom{n}{2}}$. For any set of vertices S, $|S| = k$, let A_S denote the event "S is monochromatic." Then

$$P[A_S] = 2^{1 - \binom{k}{2}},$$

as the $\binom{k}{2}$ "coin flips" to determine the colors of $[S]^2$ must be the same.

The event "some k-element set of vertices S is monochromatic" is represented by A_S:

$$\bigvee_{|S| = k} A_S:$$
\begin{align}
P\left[\bigvee_{|S|=k} A_S \right] &\leq \sum_{|S|=k} P[A_S] \\
&\leq \binom{n}{k} 2^{-\binom{k}{2}} < 1
\end{align}

(7)

under assumption (4). Thus some coloring is in the complement of this event. That is the desired coloring.

We have shown that

\[\sqrt{2} \leq \liminf R(k, k)^{1/k} \leq \limsup R(k, k)^{1/k} \leq 4. \]

(8)

The value of \(R(k, k)^{1/k} \) is not known and is the major open problem involving the asymptotics of the Ramsey function. (Even the existence of the limit is not known.) Another problem is the nonconstructive nature of the Existence argument. It would be of great interest to construct ("construct" is not precisely defined) a 2-coloring of \(K_n \) for \(n \) large containing no monochromatic \(K_k \). For example, as mentioned previously, if \(n = 4t + 1 \) is prime one can 2-color \(Z_n \) by coloring \(\langle i, j \rangle \) by the quadratic character of \(i - j \). Although this appears to give good results for small \(n \), the number-theoretic problems raised by asymptotic considerations seem (at present) unresolvable.

Theorem 2. If, for some \(p, 0 \leq p \leq 1 \),

\[\binom{n}{k} p^{\binom{k}{2}} + \binom{n}{l} (1 - p)^{\binom{l}{2}} < 1 \]

(9)

then \(R(k, l) > n \).

Proof. We use the Existence argument of Theorem 1, replacing (5) by

\[P \{ \langle i, j \rangle \text{ is red} \} = p. \]

(10)

For \(S, |S| = k \) let \(A_S \) be the event "\([S]^2 \) is red," and for \(T, |T| = l \) let \(B_T \) be the event "\([T]^2 \) is blue." Then

\[P\left[\bigvee_S A_S \bigvee_T B_T \right] < 1 \]

(11)

so the desired coloring of \(K_n \) exists.
The following probability result, due to L. Lovász, fundamentally improves the Existence argument in many instances. Let \(A_1, \ldots, A_n \) be events in a probability space \(\Omega \). A graph \(G \) on \([n]\) is said to be a dependency graph of \(\{A_i\} \) if, for all \(i \), the event \(A_i \) is mutually independent of \(\{A_j, (i, j) \in E(G)\} \). \(A_i \) must be not only independent of each \(A_j \) but of any combination of the \(A_j \).

Theorem 3 (Lovász Local Lemma). Let \(A_1, \ldots, A_n \) be events with a dependency graph \(G \). Suppose that there exists \(x_1, \ldots, x_n, 0 < x_i < 1 \), so that, for all \(i \),

\[
\Pr(A_i) < x_i \prod_{(i,j) \in E(G)} (1 - x_j) \, .
\]

(12)

Then \(\Pr(\bigwedge \tilde{A}_i) > 0 \).

Proof. We show that

\[
\Pr\left(A_i \mid \bigwedge_{S \neq i} \tilde{A}_j \right) < x_i
\]

(13)

for all \(i \) and \(S \) with \(i \in S \). If \(S = \emptyset \), (13) follows directly from (12). We use induction on \(|S|\). Fix \(i, S \). Let

\[
U = \{ j: (i, j) \in E(G) \} ,
\]

\[
T = S \cap U .
\]

Renumber so that \(T = \{1, \ldots, t\} \). Then

\[
\Pr\left(A_i \mid \bigwedge_{S \neq i} \tilde{A}_j \right) = \frac{\Pr\left(A_i \bigwedge_{T} \tilde{A}_j \bigwedge_{S-T} \tilde{A}_j \right)}{\Pr\left(\bigwedge_{T} \tilde{A}_j \bigwedge_{S-T} \tilde{A}_j \right)}
\]

(14)

by the general equality \(\Pr(A \mid BC) = \Pr(AB \mid C)/\Pr(B \mid C) \). We bound

\[
\Pr\left(A_i \bigwedge_{T} \tilde{A}_j \bigwedge_{S-T} \tilde{A}_j \right) \leq \Pr\left(A_i \bigwedge_{S-T} \tilde{A}_j \right) = \Pr(A_i)
\]

(15)

by the assumption of independence. The denominator satisfies
\[P(\tilde{A}_1 \ldots A_t \mid \bigwedge_{s \in T} \tilde{A}_s) = \prod_{r=1}^t P(\tilde{A}_r \mid \tilde{A}_{r+1} \ldots \tilde{A}_t \bigwedge_{s \in T} \tilde{A}_s) > \prod_{r \in T} (1 - x_r) \]

(16)

by the induction assumption (13). Combining the two bounds gives

\[P(A_i \mid \bigwedge_s \tilde{A}_s) < \frac{P(A_i)}{\prod_{r \in T} (1 - x_r)} < x_i \prod_{r \in U - T} (1 - x_r) \leq x_i. \]

(17)

completing the induction. Finally,

\[P(\tilde{A}_1 \ldots \tilde{A}_n) = \prod_{i=1}^n P(\tilde{A}_i \mid \tilde{A}_1 \ldots \tilde{A}_{i-1}) > 0. \]

(18)

A special case of particular interest occurs when the \(A_i \) are symmetric in some sense and all \(x_i \) are chosen to be equal.

Corollary 4. Let \(A_1, \ldots, A_n \) be events with \(P(A_i) \leq p \) for all \(i \) and with a dependency graph \(G \) of maximal degree at most \(d \), that is, for all \(i \),

\[|\{ j : \{i, j\} \in E(G)\}| \leq d. \]

If

\[ep(d + 1) < 1 \]

(19)

then \(P(\bigwedge \tilde{A}_i) > 0. \)

Proof. We apply Theorem 3 with \(x_1 = \cdots = x_n = 1/(d + 1) \). Condition (12) then becomes

\[p < \frac{d^d}{(d + 1)^{d + 1}}, \]

which we have weakened slightly to facilitate applications.

We apply this method to the proof of Theorem 1. We define a dependency graph on the events \(A_S \), defined in the proof by joining \(S \) to \(T \) if \(|S \cap T| \geq 2 \). The dependency graph is regular, and
\[d = |\{ T : |T \cap S| \geq 2 \}| \leq \binom{k}{\gamma} \binom{n}{k - \gamma}, \]
\[p = 2^{1 - \binom{k}{2}}. \]

If \(ep(d + 1) < 1 \) then \(R(k) > n \). Thus (after an asymptotic analysis)
\[R(k) > k^{2^{k/2}} \left[\frac{\sqrt{2}}{e} + o(1) \right]. \quad (20) \]

The best asymptotic bounds on \(R(k, l) \) are obtained in the case \(l = 3 \).

Theorem 5. \(ck^2/(\log k)^2 \leq R(3, k) \leq c'k^2/\log k \).

We do not prove Theorem 5 in this book. References may be found at the end of this chapter.

For fixed \(l > 3 \) it is conjectured that \(R(k, l) = k^{l-1+o(1)} \), asymptotically in \(k \).

4.3 Van der Waerden Numbers

Recall that \(W(k, r) \) denotes the minimal integer so that if \([W]\) is \(r \)-colored there exists a monochromatic arithmetic progression of \(k \)-terms. The nontrivial exact values of \(W \) known are \(W(3, 2) = 9 \), \(W(4, 2) = 35 \), \(W(3, 3) = 27 \), \(W(3, 4) = 76 \), \(W(5, 2) = 178 \).

Let \(W(k) = W(k, 2) \). The best known upper bound for \(W(k) \) is a wowsor function (see Section 2.7) given by adapting the Shelah proof of Section 2.6 to van der Waerden's theorem. Nearly identical asymptotic lower bounds for \(W(k) \) are achieved by the following two theorems, with completely different methods of proof. Perhaps \(W(k) \) is actually of this order of magnitude—though this is scant evidence on which to base a conjecture!

Theorem 6. If \(p \) is prime, \(W(p + 1) \geq p2^p \).

Proof. We show only the slightly weaker result \(W(p + 1) \geq p(2^p - 1) \). Let \(GF(2^p) \) denote the finite field with \(2^p \) elements, and fix \(\alpha \in GF(2^p) \), \(\alpha \) primitive [i.e., \(\alpha \) generates the cyclic multiplicative group \(GF(2^p)^* \)]. Fix a basis \(v_1, v_2, \ldots, v_p \) for \(GF(2^p) \) over \(\mathbb{Z}_2 \). For any integer \(j \) set
\[\alpha^j = a_{1j}v_1 + a_{2j}v_2 + \cdots + a_{pj}v_p, \quad a_{ij} \in \mathbb{Z}_2. \quad (21) \]

Let
Van der Waerden Numbers

\[C_0 = \{ j : a_{ij} = 0, 1 \leq j \leq p(2^p - 1) \}, \]
\[C_1 = \{ j : a_{ij} = 1, 1 \leq j \leq p(2^p - 1) \}. \]

(22)

Claim. \((C_0, C_1)\) is a 2-coloring of \(\{1, \ldots, p(2^p - 1)\}\) with no monochromatic AP of length \(p + 1\). Suppose that \(\{a, a + b, a + 2b, \ldots, a - pb\} \subseteq C_k, k = 0 \text{ or } 1\). Set \(\beta = \alpha^a, \gamma = \alpha^b\). Since \(1 \leq a < a + pb \leq p(2^i - 1), b < 2^p - 1\) so \(\gamma \neq 1\). Then \(\beta, \beta \gamma, \ldots, \beta \gamma^{p-1}\) have the same first coordinate as vectors.

Case 1. \(k = 0\). Then \(\beta, \beta \gamma, \ldots, \beta \gamma^{p-1}\) are \(p\) vectors in a \((p-1)\)-dimensional space (since the first coordinate is 0), and hence they are dependent. Thus there exist \(a_0, a_1, \ldots, a_{p-1} \in Z_2\), not all 0, such that

\[\sum_{i=0}^{p-1} a_i (\beta \gamma^i) = 0, \]

and hence

\[\sum_{i=0}^{p-1} a_i \gamma^i = 0. \]

But \(\gamma \in GF(2^p), \gamma \neq 0, 1\), so \(\gamma\) has degree \(p\) over \(GF(2)\), a contradiction.

Case 2. Assume that \(\beta, \beta \gamma, \ldots, \beta \gamma^p\) have first coordinate 1. Now \(\beta(\gamma - 1), \beta(\gamma^2 - 1), \ldots, \beta(\gamma^p - 1)\) lie in \((p-1)\)-dimensional space so

\[\sum_{i=0}^{p} a_i [\beta(\gamma^i - 1)] = 0, \]

where \(a_i \in Z_2\), and some \(a_i \neq 0\). Dividing by \(\beta(\gamma - 1)\), we again find \(\gamma\) satisfying a polynomial of degree at most \(p - 1\), a contradiction.

Theorem 7. \(W(k) > [(2^k/2e k)(1 + o(1))].\)

Proof. Randomly 2-color \([n]\), each \(i\) being colored red with probability \(\frac{1}{2}\). For each AP \(S\) of \(k\)-terms let \(A_S\) be the event "\(S\) is monochromatic." Define a dependency graph, joining \(S\) and \(T\) iff \(S \cap T \neq \emptyset\). If \(n < (2^k/2e)(1 - \epsilon)\) then, when Corollary 4 with \(d = nk\) is applied, the event \(\bigwedge S A_S\) has nonzero probability so that there is a 2-coloring of \([n]\) without monochromatic APs of size \(k\).

The straightforward Existence argument in this instance would yield the much weaker result \(W(k) > 2^{(k/2)(1+o(1))}\).
Asymptotic evaluation of $W(k, t)$ for fixed k is closed connected to the corresponding Turán problems. Define

$$v_k(n) = \max |S|: S \subset [n], \quad S \text{ does not contain an AP of } k\text{-terms}.$$

We shall consider only the case $k = 3$ and set $v(n) = v_3(n)$ for convenience.

Theorem 8. $ne^{-c\sqrt{\log n}} < v(n) < cn/\log\log n.$

The upper bound is due to K. Roth. The proof requires a relatively small modification of his proof given in Section 2.5 and is not presented here. We give the lower bound due to F. A. Behrend. For $d \geq 1$ we may write any $a, 1 \leq a \leq n$, to the base $(2d + 1)$:

$$a = a_0 + a_1(2d + 1) + \cdots + a_k(2d + 1)^k, \quad 0 \leq a_i \leq 2d.$$

Set

$$N(a) = \left[\sum_{i=0}^{k} a_i^2 \right]^{1/2}, \quad \text{where } a = (a_0, \ldots, a_k).$$

For $s \geq 1$ set

$$A = A_{n,d,s} = \{ a: 1 \leq a \leq n, 0 \leq a_i \leq d \quad \text{for all } i, N(a)^2 = s \}. \quad (23)$$

For all n, d, s the set A contains no three-term arithmetic progression, for suppose that

$$a = \sum a_i(2d + 1)^i, \quad b = \sum b_i(2d + 1)^i, \quad c = \sum c_i(2d + 1)^i,$$

where all are in A and $a + b = 2c$. Since all $a_i, b_i, c_i \leq d$, there is no carrying in $a + b$ or $2c$ so $a_i + b_i = 2c_i$ for $0 \leq i \leq k$. Then

$$N(a) = N(b) - N[\frac{1}{2}(a + b)],$$

which is possible only if a and b are proportional and, since $N(a) = N(b)$, identical, that is, $a = b = c$. The proof now becomes nonconstructive. For a given d
The Symmetric Hypergraph Theorem

\[k \sim \frac{\log n}{\log(2d + 1)} , \]

and there are at most \(d^k \) possible values for \(s \). The union of the \(A_{a,s} \) over all \(s \) contains all sums \(\sum a_i (2d + 1)^i \leq n \), \(0 \leq a_i \leq d \). This is approximately \(n2^{-k} \) elements. Consequently, for some \(s \)

\[\nu(n) \geq |A_{n,d,s}| \geq \frac{n}{d^k 2^k} . \]

(24)

Selecting \(d \) so that \(k \sim \sqrt{\log n} \) maximizes the inequality, completing the proof.

Bounds of \(W(3, t) \) based on Theorem 8 are given by Theorem 13.

4.4 THE SYMMETRIC HYPERGRAPH THEOREM

In Section 1.4 we compared Ramsey theorems and Density theorems. We noted that Density theorems of the appropriate form implied their corresponding Ramsey theorems. We now extend these results and show how results on density functions yield both upper and lower bounds on the corresponding Ramsey functions under appropriate circumstances.

Let \((S, \mathcal{G}) \) be a hypergraph. This means only that \(\mathcal{G} \) is a family of subsets of \(S \). Assume that \(S \) is finite, set \(m = |S| \), and assume that \(\mathcal{G} \) does not contain the null set or singleton sets. Call \(T \subseteq S \) free if it contains no subset \(A \in \mathcal{G} \). Set:

\[\nu = \nu(S) = \text{the maximal } |T| , \quad T \subseteq S, \quad T \text{ free} , \]

\[\chi = \chi(S) = \text{the minimal } c \text{ so that one may partition } \]

\[S = T_1 + \cdots + T_c , \quad \text{all } T_i \text{ free} . \]

Here \(\chi(S) \) is the usual definition of the chromatic number of a hypergraph. If \(S \) is \(\chi \)-colored some color is used at least \(m/\chi \) times. Hence we have the following theorem.

Theorem 9. \(m/\nu \leq \chi \).

We call \((S, \mathcal{G}) \) symmetric if the automorphism group \(G \) of \(S \) is transitive. (A permutation \(\sigma \) of \(S \) is called an automorphism if \(A \in \mathcal{G} \) implies \(\sigma A \in \mathcal{G} \). The group \(G \) is transitive if, for all \(s, s' \in S \), there exists \(\sigma \in G \) so that \(\sigma s = s' \).) For symmetric hypergraphs the following theorem allows us to use \(\nu \) to get upper bounds on \(\chi \).
Theorem 10 (Symmetric Hypergraph Theorem). If \((S, \mathcal{G})\) is a symmetric hypergraph with \(m, \nu, \chi, G\) as defined above, then

\[
m \left(1 - \frac{\nu}{m}\right)^{\chi - 1} \geq 1,
\]

that is,

\[
\chi \leq 1 + \frac{\log m}{-\log(1 - \nu/m)}.
\] (25)

We note that, for \(\nu/m \ll 1\), we may use the approximation

\[
\chi \approx \frac{m}{\nu} \log m.
\] (26)

Lemma. Let \(U\) and \(T\) be arbitrary subsets of a symmetric hypergraph \(S\) with automorphism group \(G\). There exists \(\sigma \in G\) so that

\[
|\sigma T \cap U| \geq \frac{|T||U|}{m}.
\]

Proof. We double-count triples \((\sigma, t, u)\), \(\sigma \in G\), \(t \in T\), \(u \in U\), so that \(\sigma t = u\). We fix \(t, u\). By the transitivity of \(G\), \(\sigma t = u\) for precisely \(|G|/m\) automorphisms \(\sigma \in G\). This gives precisely \(|T||U||G|/m\) triples. For some fixed \(\sigma\), at least \(|T||U|/m\) pairs \((t, u)\) satisfy \(\sigma t = u\) and each pair has a distinct \(u \in \sigma T \cap U\). (This proof does not construct an appropriate \(\sigma\) but only establishes its existence.)

Proof of Theorem 10. Fix \(T \subseteq S\), \(|T| = \nu\), \(T\) free. Let \(r\) be that integer satisfying

\[
m \left(1 - \frac{\nu}{m}\right)^r < 1
\]

and

\[
m \left(1 - \frac{\nu}{m}\right)^{r-1} \geq 1.
\] (27)

We define a sequence \(\sigma_1, \sigma_2, \ldots\) inductively. Having defined \(\sigma_1, \ldots, \sigma_i\), we set

\[
U_i = \{s \in S: s \neq \sigma_j t \text{ for } j \leq i, t \in T\}.
\]

We define \(U_0 = S\). By Lemma 11 we find \(\sigma_{i+1}\) so that
\[|\sigma_{i+1} T \cap U_i| \geq \frac{\nu}{m} |U_i|. \]

Therefore

\[|U_{i+1}| \leq \left(1 - \frac{\nu}{m} \right) |U_i| \]

for all \(i \) so that \(U_r = \emptyset \). This implies that

\[S = \sigma_1 T \cup \cdots \cup \sigma_r T, \]

and, since each \(\sigma \in G \) is an automorphism, each \(\sigma T \) is free. The \(\sigma T \) are not necessarily disjoint, but we may set \(T_i = \sigma_i T - \cup_{j<i} \sigma_j T \) to get an \(r \)-coloration of \(S \). Thus \(\chi \leq r \), and Theorem 10 follows from the definition of \(r \).

In asymptotic calculations we often have a sequence of hypergraphs \((S_m, \mathcal{D}_m)\), \(|S_m| = m\) (not necessarily defined for all \(m \)), and functions \(\nu(m), \chi(m) \). Set

\[R_\chi(t) = \text{minimal } m' \text{ so that, for } m \geq m', \chi(m) > t. \]

Define \(f(m) = m/\nu(m) \) and \(g(m) = f(m) \log m \). Assume that \(f(m) \) tends to infinity. Then, essentially,

\[g^{-1}(t) \leq R_\chi(t) \leq f^{-1}(t). \]

The precise statement involves merely an unraveling of the definitions. The inequality (29) is correct within a \([1 + o(1)]\) factor if the sequence is reasonably smooth. Even when \(f(m) \) is bounded a careful examination of the Symmetric Hypergraph theorem gives a lower bound for \(R_\chi(t) \), though there may be no upper bound since the corresponding Ramsey theorem may fail to hold.

In Graph Ramsey theory (see Section 5.7) the results obtained above are often useful. Let \(G \) be a finite graph. Set \(T_G(n) \) equal to the maximal number of edges that a graph on \(n \) points may have and not contain a copy of \(G \). Let \(t_G(n) = T_G(n) / \binom{n}{2} \) for convenience. Let \(\chi_G(n) \) equal the minimal number of colors required to edge-color \(K_n \) without forming a monochromatic \(G \). We form a hypergraph \((S, \mathcal{D})\). Let \(S = [n]^2 \), that is, the edges of \(K_n \) are the vertices of \(S \). A set \(X \subseteq S \) is a hyperedge if \(X \) is the set of edges of a copy of \(G \). \((S, \mathcal{D})\) is a symmetric hypergraph, as the full symmetric group on \([n]\) acts transitively on \(S \). A direct application of the Symmetric Hypergraph theorem yields the following corollary.
Corollary 11. If \(\lim t_G(n) = 0 \) then

\[
\frac{1}{t_G(n)} \leq \chi_G(n) < \frac{(1 + o(1)) \ln(n)}{t_G(n)}.
\]

For example, when \(G \) is the 4-cycle it is known that \(T_G(n) \sim cn^{3/2} \) so

\[
cn^{1/2} < \chi_G(n) < cn^{1/2} \log n
\]

and

\[
\frac{ct^2}{(\log t)^2} < R_G(t) < ct^2,
\]

where \(K_G(t) \) is the minimal \(n \) so that if \(K_n \) is \(t \)-colored there always exists a monochromatic \(G \).

Applying the Symmetric Hypergraph theorem to the function \(W(3,t) \) of Section 4.3 requires some further preparation. We define a hypergraph \((S_n, \varnothing_n) \) with \(S_n = [n] \) and \(A \in \varnothing_n \) iff \(A \) is a three-term AP in \([n]\). We embed \(S_n \) into a symmetric hypergraph \(S'_n \). The vertex set of \(S'_n \) is \(Z_{2n-1} \). A set \(A \) is a hyperedge of \(S'_n \) iff \(A \) is a three-term AP in \(Z_{2n-1} \) and is contained in a block of \(n \) consecutive terms. For example, if \(n = 50, \{3,5,7\} \) and \(\{98,1,3\} \) are hyperedges but \(\{0,40,80\} \) is not. Now the maps \(\sigma_j : x \to x + i \) defined in \(Z_{2n-1} \) are automorphisms so that \(S'_n \) is a symmetric hypergraph.

From the original problem, let \(\nu(n) \) be the maximal cardinality of a three-term progression-free subset of \([n]\), and \(\chi(n) \) be the minimal number of colors required to color \([n]\) so that there is no monochromatic three-term AP. From Theorem 9,

\[
\chi(n) \geq \frac{n}{\nu(n)}
\]

immediately. Let \(\nu'(n) \) and \(\chi'(n) \) be the \(\nu \) and \(\chi \) values for the \(Z_{2n-1} \) hypergraph. First note that

\[
\nu(n) \leq \nu'(n) \leq 2\nu(n).
\]

The first inequality is immediate since \(S_n \) is a subhypergraph of \(S'_n \). For the second, note that if \(T \) is free in \(S'_n \) then \(T \cap \{1, \ldots, n\} \) and \(T \cap \{n+1, \ldots, 2n-1\} \) have no three-term AP in \(Z \) so \(|T| \leq \nu(n) + \nu(n-1) \leq 2\nu(n) \).
Theorem 12. $\chi(n) < 2(n \log n) / \nu(n)(1 + o(1))$.

Proof. $\chi(n) \leq \chi'(n)$ as S_n is a subhypergraph of S'. By the Symmetric Hypergraph theorem

$$\chi'(n) < \frac{2n - 1}{\nu'(n)} \log(2n - 1)(1 + o(1))$$

$$< \frac{2n \log n}{\nu(n)} - (1 + o(1)).$$

Applying the bounds of Theorem 8 and (29), we obtain the following theorem.

Theorem 13. $t^{\log t} < W(3, t) < 2^t$.

4.5 Schur and Rado Numbers

Let $f(t)$ denote the maximal n so that it is possible to t-color $[n]$ with no monochromatic solution to the equation $x + y = z$. The finiteness of $f(t)$ is guaranteed by Schur's theorem. An examination of Proof 1 of Schur's theorem yields

$$f(t) \leq R(3, \ldots, 3) - 2,$$ \hspace{1cm} (32)

where R is the Ramsey function and there are t 3's. Schur notes that a t-coloring

$$[n] = C_1 + \cdots + C_t$$

without a monochromatic $x + y = z$ induces a similar coloring

$$[3n + 1] = C'_1 + \cdots + C'_t + C'_{t+1}$$

by setting

$$C'_i = C_i \cup (C_i + (2n + 1)), \hspace{1cm} 1 \leq i \leq t,$$

$$C'_{t+1} = \{n + 1, n + 2, \ldots, 2n + 1\}.$$ \hspace{1cm} (33)

Since $f(1) = 1$ the construction outlined above gives $f(t) \geq (3^t - 1)/2$. It is not known whether $f(t)^{1/t}$ is bounded. The known exact values for f are $f(1) = 1, f(2) = 4, f(3) = 13$, and $f(4) = 44$, the last requiring a computer.
The evaluation of $f(5)$ appears to be a difficult computational problem.

For any integral m by n matrix A, let $f_A(t)$ denote the analogous function defined for the system $Ax = 0$ and let $f'_A(t)$ denote this function when a distinct solution (i.e., with x_1, \ldots, x_n all different) is required. Rado's theorem (Chapter 3, Theorem 4, Corollary 8½) gives conditions for f_A and f'_A to be defined for all t. Few general results on the growth rate of these functions are known. If A is not regular no general means is known to determine the minimal t for which there exists a t-coloring of N without a monochromatic solution.

Let $\nu_A(n)(\nu'_A(n)))$ be the maximal $|T|$, $T \subseteq [n]$, T not containing a solution (distinct solution) to $Ax = 0$.

Theorem 14. $\nu_A(n)/n \to 0$ iff $A1 = 0$. Furthermore, if $A1 = 0$ and there exists a distinct solution $(\lambda_1, \ldots, \lambda_m)$, then $\nu'_A(n) \to 0$.

Proof. If $A1 \neq 0$ then, for some $m \in N$, $A1 \neq 0$ (modulo m). For any n,

$$T = \{i: 1 \leq i \leq n, i \equiv 1 \pmod{m}\}$$

contains no solution so $\nu_A(n)/n \geq m^{-1}$. If $A1 = 0$ then $\nu_A(n) = 0$ since, for any a, $x_i = a$ gives a solution. Furthermore, if $(\lambda_1, \ldots, \lambda_m)$ is a distinct solution, set $k = 1 + \max|\lambda_i - \lambda_j|$. If $T \subseteq [n]$ contains an AP of length k it contains a distinct solution $x_i = a + \lambda_i d$. Now Szemerédi's theorem (Section 6.1) implies that $\nu_A(n) \to 0$.

In the special case $A = (1, 1, -1)$, the equation $x + y = z$, one can show that $\nu_A(n) = [(n + 1)/2]$.

4.6 PROPERTY B

Ramsey theory may be examined as the study of the chromatic number of certain hypergraphs. Valuable information may be gleaned from some general results on the chromatic number of hypergraphs. A hypergraph \mathcal{A} is called n-uniform if all $A \in \mathcal{A}$ have $|A| = n$. Define $m(n)$ as the minimal cardinality of an n-uniform hypergraph with chromatic number ≥ 2. A hypergraph is said to have Property B if its chromatic number is ≤ 2. It is known that $m(2) = 3$, $m(3) = 7$, the minimal hypergraphs being as follows:

$$\mathcal{Q}_2 = \{\{1, 2\}, \{1, 3\}, \{2, 3\}\},$$

$$\mathcal{Q}_3 = \{\{i, i + 1, i + 3\}, i \in \mathbb{Z}_7\},$$
Evaluation of $m(4)$ also appears to be a difficult computational problem. Asymptotic lower bounds on $m(n)$ are given by an Existence argument.

Theorem 15. $m(n) \geq 2^{n-1}$.

Proof. Let $\mathcal{F} = \{S_1, \ldots, S_m\}$ be an n-family. Consider a random 2-coloring of $\cup \mathcal{F}$, each x independently colored red or blue with probability $\frac{1}{2}$. Since $|S_i| = n$,

$$\text{Prob}[S_i \text{ is monochromatic}] = 2^{1-n},$$

$$\text{Prob}[\text{some } S_i \text{ is monochromatic}] \leq m 2^{1-n}.$$

For $m < 2^{n-1}$ this probability is less than unity; hence it must be possible to 2-color \mathcal{F} so that no S_i is monochromatic.

The best asymptotic bounds currently known are

$$c 2^{n^{1/3}} \leq m(n) \leq c' 2^n n^2$$ \hspace{1cm} (34)

Many Ramsey function bounds can be derived from Theorem 15. We examine $R(k)$ as an example. Given k and n, let $S = [n]^2$ and

$$\mathcal{F} = \{\{T\}^2 : |T| = k\}$$

the cliques of size k. Then \mathcal{F} is a $\binom{k}{2}$-family, $|\mathcal{F}| = \binom{n}{k}$ so, if

$$m\left(\binom{k}{2}\right) > \binom{n}{k},$$ \hspace{1cm} (35)

the family \mathcal{F} may be properly 2-colored, that is, $R(k) > n$.

The Lovász Local lemma has an important implication for Property B.

Theorem 16. Let \mathcal{F} be an n-family. Suppose that every $S \in \mathcal{F}$ intersects at most d sets $T \in \mathcal{F}$. if

$$d + 1 < \frac{2^{n-1}}{e},$$

then \mathcal{F} may be 2-colored.
Proof. Let \mathcal{F} be 2-colored randomly as in the proof of Theorem 15. For $S \in \mathcal{F}$ let A_S be the event "S is monochromatic." Define a dependency graph joining A_S and A_T iff $S \cap T \neq \emptyset$. Apply Corollary 4 with $p = 2^{1-\epsilon}$. Then $P(\bigwedge A_S) > 0$, and therefore \mathcal{F} may be 2-colored.

Theorem 7 is an immediate corollary of the result obtain above.

4.7 Higher Ramsey Numbers

We recall that $R_k(l)$ is the minimal n such that if $[n]^k = C_1 + C_2$ there exist i and S with $|S| = l$ and $[S]^k \subseteq C_i$. No exact values of $R_k(l)$ are known for $k \geq 3$. In this section we find asymptotic estimates of $R_k(l)$ for k fixed. We modify slightly the function TOWER of Section 2.7.

Definition. The "tower functions" $t_i(x)$ are defined inductively by

$$t_1(x) = x,$$

$$t_{i+1}(x) = 2^{t_i(x)}$$

so that, for example, $t_3(x) = 2^{2^x}$. For $k = 2$ we have shown that

$$(\sqrt{2} + o(1))^l < R_2(l) \leq (4 + o(1))^l.$$

For k fixed, the proof of Ramsey's theorem gives

$$\log_2 R_k(l) \leq R_{k-1}(l)^{k-1}$$

(37)

for l sufficiently large. (Actually this is a gross overestimate, but it suffices for our purposes.) By induction

$$R_k(l) \leq t_k(c_k l)$$

(38)

for all $k \geq 2$. The lower bound requires the following lemma, which transforms a coloring of $[n]^k$ into a coloring of $[2^n]^{k+1}$.

Lemma 17 (Stepping-Up Lemma). If $\not\rightarrow (l)^k$ and $k \geq 3$ then

$$2^n \not\rightarrow (2l + k - 4)^{k+1}.$$

Proof. Fix a 2-coloring $[n]^k = C_1 + C_2$ with no monochromatic l-element $S \subseteq [n]$. Set
\[T = \{(\gamma_1, \ldots, \gamma_n); \gamma_i = 0 \text{ or } 1\} . \]

For \(\varepsilon = (\gamma_1, \ldots, \gamma_n), \varepsilon' = (\gamma'_1, \ldots, \gamma'_n), \varepsilon \neq \varepsilon' \), we define

\[\delta(\varepsilon, \varepsilon') = \max\{i; \gamma_i \neq \gamma'_i\} \]

and order \(T \) by \([\text{setting } i = \delta(\varepsilon, \varepsilon')]\):

\[\varepsilon < \varepsilon' \quad \text{if } \gamma_i = 0, \gamma'_i = 1, \]
\[\varepsilon' < \varepsilon \quad \text{if } \gamma_i = 1, \gamma'_i = 0. \]

The bijection between \(T \) and \([0, 2^n - 1] \) given by associating \((\gamma_1, \ldots, \gamma_n)\) with \(\Sigma_{i=1}^n \gamma_i 2^{n-1} \) associates the above "<" on \(T \) with the "usual <." Note that:

(i) if \(\varepsilon_1 < \varepsilon_2 < \varepsilon_3 \) then \(\delta(\varepsilon_1, \varepsilon_2) \neq \delta(\varepsilon_2, \varepsilon_3) \),
(ii) if \(\varepsilon_1 < \varepsilon_2 < \cdots < \varepsilon_n \) then \(\delta(\varepsilon_1, \varepsilon_n) = \max_{1 \leq i < n} \delta(\varepsilon_i, \varepsilon_{i+1}). \)

Now define a decomposition \([T]^{k+1} = I_1 + I_2\). Let \(E = \{\varepsilon_1, \ldots, \varepsilon_{k+1}\} \subset [T]^{k+1}\). Set \(\delta_t = \delta(\varepsilon_i, \varepsilon_{i+1}), 1 \leq i \leq k \). If the \(\delta_i \) are monotonic (i.e., \(\delta_1 < \delta_2 < \cdots < \delta_k \) or \(\delta_1 > \delta_2 > \cdots > \delta_k \)) place \(E \in I_1 \); iff \(\{\delta_1, \ldots, \delta_k\} \subset C_1 \), that is, color the \(\varepsilon \)'s by the \(\delta \)'s. If \(\delta_1 < \delta_2 > \delta_3 \) place \(E \in I_1 \). If \(\delta_1 > \delta_2 < \delta_3 \) place \(E \in I_2 \). The remaining \(E \) may be placed arbitrarily.

Let \(S = \{\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{2l+k-4}\} \subset I_1 \), and derive a contradiction. Set \(\delta_i = \delta(\varepsilon_i, \varepsilon_{i+1}) \) for \(1 \leq i \leq 2l + k - 4 \).

Case 1. There exists \(j \) so that the subsequence

\[\delta_j, \delta_{j+1}, \ldots, \delta_{j+l-1} \]

is monotonic. First assume that \(\delta_j > \delta_{j+1} > \cdots > \delta_{j+l-1} \). Since this \(l \)-set cannot have all its \(k \)-subsets in the same class, there exist \(j \leq i_1 < i_2 < \cdots < i_k \leq j + l - 1 \) so that

\[\{\delta_{i_1}, \delta_{i_2}, \ldots, \delta_{i_k}\} \subset C_2. \]

A contradiction is found by "stepping up" to the set

\[A = \{\varepsilon_{i_1}, \varepsilon_{i_2}, \ldots, \varepsilon_{i_k}, \varepsilon_{i_k+1}\}. \]

For \(1 \leq t < k \),
\[\delta(\varepsilon_i, \varepsilon_{i+1}) = \max_{i = m \leq i \leq l+1} \delta_m \]

\[= \delta_{i_l} \quad \text{(by monotonicity)} \]

and

\[\delta(\varepsilon_i, \varepsilon_{i+1}) = \delta_{i_k}. \]

The \(\delta_i \) are monotonic so \(A \) is colored "by the \(\delta, \)" and \(A \in I_2. \) If \(\delta_i < \delta_2 < \cdots < \delta_{j+i-1} \) the same argument holds with

\[A = \{ \varepsilon_{i_l}, \varepsilon_{i_l+1}, \varepsilon_{i_{k+1}}, \ldots, \varepsilon_{i_k-1} \}. \]

Case 2 = Not Case 1. For \(2 \leq i \leq 2l - 3 \) call \(i \) a local max if \(\delta_{i-1} < \delta_i > \delta_{i+1}, \) and a local min if \(\delta_{i-1} > \delta_i < \delta_{i+1}. \) There can be no local min \(i \) since then \(\{ \varepsilon_{i-1}, \varepsilon_i, \varepsilon_{i+1}, \ldots, \varepsilon_{i+k-1} \} \subseteq I_2. \) Between any two local max's there must be a local min (a result well known to teachers of elementary calculus), and thus there is at most one local max \(i. \) Either \(i \leq l - 1 \) or \(i \geq l \) or there is no \(i, \) but all roads lead back to Case 1.

Hence \([S]^{2^k} \not\subseteq I_1. \) Similarly, \([S]^{2^k} \not\subseteq I_2, \) completing the proof of Lemma 17. We let the reader test his or her understanding by seeing why \(k \geq 3 \) was required.

The best known bound for \(R_3(l) \) is

\[R_3(l) \geq 2^{\Omega^2}, \quad (39) \]

proved by a simple Existence argument. By the Stepping-Up lemma we have the following theorem.

Theorem 18. \(R_k(l) \approx t_{k-1}(c_k^2l^2) \) for \(k \geq 4. \)

Open Problem. Is \(R_3(l) \geq t_3(cl) ? \)

An affirmative answer would imply that \(R_k \) is of the order \(t_k \) for all \(k \geq 3. \) The situation is surprisingly different if we allow four colors.

Theorem 19. If \(n \Rightarrow (l)^2 \) then \(2^n \Rightarrow (l + 1)^3. \)

Proof. Fix a 2-coloring \([n]^2 = C_1 + C_2 \) with no monochromatic \(l \)-element \(S \subseteq [n]. \) Define \(T, \delta(\varepsilon, \varepsilon'), \) and "<" as in the proof of Lemma 17. Our 4-coloring \([T]^3 - I_1 + I_2 \uparrow I_3 \uparrow I_4 \) is defined by...
\{\varepsilon_1, \varepsilon_2, \varepsilon_3\} \in I_1 \quad \text{iff} \quad \{\delta_1, \delta_2\} \in C_1 \quad \text{and} \quad \delta_1 < \delta_2.

\{\varepsilon_1, \varepsilon_2, \varepsilon_3\} \in I_2 \quad \text{iff} \quad \{\delta_1, \delta_2\} \in C_1 \quad \text{and} \quad \delta_1 > \delta_2.

\{\varepsilon_1, \varepsilon_2, \varepsilon_3\} \in I_3 \quad \text{iff} \quad \{\delta_1, \delta_2\} \in C_2 \quad \text{and} \quad \delta_1 < \delta_2.

\{\varepsilon_1, \varepsilon_2, \varepsilon_3\} \in I_4 \quad \text{iff} \quad \{\delta_1, \delta_2\} \in C_2 \quad \text{and} \quad \delta_1 > \delta_2.

Let \(S = \{\varepsilon_1, \ldots, \varepsilon_{l+1}\}\) be arbitrary. We assume that \([S] \subset I_1\) and derive a contradiction. (The other three cases are similar and are omitted.) Let \(\delta_i = \delta(\varepsilon_i, \varepsilon_{i+1})\) for \(1 \leq i \leq l\). For \(i \leq l - 1\), \(\{\varepsilon_i, \varepsilon_{i+1}, \varepsilon_{i+2}\} \in I_1\) so

\[\delta_i = \delta(\varepsilon_i, \varepsilon_{i+1}) < \delta(\varepsilon_{i+1}, \varepsilon_{i+2}) = \delta_{i+1}.\]

The \(\delta\)'s thus form a monotonically increasing sequence. For arbitrary \(1 \leq i < j \leq l\), \(\{\varepsilon_i, \varepsilon_{i+1}, \varepsilon_{j+1}\} \in I_1\), and hence

\(\{\delta(\varepsilon_i, \varepsilon_{i+1}), \delta(\varepsilon_{i+1}, \varepsilon_{j+1})\} = \{\delta_i, \delta_j\} \in C_1.\)

Now \(\{\delta_1, \ldots, \delta_l\}\) would form a monochromatic set. The contradicts our hypothesis on the coloring of \([n]\).²

REMARKS AND REFERENCES

§3. Asymptotic values for the van der Waerden function are given by Berlekamp [1968], Erdös and Rado [1952], and Moser [1960]. Exact values can be found in Chvátal [1970]. Roth [1953] gives the upper bound to \(v_s(n)\). Lower bounds to \(v_s(n)\) are given by Salem and Spencer [1942], Behrend [1946], and Moser [1953].

§4. We do not believe that the Symmetric Hypergraph theorem, and its applications to Graph Ramsey theory, have been published explicit-
ly, though they have been part of the "folk literature" for some time.

§5. Analytic bounds on $\nu_A(n)$ for certain A are given by Roth [1954], [1967] and Choi [1971].

§6. Basic results on Property B appear in a series of papers by Erdős [1963a], [1964a], [1969]. The improved lower bound can be found in Beck [1978].

§7. Erdős and Rado [1952] give explicit upper bounds for $R_k(n)$. Lower bounds for $R_k(n)$ are due to Erdős and Hajnal.
5

Particulars

5.1 BIPARTITE RAMSEY THEOREMS

Let $K_{m,n}$ denote the complete bipartite m by n graph; that is, $K_{m,n}$ consists of $m + n$ vertices, partitioned into sets of size m and n, and the mn edges between them. We give an analogue to Ramsey’s theorem for bipartite graphs.

Theorem 1. For all a and r there exists m so that if $K_{m,m}$ is r-colored there exists a monochromatic $K_{a,a}$.

Theorem 1 is not unexpected, and Theorem 5 gives a much stronger result. What is surprising is that Theorem 1 may be proved as a Density theorem.

Theorem 2. For all integers a and all $e > 0$ there exists m so that if G is a subgraph of $K_{m,m}$ with at least em^2 edges then G contains a $K_{a,a}$.

Zarankiewicz [1951] defined $k_{a,b}(m, n)$ as the minimal e so that if G is a subgraph of $K_{m,n}$ and contains at least e edges then G contains a $K_{a,b}$. Alternatively, it is the minimal e so that any m by n 0–1 matrix with at least e 1’s contains an a by b submatrix of all 1’s. For convenience, define $k_a(n) = k_{a,a}(n, n)$.

Theorem 3. If $n \binom{e/n}{a} > (a - 1) \binom{n}{a}$ then $k_a(n) \leq e$.

Proof. By a second derivative calculation, $\binom{x}{a}$ is a concave function for any positive integer a. Fix n, a, e satisfying the inequality. Let T (top) and B (bottom) be disjoint sets of n vertices. Let G be a subgraph of the $K_{n,n}$ defined on A, B. Assume that G has at least e edges. For $i \in T$, set

$$D_i = \{ j \in B : \{i, j\} \in G \},$$

$$d_i = |D_i|,$$
so that \(\sum_{i \in T} d_i \geq e \). Set

\[
U = \{(i, X) : X \subseteq B, |X| - a, X \subseteq D_i\}.
\]

For each \(i \in T \) there are precisely \(\binom{d_i}{a} \) \(X \)'s such that \((i, X) \in U\).

Now we use a general result on concave functions. If \(f(x) \) is concave and \(\bar{x} = (x_1 + \cdots + x_n)/n \), then

\[
\sum_{i=1}^{n} f(x_i) \geq nf(\bar{x}).
\]

We apply this result with \(f(x) = \binom{x}{a} \):

\[
|U| = \sum_{i \in T} \binom{d_i}{a} \geq n \binom{e/n}{a}.
\]

For \(X \subseteq B, |X| = a \) we set

\[
T_X = \{ i \in T : (i, X) \in U \}.
\]

Then \(|U| = \sum |T_X| \) so that, for at least one of the \(\binom{n}{a} \) summands \(X \),

\[
|T_X| \geq \frac{|U|}{\binom{n}{a}} \geq \frac{n \binom{e/n}{a}}{\binom{n}{a}} > a - 1.
\]

Let \(T_X^* \subseteq T_X \) with \(|T_X^*| = a \). Then \(T_X^* \cup X \) is the desired \(K_{aa} \).

For fixed \(a \), \(k_a(n) = o(n^2) \) so that Theorem 2, and hence also Theorem 1, hold.

The behavior of Zarankiewicz's function has been studied by many authors, including T. Kovari, V. Sós, and P. Turán [1954]; Erdős and Rado [1956]; Guy [1968], [1969]; Guy and Znam [1969]; and Chvátal [1969]. Erdős and Spencer [1974] discuss the asymptotic evaluation of \(k \). Erdős and Moon [1964] show that if \(K_{m,m} \) is \(2 \)-colored the fraction of \(K_{a,b} \) which is monochromatic is, at least asymptotically, \(2^{1-ab} \) for fixed \(a, b \) and \(m, n \) approaching infinity.

The \(k \)-partite analogue of Ramsey's theorem may also be proved as a density result.
Theorem 4. For all \(k, a, \varepsilon \) there exists \(n \) so that, if \(G \subseteq A_1 \times \cdots \times A_k \), \(|A_i| = n\) and if \(|G| \geq \varepsilon n^k\) then there exist \(B_i \subseteq A_i \), \(|B_i| \geq a\) so that \(B_1 \times \cdots \times B_k \subseteq G\).

We do not give the proof (which is similar to that of Theorem 3). The proof is given by Erdős [1964b]; an account is given by Erdős and Spencer [1974].

The following more general result is proved by a simple Induced Coloring argument.

Theorem 5. For all \(k > 0, s_1, \ldots, s_k > 0, a_1, \ldots, a_k > 0 \), and all \(r > 0 \), there exist \(n_1, \ldots, n_k \) so that, if \(|B_i| \geq n_i\), \(1 \leq i \leq k \), and \([B_i]^{s_1} \times \cdots \times [B_k]^{s_k}\) is \(r \)-colored, then there exist \(A_i \subseteq B_i \), \(|A_i| = a_i\) so that \([A_1]^{s_1} \times \cdots \times [A_k]^{s_k}\) is monochromatic.

Proof. Use induction on \(k \). The case \(k = 1 \) is covered by Ramsey’s theorem. Fix all parameters, and let \(n_1, \ldots, n_k \) be defined inductively to meet the conditions of Theorem 5 for \(k, s_1, \ldots, s_k, a_1, \ldots, a_k \), \(r \). Define \(n_k \) so that

\[
n_k \rightarrow (a_k)_{n_k}^{s_k}, \quad \text{where } M = r^T, T = \begin{pmatrix} n_1 \\ s_1 \\ \vdots \\ n_k \\ s_{k-1} \end{pmatrix}.
\]

Let \(|B_i| = n_i\), (if \(|B_i| > n_i\) restrict attention to a subset of cardinality \(n_i \)), and let \(\chi \) be an \(r \)-coloring of \([B_i]^{s_1} \times \cdots \times [B_k]^{s_k}\). Define a coloring \(\chi' \) on \([B_k]^{s_k}\) by

\[
\chi'(U) = \chi'(U')
\]

iff

\[
\chi((C_1, \ldots, C_{k-1}, U)) = \chi((C_1, \ldots, C_{k-1}, U')) \quad \text{for all } C_i \in [B_i]^{s_i}.
\]

Since \(\chi' \) is an \(M \)-coloring, there exists \(A_k \subseteq B_k \), \(|A_k| = a_k\) so that \([A_k]^{s_k}\) is monochromatic under \(\chi' \). Define \(\chi'' \) for \(C_i \in [B_i]^{s_i} \) by

\[
\chi''((C_1, \ldots, C_{k-1} U')) - \chi((C_1, \ldots, C_{k-1}, U)) \quad \text{for any } U \in [A_k]^{s_k}.
\]

By induction there exist \(A_1, \ldots, A_{k-1}\), so that \([A_1]^{s_1} \times \cdots \times [A_{k-1}]^{s_{k-1}}\) is monochromatic under \(\chi'' \) and therefore \([A_1]^{s_1} \times \cdots \times [A_{k-1}]^{s_{k-1}} \times [A_k]^{s_k}\) is monochromatic under \(\chi \).
One should be careful about infinite analogues to Theorem 1. Define

\[\chi: \mathbb{N} \times \mathbb{N} \rightarrow \{ \text{red, blue} \} \]

by

\[\chi(i, j) = \begin{cases} \text{red} & \text{if } i \leq j, \\ \text{blue} & \text{if } i > j. \end{cases} \]

Clearly, there are no infinite subsets \(A, B \) so that \(\chi \) is monochromatic on \(A \times B \). However, this gives essentially the only "counterexample," as the following result shows.

Theorem 6. Let \(\chi \) be a finite coloring:

\[\chi: \mathbb{N} \times \mathbb{N} \rightarrow \{ r \} \]

Then there exists an infinite set \(A = \{ a_i \} \subset \mathbb{N} \) and colors \(c_L, c_G, c_E \) (not necessarily distinct) so that

\[\chi(a_i, a_j) = \begin{cases} c_L & \text{if } i < j, \\ c_G & \text{if } i > j, \\ c_E & \text{if } i = j. \end{cases} \]

Also there exist infinite sets \(B = \{ b_i \}, C = \{ c_i \} \) and colors \(c_{LE}, c_G \) (not necessarily distinct) so that

\[\chi(b_i, c_j) = \begin{cases} c_{LE} & \text{if } i < j, \\ c_G & \text{if } i > j. \end{cases} \]

Proof. We define a coloring \(\chi' \) of \([\mathbb{N}]^2 \) by

\[\chi'((i, j)) = (\chi(i, j), \chi(j, i), \chi(i, i)). \]

As \(\chi' \) is a finite coloring (with \(r^3 \) colors), there exists an infinite set \(A = \{ a_i \} \subset \mathbb{N} \) so that \([A]^2 \) is monochromatic under \(\chi' \). But then \(A \) satisfies the first part of Theorem 6, and setting \(b_i = a_{2i-1} \) and \(c_i = a_{2i} \), we find that the sets \(B = \{ b_i \}, C = \{ c_i \} \) satisfy the second part.

5.2 Induced Ramsey Theorems

A graph \(G = (V(G), E(G)) \) is an *induced* subgraph of \(H = (V(H), E(H)) \) if \(V(G) \subset V(H) \) and \(E(G) = \{ (i, j) \in E(H), i, j \in G \} \). An induced sub-
Induced Ramsey Theorems

graph G consists of all edges of H on a subset of $V(H)$. For convenience, if G is isomorphic to an induced subgraph of H we call G an induced subgraph of H.

Theorem 1 (Vertex-Induced Graph Theorem). For all G, $r > 0$ there exists H so that if the vertices of H are r-colored there exists an induced subgraph G with vertices monochromatic.

Theorem 2 (Edge-Induced Graph Theorem). For all G, $r > 0$ there exists H so that if the edges of H are r-colored there exists an induced subgraph G with edges monochromatic.

We present the proof of Nešetřil and Rödl [1978a]. Another proof, using quite different techniques, is given by Deuber [1975b].

These results are immediate if the word "induced" is removed. Let $|V(G)| = v$, and set $H = K_N$, where $N \to (v)$. An r-coloring of the edges of K_N yields a monochromatic K_r and $G \subseteq K_r$. For vertex coloring we set $H = K_M$, where $M = (v - 1)r + 1$.

We begin by defining a special class of graphs $H_{n,m}$ for all $m, n > 0$. Let $|D| = m$, $|R| = n$. The vertices of $H_{n,m}$ are the n^m functions $f: D \to R$. Two vertices f, g are adjacent if they have no common point, that is,

$$\{f, g\} \in E(H_{n,m}) \text{ if } f(x) \neq g(x) \text{ for all } x \in D.$$

Clearly, the graph $H_{n,m}$ is independent of the specific choice of D and R. More generally, let $|D| = m$, and let R_d be defined for each $d \in D$ so that $|R_d| = n$. We may define the vertices of $H_{n,m}$ as those functions f with domain D so that $f(d) \in R_d$ for each $d \in D$, with adjacency as before. This gives the same graph $H_{n,m}$. Let $A_d \subseteq R_d$, $|A_d| = n'$ for $d \in D$. The set of functions f such that $f(d) \in A_d$ for all $d \in D$ generates a subgraph of $H_{n,m}$. This subgraph is called the restriction of $H_{n,m}$ to $\{A_d\}$. It is isomorphic to $H_{n,m}$.

It may be helpful to think of the elements of $H_{n,m}$ as ordered m-tuples (x_1, \ldots, x_m), $x_i \in R$. Two m-tuples are then adjacent if they have no coordinate in common.

Lemma 3. For all G there exist n, m so that G is an induced subgraph of $H_{n,m}$.

Proof. Let $n = |V(G)|$. Let D be the family of functions γ;

$$\gamma: V(G) \to [n]$$
such that if \(\{i, j\} \in E(G) \) then \(\gamma_i \neq \gamma_j \). The set \(D \) can be considered the family of \(n \)-colorations of \(G \). Set \(m = |D| \). Let \(R = [n] \). Define a map

\[
\Psi: G \rightarrow H_{n,m}, \quad \text{setting } \Psi(v) = \hat{\nu},
\]

where

\[
\hat{\nu}: D \rightarrow R
\]

is defined by

\[
\hat{\nu}(\gamma) = \gamma(v).
\]

Clearly, \(\Psi \) is injective. If \(\{v, w\} \in E(G) \) then \(\gamma v \neq \gamma w \) for all \(\gamma \in D \) so that \(\hat{\nu}(\gamma) \neq \hat{\nu}(\gamma) \) for all \(\gamma \in D \), and hence \(\{\hat{\nu}, \hat{\nu}\} \in E(H_{m,n}) \). Conversely, if \(\{v, w\} \notin E(G) \) there exists \(\gamma \in D \) such that \(\gamma v = \gamma w \). For example, one can color \(v, w \) identically and all other points with distinct colors. Then \(\hat{\nu}(\gamma) = \hat{\nu}(\gamma) \) so \(\{\hat{\nu}, \hat{\nu}\} \notin E(H_{m,n}) \). Thus \(G \) is an induced subgraph of \(H_{n,m} \).

It now suffices to prove the Induced Graph theorems for \(G = H_{n,m} \). The vertex case is immediate. By Section 5.1, Theorem 5, there exists \(N \) so that, if \(H_{n,m} \) is vertex \(r \)-colored, there exists a monochromatic \(H_{n,m} \). (Here we are applying Section 5.1, Theorem 5, with all \(s = 1 \) and thinking of the elements of \(H_{n,m} \) as ordered \(m \)-tuples.) To review, for any \(G, r \) we find \(n, m \) so that \(G \) is an induced subgraph of \(H_{n,m} \), and \(N \) so that an \(r \)-coloring of \(H_{n,m} \) yields a monochromatic \(H_{n,m} \). Then \(H = H_{n,m} \) is the desired graph.

It is the proof of the Edge-Induced Graph theorem that is truly remarkable. No other result in Ramsey theory makes quite as much use of the techniques of the subject.

We will think of \(H_{n,M+1} \) with \(D = \{0\} \cup [M] \). For \(f, g \in H_{n,M+1} \) (i.e., \(f, g: \{0\} \cup [M] \rightarrow [N] \)) we write \(f < g \) if \(f(0) < g(0) \). This is not a total ordering, but adjacent edges are comparable. We define the type of an edge of \(H \) by

\[
t(\{f, g\}) = \{i \in [M]: f(i) > g(i)\}.
\]

An edge coloring of \(H_{n,M+1} \) is called canonical if the color of an edge depends only on its type, that is, if

\[
t(\{f, g\}) = t(\{f', g'\}) \Rightarrow \chi(\{f, g\}) = \chi(\{f', g'\}).
\]
Lemma 4. For all \(n, M, r \) there exists \(N \) so that if \(H_{n,M+1} \) is edge \(r \)-colored there exists \(H_{n,M+1} \subset H_{N,M+1} \) canonically colored.

Proof. Let \(\chi \) be an edge \(r \)-coloring of \(H_{N,M+1} \) (\(N \) to be determined). Let \(A_0, \ldots, A_M \in [N]^2 \), \(A_i = \{a_i, b_i\} \subset H_{N,M+1} \) restricted to \((A_0, \ldots, A_M) \) is isomorphic to \(H_{2,M+1} \), which consists of \(2^M \) disjoint edges, one of each type. We define an \(r^{2^M} \)-coloring \(\chi' \), coloring \((A_0, \ldots, A_M) \) by the color of the \(2^M \) edges under \(\chi \). Formally, for each \(S \subset [M] \) we define (dependent on \(\{A_i\} \)) an edge \(\{f_S, g_S\} \subset H_{N,M+1} \) of type \(S \) by

\[
 f_S(0) = a_0, \quad g_S(0) = b_0, \\
 f_S(i) = \begin{cases}
 b_i & \text{if } i \in S, \\
 a_i & \text{if } i \not\in S,
 \end{cases} \quad g_S(i) = \begin{cases}
 a_i & \text{if } i \in S, \\
 b_i & \text{if } i \not\in S.
 \end{cases}
\]

Then we set

\[
 \chi'(A_0, \ldots, A_M) = \chi'(A_0, \ldots, A_M)
\]

if, for all \(S \subset [M] \), \(\chi(\{f_S, g_S\}) = \chi(\{f'_S, g'_S\}) \).

Now (and, formally, this is the beginning of the proof), we define \(N \) so that under any \(r^{2^M} \)-coloring of \([N]^2 \times \cdots \times [N]^2 \) (\(M + 1 \) factors) there exist \(B_0, \ldots, B_M \) \(|B_i| = n \) so that \([B_0]^2 \times \cdots \times [B_M]^2 \) is monochromatic. The existence of \(N \) follows from Section 5.1, Theorem 5. Given any edge \(r \)-coloring \(\chi \) of \(H_{N,M+1} \), we define \(\chi' \) as above and find a subgraph \(H_{N,M+1} = H_{N,M+1} \) restricted to \((B_0, \ldots, B_M) \) on which \(\chi' \) is monochromatic. This subgraph is colored canonically, for let \(\{f, g\} \subset E(H_{N,M+1}) \) of type \(S \). Then if we set \(A_i = \{f(i), g(i)\} \subset \{f, g\} \subset \{f_S, g_S\} \subset \{f'_S, g'_S\} \) so that \(\chi(\{f, g\}) \) depends only on \(S \).

Lemma 5. For all \(n, m, r \) there exists \(M \) so that if \(H_{n,M+1} \) is edge \(r \)-colored canonically there exists a monochromatic \(H_{n,m+1} \subset H_{n,M+1} \).

Proof. We select \(M \) (by the Extended Hales–Jewett theorem) so that if \(2^{|M|} \) is \(r \)-colored there exist disjoint \(B_0, B_1, \ldots, B_m \subset [M] \), nonempty except possibly for \(B_0 \), so that all

\[
 B_0 \cup \bigcup_{i \in I} B_i, \quad I \subset [m],
\]

are colored the same. A canonical \(r \)-coloring \(\chi \) of \(H_{n,M+1} \) induces an \(r \)-coloring \(\chi' \) of \(2^{|M|} \), coloring \(S \subset [M] \) by the color of all edges of type \(S \). Let \(B_0, B_1, \ldots, B_m \) be as above, and set \(B' = [M] - B_0 - B_1 - \cdots - B_m \).
Let H denote the set of functions $f: \{0\} \cup [M] \to [n]$ (i.e., elements of $H_{n,M+1}$) satisfying the following conditions:

(i) f is constant on B_i for each $i, 1 \leq i \leq m$;
(ii) f is constant on $\{0\} \cup B'$;
(iii) f is constant on B_0 with value $n + 1 - f(0)$.

We first claim that $H \cong H_{n,m+1}$. For each $(x_0, x_1, \ldots, x_m) \in H_{n,m+1}$ we associate the $f \in H$ given by

$$f(a) = \begin{cases} x_i & \text{if } a \in B_i, 1 \leq i \leq m, \\ x_0 & \text{if } a \in \{0\} \cup B', \\ n + 1 - x_0 & \text{if } a \in B_0. \end{cases}$$

Moreover, the edges of H are all of a special type. Let $\{(f, g) \prec \} \in E(H)$, and set

$$S = \iota(\{(f, g) \prec \}) = \{\alpha \in [M]: f(a) > g(a)\}.$$

For all $a \in B'$,

$$f(a) = f(0) < g(0) = g(a)$$

so that $a \not\in S$. For all $a \in B_0$,

$$f(a) = n + 1 - f(0) > n + 1 - g(0) = g(a)$$

so that $a \in S$. As f and g are constant on B_i, either $B_i \subseteq S$ or $B_i \cap S = \emptyset$ for $1 \leq i \leq m$. Hence all types are of the form $B_0 \cup B_1 \cup \cdots \cup B_t$ (where possibly $t = 0$). Since χ' is constant on these sets, χ is monochromatic on H.

Our proof of the Edge-Induced Graph theorem is now complete, but an overview is certainly in order. We fix G and $r > 0$. First, we find n, m so that G is an induced subgraph of $H_{n,m+1}$. Second, we find M so that if $H_{n,M+1}$ is canonically edge r-colored there is a monochromatic $H_{n,m+1}$. Third, we find N so that if $H_{N,M+1}$ is edge r-colored there exists a canonically colored $H_{n,M+1}$. $H = H_{N,M+1}$ is the desired graph. An r edge coloring of $H = H_{N,M+1}$ yields a canonical $H_{n,M+1}$ that in turn yields a monochromatic $H_{n,m+1}$, within which, snug as the proverbial bug in a rug, lies our monochromatic G.
5.3 RESTRICTED RAMSEY RESULTS

Let G, H be finite graphs. We write

$$G \rightarrow (H)^r$$

if, given any r-coloring of the vertices of G, there exists a monochromatic induced subgraph H. We write

$$G \rightarrow (H)^2$$

if, given any r-coloring of the edges of G, there exists a monochromatic induced subgraph H. In Section 5.2 we showed that, for all $H, r, i = 1, 2$, there exists $G, G \rightarrow (H)^i$. Here, using different techniques, we strengthen that result.

The first result in Ramsey theory may be written as $K_n \rightarrow (K_2)^2$. P. Erdős first asked whether there existed $G, G \rightarrow (K_2)^2$ with $\omega(G)$ small. [We define $\omega(G)$, the clique number of G, as the size of the maximum complete subgraph in G.] Small G's with that property have been found for $\omega(G) = 5$ (Graham [1968]) and $\omega(G) = 4$ (Irving [1973]). Folkman [1970] constructed a gigantic graph G with that property and $\omega(G) = 3$. More generally, for all n he constructed $G, \omega(G) = n, G \rightarrow (K_n)^2$. Surprisingly, Folkman's construction worked only for two colors, and the question of whether, for all r, n, there existed $G, \omega(G) = n, G \rightarrow (K_n)^r$ remained open for several years. The work of J. Nešetřil and V. Rödl [1976] answers this question affirmatively. This result constitutes the main body of this section. In fact, the argument we give below for graphs can be directly extended to the more general case of hypergraphs. At the end of this section we make some comments about this extension.

In Nešetřil's and Rödl's argument the role of bipartite graphs is central. Let G be a bipartite graph with vertices $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, and edges $E(G)$ such that $(x, y) \in E(G)$ only if $x \in V_1$, $y \in V_2$. Then we define the "diagonal power" $G^{(m)}$ as follows: $V(G^{(m)}) = V_1^m \cup V_2^m$, and $E(G^{(m)}) = \{(x_1, \ldots, x_m), (y_1, \ldots, y_m)\} | (x_i, y_i) \in E(G), 1 \leq i \leq m \}$.

Lemma. For any bipartite graph G and integer $r > 0$, there is a bipartite graph H such that $H \rightarrow (G)^r$.

Proof. Let $N = HJ(r, e)$, the Hales–Jewett number (see Section 2.2) for r-colors and an e-element set, where $e = |E(G)|$. Then $H = G^{(N)}$ is the desired graph. We see this easily: By definition of $G^{(N)}$, there is a
one-to-one correspondence between edges of $G^{(N)}$ and N-tuples of edges of G. Let $E(G) = \{E_1, E_2, \ldots, E_e\}$. Thus an r-coloring of $E(H)$ yields an r-coloring of $E(G)^N$. By the Hales–Jewett theorem, there will be a monochromatic “line” in $E(G)^N$. This is a set of e N-tuples $(E_{1,i}, E_{2,i}, \ldots, E_{N,i})$, $1 \leq i \leq e$, where, for each j, either $E_{1,i} = E_{j,i}$ for all i, j (we call these j's the “constant” j's), or $E_{j,i} = E_i$ for all i. Consider the vertices obtained from these edges, $U = U_1 \cup U_2$, where

$$U_1 = \{(x_1, \ldots, x_n) | x_j \text{ is the vertex of } E_{j,1} \text{ in } V_1$$

if j is a “constant,” and $x_{j'} + x_{j''}$ for all j', j'' not “constant”),

and U_2 is defined similarly. The subgraph $G^* \subseteq H$ induced by these vertices is isomorphic to G and has exactly the edges corresponding to the monochromatic line in $E(G)^N$. Thus G^* is the desired monochromatic subgraph.

Theorem 1. For any $r > 0$ and graph G, with $\omega(G) \leq n$, there is a graph H with $\omega(G) \leq \omega$ such that $H \rightarrow (G)_r^\omega$.

Proof. The proof is obtained by an iterated construction. Let $V(G) = \{v_1, \ldots, v_m\}$. Then we start with a graph P_0 consisting of R levels, L_1, \ldots, L_R, of vertices, where $R = R(m; r)$, the Ramsey number of r-coloring edges of complete graphs. We form P_0 from $\binom{R}{m}$ disjoint copies of G as follows: For each choice of an m-subset $i_1 < i_2 < \cdots < i_m$ from $\{1, 2, \ldots, R\}$ we introduce new vertices $u_{i_j} \in L_{i_j}, 1 \leq j \leq m$, and edges (u_{i_j}, u_{i_k}) iff (v_j, v_k) is an edge of G. In other words, P_0 consists of disjoint copies of G, one spread across each subset of m of the levels of P_0. For example, if G is a 4-cycle (see Fig. 5.1), $m = 4$, $R = R(4, 4) = 17$, and P_0 consists of $\binom{17}{4}$ disjoint 4-cycles spread over 17 levels.

We now describe how to get P_1 from P_0. Let B_1 be the subgraph of P_0 generated by L_1 and L_2. B_1 is bipartite. Using the lemma, we let A_1 be a bipartite graph with $A_1 \rightarrow (B_1)_r^\omega$. For each copy of B_1 in A_1, we adjoin vertices and edges to complete it to form a copy of P_0, all such copies being disjoint except for possible overlaps in A_1. Then P_1 is the R-level graph consisting of the union of A_1 and all of these P_0's. The jth level of P_1 is the union of the jth level of the P_0's, for $j \geq 3$, and the first and second levels of P_1 are just the two parts of A_1 (see Fig. 5.2). If the edges of P_1 are r-colored there exists, on levels 1 and 2, a monochromatic B_1 that may be extended to a copy of P_0 with the property that all edges between levels 1 and 2 are the same color.
We now iterate this construction, obtaining a sequence of R-level graphs $P_0, P_1, \ldots, P_{\binom{R}{2}}$. Let the $\binom{R}{2}$ pairs of levels be listed, say lexicographically, as $c_1, c_2, \ldots, c_{\binom{R}{2}}$. To get an R level graph P_i from the graph P_{i-1}, we consider the ith pair c_i of levels of P_{i-1}, let B_i be the subgraph of P_{i-1} induced by these two levels, and let A_i be the bipartite graph such that $A_i \rightarrow (B_i)^2$. Then, for each copy of $B_i \subseteq A_i$, we adjoin disjoint completions to P_{i-1}, and the union of all of these is P_i. The last iteration of the process is $P_{\binom{R}{2}}$, and we claim that $H = P_{\binom{R}{2}}$ has the required properties.

We see this by sequentially applying the lemma. Let the edges of H be r-colored. If we consider just the last pair of levels, $\{m, m-1\}$, in $P_{\binom{R}{2}}$, we get $A_{\binom{R}{2}}$. By the lemma and the choice of $A_{\binom{R}{2}}$, there is a monochromatic $B_{\binom{R}{2}} \subseteq A_{\binom{R}{2}}$. By construction of $P_{\binom{R}{2}}$, there is a copy
whose last pair of levels is precisely this \(B_{\binom{R}{2}} \). Thus this (induced) subgraph of \(P_{\binom{R}{2}} \) is isomorphic to \(P_{\binom{R}{2} - 1} \) and has all edges between the (last) pair of levels, \(\{m, m - 1\} \), the same color. Now we look at the next to the last pair of levels, \(\{m, m - 2\} \), in this \(P_{\binom{R}{2} - 1} \), and by the same argument get an induced copy of \(P_{\binom{R}{2} - 2} \) in it with all edges between these levels the same color. The edges of \(P_{\binom{R}{2} - 2} \subset P_{\binom{R}{2} - 1} \) between the levels \(m \) and \(m - 1 \) all have one color, and the edges between levels \(m \) and \(m - 2 \) all have one color, possibly different from the color for levels \(m, m - 1 \).

By repeating this argument \(\binom{R}{2} \) times, we eventually obtain a copy of \(P_0 \) as an induced subgraph of \(H \), such that the color of an edge depends only on the pair of levels the edge connects. This induces a coloring of the pairs of levels, each pair having the color of (all) the edges between them. By the choice of \(R \), some subset of \(m \) levels has all pairs the same color. Finally, by construction of \(P_0 \), some copy of \(G \) is contained exactly among this set of \(m \) levels. Hence \(G \) is monochromatic. This completes the proof that \(H \rightarrow (G)_r^2 \). To complete the proof of Theorem 1 we need only observe that \(\omega(H) = \omega(G) \), since at each step in the process of constructing \(H \) we never introduce cliques larger than those in \(G \).

In fact, we observe more here. Let \(K \) be any graph for which there is no vertex cut set inducing a subgraph of chromatic number smaller than 3. (A cut-set is a set of vertices whose removal leaves a graph with more than one connected component.) Call such a \(K \) 3-chromatic connected.

Theorem 2. Let \(K \) be 3-chromatic connected, and let \(G \) be a graph containing to \(K \). Then there is an \(H \) containing no \(K \) such that \(H \rightarrow (G)_r^2 \).

The proof is the same as that for Theorem 1. We simply note that at each step in the construction we can never introduce a subgraph of type \(K \), since all the copies of \(P_{i-1} \) overlap in a bipartite graph. As mentioned earlier, Theorem 1 extends directly to hypergraphs. To prove it we need the hypergraph version of the lemma, which is simply the same result for \(a \)-uniform, \(a \)-partite hypergraphs rather than for bipartite ordinary graphs. The proof is essentially the same. Then the proof of the hypergraph result (Theorem 3 below) is exactly analogous to that of Theorem 1, where we have many copies of hypergraphs \(P_{i-1} \) from the \((i - 1) \)st step, disjoint except for possible overlap in a set of \(a \) levels at the \(i \)th step, \(P_i \).
Theorem 3. Let G be an a-uniform hypergraph, and $r > 0$ and integer. Then there is an a-uniform hypergraph H such that $H \rightarrow (G)^r$ and $\omega(H) = \omega(G)$; that is, if the edges of the hypergraph H are r-colored, there is a monochromatic induced subhypergraph of type G. [The clique number $\omega(H)$ is the maximum number m of points so that all $\binom{m}{a}$ a-subsets are edges.]

Just as there is an analogue to Ramsey's theorem for vector spaces over finite fields (Section 2.4, Corollary 10) so there is an analogue to the induced and restricted result of Theorem 3 for vector spaces. To state it we essentially just replace the terms "set" and "subset" by the terms "space" and "subspace," respectively. More formally, we can define an a-uniform space system H to be a family of a-dimensional subspaces, the "edges," of some finite dimensional vector space V over a finite field F. In fact, H can be thought of as a q^a-uniform hypergraph on the set of vectors of V, where edges are required to be subspaces. Then an induced subsystem G of H is simply an a-uniform space system G that is an induced subhypergraph of H. Now let $\omega(H)$ denote the clique number of H, by which we mean the largest dimension m of a subspace U of V so that all of the a-dimensional subspaces of U are edges of H. Frankl, Graham, and Rodl [1987] and Promel [1986] give the following induced and restricted vector space version of Ramsey's Theorem.

Theorem 4. Let G be an a-uniform space system and r a positive integer. Then there is an a-uniform space system H such that $H \rightarrow (G)^r$, and $\omega(H) = \omega(G)$. That is, if the edges of H are r-colored there is a monochromatic induced subsystem $G' \cong G$. (We say $G' \cong G$ if $\dim(U) = \dim(U')$, where U, U' are the vector spaces for G, G', respectively, and there is a bijective linear map from U to U' such that the image A' of any a-dimensional subspace A of U is an edge of G' if and only if A is an edge of G.)

5.4 EQUATIONS OVER ABELIAN GROUPS

The results of this section are from Deuber [1975a].

Let G be an Abelian group. Let A be an m by n matrix with integral coefficients. We say that A is partition regular in G if, for every finite coloration of $G - \{0\}$, there is a monochromatic solution x_1, \ldots, x_n to the system $Ax = 0$.

By "solution" in this section we shall mean a monochromatic solution to $Ax = 0$.
Recall that A satisfies the \textit{Columns condition} if one can order the column vector e_1, \ldots, e_n and find $1 \leq k_1 < k_2 < \cdots < k_t = n$ such that, setting

$$A_i = \sum e_\gamma, \quad \text{summed over } k_{r-1} < \gamma \leq k_r,$$

we have

(i) $A_1 = 0$,

and

(ii) for $1 < i \leq t$, A_i may be expressed as a linear combination (over \mathbb{Q}) of $e_1, \ldots, e_{k_{i-1}}$.

Then A is partition regular in Z if A satisfies the Columns condition. For p prime, we say that A satisfies the p-Columns condition if (i) and (ii) hold when their summations and linear combinations are taken modulo p. Let:

$$T(A) = \{ p : A \text{ satisfies the } p\text{-Columns condition} \},$$

$$T'(A) = \{ p : x_1 = \cdots = x_n = 1 \text{ is a solution to } Ax = 0 \text{ (modulo } p) \}.$$

Note that $T'(A) \subseteq T(A)$ by setting $t = 1, k_1 = n$.

One can show, similarly to the proof of Chapter 3, Lemma 6, that if A does not satisfy the Columns condition $T(A)$ is finite, and if A satisfies the Columns condition $T(A)$ is cofinite. The equation $3x - 3y - z = 0$ [i.e., the matrix $A = (3, -3, -1)$] provides an example of a matrix satisfying the Columns condition but not satisfying the three-columns condition.

Let Z^w_p be the countable infinite-dimensional vector space over Z_p, considered as an Abelian group, that is, the elements are infinite sequences

$$(a_1, a_2, \ldots), a_i \in Z_p, \text{ all but finitely many } a_i = 0,$$

and addition is defined componentwise modulo p. Note (from elementary Group theory) that $G \subseteq Z^w_p$ iff G contains an infinite number of elements of order p.

Theorem 1. A is partition regular in G iff one of the following holds:

(i) G contains an element α of order $p \in T'(A)$.

(ii) $G \supseteq Z^w_p$ for some $p \in T(A)$.

(iii) A satisfies the Columns condition and G contains either an element of infinite order or elements of arbitrarily high order.
Proof. We first show that any of conditions (i), (ii), or (iii) implies that \(A \) is partition regular in \(G \).

(i) \(x_1 = \cdots = x_n = \alpha \) is always a solution, regardless of the coloring.

(ii) In \(Z_p \) we find a parametric solution to the equation \(Ax = 0 \) given by

\[
x_i = \sum_{j=1}^{t} \lambda_{ij}v_j, \quad 1 \leq i \leq n,
\]

where each \((\lambda_{11}, \ldots, \lambda_{nt})\) has the first nonzero term \(\lambda = \alpha \) a nonzero constant. (The method illustrated for \(Z \) in Section 2.3 suffices here.) For convenience, we assume that \(c = 1 \) by changing all \(\lambda_{ij} \) to \(\lambda_{ij}/c \). Now we let \(G \) be finitely colored and restrict our attention to \(Z_p^w \), with a specified ordered basis. For

\[
v = (v_1, v_2, \ldots) \in Z_p^w - \{0\}
\]

we set

\[
\lambda(v) = \text{first } i \text{ such that } v_i \neq 0,
\]

\[
n(v) = \text{first } i \text{ such that } v_i \neq 0.
\]

We define a finite coloring of the one-dimensional subspaces of \(Z_p^w \), coloring a subspace \(\{v, 2v, \ldots, (p-1)v\} \) by the color of the unique \(\lambda v \) with \(\lambda(v) = 1 \). By the Vector Ramsey theorem (Section 2.4; we do not require the full strength of the theorem here) there exists a \(S \subseteq Z_p^w \), \(S \cong Z'_p \), monochromatic under the induced coloring. By standard linear algebra techniques we find a basis \(w_1, \ldots, w_t \) for \(S \) so that

\[
\lambda(w_j) = 1, \quad 1 < j \leq t,
\]

\[
n(w_1) < n(w_2) < \cdots < n(w_t).
\]

Now

\[
x_i = \sum_{j=1}^{t} \lambda_{ij}w_j, \quad 1 \leq i \leq n,
\]

gives the desired monochromatic solution.

(iii) Let \(G - \{0\} \) be \(k \)-colored. If \(N \) is \(k \)-colored then, by Rado's theorem, there will exist a monochromatic solution to \(Ax = 0 \). By
the Compactness principle, for some \(m \) and \(k \)-coloration of \([m] \) also yields such a solution. Let \(\alpha \in G \) have order at least \(m + 1 \) (possibly infinite). Then a solution is found within the set \(\{ \alpha, 2\alpha, \ldots, m\alpha \} \).

We prove the converse (the necessity of the conditions) only in the case where \(A \) does not satisfy the Columns condition and has exactly one row. Let \(A = (c_1, \ldots, c_n) \) so that \(Ax = 0 \) is the single equation

\[
c_1x_1 + \cdots + c_nx_n = 0,
\]

where no subset of \(\{c_i\} \) sums to zero.

Lemma 2. Let \(A \) be as above, and let \(T(A) \) and \(T'(A) \) be defined as before. Then there exists \(u \), dependent only on \(A \), with the following property: Let \(m \) be such that \((m, p) = 1 \) for all \(p \in T(A) \). Then \(Z_m - \{0\} \) may be \(u \)-colored without forming a monochromatic solution to \(Ax = 0 \) (modulo \(m \)).

We first illustrate these ideas with the equation

\[
x_1 + x_2 + x_3 + x_4 = 0 \quad [i.e., \ A = (1, 1, 1, 1)].
\]

here \(T'(A) = \{2\} \), \(T(A) = \{2, 3\} \). [Incidentally, note the parameteric solution \(x_1 = a, x_2 = x_3 = a + d, x_4 = d \) (modulo 3).] We can 4-color \(Z - \{0\} \), using the smod 5 coloring. This coloring may not apply to \(Z_m - \{0\} \) since solutions of the form \(x_1 + x_2 + x_3 + x_4 = \lambda m \) might appear. Let \(m \) be large, \((m, 2) = (m, 3) = 1 \). Write

\[
Z_m = \left[-\frac{m-1}{2}, \frac{m-1}{2} \right].
\]

Split \(Z_m \) into five intervals

\[
I_i = (a_i - R, a_i + R),
\]

where \(R \sim m/10 \) and \(|a_i| < m/2 \). We now color each interval \(I_i \) without forming a monochromatic solution to \(x_1 + x_2 + x_3 + x_4 = 0 \) (modulo \(m \)). Since \(R < m/8 \) there is at most one \(\lambda \) for which the equation \(x_1 + x_2 + x_3 + x_4 = \lambda m \) (addition in \(N \)) has a solution in \(I_i \). Since \(|x_i| \leq m/2 \), \(|\lambda| \leq 2 \). If \(\lambda = 0 \) we apply the smod 5 coloring to \(I_i \). If \(\lambda \neq 0 \) we color \(x \in I_i \) by the residue class of \(x \) (modulo 4). If a monochromatic solution \(x_1 \equiv x_2 \equiv x_3 \equiv x_4 \) (modulo 4) existed in \(I_i \), then \(4|x_1 + x_2 + x_3 + x_4 = \lambda m. \)
This is impossible since \((4, m) = 1\) and \(0 < |\lambda| < 4\). Finally, if no \(\lambda\) exists we 1-color \(I_i\) trivially.

Each \(I_i\) has required at most four colors. We distinguish the colors used in each interval. This gives a 20-coloring (or better) of \(Z_n - \{0\}\) with the desired property.

Proof of Lemma 2. Let \(t\) be such that \(Z - \{0\}\) may be \(t\)-colored. Set

\[
C = |\Sigma c_i| \neq 0 \quad \text{by assumption,}
\]

\[
D = \Sigma |c_i|, \quad R = \left\lfloor \frac{m}{2D} \right\rfloor.
\]

Let \(m > m'\), where \(m'\) is to be determined. We write \(Z_m = (\lceil -m/2 \rceil, \lfloor m/2 \rfloor)\), and split \(Z_m\) into consecutive intervals of length \(2R - 1\) (the last interval perhaps smaller), \(I_i = (a_i - R, a_i + R), 1 \leq i \leq s\). We may do this with

\[
s = \left\lfloor \frac{m}{2\lfloor m/2D \rfloor - 1} \right\rfloor.
\]

Now we select \(m'\) so that, for \(m > m'\), \(s \leq D + 1\). We color each \(I_i - \{0\}\) separately. If \(x_1, \ldots, x_n \in I_i\) we set

\[
x_i = a_i + y_i, \quad |y_i| < R
\]

(calculations done in \(Z\)), and note that

\[
\Sigma c_i x_i = (\Sigma c_i) a_i + \Sigma c_i y_i,
\]

where

\[
|\Sigma c_i y_i| < R(|\Sigma c_i|) \leq \frac{m}{2}.
\]

In other words, \(\Sigma c_i x_i\) lies within an interval of length \(m\) so there is at most one \(\lambda\) (dependent on \(j\)) for which \(\Sigma c_i x_i = \lambda m\) is possible. Since \(|a_j| < m/2\),

\[
|\Sigma c_i x_i| \leq |\Sigma c_i| |a_j| + |\Sigma c_i y_i| < \frac{m(C + 1)}{2}
\]

so that \(|\lambda| < (C + 1)/2 \leq C\).

If \(0 < |\lambda| < C\) we color \(x \in I_j\) according to its residue class modulo \(C\). A monochromatic solution would imply that \(C \mid \Sigma c_i x_i = \lambda_m\), which is im-
possible since \((C, m) = 1\). If \(\lambda = 0\) we \(t\)-color \(I\), \(-\{0\}\), using the coloring of \(Z - \{0\}\). If no \(\lambda\) exists we 1-color \(I\), trivially.

Each interval has used at most \(\max(C, t)\) colors so that \(Z_{m} - \{0\}\) is colored with \(s \max(C, t) \leq (D + 1) \max(C, t)\) colors. Finally, if \(m \leq m'\) we can color each point distinctly, using at most \(m' - 1\) colors. Thus all of \(Z_{m} - \{0\}\) may be \(u\)-colored, where

\[
 u = \max(m' - 1, (D + 1) \max(C, t))
\]

Lemma 3. Let \(H_{i} - \{0\}\) be \(s_{i}\)-colorable for \(1 \leq i \leq k\). Then the product \(H_{1} \times \cdots \times H_{k} - \{0\}\) may be \((s_{1} + \cdots + s_{k})\)-colored.

Proof. Let \(\chi_{i}\) denote the \(s_{i}\)-coloring of \(H_{i}\) with color sets assumed to be distinct. Define \(\chi\) on \(H_{1} \times \cdots \times H_{k} - \{0\}\) by

\[
 \chi((h_{1}, \ldots, h_{k})) = \begin{cases}
 \chi_{1}(h_{1}) & \text{if } h_{1} \neq 0, \\
 \chi_{2}(h_{2}) & \text{if } h_{1} = 0, h_{2} \neq 0, \\
 \chi_{i}(h_{i}) & \text{if } h_{1} = \cdots = h_{i-1} = 0, h_{i} \neq 0.
 \end{cases}
\]

Proof of Theorem 1 (Necessity, Limited Case). Fix \(G\) and \(A\). Let \(q\) be such that \(Z - \{0\}\) may be colored by the smod \(q\) coloring. Let \(T(A)\) and \(T'(A)\) be as before. Let \(t\) be the number of \(g \in G\) of order \(1\) \(p_{i}^{n_{i}}\), where all \(p_{i} \in T(A)\). Since \(G \nsubseteq Z_{p_{i}}^{n_{i}}\) for all \(p \in T(A)\), \(t\) is finite. Let \(u\) be as given in Lemma 2. We claim that \(G - \{0\}\) may be \(\beta\)-colored where \(\beta = t + (q - 1) + u\).

By compactness, it suffices to \(\beta\)-color any finite subset of \(G - \{0\}\). We do somewhat more, \(\beta\)-coloring any finitely generated subgroup \(H \subset G\). By the fundamental theorem of Abelian groups we can write

\[
 H = H_{1} \times Z_{m} \times Z_{v},
\]

where \(v\) is finite, \((m, p) = 1\) for all \(p \in T(A)\), and all \(h \in H_{1} - \{0\}\) have order \(\prod_{p_{i}}^{n_{i}}\), where all \(p_{i} \in T(A)\). Now

- \(H_{1} - \{0\}\) is \(t\)-colored since \(|H_{1} - \{0\}| \leq t\),
- \(Z_{m} - \{0\}\) is \(u\)-colored by Lemma 1, and
- \(Z_{v}\) is \((q - 1)\)-colored, coloring \((x_{1}, \ldots, x_{v})\) by the smod \(q\) coloring of the first nonzero \(x_{i}\).

Thus, by Lemma 3, \(H - \{0\}\) is \(\beta\)-colored, completing the proof.

A reformulation of Theorem 1 makes it clear that there are only three reasons for \(A\) to be partition regular in \(G\).
Theorem 1'. A is partition regular over G iff one of the following holds:

(i) For some $\alpha \in G \setminus \{0\}$, A is partition regular over $\{\alpha\}$ (i.e., $x_1 = \cdots = x_n = \alpha$ is a solution).

(ii) For some prime p, A is partition regular in \mathbb{Z}_p^∞ and $G \supseteq \mathbb{Z}_p^\infty$.

(iii) A is partition regular in \mathbb{Z}, and G contains either \mathbb{Z} or elements of arbitrarily high order.

5.5 CANONICAL RAMSEY THEOREMS

The results of this section are due to Erdős and Rado [1950].

In this section we consider colorations in which no restrictions (not even finiteness) is put on the number of colors used. When elements of a set are colored we have a simple result. Call a coloring χ of a set S canonical if χ is either

(i) monochromatic [i.e., $\chi(s) = \chi(t)$ for all $s, t \in S$], or

(ii) distinct [i.e., $\chi(s) \neq \chi(t)$ for all $s, t \in S, s \neq t$].

Theorem 1. If an infinite set S is colored then some infinite subset T is canonically colored. For all k, if $|S| > (k - 1)^2 + 1$ and S is colored there exists a subset $T \subset S$, $|T| = k$ that is canonically colored.

The situation when pairs are colored is more interesting. Let us restrict our attention to edge colorings. We write $\chi(i, j)$ for $\chi(\{i, j\}_<)$. We distinguish four special colorings of an ordered set S:

(i) distinct: $\chi(\{i, j\}) = \chi(\{k, l\})$ iff $\{i, j\} = \{k, l\}$,

(ii) min: $\chi(\{i, j\}) = \chi(\{k, l\})$ iff $\min(i, j) = \min(k, l)$,

(iii) max: $\chi(\{i, j\}) = \chi(\{k, l\})$ iff $\max(i, j) = \max(k, l)$,

(iv) monochromatic: χ is constant.

A coloring χ is called canonical on S if it has one of these four properties. Note that if χ is canonical on S it is canonical (of the same type) on every subset $T \subset S$.

Theorem 2. For every coloration of $[N]^2$ there exists an infinite $T \subset N$ on which χ is canonical. For all k there exists n so that, for every coloration of $[n]^2$, there is a $T \subset [n]$, $|T| = k$ on which χ is canonical.
Proof. Let χ be a coloring of $[N]^2$. To each $\{a_1, a_2, a_3, a_4\} \subseteq [N]^4$ we associate an equivalence relation \equiv on $[4]^2$ given by

$$\{i, j\} \equiv \{k, l\} \quad \text{if} \quad \chi(\{a_i, a_j\}) = \chi(\{a_k, a_l\}).$$

We define a coloring χ' on $[N]^4$ by defining $\chi'(\{a_1, a_2, a_3, a_4\} \subseteq)$ to be the equivalence relation to which it corresponds. In other words, χ' is the set of equalities among the six edges of $\{a_1, a_2, a_3, a_4\} \subseteq$ under χ. There are 203 possible values (colors) for χ', corresponding to the 203 partitions of a six-element set. (For example, one color class consists of all those $\{a_1, a_2, a_3, a_4\} \subseteq$ on which the six colors are distinct. Another consists of all those for which $\chi(\{a_1, a_3\}) = \chi(\{a_2, a_4\})$ and the other four edges are colored with distinct colors.) By Ramsey’s theorem there exist $N' \subset N, N'$ infinite, on which χ' is constant. Let us assume that $N' = N$ for convenience, since only the cardinality and ordering of N' are important.

Now we reduce the possibilities from 203 to 4. Consider the possible equalities:

$$\begin{align*}
\chi(a_1, a_2) &= \chi(a_1, a_3), \\
\chi(a_1, a_3) &= \chi(a_1, a_4), \\
\chi(a_1, a_4) &= \chi(a_1, a_2), \\
\chi(a_2, a_3) &= \chi(a_2, a_4).
\end{align*}$$

(*)

Each of these qualities holds either for all $\{a_1, a_2, a_3, a_4\} \subseteq$ or for none of them. Plugging in the values (in order) $\{2, 4, 6, 7\}, \{2, 3, 4, 6\}, \{2, 4, 5, 6\}, \{1, 2, 4, 6\}$ for $\{a_1, a_2, a_3, a_4\} \subseteq$, we find that each of the equalities given above is equivalent to the statement $\chi(2, 4) = \chi(2, 6)$. Thus the equalities either all hold or all do not hold. Similarly the equations

$$\begin{align*}
\chi(a_1, a_3) &= \chi(a_2, a_4), \\
\chi(a_2, a_4) &= \chi(a_3, a_4), \\
\chi(a_3, a_4) &= \chi(a_1, a_4), \\
\chi(a_1, a_3) &= \chi(a_2, a_1)
\end{align*}$$

(**)

either all hold or all do not hold.

If systems (*) and (**) both hold then all $\chi(a, b) = \chi(1, b) = \chi(1, 2)$ and χ is monochromatic. If system (*) holds then $\chi(i, j) = \chi(i, k)$ for all $i < j, k$. Suppose that χ is not the “min” coloring; then, for some $i \neq i'$ and j, k, $\chi(i, j) = \chi(i', k)$. Let $t = \max(j, k)$. By (*), $\chi(i, t) = \chi(i, j) = \chi(i', k) = \chi(i', t)$. But then system (**) will hold. Hence, if (*) holds but (**) does not, χ is a “min” coloring. Similarly, if (**) holds but (*) does not, χ is a “max” coloring.
Finally, assuming that neither (*) nor (**) hold, we need to show that \(\chi \) is distinct. We illustrate this with only a single case. Assume that \(\chi(1, 2) = \chi(3, 4) \). Then, for all \(\{a_1, a_2, a_3, a_4\}_c \), \(\chi(a_1, a_2) = \chi(a_3, a_4) \). Hence \(\chi(3, 4) = \chi(1, 2) = \chi(3, 5) \), which is impossible since (*) does not hold.

The finite version uses essentially the same proof. For all \(k \) we select \(n \) so that

\[
n \to (\max(k, 7))_{203}.
\]

For any coloring \(\chi \) of \([n]^2\) we find \(T \subseteq [n] \), \(|T| = \max(k, 7) \), on which \(\chi' \) is constant and hence \(\chi \) is canonical.

There is a simply stated generalization to \(r \)-tuples: A coloring \(\chi \) of \([S]^r\), \(S \) ordered, is called canonical if, for some \(V \subseteq \{1, \ldots, r\} \), \(\chi(\{a_1, \ldots, a_r\}_c) = \chi(\{b_1, \ldots, b_r\}_c) \) iff \(a_i = b_i \) for all \(i \in V \).

Theorem 3. For every coloring of \([N]^r\) there exists an infinite \(T \subseteq N \) on which the coloring is canonical. For all \(k \) and \(r \), there exists \(n \) so that, for every coloring of \([n]^r\), there exist \(T \subseteq [n] \), \(|T| = k \), on which the coloring is canonical.

The proof, although following the main ideas of the case \(r = 2 \), is more complicated and will not be given here.

Let \(\chi \) now be a coloring of the bipartite graph \(A \times B \). We define four special colors.

(i) monochromatic: all \(\chi(a, b) \) equal;
(ii) column: \(\chi(a, b) = \chi(c, d) \) iff \(a = c \) (i.e., only points in the same column are colored the same);
(iii) row: \(\chi(a, b) = \chi(c, d) \) iff \(b = d \) (i.e., only points in the same row are colored the same);
(iv) distinct: \(\chi(a, b) = \chi(c, d) \) iff \(a = c \) and \(b = d \) (i.e., all points have distinct colors).

We say that \(\chi \) is canonical on \(A \times B \) if it is of one of these four types. Note that if \(\chi \) is canonical on \(A \times B \) and \(A_i \subseteq A \), \(B_i \subseteq B \) then \(\chi \) is canonical of the same type on \(A_i \times B_i \).

Theorem 4. For any coloring \(\chi \) of \(N \times [2r^2 + 1] \) there exists \(N_i \subseteq N \), \(N_i \) infinite, and \(B' \subseteq B \), \(|B'| = r + 1 \), such that \(\chi \) is canonical on \(N_i \times B' \).

Proof. For each \(n \in N \) the \(n \)th column contains either \(r + 1 \) points
colored the same or $2r + 1$ points colored distinctly. As there are only a finite
\[
\left(= \binom{2r^2 + 1}{r + 1} + \binom{2r^2 + 1}{2r + 1} \right)
\]
number of choices for the row coordinates of these points, there exist $N_1 \subseteq N$, N_1 infinite, and $B \subseteq [2r^2 + 1]$ so that either

(i) $|B| = r + 1$ and $\chi(n, b_1) = \chi(n, b_2)$ for all $n \in N_1$,

or

(ii) $|B| = 2r + 1$ and $\chi(n, b_1) \neq \chi(n, b_2)$ for all $n \in N_1, b_1 \neq b_2 \in B$.

In either case we restrict our attention to $N_1 \times B$. In case (i) we define a coloring χ' on N_1 by setting $\chi'(n)$ equal to the constant $\chi(n, b)$. We find $N_2 \subseteq N_1$, N_2 infinite, so that χ' is either constant or distinct on it. Then χ is either monochromatic or column on $N_2 \times B$.

Case (ii) is slightly more complex. We define a coloring χ' on $[N_1]^2$ by
\[
\chi'((n_1, n_2, \ldots)) = \{(b_1, b_2, \ldots) : b_1, b_2 \in B, \chi(n_1, b_1) = \chi(n_2, b_2)\}.
\]
There are precisely $2|B|^2$ colors for χ'. By Ramsey's theorem there exists $N_2 \subseteq N_1$ so that χ' is constant on $[N_2]^2$.

Suppose that, for some $n_1 < n_2 \in N_2$, $b_1 \neq b_2 \in B$, $\chi(n_1, b_1) = \chi(n_2, b_2)$. Then, for all $m < m' \in N_2$, $\chi(m, b_2) = \chi(m', b_2)$. There exists $n_3 \in N_2$, $n_3 > n_2$. Now $\chi(n_2, b_2) = \chi(n_3, b_2) = \chi(n_2, b_1)$, which is impossible since all columns have distinct colors. Thus elements in distinct rows and distinct columns have distinct colors. Elements in distinct rows and the same columns have distinct colors by assumption, so all elements in distinct rows have distinct colors.

For each $b \in B$, if there exist $n_1 < n_2 \in N_2$ so that $\chi(n_1, b) = \chi(n_2, b)$, then $\chi(m, b) = \chi(m', b)$ for all $m < m' \in N_2$; that is, χ is either constant or distinct on each row. We find $B_1 \subseteq B$, $|B_1| = r + 1$ so that either χ is constant on each row $b \in B_1$ or χ is distinct on each row $b \in B_1$. In the latter case, χ is distinct on $N_2 \times B_1$. In the former case, the row constants are distinct, since single columns are distinct, so that χ is row on $N_2 \times B_1$.

We give a simple coloring that provides a counterexample if $2r^2 + 1$ is replaced by $2r^2$. Decompose $[2r^2] = S_1 + \cdots + S_r + T_1 + \cdots + T_r$, where all $|S_i| = |T_j| = r$. If $s < s'$, let (m, s) and (n, s') are colored identically for all m, n. If $t, t' \in T_j$, then (m, t) and (m, t') are colored identically for all m. Otherwise, all colors are distinct.
A Canonical Bipartite Ramsey theorem, analogous to Section 5.1, Theorem 6, can also be given. We leave the statement and the proof of this theorem to our readers.

Taylor [1976] generalizes Hindman's theorem in the same way in which Erdős and Rado generalized Ramsey's theorem to a Canonical Ramsey theorem. Taylor's theorem, indeed, could be called a Canonical Hindman theorem.

Let \(\chi \) be a finite coloration of \([\omega]^{<\omega}\), the finite subsets of \(N \). Then Hindman's theorem states that there exists a disjoint collection \(\mathcal{D} \) such that \(FU(\mathcal{D}) \) is monochromatic. Now let us call a coloration \(\chi \) of \(FU(\mathcal{D}) \) canonical if one of the following holds:

(i) \(\chi \) is constant on \(FU(\mathcal{D}) \).
(ii) \(\chi(E_1) = \chi(E_2) \) iff \(\min(E_1) = \min(E_2) \).
(iii) \(\chi(E_1) = \chi(E_2) \) iff \(\max(E_1) = \max(E_2) \).
(iv) \(\chi(E_1) = \chi(E_2) \) iff \(\min(E_1) = \min(E_2) \) and \(\max(E_1) = \max(E_2) \).
(v) \(\chi(E_1) = \chi(E_2) \) iff \(E_1 = E_2 \).

Theorem 5. Let \(\chi \) be a coloration (not necessarily finite) of \([\omega]^{<\omega}\). Then there exists a disjoint collection \(\mathcal{D} \) such that \(\chi \) is canonical on \(FU(\mathcal{D}) \).

The proof is rather difficult and is not given in this book.

One is struck by a similarity between many of the Canonical Ramsey theorems, a similarity that extends to the infinite case of Ramsey's theorem itself. Let \(S \) be a (possibly ordered) countably infinite set, and \(F(S) \) be a family of structures defined on \(S \). For example, \(F(S) \) could be \([S]^2 \) or \(S \times S \). Call a coloring of \(F(S) \) invariant if, under that coloring, every finite \(T \subseteq S \) has \(F(T) \) colored equivalently. Here two colorings are considered equivalent if they are identical under a bijection between \(S \) and \(T \) (preserving any ordering) and a bijection of the color names. Many of these results state that if \(\chi \) is a coloring of \(F(S) \), perhaps with some restrictions (as, e.g., limiting the number of colors to \(r \)), then there exists an infinite \(T \subseteq S \) so that \(F(T) \) is colored invariantly. We do not know whether one can make a general statement of this type.

5.6 EUCLIDEAN RAMSEY THEORY

In a series of papers, Erdős, Graham, Montgomery, Rothschild, Spencer, and Straus [1973, 1975a, 1975b] have examined a variety of problems that meld Ramsey theory to the geometry of Euclidean \(n \)-space \(R^n \). Let \(K \) be a finite configuration in Euclidean space. We define a relation \(R(K, n, r) \):
$R(K, n, r)$: Under any r-coloring of the points of R^n there exists a monochromatic $K' \cong K$. (Here \cong is "congruence").

For example, let K be an equilateral triangle of unit side (more precisely, the vertices of the triangle). We can color R^2 in strips of width $\sqrt{3}/2$, that is,

$$
\chi(x, y) = \begin{cases}
\text{red if } \lfloor 2y/\sqrt{3} \rfloor \text{ is even}, \\
\text{blue if } \lfloor 2y/\sqrt{3} \rfloor \text{ is odd}.
\end{cases}
$$

A simple geometry argument shows that no $K' \cong K$ is monochromatic so that $R(K, 2, 2)$ is false. If we 2-color R^4 and consider five points on an equilateral simplex of unit length, some three of these points must be the same color. Hence $R(K, 4, 2)$ is true.

One may replace "congruence" by other notions such as "similar" or "translate of." Let H be any group of symmetries of Euclidean space. We define:

$R_H(K, n, r)$: For any r-coloring of the vertices of R^n there exists a monochromatic K' and $\sigma \in H$ such that $\sigma K = K'$.

Gallai's theorem, given in Section 2.3, states that if H is the homothety group (and hence also the larger similarity group) then $R_H(K, n, r)$ holds for all finite configurations K in Euclidean n-space.

Definition. K is Ramsey if, for all r, there exists n' so that, for $n \geq n'$, $R(K, n, r)$ holds.

The main question is the determination of the Ramsey configurations. Let K consist of two points at distance d. For all r, R' contains a simplex of $r + 1$ points, all at distance d. Any r-coloring yields a monochromatic K. Thus $R(K, r, r)$ holds for all r, and hence K is Ramsey. More generally, if K is an m-point equilateral simplex then $R(K,(m - 1)r, r)$ holds, so K is Ramsey.

Notation. Let $x = (x_1, \ldots, x_n) \in R^n$, $y = (y_1, \ldots, y_m) \in R^m$. Define

$$
x \ast y = (x_1, \ldots, x_n, y_1, \ldots, y_m) \in R^{n+m}.
$$

If $K_1 \subset R^n$, $K_2 \subset R^m$ define $K_1 \ast K_2 \subset R^{n+m}$ by

$$
K_1 \ast K_2 = \{x \ast y: x \in K_1, y \in K_2\}.
$$
Theorem 1. If K_1 and K_2 are Ramsey then $K_1 \ast K_2$ is Ramsey.

Proof. Fix $K_1 \subseteq R^n$, Ramsey, $K_2 \subseteq R^n$, Ramsey, and $r > 0$. Fix u so that $R(K_1, u, r)$ holds. By the Compactness principle there exists a finite $T \subseteq R^n$ so that any r-coloring of T yields a monochromatic K_1. Let $i = T$ and $T = \{x_1, \ldots, x_t\}$. Let u be such that $R(K_2, u, r')$ holds. We claim that $R(K_1 \ast K_2, u + v, r)$ holds. Let χ be an r'-coloring of R^{n+u}. Define an r'-coloring χ' of R^n by

$$\chi'(y) = (\chi(x_1 \ast y), \ldots, \chi(x_t \ast y)).$$

We find $K_2 \subseteq R^n$ monochromatic over χ'. Define an r-coloring χ'' of T by

$$\chi''(x_i) = \chi(x_i \ast y) \quad \text{for any } y \in K_2.$$

Let K_1 be monochromatic under χ''. Then $K_1 \ast K_2$ is monochromatic under χ.

Corollary 2. All bricks are Ramsey.

By a "brick" we mean a rectangular parallelepiped, that is, a set of the form $\{(x_1, \ldots, x_n): x_i = 0 \text{ or } a_i, 1 \leq i \leq n\}$. Clearly, any brick is a \ast-product of n two-point configurations.

Corollary 3. All subsets of bricks are Ramsey.

Clearly, if K is Ramsey all $K' \subseteq K$ are Ramsey. This corollary includes equilateral m-simplexes. In fact, it gives all known Ramsey configurations.

In view of the results given above it is tempting to conjecture that all finite sets K are Ramsey. This, however, is false. Let $K = \{0, 1, 2\}$, three points equally spaced on a line. We show that $R(K, n, 4)$ is false for all n by giving an explicit 4-coloring of R^n. Color $u \in R^n$ by $\lfloor |u|^2 \rfloor$ (modulo 4), that is, for $0 \leq i < 4$

$$\chi(u) = i \quad \text{if } |u|^2 = 4a + i + 0, \quad a, i \in Z, \quad 0 \leq \Theta < 1.$$

Suppose that $\{x, y, z\} \equiv K$. If we let y be the middle point there exists u, $|u| = 1$, so that $x = y + u, z = y - u$. Then

$$|x|^2 + |z|^2 = 2|y|^2 + 2|u|^2 = 2|y|^2 + 2.$$

If $\chi(x) = \chi(y) = \chi(z) = i$ there exist $a_1, a_2, a_3 \in Z, \quad 0 \leq \Theta_1, \Theta_2, \Theta_3 < 1$
with
\[4a_1 + i + \Theta_1 + 4a_2 + i + \Theta_2 = 2(4a_3 + i + \Theta_3) + 2 \]
so that
\[\Theta_1 + \Theta_2 - 2\Theta_3 = 4(3a_3 - a_1 - a_2) + 2, \]
which is impossible. Thus K is not Ramsey.

We extend this example, using results on nonhomogeneous linear systems.

Theorem 4. Let $K = \{v_0, v_1, \ldots, v_k\}$ be such that there exist $c_0, \ldots, c_k, b \in R, b \neq 0$, satisfying

\[
(*) \quad \sum_{i=1}^{k} c_i(v_i - v_0) = 0,
\]

\[
(**) \quad \sum_{i=1}^{k} c_i(|v_i|^2 - |v_0|^2) = b \neq 0.
\]

Then K is not Ramsey.

Proof (outline). Let χ' be the coloring of R, given by Chapter 3, Theorem 23, such that the equation

\[\sum_{i=1}^{k} c_i(x_i - x_0) = b \]

has no solution with $\chi'(x_i) = \chi'(x_0)$ for $1 \leq i \leq k$. Define χ on R^n by

\[\chi(u) = \chi'(|u|^2). \]

One can show that any $K' = \{v'_0, \ldots, v'_k\} \equiv K$ still satisfies (*) and (**) [by showing that the system (*) , (**) is preserved under rotation around origin and translation] so that K' cannot be monochromatic under χ.

The conditions of Theorem 4 are equivalent to saying that K is not spherical; that is, the vertices of K cannot be placed on a common sphere. We omit the proof. Note that all bricks are indeed spherical.

Summary. If K is a subset of a brick it is Ramsey
If K is not spherical it is not Ramsey.

Since publication of the first edition of this volume additional Ramsey
configurations have been found. Let \(k < s \) and let \(x_1, \ldots, x_k \) be nonzero reals and let \(S \) be the set of points in \(R^r \) with precisely \(k \) nonzero coordinates having values \(x_1, \ldots, x_k \) in that order. For example, with \(k = 2, s = 3, x_1 = 1, x_2 = -1, S = \{(1, -1, 0), (1, 0, -1), (0, 1, -1)\} \) is an obtuse triangle.

Claim. \(S \) is Ramsey.

Let the number of colors \(r \) be arbitrary. Let \(n \) satisfy

\[
n \rightarrow (s)_r^k
\]

For each \(k \)-set \(A \subseteq [n] \) let \(x_A \) denote the point with nonzero coordinates \(x_1, \ldots, x_k \) in positions \(A \). An \(r \)-coloring of the points \(x_A \) induces an \(r \)-coloring of \([n]^k\). A monochromatic \(s \)-set \(B \) of coordinates gives a monochromatic \(S \).

Combining this result with Theorem 1, Frankl and Rödl [1986] have greatly extended the class of known Ramsey configurations. In particular, they have shown that all triangles are Ramsey. A complete characterization of Ramsey configurations has remained elusive.

Many of the finite questions \(R(K, n, r) \) are very interesting. For example, it is conjectured that \(R(K, 2, 2) \) is true for all \(K, |K| = 3 \), except the equilateral triangle. For many particular \(K \)'s this is known to be true.

Finally, we explore Euclidean Ramsey questions where \(H \) is the group of translations. The results are negative. Let us call a set \(T \) achromatic if no two points of \(T \) are colored identically.

Theorem 5. Let \(c = \binom{k}{2} + 1 \). For all \(k \)-element sets \(S \subseteq R \) there exists a \(c \)-coloring of \(R \) so that all translates \(S + x \) are achromatic.

Proof. We first \(c \)-color any finite set \(Y \subseteq R \) so that no translate of \(S \) contains two points with the same color. We color the points of \(Y \) in ascending order. To color \(y \in Y \) we note that \(y \) lies on a common translate with at most \(\binom{k}{2} \) previously colored points of \(Y \) [the points \(y + (x' - x'') \) with \(x', x'' \in S, x' < x'' \)] and so may be given a distinct coloring.

The Compactness principle implies that there exists a \(c \)-coloring of \(R \). Note that the application of the Compactness principle renders this proof essentially nonconstructive.

Corollary 6. Let \(c = \binom{k}{2} + 1 \). For all \(k \)-element configurations \(S = \)
\(\{v_1, \ldots, v_k\} \subseteq \mathbb{R}^n \), with \(n \)-arbitrary, there exists a \(c \)-coloring of \(\mathbb{R}^n \) so that all translates \(S + x \) are achromatic.

Proof. Select a coordinate system so that the points of \(S \) have distinct first coordinates \(x_1, \ldots, x_k \). By Theorem 5 there is a \(c \)-coloring of \(\mathbb{R} \) so that all translates of \(x_1, \ldots, x_k \) are achromatic. We color points of \(\mathbb{R}^k \) by the colors of their first coordinates.

5.7 GRAPH RAMSEY THEORY

Graph Ramsey theory has grown from nonexistence 20 years ago to become one of the presently most active areas in Ramsey theory. Rather than attempt to present an encyclopedic collection of the wealth of results currently available, we will instead (following our usual philosophy) discuss a selection of those that we believe illustrates the variety of questions considered and techniques used in this area.

A major impetus behind the early development of Graph Ramsey theory was the hope that it would eventually lead to methods for determining larger values of the classical Ramsey numbers \(R(m, n) \). However, as so often happens in mathematics, this hope has not been realized; rather, the field has blossomed into a discipline of its own. In fact, it is probably safe to say that the results arising from Graph Ramsey theory will prove to be more valuable and interesting than knowing the exact value of \(R(5, 5) \) [or even \(R(m, n) \)].

The idea behind Graph Ramsey theory is basically as follows. For an arbitrary (fixed) graph \(G \), we would like to determine the smallest integer \(r = r(G) \) so that, no matter how the edges of \(K \), are \(2 \)-colored, a monochromatic subgraph isomorphic to \(G \) is always formed. For the classical Ramsey numbers, \(G \) itself is taken to be a complete graph. When \(k \) colors are used instead of two, we will denote the corresponding value of \(r \) by \(r(G; k) \).

Just as in the classical case, it is convenient to consider the more general “off-diagonal” situation. For graphs \(G_1, G_2, \ldots, G_k \), we let \(r(G_1, G_2, \ldots, G_k) \) denote the least integer \(r \) so that, no matter how the edges of \(K \), are \(k \)-colored, for some \(i \) a copy of \(G_i \) occurs in the \(i \)th color. Of course, the existence of \(r(G_1, G_2, \ldots, G_k) \) is guaranteed by Ramsey’s original theorem.

To begin with, one of the simplest and most general results in Graph Ramsey theory is the following: For a graph \(G \) (which we will always assume has no isolated vertices), let \(\chi(G) \) denote the chromatic number of \(G \) and let \(c(G) \) denote the cardinality of the largest connected component of \(G \).
Theorem 1 (Chvátal–Harary [1972]).

\[r(G, H) \equiv (\chi(G) - 1)(c(H) - 1) + 1. \] \hfill (1)

Proof. Let \(m = (\chi(G) - 1)(c(H) - 1) \), and consider \(K_m \) to be made up of \(\chi(G) - 1 \) copies of \(K_{c(H) - 1} \) with edges interconnecting all pairs of vertices in the different copies of \(K_{c(H) - 1} \). Color all the edges within a copy of \(K_{c(H) - 1} \) with color 2 and all remaining (interconnecting) edges with color 1. Certainly, there is no copy of \(G \) with color 1 since, if there were, we could color the vertices of this copy of \(G \) with \(\chi(G) - 1 \) colors, corresponding to the copies of \(K_{n-1} \) they lie in, and this contradicts the definition of \(\chi(G) \). On the other hand, no copy of \(H \) with color 2 can occur, since the largest connected component in \(K_m \) with color 2 has \(c(H) - 1 \) vertices.

Theorem 1 can be applied to yield one of the most elegant results of Graph Ramsey theory, due to Chvátal [1977].

Theorem 2. For any tree \(T_m \) with \(m \) vertices

\[r(T_m, K_n) = (m - 1)(n - 1) + 1. \] \hfill (2)

Proof. The lower bound follows from (1). It remains to show that

\[r(T_m, K_n) \leq (m - 1)(n - 1) + 1. \] \hfill (3)

For \(m = 2 \) or \(n = 2 \), (3) is immediate. Assume that (3) holds for all values of \(m' \) and \(n' \) with \(m' + n' < m + n \). Consider a 2-colored \(K_{(m-1)(n-1)+1} \), using the colors red and blue, say. Let \(T' \) be a tree formed from \(T \) by the removal of some endpoint \(x \) (where \(x \) is connected by \(y \) in \(T \)). By the induction hypothesis, this \(K_{(m-1)(n-1)+1} \) contains either a blue \(K_n \) (and we are done) or a red \(T' \). Thus we may assume that there is a red \(T' \) in \(K_{(m-1)(n-1)+1} \). We remove the \(m-1 \) points of this red \(T' \), leaving a 2-colored \(K_{(m-1)(n-2)+1} \). Again by the induction hypothesis, this graph contains either a red \(T \) or a blue \(K_{n-1} \); we may clearly assume the latter.

Consequently, in the original \(K_{(m-1)(n-1)+1} \) we have a red \(T' \) and a blue \(K_{n-1} \) disjoint from it. Finally, we examine the edges emanating from \(y \) to the blue \(K_{n-1} \). If any of these edges is red then we have a red \(T \). If not then all these edges are blue and there is a blue \(K_n \). This completes the induction step, and the proof is finished.

There are still relatively few exact nontrivial values known for \(r(G, H) \). One of the more interesting is the following.
Theorem 3 (Burr [1974]). Let T_m be a tree with m vertices, and assume that $m - 1$ divides $n - 1$. Then

$$r(T_m, K_{1,n}) = m + n - 1.$$ (4)

Proof. We first shown that

$$r(\bar{T}_m, K_{1,n}) \geq m + n - 1.$$ (5)

Let $k = (n - 1)/(m - 1)$. Form a 2-coloring of K_{m+n-2} by taking $k + 1$ copies of K_{m-1} (all having all red edges) interconnected by all blue edges. No red T_m has been formed, since \bar{T}_m has m vertices. Also, no blue $K_{1,n}$ has been formed, since the largest blue degree in the K_{m+n-2} is $k(m - 1) = n - 1$. This proves (5).

Next, we show that

$$r(T_m, K_{1,n}) \leq m + n - 1.$$ (6)

For $m = 2$, (6) is immediate. As in the proof of Theorem 2, we form the tree T' by removing an endpoint x of T_m (which we assume is connected to y in T_m). In a 2-colored K_{m+n-1}, we can assume by induction that there is either a blue $K_{1,n}$ (in which case we are done) or a red T'. We may assume the latter. Since there are $m + n - 1 - (m - 1) = n$ vertices v_i of K_{m+n-1} that are not vertices of the red T' and K_{m+n-1} contains no blue $K_{1,n}$, some edge from y to some v_i must be red. But this forms a red T in K_{m+n-1}. Thus by induction (6) holds, and the proof is complete.

The corresponding results when $m - 1$ does not divide $n - 1$ are much more complicated and are not completely understood. However, in this case (6) still holds; in fact, for almost all trees T_m,

$$r(T_m, K_{1,n}) = m + n - 2$$

for n sufficiently large.

A special case that has received particular attention is the one in which G consists of a number of disjoint copies of a particular graph. A particularly nice result of this type is due to Burr, Erdős, and Spencer [1975] for the graph nK_3, consisting of n disjoint triangles.

Theorem 4

$$r(nK_3) = 5n \quad \text{for } n \geq 2.$$ (7)
Graph Ramsey Theory

Proof. Recall that, for \(n = 1 \), we already know that \(r(K_3) = 6 \). To see that \(r(nK_3) \geq 5n \), consider the 2-coloring of \(K_{5n-1} \) shown in Fig. 5.3. It is easily verified that this 2-coloring of \(K_{5n-1} \) contains no monochromatic \(nK_3 \).

We next show by induction on \(n \) that

\[
r(nK_3) \leq 5n \quad \text{for } n \geq 2.
\]

The case \(n = 2 \) requires a detailed case analysis, which we omit. Fix a 2-coloring of \(K_n \), \(n \geq 3 \). We may find \(\lfloor (5n - 5)/3 \rfloor \) vertex disjoint monochromatic triangles by merely selecting triangles until fewer than six points remain. As \(\lfloor (5n - 5)/3 \rfloor \geq n \) we may assume that at least one of these triangles is in each color, say \(\{1, 2, 3\} \) is colored red and \(\{4, 5, 6\} \) is colored blue.

By a “bow tie” we mean a pair of triangles of different colors that share a common vertex (see Fig. 5.4). Assume, by symmetry, that at least five of the edges between \(\{1, 2, 3\} \) and \(\{4, 5, 6\} \) are blue. Then at least one of 1, 2, 3, say 1, is joined by blue edges to at least two of 4, 5, 6, say 4 and 5, and \(\{1, 2, 3, 4, 5\} \) forms a bow tie. When these five points are deleted, there exists, by induction, a monochromatic \((n-1)K_3 \) on the remaining \(5n - 5 \) points. This, together with the appropriate \(K_3 \) in the bow tie, gives a monochromatic \(nK_3 \).

The bow tie argument may be generalized to yield asymptotic results on \(r(nG) \) and \(r(mG, nG) \) for arbitrary \(G \).

We next sample a few results when the number \(k \) of color classes is allowed to be larger than 2. Detailed proofs, unless otherwise attributed, can be found in Erdős and Graham [1975].

Figure 5.4 A bow tie.
Theorem 5. For a tree T_m with m edges

$$\frac{(m-1)(k+1)}{2} < r(T_m; k) \leq 2mk + 1.$$ \hspace{1cm} (9)

Proof. To prove the lower bound in (9), let t denote $[(k+1)/2]$. Consider $K_{(m-1)}^{(t)}$ as t copies of K_{m-1}, labeled as $K_{m-1}^{(1)}, K_{m-1}^{(2)}, \ldots, K_{m-1}^{(t)}$. Assign the color i to all edges between $K_{m-1}^{(i)}$ and $K_{m-1}^{(j)}$ for $1 \leq i < j \leq t$. Assign the color $t - 1 + i$ to all edges within $K_{m-1}^{(i)}$. This is a $(2t-1)$-coloring of $K_{(m-1)}^{(t)}$ containing no monochromatic copy of T_m. Since $2t - 1 \leq k$, the left-hand side of (9) follows.

To prove the right-hand side of (9), apply the elementary fact that, for all d, any graph G with d vertices and md edges contains a subgraph any tree T_m with m edges (easily proved by induction). In any k-coloring of K_{2km+1}, at least $\left(1/k\right)\left(\frac{2km}{2} + 1\right)$ edges must have the same color. Since this is a (monochromatic) graph with $2km + 1$ vertices and at least $m(2km + 1)$ edges, by the above observation, it contains a monochromatic copy of T_m and the right-hand side of (9) follows.

If the conjecture of P. Erdős and V. T. Sós (see Erdős [1964b]) that any T_m always occurs as a subgraph of any graph with d vertices and $\left[\frac{1}{2}(m-1)d\right] + 1$ edges were known to hold, then the upper bound of (9) could be strengthened to

$$r(T_m; k) < (m-1)k + 4$$ \hspace{1cm} (9')

for k sufficiently large. It may well be that the right-hand side of (9') gives the correct asymptotic growth of $r(T_m; k)$. One reason for believing this is given by the following result.

Theorem 6. For a tree T_m with m edges

$$r(T_m; k) > (m-1)k - m^2$$

for k sufficiently large.

Proof. For a given large k, let k_0 denote the largest integer not exceeding k which is congruent to 1 modulo m. By a deep result of Ray-Chaudhuri and Wilson [1973], there will always exist a resolvable balanced incomplete block design $D_{k_0,m}$ having $(m-1)k_0 + 1$ points and $k_0(k_0m - k_0 + 1 + 1)/m$ blocks of size m, provided only that k_0 is sufficiently large. Identify the points of $D_{k_0,n}$ with vertices of $K_{(m-1)k_0+1}$. Assign
the color \(i\) to all edges of \(K_{(m-1)k_0+1}\) that correspond to a pair of points occurring in the \(i\)th parallel class of \(D_{k,n}\). This is a \(k_0\)-coloring of \(K_{(m-1)k_0+1}\), which contains no monochromatic connected subgraph with \(m+1\) vertices. Since \(k_0 > k - m\), this induces a \(k\)-coloring of \(K_{(m-1)k_0+1}\) with no monochromatic \(T_m\).

For special trees, much more exact results are known. For example, for \(P_3\), the path with three edges, Irving [1974] has shown that the following theorem holds.

Theorem 7

\[
r(P_3, k) = \begin{cases}
2k + 2 & \text{if } k \equiv 1 \pmod{3}, \\
2k + 1 & \text{if } k \equiv 2 \pmod{3}, \\
2k \text{ or } 2k + 1 & \text{if } k \equiv 0 \pmod{3}.
\end{cases}
\]

The proof of (10) also relies on the results for resolvable balanced incomplete block designs. In fact, it is not uncommon for the exact values of many of the known graph Ramsey numbers to depend on the existence (or nonexistence) of certain special combinatorial designs or algebraic structures. We see this, for example, in the determination of the classical Ramsey numbers \(R(3, 3, 3)\) and \(R(4, 4)\).

It is instructive to compare the Ramsey numbers of \(P_3\) and the apparently closely related graph \(C_4\), the cycle of four vertices. In fact, the Ramsey numbers for \(C_4\) grow much more rapidly than those for \(P_3\).

Theorem 8 (Chung–Graham [1975])

\[
r(C_4; k) \leq k^2 + k + 2 \quad \text{for all } k.
\]

If \(k - 1\) is a prime power then

\[
r(C_4; k) \geq k^2 - k + 2.
\]

Proof. We first need an estimate for the maximum number \(e\) of edges that a graph \(G\) with \(n\) vertices can have if \(G\) contains no \(C_4\) as a subgraph. Let \(A = (a_{ij})\) denote the adjacency matrix of such a \(G\). Since \(C_4 \not\subseteq G\),

\[
\sum_{j=1}^{n} a_{i,j} a_{i',j} \leq 1
\]

for any choice of \(1 \leq i < i' \leq n\). If \(c_j\) denotes \(\sum_{i=1}^{n} a_{ij}\) then, summing (13)
over all choices of i and i', we obtain
\[\sum_{j=1}^{n} c_j(c_j - 1) \leq n(n - 1). \]
(14)

Applying the Schwarz inequality to (14), we have
\[2e = \sum_{j=1}^{n} c_j \leq \frac{n}{2} + n\sqrt{n - \frac{3}{4}}, \]
(15)

which is the sought after bound.

Suppose now that the edges of K_{k^2+k+2} are k-colored. Then at least one of the colors occurs on at least \((1/k) \binom{k^2 + k + 2}{2} \) edges. However, if we take
\[n = k^2 + k + 2, \quad e \geq \frac{1}{k} \binom{k^2 + k + 2}{2} \]
we find that (15) is (barely) violated. This proves (11).

To prove (12), it is well known that since $k - 1$ is a prime power there exists a simple difference set $D = \{d_1, \ldots, d_k\}$ (modulo $k^2 - k + 1$). For each t, $1 \leq t \leq k$, we form a cyclic (symmetric) matrix $B_t = (b_t(i, j))$ as follows:
\[b_t(i, j) = \begin{cases} 1 & \text{if } i + j + d_t \equiv d_s \pmod{k^2 - k + 1} \text{ for some } d_s \in D, \\ 0 & \text{otherwise}. \end{cases} \]

Since D is a difference set, it follows that, for any choice of $i, j \in \mathbb{Z}_{k^2-k+1}$, there exists t such that $b_t(i, j) = 1$. Furthermore, for each t no two rows of B_t have a common pair of 1's.

We now form a k-colored K_{k^2-k+1} as follows. The vertices of the K_{k^2-k+1} will be the elements of \mathbb{Z}_{k^2-k+1}. For $i, j \in \mathbb{Z}_{k^2-k+1}$, we color the edge \{i, j\} with color t, where t is the least integer such that $b_t(i, j) = 1$. It follows from the preceding remarks that this is a k-coloring of K_{k^2-k+1} having no monochromatic C_4, and (12) is proved.

Again, note the appearance of combinatorial structures (in this case difference sets) in the lower bound proof. It follows from (11) and (12) and the fact that the prime powers are sufficiently dense that
\[r(C_4; k) \sim k^2 \]
as $k \to \infty$.
One might be tempted to guess that, since C_3 is smaller than C_4, it should in some sense occur more readily in a k-coloring of a complete graph, and hence $r(C_3; k)$ would be substantially smaller than $r(C_4; k)$. In fact, however, exactly the opposite is true, as the following result shows.

Theorem 9

$$2^k < r(C_3; k) \leq 3k!$$ \hspace{1cm} (16)

Proof. The lower bound in (16) follows easily by induction on k. When $k = 1$, it is certainly valid. If there exists a k-coloring of K_{2^k} with no monochromatic C_3 then, by joining two such copies of K_{2^k} by edges of color $k + 1$, we have a $(k + 1)$-colored K_{2^k+1} with no monochromatic C_3.

To prove the upper bound, suppose that the edges of $K_{3k!}$ are arbitrarily k-colored. Some vertex v has at least $3(k-1)!$ edges of the same color, say color k, joining v to vertices $x_1, \ldots, x_{3(k-1)!}$. If the complete graph spanned by the x_i's had an edge with color k, we would be done. Hence the x_i's must form a $(k-1)$-colored $K_{3(k-1)!}$. By an induction assumption (which we did not actually make), this $K_{3(k-1)!}$ must have a monochromatic C_3. The proof is completed by noting that the right-hand side of (16) holds for $k = 1$ (to start the induction).

The reason behind the enormous difference between the growth rates of $r(C_4; k)$ and $r(C_3; k)$ is the fact that the much stronger Density theorem holds for C_4 but not for C_3. In fact, we have seen from (15) that if G has m vertices and $\frac{1}{2}m^{3/2} + \frac{1}{2}m$ edges then G must already contain C_4 as a subgraph. In contrast to this, as Turán’s theorem shows, G can have essentially $m^2/4$ edges without containing a C_3.

Of course, the difference between even and odd cycles occurs frequently in Graph theory. It should not be surprising to find it appearing here as well.

For larger even cycles, the following is known.

Theorem 10. For any k and m,

$$r(C_{2m}; k) > (k-1)(m-1).$$

If $k \leq 10^m/201m$ then

$$r(C_{2m}; k) \leq 201km.$$

Finally, there exist $\alpha > 0$ and a positive function g such that, for any $\varepsilon > 0$,

$$\alpha k^{1+1/2m} < r(C_{2m}; k) < g(m, \varepsilon)k^{1+[(1+\varepsilon)/(m-1)]}.$$

What this result says is that $r(C_{2m}; k)$ grows linearly in k out to a rather large value, and thereafter grows roughly like a power (exceeding 1) of k.

For odd cycles, the following analogue of Theorem 9 holds.

Theorem 11. For any k and m,

$$2^km < r(C_{2m+1}; k) < 2(k+2)!m.$$

An old question of Erdős asks whether or not, for some A, it is true that

$$r(C_3; k) < A^k.$$

It is not known whether

$$r(C_3; k) > r(C_2; k)$$

or even whether

$$r(C_{2m+1}; k) > r(C_3; k)$$

for m fixed and k large. In fact, Erdős has suggested that it might actually be easier to show that

$$r(C_{2m+1}; k) < A^k$$

for some $m > 1$ (especially if it is true!).

Anyone who would like to study more slowly growing Ramsey numbers is naturally led to the consideration of $r(F; k)$, where F is a forest (= acyclic graph) of some type. Some information is available in this case, although the known results are far from complete.

Theorem 12. If F_m is a forest with m edges then

$$\frac{k(\sqrt{m} - 1)}{2} < r(F_m; k) < 4km.$$
Furthermore, if \(k \leq m^2 \) then

\[r(F_m; k) > \alpha \sqrt{km} \]

for a suitable positive constant \(\alpha \).

We omit the proof. For every forest \(F \), \(r(F; k) \) grows essentially linearly in \(k \) for large \(k \) [similarly to the behavior of \(r(T; k) \) for trees \(T \) over the whole range \(k \)]. However, the second bound allows for the possibility that \(r(F; k) \) can grow only as fast as \(\sqrt{k} \) for small \(k \). The next result shows that this can really happen.

Theorem 13. For a suitable constant \(\alpha \) if \(k \leq m \) then

\[r(mK_1, m; k) \leq \alpha \sqrt{km^2} . \]

Also, if \(k \geq 3m^2 \) then

\[r(mK_1, m; k) \leq 3km . \]

Note that, except for values of \(k \) between \(m \) and \(m^2 \), the upper and lower bounds for \(r(mK_1, m; k) \) differ just by a constant factor.

Instead of letting \(k \to \infty \), we might ask how slowly \(r(G) \) can grow as the number of vertices of \(G \) grows. Here fairly precise results are available.

Theorem 14 (Burr–Erdős [1976]). If \(G \) is connected graph with \(m \) vertices then

\[r(G) \geq \left\lceil \frac{4m - 1}{3} \right\rceil . \]

Furthermore, for each \(m \geq 3 \) there is such a \(G \) for which the bound is achieved.

If \(G \) is allowed to be disconnected (still without isolated vertices, though) then \(r(G) \) can be smaller, as the following result shows.

Theorem 15 (Burr–Erdős [1976]). For a suitable positive constant \(\alpha \), if \(G \) has \(m \) vertices then

\[r(G) > m + \frac{\log m}{\log 2} - \alpha \log \log m . \]
Also, there is a graph G with m vertices and a constant β such that

$$r(G) \leq m + \beta \sqrt{m}.$$

Again, it is conjectured that the lower bound is essentially the truth.

We conclude this section with an assortment of results, conjectures, and remarks that suggest the variety of directions researchers in this field are currently pursuing. Most of these deal with the two-color case; the analogous statements for the k-color cases will be left to the reader.

To begin with, let us call a set $\mathcal{G} = \{G_1, G_2, \ldots\}$ of graphs an L-set if there is a constant $\rho = \rho(\mathcal{G})$ such that

$$r(G_i) \leq \rho(G_i)$$

for all i [where we recall that $\rho(G_i)$ denotes the number of vertices of G_i].

We define the edge density $\rho(G)$ of a graph G by

$$\rho(G) = \max_{H \subseteq G} \frac{e(H)}{p(H)},$$

where $e(H)$ denotes the number of edges of H. The following strong conjecture is due to P. Erdős.

Conjecture. If $\rho(G)$ is bounded for $G \in \mathcal{G}$, then \mathcal{G} is an L-set.

Although the conjecture is far from being established at present, some supporting results are known; for example, any set of trees is an L-set, and for any m the set $\{C_i^m\}$ of mth powers of cycles is an L-set. A set of particular interest that is not yet known to be an L-set is the set $\{Q_i\}$ of cubes.

A very general result that is particularly useful for relatively dense graphs is the following.

Theorem 16 (Chvátal–Harary). Let G be a graph with p vertices and q edges, and let s be the order of the automorphism group of G. Then

$$r(G; k) \geq (sk^{s-1})^{1/p}.$$ \hspace{1cm} (17)

Proof. The proof will be accomplished by a simple but effective use of the "probabilistic method." Let us (arbitrarily) label the vertices of G by v_1, \ldots, v_p, forming the labeled graph \hat{G}. It is easily seen that the complete graph K_n contains exactly
\[(n)_p = n(n-1) \ldots (n-p+1) \text{ distinct copies of } \tilde{G}.
\]

Thus, from the definition of \(s\) as the number of symmetries of \(G\), \(K_n\) contains \(t = (n)_p/s\) copies of \(G\), say \(G_1, G_2, \ldots, G_t\). Let us say that a \(k\)-coloring of \(K_n\) is \(G_i\)-bad if all the edges in the subgraph \(G_i\) of \(K_n\) have been assigned the same color. Since there are \(k^{n\choose 2}\) \(k\)-colorings altogether, there are just \(k^{n\choose 2} - q + 1\) \(G_i\)-bad colorings. Therefore there are altogether at most \(tk^{n\choose 2} - q + 1\) colorings that are \(G_i\)-bad for some \(i\). Hence, if

\[tk^{n\choose 2} - q + 1 < k^{n\choose 2}.
\]

then some \(k\)-coloring must form no monochromatic copy of \(G\) in \(K_n\). This condition certainly holds if

\[k^{q-1} > \frac{n^p}{s} \geq \frac{(n)_p}{s} = t,
\]

that is,

\[n < (sk^{q-1})^{1/p}.
\]

Thus

\[r(G; k) \geq (sk^{q-1})^{1/p},
\]

and the theorem is proved.

An interesting variation is to determine for a given graph \(G\) the minimum number of edges a graph \(H\) can have so that any 2-coloring of the edges of \(H\) always results in a monochromatic copy of \(G\). Let us denote this minimum number of edges by \(r_e(G)\). It is obvious that

\[r_e(G) \leq \left\lfloor \frac{r(G)}{2} \right\rfloor.
\] \hfill (18)

When \(G\) is a complete graph then in fact, equality holds in (18) (see Erdös, Faudree, Rousseau, and Schelp [1978]). It is not known whether this can happen for noncomplete graphs. In the other direction it is not hard to show that

\[r_e(K_{1,m}) = \begin{cases} 2m - 1 & \text{for } m \text{ even}, \\ 2m & \text{for } m \text{ odd}. \end{cases}
\]
Thus

\[
\frac{r_e(K_{1,m})}{(r(K_{1,m}))^2} \to 0 \quad \text{as } m \to \infty.
\] \hspace{1cm} (19)

One of the most interesting open questions dealing with \(r_e \) is whether (19) holds when \(K_{1,m} \) is replaced by the path \(P_m \). At present we can rule out neither \(r_e(P_m) < cm \) nor \(r_e(P_m) > cm^2 \) as a possibility.

Finally, one can consider the class \(\mathcal{C}(G) \) of graphs \(H \) for which \(H \to (G, G) \) but such that for any proper subgraph \(H' \subseteq H \), \(H' \to (G, G) \). Such graphs are called Ramsey-minimal for \(G \) by Burr, Faudree, and Schelp [1977]. It is known (see also Nešetřil and Rödl [1978b]) that \(\mathcal{C}(G) \) is infinite in any of the following cases:

(i) \(G \) is 3-connected,
(ii) \(G \) has a chromatic number of at least 3,
(iii) \(G \) is a forest that is not a union of stars.

The proof of (iii) is particularly illuminating since it incorporates several ideas that recur constantly in Graph Ramsey theory.

Theorem 17 (Nešetřil–Rödl [1978b]). Suppose that \(G \) is forest that is not a union of stars. Then \(\mathcal{C}(G) \) is infinite.

Proof. What we show is that, for any given integer \(t \), there is a graph \(H \in \mathcal{C}(G) \) that has more than \(t \) vertices. Let \(n \) denote the number of vertices of \(G \).

To begin with, we know by a classic result of Erdős [1959] that there exists a graph \(K \) with chromatic number \(\chi(K) \) exceeding \(n^2 \) and girth exceeding \(t \). In any 2-coloring of the edges of \(K \), the edges of at least one of the colors form a graph \(K' \) with \(\chi(K') > n \). [More generally, if \(E(K) = E(K_1) \cup E(K_2) \) then \(\chi(K) \leq \chi(K_1) \chi(K_2) \). since the product of the two vertex colorings that achieve \(\chi(K_1) \) and \(\chi(K_2) \), respectively, gives a valid \(\chi(K_1) \chi(K_2) \)-coloring of the vertices of \(K \).] By sequentially removing edges from \(K' \), we can form a minimal subgraph \(K'' \subseteq K' \) with \(\chi(K'') = n + 1 \). In particular, all the vertices of \(K'' \) must have degree at least \(n \). [If \(v \) is a vertex of \(K'' \) with degree less than \(n \), then, by minimality, \(K'' - \{v\} \) can be \(n \)-colored, and since \(v \) is adjacent to at most \(n - 1 \) of the vertices of \(K'' - \{v\} \), this \(n \)-coloring can be extended to a valid \(n \)-coloring of \(K'' \) (which is impossible).] Furthermore, it is easy to see that \(K'' \) contains every forest \(F \) with \(n \) vertices as a subgraph (we
simply start embedding \(F \) anywhere in \(K'' \); since all degrees in \(K'' \) are at least \(n \), we never get "stuck".

Thus we have shown that \(K \to G \). Therefore \(K \) contains a (minimal) subgraph \(K^* \in \mathcal{C}(G) \). Note that \(K^* \) itself cannot be a forest since the edges of any forest can always be 2-colored so that no monochromatic path \(P_3 \) of three edges is formed (and by assumption, since \(G \) is not a union of stars, it contains \(P_3 \) as a subgraph). Thus the girth of \(K^* \) is finite; of course, it is greater than \(t \), the girth of \(K \). But this implies that \(K^* \) has more than \(t \) vertices, and the proof is complete.

In closing this section we mention a striking conjecture of Erdős.

Conjecture. If \(G_m \) has chromatic number \(m \) then

\[
r(G_m) \geq r(K_m).
\]
6

Beyond Combinatorics

6.1 TOPOLOGICAL DYNAMICS

In this section we outline the applications of topological dynamics to Ramsey theory. We shall prove van der Waerden's theorem and Hindman's theorem by these methods. We shall show the implication of Szemerédi's theorem from the ergodic theorem of Furstenberg.

We assume a rudimentary knowledge of topology. Let us review the product topology in the form we will require. Let B be a topological space, A a set. Set

$$X = \{ f; A \rightarrow B \}.$$

We shall often write $X = B^A$; X forms a topological space under the product topology. For every $a_1, \ldots, a_s \in A$, $U_1, \ldots, U_s \subseteq B$ open,

$$U = \{ f \in X: f(a_i) \in U_i, 1 \leq i \leq s \}$$

is an open set, and these sets form a basis for the product topology. When $B = [c]$, with the discrete topology, a basis for the open sets about $f \in X$ is given by these sets:

$$U = \{ g \in X: f(a_i) = g(a_i), 1 \leq i \leq s \}.$$

When (B, ρ) is a metric space a basis is given by the sets:

$$U = \{ g \in X: g(a_i) \in B(f(a_i), \varepsilon), 1 \leq i \leq s \},$$

where $\varepsilon > 0$ and $B(z, \varepsilon)$ denotes a ball of radius ε about z.

Let B be a compact space. (In our example B will be either $[c]$ or a compact metric space.) By the Tychonoff theorem $X = B^A$ is compact under the product topology. This property is central to all applications.
We observe that the Tychonoff theorem requires the Axiom of Choice so that all results will be nonconstructive.

We begin with construction of a topological space. Fix a number of colors \(c \geq 2 \). A \(c \)-coloring of \(Z \) is a function

\[
x: Z \to [c].
\]

Let \(X \) denote the set of all such colorings; \(X \) is called the bisequence space, as its elements may be represented by doubly infinite sequences

\[
x = (\cdots, x(-1), x(0), x(1), \cdots).
\]

We place on \(X \) the metric \(\rho \), given by

\[
\rho(x, y) = \begin{cases}
 (n + 1)^{-1} & \text{if } n \geq 0 \text{ is minimal so that } x(i) = y(i) \text{ for } |i| < n, \\
 0 & \text{if } x = y.
\end{cases}
\]

If \(x(0) \neq y(0) \) then \(n = 0 \) and \(\rho(x, y) = 1 \). The distance \(\rho(x, y) \) is small iff \(x, y \) are identical near the origin. We may easily show that \(x_n \to x \), under the metric \(\rho \), iff \(x_n(i) \to x(i) \) for all \(i \in Z \). Topologically, \(X = [c]^Z \) forms a compact space by the Tychonoff theorem. (Alternatively, any sequence \(\{x_n\} \) contains a convergent subsequence by a diagonalization process.)

Let \(T: X \to X \) be defined by

\[
(Tx)(i) = x(i + 1),
\]

where \(T \) is called the shift operator, and \(Tx \) is the coloring \(x \) moved one space to the left. \(T \) is bijective. It is uniformly continuous, as \(\rho(x, y) < (n + 1)^{-1} \) implies that \(\rho(Tx, Ty) < n^{-1} \). Hence \(T \) is a homeomorphism (though it does not preserve the metric). For \(s \in Z \), let \(T^s \) denote, as usual, the \(s \)th iterate of \(T \), given by

\[
(T^s x)(i) = x(i + s).
\]

Let \(x \in X \). Define the orbital closure of \(x \), denote by \(\tilde{x} \), by

\[
\tilde{x} = \overline{cl}\{T^s x : s \in Z\},
\]

where \(cl \) presents topological closure. Then \(\tilde{x} \) is a compact subspace of \(X \). As \(T(T^s x) = T^{s+1} x \in \tilde{x}, T(\tilde{x}) \subseteq \tilde{x} \) by continuity. Similarly, \(T^{-1}(\tilde{x}) \subseteq \tilde{x} \); thus \(T \) acts bijectively on \(\tilde{x} \).
Definition. \((Y, T)\) is a dynamical system if \(Y\) is a compact metric space and \(T : Y \to Y\) is a bijective homeomorphism.

Theorem 1 (Topological Van Der Waerden Theorem). Let \((Y, T)\) be a dynamical system, \(r \geq 1\), \(\varepsilon > 0\). Then there exist \(y \in Y\), \(n > 0\) so that

\[
\rho(T^{i\mu}y, y) < \varepsilon \quad (\rho = \text{metric of } Y)
\]

simultaneously for \(1 \leq i \leq r\).

Theorem 2. Theorem 1 implies van der Waerden’s theorem.

Proof. Let \(x \in X\) be a \(c\)-coloring of \(Z\). Apply Theorem 1 with \(Y = \bar{x}\). For some \(y \in \bar{x}\), \(n > 0\)

\[
\rho(T^{i\mu}y, y) < 1, \quad 1 \leq i \leq r,
\]

that is,

\[
y(0) = T^n y(0) = \cdots = T^{rn} y(0)
\]

or

\[
y(0) = y(n) = \cdots = y(rn).
\]

As \(y \in \bar{x}\), there exists \(s \in Z\), \(\rho(y, T^s x) < (rn + 1)^{-1}\), that is, \(y\) and \(T^s x\) are identical on \([-rn, +rn]\) so that

\[
T^s x(0) = T^s x(n) = \cdots = T^s (rn)
\]

or

\[
x(s) = x(s + n) = \cdots = x(s + rn),
\]

a monochromatic arithmetic progression of length \(r\). We have shown that an arbitrary finite coloring of \(Z\) contains arbitrarily long monochromatic APs. The replacement of \(Z\) by \(N\) is a simple exercise (either using the Compactness principle or considering symmetric colorings of \(Z\)).

Definition. Let \(x \in X\). A sequence of length \(r\) of \(x\) is an ordered \(r\)-tuple \((x(i), \ldots, x(i + r - 1)), i \in Z\). Let Seq\((x)\) denote the family of all sequences of a coloration \(x\).
Theorem 3. \(y \in \bar{x} \) iff \(\text{Seq}(y) \subseteq \text{Seq}(x) \).

Proof. Let \(y \in \bar{x} \), \((y(i), \ldots, y(i + r - 1)) \in \text{Seq}(y) \). For some \(s \in \mathbb{Z} \)

\[
\rho(T^s x, y) < [1 + \max(|i|, |i + r - 1|)]^{-1}
\]

so that \(y \) and \(T^s x \) agree on \([i, i + r - 1]\) and

\[
(y(i), \ldots, y(i + r - 1)) = (x(i + s), \ldots, x(i + s + r - 1)) \in \text{Seq}(x).
\]

Conversely, assume that \(\text{Seq}(y) \subseteq \text{Seq}(x) \), and let \(n \geq 1 \) be arbitrary. Then

\[
(y(-n), \ldots, y(n)) \in \text{Seq}(x)
\]

so, for some \(s \),

\[
(y(-n), \ldots, y(n)) = (x(-n + s), \ldots, x(n + s))
\]

and \(\rho(y, T^s x) < (n + 1)^{-1} \). As \(n \) was arbitrary, \(y \in \bar{x} \).

Theorem 4. The following conditions on \(x \in X \) are equivalent:

(i) \(\text{Seq}(x) \) is minimal in the sense that, for no \(y \in X \), is \(\text{Seq}(y) \subseteq \text{Seq}(x) \).

(ii) \(y \in \bar{x} \Rightarrow \bar{y} \subset \bar{x} \).

(iii) \(\bar{x} \) is minimal in the sense that, for no \(y \in X \), is \(\bar{y} \subset \bar{x} \).

(iv) (Bounded Gaps condition) For every \((x(i), \ldots, x(i + r - 1)) \in \text{Seq}(x) \) there exists \(M \) so that, for every \(t \in \mathbb{Z} \), there exists \(s \in [t, t + M - r] \) so that

\[
(x(i), \ldots, x(i + r - 1)) - (x(s), x(s + 1), \ldots, x(s + r - 1)),
\]

that is, the sequence occurs as a subsequence of every interval of length \(M \).

We call \(x \in X \) minimal if conditions (i)–(iv) hold. Conditions (i) and (iv) apply when \(X \) is the bisequence space; (ii) and (iii) apply for any compact space \(X \) and homeomorphism \(T \).
Proof. The equivalences (i) \(\Leftrightarrow\) (ii) \(\Leftrightarrow\) (iii) are immediate from Theorem 3. Let \(x\) satisfy (iv) and \(y \in \tilde{x}\). Let \((x(i), \ldots, x(i + s - 1)) \in \text{Seq}(x)\) with \(M\) given by (iv). Then \((y(1), \ldots, y(M)) \in \text{Seq}(x)\) so

\[
(y(1), \ldots, y(M)) = (x(t), \ldots, x(t + M - 1))
\]

for some \(t \in Z\). For some \(s \in [t, t + M - r]\)

\[
(x(i), \ldots, x(i + r - 1)) = (x(s), x(s + 1), \ldots, x(s + r - 1)) = (y(s - t + 1), \ldots, y(s - t + r))
\in \text{Seq}(y).
\]

Hence (iv) \(\Rightarrow\) (ii).

Inversely, let \(s = (x(i), \ldots, x(i + r - 1)) \in \text{Seq}(x)\), and let \(t_M\) be defined for all odd (for convenience) \(M = 2N + 1\) so that \(s\) is not a subsequence of \(x\) on \([t_M, t_M + 2N]\). Let \(x_M = T^{t_M + N}x\) so that \(s\) is not a subsequence of \(x_M\) on \([-N, N]\). By the Compactness principle (i.e., Diagonal argument) there exists a convergent subsequence \(x_{M_i} \rightarrow y\), \(M_i = 2N_i + 1\). As \(x_{M_i} \in \tilde{x}, y \in \tilde{x}\). For every \(N\) there exists \(i\) so that \(N_i \geq N\) and \(x_{M_i}\) is identical with \(y\) on \([-N, N]\). Thus \(y\) does not contain \(s\) as a subsequence on \([-N, N]\). As \(N\) is arbitrary, \(s \not\in \text{Seq}(y)\) so \(x\) does not satisfy (ii).

Theorem 5 (Minimal Property). For every \(x \in X\) there exists \(y \in \tilde{x}, y\) minimal.

Proof. We use condition (iii). Let \(\mathcal{U} = \{\tilde{y} : y \in X\}\). Suppose that \(\mathcal{C} \subseteq \mathcal{U}\) forms a chain under containment. Any finite subfamily \(\tilde{y}_1, \ldots, \tilde{y}_n \in \mathcal{C}\) has a minimal set, so \(\bigcap \tilde{y}_i \neq \emptyset\). \(\mathcal{C}\) is a family of closed sets of \(X\). As \(X\) satisfies the Finite Intersection property (equivalent to Compactness),

\[
\bigcap_{\tilde{y} \in \mathcal{C}} \tilde{y} \neq \emptyset,
\]

that is, there exists \(z \in \tilde{y}\) for all \(\tilde{y} \in \mathcal{C}\). Thus \(z \subseteq \tilde{y}\) for all \(\tilde{y} \in \mathcal{C}\).

In \(\mathcal{U}\) every chain \(\mathcal{C}\) is dominated (under containment) by some \(\tilde{z} \in \mathcal{U}\). By Zorn's lemma (logically equivalent to the Axiom of Choice) every \(\tilde{x} \in \mathcal{U}\) is dominated by some minimal element \(\tilde{y} \subseteq \tilde{x}\).
The Minimal property has a combinatorial interpretation. Let \(\mathcal{A} \) be a set of sequences. Suppose that one wishes to show that, for all colorings \(x \in X \), \(\text{Seq}(x) \cap \mathcal{A} \neq \emptyset \). Then, using condition (i), it suffices to show that, for all minimal colorings \(x \in X \), \(\text{Seq}(x) \cap \mathcal{A} \neq \emptyset \). Observe that van der Waerden's theorem is a statement of this type. The minimal colorings, unfortunately, may have a complicated structure. We note, for example, that, for all real \(\alpha \) and \(n \in N \), the coloring

\[x(i) = [\alpha i] \text{ (modulo } n) \]

gives a minimal coloring. When \(\alpha \) is irrational, \(x \) is not periodic.

We call a dynamical system \((Y, T) \) minimal if \(\bar{y} = Y \) for all \(y \in Y \). By the Minimal property, for all dynamical systems \((Y, T) \) there exists a nonempty \(A \subseteq Y \) so that \((A, T) \) is minimal.

Proof of Theorem 1. By the above remarks, we may assume that \((Y, T) \) is a minimal dynamical system. Consider the following sequence of statements:

\[
\begin{align*}
(A_i) & : \forall \varepsilon > 0 \exists x, y, n \quad \rho(T^n x, y) < \varepsilon, \quad 1 \leq i \leq r \\
(B'_i) & : \forall \varepsilon > 0 \exists x, n \quad \rho(T^n x, z) < \varepsilon, \quad 1 \leq i \leq r \\
(B_i) & : \forall \varepsilon > 0 \exists x, n, \varepsilon' > 0, \quad T^n[B(x, \varepsilon') \subseteq (z, \varepsilon)], \quad 1 \leq i \leq r \\
(C_i) & : \forall \varepsilon > 0 \exists w, n \quad \rho(T^n w, w) < \varepsilon, \quad 1 \leq i \leq r
\end{align*}
\]

We shall show that \((A_i) \Rightarrow (B_i) \Rightarrow (B'_i) \Rightarrow (C_i) \Rightarrow (A_{i+1}) \). Observe that \((A_1) \) is trivial, taking \(x, n \) arbitrary, \(y = T^n x \).

Theorem 6. Let \((Y, T) \) be minimal. For all \(\varepsilon > 0 \) there exists \(M > 0 \) so that, for all \(x, y \in Y \),

\[\min_{|s| \leq M} \rho(T^s x, y) < \varepsilon. \]

Proof. When \(Y \) is a set of colorations, the existence of \(M \) follows from the Bounded Gaps condition. In general, if no \(m \) existed, there would be sequences \(x_i, y_i \in Y \) so that \(\rho(T'^s x_i, y_i) > \varepsilon \) for all \(|s| < i \). On an appropriate subsequence, \(x_i, y_i \) would simultaneously converge to \(x, y \) and \(\rho(T^s x, y) \geq \varepsilon \) for all \(s \in Z \). But then \(y \not\equiv \bar{x} \), contradicting the minimality assumption.

\((A_i) \Rightarrow (B_i) \). Let \(\varepsilon > 0 \) be fixed and \(M \) satisfy Theorem 6. Let \(\varepsilon' \) be such that \(\rho(x, y) < \varepsilon' \) implies \(\rho(T^s x, u) < \varepsilon \) for \(|s| \leq M \) (\(\varepsilon' \) exists by the
uniform continuity of the T^n). Let x, y, n satisfy (A_r) for e'. Let $z \in Y$ be arbitrary. For some $s, |s| \leq M, \rho(T^s y, z) < \varepsilon$. As $\rho(T^{s+1}x, y) < \varepsilon$, $\rho(T^{s+1}x, T^s y) < \varepsilon$ so that $\rho(T^{s+1}x, z) < 2\varepsilon$, where $x^* = T^s x$. As ε was arbitrary, (B_s) follows.

$(B_s) \Rightarrow (B_{s'})$. Fix $\varepsilon > 0, z \in Y$. Select, by $(B_s), x, n$ so that $T^n x \in B(z, \varepsilon/2), 1 \leq i \leq r$. Select, by continuity, an $\varepsilon' = \varepsilon$ such that $x' \in B(x, \varepsilon')$ implies $T^n x' \in B(T^n x, \varepsilon/2), 1 \leq i \leq r$. (Note that ε' depends strongly on n.) Then $x' \in B(x, \varepsilon')$ implies that

$$\rho(T^n x', z) < \rho(T^n x', T^n x) + \rho(T^n x, z) \leq \varepsilon,$$

as desired.

$(B_{s'}) \Rightarrow (C_r)$. Let $e_0 < \varepsilon/2$ and $z_0 \in Y$ be arbitrary. Let $x_1, n_1, \varepsilon_1 \leq \varepsilon_0$ satisfy

$$T^{in_1} [B(z_1, \varepsilon_1)] \subseteq B(z_0, \varepsilon_0), \quad 1 \leq i \leq r.$$

By induction, select $z_s, n_s, \varepsilon_s \leq \varepsilon_{s-1}$ so that

$$T^{in_s} [B(z_s, \varepsilon_s)] \subseteq B(z_s, \varepsilon_0), \quad 1 \leq i \leq r.$$

By the Compactness principle, from the infinite sequence $\{z_s\}$ we may find $t < s$ such that $\rho(z_s, z_t) < \varepsilon_0$. (The perspicacious reader will note here the focusing of progressions, as in the combinatorial proof of van der Waerden’s theorem.) By a simple induction

$$T^{in_{s^n, s^{n-1}, \ldots, s}} [B(z_s, \varepsilon_s)] \subseteq B(z_t, \varepsilon_t) \subseteq B(z_t, 2\varepsilon_0) \subseteq B(z_s, \varepsilon_0).$$

Thus (C_r) is satisfied by $n = n_1 + \cdots + n_{r+1}$ and $w = z_s$.

$C_r \Rightarrow A_{r+1}$. Let $\varepsilon > 0$ be arbitrary and w, n satisfy (C_r). Set $x = T^{-n} w, y = w$. For $1 \leq i \leq r + 1$,

$$\rho(T^n x, y) = \rho(T^{i-1}w, w) < \varepsilon,$$

completing the proof of Theorem 1.

For $S \subseteq Z$ let $P(S)$ denote the set of nonempty finite sums of S. Hindman’s theorem states that if N is finitely colored there exists an infinite $S \subseteq N$ such that $\mathcal{P}(S)$ is monochromatic. Let (X, T) be a dynamical system.
Definition. We say that $x, y \in X$ are proximal if
\[\inf_{n \in \mathbb{Z}} \rho(T^n x, T^n y) = 0. \]

If X is the bisequence space then $x, y \in X$ are proximal if there are arbitrarily long intervals $I \subset \mathbb{Z}$ such that $x(i) = y(i)$ for $i \in I$.

Theorem 7 (Topological Hindman's Theorem). Let (X, T) be a dynamical system, $x \in X$, $\bar{x} = X$. Let $Y \subseteq X$ be minimal. Then there exists $y \in Y$ such that x, y are proximal.

Note that if X itself is minimal (e.g., $X =$ unit circle, $T =$ rotation by θ with $\theta/2\pi$ irrational) then $Y = X$ so we may take $y - x$.

Theorem 8. Theorem 7 implies Hindman's theorem.

Proof. Let $x : N \to [c]$ be arbitrary. For technical reasons extend x to Z be setting $x(-i) = x(i)$, $i \in N$, $x(0)$ arbitrary. In the bisequence space set $X = \bar{x}$. Let Y be a minimal subset of X [which exists by the Minimal property (Theorem 5)]. Let $y \in Y$ be given by Theorem 7. We use two properties:

(i) x, y are proximal,

and

(ii) y has the Bounded Gaps property.

Either $\inf_{n \in N} \rho(T^n x, T^n y) = 0$ or $\inf_{n \in \mathbb{Z}} \rho(T^n x, T^n y) = 0$. Assume the former. (One says that x, y are positively proximal.) Let $y(0) =$ red. For some M, every M-interval of y contains a red point. Let I be an M-interval, $I > 0$, on which x, y coincide. Then, for some $a_i \in I$, $x(a_i) = y(a_i) =$ red. Now, by induction, assume $0 < a_i < \cdots < a_s$ have been found. Set $u = a_1 + \cdots + a_s$. For some M, every M-interval of y contains a u-interval identical to $[0, u]$. More formally:

\[\exists_M \forall_n \exists_{m \in \llbracket n, n + M \rrbracket} y(m + i) = y(i), \quad 0 \leq i \leq u. \]

There exists an M-interval $I > a_j$ on which x, y coincidc. Set a_{s+1} equal to the minimal element of I. Thus

\[y(a_{s+1} + i) = x(a_{s+1} + i), \quad 0 \leq i \leq u. \]

Let $\beta \in \mathcal{P} \left(\{a_1, \ldots, a_s, a_{s+1}\} \right)$. Either $\beta \subset \mathcal{P} \left(\{a_1, \ldots, a_s\} \right)$ or $\beta = a_{s+1} + \alpha$, where $\alpha \in \mathcal{P} \left(\{a_1, \ldots, a_s\} \right)$, or $\beta = a_{s+1}$. In the first case
\[x(\beta) = \text{red} \]

by induction. In the second case
\[x(\beta) = x(a_{s+1} + \alpha) = y(a_{s+1} + \alpha) = y(\alpha) = \text{red} \]

by induction. In the third case
\[x(\beta) = x(a_{s+1}) = y(a_{s+1}) = y(0) = \text{red} \]

completing the induction step. The infinite set \(S = \{a_1, a_2, \ldots\} \) is the desired infinite monochromatic set.

As \(S \subseteq N \), \(\mathcal{P}(S) \) is monochromatic under the original \(x \). When \(\inf_{n \in -N} \rho(T^nx, T^ny) = 0 \), the above argument would yield an \(S \subseteq -N \) such that \(\mathcal{P}(S) \) is monochromatic. But then \(-S \subseteq N \), and \(\mathcal{P}(-S) \) would be monochromatic under the original coloring.

For completeness (and for the edification of topology buffs) we prove Theorem 7. Let \((X, T)\) be a dynamical system. Let \(X^x = \{f : X \to X\} \)
with the product topology. As \(X \) is compact, \(X^x \) is compact. \(X^x \) forms a semigroup under composition. [Notation: \((fg)(x) = f(g(x))\).] The sets
\[\mathcal{O} = \{h \in X^x : \rho(h(x), y) < \varepsilon\} \]
form a subbasis for the topology. For any \(g \in X^x \), the right multiplication \(\Psi_g : X^x \to X^x \), given by \(\Psi_g(f) = fg \), is continuous, for with \(\mathcal{O} \) given above
\[\Psi_g^{-1}(\mathcal{O}) = \{f \in X^x : \rho(f(g(x)), y) < \varepsilon\} = \{f \in X^x : \rho(f(x'), y) < \varepsilon\}, \quad x' = g(x), \]
is open. The left multiplication \(\Phi_g : X^x \to X^x \), given by \(\Phi_g(f) = gf \), is continuous if \(g \) is, for in that case
\[\Psi_g^{-1}(\mathcal{O}) = \{f \in X^x : \rho(g(f(x)), y) < \varepsilon\} = \{f \in X^x : f(x) \in g^{-1}(B(y, \varepsilon))\} \]
is open as \(g^{-1}(B(y, \varepsilon)) \) is. Set
\[E = \text{cl}\{T^n : n \in \mathbb{Z}\} \subseteq X^x. \]

Then \(f \in E \) iff, for all \(x_1, \ldots, x_s \in X \), \(\varepsilon > 0 \), there exists \(n \in \mathbb{N} \) so that
\[\rho(f(x_i), T^n(x_i)) < \varepsilon, \quad 1 \leq i \leq s \]

(the existence of \(f \in E \) other then \(f = T^n \) is nonconstructive). \(E \) is a closed subset of compact \(X^s \), hence \(E \) is compact.

We claim that \(E \) is closed under composition. Set \(f, g \in E \), and let \(x_1, \ldots, x_s \in X, \varepsilon > 0 \) be arbitrary. For some \(n \in \mathbb{Z} \)

\[\rho(f(\ g(x_i)), T^n(\ g(x_i))) < \frac{\varepsilon}{2}, \quad 1 \leq i \leq s. \]

There exists \(\delta > 0 \) so that \(\rho(x, y) < \delta \) implies that \(\rho(T^n x, T^n y) < \varepsilon/2 \). For some \(m \in \mathbb{Z} \)

\[\rho(g(x_i), T^m(x_i)) < \delta, \quad 1 \leq i \leq s. \]

Hence

\[\rho(T^n(x_i), T^m(x_i)) < \frac{\varepsilon}{2}, \quad 1 \leq i \leq s, \]

and so

\[\rho(fg(x_i), T^{n+m}(x_i)) < \varepsilon, \quad 1 \leq i \leq s. \]

Therefore \(fg \in E \), and \(E \) is thus a semigroup. It is called the

enveloping semigroup of \((X, T)\).

Theorem 9 (Idempotent Theorem). Let \(E \) be a compact semigroup for which right multiplication \(\Psi_g : E \to E \), given by \(\Psi_g(f) = fg \), is continuous for all \(g \in E \). Then there exists \(g \in E \) such that \(g^2 = g \).

Proof. Let \(\mathcal{A} \) denote the family of compact semigroups \(A \subseteq F \). \(\mathcal{A} \neq \emptyset \) as \(E \in \mathcal{A} \). If \(\mathcal{C} \subseteq \mathcal{A} \) is a chain then \(\bigcap \mathcal{C} \in \mathcal{A} \). (\(\bigcap \mathcal{C} \neq \emptyset \) as all \(A \in \mathcal{C} \) are compact.) By Zorn's lemma there exists a minimal \(A \in \mathcal{A} \). Let \(g \in A \).

Then \(Ag \) is a semigroup \(((f, g)(f', g) = (f, g f')g) \) and is compact by continuity. As \(Ag \subseteq A, Ag = A \) by minimality. Set \(B = \{ f \in A : fg = g \} \). As \(Ag = A, B \neq \emptyset \). \(B \) is a semigroup \((f_1g = g \text{ and } f_2g = g \text{ imply that } f_1f_2g = g) \) and is compact by continuity. Thus \(B = A \) by minimality. As \(g \in B \), \(g^2 = g \).

Proof of Theorem 7. Fix \((X, T)\), \(x \in X \) with \(\bar{x} = X \) and \(Y \subseteq X \) minimal. Let \(E \) be the enveloping semigroup of \((X, T)\). Set

\[F = \{ f \in E : fx \in Y \}. \]
We first show \(F \) is nonempty. Let \(x' \in Y \) be arbitrary. As \(x' \in \hat{x} \) there is a sequence \(n_m \) with \(T^{n_m}x \to x' \). As \(E \) is compact the \(T^{n_m} \) cluster at some \(f \in E \). Then \(fx = x' \) so \(f \in F \). \(F \) is closed, hence compact, from the topology of \(X^x \).

Let \(z \in Y, f \in E \). For all \(\varepsilon > 0 \) there exists \(n \),

\[
\rho(fz, T^nz) < \varepsilon.
\]

But \(T^nz \in Y \) so \(\rho(fz, Y) < \varepsilon \). As \(\varepsilon \) was arbitrary and \(Y \) closed, \(fz \subseteq Y \).

Hence \(f_1, f_2 \in F \). We have shown that \(F \) is a compact semigroup. Let \(g \in F \) be the idempotent guaranteed by Theorem 9.

We claim that \(gx \) is proximal to \(x \). Note that \(gx \subseteq Y \) since \(g \in F \). Let \(\varepsilon > 0 \). Since \(g \subseteq E \), there exists \(n \) so that

\[
\rho(gx, T^nx) < \frac{\varepsilon}{2},
\]

\[
\rho(g(gx), T^n(gx)) < \frac{\varepsilon}{2}.
\]

But \(g(g(x)) = g(x) \). Thus

\[
\rho(T^nx, T^ngx) < \varepsilon,
\]

completing the proof.

Let \(S \subseteq Z \). We say that \(S \) has positive asymptotic density if, for some \(\alpha > 0 \), there is a sequence of intervals \([n_i, m_i) \subseteq Z \) such that \(m_i - n_i \to \infty \) and

\[
\lim \frac{|S \cap [n_i, m_i)|}{m_i - n_i} = \alpha.
\]

Szemerédi’s Theorem. If \(S \subseteq Z \) has positive asymptotic density then it contains arithmetic progressions of length \(k \) for all \(k \).

Furstenberg’s Theorem. Let \((Y, \mathcal{U}, \mu) \) be a probability space and \(T: X \to X \) a measure preserving bijection. For all \(A \subseteq Y \) with \(\mu(A) > 0 \) and all \(k \) there exists \(n \) such that

\[
\mu[A \cap T^nA \cap \cdots \cap T^{n(k-1)}A] > 0.
\]
The proof of Furstenberg's theorem involves recondite methods of Ergodic theory and will not be considered here. We shall only show the implication of Szemerédi's theorem from Furstenberg's theorem. Demonstration of the equivalence of this statement of Szemerédi's theorem to that of Section 2.5 (via the Compactness principle) is left to the reader.

A map $L: 2^Z \to [0, 1]$ is called a norm if $L(0) = 1$ and $L(A \cup B) = L(A) + L(B)$ for all disjoint A, B. Also, L is called shift invariant if $L(T + i) = L(T)$ for all $T \subseteq Z$, $i \in Z$. We require the existence of a shift-invariant norm L (often called a Banach norm) with $L(S) = \alpha$.

Let $\mathcal{U} = \{f: 2^Z \to [0, 1]\}$. Under the product topology (giving $[0, 1]$ the usual topology) \mathcal{U} is compact by the Tychonoff theorem. Let $\mathcal{L} \subseteq \mathcal{U}$ denote the set of all norms. We claim that \mathcal{L} is a closed set. Let $L \in cl(\mathcal{L})$, and A, B be arbitrary disjoint sets. For all $\varepsilon > 0$ there exists $M \in \mathcal{L}$ so that

$$|L(X) - M(X)| < \varepsilon,$$

for $X = A, B, A \cup B$,

$$|L(A \cup B) - L(A) - L(B)| < 3\varepsilon.$$

Since ε was arbitrary, $L(A \cup B) - L(A) - L(B) = 0$. Similarly, $L(Z) - 1$ so that $L \in \mathcal{L}$. Under the subset topology, \mathcal{L} forms a compact space.

Define $L_i \in \mathcal{L}$ by

$$L_i(X) = \frac{|X \cap [n_i, m_i]|}{m_i - n_i}.$$

By compactness, $\{L_i\}$ has an accumulation point L. For some subsequence i',

$$L(S) = \lim_{i'} L_{i'}(S).$$

As $\lim L_{i'}(S) = \alpha$, $L(S) = \alpha$. Let $X \subseteq Z$ be arbitrary. For some subsequence i',

$$L(X) = \lim_{i'} L_{i'}(X),$$

$$L(X + 1) = \lim_{i'} L_{i'}(X).$$

For all i,
\[
|L_i(X + 1) - L_i(X)| = \frac{\|(X + 1) \cap [n_i, m_i] - X \cap [n_i, m_i]\|}{m_i - n_i} \leq \frac{2}{m_i - n_i}.
\]

Therefore

\[
\lim_{i'} L_i(X + 1) - L_i(X) = 0 \quad \text{for every subsequence } i'.
\]

Hence \(L(X) = L(X + 1)\), and \(L\) is the desired shift-invariant norm. Set \(Y = \{0, 1\}^\mathbb{Z}\). For \(i \in \mathbb{Z}\) set

\[Y_i = \{y \in Y: y(i) = 1\}.\]

Define \(\mu\) by

\[
\mu(Y_{i_1} \cap \cdots \cap Y_{i_r}) = L((S + i_1) \cap \cdots \cap (S + i_r)).
\]

This generates a measure \(\mu\) on the \(\sigma\)-algebra \(\mathcal{U}\) generated by the \(Y_i\). (Here \(\mu\) is a probability distribution on the finite algebra generated by \(Y_{-n}, \ldots, Y_n\) by the finite additivity of \(L\). The extension of \(\mu\) to \(\mathcal{U}\) is given by the classic Kolmogoroff Extension theorem.)

Now we may begin. Let \(T: Y \to Y\) be the shift operator, given by \((Ty)(i) = y(i + 1)\). As \(L\) is shift invariant, \(T\) is measure preserving. Set \(A = Y_0\), so that \(\mu(A) = L(S) = \alpha\). Let \(k > 0\) be arbitrary. By Furstenberg’s theorem there exists \(n\) so that

\[
0 < \mu[A \cap T^n A \cap \cdots \cap T^{(k-1)n} A] = L[S \cap (S + n) \cap \cdots \cap (S + (k-1)n)].
\]

There exists \(a\) so that

\[
a \subseteq S + in, \quad 0 \leq i \leq k - 1,
\]

and \(\{a, a - n, \ldots, a - (k-1)n\} \subseteq S\) is the desired AP for Furstenberg’s theorem.

6.2 ULTRAFILTERS

An ultrafilter on a set X is a zero-one finitely additive measure μ defined on all subsets of X, that is,

(i) $\mu(A) = 0$ or 1 for all $A \subset X$ and $\mu(X) = 1$;
(ii) $\mu(A_1 \cup \cdots \cup A_n) = \mu(A_1) + \cdots + \mu(A_n)$ if the A_i are pairwise disjoint.

For all $i \in X$ the measure μ_i, given by

$$\mu_i(A) = \begin{cases} 1 & \text{if } i \in A, \\ 0 & \text{if } i \not\in A, \end{cases}$$

is called a principal ultrafilter. If μ is not of this form, it is called a nonprincipal ultrafilter. Equivalently, a nonprincipal ultrafilter μ satisfies the condition

(iii) $\mu(A) = 0$ if A is finite.

Alternatively, an ultrafilter can be described as a family $\mathcal{A} \subset 2^X$, satisfying the conditions

(iv) $X \in \mathcal{A}$, $\emptyset \not\in \mathcal{A}$;
(v) for all $A \subset X$ either $A \in \mathcal{A}$ or $A^c \in \mathcal{A}$ [not both, by (iv) and (vi)];
(vi) $A, B \in \mathcal{A}$ implies that $A \cap B \in \mathcal{A}$.

Also, for nonprincipal ultrafilters,

(vii) A finite implies that $A \not\in \mathcal{A}$.

The equivalence is readily seen by setting

$$\mathcal{A} = \{ A \subset X : \mu(A) = 1 \}.$$

Theorem 1. There exist nonprincipal ultrafilters on any infinite set X.

Proof. We call $\mathcal{B} \subset 2^X$ a filter if it satisfies conditions (iv) and (vi). Let \mathcal{F} denote the set of filters. If $\mathcal{C} \subset \mathcal{F}$ is a chain under containment, then $\bigcup \mathcal{C}$ is a filter that contains all $\mathcal{A} \subset \mathcal{C}$. By Zorn's lemma (which is required for this result) every filter is contained in a maximal filter. Let \mathcal{A} be a maximal filter, $B \subset X$, $B \not\in \mathcal{A}$. Then

$$\mathcal{A}^+ = \mathcal{A} \cup \{ A \cap B^c : A \in \mathcal{A} \}.$$
is a filter, so, by maximality, $\mathcal{A}^+ = \mathcal{A}$ and $B^c \in \mathcal{A}$. In concise terms maximal filters are ultrafilters.

Now set $\mathcal{B} = \{ A \subseteq X : X - A \text{ is finite} \}$. Since \mathcal{B} is a filter (we require X to be infinite so that $\emptyset \notin \mathcal{B}$), it is contained in an ultrafilter \mathcal{A}. If A is finite, $X - A \notin \mathcal{B} \subseteq \mathcal{A}$ so that $A \in \mathcal{A}$. Thus \mathcal{A} is a nonprincipal ultrafilter.

We illustrate the use of ultrafilters with a proof of Ramsey's theorem.

Theorem 2. Let $\chi : [N]^2 \to [r]$ be arbitrary. There exists an infinite monochromatic $A \subseteq N$.

Proof. Fix a nonprincipal ultrafilter μ on $[N]^2$. Define $\chi' : N \to [r]$ by

$$\chi'(x) = \text{that } i \text{ so that } \mu(\{ y : \chi(\{x, y\}) = i \}) = 1.$$

As i ranges over $[r]$, the above sets partition $N - \{x\}$ (of unit measure since μ is nonprincipal) so that exactly one such i has this property. Now N is partitioned by χ' so that there exists a unique i such that

$$\mu(B) = 1, \quad \text{where } B = \{x : \chi'(x) = i\}.$$

We next find an infinite set of color i. Choose $a_1 \in B$ arbitrarily. Having chosen a_1, \ldots, a_n, set

$$S = B \cap \bigcap_{j=1}^{n} \{ y : \chi'(\{a_j, y\}) = i \}.$$

Since S is the intersection of $n + 1$ sets of unit measure, $\mu(S) = 1$. Choose $a_{n+1} \in S$, distinct from a_1, \ldots, a_n. Then $A = \{a_n : n \in N\}$ is the desired monochromatic set.

We have actually proved the existence of an infinite monochromatic set in the color most often used—where "most often" is in terms of the ultrafilter!

Our next result, noted by N. Hindman, gives a general connection between ultrafilters and Ramsey theory.

Theorem 3. Let \mathcal{G} be a family of nonempty subsets of X. The following are equivalent:
(i) If X is finitely colored there exists a monochromatic $G \in \mathcal{G}$.
(ii) There exists an ultrafilter \mathcal{A} on X such that, for all $A \in \mathcal{A}$, $A \supset G$ for some $G \in \mathcal{G}$.

Proof

(ii) \Rightarrow (i). If X is finitely colored then the set A of points of some particular color is in the ultrafilter and the $G \in \mathcal{G}$ with $G \subset A$ is monochromatic.

(i) \Rightarrow (ii). Set

$$\mathcal{B} = \{A \subset X: A \cap G \neq \emptyset \text{ for all } G \in \mathcal{G}\}.$$

Let $A_1, \ldots, A_k \in \mathcal{B}$ be arbitrary. Partition X into 2^k parts by the Venn diagram of the A_i. Some $G \in \mathcal{G}$ is contained in one part. Since $G \cap A_i \neq \emptyset$, $1 \leq i \leq k$, we must have $G \subset A_1 \cap \cdots \cap A_k$ so that $A_1 \cap \cdots \cap A_k \neq \emptyset$. Now let \mathcal{B}^+ be the set of finite intersections of sets in \mathcal{B}. Then \mathcal{B}^+ is a filter, so it is contained in an ultrafilter \mathcal{A}. If $A \in \mathcal{A}$ then $A^c \not\in \mathcal{A}$, $A^c \in \mathcal{B}$, $A^c \cap G = \emptyset$ for some $G \in \mathcal{G}$, and thus $A \supset G$.

We now present Glazer's startling proof of Hindman's theorem (Chapter 3, Theorem 15). The product topology \mathcal{F} on the set of all zero-one functions on 2^N forms a compact space by the Tychonoff theorem. Let \mathcal{U} denote the set of ultrafilters over N. \mathcal{U} is a closed subspace of \mathcal{F}. Since \mathcal{F} is compact, \mathcal{U} is compact under the product topology. The sets

$$\{\mu \in \mathcal{U}: \mu(A) = \varepsilon\}, \quad \varepsilon = 0, 1, \quad A \subset N,$$

from a subbasis for the topology on \mathcal{U}.

We define a binary operation $+$ on \mathcal{U} by

$$(\mu + \nu)(A) = \mu(\{n: \nu(A - n) = 1\}).$$

(By $A - n$ we mean $\{x \in N: x + n \subset A\}$.) To show closure, let μ, ν be arbitrary ultrafilters. Clearly $(\mu + \nu)(N) = 1$, $(\mu + \nu)(\emptyset) = 0$. Let $A, B \subset N$ be disjoint. Then $(A \cup B) - n = (A - n) \cup (B - n)$, and at most one of these disjoint sets may have unit measure under ν. Thus

$$\{n: \nu(A \cup B - n) = 1\} = \{n: \nu(A - n) = 1\} \cup \{n: \nu(B - n) = 1\},$$

a disjoint union. Hence
An Unprovable Theorem

\[(\mu + \nu)(A \cup B) = \mu(\{n: \nu(A \cup B - n) = 1\})\]

= \mu(\{n: \nu(A - n) = 1\}) + \mu(\{n: \nu(B - n) = 1\})

= (\mu + \nu)(A) + (\mu + \nu)(B),

and so \(\mu + \nu\) is an ultrafilter. The operation is associative, as

\[(\mu + (\nu + \sigma))(A) = ((\mu + \nu) + \sigma)(A)\]

= \mu(\{m: \nu(\{n: \sigma(A - n) = 1\}) = 1\}).

For fixed \(\nu\) the right addition \(\Psi_\nu: \mathcal{U} \to \mathcal{U}\), given by \(\Psi_\nu(\mu) = \mu + \nu\), is continuous since

\[\{\mu: (\mu + \nu)(A) = \varepsilon\} = \{\mu: \mu(B) = \varepsilon\},\]

where \(B = \{n: \nu(A - n) = 1\}\).

We apply the Idempotent theorem (Section 6.1, Theorem 9) to deduce the existence of an ultrafilter \(\mu\) such that \(\mu + \nu = \mu\). Since the principal ultrafilters satisfy \(\mu_i + \mu_i = \mu_\emptyset \neq \mu_i\) for all \(i \in N\), \(\mu\) is nonprincipal. Fix this \(\mu\).

With the existence of the appropriate ultrafilter established, the remainder of the proof is brief. Let \(N\) be finitely colored. The set of points colored some particular color has unit measure under \(\mu\); let \(A_0\) denote that set. For any \(B \subset N\) define \(B^* = \{n: \mu(B - n) = 1\}\). If \(\mu(B) = 1\) then

\[1 - (\mu + \mu)(B) = \mu(B^*) \quad \text{and} \quad \mu(B \cap B^*) = 1.\]

Select \(a_1 \in A_0 \cap A_0^*\), and set \(A_1 = A_0 \cap (A_0 - a_1) = \{a_1\}\) so that \(A_1 \subset A_0\), \(a_1 + A_1 \subset A_\emptyset\), and \(\mu(A_1) = 1\). Having defined \(A_n\) of unit measure, select \(a_{n+1} \in A_\emptyset \cap A_n^*\) and set \(A_{n+1} = A_n \cap (A_n - a_{n+1}) = \{a_{n+1}\}\) so that \(A_{n+1} \subset A_n\), \(a_{n+1} + A_{n+1} \subset A_\emptyset\), and \(\mu(A_{n+1}) = 1\). Then all sums of \(X = \{a_n: n \in N\}\) are clearly the same color. Well, perhaps not so clearly; take \(a_1 + a_3 + a_5\), for example. Since \(a_5 \in A_4 \subset A_3\), \(a_3 + a_5 \in A_2 \subset A_1\), \(a_1 + a_3 + a_5 \in A_0\), as are all sums from \(X\).

6.3 AN UNPROVABLE THEOREM

We define a set \(S \subset N\) to be large if \(|S| > \min(S)\) (e.g., \(\{3, 7, 56, 914\}\) is large, but \(\{4, 7, 8\}\) is not). Let us modify the Ramsey arrow notation and write
if for any r-coloring of $[n, m]^k$ there exists a large monochromatic set. We define a statement (PH), initially considered by J. Paris and L. Harrington:

\[(PH) \quad \forall_{n,k,r} \exists_m m \rightarrow (n)^k_r.\]

Let us prove (PH). Fix n, k, r. Let \mathcal{A} be the family of finite large sets $S \subseteq \{n, \infty\}$. If $[n, \infty]^k$ is r-colored there exists, by Ramsey's theorem, an infinite monochromatic set $T \subseteq [n, \infty)$. Let S denote the first $\min(T)$ elements of T. Then $S \in \mathcal{A}$, and S is monochromatic. The existence of a finite m now follows directly from the Compactness principle (Section 1.5, especially Version C).

Theorem 1 (Paris–Harrington). In Peano arithmetic (PH) is unprovable.

Gödel's Incompleteness theorem implies the existence of statements about the integers that are true but unprovable in Peano arithmetic. The statement (PH) is the first natural example of such a statement.

Let $LR(n, k, r)$ denote the minimal m satisfying (1). [To simplify the presentation we shall deal with a modified statement (PH'), where “large” is replaced by $|X| \geq h(\min(X))$ for a function h. In fact, only technical modifications would be required for the Paris–Harrington theorem.] R. Solovay has shown that the function LR grows extremely rapidly. From a classic result in proof theory this implies that (PH) is unprovable in Peano arithmetic. We shall, for our modified (PH'), employ Solovay's methods. A lower bound on the analogous functions will be found by the construction of specific colorations. Our approach is self-contained, with the exception of the critical application of proof theory to show unprovability.

We first examine (PH) and LR for $k = 2$. Define $LR(n, r) = LR(n, 2, r)$. Here there will be no logical difficulties. The statement (PH) restricted to $k = 2$ (in fact, to any fixed k) is provable in Peano arithmetic. Technically these results are not necessary for the Paris–Harrington theorem, but they are of interest in their own right and provide a “warm-up” for the general case.

We define an Ackermann hierarchy of functions:
An Unprovable Theorem

\[f_i(x) = 2x, \]
\[f_{n+1}(x) = f^{(r)}_n(x), \]

where \(f^{(r)} \) denotes the \(x \)th iterate of \(f \). This is a slight modification of the hierarchy defined in Section 2.7.

Theorem 2. \(LR(n, r) \geq f_i(n) \).

Proof. We give an explicit \(r \)-coloring of \([n, f_i(n)]^2\). Let \(n \leq x < y < f_i(n) \). We define \(\overline{xy} \) to be the minimal \(i \) so that, for some \(j \),

\[x, y \in \{ f^{(j)}_i(n), f^{(j+1)}_i(n) \}. \]

We color \(\{x, y\} \) by \(\overline{xy} \). Observe that \(\overline{xy} \leq r \) since we may take \(i = r, j = 0 \). Let \(X = \{ x_1, x_2, \ldots, x_m \} \) be a monochromatic set colored \(i \). Then

\[\{ x_1, \ldots, x_m \} \subseteq [s, f_i(s)], \]

where \(s = f^{(i)}_i(n) \). If \(i = 1 \) then \(m \leq f_i(s) - s = s \), so \(X \) is not large. For \(i > 1 \), \(s = f^{(k)}_i(n) \) for some \(k \) and \(f_i(s) = f^{(k+i)}_{i-1}(n) \). Thus

\[[s, f_i(s)] = \bigcup_{r=k}^{s+k-1} \{ f^{(r)}_{i-1}(n), f^{(r+1)}_{i-1}(n) \}, \]

a decomposition into \(s \) subintervals. Since all \(\overline{x_u} = i > i - 1 \), the elements of \(X \) belong to distinct subintervals. Hence \(m \leq s \), and \(X \) is not large.

Observe that the function \(LR(n, n) \) grows at least as fast as the Ackermann function, hence faster than any primitive recursive function. In fact (though we do not show it here), \(LR(n, n) \) may be bounded in both directions in terms of the Ackermann function.

We now outline some necessary prerequisites on ordinal numbers. Let \(\gamma_1 = \omega, \gamma_2 = \omega^\omega, \gamma_{s+1} = \omega^{\gamma_s} \) for \(s \geq 1 \). Set \(\epsilon_0 = \lim \gamma_s \). As ordinal \(\alpha < \epsilon_0 \) has a unique representation, called the Cantor normal form, as

\[\alpha = n_1 \omega^{\alpha_1} + n_2 \omega^{\alpha_2} + \cdots + n_t \omega^{\alpha_t}, \]

where \(\alpha_i > \alpha_j > \cdots > \alpha_t \geq 0, n_i \in \mathbb{N} \). If \(\alpha < \gamma_{s+1} \) then all exponents \(\alpha_i < \gamma_s \). For convenience we set \(v_\beta(\alpha) \) equal to the coefficient of \(\omega^\beta \) in \(\alpha \), \(v_\beta(\alpha) = 0 \), if \(\omega^\beta \) does not appear in the representation. In dealing with ordinals we use the standard notation

\[[\alpha] = \{ \beta : \beta < \alpha \}. \]
DEFINITION. For $\alpha < \varepsilon_0$ we define

$$T(\alpha) = |\{ \beta : v_\beta(\alpha) > 0 \}| = \text{the number of terms of } \alpha$$

$$N(\alpha) = 1 + \text{the maximal integer to appear in the Cantor normal form of } \alpha.$$ For example,

$$N[3\omega^{\omega^{7+1}} + 5\omega^{\omega^{4}}] = 8.$$ Technically, we define N inductively by $N(n) = n + 1$ for $n < \omega$ and

$$N(\alpha) = \max(n_1 + 1, \ldots, n_s + 1, N(\alpha_1), \ldots, N(\alpha_s))$$

for a given by (2).

Let $e_s(n)$ be defined inductively by $e_1(n) = n$, $e_{s+1}(n) = n^{e_s(n)}$, that is, $e_s(n)$ is a tower of n's of height s. The following property follows from a simple induction.

Property 1. If $\alpha < \gamma_{s+1}$, $T(\alpha) < e_s(N(\alpha))$.

Let $\alpha < \varepsilon_0$ be represented as in (2). Observe that α is a limit ordinal iff $\alpha > 0$. For every such limit ordinal we define a particular countable sequence approaching α with the nth term denoted by $\alpha(n)$ as follows.

CASE 1. α_t is not a limit ordinal. Write $\alpha_t = \beta_t + 1$. Set

$$\alpha(n) = n_1 \omega^{\alpha_1} + \cdots + n_{t-1} \omega^{\alpha_{t-1}} + (n_t - 1) \omega^{\alpha_t} + n \omega^{\beta_t}.$$

CASE 2. α_t is a limit ordinal. By induction $\alpha_t(n)$ has been defined. Set

$$\alpha(n) = n_1 \omega^{\alpha_1} + \cdots + n_{t-1} \omega^{\alpha_{t-1}} + (n_t - 1) \omega^{\alpha_t} + \omega^{\alpha_t(n)}.$$

These are the "natural sequences." Some examples are as follows:

$$\alpha = \omega^2, \quad \alpha(n) = n\omega,$$

$$\alpha = \omega^2 + 3\omega, \quad \alpha(n) = \omega^2 + 2\omega + n,$$

$$\alpha = 5\omega^{\omega^2+2\omega}, \quad \alpha(n) = 4\omega^{\omega^2+2\omega} + \omega^{\omega^2+\omega+n}.$$

Property 2. $N(\alpha(n)) \leq \max[N(\alpha), n]$.

Again the proof is a simple induction. It may occur that $\alpha(n)$ is itself a limit ordinal. Let α be a limit ordinal, $n \in N$. Consider the sequence $\alpha_0, \alpha_1, \ldots$, defined by $\alpha_0 = \alpha$, $\alpha_{i+1} = \alpha_i(n)$, the sequence terminating
when α_k is not a limit ordinal. As this is a decreasing sequence of ordinals, it must eventually terminate. We let $\alpha((n))$ denote the final term of the sequence. For example,

$$\omega^2((5)) = 4\omega + 5,$$

$$\omega^{\omega\omega}((3))$$

has 43 terms.

Property 2'. $N(\alpha((n))) \leq \max[N(\alpha), n]$.

Now we extend the Ackermann hierarchy of functions. For $\alpha < \varepsilon_0$ we define $f_\alpha : N \to N$ inductively by

$$f_1(x) = 2x,$$

$$f_{\alpha+1}(x) = f^{(x)}_\alpha(x),$$

$$f_\alpha(x) = f_{\alpha(\alpha)}(x), \quad \alpha \text{ a limit ordinal}.$$

Equivalently, when α is a limit ordinal we may define

$$f_\alpha(x) = f_{\alpha(\alpha)}(x).$$

This transfinite sequence of functions is sometimes called the Grzegorczyk or Wainer hierarchy.

We say that a function f dominates a function g if, for some c, $f(n) > g(n)$ for all $n \geq c$. Let $P(s, t)$ be a two-variable statement such that

$$\forall s \exists t P(s, t)$$

is provable (and can be stated) in Peano arithmetic. Assume P is provably recursive; that is, there is an algorithm for deciding if $P(s, t)$ is true and a proof in Peano arithmetic that the algorithm always terminates. Let $f_p(s)$ denote the minimal t such that $P(s, t)$ holds. A classical proof theory result (and this is the only place where we require mathematical logic) states that f_p is dominated by f_α for some $\alpha < \varepsilon_0$.

We define $\varepsilon_0(n) = \gamma_n$ and extend the Ackermann hierarchy by defining

$$f_{\varepsilon_0}(n) = f_{\gamma_n}(n).$$

Property 3. f_{ε_0} dominates all f_α, $\alpha < \varepsilon_0$.

Although this property appears obvious, the proof requires an examination of the limit sequences. We observe that if $\alpha < \beta < \varepsilon_0$, $N(\alpha) < m$,
and β is a limit ordinal then $\alpha < \beta(m)$. We claim that if $\alpha < \beta < \varepsilon_0$, $2 \leq m$, and $N(\alpha) \leq m$ then $f_\alpha(m) < f_\beta(m)$. The proof uses transfinite induction on β. If β is not a limit ordinal, say $\beta = \delta + 1$, then

$$f_\beta(m) = f_\delta^{m-1}(f_\delta(m)) > f_\delta(m) > f_\alpha(m)$$

by induction. If β is a limit ordinal then $\alpha < \beta(0)$ by our observation so that $f_\beta(m) = f_\beta(m)(m) > f_\alpha(m)$ by induction. Hence we have shown that f_α is dominated by f_β whether $\alpha < \beta < \varepsilon_0$. Finally, let $\alpha < \varepsilon_0$ be arbitrary, and s be such that $\alpha < \gamma$. For $m > \max(s, N(\alpha))$

$$f_{\gamma(0)}(m) = f_\gamma(m(n)) > f_\alpha(m)$$

so that $f_{\gamma(0)}$ dominates f_α.

Remark. Consider the mathematical parlor game of describing, on a single sheet of paper, as large an integer as you can. Extend the Ackermann hierarchy to $\alpha < \varepsilon_0 + \omega$ by the inductive definition. Now

$$f_{\varepsilon_0(9)}$$

should win against all nonlogicians. Indeed, by the proof theory result, the function f_{ε_0} lies "beyond the scope" of Peano arithmetic. We emphasize that these functions are recursive. There is a computer program that, given input n, computes—theoretically, of course!—$f_{\varepsilon_0}(n)$.

Let $P(s, t)$ be a statement such that

(PH0) $P(s, t)$ is expressible in Peano arithmetic;
(PH1) P is provably recursive;
(PH2) $P(s, t)$ is false for all $t < f_{\varepsilon_0}(s)$;
(PH3) for all s, $P(s, t)$ is true for some t.

Combining our previous remarks, statement (3) is a formula of Peano arithmetic that is unprovable in Peano arithmetic but true for the natural numbers. We shall construct a statement P of this form.

We begin by defining a sequence of colorings on ordinals. Our objective is to find colorings so that, if S is monochromatic, then S may be bounded by $\max(S)$.

Definition. Let $\beta < \alpha < \varepsilon_0$,

$$\overline{\alpha \beta} = \max\{\delta : v_\delta(\alpha) \neq v_\delta(\beta)\}.$$

Observe that $\delta = \overline{\alpha \beta}$ is well defined and $v_\delta(\alpha) > v_\delta(\beta)$.
Property 4. If $\alpha_1 > \cdots > \alpha_n$ then $\overline{\alpha_i \alpha_n} = \max_{1 \leq i < n} \overline{\alpha_i \alpha_{i+1}}$.

We define a 3-coloring χ^* on $[\varepsilon_0]^3$ by

$$\chi^*(\{\alpha, \beta, \gamma\}) = \begin{cases} 0 & \text{if } \overline{\alpha \beta} > \overline{\beta \gamma}, \\
1 & \text{if } \overline{\alpha \beta} = \overline{\beta \gamma}, \\
2 & \text{if } \overline{\alpha \beta} < \overline{\beta \gamma}. \end{cases}$$

For the remainder of this section let $S, \alpha_1, \ldots, \alpha_r, r$ satisfy the following:

$$S = \{\alpha_1, \ldots, \alpha_r\}, \quad \alpha_i = \max(S), \quad \alpha_1 > \cdots > \alpha_r, \quad r = |S|. \quad (4)$$

Property 5. If $\chi^*(S) = 1$ then $r \leq N(\alpha_1)$.

Proof. Set $\delta = \overline{\alpha_i \alpha_{i+1}}, 1 \leq i < r$. Then $v_\delta(\alpha_i) > \cdots > v_\delta(\alpha_r)$ so $v_\delta(\alpha_1) \geq r - 1$ and $N(\alpha_i) \geq 1 + v_\delta(\alpha_1) \geq r$.

Property 6. If $\chi^*(S) = 2$ then $r \leq T(\alpha_1) + 1$. If, in addition, $\alpha < \gamma_{s-1}$ then $r \leq \xi_1(N(\alpha_1)) + 1$.

Proof. Let $\beta_i = \overline{\alpha_i \alpha_{i+1}}, 1 \leq i < r$. By Property 4, $\beta_i = \overline{\alpha_i \alpha_{i+1}}$. The β_i are increasing, hence distinct, and $v_{\beta_i}(\alpha_1) \neq 0$ so $r - 1 \leq T(\alpha_1)$. The second statement follows from Property 1.

Property 7. If $\chi^*(S) = 0$ and $\alpha < \omega^\omega$ then $r \leq N(\alpha_1) + 1$.

Proof. Let $\omega^s \leq \alpha < \omega^{s+1}$, $s < \omega$. Let $\beta_i = \overline{\alpha_i \alpha_{i+1}}, 1 \leq i < r$, as before. Then $s \geq \beta_1 > \cdots > \beta_{s-1} \geq 0$ so $r \leq s + 2 \leq N(\alpha_1) + 1$.

Note. The assumption $\alpha < \omega^\omega$ is essential for Property 7. For example,

$$S = \{\omega^\omega, \omega^\omega, \omega^\omega, \ldots, \omega\}$$

has $\chi^*(S) = 0$, $\alpha = \omega^\omega$, and $|S|$ arbitrarily large.

We define, for $s \geq 2$, $(2s - 1)$-colorings

$$\chi_s : [\gamma_1]^{s-1} \rightarrow \{0, 1, 2, \ldots, 2s - 3, 2s - 2\}$$

and monotone functions $h_s : N \rightarrow N$ such that, if S is monochromatic under χ_s, then $r \leq h_s(N(\alpha_1))$. For $s = 2$

$$\chi_2 : [\omega^\omega] \rightarrow \{0, 1, 2\}$$
is the restriction of χ^*. By Properties 5, 6, and 7 we may take $h_2(x) = x + 1$. We define χ_3 in detail before proceeding to the inductive step.

Let $T = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\} \in [\omega^\omega]^4$. If $\chi^*(\{\alpha_1, \alpha_2, \alpha_3\}) = 1$ or 2 set $\chi_3(T) = 3$ or 4 (the "new" colors), respectively. Otherwise set $\alpha'_i = \frac{\alpha_i}{\alpha_i m_1}$, $1 \leq i < 4$. If $\alpha'_1 > \alpha'_2 > \alpha'_3$ set

$$\chi_3(T) = \chi_2(\{\alpha'_1, \alpha'_2, \alpha'_3\})$$

(observe that $\alpha_i < \gamma_3$ implies $\alpha'_i < \gamma_2$ so that this is well defined). If not, set $\chi_2(T) = 0$ (actually, anything but 3 or 4 will do).

Let S, given by (4), be monochromatic under χ_3. If $\chi_3(S) = 3$ and 4 then $S - \{\alpha_r\}$ is 1 or 2 under χ^* so

$$r - 1 \leq N(\alpha_{i_r}) \quad \text{or} \quad r - 1 \leq e_2(N(\alpha_{i_r})) + 1,$$

respectively, by Property 5 or 6. Assume that S is another color, and set $\alpha'_i = \alpha_i \alpha_{i+1}^{-1}$. For $i \leq r - 3$, $\chi^*(\{\alpha_i, \alpha_{i+1}, \alpha_{i+2}, \alpha_{i+3}\}) = 0$ so $\alpha'_i > \alpha'_{i+1}$, that is, $\alpha'_1 > \cdots > \alpha'_{r-2}$. Let $i_1 < i_2 < i_3 \leq r - 2$ be arbitrary. Then

$$\chi_2(\{\alpha'_i, \alpha'_j, \alpha'_k\}) = \chi_3(\{\alpha_{i_1}, \alpha_{i_2}, \alpha_{i_3}, \alpha_{i_4}\})$$

(i.e., the α' "minor" the α). Hence $\{\alpha'_1, \ldots, \alpha'_{r-2}\}$ is monochromatic under χ_2 so

$$r - 2 \leq h_2(N(\alpha'_i)) \leq h_2(N(\alpha_i))$$

[as h_2 is monotone and $N(\alpha'_i) \leq N(\alpha_i)$]. Setting

$$h_3(x) = \max[x + 1, e_2(x) + 2, h(x) + 2],$$

we have $r \leq h_3(N(\alpha_i))$ in all cases.

Now we give the general inductive step. Assume that χ_i, h_i have been defined for $2 \leq i < s$. Let

$$T = \{\alpha_1, \ldots, \alpha_{s+1}\} \in [\gamma_i]^{s+1}.$$

If $\chi^*(\{\alpha_1, \alpha_2, \alpha_3\}) = 1$ or 2 set $\chi_i(T) = 2s - 3$ or $2s - 2$ (the new colors), respectively. Otherwise, set $\alpha'_i = \frac{\alpha_i}{\alpha_i m_1}$, $1 \leq i < s$. If $\alpha'_1 > \cdots > \alpha'_s$ set $\chi_i(T) = \chi_{i-1}(\{\alpha'_1, \ldots, \alpha'_i\})$. (This is well defined as all $\alpha'_i < \gamma_i$.) If not, set $\chi_i(T) = 0$. (Actually, anything but $2s - 3$ or $2s - 2$ will do.)
Let \(S \), given by (4), be monochromatic under \(\chi_s \). If \(\chi_s(S) = 2s - 3 \) or \(2s - 2 \) then \(S - \{ \alpha_{s-3}, \ldots, \alpha_s \} \) is 1 or 2 under \(\chi^* \) [as every triple is the initial three elements of an \(\{ s + 1 \} \)-set of \(S \)] so

\[
r - s + 2 \leq N(\alpha_1) \quad \text{or} \quad r - s + 2 \leq e_{s-1}(N(\alpha_1)) + 1
\]

by Property 5 or 6, respectively. Assume that \(S \) is some other color, and set \(\alpha'_i = \overline{\alpha_i \alpha_{i+1}} \), \(1 \leq i < r \). For \(i \leq r - s \), \(\chi^* (\{ \alpha_i, \alpha_{i+1}, \ldots, \alpha_{r+s} \}) = 0 \) so \(\alpha'_i \succ \alpha'_{i+1} \), that is, \(\alpha'_1 \succ \cdots \succ \alpha'_{r-s+1} \). Let \(i_1 < \cdots < i_{s-1} \leq r - s + 1 \) be arbitrary. Then

\[
\chi_{s-1}(\{ \alpha'_1, \ldots, \alpha'_{r-s+1} \}) = \chi_s(\{ \alpha_1, \ldots, \alpha_{i_{s-1}-1}, \alpha_{i_{s-1}+1} \})
\]

so that \(\{ \alpha'_1, \ldots, \alpha'_{r-s+1} \} \) is monochromatic under \(\chi_{s-1} \). By induction

\[
r - s + 1 \leq h_{s-1}(N(\alpha'_1)) \leq h_{s-1}(N(\alpha_1))
\]

[since \(h_{s-1} \) is monotone and \(N(\alpha'_1) \leq N(\alpha_1) \)]. Setting

\[
h_s(x) = \max\{x + s - 2, e_{s-1}(x) + s - 1, h_{s-1}(x) + s - 1\},
\]

we have \(r \leq h_s(N(\alpha_1)) \) in all cases, completing the induction step. [In fact, \(h_s(x) = e_{s-1}(x) + s - 1 \) for \(x \geq 3 \) by a simple calculation. But our concern here is only to find some function \(h_s \), having the desired property.]

To apply the above colorings to sets of integers we shall define a correspondence between integers and ordinals. Let \(\alpha < \varepsilon_0 \), \(n \in \mathbb{N} \). We define an ordinal valued function \(T = T^{\alpha,n} \), called the \((n, \alpha) \) translation function, inductively as follows. Set \(T(n) = \alpha \). Assume that \(T(m) = \beta \) has been defined. If \(\beta > 0 \) is not a limit ordinal set \(T(m + 1) = \beta - 1 \). If \(\beta > 0 \) is a limit ordinal set \(T(m + 1) = \beta((m)) - 1 \). When \(T(u) = 0 \) terminate the definition. Define \(U(n, \alpha) \) as the value \(u \) such that \(T^{\alpha,n}(u) = 0 \). Such an \(u \) exists, as otherwise \(T(n), T(n + 1), \cdots \) would be an infinite descending sequence of ordinals.

Example. \(\alpha = \omega^2 \), \(n = 5 \). Then \(T(5) = \omega^2 \), \(T(6) = 4\omega + 4 \), \(T(10) = 4\omega \), \(T(11) = 3\omega + 9 \), \(T(20) = 3\omega \), \(T(40) = 2\omega \), \(T(80) = \omega \), \(T(160) = 0 \). \(U(5, \omega^2) = 160 \).

Property 8. \(N[T^{\alpha,n}(m)] \leq \max\{N(\alpha), m\} \) for all \(\alpha, n, m \) for which \(T^{\alpha,n}(m) \) is defined. In particular, when \(\alpha = \gamma_s \), \(N[T^{\alpha,n}(m)] \leq m \).

The proof uses a simple induction on \(n \), applying Property 2.
Property 9. For all $1 \leq \alpha < \varepsilon_0$, $n \in \mathbb{N}$,

$$U(n, \omega^\alpha) = f_\alpha(n),$$

where f_α is the Ackermann function.

Proof. We use transfinite induction on α. For $\alpha = 1$

$$U(n, \omega) = 2n$$

trivially. Assume that Property 9 holds for all $\alpha' < \alpha$. If α is a limit ordinal then $\omega^\alpha(n) = \omega^{\alpha(n)}$, so $\omega^\alpha((n)) = \omega^{\alpha(n)}((n))$ and hence the (n, ω^α) and $(n, \omega^{\alpha(n)})$ translation functions are identical at $n + 1$. A single value of a translation function determines all succeeding values. Hence

$$U(n, \omega^\alpha) = U(n, \omega^{\alpha(n)}) = f_{\alpha(n)}(n) = f_\alpha(n).$$

Now assume that $\alpha = \beta + 1$. We observe that, in general,

$$T^{(s+1)}\omega^\beta(i) = s\omega^\beta + T^{\omega^\beta}(i), \quad t \leq i \leq U(t, \omega^\beta) = f_\beta(t),$$

as the $s\omega^\beta$ term remains fixed in defining the translation function. By induction on s

$$U(t, s\omega^\beta) = f_{\beta}^{(s)}(t).$$

The $(t, \omega^{\beta+1})$ and $(t, t\omega^\beta)$ translation functions are identical at $t + 1$. hence

$$U(t, \omega^{\beta+1}) = U(t, t\omega^\beta) = f_{\beta}^{(t)}(t) = f_{\beta+1}(t),$$

completing the induction.

Our preliminaries are complete. Now consider the following statement:

$P(s, m, n)$: $n > m$, and if $[m, n]^{s-1}$ is $(2s - 1)$-colored there exists a monochromatic set X such that $|X| \geq h_s(\min(X))$.

Property 10. The statement $P(s, m, n)$ is expressible in Peano arithmetic.

Since this is not a book on logic, we dismiss Property 10 as "obvious"—as indeed it is.
Property 11. \(\forall s \forall m \exists n P(s, m, n) \).

The proof is a simple application of the Compactness theorem, identical to the proof of (PH) at the beginning of this section.

Property 12. \(P(s, m, n) \) is false for \(n \leq f_{\gamma_{s-1}}(m) \).

Proof. Let \(T \) be the \((m, \gamma_s(m)) \) translation function. \(T(x) \) is defined for \(m \leq x \leq U(m, \gamma_s(m)) = U(m, \gamma_s) = f_{\gamma_{s-1}}(m) \), hence for \(m \leq x \leq n \). Recall that \(x < y \) implies \(T(x) > T(y) \). Also recall that \(N(T(x)) \leq x \) (Property 8). Let \(\chi_s \) be as previously defined. Define

\[
\chi'_s : [m, n]^{s+1} \to \{0, 1, \ldots, 2s - 2\}
\]

by

\[
\chi'_s(\{x_1, \ldots, x_{s+1}\}) = \chi_s(\{T(x_1), \ldots, T(x_{s+1})\})
\]

(i.e., identify \(x \in [m, n] \) with \(T(x) \in [\gamma_s] \)). Let \(X = \{x_1, \ldots, x_{s+1}\}_< \) be monochromatic under \(\chi_s \). Then \(T(X) = \{T(x_1), \ldots, T(x_{s+1})\}_> \) (with order reversed) is monochromatic under \(\chi_s \). Hence

\[
u = |X| = |T(X)| = h_s(N(T(x_1))) \leq h_s(x_1),
\]

since \(h_s \) is monochromatic; that is, \(\chi'_s \) gives a counterexample to the statement \(P(s, m, n) \).

Finally, for ease of expression, define

\[
P(s, t) \overset{\text{def}}{=} P(s + 1, s, t).
\]

Then \(P(s, t) \) is false, for \(t \leq f_{\gamma_s}(s) = f_{\gamma_0}(s) \). \(P \) is provably recursive as the veracity of \(P(s, t) \) can be determined by checking all \((2s + 1) \)-colorings of \([s, t]^{s+2}\). Combining our remarks, we find that \(P \) satisfies (PH0), (PH1), (PH2), and (PH3) so the statement

\[
(PH')
\]

For all \(s \) there exists \(t \) so that, if \([s, t]^{s+2}\) is \((2s + 1)\)-colored, there exists a monochromatic set \(X \) such that \(|X| \geq h_{s+1}(\min(X))\)

is true for the integers but not provable in Peano arithmetic.

6.4 THE INFINITE

In this book we have purposely restricted our attention to finite Ramsey results, proving infinite results only to show, via a Compactness argument, a finite theorem. However, there is an enormous literature on Infinite Ramsey theorems per se. In this section we mention a few esthetically appealing, self-contained results from this literature. We assume the Axiom of Choice throughout.

Let α, β be cardinals. We define

$$\beta \rightarrow (\alpha)^2$$

if, whenever $|A| \geq \beta$ and $|A|^2$ is 2-colored, there exists $R \subseteq A$, $|R| \geq \alpha$, with $[B]^2$ monochromatic.

Let c denote the cardinality of the set of real numbers.

Theorem 1. $c \not\rightarrow (c)^2$.

Proof. Let $<$ be the usual ordering of R and $<^*$ a well ordering. We 2-color $[R]^2$ by

$$\chi(\{x, y\}, <) = \begin{cases} \text{red} & \text{if } x <^* y, \\ \text{blue} & \text{if } y <^* x. \end{cases}$$

Assume that $[S]^2$ is red. Then S is well ordered by $<$. For all $x \in S$ (except the maximal element m, if one exists) there exists $x^* \in S$, $x < x^*$ so that $S \cap (x, x^*) = \emptyset$. Let $A_n = \{x: x^* - x > n^{-1}\}$. Clearly, A_n is countable so $S = \bigcup_{n=1}^\omega A_n \cup \{m\}$ is also countable. Similarly, if $[S]^2$ is blue then S is countable. Thus we have proved the stronger result $c \not\rightarrow (\omega_1)^2$. where ω_1 is the first uncountable cardinal.

Theorem 2. For all α there exists β so that $\beta \rightarrow (\alpha)^2$. In particular, if α is an infinite cardinal then

$$(2^\alpha)^+ \rightarrow (\alpha)^2.$$
Proof. Let $|A| = (2^\alpha)^+$, and fix a 2-coloring $\chi : [A]^2 \to \{0, 1\}$. As only the cardinality of A is of importance, set

$$A = \{0, 1, \cdots\} = \{\delta : \delta < (2^\alpha)^+\},$$

the set of ordinals up to $(2^\alpha)^+$. By transfinite induction, define for each $i \in A$ a well-ordered sequence $S(i)$ of 0's and 1's. Define $S(0)$ to be the null sequence. Assume that $S(i)$ has been defined for $i < n$. The first term of $S(i)$, that is, $(S(i))(1)$, is defined by

$$(S(i))(1) = \chi(0, i).$$

Now assume that $(S(i))(j)$ has been defined for $j < t$. If, for some $\alpha < i$, the sequence $S(a)$ is equal to the portion of $S(i)$ already constructed then we define

$$(S(i))(t) = \chi(a, i). \tag{*}$$

If no such a exists we terminate the sequence $S(i)$. The process is illustrated in Fig. 6.1. To each $i \in A$ is associated a distinct sequence $S(i)$, for if $i < j$ and $S(i) = S(j)$ then the sequence $S(j)$ was terminated when it should not have been. Note also that this implies that the a in $(*)$ is uniquely defined if it exists. There are at most 2^α well-ordered zero-one sequences of length $< \alpha$. Hence for some t the sequence $S(t)$ is of length α. For all $i < \alpha$ there exists a_i so that $S(a_i)$ forms the first i terms of $S(t)$. Let $t < j < \alpha$. Then

$$\chi(a_i, a_j) = (S(j))(i + 1) = (S(t))(i + 1),$$

independently of j (e.g., $\{0, 2, 3, 6, 7\}$ in Fig. 6.1). On $A' = \{a_i\}_{i < \alpha}$ we define a point coloring χ' by

![Figure 6.1 Vertex-Sequence correspondence.](image)
\[\chi'(a_i) = \chi(a_i, a_j), \quad i < j. \]

If a set of cardinality \(\alpha \) is partitioned into two parts one part must have cardinality \(\alpha \). Let \(B \subseteq A, |B| = \alpha \), \(B \) monochromatic under \(\chi' \). Then \(B \) is monochromatic under \(\chi \). This completes the proof. In fact, \((2^\alpha)^+ \rightarrow (\alpha^+)^2 \) may be proved by a suitable modification of the proof just given.

There are many combinatorial questions involving Ramsey numbers for countable ordinals. We write

\[\gamma \rightarrow (\alpha, \beta) \]

(\(\alpha, \beta, \gamma \) ordinals) if, whenever \([\gamma]^2 \) is red-blue colored, there exists either a red \([S]^2 \), \(S \) of order type \(\alpha \), or a blue \([T]^2 \), \(T \) of order type \(\beta \). We give one relatively simple result in this area (see also Section 6.5).

Theorem 3. \(\omega^2 \rightarrow (\omega^2, m) \) for all \(m < \omega \).

Proof. Let \(\chi \) be a red-blue coloring of \([\omega^2]^2 \). We define an 8-coloring \(\chi' \) of \([N]^4 \) by

\[
\chi' \{\{a, b, c, d\}\} = (\chi(a\omega + b, c\omega + d), \chi(a\omega + c, b\omega + d), \\
\chi(a\omega + d, b\omega + c)).
\]

There exists an infinite \(A \subseteq N \), monochromatic under \(\chi' \). For convenience we relabel so that \(A = N \).

If all \(\chi(a\omega + b, c\omega + d) = \) blue then \(\{\omega + 2, 3\omega + 4, \ldots, (2m - 1)\omega + 2m\} \) is a blue \(K_m \).

If all \(\chi(a\omega + c, b\omega + d) = \) blue then \(\{\omega + (m + 1), 2\omega + (m + 2), \\
\ldots, m\omega + 2m\} \) is a blue \(K_m \).

If all \(\chi(a\omega + d, b\omega + c) = \) blue then \(\{\omega + 2m, 2\omega + (2m - 1), \\
\ldots, m\omega + (m + 1)\} \) is a blue \(K_m \).

If none of the above, \(\chi' = (\) red, red, red) so that \(\chi(w\omega + x, y\omega + z) = \) red for all distinct \(w, x, y, z \) with \(w < x, y < z \). For each prime \(p \) (this is only a convenience to ensure distinctness), set \(S_p = \{pw + p^n : n \geq 2\} \). For each \(p \) either \(S_p \) contains a blue \(K_m \) (in which case we are done) or an infinite red \(T_p \subseteq S_p \). If the latter holds for all \(p \) then \(T = \bigcup T_p \) is a blue set of order type \(\omega \).
An example of a truly difficult problem in this area is the relation
\[\omega^\omega \rightarrow (\omega^\omega, 3)^2. \]

This was proved by Chang [1972]; his proof was simplified by Larson [1973]. Erdős and Hajnal [1971] give numerous problems involving ordinals.

We now consider colorations of all finite subsets of a set \(A \). We call \(B \subseteq A \) well-colored if \([B]^i \) is monochromatic for all integers \(i \). (We could not expect \([B]^\omega \) to be monochromatic since one could, for example, color \([A]^3 \) red and \([A]^3 \) blue.) Ramsey, in his original paper (Chapter 1, Theorem 8), showed that, for all \(k, r \), there exists \(n \) so that if \(|A| = n \) and \([A]^\omega \) is \(r \)-colored there exists a well-colored \(B \subseteq A \), \(|B| = k \). The natural generalization to infinite \(B \) is false. Define a 2-coloring of \([N]^\omega \) by
\[\chi(X) = \begin{cases} 0 & \text{if } |S| \in S, \\ 1 & \text{if } |S| \notin S. \end{cases} \]

If \(B \) is infinite, let \(b_1 \in B \). There are subsets \(X, Y \subseteq B \), \(|X| = |Y| = b_1 \) with \(b_1 \in X \) and \(b_1 \in Y \). Thus \(\chi(X) \neq \chi(Y) \) so \(B \) is not well colored.

Let us call \(A \) small if there exists a 2-coloring of \([A]^\omega \) so that there is no infinite well-colored \(B \subseteq A \).

Theorem 4. If \(A \) is small, \(2^A \) is small.

Proof. Let \(\chi \) be a 2-coloring of \([A]^\omega \) with no well-colored infinite \(B \). Well-order \(A \) by \(< \). For distinct \(X, Y \subseteq A \) set
\[XY = \min X \triangle Y, \]
where \(\triangle \) denotes symmetric difference. Order \(2^A \) lexicographically, setting \(X < Y \) iff \(XY \in X \). If \(X < Y < Z \) then \(XZ = \max(XY, YZ) \) and \(XY \neq YZ \). More generally, if \(X_1 < \cdots < X_n \) then \(X_1 X_n = \max X_i X_{i+1} \).

Now let us define \(\chi' \) on \([2^A]^\omega \). Let \(\{X_1, \ldots, X_n\}_< \subseteq 2^A \). Set \(\varepsilon_i = \frac{X_i X_{i+1}}{1 \leq i < n} \). If the \(\varepsilon_i \) are monotonically increasing or decreasing, set
\[\chi'(\{X_1, \ldots, X_n\}) = \chi(\{\varepsilon_1, \ldots, \varepsilon_{n+1}\}). \]

Otherwise, let \(\chi' \) be arbitrary.

Suppose that \(B \) were an infinite well-colored subset of \(2^A \). If \(\{X, Y, Z\}_< \subseteq B \) and \(\overline{XY} < \overline{YZ} \) we call \(\{X, Y, Z\}_< \) mono-up; if \(\overline{XY} > \)
\(\vec{YZ} \), mono-down. By Ramsey’s theorem there is an infinite \(C \subseteq B \) where all \(\{X, Y, Z\}_< \subseteq C \) have the same orientation, say mono-up (mono-down is similar).

An infinite ordered set may be shown to contain a subset order isomorphic to either \(N \) or \((-N)\). Restrict \(C \) to such a subset, say

\[C = \{X_1, X_2, \cdots\} \]

[order type \((-N)\) is similar]. Set \(\epsilon_i = X_iX_{i+1} \subseteq A \) so that \(\epsilon_1 < \epsilon_2 < \cdots \).

The \(\epsilon \)'s reflect the behavior of the \(X \)'s, since

\[\chi(\{\epsilon_i, \ldots, \epsilon_n\}) = \chi(\{X_{i_1-1}, X_{i_1}, X_{i_2}, \ldots, X_{i_n}\}) \]

for all \(2 \leq i_1 < \cdots < i_n \). Thus \(\{\epsilon_i; 2 \leq i\} \) would be well-colored under \(\chi \), contradicting our assumption. Thus no infinite well-colored \(B \) exists, and \(2^A \) is small.

Theorem 5. Let \(A = \bigcup_{a \in I} A_a \), where the \(A_a \) are pairwise disjoint. Assume that \(I \) is small and all \(A_a \) are small. Then \(A \) is small.

Proof. Let \(\chi_a : [A_a]^{<\omega} \rightarrow [2] \) denote the coloring showing \(A_a \) to be small, and \(\chi^* : [I]^{<\omega} \rightarrow [2] \) denote the coloring showing \(I \) to be small. We define \(\chi \) on \([A]^{<\omega}\) as follows. Let \(X = \{x_1, \ldots, x_s\} \subseteq A \). If all \(x_i \) are in the same \(A_a \) set \(\chi(X) \). If \(x_i \in A_a \) and the \(\alpha_i \) are distinct set \(\chi(X) = \chi^*(\{\alpha_1, \ldots, \alpha_s\}) \). Otherwise let \(\chi \) be arbitrary.

Let \(B \subseteq A \) be infinite. There exists an infinite \(C \subseteq B \) so that either all \(x \in C \) are in the same \(A_a \) or all \(x \in C \) are in distinct \(A \)'s. On \(C \), \(\chi \) reflects either \(\chi_a \) or \(\chi^* \) so that \(C \), and hence \(B \), are not well-colored. Hence \(A \) is small.

Are there any sets \(A \) that are not small? If the answer is yes there will be a cardinal \(\beta_0 \) that, is the smallest cardinality of a set \(A \) that is not small. \(\beta_0 \) is called the first Erdős cardinal. Our previous theorems have shown that \(\beta_0 \neq \omega \) and that:

(i) if \(\alpha < \beta_0 \) then \(2^{\alpha} < \beta_0 \);

(ii) if \(\lim_{\gamma \in I} \alpha_\gamma = \alpha \), where \(\alpha_\gamma < \beta_0 \) for all \(\gamma \in I \) and \(I \) is a well-ordered set with \(|I| < \beta_0 \), then \(\alpha < \beta_0 \).

In the jargon of the set theorists, \(\beta_0 \) is power set inaccessible and limit inaccessible; \(\beta_0 \) is what is called an inaccessible cardinal. Do inaccessible
cardinals exist? One cannot prove their existence from the usual axioms of set theory, for, in a nutshell, if a smallest inaccessible cardinal α_0 existed the family of ordinals $\alpha < \alpha_0$ would provide a model for set theory in which no inaccessible cardinals exist. It appears that the existence of β_0 does not contradict the usual axioms of set theory—but only for the heuristic reason that no contradiction has been found. In fact, the existence \ldots but enough. We have strayed into the arcane world of "large cardinal axioms," where questions may be answered by yes, no, and various shades of maybe. This is a finite book on finite mathematics. We choose to stop here.
References

Chang, C. C. (1972), A Partition theorem for the Complete Graph on ω^a, \textit{J. Comb. Th. (A)} 12, 396–452.

——— (1977), Tree-Complete Graph Ramsey Numbers, \textit{J. Graph Th.} 1, 93.

(1975a), Partition Theorems for Abelian Groups, J. Comb. Th. (A) 19, 95–108.

References

References

References

—— (1936), Some Recent Results in Combinatorial Analysis, Congres International des Mathematiciens, Oslo.

Index

Abelian groups, 80, 88, 123–129
Ackermann function, 61, 171
Ackermann hierarchy, 60–61, 170–171
Affine Ramsey theorem, 42, 68
Affine space, 42
Ajtai, M., 109
Arithmetic progression, 27, 45–46, 97, 155
Arrow notation, 1, 7, 119, 169–170, 180
Artin, E., 30
Asymptotic values:
 graph Ramsey, 101–102
 property B, 104–105
 Ramsey, 92–96
 van der Waerden, 96, 97, 102–103
Axiom of choice, 14, 15, 88, 154, 157, 180

Baudet’s conjecture, 29
Baumgartner, J., 84, 88
Beck, J., 109
Behrend, F. A., 98, 109
Bergelson, V., 165
Berlekamp, E. R., 109
Bipartite graphs, 10, 111, 119
Bipartite Ramsey theorems, 111–114, 119
Bolzano–Weierstrass theorem, 17
Boolean expressions, 24
Bounded gaps, 156, 160
Bow tie, 141
Bricks, 135
Burkill, H., 17
Burling, J. P., 109
Burn, S. A., 140, 147, 150

Canonical coloring, 129
Canonical Ramsey theorems, 129
 bipartite, 131
Canonical relations, 23

Cantor normal form, 171
Cates, M. L., 68
Chang, C. C., 183
Choi, S. L. G., 109
Chromatic number, 11, 99, 104
Chung, F. R. K., 143
Chvátal, V., 109, 112, 139, 148
Columns condition, 73–74, 124
Comfort, W., 169
Compactness principle:
 applications of, 21, 30, 76, 84, 135, 137, 155, 164, 179
 proof of, 13–17, 27
Concave functions, 112
Conway, J., 61
Cube, 35, 46, 53
Cycles, 143–156

DeBrujin, N. G., 27
Density theorems, 12, 27, 45–46, 99, 111, 143–144
Deuber, W., 79, 80, 88, 115, 123
Dilworth, R. P., 17
Dynamical system, 155

Edge induced graph theorem, 115
Enveloping semigroup, 162
Epsilon-nought (e0), 171, 173
Equations:
 nonhomogeneous regular, 87–88, 136
 over Abelian groups, 80, 123–129
 regular, 9
 regular homogeneous, 71
Erdős, P.:
 conjectures of, 54, 119, 146, 148, 151
 with E. Klein and G. Szekeres, 25
 with L. Moser, 18

193
Erdős, P. (Continued)
with V. T. Sée, 142
with P. Turán, 13, 45–46
influence of, 26
papers of, 109, 113, 150
with Burr, 147
with Burr, Spencer, 140
with Faudree, Rousseau, Schelp, 149
with Graham, 141
with Graham, Montgomery, Rothschild, Spencer, Strauss, 133
with Hajnal, 109, 183
with Hajnal, Rado, 182
with Lovász, 109
with Moon, 112
with Rado, 109, 112, 129
with Spencer, 109, 112, 113
with Szekeres, 17, 24–25
Erdős cardinal, 184
Ergodic theory, 164
Euclidean plane, 25, 137
Euclidean Ramsey theorems, 133
Euclidean space, 40–41, 133
Existence argument, 92, 93, 97, 105, 108, 109
Exoo, G., 109

Faudree, R., 149, 150
Fermat’s last theorem, 69
finite intersection property, 157
finite sums and products conjecture, 84
finite unions theorem, 82
Fiptya, 55
Folkman, J., 81, 109, 119
Folkman’s theorem, 81, 88
Frankl, P., 109, 123, 137
Furstenberg, H., 46, 53, 153, 165
Furstenberg’s theorem, 163. Sée also Szemerédi’s theorem

Gallai’s theorem, 40, 68, 134
Game theory, 41–42
Gerard, G., 109
Giaquinto, S., 168
Gleason, A. M., 89, 90, 109
Gödel’s incompleteness theorem, 170
Gottschalk, W. H., 27
Graham, R. L., 68, 109, 112, 123, 133, 141, 143
conjecture of, 66
Graham–Leeb–Rothschild theorem, 10, 45, 68
Graph Ramsey theory, 101, 109, 138–151

Greenwood, R. E., 89, 90, 109
Grinstead, C., 109
Grzegorczyk hierarchy, 173
Guy, R. K., 112

Hales, A. W., 68
Hales–Jewett theorem, 10, 34–39, 68
applications of, 43, 83, 119
implications of, 40
and Moser conjecture, 53
Shelah proof, 54–60
upper bounds, 60–68
Hales–Jewett theorem, extended, 40
and affine Ramsey theorem, 44
Hamal, A., 109, 182, 183
Harary, F., 139, 148
Harrington, L., 170, 180
Hilbert, D., 47
Hindman, N., 68, 84, 88, 165, 167
Hindman’s theorem, 84, 88, 133, 168–169
topological, 160
Homothety, 40, 134
Hypergraphs, 11, 99, 104
Idempotent theorem, 162, 169
Inaccessible cardinals, 184–185
Induced coloring, 6
Induced Ramsey theorems, 114
Induced subgraphs, 114
Infinite Ramsey theory, 17, 68, 84, 180
bipartite, 114
canonical, 129
Irving, R., 119, 143
Isbell, J. R., 109
Jewett, R. I., 68
Kalbfleisch, J. G., 109
Katznelson, G., 53
Kettenen, J., 180
Keynes, J. M., 18
Kicin, L., 25
Kleitman, D. J., 1
Kolmogoroff extension theorem, 165
Kolmogoroff, J., 109
Kovári, T., 112
k-partite Ramsey theorem, 112–113
Kreisel, G., 180

Large disjoint collections, 85
Large number, 174
Index

Large set (regular equations), 80
Large set (improvable theorem), 169
Larson, J., 183
Lattice theory, 10
Law of small numbers, 90
Leeb, K., 68
Lovász, L., 94, 109
Lovász local lemma, 94–95, 97, 105, 109
Milliken, K., 88
Minimal property, 156–157
Müskö, L., 17, 88
Models, 24–25, 66, 180
Montgomery, P., 133
Moon, J. W., 112
Moore, G. E., 18–19
Moser, L., 18, 109
conjecture of, 53, 68
Motzkin, T., 27
(m,p,c) sets, 79–80

Nečas, J., 115, 119, 150

Ordinal numbers, 171, 182

Paris, J., 170, 180
Paris–Harrington theorem, 170, 180
Partition regular, 123–125, 129
Peano arithmetic, 170, 173, 178
Pigeon-Hole principle, 7, 30, 39
Prime numbers, 54
Principia Mathematica, 18
Probabilistic method, 92, 148
Product topology, 153, 168
Promel, H., 123
Property B, 104–106, 109

Rado, R., 27, 68, 87, 88
and W. Deuber, 80
and P. Erdős, 109, 112, 129
and P. Erdős, A. Hajnal, 182
and I. Schur, 71
Rado selection principle, 27
Rado’s theorem, 10, 71, 74, 104, 124
Ramsey, F. R., 18–25
Ramsey configurations, 134
Ramsey functions, 5, 7, 16–17, 22
asymptotics, see Asymptotic values
exact values, 90, 91
graphs, 101–102
Hales–Jewett, 60–66
higher Ramsey numbers, 106–109
infinite, 180
large, 170
min, 105
ordinals, 182–183
Rado, 104
Schur, 103
van der Waerden, 62–64
Ramsey numbers, see Ramsey functions
Ramsey’s theorem, 9, 109
abridged, 3–5
with ultrafilters, 167
unabridged, 7–9, 19, 26
Random colorings, 92, 97
Ray-Chaudhuri, D. K., 142
Restricted Ramsey theorems, 119–123
Reynor, S. W., 109
Roberts, S., 109
Rödl, V., 109, 115, 119, 123, 154, 150
Rota, G.-C., 45
Roth, K., 13, 46, 68, 98, 109
Rothschild, B. L., 68, 123
Roth’s theorem, 46, 68
Rousseau, C. C., 149
Russell, B., 18
Salem, R., 109
Sanders, J., 88
Schelp, R., 149, 150
Schreier, O., 30
Schur, I., 29, 69–70, 80, 88
Schur numbers, see Ramsey functions
Schur’s theorem, 9, 69, 88, 103
Seidenberg, A., 27
Shelah, S., 54, 57, 68
Shelah proof, 54–60
Skolem, T., 26
smod p, 73, 74
Sós, V. T., 27, 112, 142
Solovay, R., 180
Spencer, D. C., 109
Spencer, J. H., 45, 68, 109, 112, 135
Sperner’s lemma, 53
Spherical configurations, 130
Stanton, R., 109
Stepping up lemma, 106–108
Strau, E., 27, 88, 133
Subadditivity lemma, 47
Sums, 81
Symmetric hypergraph theorem, 199–200
Szekeres, E., 25–26
Szekeres, G., 17, 25–26
Szemerédi, E., 13, 46, 68, 109
Szemerédi's theorem, 46, 53, 68
application of, 104
and Furstenberg's theorem, 153, 163–165
Tarsy, M., 26
Taylor, A., 133
Tic-tac-toe, 41
Topological dynamics, 153
Topological Hindman theorem, 160
Topological van der Waerden theorem, 155
Tournaments, 18
Tower functions, 61, 106
Translations, 137
Trees, 137
Turán, P., 26–27, 45–46, 112
Turán function, 12
Turán's theorem, 13, 148
Tychonoff theorem, 15, 153, 164, 168
Ultrafilters, 166–169
van der Waerden, B. L., 29
van der Waerden’s numbers, see Ramsey functions
van der Waerden’s theorem, 9, 29, 68
applications of, 76, 78, 81, 83
and Hales–Jewett theorem, 34–35, 40
and Szemerédi’s theorem, 13
topological, 153, 155
Vector space Ramsey theorem, 45, 68
Vector spaces, 10, 42–45
Veech, W., 165
Vertex-induced graph theorem, 115
Wainer hierarchy, 173
Walker, K., 109
Weiss, B., 165
Whitehead, A. N., 18
Wilson, R., 142
Wittgenstein, L., 18
Wow function, 61
Zarankiewicz’s function, 112
Znam, S., 112
Zorn’s lemma, 157, 162, 166