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Dedicated to Paul Erdős, who envisioned Ramsey Theory,
shaped much of it by his problems, conjectures and results,
and inspired us all to dive into its deep and beautiful waters.





What This Book Is About and How It Came
into Being

Ramsey theory is a fascinating, approximately 100-year-old field of mathematics
that has a non-empty intersection with combinatorics, number theory, geometry,
ergodic theory, topology, combinatorial geometry, set theory, measure theory, and
so on. Ramsey theory possesses its own unifying ideas, and some of its results are
among the most beautiful theorems of mathematics. The main mathematical idea of
Ramsey theory is this: no matter how large and elaborate a system S is, and how
large a positive integer n is, we can choose a large enough super system Q contain-
ing S , so that no matter howQ is colored in n colors,Q contains a monochromatic
copy of S . Thus one can say that Ramsey theory studies mathematics of coloring.

In 2008 the director, Fred Roberts, and the executive committee of DIMACS1

invited me to organize a three-day workshop on Ramsey theory. In response to
Dr. Roberts’ desire to host a nongeneric original view of the field, I proposed
Ramsey Theory: Yesterday, Today, and Tomorrow. This was approved, and the work-
shop took place on May 27–29, 2009 at the Busch Campus of Rutgers University
in Piscataway, New Jersey. The workshop looked at the emergence and history of
Ramsey theory (Yesterday), its results (Today), and its future (Tomorrow) through
its open problems, conjectures, and aspirations. In addition to mathematical and
historical research, we also looked at how Ramsey theory can harness the power of
computing in discovering mathematical results.

The workshop turned out to be an international event. It attracted researchers
from the United States, England, Czech Republic, Hungary, and Germany. The
speakers included world-renowned leaders of the field, such as Ronald L. Graham,
Joel H. Spencer, and Jaroslav Nešetřil. It also included some of the most promis-
ing young researchers such as Jacob Fox of Princeton University, Andrzej Dudek of
Carnegie Mellon University, Lynn Scow of the University of California Berkeley,
and Dmytro Karabash of the Courant Institute of Mathematical Sciences.

1 The Center for Discrete Mathematics and Theoretical Computer Science, a collaborative project
of Rutgers and Princeton Universities, AT&T Labs – Research, Alcatel–Lucent Bell Labs, Cancer
Institute of New Jersey (CINJ), NEC Laboratories America, and Telcordia Technologies.

vii



viii What This Book Is About and How It Came into Being

The workshop inspired Ann Kostant, the executive editor of mathematics at
Birkhäuser, to propose that I organize and edit this volume of surveys authored or
coauthored by workshop participants under the title of the workshop Ramsey The-
ory: Yesterday, Today, and Tomorrow for its “Progress in Mathematics” Birkhäuser
series.

This volume opens with “Yesterday”, surveys of the prehistory and early his-
tory of Ramsey theory. They are followed by surveys of progress that has been
made in Ramsey theory and in areas that arose from Ramsey theory, the de-
scendants of Ramsey theory; these surveys point out directions in which Ramsey
theory and its descendants may move in the future. The last three surveys address
Euclidean Ramsey theory and related coloring problems. The survey on open prob-
lems is coauthored by Ronald L. Graham, one of the authors of Euclidean Ramsey
theorems I, II, and III, 1973–1975, which constitute a major portion of the founda-
tion of the subject. This survey is followed by a history of the mysterious problem
of the chromatic number of the plane, and the final survey is on similar problems
for the rational points in real Euclidean spaces.

In addition to invited and contributed talks, the workshop featured a “Problem
Posing Session.” Accordingly, this volume includes a section of open problems
proposed at the workshop.

On behalf of all contributors to this volume, I thank Fred Roberts and the
DIMACS Executive Committee for inviting and supporting the workshop, and the
National Science Foundation for financial support. I thank the entire DIMACS’ staff
for their wonderful help, especially Nicole Clark, Linda Casals, and Mel Janowitz.
I thank Ann Kostant of Birkhäuser for offering us such a fine vehicle for spread-
ing the Ramseyan word, and the editors of the “Progress in Mathematics” series
Hyman Bass, Joseph Oesterlé, and Alan Weinstein for accepting this volume in
their enlightened series.

May 2010 Alexander Soifer



Some of the plenary speakers of the workshop, from the right: Ronald L. Graham,
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Ramsey Theory Before Ramsey, Prehistory
and Early History: An Essay in 13 Parts1

Alexander Soifer

What amazes us today is, of course, that no one in Hamburg
(including Schreier and Artin) had known about Schur’s work
[1916]. In that connection we must realize that the kind of
mathematics involved in the [Baudet–Schur] conjecture was not
mainstream, and that combinatorics was not a recognized field
of mathematics at all.

– Nicolaas G. de Bruijn2

It takes a long time to become young.
– Pablo Picasso

1 Overture

How does a new theory emerge? It usually manifests itself in the older and estab-
lished areas of mathematics. Gradually a critical mass of results appears, prompting
a realization that what we have is a new identifiable field of mathematical thought,
with its own set of problems and methods. As a fetus in a womb, the new theory
eventually does not fit in the existing classification of mathematical thought. That is
when the child is born. Ramsey theory has not been an exception.

In retrospect we all put history in a neat chronological order. In reality, older
results may not have been known in time to provide the influence that our chrono-
logical order would suggest. We plug historical holes in the emergence of Ramsey
theory not unlike filling holes in human evolution. History teaches that it is not
enough to be right. In order to influence the evolution of one’s field, one has to be
lucky to be right at the right time. Aristarchus of Samos (À¡š¢£’¡¦o−, 310 BC–ca.
230 BC) was the first to explicitly conjecture a heliocentric model of the solar
system. However, he did not influence the evolution of astronomy. Almost 1,800
years later, Nicolaus Copernicus (1473–1543), presented (more comprehensively)
the conjecture of the heliocentric cosmology again, and did influence the evolution
of astronomy in a major way.

1 Much of this material is contained in the author’s monograph [Soi], however, this text contains
new facts and observations that were not known to the author in 2008 when [Soi] was published.
Also, the emphasis here is quite different from [Soi].
2 E-mail to A. Soifer, January 5, 2004.

A. Soifer
University of Colorado at Colorado Springs, Coloredo Springs, CO 80918, USA
e-mail: asoifer@uccs.edu

A. Soifer (ed.), Ramsey Theory: Yesterday, Today, and Tomorrow, 1
Progress in Mathematics 285, DOI 10.1007/978-0-8176-8092-3 1,
c� Springer Science+Business Media, LLC 2011

asoifer@uccs.edu


2 A. Soifer

Let me summarize in one paragraph the fetal development preceding Ramsey
theory’s birth. As we believe now, David Hilbert’s cube lemma was the first
Ramseyan result, but it did not influence anyone at the time and thus did not give
birth to Ramsey theory. Issai Schur’s 1916 theorem could have remained unnoticed
too, but Schur was first to realize that he had run into something new and striking.
And so Schur continued by conjecturing the result on monochromatic arithmetic
progressions. However, Schur’s conjecture did not reach Bartel Leendert van der
Waerden, and the Ramseyan train of thought risked running out of fuel. The unborn
Ramseyan mathematics was very lucky that another person, Pierre Joseph Henry
Baudet, independently of Schur posed the same conjecture. Baudet passed away at
the tender age of 30, but his conjecture impressed his friend and mentor Frederik
Schuh. Schuh or Schuh’s circle at the University of Amsterdam was the source of
the conjecture for the 23-year old Van der Waerden. Having proved the conjec-
ture, Van der Waerden walked away from Ramseyan prehistory. Issai Schur, on the
other hand, continued to produce Ramseyan mathematics, and moreover directed
and inspired his PhD students Richard Rado, Hildegard Ille and Alfred Brauer to do
the same. Then came Frank Plumpton Ramsey who delivered the Two Command-
ments, the principles of the theory later named in his honor. Ramsey died at the age
of 26, before his publication announced to the world the birth of the new theory.

In what follows, we take a more detailed look at the emergence of Ramsey theory,
and trace how the Ramseyan baton was passed. A much more detailed exposition of
Ramsey theory’s prehistory and early history required a whole book, the book [Soi]
that now exists. I have continued historical investigations, and this survey contains
some new facts.

2 David Hilbert’s 1892 Cube Lemma

As far as we know today, the first Ramseyan-type result appeared in 1892 as a little-
noticed assertion in [Hil]. Its author was the great David Hilbert. In this work Hilbert
proved the theorem of our interest merely as a tool for his study of irreducibility of
rational functions with integral coefficients.

A set Qn .a; x1; x2; : : :; xn/ of integers is called an n-dimensional affine cube if
there exist n + 1 positive integers a, x1,. . . ,xn such that

Qn .a; x1; x2; : : :; xn/ D
n
aC

X
i2F

xi W ¿ ¤ F � f1; 2; : : :; ng
o
:

It is convenient to use the symbol [n] for the starting segment of positive integers:

Œn� D f1; 2; : : :; ng :
The theorem, which preceded the Schur and the Baudet–Schur–Van der Waerden
theorems, reads as follows.

The Hilbert Cube Lemma 1. For every pair of positive integers r , n, there exists
a least positive integerm D H.r; n/ such that in every r-coloring of Œm� there exists
a monochromatic n-dimensional affine cube.
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It seems that David Hilbert’s monochromatic cube lemma was the first example
of Ramseyan mathematics. Apparently nobody – including Hilbert – appreciated the
lemma much. Hilbert did not continue research in the direction the lemma showed.
The field did not learn about Hilbert’s lemma until much later. The lemma was
added as the first instance of Ramseyan thought, not due to its influence, which was
nonexistent, but due to its respectable birth year of 1892.

3 The Issai Schur 1916 Theorem

Probably nobody remembered the 1892 Hilbert lemma by the time the second
Ramseyan-type result appeared in 1916 as a little-noticed assertion in number
theory. Its author was Issai Schur. Our interest here lies in the result he obtained dur-
ing 1913–1916 when he worked at the University of Bonn as the successor to the
famed topologist Felix Hausdorff. There Schur wrote his pioneering paper [Sch]:
Über die Kongruenz xm C ym � zm .mod:p/: In it Schur offered another proof
of the 1908 theorem by Leonard Eugene Dickson [Dic], who was trying to prove
Fermat’s Last Theorem.

For use in his proof, Schur created, as he put it, “a very simple lemma, which
belongs more to combinatorics than to number theory.” Its setting is positive
integers, colored in finitely many colors. The beautiful proof I present here utilizes
coloring as well. Paul Erdős received this proof from Vera T. Sos, and included it
in his talk at the 1970 International Congress of Mathematicians in Nice, France
[E71.13]. We use the following natural lemma, which can be proven by a straight-
forward induction.

Issai Schur, courtesy of his daughter Hilde Abelin-Schur.
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Lemma 2 (R. E. Greenwood and A. M. Gleason, 1955, [GG]). For any positive
integer n there is a positive integer S.n/ such that any n coloring of edges of the
complete graphKS.n/ contains a monochromatic triangle K3.

The Schur 1916 Theorem 3 ([Sch]). For any positive integer n there is an integer
S.n/ such that any n-coloring of the set [S.n/] contains integers a, b, c of the same
color such that aC b D c.

In this case we call a, b, c a monochromatic solution of the equation x C y D z.
In fact, Schur proved by induction that S.n/ = n!e would work.

Proof of Schur’s Theorem. Let all positive integers be colored in n colors c1, c2, . . . ,
cn. Due to Lemma 2, there is S.n/ such that any n-coloring of edges of the complete
graphKS.n/ contains a monochromatic triangleK3.

Construct a complete graphKS.n/ with its vertices labeled with integers from the
initial integer array ŒS.n/� D f1; 2; : : : ; S.n/g. Now color the edges of KS.n/ in n
colors as follows: let i and j; i > j , be two vertices ofKS.n/, color the edge ij in the
color of the integer i �j (remember, all positive integers were colored in n colors!).
We get a complete graph KS.n/ whose edges are colored in n colors. By Lemma 2,
KS.n/ contains a triangle ijk, i > j > k, whose edges ij, jk, and ik are colored in the
same color (Fig. 2).

Denote a D i � j ; b D j � k; c D i � k. Since all three edges of the triangle ijk
are colored in the same color, the integers a, b, and c are colored in the same color
in the original coloring of the integers (this is how we colored the edges of KS.n//.
In addition, we have the following equality:

aC b D .i � j /C .j � k/ D i � k D c:
We are done! �

The result of the Schur theorem 3 can be strengthened by an additional clever
trick in the proof.

Strong Version of Schur’s Theorem 4. For any positive integer n there is an in-
teger S�.n/ such that any n-coloring of the initial positive integer array [S�.n/]
contains distinct integers a, b, c of the same color such that aC b D c.

Fig. 2
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Proof. Let all positive integers be colored in n colors c1; c2; : : : ; cn. We add nmore
colors c10, c20; : : : ; cn0 different from the original n colors and construct a complete
graphKS.2n/ with the set of positive integers f1; 2; : : : ; S.2n/g labeling its vertices
(see the definition of S (2n/ in the proof of Theorem 3). Now we are going to color
the edges of KS.2n/ in 2n colors.

Let i and j , (i > j /, be two vertices of KS.2n/, and cp be the color in which
the integer i � j is colored, 1 � p � n (remember, all positive integers are colored
in n colors c1; c2; : : : ; cn/. Then we color the edge ij in color cp if the number
bi=.i � j /c is even, and in color cp0 if the number bi=.i � j /c is odd (for a real
number r , the symbol brc, as usual, denotes the largest integer not exceeding r/.

We get a complete graph KS.2n/ whose edges are colored in 2n colors. By
Lemma 2, KS.2n/ contains a triangle ijk, i > j > k, whose edges ij, jk, and ik
are colored in the same color (see Fig. 2).

Denote a = i � j ; b = j � k; c = i � k. Since all three edges of the triangle
ijk are colored in the same color, from the definition of coloring of edges of KS.2n/

it follows that in the original coloring of positive integers, the integers a, b, and c
were colored in the same color. In addition we have

aC b D .i � j /C .j � k/ D i � k D c:
We are almost done. We only need to show (our additional pledge!) that the numbers
a, b, c are all distinct. In fact, it suffices to show that a ¤ b. Assume the opposite:
a = b and cp is the color in which the number a = b = i � j = j � k is colored. But
then

�
i

i � j
�
D
�
1C j

i � j
�
D 1C

�
j

i � j
�
D 1C

�
j

j � k
�
;

i.e., the numbers bi=.i � j /c and bj=.j � k/c have different parity, thus the edges
ij and jk of the triangle ijk must have been colored in different colors. This contra-
diction to the fact that all three edges of the triangle ijk have the same color proves
that a ¤ b. Theorem 4 is proven. �

Nobody then asked questions of the kind Issai Schur posed and solved in this
1916 paper. Consequently, nobody appreciated this result much when it was pub-
lished. Even Van der Waerden himself learned about the Schur theorem from me in
1995! See for yourselves Van der Waerden’s April 24, 1995 letter to me:

Now Schur’s theorem shines as one of the most beautiful, classic theorems of
mathematics. Leon Mirsky loved this theorem, and wrote [Mir] on the occasion of
the centenary of the birth of Schur:

We have here a statement of the type: “if a system is partitioned arbitrarily into a finite num-
ber of subsystems, then at least one subsystem possesses a certain specified property.” To
the best of my knowledge, there is no earlier result which bears even a remote resemblance
to Schur’s theorem. It is this element of novelty that impresses itself so forcibly on the mind
of the reader.



6 A. Soifer

Van der Waerden, April 24, 1995 letter to Alexander Soifer.

However, Mirsky continued [Mir]:

After writing his paper, Schur never again touched on the problem discussed there; and this
is in itself something of a mystery. For the strongest impression one receives on scanning
his publications is the almost compulsive striving for comprehensiveness. There are few
isolated investigations; in algebra, in analysis, in the theory of numbers, Schur reverts again
and again to his original questions and pursues them to the point of where one feels that
the last word has been spoken.... Why, then, did he not investigate any of the numerous
questions to which his Theorem points so compellingly? There is no evidence to enable us
to solve the riddle. (Footnote: As will emerge from the discussion below, Professor Rado, if
anyone, should be able to throw light on the mystery – and he tells me that he cannot.)

Mirsky’s statement, apparently backed by Richard Rado, was echoed in the author-
itative book on Ramsey theory [GRS2, p. 70], thus becoming a universal view
on this matter: “Schur never again touched on this problem.” In fact, the new
Ramseyan mathematics, discovered by Issai Schur in his 1916 paper, remained dear
to his heart for years to come. Even though at the time, nobody was interested in
the new direction the Schur 1916 theorem had shown, Issai Schur himself was:
read on!
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4 The Baudet–Schur–Van der Waerden 1927 Theorem

In trying to prove his own conjectures about quadratic residues and nonresidues,
Issai Schur realized the need to conjecture another “very simple lemma, which
belongs more to combinatorics than to number theory.”3 My historical research
showed that the young 20-something Dutch mathematician Pierre Joseph Henry
Baudet created this conjecture independently of Schur (read Chap. 34 of [Soi]
dedicated to the historical research into the authorship of this conjecture).

Pierre Joseph Henry Baudet (1891–1921), courtesy of his son Henry Baudet.

Another Dutch youngster, the 23-year-old Bartel Leendert van der Waerden4

published the proof of the conjecture, thus giving us a classic theorem that became
a root of the wonderful tree of Ramseyan mathematics.

The Baudet–Schur–Van der Waerden Theorem 5 (B. L. Van der Waerden,
1927, [Wae]). For any k, l , there is W DW.k; l/ such that any k-coloring of the
set [W ] contains an l-term monochromatic arithmetic progression.

B. L. van der Waerden, assisted by Emil Artin and Otto Schreier, proved this
pioneering result while at Hamburg University and presented it the following year at
the 1927 meeting of D:M:V:, Deutsche Mathematiker Vereinigung (German Math-
ematical Society) in Berlin.

3 [Sch].
4 Since Van der Waerden was Dutch, I strictly adhere to the Dutch rules in determining where to
use “van” and where “Van.” In fact, in Dutch “van” is used only if preceded by the given name(s)
or initials.
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Observe that the Baudet–Schur–Van der Waerden Theorem 5 implies and
strengthens the Hilbert cube lemma 1. Baudet and Van der Waerden have
not contributed anything else to Ramseyan mathematics. Sadly, Baudet had a
valid reason: he passed away on Christmas Day of 1921. He was only 30. Van der
Waerden did not have such a reason: he lived a 93-year-long productive life. Van der
Waerden simply did not realize how important was the result he proved: he submit-
ted his algebraic geometry papers to the most prestigious journal, Mathematische
Annalen, yet sent this proof to an “obscure”5 journal, Nieuw Archief voor Wiskunde
of the Dutch Mathematical Society.

This leaves only Isaai Schur standing. The new Ramseyan mathematics, discov-
ered by Issai Schur in his 1916 paper, remained dear to his heart for years to come.
He cocreated the Baudet–Schur conjecture, and conjectured and proved the next
Ramseyan result we study.

However, before we move on, I wish to emphasize how critical a contribution
P. J. H. Baudet made to Ramsey theory. I have established fairly certainly [Soi,
Chap. 34] that Issai Schur was not the source of the conjecture for Van der Waerden.
Thus, without Baudet creating the conjecture on his own, Van der Waerden would
have had nothing to prove about monochromatic arithmetic progressions, and the
prehistory of Ramsey theory would have been quite different.

5 The Generalized 1928 Schur Theorem

One evening in the year 1927, Issai Schur and his two former doctoral students,
Alfred and Richard Brauer learned from Johnny von Neumann, who was fresh from
the D.M.V. meeting, that the young Dutchman Van der Waerden had proved what
they knew as Schur’s conjecture about monochromatic arithmetic sequences [Bra3].
A few days later, Alfred Brauer proved Schur’s conjecture about quadratic residues
by applying the new Baudet–Schur–Van der Waerden theorem. Schur then noticed
that Brauer’s method of proof could be used for obtaining a result about sequences
of nth power residues. Soon Issai Schur found a short Olympiad-like way to prove
the following result that generalized at once both Schur’s 1916 theorem and Baudet–
Schur–Van der Waerden’s theorem.

The Generalized Schur Theorem 6 (Schur, [Bra1,Bra2]). For any positive inte-
gers k and l there is a positive integer S.k; l/ such that any k-coloring of the initial
segment of positive integers [S.k; l/] contains a monochromatic arithmetic progres-
sion of length l together with its difference.

Proof of Schur. For 1 color we define S.1; l/ D l , and the statement is true.
Assume the theorem is true for k colors. We define

S .k C 1; l/ D W .k C 1; .l � 1/ S .k; l/C 1/ ;
5 I defer to the celebrated Dutch mathematician N. G. de Bruijn, whose characterization I am
quoting here.
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where W.k,l/ is as defined in Theorem 5. Let the set of integers [S .k C 1; l/] be
colored in kC1 colors. Then by Theorem 5 (see the right side of the equality above),
there is a .l � 1/ S .k; l/C 1 term monochromatic arithmetic progression

a; aC d; : : : ; aC .l � 1/ S .k; l/ d:
For every x D 1; 2; : : : ; S.k; l/, this long monochromatic arithmetic progression
contains the following l-term arithmetic progression,

a; aC xd; : : : ; aC .l � 1/ xd:
If for one of the values of x, the difference xd is colored the same color as the
progression above, we have concluded the proof of the inductive step. Otherwise,
the sequence

d; 2d; : : : ; S .k; l/ d

is colored in only k colors, and we can apply to it the inductive assumption to draw
the required conclusion. �

Schur wanted Alfred Brauer to include this theorem (as well as the one about
nth power residues) in Brauer’s paper because Schur believed he had used Brauer’s
method in these proofs. Schur did not want to take away any credit from his student.
The student had to oblige but he “always called it Schur’s result”6 and gave Schur
credit everywhere it was due in his paper [Bra1] that appeared in 1928. A few weeks
later Brauer also proved Schur’s conjecture about quadratic nonresidues, which
appeared in the same wonderful, yet mostly overlooked paper [Bra1]. Yes, I say
“overlooked” because even the authors of the standard text [GRS2], apparently were
not familiar with this paper, for they included an almost identical result (Theorem 2,
p. 70) without reference or credit to Schur.

The results presented here thus far represent what I named [Soi] Ramsey
Theory before Ramsey. Now it is time to meet Himself: Ladies and Gentlemen,
Dr. F. P. Ramsey!

6 The Frank Plumpton Ramsey Principle

Frank Plumpton Ramsey was the pride and hope of King’s College, Cambridge.
Having lived not quite 27 years, he made major contributions to philosophy, mathe-
matical logic, economics and mathematics. In 1928, aged 25, he submitted a paper
that was posthumously published in 1930 [Ram]. The paper contained infinite and
finite versions of what has since appeared under the name of “the Ramsey theo-
rem.” I have always felt that something was wrong with the title “Ramsey theorem.”
To see that, it suffices to read the leader of the field, Ronald L. Graham, who in
1983 wrote [Gra1]: “The generic result in Ramsey Theory is due (not surprisingl) to

6 [Bra2].
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Frank Plumpton Ramsey (1903–1930), aged 18. Reproduced by kind permission of the Provost
and Scholars of King’s College, Cambridge.

F. P. Ramsey.” Exactly: “the generic result,” compared to much more specific typical
examples, such as Schur’s theorem and Baudet–Schur–Van der Waerden’s theorem.
The Ramsey theorem occupies a unique place in the Ramsey theory. It is a powerful
tool. It is also a philosophical principle stating, as Theodore S. Motzkin put it, that
a “complete disorder is an impossibility. Any structure will necessarily contain an
orderly substructure”7. It is, therefore, imperative to call the Ramsey theorem by a
much better fitting name: the Ramsey principle. We have two principles in Ramsey’s
paper [Ram]:

Infinite Ramsey Principle 7. For any positive integers k and r , if the collection of
all r-element subsets of an infinite set S is colored in k colors, then S contains an
infinite subset S1 such that all r-element subsets of S1 are assigned the same color.

Finite Ramsey Principle 8. For any positive integers r , n, and k there is an integer
m0 = R.r ,n,k/ such that ifm �m0 and the collection of all r-element subsets of an
m-element set Sm is colored in k colors, then Sm contains an n-element subset Sn

such that all r-element subsets of Sn are assigned the same color.

It is amazing to me how quickly the news of the Ramsey principle traveled in the
times that can hardly be called the Information Age. Ramsey’s paper appeared in
1930. Already in 1933 the great Norwegian logician Thoralf Albert Skolem (1887–
1963) published his own proof [Sko] of the Ramsey principle (with a reference

7 Quoted from [GRS2].
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Grave of Frank Plumpton Ramsey and his parents, Parish of the Ascension Burial Ground,
Cambridge, photo by Mark S. Soifer. The tombstone reads: “In loving memory of Mary Agnes
Ramsey 8 Jan. 1876–15 Aug. 1927. Also of Frank Plumpton Ramsey 22 Feb. 1903–19 Jan. 1930.
Also of Arthur Stanley Ramsey 12 Sept. 1869–31 Dec. 1954.”

to Ramsey’s 1930 publication!). In 1935 yet another proof (for the graph-theoretic
setting) appeared in the paper [ES] by the two young Hungarians, Paul Erdős and
Gjörgy (George) Szekeres. We look at this remarkable paper next.

7 The Paul, Gjörgy, and Esther Happy End Problem

During the winter of 1932–1933, two young friends, the mathematics student Paul
Erdős, aged 19, and the chemistry student György (later known as George) Szekeres,
21, solved the problem posed by their youthful ladyfriend Esther Klein, 22, but did
not submit it to a journal for a year and a half. When Erdős finally sent this joint
paper for publication, he chose J. E. L. Brouwer’s journal, Compositio Mathematica,
where it appeared in 1935 [ES].

Erdős and Szekeres were first to demonstrate the power and striking beauty of
the Ramsey principle when they solved the problem. In the process of working with
Erdős on the problem, Szekeres actually rediscovered the finite Ramsey principle
before the authors ran into the 1930 Ramsey publication [Ram]. Erdős found an
alternative proof with much better bounds for ES .n/.



12 A. Soifer

The Klein–Erdős–Szekeres Theorem 9 ([ES]). For any positive integer n � 3
there is an integer ES(n/ such that any set of at least ES(n/ points in the plane
in general position8 contains n points that form a convex polygon.

Erdős and Szekeres found the bounds for the Erdős–Szekeres function ES.n/.

The First Bounds 10 (Erdős and Szekeres [ES]). For any positive integer n � 3,

2n�2 < ES .n/ �
�
2n � 4
n � 2

�
C 1:

The upper bound had withstood all attempts at improvement for 62 years, until
1997 when Fan Chung and Ronald L. Graham [CG] willed it down by one point.
In the process, Fan and Ron offered a fresh approach which started an explosion
of improvements found by Daniel J. Kleitman and Lior Pachter, then Géza Tòth
and Pavel Valtr, and again in 2005 by Tòth and Valtr [TV] to the upper bound
best-known today,

ES.n/ �
�
2n � 5
n � 2

�
C 1;

but this is not prehistory, and so I must stop. It suffices to say that the Erdős–
Szekeres 1935 conjecture is still alive:

The Erdős–Szekeres–Klein Happy End $500 Conjecture 11. For any positive
integer n � 3,

Paul Erdős in the early 1930s, courtesy of Paul Erdős.

8 That is, no three points lie on a line.
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ES .n/ D 2n�2 C 1:
I must show you a beautiful alternative proof of Erdős–Szekeres’s Theorem 9,

especially since it was found by an undergraduate student, Michael Tarsy of Israel.
He missed the class when the Erdős–Szekeres solution was presented, and had to
come up with his own proof under the gun of the exam! Tarsy recalls (e-mail to me
of December 12, 2006):

Back in 1972, I took the written final exam of an undergraduate Combinatorics course at
the Technion—Israel Institute of Technology, Haifa, Israel. Due to personal circumstances,
I had barely attended school during that year and missed most lectures of that particular
course. The so-called Erdős–Szekeres theorem was presented and proved in class, and we
have been asked to repeat the proof as part of the exam. Having seen the statement for the
first time, I was forced to develop my own little proof.

Our teacher in that course, the late Professor Mordechai Levin, had published the story as
an article, I cannot recall the journal’s name, the word ‘Gazette’ was there and it dealt with
Mathematical Education.9

I was born in Prague (Czechoslovakia at that time) in 1948, but was raised and grew up in
Israel since 1949. Currently I am a professor of Computer Science at Tel-Aviv University,
Israel.

Proof of Theorem 9 by Michael Tarsy. Let n� 3 be a positive integer. By the
Ramsey principle 8 (r D 3 and k D 2) there is an integer m0 D R.3; n; 2/

such that, if m > m0 and the collection of all 3-element subsets of an m-element
subset Sm are colored in two colors, then Sm contains an n-element subset Sn such
that all 3-element subsets of Sn are assigned the same color.

Let now Sm be a set of m points in the plane in general position labeled with
integers 1; 2; : : : ; m.

We color a 3-element set fi ,j ,kg, where i < j < k, red if we travel from i

to j to k in a clockwise direction, and blue if counterclockwise. By the above, Sm

contains an n-element subset Sn such that all 3-element subsets of Sn are assigned
the same color, that is, have the same orientation. But this means precisely that Sn

forms a convex n-gon! �

In their celebrated paper [ES], P. Erdős and G. Szekeres also discovered the
monotone subsequence theorem. A sequence a1; a2; : : : ; ak of real numbers is
called monotone if it is increasing, i.e., a1 � a2 � � � � � ak , or decreasing, i.e.,
a1 � a2 � � � � � ak (we use weak versions of these definitions that allow equalities
of consecutive terms).

The Erdős–Szekeres Monotone Subsequence Theorem 12. Any sequence S W
a1; a2; : : : ; ar of r > mn real numbers contains a decreasing subsequence of more
thanm terms or an increasing subsequence of more than n terms.

A quarter of a century later, in 1959, A. Seidenberg of the University of
California, Berkeley, found a brilliant “one-line” proof of Theorem 12, thus giving
it a true Olympiad-like appeal.

9 The Mathematical Gazette, 1976.
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Proof by A. Seidenberg [Sei]. Assume that the sequence S W a1; a2; : : : ; ar of
r > mn real numbers has no decreasing subsequence of more than m terms.
To each ai assign a pair of numbers (mi , ni /, where mi is the largest number of
terms of a decreasing subsequence beginning with ai and ni the largest number of
terms of an increasing subsequence beginning with ai . This correspondence is an
injection; that is, distinct pairs correspond to distinct terms ai , aj , i < j . Indeed, if
ai � aj then ni � nj C 1, and if ai > aj then mi � mj C 1.

We get r > mn distinct pairs (mi ; ni /, (they are our pigeons) and m possible
values (they are our pigeonholes) for mi , since 1 � mi � m. By the pigeonhole
principle, there are at least nC1 pairs (m0; ni / with the same first coordinate m0.
Terms ai corresponding to these pairs (m0; ni / form an increasing subsequence! �

Erdős and Szekeres note that the result of their Theorem 10 is best possible.

Problem 13 ([ES]). Construct a sequence of mn real numbers such that it has no
decreasing subsequence of more than m terms and no increasing subsequence of
more than n terms.

Solution. Here is a sequence of mn terms that does the job:

m;m� 1; : : : ; 1I 2m; 2m� 1; : : : ; mC 1I : : : I nm; nm� 1; : : : ; .n � 1/mC 1: �
H. Burkill and Leon Mirsky in their 1973 paper [BM] observe that the monotone
subsequence theorem holds for countable sequences as well.

Monotone Subsequence Theorem 14 ([BM]). Any sequence S : a1; a2; : : : ; ar ,
. . . of real numbers contains an infinite increasing subsequence or an infinite
strictly decreasing subsequence.

Hint. Color the 2-element subsets of S in two colors. �
The authors “note in passing that the same type of argument enables us to show”

the following cute result (without a proof).

Curvature Preserving Subsequence Theorem 15 ([BM]). Any sequence S W a1;

a2; : : : ; ar , . . . of real numbers possesses an infinite subsequence which is convex
or concave.

Hint. Recall Michael Tarsy’s proof of Erdős–Szekeres theorem above, and color the
3-element subsets of S in two colors! �

8 Richard Rado’s Regularity

It is fitting that the Schur theorem was generalized by one of Schur’s best PhD
students, Richard Rado. Rado calls a linear equation

a1x1 C a2x2 C � � � C anxn D b (�)
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regular, if for any positive integer r , no matter how many all positive integers are
colored in r colors, there is a monochromatic solution of the equation (*). As
before, we say that a solution x1; x2; : : : , xn is monochromatic, if all numbers
x1; x2; : : : , xn are colored in the same color.

For example, the Schur 1916 theorem proves precisely that the equation xCy �
z D 0 is regular. In 1933 Richard Rado, among other results, found the following
criterion.

The Rado Theorem 16 (A particular case of [Rad1]). LetE be a linear equation
a1x1 C a2x2 C � � � C anxn D 0, where all a1; a2; : : : , an are integers. Then E
is regular if and only if some nonempty subset of the coefficients ai sums up to zero.

Richard Rado found regularity criteria for systems of homogeneous equations as
well. His fundamental contributions to and influence on Ramsey theory is hard to
overestimate. I have just given you a taste of his theorems here. For more of Rado’s
results read his papers [Rad1, Rad2], and others, and the monograph [GRS2].

It is interesting to notice how differently people can see the same fact. For
Richard Rado, Schur’s theorem was about monochromatic solutions of a homo-
geneous linear equation x C y � z = 0, and so Rado generalized the Schur 1916
theorem to a vast class of homogeneous linear equations and systems of homoge-
neous linear equations [Rad1]. Three other mathematicians saw Schur’s theorem
quite differently. This group consisted of Jon Folkman, a young Rand Corpora-
tion scientist; Jon Henry Sanders, the last PhD student of the legendary Norwegian
graph theorist Øystein Ore at Yale (B.A. 1964 Princeton University; PhD 1968, Yale
University); and Vladimir I. Arnautov, at the time of his paper’s submission a
30-year old Moldavian topological ring theorist. For the three, the Schur theorem
spoke about monochromatic sets of symmetric sums

fa1; a2; a1 C a2g D
nX

iD1;2
"iai W "i D 0; 1I "1"2 ¤ 0

o
:

Consequently, the three proved a generalization of Schur’s theorem different from
Rado’s kind, and paved the way for further important developments. I see therefore
no choice at all but to name the following fine theorem for its three inventors. This
may surprise readers accustomed to different attributions, and so I have addressed
their concerns in [Soi] and here below.

The Arnautov–Folkman–Sanders Theorem 17 ([Arn, San]). For any posi-
tive integers m and n there exists an integer AFS(m,n/ such that for any m-
coloring of the initial integers array [AFS(m,n/], there is an n-element subset
S 	 [AFS.m; n/] such that the set

˚P
x2F x W ; ¤ F � S

�
is monochromatic.

On April 25, 2009, I received the following e-mail from Dr. Jon Henry Sanders:

Dear Prof. Soifer: What has been referred to throughout the literature as the Graham–
Rothschild conjecture (resolved by Hindman) was first posed by me (in the more general
form for an arbitrary finite number of colors) in my dissertation, A Generalization of Schur’s
Theorem, Yale ’68. Attached is a photocopy of pgs 9 and 10 of my dissertation – Theorem 20
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is the conjecture. Since Rothschild was one of two readers of my dissertation (Plummer the
other) it is strange that this misattribution has existed for so long.

Jon Henry Sanders

While working on The Mathematical Coloring Book[Soi], I verified J. H. Sanders’
proof of Theorem 17 in his dissertation (where it is called “Theorem 2”), but I failed
to notice the conjecture. I regret my oversight, which I am correcting now. Looking
at the 1968 dissertation [San] again, I see the conjecture listed as “Theorem 20” and
preceded by the words, “It is natural to ask whether either Lemma 1 or Theorem 2
generalize in the following way.”

The Sanders Conjecture 18 ([San], p. 9). Let the positive integers be divided into
t classes A1,A2, . . . ,At , (t a positive integer). Then there exists an infinite sequence
a1,a2, . . . of positive integers and a number l , 1 � l � t , such that

P
i2I ai 2 Al

for all (nonempty) finite sets I of positive integers.

In their important 1971 paper [GR] Ron Graham and Bruce Rothschild, hav-
ing vastly generalized a number of Ramsey-type theorems, formulated this Conjec-
ture 18 three years later than Jon H. Sanders (they did it for two classes), and thus
credit for the conjecture ought to belong to Jon Henry Sanders. Of course, when the
conjecture appeared in the important visible paper [GR], it won high praise from
Paul Erdős, and thus attracted wide attention, including that of Neil Hindman.

In the paper submitted in 1972 and published in 1974 [Hin], Hindman proved the
conjecture. As I have tried to do uniformly, I am giving credit for this result to both
the author of the conjecture and the author of the proof.

The Sanders–Hindman Theorem 18 (Hindman [Hin]). For any positive integer
n and any n-coloring of the set of positive integers N , there is an infinite subset
S � N such that the set

˚P
x2F x W ; ¤ F 	 S I jF j < @0

�
is monochromatic.

Let us now go back and establish the most appropriate credit for Theorem 17. It
is called the Folkman–Rado–Sanders’ theorem in [GRS1], [Gra2], and [ES]; and
Folkman’s theorem in [Gra1] and [GRS2]. Most other authors have copied the
attributions from one of these works. Which credit is most justified? In one pub-
lication only [Gra2], Ronald L. Graham gives the date of Jon Folkman’s personal
communication to Graham: 1965. In one publication only [Gra1], in 1981 Graham
publishes Folkman’s proof that uses Baudet–Schur–Van der Waerden’s theorem.
Thus, Folkman merits credit. In the standard text on Ramsey theory [GRS2], I find
an argument for credit to Folkman alone, disagreeing with the first edition [GRS1]
of the same book, “Although the result was proved independently by several mathe-
maticians, we choose to honor the memory of our friend Jon Folkman by associating
his name with the result.”

Jon H. Folkman left this world tragically in 1969. He was 31. He was full of great
promise. The sympathy and grief of his friends is understandable and noble. Yet, do
we, mathematicians, have the liberty to award credits? In this case, how can we deny
Jon Henry Sanders credit, when Sanders’ independent authorship is absolutely clear
and undisputed? (He could not have been privy to the above-mentioned personal
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communication). Sanders formulates and proves Theorem 17 in his 1968 Ph.D. dis-
sertation [San]. Moreover, Sanders proves it in a different way from Folkman: he
does not use Baudet–Schur–Van der Waerden’s theorem, but instead generalizes
Ramsey’s theorem to what he calls in his dissertation “Iterated Ramsey Theorem”
[San, pp. 3–4]. In addition, Sanders is the one who saw the train of thought the
farthest by conjecturing the beautiful generalization that Hindman proved.

Vladimir Ivanovich Arnautov’s discovery is striking. His paper is much closer
in style to that of Schur’s classic 1916 paper, where Schur’s theorem appears as
a useful tool, “a very simple lemma,” and is immediately used for obtaining a
number-theoretic result, related to Fermat’s Last Theorem. Arnautov formulates
and proves Theorem 17, but treats it as a useful tool and calls it simply “Lemma
2” (in the proof of Lemma 2, he uses Baudet–Schur–Van der Waerden’s theorem).
He then uses Lemma 2 and other Ramseyan tools (!) to prove that every (not nec-
essarily associative) countable ring allows a nondiscrete topology. This brilliant
paper was submitted to Doklady Akademii Nauk USSR on August 22, 1969, and
on September 2, 1969 was recommended for publication by the celebrated topolo-
gist Pavel Sergeevich Aleksandrov.10 We have no choice but to savor the pleasure of
associating Aknautov’s name with Theorem 17.

What about Rado, one may ask? As Graham–Rothschild–Spencer [GRS2]
observe, Theorem 17 “may be derived as a corollary of Rado’s theorem [Rad1]. . . by
elementary, albeit nontrivial, methods.”11 In my opinion, this is an insuffi-
cient reason to attach Rado’s name to Theorem 17. Arnautov, Folkman, and Sanders
envisioned Schur’s theorem generalization in a different direction from that of Rado,
and paved the way for Sanders’ conjecture proved by Hindman. In fact, Erdős came
to the same conclusion in 1973 [E73.21] when he put Rado’s name in parentheses
(Erdős did not know about Arnautov’s paper, or he would have likely added him
to the authors of Theorem 17): “Sanders and Folkman proved the following result
(which also follows from earlier results of Rado [Rad1]).”

9 Density and Arithmetic Progressions

We start with the key definition from the Erdős–Turán 1936 paper [ET]. For a pos-
itive integer N , denote by rl .N / the maximum number of positive integers not
exceedingN such that no l of them form an arithmetic progression. Paul Erdős and
Paul Turán proved a number of results about r3 .N / and conjectured that

r3 .N / D o.N /:

10 Doklady Akademii Nauk USSR published only papers by full and corresponding members of the
Academy. A nonmember’s paper had to be recommended for publication by a full member of the
Academy.
11 Theorem 17 also follows from Graham and Rothschild’s results published in 1971 [GR1].
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This conjecture was proven in 1953 by Klaus F. Roth [Rot]. The only conjecture
about the general function rl .N / in the Erdős–Turán paper was attributed to their
friend George Szekeres, and was later proven false. Sixteen years have passed before
Endre Szemerédi in 1969 proved [Sz1] that

r4 .N / D o .N /:
In a 1973 paper Paul Erdös [E73.21, pp. 118–119] remarked: “[this] very compli-
cated proof is a masterpiece of combinatorial reasoning.” A very surprising para-
graph followed [ibid.]: “Recently, Roth [1970] obtained a more analytical proof
of r4 .n/ D o .n/. r5 .n/ D o .n/ remains undecided. Very recently, Szemerédi
proved r5 .n/ D o .n/.” Clearly, Erdős added the last sentence at the last moment,
and should have removed the next to last sentence. The latter result has never been
published, probably because Endre Szemerédi was already busy trying to finish the
proof of the general case. On April 4, 2007, right after his talk at Princeton’s Dis-
crete Mathematics Seminar I asked Szemerédi whether he had that proof for 5-term
arithmetic progressions, and what came of it. Endre replied: “Hmm, it was so close
to finding the proof of the general case, maybe 2 months before, that I did not check
all the details for 5. It was more difficult than the general case.” Indeed, in 1974 he
submitted, and in 1975 published [Sz2] a proof of the general case; that is, for any
positive integer l ,

rl.N / D o .N /:
This work in one stroke earned Szemerédi a reputation of a wizard of combinatorics.
By then the terminology had changed, and I wish to present here the more contem-
porary formulation that is used in Szemerédi [Sz1]. We make use of the notion
of “proportional length,” known as density, in the sequence of positive integers
N = f1, 2, . . . , n, . . . g. The density is one way to measure how large a subset of
N is. Its role is analogous to the one played by length in the case of the line R of
reals.

Let A be a subset of N ; define A .n/ D A \ f1; 2; : : : ; ng. Then density d.A/ of
A is naturally defined as the following limit if it exists,

d.A/ D lim
n!1

jA .n/j
n

:

The upper density d .A/ of A is analogously defined as

d .A/ D lim
n!1 sup

jA .n/j
n

:

Now we are ready to look at a classically simple formulation of Szemerédi’s result.

The Szemerédi Theorem 19. Any subset of N of positive upper density contains
arbitrarily long arithmetic progressions.

In various problem papers, Erdős gives the date of Szemerédi’s accomplishment
and Erdős’s payment as 1972 (sometimes 1973, and once even 1974). The following
statement appears most precise as Erdős made it very shortly after the discovery at
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the September 3–15, 1973 International Colloquium in Rome [E76.35] and places
Szemerédi’s proof around September 1972: “About a year ago Szemerédi proved
rk .n/ D o .n/, his paper will appear in ‘Acta Arithmetica.’. . . ”

Erdős was delighted with Szemerédi’s result and awarded him $1,000 in late
1972–1973 [E85.33]:

In fact denote by rk(n) the smallest integer for which every sequence 1 � a1 < a2 <. . .<al � n,
l = rk(n) contains an arithmetic progression of k terms. We conjectured

.15/ lim rkn/=n D 0:

I offered $1,000 for (15) and late in 1972 Szemerédi found a brilliant but very difficult
proof of (15). I feel that never was a 1,000 dollars more deserved. In fact several colleagues
remarked that my offer violated the minimum wage act.

On April 4, 2007, Szemerédi confirmed my historical deductions: “I proved [the]
general case in fall 1972, and received Erdős’s prize in 1973.” I refer the interested
reader to the original paper for the proof which is brilliant and hard.12 Partial results
are proven in [GRS2] (it is remarkable that even this standard text in the field did
not include Szemerédi’s complete proof!).

While Szemerédi’s theorem is a very strong generalization of Baudet–Schur–
Van der Waerden’s theorem, Paul Erdős and Ronald L. Graham observe in their
1980 problem book [EG, p. 19] that the analogue of Szemerédi’s theorem does not
hold for Generalized Schur’s Theorem 6. Can you think of a counterexample before
reading the one below?

Observation 21 (Erdős–Graham, 1980). Szemerédi-like generalization does not
hold for Generalized Schur’s theorem.

Proof. The set of odd integers of density 1=2 cannot contain even a 2-term arithmetic
progression and its difference! �

Now the following question naturally arises: who conjectured and when what
Szemerédi proved?

No one would expect a mystery here: just look at Szemerédi’s 1975 paper,
in which he presents the history of advances in good detail. Szemerédi starts
with giving credit for conjecturing his theorem to Paul Edrős and Paul Turán in
their 1936 paper [ET]. And so I look at this short important paper, without finding
the conjecture, except for the case of 3-term arithmetic progressions. This incor-
rect credit is then repeated in the standard Ramsey theory texts [GRS1] and [GRS2]
in 1980 and 1990, respectively, and from there on everywhere else, until in 2002
Ronald L. Graham and Jaroslav Nešetil noticed the discrepancy, and explained it
in the following way [GN, p. 356]. “Although they [Erdős and Turán] do not ask
explicitly whether rl .N / D o .N / (as Erdős did many times since), this is clearly
on their mind as they list consequences of a good upper bound for rl .N /: long arith-
metic progressions formed by primes and a better bound for the Van der Waerden

12 As I learned in March 2009, the original exposition was even harder, nearly impenetrable. Ron
Graham and Endre Szemerédi spent long hours looking over pages of the proof scattered around
in Ron’s house, while simplifying the proof.
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numbers.” Clearly, my friends Ron and Jarik and I agree that the conjecture does
not appear in the 1936 [ET]. Their argument that the young Erdős and Turán had
the conjecture “clearly on their mind” could be viewed more as an eloquent homage
to the two great mathematicians rather than an historical truth. We therefore have to
research further.

In his 1957 first-ever open-problem paper [E57.13], Paul Erdős indicates that
before him and Turán, Issai Schur (!) called on studying longest arithmetic-
progression-free opening segments of positive integers. Erdős writes: “The problem
itself seems to be much older (it seems likely that Schur gave it to Hildegard Ille, in
the 1920s).”

Erdős returns to Issai Schur’s contribution in his 1961 second open-problem
paper [E61.22], which in 1963 also appears in Russian [E61.22]13: “The problem
may be older but I can not definitely trace it. Schur gave it to Hildegard Ille around
1930.” Paul told me that he “met Issai Schur once in mid 1930s,” more precisely in
1936 in Berlin (amazingly, I found the eyewitness of this Erdős’s visit: Hilde Brauer,
the wife of Schur’s PhD student and friend Alfred Brauer). Schur and Erdős shared a
mutual admiration. Undoubtedly, they discussed prime numbers, but likely not arith-
metic progressions. Erdős learned about Schur’s interest in arithmetic progressions
and early Ramsey-like conjectures and results from Hildegard Ille (1899–1942).
Now this requires a bit of explanation, because they probably had never met!

Erich Rothe (1895–1988), Dr. phil. Universität Berlin 1926 under the eminent
Erhard Schmidt and Richard Mises, married a fellow student Hildegard Ille, Dr. phil.
Universität Berlin 1924 under Issai Schur. They taught at Universität Breslau,
Germany (later and earlier Wroctaw, Poland) until, as Jews, they were forced to
flee Nazi Germany in 1937, and came to the United States. Hildegard passed away
at a young age. The accomplished mathematician Erich Rothe held a professorship
at the University of Michigan from 1941 until his retirement in 1964. His eulogy
(Notices of Amer. Math. Soc., 1988, 544) quotes the Chair of the Department of
Mathematics of the University of Michigan D. J. Lewis saying that “Rothe was a
scholar of the old school. He was very broadly educated. . . . He was a wise and
judicious man of much wit. His companionship was very much in demand.”

Erich Rothe was Paul Erdős’s source of reliable information on problems and
conjectures in number theory that Issai Schur shared with Rothe’s wife Hildegard
(Ille) Rothe. From Rothe Erdős learned about Schur’s authorship of the arithmetic
progressions conjecture, proven by Van der Waerden. From Rothe Erdős learned
that Issai Schur yet again contributed to number theory and Ramsey theory when
he asked his graduate student Hildegard to investigate arithmetic progression-free
arrays of positive integers. To my surprise, no one acknowledged the credit Erdős
gave to Schur in his first open-problem papers [E57.13], [E61.22], and [E63.21].

I believe, however, that Erdős learned about Schur being first to investigate this
subject after Erdős and Turán independently rediscovered it: their paper [ET] was
published in 1936, while Erich and Hildegard Rothe came to the United States in
1937; moreover, Erdős–Rothe conversations took place after Hildegard’s passing

13 This Russian publication does not appear in any of Paul Erdős’s bibliographies.
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in 1942. Paul was certainly correct when in both his 1957 and again 1961 open-
problem papers he wrote “The first publication on the function rk .n/ is due to Turán
and myself.” This was an important paper, and Paul knew that. Yet, it contained the
“density” conjecture only for 3-term arithmetic progressions. Graham and Nešetřil
are correct when they write [GN] that “Erdős did [pose the general case conjecture]
many times,” but the real question is: when did he pose the conjecture for the first
time?

I am reading again Erdős’s first 1957 open-problem paper. Paul writes: “In
[ET] we stated our conjecture that lim r3 .n/=n D 0. . . Roth [Rot] proved that
r3 .n/ D o .n/. . . The true order of magnitude of r3 .n/ and, more generally, of
rk .n/, remains unknown.” Paul discusses the general function rk .n/, but the con-
jecture of the general case is not here. If the conjecture were to exist consciously in
his mind, he would have included it in this open-problem article, I am almost certain
of it. Paul had not, and this, in my opinion, is a reliable indicator that the general
conjecture did not exist yet in 1957.

In the second 1961 open-problem paper, Paul publishes the general conjecture
explicitly for the first time: “For k > 3 the plausible conjecture rk .n/ D o .n/

is still open.” This “still open” indicates that the problem was created before Erdős
submitted this paper, which was “Received October 5, 1960.” This suggests the birth
of the general conjecture in 1957–1959.

During his December 23, 1991 “favorite problems” lecture at the University of
Colorado at Colorado Springs, Paul indicated when he first offered the high prize
of $1,000 for this conjecture: “Twenty-five years ago I offered $1,000 for it.” This
places the $1,000 offer in 1966 or so. In early January of 1992, in Colorado Springs
Paul confirmed that this was the highest prize he has ever paid: “The maximum
amount of money I paid [was] $1,000 to Szemerédi in 1972. This was a conjecture
of Turán and myself. If you have a sequence of positive density, then it contains
arbitrary long arithmetic progression.” Paul also told me then, “Turán and I posed
this problem in the early 1930s.” I hope, however, that my argument, presented here,
indicates that it took time for the plot to thicken, that it was a long pregnancy, and
from the early seeds in the 1930s the great conjecture had grown inside Paul Erdős’
head and was born in 1957–1959.

Even after Szemerédi, Erdős was not quite happy with the state of knowledge in
this field. In 1979 he offered an extravagant prize for the discovery of asymptotic
behavior (published in 1981 [E81.16]): “It would be desirable to improve [lower
and upper bounds] and if possible to obtain an asymptotic formula for r3 .n/ and
more generally for rk .n/. This problem is probably enormously difficult and I offer
$10,000 for such an asymptotic formula.”

Erdős’s $10,000 Open Problem 22. Find an asymptotic formula for r3 .n/ and
more generally for rk .n/.

This train of thought, apparently started by Issai Schur, was his last contribution
to Ramseyan mathematics. From there on Paul Erdős led Ramsey theory until his
passing in 1996.
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10 The Tibor Gallai Theorem

Gallai’s theorem is one of my favorite results in all of mathematics. Surprisingly, it
is not widely known even among mathematicians. Its creator was Tibor Gallai, born
Tibor Grünwald, a member of the Hungarian Academy of Sciences, who passed
away on January 2, 1992 at the age of 79. His lifelong close friend and co-author
Paul Erdős was visiting me in Colorado Springs14 when Prof. Vera T. Sós called
from Budapest to give Paul the sad news of Gallai’s passing. I asked Paul to write the
eulogy for Gallai for Geombinatorics; it appeared in the very next issue [E92.14].

Gallai discovered a number of fabulous results, some of which were named after
other mathematicians: he preferred not to publish even his greatest results. Why? On
July 20, 1993 in Kesztely, Hungary during a dinner my (then) wife Maya, our baby
Isabelle, and I shared with George Szekeres and Esther Klein, the legendary couple
from the legendary circle of young Jewish mathematicians in early 1930s Budapest,
I was able to ask them about the friend of their youth.

“Gallai was so terribly modest,” explained George Szekeres. “He did not want to
publish because it would show the world that he was clever, and he would be restless
because of it.”

“But he was very clever indeed,” added Esther Klein-Szekeres. Esther continued:
“Once I came to him and found him in bed. He said that he could not decide which
foot to put down first.”

“Gallai was Paul Erdős’s best, closest friend,” continued George. “I was very
close with Turán. It was later that Paul Erdős and I became friends.”

Paul Erdős told me that Tibor Gallai discovered the theorem of our prime interest
in the late 1930s. He did not publish it either. It first appeared in the paper [Rad2]
by Richard Rado (with a credit to “Dr. G. Grünwald”, which was Gallai’s last name
then; the initial “G” should have been “T” and must be a typo). Rado submitted this
paper on September 16, 1939; it is listed in bibliographies as a 1943 publication, but
in fact came out only in 1945; World War II affected all facets of life, and made no
exception for the great Gallai result. I hope you will enjoy it as much as I have, and
try your wit and creativity in proving this beautiful and extremely general, classic
result.

The Gallai Theorem 23 [Rad2]. Let m, n, k be arbitrary positive integers. If the
lattice points Zn (i.e., the points with integer coordinates) of the Euclidean space
En are colored in k colors, and A is an m-element subset of Zn, then there is a
monochromatic subset A0 of Zn that is homothetic (i.e., similar and parallel) to A.

In fact, with not too much effort the Gallai theorem can be strengthened as
follows.

The Gallai Theorem, A Strong Version 24 [GRS2]. Letm, n, k be arbitrary pos-
itive integers. If the Euclidean spaceEn is colored in k colors andA is am-element
subset ofEn, then there is a monochromatic subsetA0 ofEn that is homothetic toA.

14 We were working on our joint project, a book of Paul’s open problems: Problems of pgom Erdős,
which I hope to finish by 2009–2010.



Ramsey Theory Before Ramsey, Prehistory and Early History 23

11 De Bruijn–Erdős’s 1951 Compactness Theorem

They were both young. On August 4, 1947 the 34-year-old Paul Erdős, in a letter
to the 29-year-old Nicolaas Govert de Bruijn of Delft, The Netherlands, offered the
following conjecture [E47/8/4]. “Let G be an infinite graph. Any finite subset of
it is the sum of k independent sets (two vertices are independent if they are not
connected). Then G is the sum of k independent sets.” Paul added in parentheses “I
can only prove it if k = 2”. In his five-page August 18, 1947 reply [Bru1], De Bruijn
reformulated the Erdős conjecture in a way that is very familiar to us today:

Theorem. Let G be an infinite graph, any finite subgraph of which can be
k-coloured (that means that the nodes are coloured with k different colours, such
that two connected nodes have different colours). Then G can be k-coloured.

In his letter, Nicolaas then proceeded to prove the theorem. Paul later found a
different proof, and included the latter in the joint paper, which appeared 4 years
later, thus giving us the powerful tool and the celebrated result:

De Bruijn-Erdős’s Compactness Theorem 25 ([BE], 1951). An infinite graph G
is k-colorable if and only if every finite subgraph of Gis k-colorable.15

More of the de Bruijn–Erdős story can be found in [Soi]. This theorem has
played a very important role in a number of Ramseyan problems. For exam-
ple, it converted the problem of finding the chromatic number of the plane into
a problem about finite sets. Of course, it very essentially used the axiom of
choice. With no choice things proved to be quite different, as was shown in [SS1]
and [SS2].

12 Khinchin’s Small Book of Big Impact

As we have seen earlier, B. L. van der Waerden proved his pioneering result in 1926
while at Hamburg University, but its publication [Wae] in a little-known Dutch jour-
nal hardly helped its popularity, and the popularity of Ramseyan ideas. Only Issai
Schur and his two students Alfred Brauer and Richard Rado learned about and im-
proved upon Van der Waerden’s result almost immediately; and somewhat later,
in 1936, Paul Erdős and Paul Turán commenced density considerations related to
Van der Waerden’s result [ET]. Schur’s 1916 result and its generalizations were
even less known: even in 1995 Van der Waerden wrote to me that he did not
know it!

In 1928 the Russian visitor to Göttingen, the analyst Aleksandr Yakovlevich
Khinchin (1894–1959) heard about Van der Waerden’s proof and was impressed by
it. OK, one Russian liked one Ramseyan result; you may be wondering, what is the
big deal? Khinchin remembered his excitement and after World War II, in 1947 he
included Van der Waerden’s proof in his little book Three Pearls of Number Theory

15 This theorem requires the axiom of choice or the equivalent.
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as one of the three pearls [Khi1]. The booklet was an instant success, and a second
edition came out in Russian in 1948 [Khi2]. It included a new, “much simpler and
transparent,” in the opinion of Khinchin, exposition of Van der Waerden’s proof,
proposed by the Russian mathematician M. A. Lukomsakja from Minsk. In 1951
this second edition of the book was translated into German [Khi3] and in 1952 into
English [Khi4]. Each of these translations proved instrumental in bringing excite-
ment about Ramseyan ideas around the world. It even inspired the emergence of two
more independent proofs of Gallai’s theorem. The 1951 German translation [Khi3]
inspired Ernst Witt to discover his proof in 1951 ([Wit], submitted on September 21,
1951; published in 1952), while the 1952 English translation [Khi4] stimulated
Adriano Garsia in finding his proof [Gar] in 1958. Khinchin writes [Khi3]: “It is
not out of the question that Van der Waerden’s theorem allows an even simpler
proof, and all efforts in this direction can only be applauded.”

Witt [Wit] quotes Khinchin’s call to arms in his paper, and happily reports, “This
was the occasion to strive for a new order of proof that then led directly to a more
general grasp of the problem.” The great success of this booklet not only made the
Baudet–Schur–Van der Waerden theorem famous, it heralded to the wide mathemat-
ical world the arrival of the new Ramseyan ideas.

On May 27, 2009, during the DIMACS Conference, where I presented this paper,
9:15–10:45, I got additional confirmation of the influence of Khinchin’s booklet.
Ron Graham and Joel Spencer shared with me that this booklet introduced each of
them for the first time to the name of Van der Waerden, his theorem, and Ramseyan
ideas.

13 Long Live the Young Theory!

B. L. van der Waerden’s words [Wae18] about his 1926 proof are quite applicable
to the emergence of Ramsey theory: “It is like picking apples from a tree. If one has
got an apple and another is hanging a little higher, it may happen that one knows:
with a little more effort one can get that one too.”

As Pablo Picasso put it, “It takes a long time to become young.” And so the ideas
we have surveyed here have become the young Ramsey theory. The growth in the
1970s manifested itself in a level of maturity that was summarized in the Graham–
Rothschild–Spencer monograph [GRS1]. Fine mathematicians, some of whom have
written surveys for this volume, joined Paul Erdős in creating the rich and dynamic
Ramsey theory that we know today.

My gratitude goes to my son Mark S. Soifer for capturing the grave of Frank
Plumpton Ramsey and his parents in Cambridge, England especially for this survey,
and to Peter D. Johnson Jr., Stanisaw Radziszowski, and Pawel Radziszowski for
valuable suggestions.
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[Sz1] Szemerédi, E., On sets of integers containing no four elements in arithmetic progres-

sion, Acta Math. Acad. Sci. Hungar. 20 (1969), 89–104.
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Eighty Years of Ramsey R.3, k/ . . . and Counting!

Joel Spencer

How frequently does an intriguing problem come up over lunchtime, only to have
it solved the next morning? How many mathematical problems are seemingly
intractable? Decades go by without a hint of progress. What a delight when a prob-
lem is worked on over many many years with progress occurring incrementally until
it finally succumbs. Fermat’s Last Theorem is perhaps the best example. Hilbert’s
Tenth Problem is another marvellous story. In discrete mathematics, my vote is
for the asymptotics of the Ramsey number R.3; k/. The story begins in 1931, is
resolved in 1995, with a coda in 2008, and with the final story perhaps not yet told.

In this chapter we consider only the asymptotics, the behavior of R.3; k/ for k
large. There has been a great deal of work on the valuesR.3; k/ for k small, with the
exact values known for 3 � k � 9. The frequently updated survey of Radziszowski
[9], together with his paper appearing in this volume, gives these results and much
much more.

1 Basics

But first, the problem. We deal throughout with graphs that are undirected and have
neither loops nor multiple edges. We write G D .V;E/ where V;E are the sets of
vertices and edges of G, respectively.

Definition 1. A set I � V is independent if for no v;w 2 I is fv;wg 2 E. The
independence number of a graph, denoted ˛.G/, is the maximal size jI j of an inde-
pendent set in G.

The study of R.3; k/ splits into upper bounds and lower bounds so we define it
in a slightly unusual way.
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Definition 2. R.3; k/ � n if for every triangle-free graph G on n vertices there
exists an independent set I , jI j � k.

Definition 3. R.3; k/ > n if there exists a triangle-free graphG on n vertices which
does not have an independent set I , jI j � k.

2 George, Esther, Paul

The story begins in late 1931. Three youngsters, full of mathematical promise, walk
the beautiful hills around Budapest. George Szekeres had completed his studies in
chemical engineering. His interest in mathematics was already very strong, but it
would take 15 years of global uproar before he would take on that subject as his
profession in Australia. Esther Klein was a talented mathematics student who had
just returned from Gottingen with an intriguing problem. The youngest was only
18-years old, not yet die Zauberer von Budapest, but he was already well known in
Hungarian circles for his mathematical abilities. This was Paul Erdős.

Some 50 years later, George Szekeres wrote about those times:

The origins of the paper go back to the early thirties. We had a very close circle of young
mathematicians, foremost among them Erdős, Turán and Gallai; friendships were forged
which became the most lasting that I have ever known and which outlived the upheavals of
the thirties, a vicious world war and our scattering to the four corners of the world. I [. . . ]
often joined the mathematicians at weekend excursions in the charming hill country around
Budapest and (in the summer) at open air meetings on the benches of the city park.

Klein proposed a geometry problem that they all set out to solve. In short order,
Szekeres gave a solution. But, in fact, he had rediscovered Ramsey’s theorem. While
Ramsey’s paper had been published in 1927, Ramsey himself was interested in a
problem in logic and none of the three had been aware of his work. Erdős presented
an independent proof and their results appeared in a joint paper [7]. Erdős always
called this paper the “Happy Ending Paper” as George Szekeres and Esther Klein
were soon married. After spending the war years as refugees in Shanghai they emi-
grated to Australia where they were leaders in the development of Australian math-
ematics, particularly in introducing the Hungarian style of mathematical contests to
generations of Australian students.

The Szekeres argument gave the existence of R.3; k/ (and much much more),
but just how big is it? We give the basic upper bound.

Theorem 2.1. R.3; k/ � k2.

Proof. Here, and throughout, we aim for a computer science perspective on the
proofs. These were certainly not the ways the original proofs were framed!

Let G have k2 vertices. Consider the program:

IF some v 2 V has degree� k
Neighbors of v form independent set I
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ELSE
I  ;
WHILE G is nonempty

Select any v.
Add v to I
Delete v and neighbors from G

End WHILE

The neighbors of any vertex v of a triangle-free graph form an independent set.
Thus in the IF case we find I of the desired size. ELSE, for each v added to I at
most k vertices (it and its neighbors) are deleted. Having begun with k2 vertices,
the final I has size at least k. ut

3 Erdős Magic

In April 1946 Erdős [4] made a conceptual breakthrough whose effects we are still
feeling.

Theorem 3.1. If  
n

k

!
21�.k

2/ < 1

there exists a graphG on n vertices with neither clique nor independent set of size k.

Proof. Consider the random graphG�G.n; 1
2
/. Technically, we have a probability

space whose elements are the labelled graphs on n vertices. Probabilities are deter-
mined by saying PrŒfi; j g 2 E� D 1

2
and that these events are independent. For

each set S of k vertices we have the “bad” event BS that S is either complete or

independent. Then PrŒBS � D 21�.k2/. The probability of a disjunction is at most the
sum of the probabilities so that (_ over all S � V , jS j D k)

PrŒ
_
BS � �

 
n

k

!
21�.k

2/ < 1 ut

Let GOOD denote the completement event ^BS . Then GOOD has positive prob-
ability. That is, there is positive probability that the random graph has the desired
property. The probabilistic method, or Erdős Magic, is now born. As the event is
nonempty there must be a point in the probability space for which it holds. That
is, there absolutely positively must exist a graph G with the desired properties. Our
book [1] is one of many to cover the many applications of this methodology.

Let G.n; p/, as usual, denote the random graph with n vertices with p the prob-
ability of adjacency. In studying R.3; k/ one is led to the study of sparse random
graphs. The probability that G.n; p/ has an independent set of size k is at most

�
n
k

�
,

the number of such sets, times .1 � p/.k
2/, the probability of no internal edges. We

bound the first term from above by nk (it being rather remarkable how effective such
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gross bounds can be) and the second by e�pk2=2. When k D 2:01..lnn/=p/ the
second term dominates and so G.n; p/ almost surely has no such independent set.

Following Definition 2, attempts to find a lower bound on R.3; k/ start with
a random graph G.n; p/. Immediately there is a problem. To avoid triangles one
needs p D O.n�1/, but in this range there are independent sets of size �.n/ and
this would yield only a linear lower bound on R.3; k/. All successful approaches
use a larger p, one for which G.n; p/ will have triangles, and then somehow fix the
triangles. We begin with a rather weak result.

Theorem 3.2. R.3; k/ D �..k= ln k/3=2/. That is, there exists a graph G on n
vertices with no triangle and no independent set of size cn2=3lnn.

Here we begin with 2n vertices and consider a random graph with edge proba-
bility p D n�2=3. There will be an expected number �n3p3=6 D n=6 triangles.
Setting k D 2:01..lnn/=p/, the expected number of independent sets of size k is
less than one. By a problem, let us mean either a triangle or an independent set of
size k. Thus the expected number of problems is around n=6. From Erdős Magic,
there is a graphG for which the number of problems is less than around n=6, and so
certainly there is one where the number of problems is less than n. Take that graph
G and eliminate one vertex from each triangle and one vertex from each indepen-
dent set of size k. The remaining graph, call it G�, has no problems, and it has at
least n vertices.

The bulk of lower-bound arguments for R.3; k/ examine G.n; p/ with p D
cn�1=2 with c an appropriate small constant. Here the expected number of triangles
is roughly c3n3=2=6. The expected number of edges is roughly c2n3=2=2which will
be considerably more. One wants to make the graph triangle-free by somehow elim-
inating the relatively small number of edges in triangles, but doing this in a way that
keeps the size of the independent set aroundK..lnn/=p/. It is not so easy!

4 An Erdős Gem

Erdős was one of, possibly the, most prolific mathematicians in history. With the
passage of time we can look at certain of his papers and recognize their depth and
importance. In that light, the following 1961 Erdős gem [3] is a personal favorite of
this author. It would be an outstanding paper in any time period, but that it was done
when the probabilistic method was still in its infancy is truly a testament to Erdős’s
genius.

Theorem 4.1. R.3; k/ D �..k= ln k/2/. That is, there exists a graph G on n ver-
tices with no triangle and no independent set of size cn1=2 ln n.

Erdős considersG.n; p/with p D �n�1=2, � a small constant. Set xD cn1=2lnn,
c a large constant. Call an x-set I a failure if every edge fu; vg 2 G with u; v 2 I
can be extended to a triangle fu; v; zg where the third vertex z lies outside of I . He
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shows that with high probability there are no failures. This takes quite some doing,
but we can give a heuristic explanation. An edge in I has, on average, np2 � �2

extensions to a triangle outside of I thus probability less than one half (taking �
small) of being so extendable. Each pair u; v 2 I would then have probability at
least p=2 of being an edge and not being so extendable. Now suppose these events
were independent over the pairs. Then the chance that I is a failure, that is, that no
pair had this property, would be around 1� .p=2/ to the power

�
x
2

�
. This is basically

exp.�px2=4/ which is smaller than n�x , smaller than one over the total number of
x-sets. Then the expected number of failures I would be much less than one and
almost surely there would be none of them. The actual proof is more complicated as
these events are very definitely not independent.

Let’s assume the claim. Now we can put on our computer science hats (definitely
not the original Erdős style!) and complete the proof. Take a G with no failures. We
apply a greedy algorithm to find a triangle-free subgraph of G. Order the edges of
G arbitrarily and consider them in that order. Accept an edge if it does not create
a triangle along with the edges previously accepted. Let H denote the final graph
created. We tautologically do not have a triangle in H . Now consider any x-set I .
As I is not a failure for G it has an edge fu; vg which is not extendable to a triangle
outside of I . When we reached this edge in determining H it was either accepted
or rejected. If it was accepted then I was not independent in H . If it was rejected it
was only because it would have created a triangle in H . But that triangle fu; v;wg
must lie entirely inside I since the edge is not extendable to a triangle outside of I .
That would mean that edges fu;wg and fv;wg would already be in H . So in this
case too I would not be independent. That is, H does not contain any independent
x-sets I .

5 Upper Bounds

We return to the upper bound and improvements on Theorem 2.1. In 1968, Graver
and Yackel improved this result to

R.3; k/ D O
�
k2 ln ln k

ln k

�
(1)

That result held for 12 years, until it was supplanted in 1980 by Ajtai, Komlós and
Szemerédi.

Theorem 5.1.

R.3; k/ D O
�
k2

ln k

�
(2)

At the time, the improvement was not considered so significant, but events proved
otherwise. Ajtai, Komlós and Szemerédi actually proved a general theorem about
independent sets in triangle-free graphs.
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Theorem 5.2. Let G be a triangle-free graph on n vertices in which the average
degree is at most k. Then there exists an independent set I with

jI j � c n
k

ln k (3)

Here c is an absolute positive constant. Turán’s theorem gives that a graph with
n vertices and average degree at most k (and hence at most nk=2 edges) has in-
dependence number at least n=.k C 1/, the extreme case occurring when G is the
union of disjoint cliques of size k C 1. In this context Theorem 5.2 can be under-
stood as saying that ˛.G/ is increased when one requires that G is triangle-free.
The Ramsey bound Theorem 5.1 follows immediately from Theorem 5.2. For let G
be any triangle free graph on n D c�1.k2=lnk/ vertices. If any vertex has degree
at least k its neighbors form an independent set of size at least k. Otherwise all ver-
tices have degree less than k, hence the average degree is less than k, hence there is
an independent set of size at least c.n=k/ ln k, which is k. In either case there is an
independent set of size at least k.

We give a rough idea of the argument for Theorem 3. The key is a lemma which
we do not prove. Let G be a triangle-free graph with average degree u. The lemma
states, roughly, that there is a vertex v of degree about u such that removing it and
its neighbors yields a graphG� whose edge density is not more than that ofG. Now
begin with a triangle-freeG on n vertices with average degree k or less and consider
a process where at each step we select a vertex v as above, add it to the independent
set, and remove v and all of its neighbors. We parametrize time t saying that at
time t the number of vertices v so selected is .n=k/t . Let S.t/n be the number of
vertices remaining in the graph at that time. Under the assumption that density has
not increased, at time t the average degree would then be at most S.t/k. When v
is now selected 1C S.t/k � S.t/k vertices are removed. Parametrized time t has
increased by k=n. This gives a difference equation

S

�
t C k

n

�
� S.t/ � �S.t/k

n
(4)

which turns into a differential equation

S 0.t/ D �S.t/ (5)

with the simple solution

S.t/ D ke�t (6)

The procedure continues until t � ln k, giving an independent set of size
� .n=k/ ln k.
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6 The Lovász Local Lemma

One of the great advances in the probabilistic method was the Lovász local lemma,
which first appeared in [5]. We give a formulation here that is not the most general,
but will suffice for our application and indeed for almost all known applications. We
are given a set � and for each e 2 � a random variable Xe. We assume that the Xe

are mutually independent. We let � index a set of events. For each ˛ 2 � we have a
set A˛ � � and a “bad” event B˛ . The event B˛ can depend only on the values Xe

with e 2 A˛.
In our example, the Xe describe the random graph G.n; p/. We let � be the set

of potential edges e (that is, two element sets of vertices) on a vertex set f1; : : : ; ng.
For each e we let Xe have values zero and one with PrŒXeD 1�Dp and the Xe

mutually independent. Then the edge set of G.n; p/ is those e for which XeD 1.
Now the bad events will be of two types. � is indexed by the three element subsets
S of vertices and the k element subsets T of vertices. For each triple S Dfi; j; hg
of vertices we have the event BS that S is a triangle. That is, Xij DXjhDXihD 1.
For each k-set T of vertices we have the eventBT that T is an independent set. That
is, Xij D 0 for all i; j 2 T .

We write ˛ � ˇ if ˛ ¤ ˇ (a technicality) and, critically, A˛ \ Aˇ ¤ ;. Note
that when a family of ˛ have no ˛ � ˛0 the corresponding events A˛ are mutually
independent. In our example, two events BS ; BS 0 are S � S 0 if S ¤ S 0 and S; S 0
overlap in at least two vertices, and hence in at least one edge e.

Theorem 6.1. Let B˛ , ˛ 2 � be events as described above. Suppose there exist
real numbers x˛ , ˛ 2 � , with 0 � x˛ < 1 and

Pr.B˛/ � x˛

Y
ˇ�˛

.1 � xˇ / (7)

Then
Pr.^˛2�B˛/ �

Y
˛2�

.1 � x˛/ (8)

In particular, with positive probability no event B˛ holds.

Our object now is to show R.3; k/ > n for n as large as possible. We look at
G.n; p/. If the conditions of Theorem 6.1 hold then with positive (albeit small!)
probability G.n; p/ will have neither triangle nor independent set of size k. Erdős
Magic then implies that there exists a specific G on n vertices with this property, so
that R.3; k/ > n. Suppose that for each 3-set S we select the same value for xS ;
call it y. Suppose that for each k-set T we select the same value for xT ; call it z.
Let’s put an upper bound, for ˛ of each type, of the number of ˇ of each type with
˛ � ˇ. For each 3-set S there are 3.n � 3/ � 3n other S 0 with S � S 0. For each
k-set T there are

�
k
2

�
.n � k/C �k

3

� � k2n=2 k-sets T with S � T . For each k-set
T there are at most

�
n
k

�
(that is, all) k-sets T 0 with T � T 0. For each 3-set S there

are at most
�

n
k

�
(that is, all) k-sets T with S � T .
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In application, Theorem 6.1 becomes:

Theorem 6.2. If there exist p 2 Œ0; 1� and y; z 2 Œ0; 1/ with

p3 � y.1 � y/3n.1 � z/.
n
k/ (9)

and
.1 � p/.k

2/ � z.1 � y/k2n=2.1 � z/.
n
k/ (10)

then R.3; k/ > n.

Theorem 6.2 leads to a problem in what we like to call asymptotic calculus.
What is the largest n, as an asymptotic function of k such that there exist p 2 Œ0; 1�,
y; z 2 Œ0; 1/ satisfying 9 and 10. This is not an easy problem but it is an elementary
problem.

Here this author can add a personal note. Some three decades ago I was able to
show that the largest such n was of the order ‚.k2= ln2 k/. This gave an alternate
proof to Theorem 4.1, the gem of Erdős. One needed merely the analytic skills
of a reasonable graduate student; one did not need the brilliance of Erdős, nor of
Lovász, to find the bound. Sometimes in mathematics one’s deepest work, even
when successful, receives little attention. In this case the opposite was true and my
applications [10] of Lovász local lemma to improve Ramsey bounds (also onR.k; k/
and on R.l; k/ for l � 3 fixed and k !1) have been frequently quoted.

7 Random Greedy Triangle-Free

In 1995 [6] Paul Erdős, along with coauthors Peter Winkler and Stephen Suen, re-
turned to the asymptotics of R.3; k/, a problem he had first considered some 63 or
64 years before. Erdős had a great faith, albeit unspoken, in his nose for interesting
beautiful mathematics. In 1946 he “invented” the probabilistic method. For the next
quarter century he published many papers in that area. While others appreciated
the beauty of the results, he had few followers during that time. But he continued,
convinced of the intrinsic interest in that area, and his convictions were borne out.
Today (thanks, in part, to the development of probabilistic algorithms in computer
science), the use of the probabilistic techniques he developed is widespread and
is, in this author’s opinion, one of his enduring legacies. He had an equal faith in
Ramsey theory, to which he returned again and again, always coming up with new
questions, new conjectures, new theorems, and new methodologies. It would be a
perfect end to this narrative to say that in 1995 Erdős resolved the asymptotics of
R.3; k/. Alas, that was not the case.

But Erdős did open the door to the final assault.
Erdős, with Winkler and Suen, examined the random greedy triangle-free al-

gorithm. The algorithm itself is trivial. We begin with the empty graph G on
vertex set f1; : : : ; ng. Order the

�
n
2

�
potential edges randomly. Now consider these

potential edges sequentially. When considering edge e, add e toG (we say accept e)
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if doing so will not create a triangle in G. Otherwise we reject e and G stays the
same. Continue until all of the potential edges are considered. (Equivalently, we may
begin with the empty graph and at each stage add an edge selected uniformly from
those that would not create a triangle.) This yields a graph Gfinal which tautologi-
cally has no triangle. Erdős and his coauthors looked at its independent sets. They
were able to give a partial analysis until the time when Kn3=2 potential edges had
been considered, K a particular absolute constant. With that analysis, they could
show that there was no independent set of size c1

p
n lnn. By Erdős Magic there

therefore existed such a triangle-free graph. Setting k D c1

p
n ln n this yielded

R.3; k/>nD c2k
2 ln�2 k, giving yet another new proof of Erdős 1961 gem. In-

deed, they found a better constant c2 than previously known.
This author was able to push their methods and analyze the random greedy

triangle-free algorithm until Kn3=2 edges had been examined, where K could be
an arbitrarily large constant. With that analysis, I could show that there was no in-
dependent set of size c1

p
n ln n where c1 could be made arbitrarily small. By Erdős

Magic there therefore existed such a triangle-free graph. Setting k D c1

p
n lnn this

yielded
R.3; k/� k2 ln�2 k (11)

This argument was never published. For in a matter of months there was a stunning
breakthrough.

8 R(3, k) Resolved!

When the asymptotics ofR.3; k/were finally resolved there was (so the joke goes) a
great surprise. The mathematician finding the solution was not a Hungarian! Rather
it was the Korean Jeong-Han Kim [8]. Kim had recently received his Ph.D. from
Jeff Kahn at Rutgers and was one of the stars of the new generation, using more
advanced and sophisticated probabilistic methods.

Theorem 8.1.

R.3; k/ D ‚
�
k2

ln2 k

�
(12)

Kim’s proof was an extension in spirit of the methods of Erdős, Winkler and
Suen. Rather than the pure random greedy triangle-free algorithm he used a nibble
method. At each stage a small but carefully chosen number of edges were added to
the graph. Sophisticated use of martingales played a key role. There were underlying
differential equations with careful error analysis. And there was a lot of just plain
cleverness. It was a masterwork, resolving a 64-year-old problem. Kim was awarded
the Fulkerson Prize for this achievement.

Let me add a personal note, what was for this author a most memorable mo-
ment. In January to April 1998 I was in Australia, working with Nick Wormald at
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University of Melbourne. On March 6 I gave an invited talk at the University of
Sydney. My title was “60 years of Ramsey R.3; k/,” covering much of the mate-
rial in this paper. In the front row were George Szekeres and Esther Klein Szekeres.
Though in their late 80s they were enjoying an active retirement. They had enjoyed a
life full of mathematics and good cheer. They lived several more years, both passing
away on the same day, August 28, 2005.

9 Random Greedy Triangle-Free Redux

This author thought at that time that the story of R.3; k/ was completed. (The value
of a constant c so that R.3; k/� ck2 ln�2 k remains open to this day, but this prob-
lem seems beyond our reach.) But a coda, or perhaps a new beginning would be a
more appropriate term, was added in April 2008. This author received an email from
Tom Bohman [2]. He had been able to analyze the random greedy triangle-free al-
gorithm. (By coincidence, I was at ETH (Zurich) and just the day before had been
speaking about the algorithm with Angelica Steger and how an analysis had proven
so elusive.) He was able to show that algorithm gave a final G with ‚.n3=2

p
lnn/

edges and that the largest independent set would have size‚.
p
n=
p

lnn/. This gave
another and, at least to this author, more natural proof of Kim’s result.

We can give a natural heuristic for these results. Suppose that after un3=2 poten-
tial edges have been considered xn3=2 have been accepted and think of x D f .u/.
What about the next potential edge eDfi; j g? Suppose we think of the xn3=2 ac-
cepted edges as a random graph on that many edges, orG.n; p/wherepD 2xn�1=2.
(Not only is this supposition a stretch but it is clearly false as G.n; p/ would have
many triangles but the algorithm tautologically gives a graph with no triangles.
Nonetheless, this is a most useful heuristic.) We would accept e if for no k ¤ i; j
are both fi; kg; fj; kg in G.n; p/. They are both in with probability p2 and so the
probability of acceptance would be .1 � p2/n�2 � e�4x2

. Under this heuristic the
rate of acceptance is now e�4x2

. This leads to the differential equation

f 0.u/ D dx

du
D e�4x2

(13)

We have an initial condition f .0/ D 0 as initially the graph is empty. We solve this
to get

u D
Z x

0

e4t2

dt (14)

While this integral does not have a closed form, for large x we would have

u D e4x2.1Co.1//dt (15)

If we can continue this heuristic to the end of the process we would have u D
n1=2Co.1/ and therefore x D ‚.

p
lnn/. This would argue that the process ends
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with ‚.n3=2
p

lnn/ edges. Making another stretch and thinking of the final G as a
random graph on this many edges it would have ˛.G/ D ‚.pn ln n/ as desired.

Well, it’s not so easy. Bohman parametrizes time t as above, when tn3=2 edges
have been accepted. The pairs e D fi; j g are now in three categories. Some e are
in, meaning they are already in G. Some e are open, meaning that there is no
k ¤ i; j with fi; kg; fj; kg already in the graph. Open edges can be added to G.
(Tautologically they have not already been considered, for then they would be inG.)
The other e are closed, meaning their addition would cause a triangle, and so they
cannot ever be added.

Bohman sets Q equal the number of open edges and parametrizes Q D q.t/n2.
(Already there is a notion that with high probabilityQ will be concentrated and this
requires substantiation.) For each pair i; j of vertices with fi; j g not in G he sets
Xij equal the number of k ¤ i; j with both fi; kg and fj; kg open. He parametrizes
Xij D x.t/n. (Now there is a further notion that with high probability all the Xij

are asymptotically the same.) He further lets Yij equal the number of k ¤ i; j such
that one of fi; kg; fj; kg is open and the other is in. He parametrizes Yij D y.t/n1=2.

Bohman now looks at the expected change in Xuv when a random open edge is
added to the graph. The main picture is the following. Consider a w for which fu;wg
and fv;wg are open. Now pick either u or v, say u. Now consider a z with one of
fz; ug; fz;wg open and the other in. Say fz; ug is open and suppose it is selected and
added to G. As fz; ug and fz;wg are now in, fu;wg changes from open to closed.
This decrements Xuv be one. There are x.t/n choices of w, two choices of u or v
and then y.t/n1=2 choices of z, giving 2x.t/y.t/n3=2 choices that decrement Xuv.
As there are q.t/n2 open edges in total and the next edge is chosen uniformly from
them, the expected decrease in Xuv is Œ2x.t/y.t/=q.t/�n�1=2 . Selection of one edge
increased parametrized time by n�1=2. This leads to the difference equation

x.t C n�1=2/� x.t/ D �Œ2x.t/y.t/=q.t/�n�1=2 (16)

which in turn leads to the differential equation

x0.t/ D �2x.t/y.t/=q.t/ (17)

By similar arguments one gets differential equations for q and y:

y0.t/ D �y
2.t/C 2x.t/

q.t/
(18)

q0.t/ D �y.t/ (19)

This system of differential equations has the very clean solution:

x.t/ D e�8t2

y.t/ D 4te�4t2

q.t/ D 1

2
e�4t2

(20)

It is intriguing to note that these values are the same, appropriately interpreted, as
if G were a random graph with tn3=2 edges, or for G.n; p/ with p D 2tn�1=2.
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For example, the probability that a pair fi; j g is not joined by a path of length two
(effective, that it is open) would be .1�p2/n�2 � e�4t2

and so the number of such
pairs would be � e�4t2�n

2

� � q.t/n2. A direct argument, even a strong heuristic,
that the values of x; y; q mirror those of the random graph remains elusive.

The difficult part of Bohman’s argument is to show that in the actual
random process the values of Xuv; Yuv;Q remain close to the expected values
x.t/n; y.t/n1=2; q.t/n2. Some careful analysis with strong use of martingales
(actually super and submartingales) is used. The larger t gets the more difficult this
becomes as an instability in the random process could conceivably lead to further
instability. If one needed only to get this result for a large constant t there would
be results on approximating a random process by a differential equation over a
compact space. Of particular difficulty is that to get the full result Bohman carries
the analysis out to t D �

p
lnn for some small positive absolute constant �. This

corresponds to the consideration of n3=2C�1 potential edges for some small absolute
constant �1. (He doesn’t take the analysis out to when n2�o.1/ edges have been con-
sidered as the instabilities overwhelm the analysis before that. For that reason the
constants he achieves are subject to improvement.) To do this he gives somewhat ad
hoc error bounds on the variables at t as a function of t . These bounds increase as a
function of t but remain small through t D �pln n. Last, but not least, this analysis
gives the number of edges accepted and one needs further study to show that ˛.G/
is appropriately small.

10 Epilogue

Is the story of R.3; k/ over? I think not. I think there is plenty of room for a con-
solidation of the results. My dream is a ten-page paper which gives R.3; k/ D
‚.k2= ln k/. The upper bound Theorem 2 can be nicely described with proof in
a few pages. The Kim–Bohman lower bound is not quite there yet. But it seems
that the Bohman approach could be greatly simplified, making use of some known
stability results for random processes. When I speak on this topic I keep waiting for
someone in the audience to say “Of course, this follows easily from the well-known
results of XYZ.” It hasn’t happened yet.
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Ramsey Numbers Involving Cycles

Stanisław P. Radziszowski

1 Scope and Notation

There is a vast amount of literature on Ramsey-type problems starting in 1930 with
the original paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book,
Ramsey Theory [GRS] and Soifer in the 2009 The Mathematical Coloring Book,
Mathematics of Coloring and the Colorful Life of Its Creators [Soi] present exciting
developments in the history, results and people of Ramsey theory. The subject has
grown amazingly, in particular with regard to asymptotic bounds for various types of
Ramsey numbers (for example, see the survey papers [GrRö; Neš; ChGra2]), but the
progress on evaluating the basic numbers themselves has been very unsatisfactory
for a long time.

Ramsey theory studies the conditions of when a combinatorial object necessarily
contains some smaller given objects. The role of Ramsey numbers is to quantify
some of the general existential theorems in Ramsey theory. In the case of the so-
called generalized graph Ramsey numbers one studies partitions of the edges of the
complete graph, under the condition that each of the parts avoid some prespecified
arbitrary graph, in contrast to classical Ramsey numbers when the avoided graphs
are complete.

This survey is a compilation of results on Ramsey numbers for the cases when
one (or most, or all) of the avoided graphs is a cycle. The results commented on
here are taken from a much broader general Ramsey numbers survey [Rad] by the
author, which since 1994 has been updated periodically as a living article in the
Electronic Journal of Combinatorics. Thus, while the results and data gathered here
are subsumed by the August 2009 revision #12 of [Rad], the latter has only min-
imal comments associated with the results. This is remedied here. Furthermore, it
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seems that recent years have brought new vigorous attention of many researchers,
especially to the cases involving cycles, to the extent that now it merits its own
overview. For the ease of use, and to avoid potential confusion, we employ the same
labels of references as in [Rad], even in cases when it forces us to use nonconsec-
utive labels, although doing so would seem in order. Similarly, the definitions and
notation of this survey are entirely those from [Rad]. For deeper exposition of the
basic concepts and intuition behind them consult the main surveys of this volume,
and [GRS] or [Soi].

We do not attempt complete coverage of asymptotic results on Ramsey numbers
with cycles, but rather concentrate on cases where exact formulas or concrete values
have been obtained or significant work towards them was done. Hence, only the
main facts on asymptotic behavior are presented, but with many pointers to further
literature. The complete graph on three vertices and the cycle of length 3 is the same
graph, K3 D C3. The study of K3 in the context of Ramsey numbers is very rich
in itself and is often considered separately from longer cycles. Here, we point to
the results involving C3 mainly in the context of longer cycles. Also, the bipartite
graph K2;2 is the same as quadrilateral C4, and many papers discuss C4 implicitly
under the header of bipartite graphs. Similarly as for triangles, but now to a lesser
extent, we decided to skip a number of results originating in bipartite graph theory.
The surveys mentioned above give many more pointers to results on K3 and K2;2,
and thus indirectly also for cycles.

LetG1,G2; : : : ,Gm be graphs or s-uniform hypergraphs (s is the number of ver-
tices in each edge). R.G1; G2; : : : ; GmI s/ denotes the m-color Ramsey number for
s-uniform graphs/hypergraphs, avoiding Gi in color i for 1 � i � m. It is defined
as the least integer n such that, in any coloring with m colors of the s-subsets of
a set of n elements, for some i the s-subsets of color i contain a sub(hyper)graph
isomorphic to Gi (not necessarily induced). The value of R.G1; G2; : : : ; GmI s/ is
fixed under permutations of the first m arguments.

If sD 2 (standard graphs) then s can be omitted. The complete graph on n ver-
tices is denoted byKn. IfGi DKk, then we can write k instead ofGi , and ifGi D G
for all i we can use the abbreviation Rm.GI s/ or Rm.G/. For s D 2, Kk � e de-
notes a Kk without one edge. Pi is a path on i vertices, Ci is a cycle of length i ,
and Wi is a wheel with i � 1 spokes; that is, a graph formed by some vertex x,
connected to all vertices of some cycle Ci�1, or Wi D K1 C Ci�1. Kn;m is a com-
plete n by m bipartite graph, in particular K1; n is a star graph. The book graph
Bi D K2 C Ki D K1 C K1;i has i C 2 vertices, and can be seen as i triangular
pages attached to a single edge. Finally, for a graph G, let nG stand for the graph
formed by n vertex disjoint copies of G.

2 Two-Color Numbers Involving Cycles

The history of knowledge of graph Ramsey numbers R.G;H/ seems to indicate
that the difficulty of computing or estimating R.G;H/ increases with the density
of edges in G. Thus, evaluation of the classical Ramsey numbers R.k; l/, when the
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avoided graphs are complete, is considered one of the hardest tasks, while we know
significantly more when graphs G and/orH become sparse. An interesting famous
case is formulated in the first theorem, which gives the exact value of R.G;H/
when G and H are such extremes. Of course, for all graphs G and H , R.G;H/ D
R.H;G/.

Theorem 1. (Chvátal [Chv], 1977)
R.Tn; Km/ D .n � 1/.m� 1/C 1 for any tree Tn with n vertices.

Theorem 1 has a relatively easy proof. It holds in particular for Tn D Pn. Note
that adding just one closing edge to Pn forms a cycle Cn. However, perhaps sur-
prisingly, the corresponding problem of Ramsey numbers R.Cn; Km/ is far from
being well understood. There has been remarkable progress in this area in the last
20 years, but still many of the basic questions remain open. We address them in
more detail in Sect. 2.2.

2.1 Cycles

Arguably the most widely known classical Ramsey number R(3, 3) was mentioned
implicitly by Bush [Bush] who reported that in the 1953 William Lowell Putnam
Mathematical Competition, Question #2 in Part I asks for the proof of what can be
denoted byR.3; 3/ � 6. The 1955 paper by Greenwood and Gleason [GG] includes
the result R.3; 3/ D 6 with proofs. This is also the first reported case of cycle
Ramsey numbers R.C3; C3/, since clearly C3 D K3. Chvátal and Harary [CH1]
were the first to give the value R.C4; C4/ D 6. The initial general result for cycles,
R.C3; Cn/ D 2n � 1 for n � 4, was obtained by Chartrand and Schuster [ChaS] in
1971. The complete solution of the case R.Cn; Cm/ was obtained soon afterwards,
independently by Faudree and Schelp [FS1] and Rosta [Ros1]. Both these proofs
are somewhat complicated, however a new simpler proof by Károlyi and Rosta was
published recently [KáRos], in 2001.

Theorem 2. (Faudree, Schelp [FS1], 1974; Rosta [Ros1], 1973)

R.Cn; Cm/ D
8̂
<
:̂

2n� 1 for 3 � m � n;m odd; .n;m/ ¤ .3; 3/

n� 1Cm=2 for 4 � m � n;m and n even; .n;m/ ¤ .4; 4/

maxfn� 1Cm=2; 2m� 1g for 4 � m < n;m even and n odd

Burr, Erdős, and Spencer [BES] in 1975 studied a variety of two color cases for
multiple disjoint copies of several small graphs, and among those for short cycles.
Their work includes a particularly elegant proof of R.nC3; mC3/ D 3n C 2m for
n � m � 1, n � 2. This was extended by Li and Wang to R.nC4; mC4/ D 2nC
4m � 1 for m � n � 1, .n;m/ ¤ .1; 1/ [LiWa1]. The same authors derived further
formulas for R.nC4; mC5/ [LiWa2]. The general problem of nCm, more formulas
and bounds for various cases were studied also by Mizuno and Sato [MiSa], Denley
[Den], Burr and Rosta [BuRo3], and Bielak [Biel1].
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2.2 Cycles Versus Complete Graphs

The Ramsey numbersR.Cn; Km/ pose different problems when different restricted
relationships between n and m are assumed. For fixed n D 3 it becomes the study
of the classical numbers R.3; k/, which attracted efforts of many researchers until
in a 1995 breakthrough Kim proved that R.3; k/ D ‚.k2= logk/ [Kim] (for the
history of this result see the chapter by Spencer [Spe3] in this volume). The exact
values of R.3; k/ are known for k � 9 (see column C3 of Table 1). Computation of
the exact values for k � 10 is still elusive and well beyond known theoretical and
computational methods. For more comments on the smallest open case R(3,10) see
the problem section of this volume. The other end of the problem seems to be much
easier for fixed m. In particular, Theorem 2 gives R.C3; Cn/ D 2n � 1. Actually,
this row of Table 1 seems to generalize to the following simple but apparently hard-
to-prove conjecture.

Conjecture 1. (Faudree, Schelp [FS4], 1976)

R.Cn; Km/ D .n � 1/.m� 1/C 1 for all n � m � 3, except n D m D 3.

The authors of [EFRS2], while studying many similar problems, also restate the
same conjecture. Over the last three decades there was a steady sequence of papers
proving it for increasing sets of pairs of n and m. The parts of Conjecture 1 were
proved as follows.

First observe that the lower bound is easy, since the graph .m� 1/Kn�1, formed
bym� 1 vertex-disjoint copies of Kn, clearly provides a witness for R.Cn; Km/ >

.n � 1/.m � 1/, even without the exception n D m D 3. We note that this same
construction similarly easily gives lower bounds for other cases in further sections
of this survey.

Table 1 Known Ramsey numbers R.Cn;Km/ (Ch+ abbreviates ChenCZ1; see also comments on
joint credits below)

Cn for
C3 C4 C5 C6 C7 C8 . . . n � m

K3
6 7 9 11 13 15

. . .
2n� 1

GG ChaS ChaS ChaS ChaS ChaS ChaS

K4
9 10 13 16 19 22

. . .
3n� 2

GG CH2 He2/JR4 JR2 YHZ1 YHZ1 YHZ1

K5
14 14 17 21 25 29

. . .
4n� 3

GG Clan He2/JR4 JR2 YHZ2 BJYHRZ BJYHRZ

K6
18 18 21 26 31 36

. . .
5n� 4

Kéry Ex2-RoJa1 JR5 Schi1 Schi1 Schi1 Schi1

K7
23 22 25 31 37 43

. . .
6n� 5

Ka2-GY RT-JR1 Schi2 CheCZN CheCZN JarBa/Ch+ ChenCZ1

K8
28 26 36 43 50

. . .
7n� 6

GR-MZ RT ChenCX ChenCZ1 JarAl/ZZ3 conj.

K9
36 30–32

. . .
8n� 7

Ka2-GR RT-XSR1 conj.

K10
40–43 34–39

. . .
9n� 8

Ex5-RK2 RT-XSR1 conj.
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The hard part is to derive the upper bound. Bondy and Erdős proved it for n �
m2 � 2 [BoEr] in 1973; Chartrand and Schuster for n > 3 D m [ChaS] in 1971;
Yang, Huang, and Zhang for n � 4 D m [YHZ1] in 1999; Bollobás et al. for
n � 5 D m [BJYHRZ] in 2000; Schiermeyer for n � 6 D m and for n � m � 7
with n � m.m�2/ [Schi1] in 2003; Nikiforov for n � 4mC2,m � 3 [Nik] in 2005;
and finally Chen, Cheng, and Zhang for n � 7 D m [ChenCZ1] in 2008, All these
developments, and a number of special small cases which had to be proved on the
way, are summarized in Table 1. Still open conjectured cases are marked by “conj.”
The result R.C8; K8/ D 50, which is a necessary starting point for confirming
this conjecture for m D 8, was recently proved independently by Jaradat-Alzaleq
[JarAl] and by Zhang-Zhang [ZZ3]. The proofs of the latter consist of quite intricate
considerations of many subcases. Some new unifying approach to all rows of Table 1
would be very welcome. Let us also note that a stronger version of Conjecture 1 is
likely true, since as one can now see in further rows of Table 1, the general formula
holds even for some m slightly larger than n.

Joint credit [He2/JR4] in Table 1 refers to two cases in which Hendry [He2] an-
nounced the values without presenting the proofs, which later were given in [JR4].
The special cases ofR.C6; K5/ D 21 [JR2] andR.C7; K5/ D 25 were solved inde-
pendently in [YHZ2] and [BJYHRZ]. The double pointer [JarBa/ChenCZ1] refers
to two independent papers, similarly as [JarAl/ZZ3]. For joint credits marked in
Table 1 with “-”, the first reference is for the lower bound and the second for the
upper bound.

Erdős et al. [EFRS2] asked what is the minimum value of R.Cn; Km/ for fixed
m. Interestingly, even without knowledge of most of the data gathered in Table 1, the
authors suggested that it might be possible thatR.Cn; Km/ first decreases monoton-
ically, then attains a unique minimum, then increases monotonically with n. What
we now know, more than 30 years later, provides some strong evidence confirming
their intuition.

For the columnwise (with fixed n) asymptotic behavior, beyond Kim’s impres-
sive result R.3; k/ D ‚.k2= logk/ [Kim] mentioned earlier and discussed in other
chapters of this volume, we present in the next theorem the known bounds for n D 4.

Theorem 3. ([Spe2] 1977; 1980, [CLRZ] 2000)

There exist positive constants c1 and c2 such that

c1.m=logm/3=2 � R.C4; Km/ � c2.m=logm/2:

The lower bound was obtained by Spencer [Spe2] using the probabilistic method.
The upper bound was presented in a paper by Caro et al. [CRLZ], who in turn gave
the credit to an unpublished work by Szemerédi from 1980. Erdős, in 1981, in the
Ramsey problems section of the paper [Erd2] formulated a challenge by asking for
a proof of R.C4; Km/ < m2�©, for some © > 0. Erdős placed this problem among
the problems on which he “spent lots of time.” No proof of this bound is known to
date. The asymptotics of the general and odd n cases ofR.Cn; Km/ were studied by
several authors including [BoEr; FS4; EFRS2; Sud1; LiZa2; AlRö].
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2.3 Cycles Versus Wheels

We remind the reader that in this survey the wheel graph Wn D K1 C Cn�1 has n
vertices. This is different from some authors who use the definitionWn D K1CCn

with n C 1 vertices. While in Table 2 of known small values of R.Wn; Cm/ this
difference just shifts the values between adjacent rows, the general formulas are
affected a bit more.

Both wheel and cycle graphs are sparse, so we expect that the corresponding
Ramsey numbers R.Wn; Cm/ will be smaller and easier to compute. Indeed, the
linear functions for all fixed n and for fixed odd m, while the other parameter is
large enough, are known. Yet proving the ranges for which these linear functions
hold, and finding the concrete values for small cases, seem to be quite independent
and challenging tasks. We gather what is known in Table 2 below, and then comment
on some of the results therein as well as point to some open problems.

SinceW4 D K4, the first data row in Table 2 is the same as the second data row of
Table 1 for K4. Similarly, the first row of Table 1 for K3 D W3 could be prepended
to Table 2 as is, but we didn’t do it for the sake of brevity. As in Table 1, the rows
of Table 2 are easier to deal with for large m. Similarly, the full solutions for n = 3,
4 are the same as for R.Kn; Cm/, which were given in the previous section. The
almost complete general rowwise solution is presented in Theorem 4.

Theorem 4. ([SuBT1, ZhaCC, ChenCN])

(a) R.Wn; Cm/ D 3m� 2 for even n � 4 with m � n� 1, m ¤ 3,
(b) R.Wn; Cm/ D 2m� 1 for odd n � 3 with 2m � 5n � 7.

Theorem 4(a) was conjectured in a few papers by Surahmat et al. [SuBT1;
SuBT2; Sur]. Parts of this conjecture were proved in [SuBT1; ZhaCC], and the

Table 2 Ramsey numbers R.Wn; Cm/, for n � 9, m � 8 (results from unpublished manuscript
are marked�)

C3 C4 C5 C6 C7 C8 Cm for

W4
9 10 13 16 19 22 3m� 2 m � 4

GG CH2 He2 JR2 YHZ1 . . . . . . YHZ1

W5
11 9 9 11 13 15 2m� 1 m � 5

Clan Clan Hc4 JR2 SuBB2 . . . . . . SuBB2

W6
11 10 13 16 19 22 3m� 2 m � 4

BE3 JR3 ChvS SuBB2 . . . . . . . . . SuBB2

W7
13 9 2m� 1 m � 14

BE3 Tse1 SuBT1

W8
15 11 19* 22� 3m� 2� m � 7

BE3 Tse1 ChenCN . . . . . . ChenCN

W9
17 12 2m� 1 m � 19

BE3 Tse1 SuBT1
. . .

Wn 2n� 1 2n� 1 2n� 1

for n � 6 n � 19 n � 29 Large
BE3 Zhou2 Zhou2 Wheels
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proof was completed by Chen, Cheng, and Ng [ChenCN] in 2009. Theorem 4(b)
was proved in 2006 by Surahmat, Baskoro and Tomescu [SuBT1], but Surahmat
conjectured that it also holds for odd n � 3 withm � 5 andm > n [Sur]. The latter
stronger version of (b) remains open.

With fixed m the analysis seems harder. We give only one result for odd m.

Theorem 5. (Zhou [Zhou2], 1995)

R.Wn; Cm/ D 2n� 1 for odd m with n � 5m� 6.

The special case of Theorem 5 with m D 3 was obtained by Burr and Erdős
[BE3] in 1983. For these Ramsey numbers even a general formula for the number of
critical graphs has been derived; in particular the critical graphs for R.Wn; C3/ are
unique for n D 3; 5, and for no other n [RaJi]. The next column for m D 4 already
poses open questions, both regarding concrete small values and the behavior for
large n. Only an upper boundR.C4;Wn/ � nCd.n�1/=3e for n � 7 was obtained
in [SuBUB]. Furthermore, besides the values recorded in Table 2, it is known that
R.C4;Wn/ D 13, 14, 16, 17 for n D 10, 11, 12, 13, respectively [Tse1].

Finally, we note that the formula for Ramsey numbers involving Cm again de-
pends on the parity of m. Since Cm is a subgraph forming much of the wheel, it
should be no surprise that in the case ofR.Wn; Cm/we need to consider four distinct
situations with respect to parity of n andm. We present more such dependencies on
parity in further sections as well.

2.4 Cycles Versus Books

We recall that the book graph of n triangular pages is defined as Bn D K2 C Kn.
The book-complete and book-book Ramsey numbers have been studied extensively,
and we direct the reader to the survey [Rad] for related results. The somewhat less
overall studied case of book-cycle numbers, however, has attracted much recent
attention. In this section we overview known results about the Ramsey numbers
R.Bn; Cm/.

Since B1 D K3, the cases of Ramsey numbers for B1 versus Cm are the same as
those for R.K3; Cm/ presented in Sect. 2.2. The case of B2 D K4 � e versus Cm

is completely solved: small cases were given by different authors as marked in the
first row of Table 3, and the general case was solved in the 1978 and 1991 papers by
Faudree, Rousseau, and Sheehan [FRS6] and [FRS8] (abbreviated in Table 3 as Fal6
and Fal8). Actually, in [FRS8], extending the results of [FRS6], the authors proved
some theorems shedding much light on other more general cases. The main results
are presented as Theorems 6 and 7. Note that now we have distinct cases only with
respect to the parity of m.

Theorem 6. (Faudree, Rousseau, Sheehan [FRS8], 1991)

(a) R.Bn; Cm/ D 2m � 1 for n � 1, m � 2nC 2,
(b) R.Bn; Cm/ D 2nC 3 for oddm � 5 with n � 4m � 13.
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Table 3 Ramsey numbers R.Bn; Cm/ for n;m � 11 (using et al. abbreviations, Fal for FRS and
Cal for CRSPS)

C3 C4 C5 C6 C7 C8 C9 C10 C11 Cm for

B2
7 7 9 11 13 15 17 19 21 2m�1 m � 2

RS1 Fal6 Cal Fal8 . . . . . . Fal8

B3
9 9 10 11

13
15 17 19 21 2m�1 m � 8

RS1 Fal6 Fal8 JR2 Fal8 . . . . . . Fal8

B4
11 11 11

12 13 15 17
19 21 2m�1 m � 10

RS1 Fal6 Fal8 Fal8 . . . . . . Fal8

B5
13 12 13

14 15 15 17 19 21
2m�1 m � 12

RS1 Fal6 Fal8 Fal8

B6
15 13 15

16 17 18 18 21
2m�1 m � 14

RS1 Fal6 Fal8 Fal8

B7
17 16 17

16 19 20 21
2m�1 m � 16

RS1 Fal6 Fal8 Fal8

B8
19 17 19

17 19 22 � 23
2m�1 m � 18

RS1 Tse1 Fal8 Fal8

B9
21 18 21

18 � 25 � 26
2m�1 m � 20

RS1 Tse1 Fal8 Fal8

B10
23 19 23

19 � 28
2m�1 m � 22

RS1 Tse1 Fal8 Fal8

B11
25 20 25 2m�1 m � 24

RS1 Tse1 Fal8 Fal8

. . . . . .

Bn 2nC3 � n 2nC3 2nC 3 2nC 3 2nC 3

for n � 2 Some n � 4 n � 15 n � 23 n � 31 Large
RS1 Fal8 Fal8 Fal8 Fal8 books

The centered entries in italics in the middle of Table 3 are from personal com-
munication and manuscripts by Shao. The latter also include proofs of inequalities
R.Bn; Cn/ � 3n � 2, R.Bn�1; Cn/ � 3n � 4 for n � 3, and an improvement to
the bound on m in Theorem 6(a) to m � 2n � 1 � 7 [Zehui Shao, 2008, personal
communication].

The columnwise situation is more difficult. Theorem 6(b) gives the values for odd
m and n large enough, but likely the range of n for which it holds can be extended.
The special case form D 3was solved completely by Rousseau and Sheehan [RS1],
and that for m D 5 is included in [FRS8]. For even m, already the smallest case
of C4 is very difficult, since it is related to the existence of certain combinatorial
designs. In particular, Faudree, Rousseau, and Sheehan in 1978 proved the following
Theorem 7. More theorems about asymptotics and bounds on R.Bn; Cm/ can be
found in the papers [NiRo4, Zhou1].

Theorem 7. (Faudree, Rousseau, Sheehan [FRS6], 1978)

For any prime power q; q2 C q C 2 � R.C4; Bq2�qC1/ � q2 C q C 4.
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The authors of [FRS6] characterize the special conditions under which the so-
called locally friendly graphs, whose existence is in question for larger q, are
witnesses that the upper bound of Theorem 7 holds exactly. Since Bn is a sub-
graph of BnC1, hence likely R.C4; Bn/ D n C O

�p
n
�
. This would be similar

to the behavior of R.C4; K2;n/ (see Sect. 3.2 of [Rad]). Finally we note that,
besides the values recorded in Table 3 for m D 4, Tse obtained the exact values
R.C4; B12/ D 21 [Tse1], R.C4; B13/ D 22, and R.C4; B14/ D 24 [Tse2], using
computer algorithms.

2.5 Cycles Versus Other Graphs

Technically C3 and C4 are cycle graphs, yet in graph theory, and in particular
in Ramsey theory, they are very often seen as K3 and a special bipartite graph
K2;2, respectively. For example, numerous papers whose references are gathered
in Sects. 3.2 and 4.8 of the survey [Rad] consider the Ramsey numbers involving
them in the context of K3 and complete bipartite graphs. First we present a sample
result from this area concerning quadrilateral-star numbers R.K2;2 D C4; K1;n/.
The value of the latter, in other words, is 1 plus the order of the largest C4-free
graph whose complement has the maximum degree less than n.

Theorem 8. (Parsons [Par3], 1975; Burr et al. [BEFRS5], 1989)

(a) nCpn � 6n11=40 � R.C4; K1; n/ D f .n/ � nCpnC 1; and
(b) For every prime power q, f .q2/ D q2 C q C 1 and f .q2 C 1/ D q2 C q C 2.

While Theorem 8 gives pretty good bounds onR.K2;2; K1; n/, many concrete cases
are still evasive. For more bounds and values of f .n/ see [Par4; Par5; Chen; ChenJ;
GoMC; MoCa; HaMe4]. For the results on C4 versus trees consult [EFRS4; Bu7;
BEFRS5; Chen], and for many other results involving bipartite graphs refer to
Sect. 3.2 of [Rad], in particular to several papers by Lortz et al. referenced there.
For general cases of cycles versus stars consult [Clark; Par6], cycles versus trees
[BEFRS2; FSS1], and cycles versusKn;m and multipartite complete graphs [BoEr].

Next we present a solution to the basic problem of cycles versus paths. Note sim-
ilarity of the formula of Theorem 9 to that in the cycle–cycle problem of Theorem 2.
Some small specific subcases derived earlier by other authors are listed in [FLPS].

Theorem 9. (Faudree, Lawrence, Parsons, and Schelp [FLPS], 1974)

R.Pn; Cm/ D

8̂
ˆ̂<
ˆ̂̂:

2n � 1 for 3 � m � n;m odd;

n � 1Cm=2 for 4 � m � n;m even;

maxfm� 1C bn=2c ; 2n � 1g for 2 � n � m;m odd;

m � 1C bn=2c for 2 � n � m;m even:
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The classical result by Gerencsér and Gyárfás [GeGy] gives a formula for path
numbers R .Pn; Pm/ D mC bn=2c � 1, for all m � n � 2. It is tempting to com-
pare it in detail to Theorems 2 and 9. Merging together the conditions in the three
formulas is routine but somewhat tedious. Obviously, for all n andm it holds that R
.Pn; Pm/ � R.Pn; Cm/ � R.Cn; Cm/. Each of the two inequalities can become an
equality, and, as derived in [FLPS], all four possible combinations of < and = hold
for an infinite number of pairs (n, m). For example, if both n andm are even, and at
least one of them is greater than 4, then R.Pn; Pm/ D R.Pn; Cm/ D R.Cn; Cm/.
The full specification of four cases would require several more lines of details.

Between 1997 and 2004, Rousseau and Jayawardene wrote several papers con-
cerning Ramsey numbers for short cycles versus other graphs, where besides general
theoretical results they computed many new exact values of R.Cm; G/ for specific
Gs (some of them were pointed to in Tables 1–2). They collected a large set of
data which can give insights into new general claims (or refute them); namely, they
found the values of Ramsey numbers for C4 versus all graphs on six vertices [JR3],
C5 versus all graphs on six vertices [JR4], and C6 versus all graphs on five vertices
[JR2]. In addition, unfortunately only in an unpublished manuscript [RoJa2], the
authors gave interesting upper bounds: R.C4; G/ � 2q C 1 for any isolate-free
graphG with q edges, and R.C4; G/ � pC q � 1 for any connected graphG on p
vertices and q edges. In a similar direction, Burr et al. [BEFRS2] proved the equal-
ity R.C2mC1; G/ D 2n � 1 for sufficiently large sparse graphs G on n vertices, in
particularR.C2mC1; Tn/ D 2n� 1 for all n > 1512mC 756, for n vertex trees Tn.

3 Multicolor Numbers for Cycles

3.1 Three Colors

The first larger paper in this area by Erdős, Faudree, Rousseau, and Schelp [EFRS1]
appeared in 1976. It gives some formulas and bounds for multicolor Ramsey
numbers of several simple graphs, including those for R .Cm; Cn; Ck/ and R

.Cm; Cn; Ck; Cl/ for largem. The case of three colors is presented in Theorem 10.

Theorem 10. (Erdős et al. [EFRS1], 1976)
For m large enough all of the following hold.

(a) R.Cm; C2pC1; C2qC1/ D 4m � 3 for p � 2, q � 1;
(b) R.Cm; C2p; C2qC1/ D 2.mC p/ � 3;
(c) R.Cm; C2p; C2q/ D mC p C q � 2 for p; q � 1.

The three-color case is thus clear when one of the cycles is sufficiently long.
The situation gets harder when we are closer to the diagonal. Several such cases
which were solved for concrete small parameters, mostly with the help of computer
algorithms, are listed in Table 4. The diagonal itself (i.e., the cases ofR3.Cm// were
studied more and thus we know more there. The papers referenced in Theorems 11
and 12, and [GyRSS], used the powerful Szemerédi’s regularity lemma [Szem] to
prove the upper bounds. We present the main results in this direction in the sequel.
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Theorem 11. (Triple even cycles)

(a) Figaj and Łuczak [FiŁu1], 2007.

R.C2b˛1nc; C2b˛2nc; C2b˛3nc/
D .˛1 C ˛2 C ˛3 Cmaxf˛1; ˛2; ˛3g C o.1//n; for al l ˛1; ˛2; ˛3 > 0:

In particular, for even n, we have R.Cn; Cn; Cn/ D .2C o.1//n.
(b) Benevides and Skokan [BenSk], 2009.

R.Cn; Cn; Cn/ D 2n for all sufficiently large n:

Observe that (b) is an improvement of the second part of (a). We also note that
Theorem 11(a) implies (cf. Corollary 2 in [FiŁu1]) a solution to the related long-
standing open problem for paths, namely that R.Pm; Pn; Pk/ D mC .nC k/=2C
o.m/ form � n, k. By now, we know even more. In a recent large paper Gyárfás et
al. [GyRSS] were able to prove the exact diagonal result for long triple paths. They
proved that an amazingly simple formulaR.Pn; Pn; Pn/ D 2n�2Cnmod 2 holds
for all sufficiently large n. In a not yet published paper Figaj and Łuczak [FiŁu2]
extend their result to triples of cycles of mixed parity, obtaining asymptotic values
similar in form to the formula of Theorem 11(a).

A lower bound R3.C2m/ � 4m for all m � 2 follows from a more general
construction by Dzido, Nowik, and Szuca [DzNS], which is valid for any number of
colors (see Sect. 3.2). For small n, only the caseR3.C4/ D 11, solved by Bialostocki
and Schönheim [BS] in 1984 by using elegant edge counting reasoning, seems to
be special. The other two known exact values, R3.C6/ D 12 obtained by Yang and
Rowlinson [YR2] in 1993 andR3.C8/ D 16 by Sun [Sun] in 2006, already required
an intensive use of computations. These two cases follow the pattern proved for large
n, so it seems reasonable to pose the following Conjecture 2, which was actually
done by Dzido [Dzi1]. The first currently open case is that of R3.C10/. In order
to settle it (as for all other open cases) one only needs to prove the upper bound
R3.C10/ < 21, since from the construction in [DzNS] we know thatR3.C10/ � 20.

Conjecture 2. (Triple even cycles, Dzido [Dzi1], 2005)
R.Cn; Cn; Cn/ D 2n for all even n � 6.

For the case of three odd cycles we begin with the well-known conjecture by
Bondy and Erdős.

Conjecture 3. (Triple odd cycles, Bondy and Erdős, cf. [Erd2], 1981)
R.Cn; Cn; Cn/ D 4n � 3 for all odd n � 5.

Now the situation is somewhat different, although still Szemerédi’s regularity
lemma (RL) played a critical role in establishing the upper bound. The following
Theorem 12 confirms Conjecture 3 for large n, however, the derivation of really
how large n needs to be is difficult because of the use of RL.

Theorem 12. (Triple odd cycles, Kohayakawa, Simonovits, Skokan [KoSS], 2005,
2009)R.Cn; Cn; Cn/ D 4n� 3 for all sufficiently large odd n.
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We note that an equivalent formulation of the last theorem could be R3.C2mC1/

D 8mC1 for all sufficiently largem. Theorem 12 improves a well-known Łuczak’s
result stating that R.Cn; Cn; Cn/ � .4C o.1//n, with equality for odd n [Łuc]. As
observed by Erdős [Erd2] we really only need to prove the upper bound of Con-
jecture 3 (as in Conjecture 2), since the lower bound is easy. A classical case of
R3.C3/ D 17 [GG] is special, but the other two known exact initial values follow
the pattern of Conjecture 3: R3.C5/ D 17 obtained with computations by Yang
and Rowlinson [YR1] in 1992, and an equality R3.C7/ D 25 proved by Faudree,

Table 4 Ramsey numbers R.Cm; Cn; Ck/ for m, n, k � 7 and m D n D k D 8 (Sun1C
abbreviates SunYWLX; Sun2C abbreviates SunYLZ2; the work in [SunYWLX] and [SunYLZ2]
is independent from [Tse3])

mnk R.Cm; Cn; Ck/ References General results

3 3 3 17 GG See [Rad] page 29
3 3 4 17 ExRe
3 3 5 21 Sun1C/Tse3 5k � 4 for k � 5, m D n D 3 [Sun1C]
3 3 6 26 Sun1C
3 3 7 31 Sun1C
3 4 4 12 Schu
3 4 5 13 Sun1C/Rao/Tse3
3 4 6 13 Sun1C/Tse3
3 4 7 15 Sun1C/Tse3
3 5 5 �17 Tse3
3 5 6 21 Sun1C
3 5 7 25 Sun1C
3 6 6
3 6 7 21 Sun1C
3 7 7
4 4 4 11 BS
4 4 5 12 Sun2C/Tse3
4 4 6 12 Sun2C/Tse3 k C 2 for k � 11, m D n D 4 [Sun2C]
4 4 7 12 Sun2C/Tse3 12, 13, 13 for k = 8, 9, 10 [Sun2+]
4 5 5 13 Tse3
4 5 6 13 Sun1C
4 5 7 15 Sun1C Compare Theorem 10(b)
4 6 6 11 Tse3
4 6 7 13 Sun1C/Tse3
4 7 7
5 5 5 17 YR1
5 5 6 21 Sun1C
5 5 7 25 Sun1C
5 6 6
5 6 7 21 Sun1C
5 7 7
6 6 6 12 YR2 R3 .C2q/ � 4q for q � 2 [DzNS]
6 6 7 15 Sun1C Compare Theorem 10(c)
6 7 7 Compare Theorem 10(a)
7 7 7 25 FSS2 R3.C2qC1/ D 8q C 1 for large q [KoSS]
8 8 8 16 Sun R3.C2q/ D 4q for large q [BenSk]
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Schelten, and Schiermeyer [FSS2] in 2003. The latter did not require any computer-
supported computations, however, the proof is long and complicated. The first cur-
rently open case is that of R3.C9/. As in the even case, to solve it one only needs to
show R3.C9/ � 33.

Two interesting exact results for triple cycles were obtained by Sun et al., namely
R.C3; C3; Ck/ D 5k � 4 for k � 5 [SunYWLX], and R.C4; C4; Ck/ D k C 2
for k � 11 [SunYLZ2]. All exceptions to these formulas for small k are listed
in Table 4. Such results are definitely important steps towards a very difficult, but
perhaps achievable, goal of exact knowledge of all three-color Ramsey numbers for
cycles. Almost all of the off-diagonal cases in Table 4 required the use of computer
algorithms.

3.2 More Colors

For more than three colors, we first present all known nontrivial concrete results,
except those for Rk.C3/ D Rk.K3/ which typically belong to the study of cases
involving triangleK3 (see Sects. 5.1 and 5.2 of [Rad]). Two of the cases listed below,
namely those of four-color C4 and five-color C6, required large-scale computations
to prove the upper bound.

R4.C4/ D 18 [Ex2] [SunYLZ1]
18 � R4.C6/ [SunYJLS]
27 � R5.C4/ � 29 [LaWo1]

R5.C6/ D 26 [SunYJLS] [SunYW]

21 � R.C3; C4; C4; C4/ � 27 [XuR2]
28 � R.C3; C3; C4; C4/ � 36 [XuR2]
49 � R.C3; C3; C3; C4/ see 5.6.n in [Rad]

General formulas for R.Cm; Cn; Ck; Cl/, for large m [EFRS1], were obtained in
the same paper as the results listed in Theorem 10 for three colors. The results there
for four colors are also quite similar in form, but significantly more complicated.
For three colors there was steady follow-up work for the off-diagonal cases reported
in the previous section, but it has yet to be done for more colors. However, the
diagonal did attract attention: the study of Rk.Cm/, and in particular of the special
case Rk.C4/.

In the mid-seventies, Irving [Ir], Chung [Chu2], and Chung-Graham [ChGral]
established that Rk.C4/ � k2 C kC 1 for all k � 1, and Rk.C4/ � k2 � k C 2 for
all k� 1 which is a prime power. In 2000, Lazebnik and Woldar [LaWo1] improved
the lower bound to Rk.C4/ � k2 C 2 for odd prime power k, and finally the latter
was extended to any prime power k by Ling [Ling] and Lazebnik-Mubayi [LaMu].

We summarize the bounds for k-color diagonal cases of even cycles in the fol-
lowing Theorem 13. Interestingly, all six claims below cover different situations and
each is best in some respect (say, each of (b), (c), (d) is better than the other two for
some k and m).
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Theorem 13. (Multicolor even cycles)
All of the following hold.

(a) Rk.C2m/ � .k C 1/m for odd k and m � 2 [DzNS],
(b) Rk.C2m/ � .k C 1/m� 1 for even k and m � 2 [DzNS],
(c) Rk.C2m/ � 2.k � 1/.m� 1/C 2 [SunYXL],
(d) Rk.C2m/ � k2 C 2m � k for 2m � k C 1 and prime power k [SunYJLS],
(e) Rk.C2m/ D ‚.km=.m�1// for fixedm D 2; 3 and 5 [LiLih],
(f) Rk.C2m/ � 201km for k � 10m=201m [EG].

For multicolor odd cycle diagonal Ramsey numbers the most commonly cited
bounds are those from the 1973 paper by Bondy and Erdős [BoEr]:

2km < Rk.C2mC1/ � .k C 2/Š.2mC 1/:

The lower bound follows again from natural canonical colorings. A somewhat better
upper bound Rk.C2mC1/ < 2.k C 2/Šm was obtained by Erdős and Graham [EG],
but there is likely much more room for further improvements. This has been accom-
plished for the special case of C5 by Li [Li3] in a recent exciting development.

Theorem 14. (Li [Li3], 2009)

Rk.C5/ �
p
18kkŠ=10 for all k � 3:

More discussion of asymptotic bounds for Rk.Cn/ can be found in the papers
[Bu1; GRS; ChGra2; LiLih]. There is still much to do. In particular, we know very
little about upper bounds on Rk.Cn/. We also recommend the 2008 survey paper of
multicolor cycle cases by Li [Li2], which nicely complements the discussion of this
paper, in particular with respect to asymptotic bounds.

3.3 Cycles Versus Other Graphs

Similarly as in previous sections, it seems easier to proceed when the length of
one cycle parameter is large enough. Erdős et al. [EFRS1] (this paper also contains
the proof of Theorem 10) in 1976 studied the cases of R.Cn; Kt1 ; : : : ; Ktk / and
R.Cn; Kt1;s1

; : : : ; Ktk;sk
/ for large n. When the cycle lengths are kept fixed, the

techniques needed are different. Alon and Rödl [AlRö] in 2005 obtained a surprising
asymptotic result that for more colors involving C4, and in general even cycles, the
problem is more manageable. Some similar results in this direction were obtained in
[ShiuLL]. For the numbersR.C4; Kn/ the bounds of Theorem 3 are quite far apart,
while the next theorem settles the exact asymptotics for more colors. The paper
[AlRö] includes several other asymptotic results, including those for K3 and other
even cycles instead of C4.
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Theorem 15. (Alon, Rödl [AlRö], 2005)
For three colors R.C4; C4; Kn/ D ‚.n2poly� logn/,
and for more colors R .C4; C4; : : : ; C4; Kn/ D ‚.n2= log2 n/.

Despite known exact asymptotics, we have a rather poor understanding of small
cases for this type of numbers. Below we list the bounds established in [XSR1] for
the mixed cases involving C3, C4, and K4 (see also the bounds from [XuR2] given
in Sect. 3.2). The lower bounds were obtained by a few different constructions, in
contrast to several other numbers involving cycles for which the natural canoni-
cal colorings are normally used. The upper bounds follow from known bounds on
the maximum number of edges in C4-free graphs and known bounds for smaller
Ramsey numbers. That’s almost all of what we know for this type of concrete num-
bers. We challenge the reader to improve any of the following bounds.

19 � R.C4; C4; K4/ � 22; 31 � R.C4; C4; K4/ � 50;
25 � R.C3; C4; K4/ � 32; 42 � R.C3; C4; K4/ � 76;
52 � R.C4; K4; K4/ � 72; 87 � R.C4; K4; K4/ � 179;

We end the section on multicolor cycle numbers with a compilation of some
promising initial exact results for three colors concerning a mixture of cycles
and paths. For two paths and a cycle it is known that R.P3; P3; Cm/ D m and
R.P3; P4; Cm/ D m C 1 for m � 6 [Dzi2], R.P4; P4; Cm/ D m C 2 for m � 6
and R.P3; P5; Cm/ D m C 1 for m � 8 [DzKP], R.P4; P5; Cm/ D m C 2 for
m � 23 and R.P4; P6; Cm/ D mC 3 form � 18 [ShaXSP], andR.Pm; Pn; Ck/ D
2n C 2bm=2c � 3 for large n and odd m � 3 [DzFi2]. For two cycles and a path
we know that R.P3; Cm; Cm/ D R.Cm; Cm/ D 2m � 1 for odd m � 5 [DzKP].
Most of the small cases not covered by the above formulas are listed in [Rad]. Also,
Dzido and Fidytek [DzFi2] presented a table of exact values of R.P3; Pk ; Cm/ for
all 3 � k � 8 and 3 � m � 9. All this may help in launching new conjectures for
three-color numbers involving these most basic mixed parameters.

4 Hypergraph Numbers for Cycles

We close this survey with some interesting recent results on hypergraph Ramsey
numbers for so-called loose and tight cycles. A loose three-uniform cycle Cn on the
set Œn� D f1; 2; : : : ; ng is the set of triples f123; 345; 567; : : : ; .n� 1/n1g, forming a
cycle with an overlap of consecutive edges of exactly one point. Note that for loose
cycles n must be even. A three-uniform cycle Cn formed by f123; 234; 345; : : :
.n� 1/n1; n12g, in which consecutive edges share two points, is called tight. Loose
and tight paths are defined similarly.

For such loose cycles, Haxell et al. [HaŁP1+] proved that R.C4k; C4k I 3/ >
5k�2 andR.C4kC2; C4kC2I 3/ > 5kC1. Furthermore, asymptotically these lower
bounds are tight. Generalizations to r-uniform hypergraphs and graphs other than
cycles were studied in [GySS].
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For tight cycles, Haxell et al. [HaŁP2C] proved that R.C3k; C3kI 3/ � 4k and
R.C3kCi ; C3kCi I 3/ � 6k for i D 1 or 2. For tight paths the same paper establishes
R.Pk; Pk I 3/ � 4k=3. We finally note that the tetrahedron, or four triples on the
set of four points, is a tight three-uniform hypergraph cycle C4. The corresponding
Ramsey number, R.4; 4I 3/ D 13 [MR1], is the only nontrivial classical Ramsey
number for hypergraphs whose exact value is known.

Papers containing results obtained with the help of computer algorithms
have been marked with stars. The references are ordered alphabetically by the
last name of the first author, and where multiple papers have the same first author
they are ordered by the last name of the second author, etc. References’ labels are
the same as in [Rad] if they appear in this much more extensive survey, and thus
numerical labels for some entries can be nonconsecutive.
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[GySS] A. Gyárfás, G.N. Sárközy and E. Szemerédi, The Ramsey Number of Diamond-
Matchings and Loose Cycles in Hypergraphs, Electronic Journal of Combina-
torics, http://www.combinatorics.org, #R126, 15(1) (2008), 14 pages.

[HaMe4] M. Harborth and I. Mengersen, Some Ramsey Numbers for Complete Bipartite
Graphs, Australasian Journal of Combinatorics, 13 (1996) 119–128.

[HaŁP1C] P.E. Haxell, T. Łuczak, Y. Peng, V. Rödl, A. Ruciski, M. Simonovits and J. Skokan,
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Number for 3-Uniform Tight Hypergraph Cycles, Combinatorics, Probability and
Computing, 18 (2009) 165–203.

[He2] G.R.T. Hendry, Ramsey Numbers for Graphs with Five Vertices, Journal of Graph
Theory, 13 (1989) 245–248.

[He4] G.R.T. Hendry, Critical Colorings for Clancy’s Ramsey Numbers, Utilitas Mathe-
matica, 41 (1992) 181–203.

[Ir] R.W. Irving, Generalised Ramsey Numbers for Small Graphs, Discrete Mathemat-
ics, 9 (1974) 251–264.

[JarAl] M.M.M. Jaradat and B.M.N. Alzaleq, The Cycle-Complete Graph Ramsey Num-
ber r.C8;K8/, SUT Journal of Mathematics, 43 (2007) 85–98.

[JarBa] M.M.M. Jaradat and A.M.M. Baniabedalruhman, The Cycle-Complete Graph
Ramsey Number r.C8;K7/, International Journal of Pure and Applied Mathe-
matics, 41 (2007) 667–677.

[JR1] C.J. Jayawardene and C.C. Rousseau, An Upper Bound for the Ramsey Number
of a Quadrilateral versus a Complete Graph on Seven Vertices, Congressus Nu-
merantium, 130 (1998) 175–188.

[JR2] C.J. Jayawardene and C.C. Rousseau, Ramsey Numbers r.C6; G/ for All Graphs
G of Order Less than Six, Congressus Numerantium, 136 (1999) 147–159.

[JR3] C.J. Jayawardene and C.C. Rousseau, The Ramsey Numbers for a Quadrilateral
vs. All Graphs on Six Vertices, Journal of Combinatorial Mathematics and Com-
binatorial Computing, 35 (2000) 71–87. Erratum in 51 (2004) 221.

[JR4] C.J. Jayawardene and C.C. Rousseau, Ramsey Numbers r(C5 , G) for All Graphs
G of Order Six, Ars Combinatoria, 57 (2000) 163–173.

[JR5] C.J. Jayawardene and C.C. Rousseau, The Ramsey Number for a Cycle of Length
Five vs. a Complete Graph of Order Six, Journal of Graph Theory, 35 (2000)
99–108.

[Ka2]* J.G. Kalbfleisch, Chromatic Graphs and Ramsey’s Theorem, Ph.D. thesis,
University of Waterloo, January 1966.

[KáRos] G. Károlyi and V. Rosta, Generalized and Geometric Ramsey Numbers for Cycles,
Theoretical Computer Science, 263 (2001) 87–98.
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Andrzej Dudek and Vojtěch Rödl�

1 Introduction

In 1930, Frank Ramsey published a seminal paper “On a problem of formal
logic” [13] beginning a new area of research known today as Ramsey theory (for a
comprehensive introduction to Ramsey theory see, e.g., [9]). In particular, Ramsey
proved that for given integers t and u there is an integer n such that any blue–red
coloring of the edges of the complete graph Kn yields either a blue copy of Kt or
a red copy of Ku. Such smallest integer n is denoted by R.t; u/. In other words,
R.t; u/ is the smallest integer n such that every Kt -free graph of order n contains
an independent set of size u, or equivalently, it contains a u-subset of vertices with
no K2. One can consider a more general problem replacing K2 by Ks for some
2 � s < t . Following this approach in 1962 Erdős and Rogers [7] introduced the
following function. For fixed integers 2 � s < t let

fs;t .n/ D min
˚

maxfjS j W S � V.H/ and HŒS� contains no Ksg
�
;

where the minimum is taken over all Kt -free graphs H of order n. (As a matter of
fact a variation of this function was already considered by Erdős and Gallai [6].) We
comment first on the meaning of l � fs;t .n/ < u. To prove the lower bound it means
to show that every Kt -free graph of order n contains a subset of l vertices with no
copy ofKs. To prove the upper bound it requires the construction of aKt -free graph
of order n such that every subset of u vertices contains a copy of Ks.
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As we have just seen, the problem of determining fs;t .n/ extends that of deter-
mining Ramsey numbers. More precisely,

R.t; u/ D minfn W f2;t .n/ � ug:
Therefore, the problem of determining the precise value of fs;t .n/ for 2 � s < t

is rather hopeless. In addition, this function has attracted a considerable amount of
attention and has been studied by several researchers.

In this paper, we review both old and recent results on function fs;t .n/.

2 The Most Restrictive Case

In this section we consider the case when t D s C 1. Erdős and Rogers [7] proved
using a probabilistic argument that

fs;sC1.n/ � O
�
n1�1=O.s4 log s/

�
: (1)

Their proof is based on the concentration of measure phenomenon in the high-
dimensional sphere. A similar idea was also used by Alon and Krivelevich [1]
who gave an elegant construction of a KsC1-free graph such that every subset of
O
�
n1�1=O.s4 log s/

�
vertices contains a copy of Ks (see Sect. 2.1 for details).

Bollobás and Hind [2] improved (1) showing that for any " > 0 and s � 3,

fs;sC1.n/ � O
�
n1�..sC3/=..s�2/.sC1///C"

�
: (2)

Moreover, they gave the first lower bound showing that for s � 2,

�
�
n1=2

� � fs;sC1.n/: (3)

Subsequently, Krivelevich [10, 11] improved the previous bounds and showed that

�
�
n1=2.log logn/1=2

� � fs;sC1.n/ � O
�
n1�.2=.sC2//.logn/1=.s�1/

�
: (4)

Summarizing the previous results one can see that the best bounds have essen-
tially been of the form

�
�
n1=2Co.1/

� � fs;sC1.n/ � O
�
n1��.s/

�
;

where �.s/ tends to zero as s goes to infinity. This raised the following question
asked by Krivelevich [10] and later by Sudakov [14, 15]. Is it true that for every
0 < ı < 1 and s sufficiently large fs;sC1.n/ is greater than n1�ı ? We showed in [4]
that this is not the case proving that for every fixed integer s � 2,

fs;sC1.n/ � O
�
n2=3

�
: (5)

In the next sections we present proofs of (1), (3), and (5).
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2.1 Proof of fs,sC1(n) � O
�
n

1�1=O.s4log s/�
[1]

We start with notation. For two vectors Nx D .x1; : : : ; xk/ and Ny D .y1; : : : ; yk/ of
integers we define the Hamming distance between Nx and Ny as,

d. Nx; Ny/ D ˇ̌fi W xi ¤ yi and 1 � i � kgˇ̌:

Moreover, for a nonempty subsetU � Œs�k and a vector Nx 2 Œs�k denote the distance
between Nx and U as

d. Nx;U / D minfd. Nx; Ny/ W Ny 2 U g:
Finally, for a given ı > 0 define the ı-neighborhood U.ı/ of a nonempty subset
U � Œs�k as

U.ı/ D f Nx 2 Œs�k W d. Nx;U / � ıg:
Now we construct a graph H D .V;E/ as follows. Let s � 2 be a fixed integer

and let k be a sufficiently large positive integer (in particular k � s). Let

V D Œs�k and E D
(

f Nx; Nyg 2 V 2 W d. Nx; Ny/ > k
 

1 � 1=
 
s C 1
2

!!)

:

First we show that H is a KsC1-free graph. Assume by contradiction that there are
Nx1; : : : ; NxsC1 2 V such that HŒf Nx1; : : : ; NxsC1g� D KsC1; i.e.,

d. Nxi ; Nxj / > k

 

1 � 1=
 
s C 1
2

!!

(6)

for every 1 � i ¤ j � s C 1. Since every coordinate can attain only s distinct
values we infer that for every coordinate h, 1 � h � k, there is a pair of vertices
in KsC1 having the same value of the hth coordinate. Thus,

X

1�i<j �sC1

d. Nxi ; Nxj / � k
 
s C 1
2

!

� k D
 
s C 1
2

! 

k � k=
 
s C 1
2

!!

;

and consequently, there is a pair Nxi , Nxj of vertices of KsC1 such that d. Nxi ; Nxj / �
k � k=�sC1

2

�
which contradicts (6).

It remains to show that every sufficiently large subset of vertices of H contains
a copy of Ks. First we show that every sufficiently large subset of vertices of H
contains an s-simplex defined as follows. An s-simplex is an s-subset f Nx1; : : : ; Nxsg
of vertices V so that

d. Nxi ; Nxj / D k for every 1 � i ¤ j � s: (7)

For simplicity we also endow V with the normalized counting measure P (which
can be also viewed as the probability measure) defined asP.A/ D jAj=jV j for every
A � V .
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Proposition 2.1. If V0 � V andP.V0/ > .s � 1/=s, then V0 contains an s-simplex.

Proof. By symmetry, every vertex of V belongs to the same number of s-simplices.
Clearly, if an s-simplex S is not in V0, then at least one vertex of S is not in V0.
Hence, choosing randomly and uniformly a simplex S among all s-simplices in V
we infer that

P.S ª V0/ � s jV j � jV0j
jV j D s.1 � P.V0// < s

�
1 � s � 1

s

�
D 1;

and thus, there is an s-simplex S in V0. ut
In order to finish the proof we need the following isoperimetric inequality. For

the proof see, e.g., Lemma 3.3 in [1] or Proposition 7.12 in [12].

Proposition 2.2. For c > 0 define ı.c/ D dpk.p.log s/=2C c/e. If U � V and
P.U / � exp.�2c2/, then P.U.ı// > .s � 1/=s.
Let

c D
p
k

2
�

sC1
2

� �
p
.log s/=2� 1 D

p
k

2
�

sC1
2

� .1C o.1//; (8)

where o.1/ tends to zero as k tends to infinity. Note that

ı.c/ D
lp

k.
p
.log s/=2C c/

m
D
l
k=2

�
sC1

2

� �
p
k
m
<

k

2
�

sC1
2

� �
p
k C 1: (9)

Recall that jV j D sk and so by (8)

exp.�2c2/ D jV j�2c2 log
jV j

e D jV j�.2c2=.log jV j// D jV j�.2c2=.k log s//

D jV j�..2Co.1//=.s2.sC1/2 log s//:

We show that every subset U � V of size

jU j D jV j exp.�2c2/ D jV j1�..2Co.1//=.s2.sC1/2 log s//

contains a copy of Ks. Indeed, if P.U / � exp.�2c2/, then by Proposition 2.2
P.U.ı// > .s � 1/=s, where ı D dpk.p.log s/=2Cc/e. Hence, by Proposition 2.1
(applied to V0 D U.ı/) the set U.ı/ contains an s-simplex S (cf. (7)). Let
Nx1; : : : ; Nxs 2 U.ı/ be its vertices. It remains to show that the set U induces a
copy of Ks.

It follows from the definition of U.ı/ that for every Nxi there is Nyi 2 U such that

d. Nxi ; Nyi / � ı; (10)

where i D 1; : : : ; s. Let 1 � i ¤ j � s. Then, by the triangle inequality

d. Nxi ; Nxj / � d. Nxi ; Nyi /C d. Nyi ; Nxj / � d. Nxi ; Nyi /C d. Nyi ; Nyj /C d. Nyj ; Nxj /;
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and consequently by (10),

d. Nxi ; Nxj / � d. Nyi ; Nyj /C 2ı:
Hence, since d. Nxi ; Nxj / D k and by (9) 2ı < k=

�
sC1

2

� � 2pk C 2 < k=�sC1
2

�
,

d. Nyi ; Nyj / � d. Nxi ; Nxj /� 2ı > k � k=�sC1
2

�
:

That means that the vertices Ny1; : : : ; Nys 2 U form a copy ofKs in H .

This completes the proof of (1).

2.2 Proof of �
�
n

1
2
� � fs,sC1.n/ for s � 2 [2]

We show that for any s � 2 and n large enough

b..s � 1/n/1=2c � fs;sC1.n/: (11)

Let G be a KsC1-free graph of order n. We are going to show that G contains
a set of b..s � 1/n/1=2c vertices with no copy of Ks. Let v be a vertex of maxi-
mal degree and let W be the set of neighbors of v. Clearly, GŒW � is Ks-free, and
hence, if jW j � b..s � 1/n/1=2c then we are done. Therefore, we may assume that
jW j < b..s � 1/n/1=2c. Consequently, the chromatic number of G satisfies

�.G/ � jW j C 1 � b..s � 1/n/1=2c: (12)

Let W1; : : : ;Ws�1 be color classes in a �.G/-vertex-coloring of G such that
jW1 [ � � � [Ws�1j is maximal. Clearly GŒW1 [ � � � [ Ws�1� is Ks-free. More-
over, by (12),

jW1 [ � � � [Ws�1j � .s � 1/ n

�.G/
� b..s � 1/n/1=2c;

and hence, (11) holds, as required.

2.3 Proof of fs,sC1(n) � O
�
n2=3

�
for s � 2 [4]

The main idea we employ here is similar to an approach taken in [3].
First we recall some basic properties of generalized quadrangles. A generalized

quadrangle Q.4; q/ is an incidence structure on a set P of points and a set L of
lines such that:

(Q1) Any two points lie in at most one line.
(Q2) If u is a point not on a line L, then there is a unique point w 2 L collinear

with u, and hence, no three lines form a triangle.
(Q3) Every line contains q C 1 points, and every point lies on q C 1 lines.
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It is known that for every prime power q such an incidence structureQ.4; q/ exists
with jP j D jLj D q3 C q2 C q C 1. For more information about generalized
quadrangles see [8, 16].

Fix an integer s � 2. For everymwe are going to construct aKsC1-free graphH
of order ‚.m3/ such that any induced subgraph of order bjV.H/j=mc contains a
copy of Ks. Thus, setting n D .cm/3, c D c.s/, implies

bjV.H/j=mc � c3m2 D cn2=3;

and consequently, (5) holds.
By Bertrand’s postulate there is a prime number q such that

s2m � q C 1 � 2s2m:

Let Q.4; q/ be a generalized quadrangle with a set P of points and a set L of lines.
We construct a “random graph”H with vertex set P . Clearly,

jV.H/j D jP j D q3 C q2 C q C 1 D ‚.m3/:

First, we partition every line L 2 L into s sets of the same size ` (for simplicity, we
assume that s divides q C 1), hence

` D q C 1
s
� sm: (13)

More precisely, for each line L we choose one ordered partition

L D
s[

iD1

Li

satisfying jL1j D � � � D jLsj D ` randomly and uniformly from the set of all such
partitions. Now we join every u 2 Li and w 2 Lj , 1 � i < j � s, by an edge
obtaining a complete s-partite graph of order s`. Note that by (Q1) every edge is
determined by a unique line. Moreover, condition (Q2) yields that H contains no
clique of size sC1. We show that in some such graphH (randomly chosen from the
space of such graphs) every set U � V.H/, jU j D bjP j=mc D ‚.m2/, contains a
copy of Ks.

For U � V.H/ with cardinality jU j D bjP j=mc let A.U / be the event that Ks

is not a subgraph of HŒU �. Clearly, A.U / implies A.L \ U / for each L2L. Con-
sequently,

A.U / �
\

L2L
A.L \ U /;

and since all events A.L \ U / are independent,

Pr.A.U // �
Y

L2L
Pr.A.L \ U //: (14)
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For a fixed line L 2 L we bound from above the probability that A.L\U / occurs.
Let L D Ss

iD1Li be a partition of L. Note that if A.L \ U / happens then for
some i , 1 � i � s, Li \U D ;; i.e., Li and U are disjoint. Let jU \Lj D uL. The
probability that for a fixed i , 1 � i � s, U \ Li D ; equals the probability that for
a fixed partition L DSs

iD1Li a randomly chosen subset T with jT j D uL satisfies
T \ Li D ;. Hence,

Pr.A.L \ U // � s
�

qC1�`
uL

�

�
qC1
uL

� � s
�
q C 1 � `
q C 1

�uL

� s exp

�
� `uL

q C 1
�
:

Consequently, (14) yields,

Pr.A.U // � sjLjexp

 

� `

q C 1
X

L2L
uL

!

:

Moreover, since every point in U belongs to exactly q C 1 lines,

X

L2L
uL D

X

L2L
jU \ Lj D jU j.q C 1/:

Hence,
Pr.A.U // � sjLjexp .�`jU j/ D sjP jexp .�`jU j/:

This implies that

Pr

 
[

U

A.U /
!

�
 
jP j

bjP j=mc

!

sjP jexp .�`jU j/ � .em/jP j=msjP jexp .�`jU j/;

where the union is taken over all subsets U � V.H/ with cardinality bjP j=mc.
Finally, note that by (13) `jU j � smbjP j=mc � .99=100/sjP j, and hence,

Pr

 
[

U

A.U /
!

� exp

�
jP j

�
1

m
C logm

m
C log s � 99

100
s

��
;

which tends to zero asm tends to infinity.

This completes the proof of (5).

3 General Bounds

Here we discuss general bounds on fs;t .n/ for any t � s C 1. First observe that for
any t � s C 1,

fs;t .n/ � fs;sC1.n/:
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Consequently, (1), (2), (4), and (5) trivially bound from above fs;t .n/. In particular,
for every t � s C 1,

fs;t .n/ � O
�
n2=3

�
:

Moreover, some of the previous results can be easily generalized. For instance,
Bollobás and Hind [2] showed

�
�
n1=.t�sC1/

� � fs;t .n/:

Subsequently, Krivelevich [10,11] slightly improved this lower bound and also gave
a new general upper bound,

�
�
n1=.t�sC1/.log logn/1�.1=.t�sC1//

� � fs;t .n/ � O
�
ns=.tC1/.logn/1=.s�1/

�
:

(15)

Recently, Sudakov [14, 15] improved the lower bound showing that

�
�
n.s=2t/CO.1=t2/

� � fs;t .n/:

In fact, he showed a more general result. For a fixed s � 3 consider a sequence
fai g1iD3�s defined as ai D 1 for every 3 � s � i � 0; a1 D 3s�4

5s�6
; and 1

ai
D

1C 1
s�1

Pi�1
j Di�.s�1/

1
aj

for every i � 2. Then, for any s � 3 and k � 2,

�
�
nak .s/

�
� fs;sCk.n/: (16)

We found in [3] an explicit formula for ak.s/ in a special case when s � k � 2

showing that
1

ak.s/
D 1C 3s � 2

3s � 4
� s

s � 1
�k�2

:

Consequently, for any s � k � 2,

�
�
n1=.1C..3s�2/=.3s�4//.s=.s�1//k�2/

�
� fs;sCk.n/:

Furthermore, we showed [3] that for any " > 0, k � 1, and sufficiently large s �
s0 D s0."; k/,

fs;sCk.n/ � O
�
n..kC1/=.2kC1//C"

�
: (17)

Consequently, for every " > 0 and sufficiently large integers k � k0 D k0."/ and
s � s0 D s0."; k/,

�
�
n1=2�"

� � fs;sCk.n/ � O
�
n1=2C"

�
: (18)

Below we present the main ideas from the proofs of (16) and (17).
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3.1 Proof of �
�
nak(s)

� � fs,sCk(n) [14, 15]

For simplicity we show a slightly weaker result which was also proved by
Sudakov [14]. We define a new sequence of integers fbig which is easier to handle.
Let s � 4 be a fixed integer and fbig1iD2�s be defined as bi D 1 for every 2 � s �
i � 0 and

1

bi

D 1C 1

s � 1
Xi�1

j Di�.s�1/

1

bj

for every i � 1. It was shown in [14] that for any k � 0,

�
�
nbk

�
� fs;sCk.n/: (19)

Since for all i � 1, bi < ai , (19) is weaker than (16).
In order to prove (19) we need two auxiliary results which we state without proofs

(for details see Lemmas 3.1 and 3.2 in [15]). The first one is the well-known estimate
on the size of maximum independent size in s-uniform hypergraph.

Proposition 3.1. Let H be an s-uniform hypergraph on n vertices with m � �.n/
edges. Then, H contains an independent set of size

˛.H/ � �
 
ns=.s�1/

m1=.s�1/

!

:

The next proposition gives an estimate on the number of edges in an s-uniform
hypergraph. Let H D .V; E/ be a hypergraph and U � V . We denote by NH.U /
the neighborhood of U in H, i.e.,

NH.U / D
n[

E W U � E and E 2 E
o
n U:

Proposition 3.2. Let H D .V; E/ be an s-uniform hypergraph of order n. Then, the
number of edges is bounded by

jE j � O
 

n

s�1Y

uD1

max
U �V; jU jDu

jNH.U /j
!

:

Note that if H is a graph (two-uniform hypergraph) of order n and with m edges,
then Proposition 3.2 suggests the obvious bound m � n�.H/. Moreover, observe
that Proposition 3.2 is tight for complete s-uniform hypergraphs.

The heart of the proof of (19) lies in the following proposition. Denote byN �
G.U /

the set of all common neighbors in G D .V;E/ of vertices from U � V ; that is,

N �
G.U / D fv 2 V W fv; ug 2 E for all u 2 U g n U:
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Proposition 3.3. LetG D .V;E/ be a graph of order n such that each of its cliques
induced by U � V of size u, 1 � u � s � 1, satisfies

jN �
G.U /j < nbkC1=.bkC1�u/: (20)

Then G contains a Ks-free subgraph of order�.nbkC1 /.

Proof. Let H be an s-uniform hypergraph whose vertices are the vertices of G and
whose edges are all copies ofKs inG. Clearly, an independent set in H corresponds
to a Ks-free subgraph in G. Therefore, in order to finish the proof it is enough to
show that

˛.H/ � �.nbkC1 /: (21)

Also observe that
jNH.U /j � jN �

G.U /j (22)

for any subset of vertices U of size at most s � 1 inducing a clique in G. Denote
by m the number of edges of H. Then, Proposition 3.2, (22) and (20) yield,

m � O
 

n

s�1Y

uD1

max
U �V; jU jDu

jNH.U /j
!

� O
 

n

s�1Y

uD1

max
GŒU � is a clique; jU jDu

jN �
G.U /j

!

� O
 

n

s�1Y

uD1

nbkC1=b.kC1�u/

!

D O
�
n1CPs�1

uD1.bkC1=.bkC1�u//
�

D O
�
n1CbkC1

Ps�2
iD0.1=.bk�i //

�
: (23)

We may also assume that m � �.n/. For otherwise, if m � o.n/, then H contains
an independent set of size n�m � n�o.n/ � �.n/. Thus, Proposition 3.1 and (23)
imply that H contains an independent set of size

˛.H/ � �
 
ns=.s�1/

m1=.s�1/

!

� �
�
n1�..bkC1/=.s�1//

Ps�2
iD0.1=.bk�i //

�
:

Finally note that the recurrence relation for sequence fbig yields

bkC1 D 1 � bkC1

s � 1
s�2X

iD0

1

bk�i

:

This completes the proof of (21) and so the proof of Proposition 3.3. ut
Now we are going to prove (19). For a fixed s � 4we show by induction on k � 0

that anyKsCk-free graphG of order n contains aKs-free subgraph of order�.nbk /.
If k D 0, then G itself is Ks-free, and hence, fs;s.n/ D nb0 for b0 D 1. Next

suppose that the statement holds for all k0 � k; i.e., fs;sCk0.n/ � �.nbk0 .s//. We
show that it also holds for kC 1. Let G be a KsC.kC1/-free graph. We need to show
that G contains a subset of�.nbkC1.s// vertices with no copy of Ks.



On the Function of Erdős and Rogers 73

First let us assume that k � s�2. Let U be a subset of vertices ofG which forms
a clique of size 1 � u � s � 1. Then, kC 1� u � 0 and the subgraph of G induced
by N �

G.U / contains no clique of size s C .k C 1 � u/. Hence, if jN �
G.U /j �

nbkC1=bkC1�u , then the inductive hypothesis applied to N �
G.U / yields that

GŒN �
G.U /� contains a Ks-free subgraph of size �.jN �

G.U /jbkC1�u/�� �nbkC1
�
.

Thus, we may assume that (20) holds, and consequently, Proposition 3.3 yields (19).
Now let us suppose that 0 � k < s � 2. Similarly, as in the previous case one

can assume by the inductive hypothesis that jN �
G.U /j < nbkC1=bkC1�u for every

subset U inducing a clique in G, but now only of size 1 � u � k C 1. We show
that this is also true for any k C 1 < u � s � 1. Clearly, every clique induced by
U of size larger than k C 1 contains a subclique induced by U 0 � U of size k C 1.
Since N �

G.U / � N �
G.U

0/ and b�.s�2/ D � � � D b0 D 1, we obtain for jU j D u that
nevertheless

jN �
G.U /j � jN �

G.U
0/j � n..bkC1/=b0/ D nbkC1=.bkC1�u/;

for all k C 1 < u � s � 1. Consequently, we may assume that the assumption of
Proposition 3.3 is satisfied and so (19) holds, as required.

3.2 Sketch of the Proof of fs,sCk(n) � O
�
n((kC1)=(2kC1))C"

�

for s � s0 D s0("; k/ [4]

First we recall some basic properties of projective planes (for more information
see [8, 16]). A projective plane PG.2; q/ is an incidence structure on a set P of
points and a set L of lines such that:

(P1) Any two points lie in a unique line.
(P2) Any two lines meet in a unique point.
(P3) Every line contains q C 1 points, and every point lies on q C 1 lines.

It is known that for every prime power q such an incidence structurePG.2; q/ exists
with jP j D jLj D q2 C q C 1.

Fix an arbitrarily small " > 0 and an integer k� 1. Let s be a fixed and suffi-
ciently large integer depending on " and k only. We show that for every integer m
there exists a graphH of order b.cm/2C.1=k/C2"c, c D c.s/, such that H is KsCk-
free and any subgraph of H induced by a set of cardinality bjV.H/j=mc contains a
copy of Ks. Thus, setting n D .cm/2C.1=k/C2" implies

bjV.H/j=mc � c2C.1=k/C2"m1C.1=k/C2" D cn.kC1C2"k/=.2kC1C2"k/

� cn.kC1=2kC1/C";

and consequently, (17) will hold.
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By Bertrand’s postulate there is a prime number q such that

m1C.1=2k/C" � q C 1 � 2m1C.1=2k/C":

Let PG.2; q/ be a projective plane with a set P of points and a set L of lines. We
construct a “random graph”H with the vertex set P . Clearly,

jV.H/j D jP j D q2 C q C 1 D ‚.m2C.1=k/C2"/:

We partition every line L 2 L into s C 1 sets

L D
s[

iD0

Li ; (24)

randomly and uniformly from the set of all partitions (24) satisfying

jL1j D � � � D jLs j D ` D sm and jL0j D q C 1 � s`:
Observe that jL0j � Ss

iD1 jLi j as m tends to infinity. The edges of H are all pairs
fu;wg, where u 2 Li , w 2 Lj and 1 � i < j � s. In other words,

Ss
iD1Li induces

a complete s-partite graph of order s`, which we denote by Ks.L/. The edge set
of H then equals

E.H/ D
[

L2L
Ks.L/:

Note that since every two points from P lie in a unique line the graph H is
well-defined.

Denote by H D H."; k; s; q/ the space of all such graphsH . Note that

jHj D
  
q C 1
`

! 
q C 1 � `

`

!

: : :

 
q C 1 � .s � 1/`

`

!!jLj

D
�

.q C 1/Š
.`Š/s.q C 1 � s`/Š

�jLj
:

One can show that a graphH randomly chosen from the space H has the following
properties:

(i) Every set U � V.H/, jU j D bjP j=mc D ‚.m1C.1=k/C2"/, induces in H a
subgraph containing a copy of Ks.

(ii) H is KsCk-free.

The proof of property (i) is similar to the proof from Sect. 2.3. The proof of (ii) is
more technical and so we also skip it (for details see Theorem 1.2 in [4]).
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4 Concluding Remarks

In this paper we presented the current stage of research on function fs;t .n/. In [5]
Erdős asked to estimate fs;t .n/ as accurately as possible. In particular, he conjec-
tured the following.

Conjecture 4.1 (Erdős [5]). For s C 1 < t ,

lim
n!1

fsC1;t .n/

fs;t .n/
D 1:

Sudakov [14] showed that this conjecture holds for

.s; t/ 2 f.2; 4/; .2; 5/; .2; 6/; .2; 7/; .2; 8/; .3; 6/g:
Indeed, by (3) we obtain that f3;4.n/ � �.n1=2/ and by (16) we get f3;5.n/ �
�.n5=12/; f3;6.n/ � �.n10=31/; f3;7.n/ � �.n4=15/; f3;8.n/ � �.n40=177/,
and f4;6 � �.n4=9/. On the other hand, (15) implies f2;4.n/ � O.n2=5 logn/;
f2;5.n/ � O.n2=6 logn/; f2;6.n/ � O.n2=7 logn/; f2;7.n/ � O.n2=8 logn/;
f2;8.n/ � O.n2=9 logn/, and f3;6.n/ � O.n3=7.logn/1=2/, which imply Sudakov’s
result.

Motivated by (3), (5), and (18) we state another conjecture.

Conjecture 4.2. For every " > 0 and s large enough,

fs;sC1.n/ � O.n.1=2/C"/:

In view of (4), if Conjecture 4.2 holds then it is best possible.
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Large Monochromatic Components in Edge
Colorings of Graphs: A Survey

András Gyárfás

1 Introduction

The aim of this survey is to summarize an area of combinatorics that lies on the
border of several areas: Ramsey theory, resolvable block designs, factorizations,
fractional matchings and coverings, and partition covers. Unless stated otherwise,
coloring means edge colorings of graphs; an r-coloring is an assignment of elements
of f1; 2; : : : ; rg to the edges.

1.1 A Remark of Erdős and Rado and Its Extension

A very simple statement – the leitmotif of the survey – is a remark of Erdős and
Rado. It can be phrased in different ways.

Proposition 1.1. The following statements are equivalent:

� Either a graph or its complement is connected.
� Every 2-colored complete graph has a monochromatic spanning tree.
� If two partitions are given on a ground set such that each pair of elements is

covered by some block of the partitions then one of the partitions is trivial, i.e.,
has only one block.

� Pairwise intersecting edges of a bipartite multigraph have a common vertex.

The first two statements are clearly equivalent. The equivalence of the third
and fourth follows through duality: the blocks of the two partitions (through
duality) become the two partite sets of the bipartite graph and the vertices become
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(possibly multi-)edges. The equivalence of the second and third statements comes
from considering the correspondence of blocks of the two partitions with the com-
ponents of the two colored subgraphs in the 2-coloring of the edges of a complete
graph.

Any of the (equivalent) statements formulated in Proposition 1.1 can be proved
immediately; in Sect. 2 we overview many extensions of it. Several natural ques-
tions arise: can one say more about the monochromatic spanning tree guaranteed
by Proposition 1.1; may connectivity be replaced by stronger properties, such as
small diameter, higher connectivity (or both). These are discussed in Sect. 2.1.
Another important extension is surveyed in Sect. 2.2 when 2-colorings are replaced
by Gallai-colorings; these are colorings where the number of colors is not restricted
but the requirement is that there is no multicolored (rainbow) triangle in the color-
ings. It turned out that many results that hold for 2-colorings have extensions, or
even “black-box” extensions, to Gallai-colorings as well.

A separate section, Sect. 3, is devoted to r-colorings. The problem was suggested
in [24] and the case r D 3 was solved there; a minor inaccuracy was corrected in [1].
The problem was rediscovered in [5]. The general result for r colors was proved in
[25]. It extends Proposition 1.1 as follows.

Theorem 1.2 ([25]). The following equivalent statements are true:

� In every r-coloring of Kn there is a monochromatic component with at least
n=.r � 1/ vertices.

� If r partitions are given on a ground set of n elements such that each pair of
elements is covered by some block of the partitions then one of the partitions has
a block of size at least n=.r � 1/.

� If an intersecting r-partite (multi)hypergraph has n edges then it has a vertex of
degree at least n=.r � 1/ (intersecting means that any two edges have a vertex
in common).

The equivalence of statements in Theorem 1.2 follows the same way as in
Proposition 1.1 and can be proved by two different proof techniques shown in
Sects. 3.1 and 3.2. The next subsection gives an important construction showing
that Theorem 1.2 is close to best possible.

1.2 Colorings from Affine Planes

Consider an affine plane of order r � 1 that is r partitions of a ground set V; jV j D
.r � 1/2 into blocks of size r � 1 so that each pair of elements of V is covered by a
unique block. (If r�1 is a prime power, affine planes indeed exist.) There is a natural
way to color the edges of a complete graph with vertex set V : for i D 1; 2; : : : ; r

color the pairs within the blocks of the i th partition class with color i . For example,
for r D 3 we obtain the 3-coloring of K4 (a factorization), for r D 4 we obtain
the 4-coloring of K9 where each color class is the union of three vertex disjoint
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triangles. In general, this coloring is an example showing that Theorem 1.2 holds
with equality: every monochromatic connected component has jV j=.r � 1/ D r�1

vertices. Further cases of equality are discussed in the next subsection.

1.3 Extending Colorings by Substitutions

A useful way of extending a coloring of a complete graph is to substitute colored
complete graphs to its vertices so that the edges between the substituted parts retain
their original colors.

In the r-coloring described above, the cardinality of the vertex set is fixed: jV j D
.r � 1/2. One can easily extend it by substituting complete graphs – usually with
arbitrary colorings – into all vertices. For example, to see that Theorem 1.2 is sharp
for n D k.r � 1/2 (and when affine plane of order r � 1 exists) just substitute
arbitrarily r-colored complete graphs on k vertices into the coloring defined in the
previous subsection. If n ¤ k.r � 1/2 then more subtle substitutions still can be
used, these problems are explored in Sect. 3.3.

The colorings defined here and in the previous subsection work only when affine
planes exist. On the other hand, if they do not exist then a result of Füredi [21] im-
mediately implies that Theorem 1.2 can be improved (see Sect. 3.2 for more details).

Theorem 1.3. Suppose that affine planes of order r � 1 do not exist. Then in every
r-coloring of Kn there is a monochromatic component with at least n.r�1/=r.r�2/

vertices.

The first case when Theorem 1.3 applies is r D 7.

Problem 1.4. Let f .n/ be the cardinality of the largest monochromatic component
that must occur in every 7-coloring of Kn. Then, from the previous results, the
asymptotic of f .n/ is between 6n=35 and 7n=35. Improve these bounds!

The asymptotic of f .n/ in Problem 1.4 would follow from Füredi’s problem
([22], Problem 4.6): to find ˛ where

˛ D maxf��.H/ W H is intersecting 7-partite hypergraphg:
In fact, f .n/ � n=˛; see Sect. 3.2.

2 2-Colorings

2.1 Type of Spanning Trees, Connectivity, Diameter

Looking at the first form of Proposition 1.1, it is natural to ask what kind of
monochromatic spanning trees can be found in every 2-coloring of a complete
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graph. Bialostocki, Dierker, and Voxman [3] suggested three types: trees of height
at most two; trees obtained by subdividing the edges of a star with k edges
(a k-octopu s); and trees obtained by identifying an endpoint of a path with the
center of a star (a broom).

Theorem 2.1 ([3]). In every 2-coloring of Kn there exists a monochromatic span-
ning k-octopus with k � d.n � 1/=2e and also a monochromatic spanning tree of
height at most two.

The third suggested type, the broom, remained a conjecture until Burr found a
proof. Unfortunately Burr’s manuscript [11] was not published (although general-
izations [16,31] appeared), so it is doubly justified to reproduce Burr’s “book-proof”
here.

Theorem 2.2 ([11]). In every 2-coloring of Kn there exists a monochromatic span-
ning broom.

Proof. Assume w.l.o.g. that in a red–blue coloring of a complete graph, the red
graph is k-connected and the blue graph is at most k connected. Then the blue graph
becomes disconnected after the deletion of a set X of at most k vertices. Since the
red graph is k-connected, by a theorem of Dirac (see [43], Exercise 6.66) X can be
covered by a red cycle (an edge if k D 1). Thus the vertex set of Kn can be covered
by a red cycle C and a red complete bipartite graph G D ŒA; B�. Observe that a
complete bipartite graph always has a spanning broom such that its starting point
is arbitrary. Therefore covering C with a red path then continuing in the complete
bipartite graph ŒA n C; B n C � we can find a red broom. ut

Concerning the diameter of a monochromatic connected spanning subgraph, the
following result is folkloristic (forgive me if I missed further references).

Theorem 2.3 ([3, 45, 49]). In every 2-coloring of a complete graph there is a
monochromatic spanning subgraph of diameter at most three.

Proof. If vertices u; v are at a distance at least three in red then uv is blue and every
other vertex w is adjacent to at least one of u; v in blue. Thus there is a spanning
double star in blue. ut

How large is the largest monochromatic piece of diameter two? The following
coloring shows that one cannot expect more than 3n=4. Start with the 2-coloring of
K4 where both color classes form a P4. Substitute nearly equal vertex sets into this
coloring to get a total of n vertices. Erdős and Fowler [14] proved that this example
is best possible.

Theorem 2.4 ([14]). In every 2-coloring of Kn there is a monochromatic subgraph
of diameter at most two with at least 3n=4 vertices.

The proof of Theorem 2.4 is difficult. A weaker result (also best possible) with a
very simple proof is the following.
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Theorem 2.5 ([26]). In every 2-coloring of Kn there is a color, say red, and a set
W of at least 3n=4 vertices such that any pair of points in W can be connected by
a red path of length at most two.

Another natural question is the maximum order of a monochromatic k-connected
subgraph in 2-colorings of Kn. This question was introduced in [9] and further elab-
orated in [41, 42].

Example. Let B be the 2-colored complete graph on vertex set Œ5� with red edges
12; 23; 34; 25; 35 and with the other edges blue. (Both color classes form a “bull”.)
Assuming that n > 4.k� 1/; k � 2, let B.n; k/ be a 2-colored complete graph with
n vertices obtained by replacing vertices 1; 2; 3; 4 in B by arbitrary 2-colored com-
plete graphs of k � 1 vertices and replacing vertex 5 in B by a 2-colored complete
graph of n � 4.k � 1/ vertices. All edges between the replaced parts retain their
original colors from B . Note that B.n; k/ denotes a member of a rather large family
of graphs. The definition of B.n; k/ is used in the case n D 4.k � 1/ as well, but
in this case vertices 1, 4 (2, 3) of B are replaced by red (blue) complete subgraphs
(and vertex 5 is deleted). Thus in this case we have just one graph for each k, which
we denote by B.k/. Observe that the color classes of B.k/ form isomorphic graphs
and there is no monochromatic k-connected subgraph in B.k/.

It is easy to check that in B.n; k/ the maximal order of a k-connected monochro-
matic subgraph is n � 2.k � 1/. It is conceivable that each B.n; k/ is an optimal
example for every k; i.e., the following assertion is true.

Conjecture 2.6 ([9]). For n > 4.k � 1/, every 2-colored Kn has a k-connected
monochromatic subgraph with at least n � 2.k � 1/ vertices.

For k D 2 it is easy to prove the conjecture.

Theorem 2.7 ([9]). For n � 5 there is a monochromatic 2-connected subgraph
with at least n � 2 vertices in every 2-coloring of Kn.

Proof. Every 2-coloring of K5 contains a monochromatic cycle. Proceeding by in-
duction, let (w.l.o.g.) H be a 2-connected red subgraph with n � 3 vertices in a
2-coloring of Kn. If some vertex of W D V.Kn/ n V.H/ sends at least two red
edges to H then we have a 2-connected red subgraph with n�2 vertices. Otherwise
the blue edges between V.H/ and W determine a 2-connected blue subgraph of at
least n�2 vertices (either a blue K2;n�4 or a blue K3;n�3 from which three pairwise
disjoint edges are removed). ut

Conjecture 2.6 was answered positively in [42] for k D 3 and for n � 13k. In [9]
it was remarked that it is enough to prove the conjecture for 4.k� 1/ < n < 7k� 5.
Another related conjecture – the graph B.k/ shows that it is sharp if true – is the
following.

Conjecture 2.8 ([9]). Every 2-colored Kn contains a monochromatic subgraph that
is at least (n=4)-connected.
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The following result was needed as a lemma in [36]. It shows that high
connectivity and small diameter can be simultaneously required for monochro-
matic subgraphs with order close to n.

Theorem 2.9 ([36]). For every k and for every 2-colored Kn there exists W �
V.Kn/ and a color such that jW j � n � 28k and any two vertices in W can be
connected in that color by k internally vertex disjoint paths, each with length at
most three.

Notice that the paths connecting vertices of W in Theorem 2.9 may leave W ,
as in Theorem 2.5. Probably Theorem 2.9 can be strengthened, as Theorem 2.4
strengthens Theorem 2.5.

Problem 2.10. Is it possible to strengthen Theorem 2.9 by requiring that the
monochromatic paths connecting the pairs of W are completely within W ?

2.2 Gallai-Colorings: Substitutions to 2-Colorings

Edge colorings of complete graphs in which no triangles are colored with three
distinct colors are called Gallai-colorings in [31]. These colorings are very close to
2-colorings as the following decomposition theorem shows. This result is implicit
in Gallai’s seminal paper [23] and was refined in [12]. The form below is from [31].

Theorem 2.11. Every Gallai-coloring can be obtained from a 2-colored complete
graph with at least two vertices by substituting Gallai-colored complete graphs into
its vertices.

Theorem 2.11 is a natural tool to extend results from 2-colorings to Gallai-
colorings. In [31] several results were extended, most notably Burr’s theorem (see
Theorem 2.16). Certain properties are not extendible though; there is obviously a
monochromatic star with at least ..n � 1/=2/ C 1 vertices in every 2-coloring of
Kn but this does not extend to Gallai-colorings. Substituting almost equal green
complete graphs into the vertices of a 2-colored K5 in which the red and blue colors
form pentagons, we get a Gallai-coloring that shows that the following result is
almost sharp (for n D 5k C 2 one can be added).

Theorem 2.12 ([31]). In every Gallai-coloring of Kn there is a monochromatic
star with at least 2n=5 edges.

In [35] a method was devised that can extend a result from 2-colorings to Gallai-
colorings. It works for certain classes of graphs and when it works it provides a
“black-box” extension; i.e., one does not need to know the (occasionally very dif-
ficult) proof of the 2-coloring result. To define those classes, a family F of finite
connected graphs was called Gallai-extendible in [35] if contains all stars and if for
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all F 2 F and for all proper nonempty U � V.F / the graph F 0 D F 0.U / defined
as follows is also in F :

� V.F 0/ D V.F /.
� E.F 0/ D E.F / n fuv W u; v 2 U g [ fux W u 2 U; x … U; vx 2 E.F / for some

v 2 U g.
Theorem 2.13 ([35]). Suppose that F is a Gallai-extendible family, and that there
exists a function f W N ! N such that for every n and for every 2-coloring of Kn

there is a monochromatic F 2 F with jV.F /j � f .n/.
Then, for every n and every Gallai-coloring of Kn there exists a monochromatic

F 0 2 F such that jV.F 0/j � f .n/ – with the same function f.

As shown in [35], graphs with spanning trees of height at most h � 2, graphs of
diameter at most d for each d > 1, and graphs having a spanning double star are all
Gallai-extendible. Therefore Theorems 2.3, 2.4, and Corollary 4.6 have black-box
extensions to Gallai-colorings.

Theorem 2.14 ([35]). In every Gallai-coloring of Kn one can find monochromatic
spanning trees of height at most two, monochromatic double stars and monochro-
matic diameter two subgraphs with at least 3n=4 vertices.

Graphs having a spanning complete bipartite subgraphs are also Gallai-
extendible, therefore we have the following.

Theorem 2.15 ([35]). Every Gallai-colored Kn contains a monochromatic com-
plete bipartite subgraph with at least d.nC 1/=2e vertices.

There are cases when Theorem 2.13 is not applicable (at least directly): brooms
(or graphs having spanning brooms) are not Gallai-extendible, however, Theorem
2.2 remains true for Gallai-colorings as shown in [31] (conjectured by Bialostocki
in [3]).

Theorem 2.16 ([31]). In every Gallai-coloring of Kn there exists a monochromatic
spanning broom.

3 Multicolorings: Basic Results and Proof Methods

3.1 Complete Bipartite Graphs: Counting Double Stars

Usually Ramsey numbers are larger than the lower bound coming from the corre-
sponding Turán numbers of the graph in the majority color. However, the following
lemma is an exception.

Lemma 3.1 ([25]). In every r-coloring of a complete bipartite graph on n vertices
there is a monochromatic subtree with at least n=r vertices.
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This lemma was obtained in [25] by proving that a majority color class (a color
class with the largest number of edges) always has a subtree with at least n=r ver-
tices. A short proof of this is due to Mubayi [45] and Liu, Morris, and Prince [41].
In fact they prove the following stronger statement: if the edges of the complete
bipartite graph with n vertices are colored with r colors, there is a monochromatic
double star with at least n=r vertices. A double star is a tree obtained by joining the
centers of two disjoint stars by an edge.

Lemma 3.2 ([41, 45]). In every r-coloring of a complete bipartite graph on n ver-
tices there is a monochromatic double star with at least n=r vertices.

Proof. Suppose that G D ŒA; B� is an r-colored complete bipartite graph, let di .v/

denote the degree of v in color i . For any edge ab of color i , a 2 A; b 2 B , set
c.a; b/ D di .a/C di .b/. Using the Cauchy–Schwartz inequality, we get

X
ab2E.G/

c.a; b/ D
X
a2A

rX
iD1

d 2
i .a/C

X
b2B

rX
iD1

d 2
i .b/

� jAjr
�P

a2A

Pr
iD1 di .a/

jAjr
�2

C jBjr
�P

b2B

Pr
iD1 di .b/

jBjr
�2

D jAjjBj
� jAj C jBj

r

�
;

therefore for some a 2 A; b 2 B , c.a; b/ � .jAj C jBj/=r; i.e., there is a
monochromatic double star of the required size. ut

Lemma 3.2 implies Theorem 1.2 in a stronger form.

Corollary 3.3. Suppose that the edges of Kn are colored with r colors. Then either
all color classes have monochromatic spanning trees or there is a monochromatic
double star with at least n=.r � 1/ vertices.

Proof. Indeed, if a color class does not have a spanning tree, there is a complete
bipartite subgraph colored with r � 1 colors and Lemma 3.2 concludes the proof. ut

It is possible that for r � 3 the second conclusion of Corollary 3.3 is always true.
This problem and some results in this direction can be found in Sect. 4.2.

A possible improvement of Lemma 3.1 is suggested in [6].

Conjecture 3.4. If the edges of a complete bipartite graph ŒA; B� are colored with
r colors then there exists a monochromatic subtree with at least djAj=re C djBj=re
vertices.

For 2 � r � 4 Conjecture 3.4 was proved in [6] with an example that shows
that, unlike the case of Lemma 3.1, for r D 5 the conjectured large monochromatic
subgraph is not in the majority color.
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3.2 Fractional Transversals: Füredi’s Method

To present a very powerful method introduced by Füredi, the notion of fractional
covers and matchings is summarized. A fractional transversal of a hypergraph is
a nonnegative weighting on the vertices such that the sum of the weights over any
edge is at least 1. The value of a fractional transversal is the sum of the weights over
all vertices of the hypergraph. Then ��.H/ is the minimum of the values over all
fractional transversals of H. A fractional matching of a hypergraph is a nonnegative
weighting on the edges such that the sum of weights over the edges containing
any fixed vertex is at most 1. The value of a fractional matching is the sum of the
weights over all edges of the hypergraph. Then ��.H/ is the maximum of the values
over all fractional matchings of H. By LP duality, ��.H/ D ��.H/ holds for every
hypergraph H.

Assume that the edges of Kn are r-colored. By Theorem 1.2, to find a monochro-
matic component with at least n=.r � 1/ vertices is equivalent to finding a vertex
of degree at least n=.r � 1/ in an intersecting r-partite multihypergraph H with n

edges. Füredi proved [20] that in such hypergraphs ��.H/ � .r � 1/. Using the
observation that weighting all edges by the reciprocal of the maximum degree of
the hypergraph is a fractional matching with value jE.H/j=D.H/, we get

jE.H/j
D.H/

� ��.H/ D ��.H/ � r � 1; (1)

where D is the maximum degree ofH. Thus we have n=.r � 1/DjE.H/j=.r � 1/�
D.H/.

Notice that the above proof uses the LP duality theorem and this is applicable
in other variants of the problem; see, for example, Sect. 3.5. Moreover, whenever
the nonexistence of affine planes of order r � 1 is known, Füredi [21] improved his
upper bound �� � .r � 1/ by 1=.r � 1/ and this leads to Theorem 1.3.

3.3 Fine Tuning

Theorem 1.2 says that in any r-coloring of Kn there is a monochromatic component
with at least n=.r � 1/ vertices. We have already seen that this is sharp if r � 1 is a
prime power and n is divisible by .r � 1/2. The first case when one can improve on
this (by one) occurs for r D 3 and n D 4k C 2 ([1]). In [6] the order of the largest
monochromatic connected subgraph of Kn has been found for r D 4; 5 and for
all values of n. It turned out that these values depend on the smallest multicover of
affine planes. An i -cover of a hypergraph is a nonnegative integer weight assignment
to the vertices such that the sum of weights on every edge is at least i . The minimum
total weight over all i -covers is the i -cover number of the hypergraph. Let w.i; q/

be defined as the minimum of the i -cover numbers over all affine planes of order q.
(The i -covers of affine planes are also called affine blocking sets.) For example,
a fundamental result of Jamison [10,37] says that 2q�1 points (points on the union
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of two intersecting lines) is the smallest 1-cover of the Desarguesian affine plane.
However, w.1; 9/ < 17 because the Hughes plane of order 9 has a transversal of 16

points [10].
The most general sharp result is obtained by Füredi’s method in [21] (similarly

as explained in Sect. 3.2). In terms of the parameter w.i; q/, it gives a sharp result
whenever the number of colors is one less than a power of prime. The result confirms
a conjecture of Bierbrauer [7]. It is more convenient to use inverse notation here: let
f .D; r/ be the maximum n such that there exists an r-coloring of the edges of
Kn for which the largest monochromatic connected subgraph has no more than D

vertices.

Theorem 3.5 ([21]). Assume that an affine plane of order q exists. Define i for
every D by i D q dD=qe �D where 0 � i < q. Then, for every D � q2 � q,

f .D; q C 1/ D q2

�
D

q

�
� w.i; q/:

3.4 When Both Methods Work: Local Colorings

The analogue of Theorem 1.2 for local r-colorings was obtained in [32]. A local
r-coloring of a complete graph is a coloring where the number of colors incident to
each vertex is at most r . How large is the largest monochromatic connected subgraph
in local r-colorings of Kn?

Let f .n; r/ denote the largest m such that in every local r-coloring of the
edges of Kn there is a monochromatic connected subgraph with m vertices. Clearly
f .n; r/ � n=r � 1 whenever Theorem 1.2 is sharp, because r-colorings are special
local r-colorings. This function has been also defined implicitly in [3], in connec-
tion with mixed Ramsey numbers. In particular, RM.Tn; G/ was defined as the
minimum m such that in any edge coloring of Km there is either a monochromatic
tree on n vertices or a totally multicolored copy of G. The special case when G

is a star was treated in [4]. Since the requirement of forbidding a multicolored star
K1; rC1 is equivalent to local r-colorings, the next result implies the asymptotic
value of RM.Tn; K1;ŠrC1/ (extending the special case r D 2 in [4]).

Theorem 3.6 ([32]). f .n; r/ � rn=.r2 � r C 1/ with equality if a finite plane of
order r � 1 exists and r2 � r C 1 divides n.

The construction for showing that Theorem 3.6 is sharp when indicated is as
follows. Consider the points of a finite plane of order r � 1 as the vertices of a
complete graph, label the lines, and color each pair of vertices by the label of the
line going through it. Then substitute each vertex i by a k-element set Ai so that
the Ai s are pairwise disjoint. The coloring is extended naturally with the proviso
that the edges within Ai s are colored with some color among the colors that were
incident to vertex i . The result is a locally r-colored Kn where n D k.r2�rC1/ and
the largest monochromatic connected subgraph has kr D nr=.r2 � r C 1/ vertices.
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Both methods discussed in Sects. 3.1, and 3.2 can be used to prove Theorem 3.6.
The method of counting double stars can be applied through the following theorem.

Theorem 3.7 ([32]). Assume that the edges of a complete bipartite graph
GD ŒA; B� are colored so that the edges incident to any vertex of A are col-
ored with at most p colors and the edges incident to any vertex of B are colored
with at most q colors. Then there exists a monochromatic double star with at least
jAj=q C jBj=p vertices.

A corollary of Theorem 3.7 is an extension of Lemmas 3.1 and 3.2.

Corollary 3.8 ([32]). In every local r-coloring of a complete bipartite graph G

there exists a monochromatic double star with at least jV.G/j=r vertices.

Proof of Theorem 3.6. If any monochromatic, say red component C satisfies jC j �
rn=.r2 � r C 1/, we have nothing to prove. Otherwise apply Theorem 3.7 for the
complete bipartite graph ŒA; B� D ŒV .C /; V .G/ n V.C /�. The edges incident to
any v 2 A are colored with at most p D r � 1 colors and the edges incident to
any v 2 B are colored with at most q D r colors. Thus, using Theorem 3.7 and
jAj < rn=.r2 � r C 1/, there is a monochromatic component of size at least

jAj=q C jBj=p D jAj
r
C n � jAj

r � 1
D n

r � 1
� jAj

�
1

r � 1
� 1

r

�

> n

�
1

r � 1
� r

r2 � r C 1

�
1

r.r � 1/

��
D rn

r2 � r C 1
: ut

Proof of Theorem 3.7. Let di .v/ denote the degree of v in color i . For any edge
ab of color i , a 2 A; b 2 B , set c.a; b/ D di .a/ C di .b/. Let I.v/ denote the set
of colors on the edges incident to v 2 V.G/. Then, by using the Cauchy–Swartz
inequality and the local coloring conditions, we get
X

ab2E.G/

c.a; b/ D
X
a2A

X
i2I.a/

d 2
i .a/C

X
b2B

X
i2I.b/

d 2
i .b/

� jAjp
 P

a2A

P
i2I.a/ di .a/

jAjp

!2

C jBjq
 P

b2B

P
i2I.b/ di .b/

jBjq

!2

D jAjjBj
� jBj

p
C jAj

q

�
;

therefore for some a 2 A; b 2 B , c.a; b/ � jAj=qCjBj=p. Since the edges incident
to a or b in the color of ab span a monochromatic connected double star with c.a; b/

vertices, Theorem 3.7 follows. ut
The second proof of Theorem 3.6 follows the argument shown in Sect. 3.2.

Assume that the edges of Kn are locally r-colored. Consider the hypergraph H

whose vertices are the vertices of Kn and whose edges are the vertex sets of the con-
nected monochromatic components. In the dual of H , H �, every edge has at most r
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vertices and each pair of edges has a nonempty intersection. Füredi proved [20] that
in such hypergraphs the fractional transversal number, ��.H �/ � r � 1 C .1=r/.
Then, as (1) in Sect. 3.2, we have

jE.H �/j
D.H �/

� ��.H �/ D ��.H �/ � r � 1C 1

r
(2)

where D is the maximum degree of H �. Thus ..r jE.H �/j/=.r2�rC1//�D.H �/.
Noting that jE.H �/j D n and D.H �/ equals the maximum size of an edge in
H (i.e., the maximum size of a connected component in the local r-coloring), the
inequality of Theorem 3.6 follows.

3.5 Hypergraphs

Theorem 1.2 was extended to hypergraphs in [17] as follows. We note here that for
hypergraphs there are several notions of connectivity. Unless stated otherwise we
consider a hypergraph connected if its cover graph – the pairs of vertices that are
covered by at least one edge of the hypergraph – spans a connected graph.

Theorem 3.9 ([17]). In every r-coloring of the edges of the complete t-uniform
hypergraph on n vertices, there is a connected monochromatic subhypergraph on
at least n=q vertices, where q is the smallest integer satisfying r � Pt�1

iD0 qi . The
result is best possible if q is a prime power and n is divisible by qt .

The lower bound of Theorem 3.9 comes from Füredi’s method. Let f .n; r; t/ be
defined as the minimum size of a monochromatic component that must be present
in any r-coloring of the t-sets of an n-element set. Since here hypergraphs are col-
ored instead of graphs, the equivalent formulations of Theorem 1.2 have to be modi-
fied accordingly. Instead of intersecting r-partite (multi)hypergraphs we have t-wise
intersecting (multi)hypergraphs (i.e., hypergraphs in which any t edges have a com-
mon vertex). Then – similarly to the arguments leading to (1) and (2) – one can
estimate f .n; r; t/ as follows.

Lemma 3.10 ([17]). f .n; r; t/ � n=��.r; t/ where

��.r; t/ D maxf��.H/ W H is r-partite, t-wise intersecting hypergraphg:
The example showing that Theorem 3.9 is sharp when stated is a natural exten-

sion of the construction in Sect. 1.2 from affine planes to affine spaces of dimen-
sion t . Consider A.t; q/, the affine space of dimension t and order q, define color
class i by the t-element subsets of points that are within some hyperplane of the
ith parallel class of hyperplanes. This coloring can be extended by substituting sets
for points of A.t; q/ as in Sect. 1.3; in particular, if n D qt m, one can substitute m

vertices to all points of A.t; q/.
It is worth noting that for t D 2 we have r D q C 1 and Theorem 3.9 becomes

Theorem 1.2. For t � 3 there are big gaps in the values of r for which Theorem 3.9
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provides a sharp answer. For example, if t D 3, we get from Theorem 3.9 that for
r � 3 we have a spanning monochromatic connected subhypergraph (i.e., one span-
ning all vertices) and for r D 7 we have one spanning at least n=2 vertices. For four
five, and six colors Theorem 3.9 provides the same lower bound (n=2). The value of
��.4; 3/ was determined in [25] and the values ��.5; 3/; ��.6; 3/ in [29]. Through
Lemma 3.10 it follows that

Theorem 3.11.

f .n; 4; 3/ � 3n

4
Œ25�; f .n; 5; 3/ � 5n

7
; f .n; 6; 3/ � 2n

3
Œ29�:

In fact, Theorem 3.11 is sharp for infinitely many n (when the fractions in the
lower bounds are integers).

4 Multicolorings: Type of Components

It would be interesting to know more about the structure of the largest monochro-
matic components. In the basic extremal colorings (Sect. 1.2) the components are
complete graphs and after substitutions (Sect. 1.3) the components are balanced
complete partite graphs. Thus it is expected that extremal colorings have strong
connectivity properties.

4.1 Components with Large Matching

In Ramsey-type applications, for example, in [19, 30], and others, it turned out that
the problem of finding a large matching in a monochromatic component can be ap-
plied to Ramsey problems concerning paths and cycles. Let g.n; r/ be the maximum
m such that in every r-coloring of Kn there is a monochromatic component with a
matching that covers at least m vertices. There are two natural upper bounds for
g.n; r/. From the constructions showing that Theorem 1.2 is sharp (at least asymp-
totically) it follows that g.n; r/ � n=.r � 1/ for infinitely many n and r . Since the
Ramsey number of matchings was determined long ago by Cockayne and Lorimer
[13], it follows that g.n; r/ � 2n=.r C 1/. The two bounds coincide for r D 3 and
in [30] it was proved that indeed, g.n; 3/ is asymptotic to n=2 and this was a very
important step to determine exactly the three color Ramsey number of paths. The
following is probably a difficult problem (even for r D 4).

Problem 4.1. Is g.n; r/ asymptotic to n=.r � 1/?

The affirmative answer would imply (through the regularity lemma, applying a
principle introduced by Łuczak in [44]) that the r-color Ramsey number of Pn is
asymptotic to .r � 1/n and would probably be useful in many other applications
as well.
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4.2 Double Stars

Another type of component that emerged from the first proof of Theorem 1.2 is the
double star. Corollary 3.3 states that in r-colorings of Kn where at least one color
class is disconnected, there is a monochromatic double star with at least n=.r � 1/

vertices. Perhaps this statement remains true for all colorings.

Problem 4.2. For r � 3, is there a monochromatic double star of size asymptotic
to n=.r � 1/ in every r-coloring of Kn?

However, even the following problem is open.

Problem 4.3. Is there a constant d (perhaps d D 3) such that in every r-coloring
of Kn there is a monochromatic subgraph of diameter at most d with at least
n=.r � 1/ vertices?

For r D 3 the affirmative answer to Problem 4.3 follows from a result of Mubayi.

Theorem 4.4 ([45]). In every 3-coloring of Kn there is a monochromatic subgraph
of diameter at most four with at least n=2 vertices.

The best known estimate for double stars is the following.

Theorem 4.5 ([33]). For r � 2 there is a monochromatic double star with at least
.n.r C 1/C r � 1/=r2 vertices in any r-coloring of the edges of Kn.

Corollary 4.6 ([33]). In every 2-coloring of Kn there is a monochromatic double
star with at least .3nC 1/=4 vertices.

Corollary 4.6 is close to best possible, 2-colorings of Kn where the largest
monochromatic double star is asymptotic to 3n=4 and can be obtained from ran-
dom graphs or from Paley graphs. In [15] the existence of such a 2-coloring was
proved by the random method. However, for r � 3 the random method does not
provide a good upper bound for f .n; r/.

Observing that a double star has diameter at most three, the bound in Theorem 4.5
provides a slight improvement (for r � 3) of the following result of Mubayi.

Theorem 4.7 ([45]). There is a monochromatic subgraph of diameter at most three
with at least n=.r � 1C 1=r/ vertices in every r-coloring of Kn.

5 Variations

We finish the survey by showing some variations of the basic theme in chronological
order.
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5.1 Vertex-Coverings by Components

A well-known conjecture, frequently cited as the Lovász–Ryser conjecture, states
the following extension of Theorem 1.2. It is stated in three forms to parallel
Theorem 1.2. �.H/ denotes the transversal number, the minimum number of ver-
tices needed to intersect all edges of H.

Conjecture 5.1. The following equivalent statements are true:

� In every r-coloring of Kn, V.Kn/ can be covered by the vertex sets of at most
r � 1 monochromatic components.

� If r partitions are given on a ground set of n elements such that each pair of
elements is covered by some block of the partitions then the ground set can be
covered by at most r � 1 blocks.

� For every intersecting r-partite (multi)hypergraphH, �.H/ � r � 1.

Conjecture 5.1 is proved for r � 4 in [25] and for r D 5 in [48]. Related prob-
lems can be found in a recent survey by Kano and Li [38].

5.2 Coloring by Group Elements

Bialostocki and Dierker conjectured that Proposition 1.1 can be generalized as fol-
lows. In every coloring of the edges of KnC1 with colors in Zn D f0; 1; : : : ; n � 1g
there is a spanning tree with color sum zero modulo n (to get Proposition 1.1, use
0; 1 as two colors). The conjecture is proved for n prime in [2] and for general n in
[18], [47]. In fact, the proof of Schriver and Seymour in [47] works for hypergraphs
as well. An r-uniform hypertree T is a connected r-uniform hypergraph with p

edges on p.r � 1/C 1 vertices. Notice that for r D 2 we get the usual definition of
a tree in graphs.

Theorem 5.2 ([47]). Suppose that K is the complete r-uniform hypergraph on
p.r � 1/ C1 vertices and the edges of K are labeled with an Abelian group of
order p. Then K has a spanning hypertree with total weight zero.

5.3 Coloring Geometric Graphs

Following [46], a geometric graph is a graph whose vertices are in the plane in
general position and whose edges are straight-line segments joining the vertices.
A geometric graph is convex if its vertices form a convex polygon. A subgraph of
a geometric graph is noncrossing if no two edges have a common interior point.
Ramsey-type problems for geometric graphs were first studied in [39] and [40]. The
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following result of Károlyi, Pach, and Tóth (a geometric generalization of Proposi-
tion 1.1) was conjectured by Bialostocki and Erdős (see [3] with a proof for convex
geometric graphs).

Theorem 5.3 ([39]). In every 2-coloring of a geometric complete graph there is a
non-crossing monochromatic spanning tree.

Proof. The nice inductive proof of Theorem 5.3 from [39] is as follows. We
may assume that vertices P1; : : : ; Pn of the geometric Kn have strictly increasing
x-coordinates. Set L.i/ D fPj W 1 � j � ig; R.i/ D fPj W i < j � ng. We may
also assume that the edges along the convex hull (meaning, really, the perimeter
of the convex hull) of Kn have the same color, say red, otherwise induction works
by removing a point Pj of the convex hull where two colors meet. Induction also
works if for any i , 2 � i � n � 1, the monochromatic spanning trees in L.i/; R.i/

have the same color. Thus these spanning trees switch colors at each i , moreover for
i D 2 the switch is from red to blue and for i D n�1 the switch is from blue to red,
otherwise a red edge along the convex hull from P1 or from Pn would define red
noncrossing spanning trees. The conclusion is that for some i , 2 � i � n� 2, there
is a red–blue switch at i and blue–red switch at i C 1. Taking a (red) edge along the
convex hull that joins the left (red) tree at i with the right (red) tree at i C 1 results
in a red noncrossing spanning tree. ut

One can ask whether Lemmas 3.1 and 3.2 have geometric versions as well. The
simplest case is when the complete bipartite graph is balanced and drawn with par-
tite sets A D f.1; 0/; .2; 0/; : : : ; .n; 0/g and B D f.1; 1/; .2; 1/; : : : ; .n; 1/g (and the
edge ab is the line segment joining a 2 A and b 2 B in R2). Call this representation
a simple geometric Kn;n.

It is possible that (for two colors) Lemma 3.1 extends to simple geometric Kn;n

(perhaps even for arbitrary drawings of Kn;n).

Problem 5.4 ([27, 28]). In every 2-coloring of a simple geometric Kn;n there is a
noncrossing monochromatic subtree (a caterpillar) with at least n vertices.

However, the stronger result, Lemma 3.2 does not extend but has the following
geometric version.

Theorem 5.5 ([27, 28]). In every 2-coloring of a simple geometric Kn;n there is a
noncrossing monochromatic double star with at least 4n=5 vertices. This bound is
asymptotically best possible.

5.4 Coloring Noncomplete Graphs

Can one extend some of the results above from complete graphs to arbitrary graphs?
Somewhat surprisingly, the answer is yes. Theorem 1.2 can be extended to arbitrary
graphs as follows. Let ˛.G/ denote the cardinality of a largest independent set of G.
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Theorem 5.6. The following equivalent statements are true:

� In every r-coloring of a graph G with n vertices there is a monochromatic com-
ponent with at least n=..r � 1/ ˛ .G// vertices.

� If r partitions are given on a ground set of n elements such that among any ˛C1

elements at least one pair is covered by some block of the partitions then one of
the partitions has a block of size at least n=..r � 1/˛/.

� If an r-partite hypergraph has n edges and among them at most ˛ are pairwise
disjoint then it has a vertex of degree at least n=..r � 1/˛/.

Proof. The equivalence of the statements can be proved by the same translation
process as in Theorem 1.2. Their proof is again by Füredi’s method, using his result
in a form that is more general than in the previous applications. Let �.H/ denote the
maximum number of pairwise disjoint edges in a hypergraph H. ut
Theorem 5.7 ([20]). If an r-uniform hypergraph H does not contain a projective
plane of order r � 1 than ��.H/ � .r � 1/�.H/.

To see that the third statement of Theorem 5.6 holds, let H be an r-partite hyper-
graph with n edges and �.H/ � ˛. Since a finite plane of order r � 1 is obviously
not r-partite, Theorem 5.7 applies and – as in previous applications – (1) in Sect. 3.2
and (2) in Sect. 3.4,

jE.H/j
D.H/

� ��.H/ D ��.H/ � .r � 1/˛;

where D is the maximum degree of H. Thus we have

n

.r � 1/˛
D jE.H/j

.r � 1/˛
� D.H/:

ut
Theorem 5.6 may give hope that results mentioned so far for coloring complete

graphs can have (hopefully nice) extensions or at least analogues for coloring graphs
with fixed independence number. It looks as if this area is rather unexplored; almost
all previous results can be the subjects of investigation. The test cases can very well
be graphs with ˛.G/ D 2.

One particular attempt is started in [34] to extend Gallai-colorings to arbitrary
graphs as edge colorings without multicolored triangles. Suppose that we have a
Gallai-coloring of a graph G with ˛.G/ D 2. Let f .n/ be the minimum order of
the largest monochromatic connected subgraph over all such colorings of graphs
with n vertices. Clearly, by looking at the union of two disjoint complete graphs,
f .n/ � n=2. At first sight it is not clear that f .n/ is linear; it turns out [34] that it is,

n

5
� f .n/ � 3n

8

but not with coefficient 1
2

. In general, f .n; ˛/ is within reasonable limits.
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Theorem 5.8 ([34]). .˛2 C ˛ � 1/�1n � f .n; ˛/ � .cn log ˛/=˛2

The following quick proof of the linearity of f .n/ (with a coefficient weaker than
in Theorem 5.8) points to a far-reaching generalization. Let G be a graph with n ver-
tices with a Gallai-coloring. By Ramsey’s theorem every set of k D R.3; ˛.G/C 1/

vertices contains a triangle. By easy counting this implies that G has at least cn3

triangles, where c depends only on ˛. To each triangle T assign an edge of T whose
color is repeated in T . By the pigeonhole principle, some xy 2 E.G/ is assigned
to cn3=

�
n
2

� � 2cn triangles Ti D xyzi . Since in each Ti there are two edges in
the color of xy, say in red, the graph spanned by the red edges in the union of the
fx; y; zi g is connected, and has at least 2cnC 2 vertices.

With the idea of the proof above, Theorem 5.8 can be extended to hypergraphs
and also to colorings that do not contain any multicolored copy of a fixed hypergraph
F (in Gallai-colorings F D K3). As for graphs, for a hypergraph H, ˛.H/ denotes
the maximum cardinality of S � V.H/ such that no edges of H are completely
in S .

Theorem 5.9 ([34]). Suppose that the edges of an r-uniform hypergraph H are
colored so that H does not contain multicolored copies of an r-uniform hyper-
graph F . Then there is a monochromatic connected subhypergraph H1 � H such
that jV.H1/j � cjV.H/j, where c depends only on F , r , and ˛.H/ (thus does not
depend on H).
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[18] Z. Füredi, D. J. Kleitman, On zero-trees, J. Graph Theor. 16 (1992) 107–120.
[19] A. Figaj, T. Łuczak, Ramsey numbers for a triple of long even cycles, J. Combin. Theor. B 97

(2007) 584–596.
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[22] Z. Füredi, Intersecting designs from linear programming and graphs of diameter two, Dis-

crete Math. 127 (1993) 187–207.
[23] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Sci. Hungar. 18 (1967) 25–66. English

translation by F. Maffray and M. Preissmann, in: J. L. Ramirez-Alfonsin and B. A. Reed
(editors), Perfect Graphs, Wiley, New York (2001) 25–66.
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Szlam’s Lemma: Mutant Offspring
of a Euclidean Ramsey Problem from 1973,
with Numerous Applications

Jeffrey Burkert and Peter Johnson

1 1973: A Volcano Erupts

If you treasure semantic precision, you might name the volcano that erupted
(figuratively speaking!) in 1973: Coloring Problems in Geometrically Defined
Hypergraphs. We prefer: Euclidean Coloring Problems.

The main lava spout of the volcano was a paper: “Euclidean Ramsey Theorems
I” [2]. As the name of the paper indicates, the focus there was on coloring problems
in Euclidean spaces that can be given a Ramsey form. For instance, in one class
of problems, one fixes a finite subset F of some Euclidean space, and a number
r of colors one is allowed to use, and then one asks: is there a positive integer N

such that for all n � N , for every coloring of n-dimensional Euclidean space with
r colors, some copy of F in the space must be monochromatic? And, if so, what
is the smallest value of N D N.F; r/? (There are different meanings of “copy”
available, but in this context “copy of” usually means “set congruent to.” See the
next section for definitions.) What makes these problems “Ramsey”? We do not
attempt an answer. We think it wisest to leave Ramseyness as an informal concept;
with some experience, you will know Ramseyness when you see it.

It seems to us that the great legacy of the 1973 eruption is simply the problems,
whether Ramsey-inspired, or part of a Ramsey tower of problems. Here is the 1973
problem of the title of this paper, as announced in the abstract:

Is it possible to color the Euclidean plane with two colors, say red and blue, so that no two
blue points are a distance 1 apart and no four red points are the vertices of a unit square, a
square of side length 1?
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This problem did not appear in [2], but in [3], in 1975. We are calling it a
“problem from 1973” because the second author heard about it in 1973, from
Don Greenwell, which goes to show that the lava was flowing from more than one
spout in those days. Where Greenwell got the problem from he does not remember,
although he had just finished his PhD in graph theory at Vanderbilt, at that time a
noted hot spot for graph theory and combinatorics, and had spent some time as the
officemate of a young visiting Hungarian mathematician, Lázlo Lovász.

2 Some Definitions and More Background

As in [2, 3], E
n stands for n-dimensional Euclidean space, meaning the vec-

tor space of n-tuples of real numbers equipped with the usual Euclidean dis-
tance. The Euclidean distance between n-tuples .x1; : : : ; xn/; .y1; : : : ; yn/ 2 E

n isqPn
iD1.xi � yi /2, sometimes abbreviated jx � yj. We may revert to denoting the

real numbers, which is the field of scalars for the vector spaces E
n, by R. Therefore

the set of real numbers has two names, R and E
1.

A k-coloring of a set A is a function from A into a set of cardinality no greater
than k. Alternatively, a k-coloring of A can be thought of as a partition of A into k

or fewer subsets.
If S � E

n for some n and d > 0, a rather red coloring of S with respect to d is
a 2-coloring of S , with red and blue, such that no two blue points are a distance d

apart. The term “rather red” is intended to indicate that the red set will predominate,
and this will usually be the case if S ¤ ; and S is closed under multiplication by
positive scalars. For instance, when S D E

2, as in the problem from 1973 mentioned
in Sect. 1, for every blue point in a rather red coloring with respect to 1 the entire
unit circle of radius 1 centered at the blue point is red; and for every blue disc there
is a red annulus around it. So one expects to see more red than blue, in a rather red
coloring of E2. Of course, if no points of S are a distance d apart then coloring S

all blue gives a rather red coloring of S with respect to d , but we find the “rather
red” terminology sufficiently appealing that we can endure such infelicities.

Incidentally, it would seem to be a nice problem in computational geometry to
determine the supremum (maximum?) of the upper densities of the blue set in rather
red colorings E

n in which the blue set (and therefore, also, its complement, the red
set) is Lebesgue measurable. Letting B be the blue set of such a coloring, R.m/

the n-dimensional box with 2n vertices .˙m; : : : ;˙m/, and � denote Lebesgue
measure, the upper density of B is lim supm!1 .�.B \ R.m///=..2m/n/. When
n D 1 it is clear that the maximum such upper density is 1=2 (proof omitted), and
we suspect that when n D 2 the maximum is �=8

p
3, achieved by arranging open

blue disks of diameter 1, each a distance 1 from each of the nearest six others, in the
pattern of the vertices of the usual triangular lattice in the plane.

We wonder if it makes a difference if the color sets are not required to be
Lebesgue measurable, and Lebesgue measure is replaced by outer Lebesgue
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measure, in the definition of upper density. This problem may be more measure- or
set-theoretic than geometric. We do not know the answer even when n D 1.

To return to the main point that we are driving toward in this section: rather
red colorings are the main ingredient in a large and interesting family of Euclidean
coloring problems, of the following form: for a given subset S of some E

n, and a
distance d , one asks if there is a rather red coloring of S with respect to d which
forbids for red each member of a family of geometric configurations in S ; that
is, no member of the family is to be all red. Usually S DE

n and d D 1 and the
family of geometric configurations to be forbidden for red is the collection of sets
congruent to some fixed finite set F � S . As usual, two subsets of E

n are congruent
if one is the image of the other under the composition of a translation and a rotation
(in either order). If either X and Y are congruent, or X and some reflection of Y

are congruent, then we say that X and Y are weakly congruent. If X and Y are
(weakly) congruent then we say that Y is a (weakly) congruent copy of X . If X is
symmetric with respect to some reflection of E

n, meaning that it is congruent to its
own reflection, then weak congruence to X is the same as congruence to X .

Thus the problem from 1973 resurrected in Sect. 1 may be restated: is there a
rather red coloring of E

2, with respect to the distance 1, which forbids for red con-
gruent copies of the four vertices of a unit square?

To see why this problem was judged to be the next big thing among rather red
coloring problems in the early 1970s, by those best able to judge, the authors of
[2, 3], here is a proof of a proposition about forbidding 3-point sets for red with a
rather red coloring of E

2.

Proposition 2.1. For every rather red coloring of E
2, the red set contains congru-

ent copies of every set of 3 points in E
2.

Proof. Suppose, to the contrary, that there is a rather red coloring, say with respect
to the distance 1, of E

2 and a 3-point set T D fu; v; wg such that no congruent copy
of T is all red. Suppose that d D ju� vj � ju � wj; jv � wj.
Case 1: 0 < d � 2. There must be a blue point, and thus there must be a red circle
C of radius 1, somewhere in the plane. Place a congruent copy T 0 D fu0; v0; w0g
of T so that u0 and v0 are on C and w0 is outside of C . (For machine-checking this
proof, a bit of argument is necessary to see that such a T 0 can be placed, but if the
reader will try one or two instances of T , this obstacle will quickly disappear.) Now
think of T 0 moving so that u0 and v0 stay on the red circle. Then w0 will move around
a blue circle of radius > 1; but then there are certainly two blue points a distance 1

apart. Therefore, we are in:

Case 2: d > 2. If no two blue points are a distance d apart then our coloring is
rather red with respect to d , as well as to 1, and the argument in Case 1 then shows
that the red set must contain a congruent copy of T .

Therefore there are two blue points a distance d > 2 apart. Let C1; C2 be the two
red circles of radius 1 about them. Place a congruent copy T 0 D fu0; v0; w0g of T so
that u0; v0 are on C1; C2, respectively, with the line segment between them parallel
to the segment joining the blue centers of C1 and C2. See Fig. 1.



100 J. Burkert and P. Johnson

d

u v

w

blue blue

red red

C1

C2

Fig. 1 Part of the proof of Proposition 2.1

Let T 0 move so that u0; v0 stay on C1; C2; respectively. Then w0 describes a blue
circle of radius 1, so, again, there are blue points a distance 1 apart. Consequently,
the red set must contain a congruent copy of T after all. ut
On the grounds that 4 is the next integer after 3, and that if you do not know if any
4-point subset of E

2 can be forbidden for red by a rather red coloring of E
2, then you

may as well focus on a famous 4-point set, the vertices of a square. Proposition 2.1
establishes why the problem of Sect. 1 was plausibly next in a queue (more exactly,
next along a path from the root in a rooted tree) of Euclidean coloring problems.
But the story is a bit more complicated. Here, from [3], is a stronger result than
Proposition 2.1, with a shorter proof.

Proposition 2.2 ([3]). For every rather red coloring of E
2, the red set contains a

translate of each set of three points in E
2.

Proof. Suppose that we have a rather red coloring of E
2 with respect to the distance

1 and that T D ft1; t2; t3g � E
2. Let V denote the set of seven vertices of the graph

in Fig. 2. This graph drawn in the plane with the edges being line segments of equal
length – say 1 – is known as the Moser spindle. It first appeared in 1961 [15], and it
has had a role in the evolution of Euclidean coloring theory in many ways analogous
to the role of the Petersen graph in graph theory as a whole. See [16] for more on this
topic. Observe that the Moser spindle has vertex independence number 2. Therefore,
for each t 2 T at most two of the points in tCV D ftCvjv 2 V g are blue. Therefore
jfv 2 V j for some t 2 T; t C v is bluegj � 6. Since jV j D 7 it follows that for some
v 2 V , T C v is red. ut

In Sect. 5 we show another proof of Proposition 2.2, a proof that seems related to
this one, but which was discovered quite independently.
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Fig. 2 The Moser spindle

Proposition 2.2 points out additional nodes in the hierachy of problems concern-
ing rather red colorings. For instance, should it turn out (as we see that it does, in
the next section) that there is no rather red coloring of E

2 with respect to 1 which
forbids red congruent copies of the vertices of a unit square, then one can ask: what
if “congruent copies” is replaced by “translates”? We show in Sect. 5 that this very
question is both open and unexpectedly fraught with significance.

3 What Happened to the Rather Red Coloring Problem
from 1973?

The second author and Don Greenwell, hungry young new PhDs at the time, got an
attractive result on the aforementioned problem. In any such coloring, both the red
set and the blue set would be dense in E

2, and the red set would be so dense that the
connected path components of the blue set would be single points. But we published
nothing on the matter, outside of an abstract for a conference talk, partly because we
felt strongly that our theorem would prove to be vacuously true; that is, we believed
that there were no such rather red colorings of E

2. From this distance in time we
wonder what the ethics are on publishing a cute result about mathematical entities
that you are pretty sure do not exist. Greenwell and Johnson didn’t ponder the matter
in that way, but they were in no hurry. Perhaps if the problem had remained unsolved
for a while, they would have ventured forth with the density result.

But in 1976, although the paper didn’t appear until 1979 [13], the murmur went
around that Rozália Juhász had settled the matter. Not only was there no rather red
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coloring of E
2 with respect to the distance 1 which would forbid for red congruent

copies of the vertices of a unit square: in fact, for every rather red coloring of E
2,

the red set must contain congruent copies of every four-point subset of E
2.

In the opinion of the second author, this result ranks in the history of Euclidean
coloring theorems very much as Rod Laver ranks in the history of tennis; but there
is another result in [13] that has a place in history as well. Juhász gives an example
of a 12-point subset of E

2 and a rather red coloring which forbids congruent copies
of this subset for red. This was a considerable improvement over the previous record
for this sort of thing: Erdös et al., in [3], had given a subset of E

2 with 1012 points
which could be forbidden for red by a rather red coloring of E

2.
Let mc D mc.E2/ D minŒjF jIF � E

2 and congruent copies of F are forbidden
for red by some rather red coloring of E

2�. By 1979, after the publication of [13],
R. Juhász had single-handedly established that

5 � mc � 12:

In [1] it was established that mc � 8, so we have

5 � mc � 8;

and there the matter rests. But we have something more to say on this matter in
Sect. 5.

4 Distance Graphs

If X is a nonempty set and � W X � X ! Œ0;1/ satisfies: for all x, y 2 X ,
�.x; y/ D �.y; x/ and, �.x; y/ D 0 if and only if x D y, then we say that � is a
distance function on X . A metric is a distance function which satisfies the triangle
inequality: �.x; y/ � �.x; z/C �.z; y/ for all x; y; z 2 X .

If � is a distance function on X and D � .0;1/, the distance graph G D
G.X; D/ (notice that mention of � is suppressed in the notation) is the graph defined
by V.G/ D X and xy 2 E.G/ if and only if �.x; y/ 2 D. If D D fd g, we write
G.X; d/ rather than G.X; fd g/. If P is a graph parameter we write P.X; D/ rather
than P.G.X; D//. If X � E

n it is understood, unless otherwise specified, that � is
the usual Euclidean distance. Notice that if X � E

n is closed under multiplication
by positive scalars (real numbers), then all the single-distance graphs G.X; d/, d 2
.0;1/ are isomorphic; conventionally G.X; 1/ is taken as the representative of these
graphs.

The problem of determining the chromatic number �.E2; 1/ of the unit distance
graph “in the plane” (i.e., with E

2 as vertex set and Euclidean distance) is a famous
one. Posed by Edward Nelson in 1950 in his first year as a student at the University
of Chicago, it made its way through the intellectual plasma by word of mouth before
appearing in print in the 1960s in [5,10,15], and in numerous papers of Paul Erdös.
See [16], Chap. 2, for the full story, or as near to the full story as will ever be known.
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It seems likely that the growth of interest in this problem, helped in no small measure
by a stream of mentions by Erdös, was a significant source of the energy that led to
the Euclidean coloring eruption of 1973.

Yet not only has the problem resisted solution, in fact the range of possible values
of �.E2; 1/ has not diminished since 1950:

4 � �.E2; 1/ � 7:

(Hadwiger [10] attributes both bounds to John Isbell, a fellow student of Nelson’s,
but Isbell credits Nelson with the lower bound. See The MCB [16]!) For future ref-
erence we look briefly at the proofs of these bounds. Of the inequality 4 � �.E2; 1/

there are two proofs, although some would say that they are two versions of the
same proof. The proof due to the Mosers [15] involves simply the verification that
the Moser spindle, in Fig. 2, is realizable as a subgraph of G.E2; 1/, and that its
chromatic number is 4. The other proof, published by Hadwiger [10], is, accord-
ing to John Isbell, the same as that discovered by Edward Nelson; we might call
it “the big red circle” proof (see Fig. 3). It goes like this: because of the existence
of equilateral triangles, �.E2; 1/ � 3, so suppose that �.E2; 1/ D 3; suppose that
E

2 is colored with red, blue, and green so that no two points a distance 1 apart are
the same color. There must be a red point somewhere. Take one. Now, the circle of
radius 1 around that red point is blue and green. Take two points on that circle that
are a distance 1 apart. One is blue and one is green, and therefore the other point
besides the center of the circle which is a distance 1 from both points is red. But
this shows that the entire circle of radius

p
3 around the original red point is red, so

there are certainly two red points a distance 1 apart, which is a contradiction.
The proof that �.E2; 1/ � 7, due to Isbell in November 1958 [16], is constructive,

using a device invented by Hadwiger in 1945 for use on a different problem. One
forms a Hadwiger tile by taking a regular hexagon and the six regular hexagons
surrounding it, as though in a tiling of the plane by regular hexagons; let the diameter
of the hexagons be slightly less than 1 and color the seven hexagons in the tile with
seven colors. The diameter of each hexagon could be exactly 1, but then you would
have to take care in coloring the boundaries of the hexagons; the important thing is
that no two points distance 1 apart within the same hexagon are to be the same color.

redblue-green circle

blue

green

big red circle

Fig. 3 The big red circle proof that �.E2; 1/ > 3
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And then one tiles the plane with precolored translates of this Hadwiger tile. It turns
out that for each constituent hexagon, the nearest hexagons of the same color are
too far away for there to be two points of that color a distance 1 apart.

5 Szlam’s Lemma, a Connection Between Rather Red Colorings
and Chromatic Numbers

In 1999 Arthur Szlam, at the time a participant in a summer Research Experience
for Undergraduates program at Auburn University, discovered the following result,
which we take the liberty of stating somewhat differently from the main result
in [17].

Szlam’s Lemma I. Suppose that S � E
n is closed under vector addition, d > 0,

F � S , and there is a rather red coloring of S with respect to d that forbids for red
all translates of F in S . Then �.S; d/ � jF j.
Proof. For each v 2 S , vCF is not all red, so we can find f D '.v/ 2 F such that
vC f is blue. Thus we have a function ' W S ! F such that v C '.v/ is blue for
every v 2 S . (We are pretty sure that if F is finite, then the existence of ' does not
require the axiom of choice!) We claim that the jF j-coloring ' forbids the distance
d , which would imply the conclusion. If u; v 2 S and '.u/ D '.v/ D f 2 F , then
uC f , vC f are blue, so d ¤ j.uC f / � .vC f /j D ju� vj. ut

As a corollary, since �.E2; d / D �.E2; 1/ � 4 for any d > 0, Proposition 2.2
follows; this is the alternative proof promised in Sect. 2. One senses a close cousin-
ship of the two proofs, but they do not seem to be different versions of the same
proof.

For one thing, we see immediately by Szlam’s lemma, but not by the first proof
of Proposition 2.2, that if there were a rather red coloring of E

2 which forbade for
red translates of a set F � E

2 such that jF j D 4; 5, or 6, then we would have a
genuine breakthrough on the problem of determining �.E2; 1/; a solution, in fact, if
jF j D 4. (But we are not betting on the existence of such a rather red coloring and
such an F . It may be that �.E2; 1/ D 4 and yet that for every rather red coloring
of E

2, the red set contains translates of every 4-point subset of E
2.) Consequently,

Szlam’s Lemma I incentivizes the search for the value of mc.E2/ 2 f5; 6; 7; 8g,
discussed in Sect. 1.

A propos, let us define mt .E
2/ D minŒjF jIF � E

2 and there exists a rather
red coloring of E

2 such that no translate of F is all red]. By Proposition 2.2, or by
Szlam’s Lemma I, 4 � mt .E

2/. Intriguingly, we have 4 � mt .E
2/ � 7. To see

that mt .E
2/ � 7, let the plane be tiled by translates of the Hadwiger tile, shown in

Fig. 4. Color the closed hexagon at the center of each tile blue, and color everything
else red. Let F be the set of centers of the seven regular hexagons that make up each
tile. If h is the diameter of each of the regular hexagons comprising the tiles then the
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2

1

5

3

4

Fig. 4 A Hadwiger tile, colored with seven colors, surrounded by other Hadwiger tiles

coloring is rather red with respect to each distance d 2 .h; h.
p

7=2//, and at least
one point, and sometimes two points, of every translate of F is blue.

Szlam noticed another remarkable connection among �.E2; 1/, mc.E2/, and
mt .E

2/.

Proposition 5.1 ([17]). Either �.E2; 1/ > 4 or mc.E2/ � 7.

Proof. Suppose �.E2; 1/ D 4 and let E
2 be colored with four colors so that no

two points of the same color are a distance 1 apart. Let one of the colors be blue
and consider points of any of the other three colors to be red. Since no two blue
points are a distance 1 apart, this coloring of E

2 with red and blue is a rather red
coloring. Every congruent copy of the Moser spindle, Fig. 2, with edge length 1, is
a subgraph of G.E2; 1/ with chromatic number 4, so all four of the colors in the
original coloring must appear on its vertices. Therefore, no congruent copy of the
Moser spindle is all red. Thus mc.E2/ � 7, if �.E2; 1/ D 4. ut
Corollary 5.2. Either mt .E

2/ > 4 or mc.E2/ � 7.

Another distinction that Szlam’s Lemma I has over the original proof of Proposi-
tion 2.2 is that it has a veritable menagerie of analogues and generalizations, whereas
it is not evident how to use the original proof of Proposition 2.2 for anything much
beyond proving Proposition 2.2. One very obvious improvement of Szlam’s Lemma
I is achieved simply by replacing d 2 .0;1/ by a set D � .0;1/. By the very
same proof one concludes that if S is colored with red and blue so that no distance
between blue points is in D and, for some F � S , no translate of F in S is all red,
then �.S; D/ � jF j. But why stop there? Why not generalize the roles of vector
addition and Euclidean distance?

Szlam’s Lemma II. Suppose that � is a distance function on X , a nonempty set,
and � is a binary operation on X . Suppose that � is invariant with respect to right
�-translates, meaning that, for all x; y; z 2 X; �.x; y/ D �.x � z; y � z/. Suppose
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that D � .0;1/. Suppose that X is colored with red and blue so that if x, y 2 X

are both blue then �.x; y/ … D. Finally, suppose that F � X and that no left
�-translate x � F D fx � f jf 2 F g of F is all red. Then �.X; D/ � jF j.

The reader might enjoy the exercise of proving this result, taking the proof of
Szlam’s Lemma I as a model. Or, the proof can be inspected in [12], where the
lemma is applied to the cases when X D R

2, � D C, ordinary vector addition in
R

2, � is a translation-invariant metric on R
2, and D D fd g. We use the notation

��.R2; d / to indicate the dependence on �, in this case. An example is given in [12]
in which ��.R2; d / D 3, and � determines the usual topology on R

2. It is asked in
[12], and the question remains open, whether there exists �, a translation-invariant
metric on R

2 determining the usual topology, such that ��.R2; 1/ D 2. And there is
the question of how big ��.R2; d / can be: if � is translation-invariant and induces
the usual topology on R

2, is it necessarily the case that ��.R2; d / � �.E2; 1/ for
all d > 0?

In [11] there appeared an attempt at the ultimate generalization of Szlam’s
lemma: no distances, no binary operations, just sheer naked sets. To grasp this re-
sult, know that a hypergraph is a pair H D .V; E/ in which E is a collection of
nonempty subsets of V . If E contains no singletons, the chromatic number of H,
denoted �.H/, is the smallest cardinal number of colors needed to color V so that
no e 2 E is monochromatic.

Szlam’s Lemma III. [11] Suppose that U and V are nonempty sets, and R and B

partition U � V . Let EU D fS � U ; for each v 2 V , .S � fvg/ \ R ¤ ;g and
EV D fS � V j for each u 2 U , .fug � S/ \ B ¤ ;g. Let HU D .U; EU / and
HV D .V; EV /. Then either EV D ; or �.HU / � mine2EV

jej.
Any assertion involving �.Hu/ tacitly includes the assertion that Hu contains no

singletons.
The proof of SL3 is very short, but we do not give it here. Interested readers

might have a go, using the proof of SLI as a model.
However, we show that SL2, and thus also SL1, is a corollary of SL3. Let

X; �;�; D, and F satisfy the hypothesis of SL2, with respect to some coloring of X

with red and blue. Let U D V D X and let R D f.x; y/ 2 U � V D X2 j x � y is
redg and B D f.x; y/ 2 X2 j x � y is blueg. Then R and B partition X2 D U � V

and, in the notation of SL3, EU contains every doubleton fx; yg � X such that
�.x; y/ 2 D, and F 2 EV . Therefore, by SL3, �.X; D/ � �.HU / � mine2EV

jej
� jF j.

So SL3 is stronger than SL2; in fact, SL3 is the strongest version of Szlam’s
lemma that we know of. As a general informal rule, the sparser and weaker the hy-
potheses, the stronger and more applicable the theorem: who could disagree? Well,
we do, especially about the “more applicable” claim. In the human world, appli-
cability involves memorability, not just logical strength; if no one can remember a
theorem, it is usually headed for the dustbin of history, where it can share space
with, for instance, the Wiener Tauberian theorem, which not only went straight to
the dustbin, but dragged there all the earlier Tauberian theorems with it.



Szlam’s Lemma: Mutant Offspring of a Euclidean Ramsey Problem 107

SL3 [11] was intended to generate interest in Szlam’s lemma, but we fear that
it had the opposite effect of dampening any interest that [12] and [17] might have
generated. (There was in [11] a lame attempt to apply the lemma in a nonstandard
way, in which U D V is the set of points on a sphere in E

3, and there is a weird
noncommutative binary operation involving rotations. The conclusion was at least
not obvious, but the few readers yawned and the ghost of Edsel Ford smiled.

Szlam’s lemma is most usefully viewed not as a result, but as a trick or method
for obtaining upper bounds on the chromatic numbers of certain hypergraphs by
looking for two-colorings of the vertex set satisfying certain requirements. In the last
section we show another instance of Szlam’s lemma, in a quite different setting, and
an application resulting in a new lower bound on the van der Waerden numbers, a not
particularly good lower bound, being a lower bound on the cyclic van der Waerden
numbers, which are less than the van der Waerden numbers, but which does beat
known lower bounds in some cases, and which is quite constructive. Hypergraph
colorings can be exhibited! And the method has not been exhausted, in this area.

6 van der Waerden Numbers, Cyclic van der Waerden Numbers,
and a Lower Bound on Them Both

Suppose k � 3 and r � 2 are integers. The van der Waerden number W.k; r/ is
the smallest positive integer N such that for any coloring of f0; : : : ; N � 1g (or
of any other block of N consecutive integers) with r colors, there is a monochro-
matic k-term arithmetic progression in the block. That W.k; r/ is well-defined is a
consequence of a celebrated result of van der Waerden [18].

If N > 1 and n 2 Z (the set of integers), the congruence class of n mod N is
denoted Nn, suppressing mention of N . Thus the ring of integers mod N is ZN D
Z=N Z D fN0; N1; : : : ; N � 1g. A k-term arithmetic progression mod N is a k-subset
of ZN the elements of which can be listed as Na C t Nd , t D 0; : : : ; k � 1, for some
Na; Nd 2 ZN . It is important to seize the requirement that the k congruence classes on
the list NaC t Nd , t D 0; : : : ; k � 1, must be distinct; for instance, N3C t N6, t D 0; 1; 2,
does not constitute a 3-term arithmetic progression mod 12. Indeed, there are no
k-term arithmetic progressions mod 12 with difference Nd D N6 for any k � 3.

Sometimes arithmetic progressions mod N do not look like arithmetic progres-
sions; for instance fN0; N3; N8g is a 3-term arithmetic progression mod 11, because
N3C N8 D N0 and N0C N8 D N8 in Z11.

On the other hand, what looks like an ordinary arithmetic progression “is” an
arithmetic progression mod N for N sufficiently large. That is, if a � 0, d > 0, and
k � 3 are integers, and aC .k � 1/d < N , then f Na; NaC Nd; : : : ; NaC .k � 1/ Ndg is a
k-term arithmetic progression mod N .

We define the cyclic van der Waerden number Wc.k; r/, for k � 3, r � 2, to be
the smallest positive integer M such that for all N � M , if ZN is colored with r

colors there must be a monochromatic k-term arithmetic progression mod N .
Duty impels us to use the “smallest : : : M such that for all N �M ” formulation

because we do not know if it is true that if, for every r-coloring of ZN , there must be
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a monochromatic k-term arithmetic progression mod N , then the same holds with
N replaced by N C 1. If that were the case, then the definition of Wc.k; r/ could be
simplified to resemble that of W.k; r/.

However, because ordinary arithmetic progressions within a block of N con-
secutive integers convert to arithmetic progressions mod N , by van der Waerden’s
theorem Wc.k; r/ is well defined, and Wc.k; r/ � W.k; r/. Therefore upper bounds
on the W.k; r/ are upper bounds on the Wc.k; r/, and lower bounds on the Wc.k; r/

are lower bounds on the W.k; r/.
The best upper bound on the W.k; r/ is of recent vintage, from an already famous

paper of W. T. Gowers [6]:

W.k; r/ � 22r22kC9

:

We are not working on upper bounds here, and there is no clear road from upper
bounds on the Wc.k; r/ to upper bounds on the W.k; r/, but we can venture to
suggest that looking for upper bounds on the Wc.k; r/ may refresh the search for
upper bounds on the W.k; r/. For one thing, it does not seem to be beyond human
ingenuity to bound the ratios W.k; r/=Wc.k; r/ above, and that really would open a
road in the right direction from the cyclic to the original upper bound problem.

The first general lower bound on the W.k; r/ was due to Erdös and Rado [4]:

q
2.k � 1/rk�1 < W.k; r/ (ER)

This was improved by Leo Moser [14]:

krc log r < W.k; r/;

for some constant c. This bound has the obvious defect that in order to use it to
estimate W.k; r/ for smallish k and r , you need to know what c is, or perhaps
an estimate of some c, for the range of k and r of interest. Gunderson and Rödl
obtained such an improvement for the case k D 3 [8]:

r lnr=9 < W.3; r/ (GR)

Without further ado, here is our result.

Theorem 6.1. Suppose that k � 3 and r � 2 are integers, and p is the largest
prime not exceeding k. Then pblog2 rc < Wc.k; r/.

The proof, which comes along shortly, uses another instance of Szlam’s lemma.

Szlam’s Lemma IV. Suppose that N is a positive integer and S is a collection of
subsets of ZN closed under translation mod N . (That is, if S 2 S and Na 2 ZN then
NaCS 2 S.) Suppose that R and B partition ZN , and no set in S is contained in B .
Suppose that ; ¤ F � ZN and no translate of F mod N is contained in R. Then
ZN can be jF j-colored so that no set in S is monochromatic.

In hypergraph lingo, if S; R; B , and F are as above, and H D .ZN ;S/, then
X .H/ � jF j.
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Proof of SL4, on the model of the proof of SL1.

Let f D jF j and let Na1; : : : ; Naf be the elements of F . We partition ZN into
sets P1; : : : ; Pf , some of which may be empty, defined by: Nz 2 ZN is in Pi for the
smallest i such that Nz C Nai 2 B . Since .NzC F / \ B ¤ ; for each Nz 2 ZN , the Pi

are well defined, clearly pairwise disjoint, and they cover ZN . It remains to be seen
that no Pi contains any S 2 S.

Suppose, to the contrary, that for some i 2 f1; : : : ; f g and S 2 S, S � Pi . Then,
by the definition of Pi , Nai C Nz 2 B for each Nz 2 S , so Nai C S � B . But then Nai C S

is a set in S contained in B , a contradiction. ut
Corollary 6.2. Suppose that k � 3, r � 2, and N > 0 and that ZN is partitioned
into two sets, A and B , such that no k-term arithmetic progression mod N is con-
tained in B . Suppose that for some T � ZN , jT j D r , no translate of T mod N is
contained in A. Then

Wc.k; r/ > N

Proof. Apply Szlam’s Lemma IV with S being the collection of k-term arithmetic
progressions mod N . ut

The change of notation between SL4 and its corollary was impelled by a clash
of notational traditions: in rather red Euclidean colorings, the color names are red
and blue, whence R and B in SL4, while in the van der Waerden world of colorings
that forbid or fail to forbid monochromatic arithmetic progressions, the number of
colors is r .

To see that SL4 is derivable from SL3, given S; R; B , and F and as SL4, let
U D V D ZN in SL3 and replace R; B there with QR D f. Na; Nb/ 2 Z

2
N j NaC Nb 2 Rg

and QB D f. Na; Nb/ 2 Z
2
N j Na C Nb 2 Bg. Then S � EU , so H D .ZN ;S/ is a

subhypergraph of HU , and F 2 EV . By SL3 it follows that

�.H/ � �.HU / � jF j:

Proof of Theorem 6.1. Let n D blog2 rc, so 2n � r < 2nC1. Since Wc.k; r/ �
Wc.p; r/ � Wc.p; 2n/, to prove the theorem it suffices to show that Wc.p; 2n/ > pn.
We demonstrate the sufficient condition for Wc.p; 2n/ > pn given in Corollary 6.2
by induction on n: For each n D 1; 2; : : : ; Zpn is partitioned into sets A.n/, B.n/

such that B.n/ contains no p-term arithmetic progression mod pn, and for some
T .n/ � Zpn with jT .n/j D 2n, no translate of T .n/ mod pn is in A.n/.

In what follows we omit the overbar in the notation Nz, to diminish clutter and
also because in the induction we go from Zpn to Zpn�1 . Since the overbar notation
provides no way of conveying the distinction, it is more economical to give it up
entirely and to indicate which congruence system we are in by explicit mention.

If n D 1, pn D p; set B.1/ D f0; : : : ; p�2g, A.1/ D fp�1g, and T .1/ D f0; 1g.
There is only one p-term arithmetic progression mod p, Zp itself, and clearly B.1/

does not contain it. T .1/ has 2 D 21 elements, so clearly no translate of it, mod p,
could be contained in A.1/.
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Now suppose that n > 1. For j D 0; : : : ; p � 1, let Uj D fjpn�1; jpn�1 C
1; : : : ; .j C1/pn�1�1g D jpn�1CU0. (The translation here is in Zpn .) Then Zpn

is the disjoint union of U0; : : : ; Up�1. We define, with all additions taking place
in Zpn ,

B.n/ D [0�j �p�2.jpn�1 C B.n � 1//;

A.n/ D �[0�j �p�2.jpn�1 C A.n � 1//
�[ Up�1;

and T .n/ D T .n � 1/[ .pn�1 C T .n� 1//:

Since A.n � 1/, B.n � 1/ partition Zpn�1 , by the induction hypothesis, it follows
that jpn�1CB.n� 1/, jpn�1CA.n� 1/ partition Uj , j D 0; : : : ; p� 2, and thus
that A.n/, B.n/ partition Zpn .

Since T .n � 1/ � U0 D f0; : : : ; pn�1 � 1g, T .n � 1/ and pn�1 C T .n � 1/

are disjoint in Zpn , so, applying the induction hypothesis, jT .n/j D 2jT .n� 1/j D
2 � 2n�1 D 2n. Next we verify that no translate of T .n/ mod pn lies in A.n/. If
a 2 Uj then a C T .n/ � Uj [ Uj C1 [ Uj C2 (reduce subscripts mod p), and
aCT .n� 1/ � Uj [Uj C1. If, say, a D a0C jpn�1, a9 2 U0, then a C T .n� 1/,
reduced mod pn�1, is a0 C T .n � 1/ � Zpn�1 . Suppose that 0 � j � p � 3. If
aCT .n/ � A.n/ then aCT .n�1/ � .jpn�1CA.n�1//[..jC1/pn�1CA.n�1//

and so, reducing mod pn�1, a0 C T .n � 1/ � A.n � 1/, contrary to the induction
hypothesis. So .aC T .n//\ B.n/ ¤ ; if a 2 Uj , 0 � j � p � 3.

If a 2 Up�2 then

C D Œ.aC T .n� 1//\ Up�2� [ Œ.aC pn�1 C T .n� 1//\ U0�;

a subset of aCT .n/, reduces mod pn�1 to a0CT .n�1/, which is not contained in
A.n�1/. Therefore C intersects B.n/ \ .Up�2 [ U0/, which implies that aCT .n/

intersects B.n/.
Finally, if a 2 Up�1 then a C pn�1 C T .n � 1/ � U0 [ U1 and reduces mod

pn�1 to a0 C T .n� 1/; since .a0 C T .n � 1//\ B.n � 1/ ¤ ;,

; ¤ ŒaC pn�1 C T .n� 1/�\ ŒB.n � 1/[ .pn�1 C B.n � 1/�

� .aC T .n// \ B.n/; so aC T .n/ 6� A.n/:

What remains to be proved is that B.n/ contains no p-term arithmetic progres-
sion mod pn. Suppose that a, a C d; : : : ; a C .p � 1/d is a p-term arithmetic
progression mod pn. If, for any j 2 f0; : : : ; p � 1g, aC jd 2 Up�1 � A.n/, then
we are done. Also, if the terms a, aC d; : : : ; aC .p � 1/d are distinct mod pn�1,
then, reducing mod pn�1, in Zpn�1 a; aCd; : : : ; aC .p�1/d , a p-term arithmetic
progression mod pn�1, intersects A.n � 1/ � Zpn�1 D U0, which implies that the
original p-term arithmetic progression mod pn intersects A.n/.

So suppose that a, aCd; : : : ; aC .p�1/d are not distinct mod pn�1. Therefore
aC id 	 aC jd mod pn�1 for some 0 � i < j � p � 1; then pn�1 j .j � i/d .
Since 1 � j � i � p � 1 and p is a prime, it follows that pn�1 j d . Let us suppose
that d D spn�1 for some s 2 f1; : : : ; p � 1g.
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Again appealing to the assumption that p is a prime, as j runs over f1; : : : ; p�1g,
js runs over f1; : : : ; p � 1g, mod p. Suppose that a D a0 C cpn�1, a0 2 U0,
0 � c � p � 1. If c D p � 1 then a 2 Up�1 � A.n/, so we may assume that
0 � c � p � 2. Let x D p � 1 � c and let j 2 f1; : : : ; p � 1g satisfy js 	 x mod
p; say js D x Cmp.

Then

aC jd D a0 C cpn�1 C jspn�1

D a0 C cpn�1 C .x Cmp/pn�1

D a0 C .c C x/pn�1 Cmpn

D a0 C .p � 1/pn�1 Cmpn

	 a0 C .p � 1/pn�1 mod pn

Therefore, a C jd 2 Up�1 � A.n/, so the p-term arithmetic progression a, a C
d; : : : ; aC .p � 1/d mod pn is not contained in B.n/. ut

How good is pblog2 rc as a lower bound of W.k; r/? As one might expect, it is
not very good, for k > 3 and large r . But for k D 3 D p it beats 2r , the Erdös–
Rado bound, for all r � 16 and for half the values of r 2 f2; : : : ; 15g. It beats
the Gunderson-Rödl bound, r lnr=9, for all r � 219. These triumphs are minor, but
are triumphs nonetheless, since it is somewhat surprising that a lower bound on the
Wc.k; r/ is larger than known lower bounds on the W.k; r/ for any values of k and
r . Also, the comparison shows that the Theorem 6.1 is independent of the earlier
results, inequalities (ER) and (GR).

In the quest for lower bounds on the W.k; r/, we may be giving away too much
in focusing on the Wc.k; r/. Lower bounds on the W.k; r/ might be obtainable by
applying SL4 with S being the set of all translates mod N of k-term arithmetic
progressions in f0; : : : ; N � 1g; that is, we could take S to be the set of all k-term
arithmetic progressions Na, Na C Nd; : : : ; Na C .k � 1/ Nd mod N in which 1 � d �
.N � 1/=.k � 1/. Let OS be so defined, and let S be the set of all k-term arithmetic
progressions mod N . The following problems are certainly of interest in estimating
Wc.k; r/ and W.k; r/, in view of SL4, but they seem also to possess their own
charm, independent of other concerns:

1. For a given k and N , what is the largest size jBj of a set B � ZN containing no
set in S (or in OS/?

2. For a given k and N , what is the smallest jT j for T � ZN such that there exists
B � ZN , containing no set in S (or OS/, which intersects every translate of T

mod N ?

Clearly the more complicated second question is the more important of the two
in the application of SL4 to the study of the W.k; r/, but the first question may be of
use in attacking it, and has the virtue of simplicity. When k is a prime and N D kn

the inductive construction in the proof of Theorem 6.1 produces a set B D B.n/

containing no set in S and intersecting every translate mod N of T D T .n/, with
jBj D .k � 1/n and jT j D 2n.
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We have experimented with small k and N < 100, choosing B greedily: put
N0; : : : ; k � 2 in B and after that, in going through ZN , test each candidate Nc for
membership in B by checking to see if adding Nc to B will cause B to contain a
member of S. (If so, Nc is rejected; we have not yet tried this with OS.) These exper-
iments led to the discovery of the construction in the proof of Theorem 6.1, so we
cannot claim the experimental results as evidence that the construction produces a
B of maximum cardinality, or a T of minimum cardinality. Still, it is the best we
have when k is a prime and N D kn.

When k is not a prime the construction may not work. For example, when k D 6

and N D 36 the construction gives B D fN0; : : : ; N4g [ fN6; : : : ; 10g [ f12; : : : ; 16g [
f18; : : : ; 22g [ f24; : : : ; 28g; then N0; N3; N6; N9; 12; 15 is a 6-term arithmetic progres-
sion mod 36 contained in B . (Disturbing? Observe that this sequence is not a 6-term
arithmetic progression mod 6. As shown in the proof of Theorem 6.1, when k is
prime this kind of thing can happen only if the difference in the arithmetic progres-
sion mod kn is divisible by kn�1, which then ensures that the progression intersects
f.k � 1/kn�1; .k � 1/kn�1 C 1; : : : ; kn � 1g � A.n/ D ZknnB .)

Our thanks to Emma Friedman, who took an interest in the problem of finding
W.k; r/, especially when k D 3, during a summer Research Experience for Under-
graduates at Auburn University in 2005, causing the second author to bestir himself
and eventually find out a bit about the background of the problem, mainly from
[7], kindly provided in preprint form by David Gunderson. Thanks are also due to
Jennifer Hurt, who explained some of [7] to us.
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Open Problems in Euclidean Ramsey Theory

Ron Graham and Eric Tressler

1 Introduction

Ramsey theory is the study of structure that must exist in a system, most typically
after it has been partitioned. A good example is the well-known theorem of van
der Waerden [28], which states that given any k; r 2 N, there exists a least
integer w.k; r/ such that if Œw.k; r/� ´ f1; : : : ; w.k; r/g is partitioned into r sets
(or r-colored), then there exists a monochromatic arithmetic progression of length
k (that is, a k-term arithmetic progression in one of the sets).

Euclidean Ramsey theorems are similar in nature, but are concerned with ge-
ometric objects, most often E

n or partitions of graphs with geometric properties,
such as the hypercube embedded in E

n. Euclidean Ramsey theory abounds with
open problems, nearly all of them elementary to state. First, though, we need some
definitions.

For a finite set X � E
k , let Cong(X) denote the set of all subsets of E

k which
are congruent to X under some Euclidean motion. We say that X is Ramsey if for
every integer r , there is a least integer N.X; r/ such that if N > N.X; r/ then for
any r-coloring of E

N , there is a monochromatic X 0 2 Cong.X/. We denote this
property by the usual “arrow” notation E

N ! X . The negation of this statement is
denoted by E

N 6! X .
It is not hard to see that any Ramsey set must be finite. Furthermore, it follows

from compactness arguments (where we are using the Axiom of Choice) that if X

is Ramsey, then in fact there must be a finite set S such that S ! X .
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A more restricted notion is that of being r-Ramsey. This just means that a
monochromatic copy of X must occur whenever the underlying set S is r-colored.

In this case, we write S
r�! X . The negation of this statement is written as S 6 r�! X .

Conjecture 1 ([9]). For any nonequilateral triangle T (i.e., the set of three vertices
of T ),

E
2 2�! T .

Conjecture 2. For any triangle T , there exists a 3-coloring of E
2 without a

monochromatic copy of T .

For any particular equilateral triangle T , one can color the plane with alternating
half-open red and blue strips with height the altitude of T , avoiding a monochro-
matic copy of T . This was conjectured to be essentially the only possible 2-coloring
that avoids any triangle, though recently V. Jelı́nek, J. Kynčl, R. Stolař, and T. Valla
showed that there exist infinitely many such colorings [13]. They have also shown
that Conjecture 1 is true if one color class is open and the other is closed.

Conjecture 1 is known to be true for many classes of triangles; a partial list can be
found in [9], and a proof that it is true for right triangles due to L. Shader is in [22].
Less seems to be known about Conjecture 2; the 3-coloring by alternating half-open
strips avoids a large class of triangles, but not all. Recently we have discovered a
3-coloring of E

2 that avoids the degenerate triangle with sides a; a; 2a, shown in
Fig. 1. This tiling extends to cover E

2; each hexagon has diameter 2a and all of the
hexagons are half-open as shown for the uppermost hexagon in Fig. 1.

For any collinear set S , it is known that with 16 colors one can avoid a monochro-
matic copy of L in E

n for all n [27], but it is an open question if this is the best
possible.

Fig. 1 A sketch of the 3-coloring avoiding the .a; a; 2a/ triangle
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2 Ramsey Sets

It is a long-standing problem to discover which sets are Ramsey, as defined above.
Igor Křiž has some strong positive theorems to this end:

Theorem 1 ([14]). Suppose X � E
N has a transitive group of isometries with a

solvable subgroup with at most two orbits. Then X is Ramsey.

Theorem 2 ([15]). If X is the set of vertices of a trapezoid, X is Ramsey.

Frankl and Rödl [10] have shown that every nondegenerate simplex is Ramsey.
It is shown in [8] that any Ramsey set must lie on the surface of a sphere (in some
dimension); we call such sets spherical. In particular, collinear sets, as pointed out
above, can always be avoided with at most 16 colors in any number of dimensions.
It may turn out that the Ramsey sets are very easy to describe:

Conjecture 3 ($1,000). Every spherical set is Ramsey.

A weaker conjecture is:

Conjecture 4 ($100). Every 4-point subset of a circle is Ramsey.

Recall that given a Ramsey set X and an integer r , we defined N.X; r/ to be the
least integer such that if N > N.X; r/ then for any r-coloring of E

N , there is a
monochromatic X 0 2 Cong.X/. One might go further than asking which sets are
Ramsey; given a Ramsey set and an integer r , what can we say about N.X; r/? As
we show below, even for the simplest nontrivial case, a 2-point set, this is a major
open question.

3 Unit Distance Graphs

A unit distance graph in a metric space .X; �/ is a graph G D .X; E/ with vertex
set X and edge set fx; y 2 X W �.x; y/ D 1g. k � k denotes the usual Euclidean
norm. �.X; �/ denotes the chromatic number of X under the metric �, though we
omit � when it is the Euclidean norm.

The most widely known problem in Euclidean Ramsey theory is probably that of
determining the chromatic number of the plane, �.E2/. This question is attributed to
Nelson (see [23–25] for a full account), and there is a wide literature surrounding it.
Despite its broad interest, the best known bounds are 4 � �.E2/ � 7. Proof of
the lower bound is in Fig. 2; it is a unit distance graph with chromatic number 4,
usually known as the Moser spindle, after Leo Moser. The upper bound is given by
a hexagonal tiling of the plane using hexagons of diameter slightly less than 1 (there
is room for error), and 7-coloring them in a fairly obvious way, left to the reader to
discover.

Given that the known bounds are so easy to prove, it may be surprising that the
problem has proven to be so stubborn. In 1981, Falconer showed that if we assume



118 R. Graham and E. Tressler

Fig. 2 Proof that 4 � �.E2/

the axiom that all subsets of E
n are Lebesgue measurable, then �.E2/ � 5. For other

conditional results about �.E2/, see [26]. Other results about the chromatic number
of E

n include the bounds 6 � �.E3/ � 15 ([5, 17]) and 7 � �.E4/ � 49 ([11]).
In [24], a variant of this problem is discussed (and tentatively attributed to Erdős).

Say that a set S in E
2 realizes distance d if some two points x; y 2 S are distance d

apart. The polychromatic number of the plane is the least number of colors �p.E2/

such that it is possible to color the plane with �p.E2/ colors so that no color realizes
all distances. Of course, �p.E2/ � �.E2/, since in the latter case no color realizes
distance 1. The bounds 4 � �p.E2/ � 6 are due to Raiskii and Stechkin, respec-
tively, and appeared in [21], though as with �.E2/, the determination of the actual
number �p.E2/ is open.

The chromatic number of rational space has also been studied. In [2], M. Benda
and M. Perles show that �.Q2/ D 2, �.Q3/ D 2, and �.Q4/ D 4. The authors pose
some problems in their conclusion: try to determine �.Qn/ for some n � 5 (in [4],
K. B. Chilakamarri shows that �.Q5/ � 6/), or try to find �.X2/ where X is some
algebraic extension of Q, for example, QŒ

p
2�.

The question of which graphs are unit distance graphs in E
2 is also open. For

instance, it is easy to see that the graph K4 cannot be a unit distance graph in E
2,

but it is not known if any particular subgraphs are excluded. In [3] a problem is
posed: must every bipartite graph that is not a unit distance graph contain K2;3 as a
subgraph? The answer is no: it is not very difficult to show that the five-dimensional
hypercube, Q5, with all 16 of its space diagonals attached, is a counterexample.
Here is a sketch of the proof:

Sketch of proof. The two-dimensional hypercube, embedded in the plane as a unit
distance graph, clearly has to have some two of its opposite vertices at least distancep

2 apart (opposite in the sense that they are maximally distant pairs in Q2). The
same is true of Q5. Now let G be the graph Q5 with all of its space diagonals added
(connect two vertices by an edge if they are distance 5 apart in Q5). Since some two
of the vertices of Q5 in a unit embedding are necessarily farther than unit distance
apart, we cannot embed G as a unit distance graph in E

2. Moreover, G is bipartite
and contains no copy of K2;3 as a subgraph.
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Paul O’Donnell has shown in [18, 19] that there exist 4-chromatic unit distance
graphs of arbitrary girth. Since a complete characterization of the unit distance
graphs in the plane would immediately determine the value of �.E2/, this is proba-
bly a very difficult task; still, it would be interesting to know what can be said.

Finally, we ask a basic question about unit distances in the plane: how dense
can a Lebesgue measurable set S be in E

n if it avoids unit distance? A good first
attempt in E

2 is to tile the plane with hexagons whose centers are distance 2 apart,
and let S be the set of open circles of diameter 1 centered in the hexagons; this
achieves density .�=8

p
3/ > 0:2267. However, in 1967, Croft showed in [7] that

by modifying this coloring slightly it is possible to achieve a density of more than
0.2294. Coulson and Payne examined the same problem in E

3 [6], but there has
been no improvement over Croft’s result in the case of E

2.

4 More General Distance Graphs

There are also many open problems about graphs more general than unit distance
graphs; here we only consider Euclidean n-space. For A � R, let GA.En/ be the
graph in E

n with vertex set E
n and edge set fx; y 2 E

n W kx � yk 2 Ag. Very
recently Ardal et al. have shown in [1] that if we let X be the set of all odd integers,
then �.GX .E2// � 5, but the current upper bound on this number is the trivial
bound @0.

In related work, L. Ivanov has considered the chromatic number of GŒ1;d�

.En/ for d > 1 [12]. For this generalization of the unit distance graph, very lit-
tle is currently known. Similar questions are pursued in [20], in which the authors
present new results about �.GA.Rn// and �.GA.Qn// for jAj 2 f2; 3; 4g.

These problems are interesting partly because so little is known. Kuratowski’s
theorem [16] beautifully classifies the planar graphs, but there is no such theorem
for unit graphs. The unit distance graph in the plane (and we have no need to be
more general here) is simple enough to describe to a nonmathematician, and so
enigmatic that finding its chromatic number is a new four-color map problem for
graph theorists.
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Chromatic Number of the Plane & Its Relatives,
History, Problems and Results: An Essay
in 11 Parts1

Alexander Soifer

[I] can’t offer money for nice problems of other people because
then I will really go broke. . . It is a very nice problem. If it were
mine, I would offer $250 for it.

– Paul Erdős
Boca Raton, February, 1992

1 The Problem

In August 1987 I attended an inspiring talk by Paul Halmos at Chapman College in
Orange, California. It was entitled “Some Problems You Can Solve, and Some You
Cannot.” This problem was an example of a problem “you cannot solve.”

“A fascinating problem. . . that combines ideas from set theory, combinatorics,
measure theory, and distance geometry,” write Hallard T. Croft, Kenneth J. Falconer,
and Richard K. Guy in their book Unsolved Problems in Geometry [CFG].

“If Problem 8 takes that long to settle [as the celebrated Four-Color Conjecture],
we should know the answer by the year 2084,” write Victor Klee and Stan Wagon
in their book New and Old Unsolved Problems in Plane Geometry [KW].

Are you ready? Here it is:

What is the smallest number of colors � sufficient for coloring the plane in such a way that
no two points of the same color are unit distance apart?

This number� is called the chromatic number of the plane. To color the plane means
to assign one color to every point of the plane.

A segment here stands for just a 2-point set. Similarly, a polygon will stand for a
finite set of point. A monochromatic set is a set all of whose elements are assigned
the same color. In this terminology, we can formulate the chromatic number of the
plane problem (CNP) as follows. What is the smallest number of colors sufficient
for coloring the plane in a way that forbids monochromatic segments of length 1?

1 Much but not all of this text is contained in the author’s monograph [Soi].
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Fig. 1 The Moser spindle

Lower Bound 1. 4 � �.

Solution by the Canadian geometers, brothers Leo and William Moser (1961,
[MM]). Toss on the given 3-colored plane what we now call the Moser spindle
(Fig. 1). Every edge in the spindle has the length 1.

Assume that the seven vertices of the spindle do not contain a monochromatic
segment of length 1. Call the colors used to color the plane red, white, and blue. The
solution now faithfully follows the children’s song: “A B C D E F G. . . ”.

Let the point A be red; then B and C must be one white and one blue, therefore
D is red. SimilarlyE and F must be one white and one blue, thereforeG is red. We
got a monochromatic segment DG of length 1 in contradiction to our assumption. �

Observe: The Mosers spindle with a vertex coloring has worked for us in solv-
ing Problem 1 precisely because any three points of the spindle contain two points
distance 1 apart. This implies that in a Moser spindle that forbids monochromatic
distance 1, at most two points can be of the same color.

Solomon W. Golomb found a substantially different construction proof of the
lower bound. In a September 25, 1991 letter Golomb informed me that he likely
found this example, which I naturally call the Golomb graph, in the time period
1960–1965.

Second proof of the lower bound . Just toss the Golomb graph on a 3-colored (red,
white, and blue) plane (Fig. 2). Assume that in the graph there are no adjacent (i.e.,
connected by an edge) vertices of the same color. Let the center point be colored red,
then since it is connected by unit edges to all vertices of the regular hexagonH , H
must be colored white and blue in alternating fashion. All vertices of the equilateral
triangle T are connected by unit edges to the three vertices of H of the same color,
say, white. But then white cannot be used in coloring T , and thus T is colored red
and blue. But this implies that two of the vertices of T are assigned the same color.
This contradiction proves that three colors are not enough to properly color the ten
vertices of the Golomb graph, let alone the whole plane. �
Upper Bound 2. � � 7.
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Fig. 2 The Golomb graph
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Proof. This is László Székely’s proof from [Sze1]. His original picture needs a
small correction in its Fig. 1, and boundary coloring needs to be addressed, which I
am doing here. We start with a row of squares of diagonal 1, with cyclically alter-
nating colors of the squares 1, 2,. . . , 7 (Fig. 3). We then obtain consecutive rows of
colored squares by shifting the preceding row to the right through 2.5 square sides.

Upper and right boundaries are included in the color of each square, except
squares at the upper left and lower right corners. �

In 1995 my former student and now a well-known puzzlist Edward Pegg, Jr. sent to
me two distinct 7-colorings of the plane. In the one I am sharing with you (Fig. 4), Ed
uses 7-gons for six of the colors, and tiny squares for the seventh color. Interestingly,
the seventh color occupies only about 1=3 of 1% of the plane. In Fig. 4, all thick
black bars have unit length. A unit of the tiling uses a heptagon and half a square.

The area of each square is 0.0041222051899307168162. . .
The area of each heptagon is 0.62265127164647629646. . .
Area ratio thus is 302.0962048019455285300783627265828. . .
If one third of one percent of the plane is removed, the remainder can be

6-colored with this tiling!
It is amazing that the results shown above give us the best-known-to-mathematics

bounds for the chromatic number of the plane �. They were published almost half a
century ago. Still, all we know today is that

� D 4; or 5; or 6; or 7:
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(0,0)

(x,x)

(1,0)

Fig. 4

A very broad spread! Which do you think is the exact value of �? Paul Erdős thought
that � � 5.

Victor Klee shared with me in 1991 a very interesting story. In 1980 he lec-
tured in Zürich, Switzerland. The 77-year-old celebrated algebraist Bartel L. van
der Waerden was in attendance. When Vic presented the state of this problem, van
der Waerden became so interested that he stopped listening to the lecture; he started
working on the problem. He tried to prove that � D 7Š

For many years I believed that � D 7, or else 6. Paul Erdős used to say that “God
has a transfinite Book, which contains all theorems and their best proofs, and if He
is well intentioned toward those, He shows them the Book for a moment.” If I ever
deserved the honor and had a choice, I would have asked to peek at the page with
the chromatic number of the plane problem. Wouldn’t you?

2 The History

[This is] a long standing open problem of Erdős.

–Hallard T. Croft, 1967

[I] can not trace the origin of this problem

– Paul Erdős, 1961
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Fig. 5 Credits for the creation of the chromatic number of the plane problem

It is often easier to be precise about Ancient Egyptian history

than about what happened among our contemporaries.

– Nicolaas Govert de Bruijn, 19952

It happened long ago and perhaps did not happen at all.

– An Old Russian Joke

It is natural for one to inquire into the authorship of one’s favorite problem. And so
in 1991 I turned to countless articles and books. Some of the information I found
appears here in Fig. 5 and Table 1; take a look. In Fig. 5, arrows are drawn from
mathematicians giving credit to those who allegedly created the problem.

Are you confused? I was too!
As you can see in the table, Douglas R. Woodall credits Martin Gardner, who in

turn refers to Leo Moser. Hallard T. Croft calls it “a long standing open problem of
Erdős,” Gustavus J. Simmons credits “Erdős, [Frank] Harary and [William Thomas]
Tutte,” while Paul Erdős himself “can not trace the origin of this problem”! Later
Erdős credits “Hadwiger and Nelson,” while Victor Klee and Stan Wagon state that
the problem was “posed in 1960–61 by M. Gardner and Hadwiger.” Croft comes

2 [Bru6].
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Table 1 Who created the chromatic number of the plane problem?

Publication Year Author(s) Problem creator(s) or
source named

[Gar2] 1960 Gardner “Leo
Moser. . . writes. . . ”

[Had4] 1961 Hadwiger (after Klee) Nelson
[E61.21] 1961 Erdős “I can not trace the

origin of this
problem”

[Cro] 1967 Croft “A long standing open
problem of Erdős”

[Woo1] 1973 Woodall Gardner
[Sim] 1976 Simmons Erdős, Harary and

Tutte
[E80.38] 1980–1981 Erdős Hadwiger and

Nelson
[E81.23]
[E81.26]
[CFG] 1991 Croft, Falconer, and Guy “Apparently due to

E. Nelson”
[KW] 1991 Klee and Wagon “Posed in 1960–61 by

M. Gardner and
Hadwiger”

again, this time with Kenneth J. Falconer and Richard K. Guy, to cautiously suggest
that the problem is “apparently due to E. Nelson” [CFG]. Yet, Richard Guy did not
know who “E. Nelson” was and why he and his coauthors “apparently” attributed
the problem to him (our conversation in the back seat of a car in Keszthely, Hungary,
when we both attended Paul Erdős 80th birthday conference in August of 1993).

Thus, at least seven mathematicians were credited with creating the problem:
Paul Erdős, Martin Gardner, Hugo Hadwiger, Frank Harary, Leo Moser, Edward
Nelson, and William T. Tutte: a great group of mathematicians to be sure. But it was
hard for me to believe that they all created the problem, be it independently or all
seven together.

I felt an urge, akin to that of a private investigator, a Sherlock Holmes, to untan-
gle the web of conflicting accounts. It took 6 months to solve this historical puzzle.
A good number of mathematicians, through conversations and e-mails, contributed
their insight: Branko Grünbaum, Peter D. Johnson, Tony Hilton, and Klaus Fis-
cher first come to mind. I am especially grateful to Paul Erdős, Victor Klee, Martin
Gardner, Edward Nelson, and John Isbell for contributing their parts of the puzzle.
Only their accounts, recollections, and congeniality made these findings possible.

I commenced my investigation on June 19, 1991 by mailing a letter to Paul Erdős.
I informed Paul that “I am starting a new Mathematical Coloring Book, which will
address problems where coloring is a part of a problem and/or a part of solution
(a major part),”3 and then asked the question: “There is a famous open problem of

3 This seems to be my first mention of what has become an 18-year long project!
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finding the chromatic number of the plane (minimal number of colors that prevents
distance one between points of the same color). Is this your problem?”

On August 10, 1991, Paul shared his appreciation of the problem, for which
he could not claim the authorship [E91/8/10]: “The problem about the chromatic
number of the plane is unfortunately not mine.” In a series of letters of July 12,
1991; July 16, 1991; August 10, 1991; and August 14, 1991, Paul also formulated
for me a good number of problems related to the chromatic number of the plane that
he did create. We look at Erdős’s problems in the following sections.

Having established that the author was not Paul Erdős, I moved down the list
of “candidates”, and on August 8, 1991 and again on August 30, 1991, I wrote
to Victor Klee, Edward Nelson, and John Isbell. I shared with them my Table 1 and
asked what they knew about the creation of the problem. I also interviewed Professor
Nelson on the phone on September 18, 1991.

Edward Nelson created what he named “a second four-color problem” (first be-
ing the famous four-color problem of map coloring). In his October 5, 1991, letter
[Nel2], he conveyed the story of creation:

Dear Professor Soifer:

In the autumn of 1950, I was a student at the University of Chicago and among other things
was interested in the four-color problem, the problem of coloring graphs topologically em-
bedded in the plane. These graphs are visualizable as nodes connected by wires. I asked
myself whether a sufficiently rich class of such graphs might possibly be subgraphs of one
big graph whose coloring could be established once and for all, for example, the graph of all
points in the plane with the relation of being unit distance apart (so that the wires become
rigid, straight, of the same length, but may cross). The idea did not hold up, but the other
problem was interesting in its own right and I mentioned it to several people.

One of the people Ed Nelson mentioned the problem to was John Isbell. Half a
century later, Isbell still remembered the story very vividly when on August 26,
1991 he shared it with me [Isb1]:

. . . Ed Nelson told me the problem and � � 4 in November 1950, unless it was October—
we met in October. I said what upper bound have you, he said none, and I worked out 7.
I was a senior at the time (B.S., 1951). I think Ed had just entered U. Chicago as a nom-
inal sophomore and taken placement exams which placed him a bit ahead of me, say a
beginning graduate student with a gap or two in his background. I certainly mentioned the
problem to other people between 1950 and 1957; Hugh Spencer Everett III, the author of
the many-worlds interpretation of quantum mechanics, would certainly be one, and Elmer
Julian Brody who did a doctorate under Fox and has long been at the Chinese University of
Hong Kong and is said to be into classical Chinese literature would be another. I mentioned
it to Vic Klee in 1958 ˙1: : :.

Victor Klee too remembered (our phone conversation, September, 1991) hearing
the problem from John Isbell in 1957–1958. In fact, it took place before September
1958 when Professor Klee left for Europe. There he passed the problem to Hugo
Hadwiger who was collecting problems for the book Open Problems in Intuitive
Geometry to be written jointly by Erdős, Fejes-Toth, Hadwiger, and Klee (this great
book-to-be has never materialized).

Gustavus J. Simmons [Sim], in giving credit to “Erdős, Harary and Tutte,” no
doubt had in mind their joint 1965 paper [EHT] in which the three authors defined
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the dimension of a graph. The year 1965 was too late for our problem’s creation,
and besides, the three authors have not made or claimed such a discovery.

What were the roles of Paul Erdős, Martin Gardner, and Leo Moser in the story
of creation? I am prepared to answer these questions, all except one: I am leaving
to others to research Leo Moser’s archive (maintained by his brother Willie Moser
at McGill University in Montreal) and find out how and when Leo Moser came by
the problem. What is important to me is that he did not create it independently from
Edward Nelson, as Paul Erdős informed me in his July 16, 1991, letter [E91/7/16]:
“I do not remember whether Moser in 1958 [possibly on June 16, 1958, the date
from which we are lucky to have a photo record] told me how he heard the problem
on the chromatic number of the plane, I only remember that it was not his problem.”

Eddie Nelson, c. 1950. Courtesy of Edward Nelson

Yet, Leo Moser made a valuable contribution to the survival of the problem. He
gave it to both Paul Erdős and Martin Gardner. Gardner, due to his fine taste, recog-
nized the value of this problem and included it in his October 1960 “Mathematical
Games” column in Scientific American [Gar2], with the acknowledgment that he
received it from Leo Moser of the University of Alberta. Thus, the credit for the first
publication of the problem goes to Martin Gardner. It is beyond me why so many
authors of articles and books, as far back as 1973 ([Woo1], for example), gave credit
for the creation of the problem to Martin Gardner, something he himself has never
claimed. In our 1991 phone conversation Martin told me for a fact that the problem
was not his, and he promptly listed Leo Moser as his source, both in print and in his
archive.
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Paul Erdős (left) and Leon Moser, June 16, 1958. Courtesy of the late Paul Erdős

Moreover, some authors ([KW], for example) who knew of Edward Nelson, still
credited Martin Gardner and Hugo Hadwiger because, it seems, only written, prefer-
ably published word was acceptable to them. Following this logic, the creation of
the celebrated four-color map coloring problem must be attributed to Augustus De
Morgan, who first wrote about it in his October 23, 1852 letter to William Rowan
Hamilton, or better yet to Arthur Cayley, whose 1878 abstract included the first
nonanonymous publication of the problem.4 Yet we all seem to agree that the 20-
year-old Francis Guthrie created this problem, even though he did not publish or
even write a word about it!

Of course, a lone self-serving statement would be too weak a foundation for a
historical claim. On the other hand, independent disinterested testimonies corrobo-
rating each other comprise as solid a foundation for the attribution of the credit as
any publication. And this is precisely what my inquiry has produced. Here is just
one example of Nelson and Isbell’s selflessness. Edward Nelson tells me on August
23, 1991 [Nel1]: “I proved nothing at all about the problem. . . .”

John Isbell corrects Nelson in his September 3, 1991, letter [Isb2]:

Ed Nelson’s statement which you quote, “I proved nothing at all about the problem,” can
come only from a failure of memory. He proved to me that the number we are talking about
is � 4, by precisely the argument in Hadwiger 1961. Hadwiger’s attribution (on Klee’s
authority) of that inequality to me can only be Hadwiger’s or Klee’s mistake.

This brings us to the issue of the authorship of the bounds for �,

4 � � � 7:
Once again, the entire literature is off the mark by giving credit for the first proofs to
Hadwiger and the Mosers. Yes, in 1961 the famous Swiss geometer Hugo Hadwiger

4 First publication could be attributed to De Morgan, who mentioned the problem in his 1860 book
review in Athenaeum [DeM4], albeit anonymously.
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published [Had4] the chromatic number of the plane problem together with proofs
of both bounds. But he wrote (and nobody read!): “We thank Mr. V. L. Klee (Seattle,
USA) for the following information. The problem is due to E. Nelson; the inequal-
ities are due to J. Isbell.” Hadwiger did go on to say: “Some years ago the author
[i.e., Hadwiger] discussed with P. Erdős questions of this kind.”

Did he imply that he created the problem independently from Nelson? We
will never know for sure, but I have my doubts about Hadwiger’s (co)authorship.
Hadwiger jointly with H. Debrunner published an excellent, long problem paper in
1955 [HD1] that was extended to their wonderful famous book Combinatorial Geo-
metry of the Plane in 1959 [HD2]; see also the 1964 English translation [HDK] with
Victor Klee, and the 1965 Russian translation [HD3] edited by Isaak M. Yaglom. All
these books (and Hadwiger’s other papers) included a number of “questions of this
kind,” but did not once include the chromatic number of the plane problem. More-
over, it seems to me that the problem in question is somewhat out of Hadwiger’s
“character”: in all problems “of this kind” he preferred to consider closed rather
than arbitrary sets, in order to take advantage of topological tools.

I shared with Paul Erdős these twofold doubts about Hadwiger independently
creating the problem. It was especially important because Hadwiger in the text
quoted above mentioned Erdős as his witness of sorts. Paul replied in the July 16,
1991, letter [E91/7/16] as follows: “I met Hadwiger only after 1950, thus I think
Nelson has priority (Hadwiger died a few years ago, thus I cannot ask him, but I
think the evidence is convincing).” During his talk at the 25th Southeastern Interna-
tional Conference on Combinatorics, Computing and Graph Theory in Boca Raton,
Florida, 9:30–10:30 A.M. on Thursday, March 10, 1994, Paul Erdős summarized the
results of my historical research in the characteristically Erdősian style [E94.60]:5

There is a mathematician called Nelson who in 1950 when he was an
epsilon, that is he was 18, discovered the following question. Suppose you
join two points in the plane whose distance is 1. It is an infinite graph. What
is chromatic number of this graph?

Now, de Bruijn and I showed that if an infinite graph which is chromatic
number k, it always has a finite subgraph, which is chromatic number k. So
this problem is really [a] finite problem, not an infinite problem. And it was
not difficult to prove that the chromatic number of the plane is between 4
and 7. I would bet it is bigger than 4, but I am not sure. And the problem is
still open.

If it would be my problem, I would certainly offer money for it. You know,
I can’t offer money for every nice problem because I would go broke im-
mediately. I was asked once what would happen if all your problems would
be solved, could you pay? Perhaps not, but it doesn’t matter. What would
happen to the strongest bank if all the people who have money there would
ask for money back? Or what would happen to the strongest country if they
suddenly ask for money? Even Japan or Switzerland would go broke. You

5 Thanks to Prof. Fred Hoffman, the tireless organizer of this annual conference, I have a videotape
of Paul Erdős’s memorable talk.
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Fig. 6 Passing the baton of the chromatic number of the plane problem

see, Hungary would collapse instantly. Even the United States would go broke
immediately. . .

Actually it was often attributed to me, this problem. It is certain that I had
nothing to do with the problem. I first learned the problem, the chromatic
number of the plane, in 1958, in the winter, when I was visiting [Leo] Moser.
He did not tell me from where this nor the other problems came from. It
was also attributed to Hadwiger but Soifer’s careful research showed that the
problem is really due to Nelson.

The results of my historical research are summarized in Fig. 6, where arrows
show passing the problem from one mathematician to another. In the end, Paul Erdős
shared the problem with the world in numerous talks and articles.

Paul Erdős’s acceptance of my findings has had a significant effect: most re-
searchers and expositors now give credit to Edward Nelson for the chromatic num-
ber of the plane problem. There are, however, unfortunate exceptions. László Lovász
and K. Vesztergombi, for example, state [LV] that “in 1944 Hadwiger and Nelson
raised the question of finding the chromatic number of the plane.” Of course, the
problem did not exist in 1944, in Hadwiger’s cited paper or anywhere else. More-
over, Eddie Nelson was just an 11–12-year-old boy at the time! In the same book,
dedicated to the memory of Paul Erdős, one of the leading researchers of the prob-
lem and my friend Laszló Székely (who already in 1992 attended my talk on the his-
tory of the problem at Boca Raton), goes even further than Lovász and Vesztergombi
[Sze3]: “E. Nelson and J. R. Isbell, and independently Erdős and H. Hadwiger,
posed the following problem. . . ”
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The fine Russian researcher of this problem A. M. Raigorodskii repeats from
Székely in his 2003 book [Raig6, p. 3], in spite of citing (thus presumably know-
ing) my historical investigation in his survey [Raig3]: “There were several authors.
First of all, already in the early 1940s the problem was posed by remarkable
mathematicians Hugo Hadwiger and Paul Erdős; secondly, E. Nelson and J. P. Isbell
worked on the problem independently from Erdős and Hadwiger.”6 Raigorodskii
then “discovers” a previously nonexistent connection between world affairs and the
popularity of the problem:7 “In the 1940s there was W.W.II, and this circumstance is
responsible for the fact that at first chromatic numbers [sic] did not raise too thunder-
ous an interest.” Now we can finally give due credit to Edward Nelson for being first
in 1950 to prove the lower bound 4 � �. Because of this bound, John Isbell recalls
in his letter [Isb1] that Nelson “liked calling it a second Four-Color Problem!”

In phone interviews with Edward Nelson on September 18 and 30, 1991, I
learned some information about the problem creator. Joseph Edward Nelson was
born on May 4, 1932 (an easy number to remember: 5/4/32), in Decatur, Georgia,
near Atlanta. The son of the Secretary of the Italian YMCA,8 Ed Nelson had stud-
ied at a liceo (Italian prep school) in Rome. In 1949 Eddie returned to the United
States and entered the University of Chicago. The visionary Chancellor of the Uni-
versity, Robert Hutchins,9 allowed students to avoid “doing time” at the University
by passing lengthy placement exams instead. Ed Nelson had done so well on so
many exams that he was allowed to go right on to graduate school without working
on his bachelor’s degree.

Time magazine reported young Nelson’s fine achievements in 14 exams on
December 26, 1949 [Time], next to the report on the completion of the last
war-crimes trials of the World War II (Field Marshal Fritz Erich von Manstein
was sentenced to 18 years in prison), assurances by General Dwight D. Eisenhower
that he would not be a candidate in the 1952 presidential election (he certainly
was – and won it), and promise to announce Time’s “A Man of the Half-Century” in
the next issue (Time’s choice was Winston Churchill).

Upon obtaining his doctorate from the University of Chicago in 1955, Edward
Nelson became the National Science Foundation’s Postdoctoral Fellow at Prince-
ton’s Institute for Advanced Study in 1956. Three years later he became – and still
is – a professor at Princeton University. His main areas of interest are analysis and
logic. In 1975 Edward Nelson was elected to the American Academy of Arts and
Sciences, and in 1997 to the National Academy of Sciences. During my 2002–2004
stay at Princeton, I had the pleasure to interact with Professor Nelson almost daily.
My talk on the chromatic number of the plane problem at Princeton’s Discrete Math-
ematics Seminar was dedicated “To Edward Nelson, who created this celebrated
problem for us all.”

6 My translation from the Russian.
7 Ibid.
8 The Young Men’s Christian Association (YMCA) is one of the oldest and largest not-for-profit
community service organizations in the world.
9 Robert Maynard Hutchins (1899–1977) was President (1929–1945) and Chancellor (1945–1951)
of the University of Chicago.
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John Isbell was first in 1950 to prove the upper bound � � 7. He used the same
hexagonal 7-coloring of the plane that Hadwiger published in 1961 [Had4]. Please
note that Hadwiger first used this coloring of the plane in 1945 [Had3], but for a
different problem: his goal was to show that there are seven congruent closed sets
that cover the plane (he also proved there that no five congruent closed sets cover
the plane). Professor John Rolfe Isbell, PhD Princeton University, 1954 under Albert
Tucker, has been for decades on the faculty of mathematics at the State University
of New York at Buffalo, where he is now Professor Emeritus.

Paul Erdős’s contribution to the history of this problem is twofold. First of all, as
Augustus De Morgan did for the four-color problem, Erdős kept the flaming torch of
the problem lit. He made the chromatic number of the plane problem well known by
posing it in his countless problem talks and many publications. For example, we see
it in [E61.21], [E63.21], [E75.24], [E75.25], [E76.49], [E78.50], [E79.04], [ESi],
[E80.38], [E80.41], [E81.23], [E81.26], [E85.01], [E91.60], [E92.19], [E92.60],
and [E94.60].

Secondly, Paul Erdős created a good number of fabulous related problems. We
discuss one of them in the next section.

In February 1992 at the 23rd Southeastern International Conference on Combi-
natorics, Computing and Graph Theory in Boca Raton, Floride during his traditional
Thursday morning talk, I asked Paul Erdős how much he would offer for the first
solution of the chromatic number of the plane problem. Paul replied: “I can’t offer
money for nice problems of other people because then I will really go broke.” I then
transformed my question into the realm of mathematics and asked Paul “Assume
this is your problem; how much would you then offer for its first solution?” Paul
answered: “It is a very nice problem. If it were mine, I would offer $250 for it.”

A few years ago the price went up for the first solution of just the lower bound
part of the chromatic number of the plane problem. On Saturday, May 4, 2002,
which by the way was precisely Edward Nelson’s 70th birthday, Ramsey theory’s
leading mathematician and the Treasurer of the National Academy of Sciences
Ronald L. Graham gave a talk on Ramsey theory at the Massachusetts Institute of
Technology for about 200 participants of the USA Mathematical Olympiad. Dur-
ing the talk he offered $1,000 for the first proof or disproof of what he called, after
Nelson, “Another 4-Color Conjecture.” The talk commenced at 10:30 AM (I at-
tended the talk and took notes).

Another 4-Color $1,000 Conjecture 3 (Graham, May 4, 2002). Is it possible to
4-color the plane to forbid a monochromatic distance 1?

In August 2003, in his talk “What is Ramsey Theory?” at the Mathematical Sci-
ences Research Institute in Berkeley, California [Gra1], Graham asked for more
work for $1,000:

$1,000 Open Problem 4 (Graham, August, 2003). Determine the value of the
chromatic number � of the plane.

It seems that presently Graham believes that the chromatic number of the plane
takes on an intermediate value, between its known boundaries, for in his two latest
surveys [Gra2], [Gra3], he offers the following open problems:
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$100 Open Problem 5 (Graham [Gra2], [Gra3]). Show that � � 5.10

$250 Open Problem 6 (Graham [Gra2], [Gra3]). Show that � � 6.

This prompted me to look at all published Erdős’s predictions on the chromatic
number of the plane. Let me summarize them here for you. First Erdős believes –
and communicates it in 1961 [E61.22] and 1975 [E75.24] – that the problem creator
Nelson conjectured that the chromatic number was 4; Paul enters no prediction of
his own. In 1976 [E76.49] Erdős asks: “Is this graph 4-chromatic?” In 1979 [E79.04]
Erdős becomes more assertive:

It seems likely that the chromatic number is greater than 4. By a theorem of
de Bruijn and myself this would imply that there are n points x1; : : :; xn in the
plane so that if we join any two of them whose distance is 1, then the resulting
graph G.x1; : : :; xn/ has chromatic number> 4. I believe such an n exists but
its value may be very large.11

A certainty comes in 1980 [E80.38] and [E80.41]: “I am sure that [the chromatic
number of the plane] ˛2 > 4 but cannot prove it.”

In 1981 [E81.23] and [E81.26] we read, respectively: “It has been conjectured
[by E. Nelson] that ˛2 D 4, but now it is generally believed that ˛2 > 4.” It seems
likely that �.E2/ > 4:

In 1985 [E85.01] Paul Erdős writes: “I am almost sure that h(2) > 4.”
Once – just once – Erdős expresses midvalue expectations, just as Ron Gra-

ham has in his problems 5 and 6. It happened on Thursday, March 10, 1994 at
the 25th Southeastern International Conference on Combinatorics, Computing and
Graph Theory in Boca Raton. Following Erdős’s plenary talk (9:30–10:30 AM), I
was giving my talk at 10:50 AM, when suddenly Paul Erdős said (and I jotted it
down): “Excuse me for interrupting; I am almost sure that the chromatic number of
the plane is greater than 4. It is not a proof, but any measurable set without distance
1 in a very large circle has measure less than 1/4. I also do not think that it is 7.”

It is time for me to speak on the record and predict the chromatic number of the
plane. I am leaning toward predicting 7 or else 4, somewhat disjointly from Graham
and Erdős’s apparent expectation.

Chromatic Number of the Plane, Soft Conjecture 7.

� D 5:5˙ 1:5:
(Here˙ stands for “C or �”.)

Limiting myself to just one value, I have to conjecture:

Chromatic Number of the Plane Conjecture 7�.

� D 7:
10 Graham cites Paul O’Donnell’s Theorem 48.4 (see it later in this book) as “perhaps, the evidence
that � is at least 5.”
11 If the chromatic number of the plane is 7, then for G.x1; : : :; xn/ D 7 such an n must be greater
than 6197 [Pri].
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If you, in fact, prove the chromatic number is 7 or 4, I do not think you would lose
Graham’s prizes. I am sure Ron will pay his prizes for disproofs as well as for proofs.
On January 26, 2007 in a personal e-mail, Graham clarified the terms of awarding
his prizes: “I always assume that we are working in ZFC (for the chromatic number
of the plane!). My monetary awards can vary depending on which audience I am
talking to. I always give the maximum of whatever I have announced (and not the
sum!).”

On May 28, 2009, during the DIMACS workshop, in the middle of my talk
given 11:15–12:15, I asked the distinguished audience to determine the chromatic
number of the plane by democratic means of a vote. Except one young lady vot-
ing for 6, and I voting for 7, the rest of the workshop participants equally split
between 4 (including Peter D. Johnson Jr. and Mitya Karabash), and 5 (including
Ron Graham). I was therefore able to determine the democratic value of the chro-
matic number of the plane: 4.5.

3 Polychromatic Number of the Plane & Results Near
the Lower Bound

When a great problem withstands all assaults, mathematicians create many related
problems. It gives them something to solve, plus sometimes there is an extra gain in
this process, when an insight into a related problem brings new ways to see and con-
quer the original one. Numerous problems have been posed around the chromatic
number of the plane. I would like to share with you my favorite among them.

It is convenient to say that a colored set S realizes distance d if S contains a
monochromatic pair of points distance d apart; otherwise we say that S forbids
distance d. Our knowledge about this problem starts with the celebrated 1959 book
by Hugo Hadwiger and Hans Debrunner ([HD2], and subsequently its enhanced
translations into Russian by Isaak M. Yaglom [HD3] and into English by Victor Klee
[HDK]). Hadwiger reported in the book the contents of the September 9, 1958 letter
he received from the Hungarian mathematician A. Heppes: “Following an initiative
by P. Erdős he [i.e., Heppes] considers decompositions of the space into disjoint sets
rather than closed sets. For example, we can ask whether proposition 59 remains true
in the case where the plane is decomposed into three disjoint subsets. As we know,
this is still unresolved.” In other words, Paul Erdős asked whether it was true that if
the plane is partitioned (colored) into three disjoint subsets, one of the subsets must
realize all distances. Soon the problem took on its current “appearance.”

This important invariant had to have a name, and so in 1992 [Soi5] I named it the
polychromatic number of the plane and denoted it by �p .

Erdős’s Open Problem 8 (1958). What is the smallest number�p of colors needed
for coloring the plane in such a way that no color realizes all distances?12

12 The authors of the fine problem book [BMP] incorrectly credit Hadwiger as “first” to study this
problem (p. 235). Hadwiger, quite typically for him, limited his study to partitions into closed sets.
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Since I viewed this to be a very important open problem, I asked Paul Erdős to
verify his authorship, suggested, as we have seen, by Hadwiger. As always, Paul
was very modest in his July 16, 1991 letter to me [E91/7/16]: “I am not even quite
sure that I created the problem: Find the smallest number of colors for the plane, so
that no color realizes all distances, but if there is no evidence contradicting it we can
assume it for the moment.”

My notes show that during his unusually long 2-week visit in December 1991–
January 1992 (we were working together on the book of Paul’s open problems,
soon to be completed and entitled Problems of pgom Erdős), Paul confirmed his
authorship of this problem. In the chromatic number problem, we were looking for
colorings of the plane such that each color forbids distance 1. In the polychromatic
number problem, we are coloring the plane in such a way that each color i forbids
a distance di . For distinct colors i and j , the corresponding forbidden distances di

and dj may (but do not have to) be distinct. Of course,

�p � �:
Therefore,

�p � 7:
Nothing else had been discovered during the first 12 years of this problem’s life.
Then in 1970 Dmitry E. Raiskii, a student at the Moscow High School for Working
Youth13 105, published [Rai] the lower and upper bounds for �p. Let us look at the
lower bound here, and save the upper bound for Sect.5.

Raiskii’s Lower Bound Theorem 9 (D. E. Raiskii, 1970, [Rai]). 4 � �p:

Three years after Raiskii’s publication, in 1973 the British mathematician
Douglas R. Woodall from the University of Robin Hood (I mean Nottingham:-),
published a paper [Woo1] on problems related to the chromatic number of the plane.
Among other things, he gave his own proof of the lower bound for �p . As I showed
in [Soi17], Woodall’s proof stemmed from a triple application of two simple ideas
of Hugo Hadwiger ([HDK], Problems 54 and 59).

In 2003, the Russian-turned-Israeli mathematician Alexei Kanel-Belov commu-
nicated to me an incredibly beautiful short proof of this lower bound by the new
generation of young Russian mathematicians, all his students. The proof was found
by Alexei Merkov, a tenth grader from the Moscow High School 91, and commu-
nicated by Alexei Roginsky and Daniil Dimenstein in 1997 at a Moscow Pioneer
Palace [Poisk]. Following is the author’s proof with my gentle modifications.

Proof of the Lower Bound Theorem 9 (A. Merkov). Assume the plane is colored
in three colors, red, white, and blue, and each color forbids a distance r , w, and
b, respectively. Equip the 3-colored plane with the Cartesian coordinates with the
origin O , and construct in the plane three 7-point sets Sr , Sw, and Sb each being
the Mosers Spindle (see Fig. 1), such that all spindles share O as one of their seven
vertices, and have edges all equal to r , w, and b, respectively. This construction
defines 6 “red” vectors v1; : : : ; v6 from the origin O to each remaining point of

13 Students in such high schools hold regular jobs during the day, and attend classes at night.
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Sr ; 6 “white” vectors v7; : : : ; v12 from O to the points of Sw; and 6 “blue” vectors
v13; : : : ; v18 fromO to the points of Sb, 18 vectors in all.

Introduce now the 18-dimensional Euclidean space R18 and a function M from
R18 to the plane R2 naturally defined as follows: .a1; : : : ; a18/ 7! a1v1 C � � � C
a18v18. This function induces a 3-coloring of R18 by assigning a point of R18 the
color of the corresponding point of the plane. We call the first six axes ofR18 “red,”
the next 6 axes “white,” and the last 6 axes “blue.”

Define by W the subset in R18 of all points whose coordinates include at most
one coordinate equal to 1 for each of the three colors of the axes, and the rest (15
or more) coordinates 0. It is easy to verify (do) that W consists of 73 points. For
any fixed array of allowable in W coordinates on white and blue axes, we get the
7-element set A of points in W having these fixed coordinates on white and blue
axes. The imageM.A/ of the setA under the mapM forms in the plane a translation
of the original 7-point set Sr . If we fix another array of white and blue coordinates,
we get another 7-element set inR18, whose image underM would form in the plane
another translation of Sr . Thus, the set W gets partitioned into 72 subsets, each of
which maps into a translate of Sr .

Now recall the observation we made after Lower Bound 1. It implies here that
any translate of the Moser spindle Sr contains at most two red points out of its seven
points. Since the set W has been partitioned into the translates of Sr , at most 2/7 of
the points ofW are red. We can start all over again, and in a similar way show that at
most 2/7 of the points of W are white, and similarly to show that at most 2/7 of the
points ofW are blue. But 2=7C2=7C2=7 does not add up to 1! This contradiction
implies that at least one of the colors realizes all distances, as required. �

Paul Erdős proposed yet another related problem (e.g., see [E85.01]). For a given
finite set S of r positive numbers, a set of forbidden distances if you will, we define
the graphGS .E

2/, whose vertices are the points of the plane, and a pair of points is
adjacent if and only if the distance between them belongs to S . Denote

�r D max
S
�
�
GS .E

2/
�
:

“It is easy to see that limr!1 �r=r D 1,” Erdős writes, and poses a question:

Erdős’s Open Problem 10. Does �r grow polynomially?

It is natural to call the chromatic number �S .E
2/ of the graph GS .E

2/ the
S-chromatic number of the plane. One can pose a more general and hard problem, and
in fact, it is an old problem of Paul Erdős (“I asked long ago,” Paul says in [E94.60]):

Erdős’s Open Problem 11. Given a set S of positive numbers, find the
S -chromatic number �S .E

2/ of the plane.

How difficult this problem is judge for yourselves: for the 1-element set S this is
the chromatic number of the plane problem!
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4 De Bruijn–Erdős Reduction to Finite Sets and Results Near
the Lower Bound

We can expand the notion of the chromatic number to any subset S of the plane. The
chromatic number �.S/ of S is the smallest number of colors sufficient for coloring
the points of S in such a way that forbids monochromatic segments of length 1.

In 1951 Nicolaas Govert de Bruijn and Paul Erdős published a very powerful
tool [BE2] that helps us with this and other problems. We formulate and prove it in
Sect. 5. In our setting here, it implies the following.

De Bruijn–Erdős Compactness Theorem 12.14 The chromatic number of the plane
is equal to the maximum chromatic number of its finite subsets.

Thus, as Paul Erdős used to say, the problem of finding the chromatic number of
the plane is a problem about finite sets in the plane.15

Victor Klee and Stan Wagon posed the following open problem in [KW]:

Open Problem 13. When k is 5, 6, or 7, what is the smallest number ık of points
in a plane set whose chromatic number is equal to k?

Of course, Problem 13 makes sense only if � > 4. In the latter case this problem
suggests a way to attack the chromatic number of the plane problem by constructing
new “spindles.” Can we manage without unit side equilateral triangles? For four
colors this for a while was an open problem, first posed by Paul Erdős in July 1975,
(and published in 1976), who, as was usual with him, offered to “buy” the first
solution for $25.

Erdős’s $25 Problem 14 [E76.49]. Let S be a subset of the plane which contains
no equilateral triangles of size 1. Join two points of S if their distance is 1. Does
this graph have chromatic number at most 3?

If the answer is no, assume that the graph defined by S contains no Cl [cycles of
length l] for 3 � l � t and ask the same question.

It appears that Paul Erdős was not sure of the outcome, which was rare for him.
Moreover, from the next publication of the problem in 1979 [E79.04], it is clear that
Paul expected that triangle-free unit distance graphs had chromatic number 3, or
else chromatic number 3 can be forced by prohibiting all small cycles up to Ck for
sufficiently large k:

Erdős’s $25 Problem 140 [E79.04]. Let our n points [in the plane] be such that
they do not contain an equilateral triangle of side 1. Then their chromatic number
is probably at most 3, but I do not see how to prove this. If the conjecture would
unexpectedly [sic] turn out to be false, the situation can perhaps be saved by the
following new conjecture:

14 The axiom of choice is assumed in this result.
15 Or so we all thought until recently. Because of that, I chose to leave this section as it was written
in the early 1990s. BUT: see Section X of this survey for the latest developments.
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There is a k so that if the girth of G.x1; : : :; xn/ is greater than k, then its chro-
matic number is at most three – in fact, it will probably suffice to assume that
G.x1; : : :; xn/ has no odd circuit of length � k.16

Erdős’s first surprise arrived in 1979 from Australia: Nicholas Wormald, then
of the University of Newcastle, Australia, disproved the first, easier, triangle-free
conjecture. Erdős paid $25 reward for the surprise, and promptly reported it in his
next 1978 talk (published 3 years later [81.23]): “Wormald in a recent paper (which
is not yet published) disproved my original conjecture – he found a [set] S for which
[the unit distance graph] G1.S/ has girth 5 and chromatic number 4. Wormald’s
construction uses elaborate computations and is fairly complicated.”

Wormald [Wor] proved the existence of a set S of 6,448 (!) points without tri-
angles and quadrilaterals with all sides 1, whose chromatic number was 4. He was
aided by a computer.

The size of Wormald’s example, of course, did not appear to be anywhere near
optimal. Surely, it must have been possible to do the job with less than 6,448 points!
In my March, 1992 talk at the Southeastern International Conference on Combina-
torics, Graph Theory and Computing at Florida Atlantic University, I shared Paul
Erdős’s old question, but I put it in a form of competition:

Open Problem 15. Find the smallest number ¢4 of points in a plane set without
equilateral triangles of side 1 whose chromatic number is 4. Construct (classify) all
such sets S of �4 points.

The result exceeded my wildest dreams. A number of young mathematicians,
including graduate students, were inspired by this talk to enter the race. Coinciden-
tally, during that academic year, with the participation of the celebrated geometer
Branko Grünbaum, and of Paul Erdős, whose problem papers set the style, I started
the new journal Geombinatorics dedicated to problem-posing essays on discrete
and combinatorial geometry and related areas (it is still alive and well now, 19 years
later). The aspirations of the journal were clear from my 1991 editor’s page in issue
3 of volume I:

In a regular journal, papers appear 1–2 years after research is completed. By then even the
author may not be excited any more about his results. In Geombinatorics we can exchange
open problems, conjectures, aspirations, work-in-progress that is still exciting to the author,
and therefore exciting to the reader.

A true World Series played out on the pages of Geombinatorics around prob-
lem 15. The graphs obtained by the record setters were as mathematically signifi-
cant as they were beautiful. See the complete report on these World Series in [Soi].
I have to show you here the two record-holding graphs; they were created by Robert
Hochberg and Paul O’Donnell [HO].

Hochberg–O’Donnell’s Girth 4, 4-Chromatic Unit Distance Graph of Order 23
[HO] (Fig. 7)

16 The symbol G.x1; : : :; xn/ denotes the graph on the listed inside parentheses n vertices, with
two vertices adjacent if and only if they are unit distance apart.
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Fig. 7 The Hochberg–O’Donnell Fish Graph

Hochberg–O’Donnell’s Girth 5, 4-Chromatic Unit Distance Graph of Order 45
[HO] (Fig. 8)

Many attempts to increase the lower bound of the chromatic number of the plane
had not achieved the goal. Rutgers University’s PhD student Rob Hochberg believed
(and still does) that the chromatic number of the plane was 4, while his roommate
and fellow PhD student Paul O’Donnell was of the opposite opinion. They managed
to get along in spite of this disagreement of the mathematical kind. On January 7,
1994, Rob sent me an e-mail to that effect:

Alex, hello. Rob Hochberg here. (The one who’s gonna prove �.R2/ D 4.) . . . It seems
that Paul O’Donnell is determined to do his Ph. D. thesis by constructing a 5-chromatic
unit distance graph in the plane. He’s got several interesting 4-chromatic graphs, and great
plans. We still get along.

Two months later, Paul O’Donnell’s abstract in the Abstracts book of the Southeast-
ern International Conference on Combinatorics, Graph Theory and Computing in
Boca Raton, Florida included the following words, “The chromatic number of the
plane is between four and seven. A five-chromatic subgraph would raise the lower
bound. If I discover such a subgraph, I will present it.”

We all came to his talk of course (it was easy for me, as I spoke immediately
before Paul in the same room). At the start of his talk, however, Paul simply said,
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Fig. 8 The Hochberg–O’Donnell Star Graph

“Not yet,” and went on to show his impressive 4-chromatic graph of girth 4. Five
years later, on May 25, 1999, Paul O’Donnell defended his doctorate at Rutgers
University. I served as the outside member of his PhD defense committee. In fact,
it appears that my furniture had something to do with Paul O’Donnell’s remarkable
dissertation, for in the dissertation’s Acknowledgements he wrote: “Thanks to Alex.
It all came to me as I drifted off to sleep on your couch.”

The problem of finding a 5-chromatic unit distance graph – or proving that one
does not exist – still remains open. However, much was learned about 4-chromatic
unit distance graphs. The best of these results, in my opinion, was contained in this
doctoral dissertation of Paul O’Donnell. He completely solved Paul Erdős’s problem
14, and delivered to Paul Erdős an ultimate surprise by negatively answering his
general conjecture:

O’Donnell’s Theorem 16. (1999, [Odo3,4,5]). There exist 4-chromatic unit dis-
tance graphs of arbitrary finite girth.

5 Polychromatic Number of the Plane & Results Near
the Upper Bound

Dmitry E. Raiskii’s paper [Rai] also contained the upper bound:

�p � 6:
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Fig. 9 Stechkin’s six-coloring of the plane

The example proving this upper bound was found by S. B. Stechkin and published
with his permission by D. E. Raiskii in [Rai].

Problem 17 (S. B. Stechkin, [Rai]). �p� 6.

Solution by S. B. Stechkin [Rai]. The “unit of the construction” is a parallelogram
that consists of four regular hexagons and eight equilateral triangles, all of side
lengths 1 (Fig. 9). We color the hexagons in colors 1, 2, 3, and 4. We partition tri-
angles of the tiling into two types: we assign color 5 to the triangles with a vertex
below their horizontal base; and color 6 to the triangles with a vertex above their
horizontal base. While coloring, we consider every hexagon to include its entire
boundary except its one rightmost and two lowest vertices; and every triangle does
not include any of its boundary points.

Now we can tile the entire plane with translates of the “unit of the construction”. �
An easy construction solved problem 17, easy to understand after it was found.

The trick was to find it, and Sergej B. Stechkin found it first. Christopher Columbus
too “just ran into” America! I got hooked.

I felt that if our ultimate goal were to find the chromatic number � of the plane
or to at least improve the known bounds (4 � � � 7), it may be worthwhile to
somehow measure how close a given coloring of the plane is to achieving this goal.
In 1992 I introduced such a measurement, and named it coloring type.

Definition 18 (A. Soifer [Soi5], [Soi6]). Given an n�coloring of the plane such
that the color i does not realize the distance di (1� i � n/. Then we would say that
this coloring is of type (d1; d2; : : :; dn/.

It would have been a great improvement in our search for the chromatic number
of the plane if we were to find a 6-coloring of type (1,1,1,1,1,1), or to show that
one does not exist. With the appropriate choice of a unit, we can make the 1970
Stechkin coloring to have type (1,1,1,1,1/2,1/2). Three years later, in 1973 Douglas
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R. Woodall [Woo1] found the second 6-coloring of the plane with no color realizing
all distances. Woodall’s coloring had a special property that the author desired for
his purposes: each of the six monochromatic sets was closed. His example, however,
had three “missing distances”: it had type

.1;1;1;
1p
3
;
1p
3
;
1

2
p
3
/:

Apparently, Woodall unsuccessfully tried to reduce the number of distinct distances,
for he wrote “I have not managed to make two of the three ‘missing distances’ equal
in this way” ([Woo1], p. 193).

In 1991, in search of a “good” coloring I looked at a tiling with regular octagons
and squares that I saw in some Russian public toilettes. But “The Russian toilette
tiling” did not work! I then decided to shrink the squares until their diagonal became
equal to the distance between two closest squares. Simultaneously (!) the diagonal of
the now nonregular octagon became equal to the distance between the two octagons
marked with 1 in Fig. 12. I was in business!

First Almost Perfect 6-Coloring 19 (A. Soifer [Soi6]). There is a 6-coloring of
the plane of type (1;1;1;1;1;1=

p
5/.

Proof. We start with two squares, one of side 2 and the other of diagonal 1 (Figs. 10
and 11). We can use them to create the tiling of the plane with squares and (nonregu-
lar) octagons (Fig. 12). Colors 1,. . . , 5 will consist of octagons; we color all squares
in color 6. With each octagon and each square we include half of its boundary (bold
lines in Fig. 11) without the endpoints of that half. It is easy to verify (please do)
that
p
5 is not realized by any of the colors 1,. . . , 5; and 1 is not realized by the

color 6. By shrinking all linear sizes by a factor of
p
5, we get the 6-coloring of type

(1,1,1,1,1, 1=
p
5/.

Fig. 10

Fig. 11
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Fig. 12 Soifer’s six-coloring of the plane

To simplify a verification, observe that the unit of my construction is bounded by
the bold line in Fig. 8; its translates tile the plane. �

I had mixed feelings when I obtained the result of problem 19 in early August
1991. On the one hand, I knew the result was “close but no cigar”: after all, a
6-coloring of type (1,1,1,1,1,1) was not found. On the other hand, I thought that
the latter 6-coloring may not exist, and if so, my 6-coloring would be best possible.
Problem 19 gave birth to a new definition and an open problem.

Definition 20. ([HS1]). Almost chromatic number �a of the plane is the minimal
number of colors that are required for coloring the plane so that almost all (i.e., all
but one) colors forbid unit distance, and the remaining color forbids a distance.

We have the following inequalities for �a:

4 � �a

�
E2
� � 6

The lower bound follows from Dmitry Raiskii [Rai]. I proved the upper bound in
problem 19 above [Soi6]. This naturally gave birth to a new problem, which is still
open:

Open Problem 21 [HS1]. Find �a.

6 Continuum of 6-Colorings of the Plane

In 1993 another 6-coloring was found jointly by Ilya Hoffman and I. Its type was
(1,1,1,1,1,

p
2 � 1/: The story of this discovery is noteworthy and can be found

in [Soi].
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Fig. 13 Hoffman-Soifer’s six-coloring of the plane

Fig. 14

Second Almost Perfect 6-Coloring 22 (I. Hoffman and A. Soifer [HS1], [HS2]).
There is a 6-coloring of the plane of type (1,1,1,1,1,

p
2 � 1/:

Proof. We tile the plane with squares of diagonals 1 and
p
2 � 1 (Fig. 13). We use

colors 1,. . . , 5 for larger squares, and color 6 for all smaller squares. With each
square we include half of its boundary, the left and lower sides, without the end-
points of this half (Fig. 14).

To more easily verify that this coloring does the job, observe the unit of the
construction that is bounded by the bold line in Figs. 13 and 14; its translates tile the
plane. �

The two examples, found in solutions of Problems 19 and 22 prompted me in
1993 to introduce a new terminology, and to translate the results and problems into
this new language.
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Open Problem 23. (A. Soifer [Soi7], [Soi8]). Find the 6-realizable set X6 of
all positive numbers ˛ such that there exists a 6-coloring of the plane of type
.1; 1; 1; 1; 1; ˛/.

In this new language, the results of Problems 19 and 22 can be written as follows.

1p
5
;
p
2 � 1 2 X6

Now we have two examples of “working” 6-colorings. But what do they have in
common? It is not obvious, is it? After a while I realized that they were two ex-
treme examples of the general case, and in fact a much better result was possible,
describing a whole continuum of “working” 6-colorings!

Theorem 24 (A. Soifer [Soi7], [Soi8]).
�p

2 � 1; 1p
5

�
� X6;

i.e., for every ˛ 2
hp
2 � 1; 1p

5

i
there is a 6-coloring of type .1; 1; 1; 1; 1; ˛/.17

Proof Outline. Let a unit square be partly covered by a smaller square, which cuts off
the unit square vertical and horizontal segments of lengths x and y, respectively, and
forms with it an angle ! (see Fig. 15). These squares induce the tiling of the plane
that consists of congruent to each other nonregular octagons and “small” squares
(Fig. 16).

Now we are ready to color this tiling in six colors. Denote by F the unit of our
construction, bounded by a bold line (Fig. 16) and consisting of five octagons and
four “small” squares. Use colors 1 through 5 for the octagons inside F and color
6 for all “small” squares. Include in the colors of octagons and “small” squares the

Fig. 15

y
x

1

17 Symbol [a; b], a < b, as usual, stands for the line segment, including its endpoints a and b.
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Fig. 16 Continuum of six-colorings of the plane

Fig. 17

part of their boundaries that is shown in bold in Fig. 17. Translates of F tile the plane
and thus determine the 6-coloring of the plane. We now wish to select parameters to
guarantee that each color forbids a distance.

At first, the complexity of computations appeared unassailable to me. However, a
true Math Olympiad approach (i.e., good choices of variables, clever substitutions,
and nice optimal properties of the chosen tilings) allowed for a successful sailing.

I have proved the required result, and much more. For every angle ! between the
small and the large squares (see Fig. 15), there are (unique) sizes of the two squares
(and unique squares intersection parameters x and y), such that the constructed
6-coloring has type .1; 1; 1; 1; 1; ˛/ for a uniquely determined ˛.

This is a remarkable fact: the “working” solutions barely exist; they comprise
something of a curve in a three-dimensional space of the angle ! and two linear
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variables x and y. We thus found a continuum of permissible values for ˛ and a
continuum of “working” 6-colorings of the plane. �

Remark 6.1. The problem of finding the 6-realizable set X6 has a close relationship
with the problem of finding the chromatic number � of the plane. Its solution would
shed light – if not solve – the chromatic number of the plane problem:

if 1 … X6, then � D 7;
if 1 2 X6, then � � 6.

Open Problem 25 (A. Soifer [Soi5]). Find X6.

I am sure you understand that this problem, formulated in just two words, is
extremely difficult.

7 Chromatic Number of the Plane in Special Circumstances

In 1973 Douglas R. Woodall [Woo1] formulated and attempted to prove a lower
bound for the chromatic number of the plane for the special case of map-type color-
ing of the plane. This was the main result of [Woo1]. However, in 1979 Stephen
Phillip Townsend from the University of Aberdeen found an error in Woodall’s
proof, and constructed a counterexample demonstrating that one essential idea of
Woodall’s proof was false. By that time, Townsend had already proved the same
result, and his proof was much more elaborate than Woodall’s unsuccessful attempt.
You can find the complete definition of the map-type coloring and the proof in [Soi].

Townsend-Woodall’s Theorem 26 (Townsend, 1979). The chromatic number of
the plane under map-type coloring is 6 or 7.

Woodall showed that this result implies one more meritorious statement:

Closed Chromatic Number of the Plane 27 [Woo1]. The chromatic number of
the plane under coloring with closed monochromatic sets is 6 or 7.

In 1993–1994 a group of three undergraduate students Nathanial Brown, Nathan
Dunfield, and Greg Perry, in a series of three essays, their first publications, proved
on the pages of Geombinatorics [BDP1,2,3]18 that a similar result is true for col-
oring with open monochromatic sets. Now the youngsters are professors of mathe-
matics, Nathan at the University of Illinois at Urbana-Champaign, and Nathanial at
Pennsylvania State University.

Open Chromatic Number of the Plane 270 [BDP1, 2, 3]. The chromatic number
of the plane under coloring with open monochromatic sets is 6 or 7.

While a graduate student in Great Britain, Kenneth J. Falconer proved the fol-
lowing important result [Fal].

18 The important problem book [BMP] mistakenly cites only one of this series of three papers.
It also incorrectly states that the authors proved only the lower bound 5, whereas they raised the
lower bound to 6.
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Falconer’s Theorem 28. Let E2 DS4
iD1Ai be a covering of the Euclidean plane

E2 by 4 disjoint measurable sets. Then one of the sets Ai realizes distance 1. In
other words, the measurable chromatic number �m of the plane is equal to 5, 6,
or 7.

I found his 1981 publication [Fal1] to be too concise and not self-contained for
the result that I viewed as very important. I asked Kenneth Falconer, currently pro-
fessor and dean at the University of St. Andrews in Scotland, for a more detailed
and self-contained exposition. In February 2005, I received Kenneth’s wonderfully
clear handwritten proof; see it in [Soi].

8 Colored Space

Paul Erdős generalized the problem of finding the chromatic number of the plane
to n-dimensional Euclidean space En. On October 2, 1991 I received a letter from
him, which contained an historical remark [E91/10/2]:19 “I certainly asked for the
chromatic number of E.n/ long ago (30 years).” Paul was interested in both asymp-
totic behavior as n increased, and in exact values of the chromatic number for small
n, and first of all n D 2 and 3. In 1970 Dmitry E. Raiskii [Rai] proved the following
lower bound for n�dimensional Euclidean spaces.

Raiskii’s Lower Bound 29 (Raiskii, 1970). For n > 1,

nC 2 � � .En/ :

For n D 3 this, of course, gives 5 � �.E3/. This lower bound for the three-
dimensional space had withstood 30 years, until in 2000 Oren Nechushtan of Tel
Aviv University improved it (and published 2 years later [Nec]).

Best Lower Bound for R3 30 (Nechushtan, 2000).

6 � � �E3
�
:

David Coulson [Cou2] achieved a truly amazing improvement in the upper bound:
he obtained the upper bound of 15 by using a face-centered cubic lattice (see Con-
way and Sloane [CS] for more about three-dimensional lattices). The proof of the
upper bound of 15 was submitted to Discrete Mathematics on December 9, 1998. It
took 4 years to appear in print.

Best Upper Bound for R3 31 (Coulson, 1998).

�.E3/ � 15:

19 Curiously, Paul wrote an improbable date on the letter: “1977 VII 25”.
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Coulson [Cou2] informally conjectured that the upper bound of 15 is best possible
for lattice-based coloring. I dare to conjecture much more: I think it is the exact
value for 3-space every bit as likely as 7 is for the plane:

Chromatic Number of 3-Space Conjecture 32.

�.E3/ D 15:
Life in 4 and 5 dimensions was studied by Kent Cantwell in his 1996 work [Can1].
His lower bounds are still best known today.

Best Lower Bounds for E4 and E5 33 (Cantwell, 1996).

�.E4/ � 7I
�
�
E5
� � 9:

On March 31, 2008, I received an impressive submission [Cib] to Geombinatorics
from Josef Cibulka of Charles University in Prague. His main result offered the new
lower bound for the chromatic number of E6:

Best Lower Bounds for E6 34 (Cibulka, 2008).

�.E6/ � 11:
A long time ago Paul Erdős conjectured, and often mentioned in his problem talks
[E75.24], [E79.04], [E80.38], [E81.23], [E81.26], that the chromatic number �.En/

of the Euclidean n�space En grows exponentially in n. In his words:

Erdős’s Conjecture on Asymptotic Behavior of the Chromatic Number of Rn

35. �.En/ tends to infinity exponentially.

This conjecture was settled in the positive by a set of two results, the 1972 ex-
ponential upper bound, found by D. G. Larman and C. A. Rogers, and the 1981
exponential lower bound established by P. Frankl and R. M. Wilson:

Frankl–Wilson’s Asymptotic Lower Bound 36 (1981, [FW]).

.1C o.1//1:2n � �.En/:

Larman-Rogers’ Asymptotic Upper Bound 37 (1972, [LR]).

� .En/ � .3C o .1//n :
Asymptotically Larman–Rogers’ upper bound remains best possible still today.
Frankl–Wilson’s asymptotic lower bound has recently been improved.

Raigorodskii’s Asymptotic Lower Bound 38 (2000, [Raig2]).

.1:239 � � � Co .1//n � � .En/ :
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Obviously, there is a gap between the lower and upper bounds, and it would be very
desirable to narrow it down.

The notion of polychromatic number �p of the plane naturally generalizes to the
polychromatic number �p.E

n/ of Euclidean n-dimensional space En. Dmitry E.
Raiskii was first to publish a relevant result [Rai].

Raiskii’s Lower Bound 39.

nC 2 � �p .E
n/ :

Larman and Rogers [LR] upper bound 37 implies the same asymptotic upper bound
for the polychromatic number:

Larman–Rogers Upper Bound 40.

�p .E
n/ � .3C o .1//n :

Larman and Rogers also conjectured that �p.E
n/ grows exponentially in n. The

positive proof of this conjecture was completed by Frankl and Wilson [FW]:

Frankl–Wilson Lower Bound 41.

.1C o .1// 1:2n � �p .E
n/ :

The problem of forbidding a set of distances can be generalized to n�dimensional
Euclidean space too. For a given finite set S of r positive numbers, called a set of
forbidden distances, we define the graph GS .E

n/, whose vertices are points of the
Euclidean n-space En, and a pair of points is adjacent if the distance between them
belongs to S . We naturally call the chromatic number �S .E

n/ of the graphGS .E
n/

the S-chromatic number of n-space En. The following problem is as general as it is
hard.

Erdős’s Open Problem 42. Given S , find the S�chromatic number �S .E
n/ of

space En. The De Bruijn–Erdős compactness theorem reduces the problem of in-
vestigating S -chromatic numbers to finite subgraphs of Rn.20

9 Rational Coloring

The following problem naturally arises when one works on finding the chromatic
number of the plane.

Open Problem 43. Find a countable subset C of the set of real numbers R such
that the chromatic number �.C 2/ is equal to the chromatic number �.E2/ of the
plane.

20 The De Bruijn–Erdős theorem assumes the axiom of choice.
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The goal here is to find such a countable setC , which will help us attack the main
problem of the chromatic number of the plane. The set Q of all rational numbers
would not work, as Douglas R. Woodall showed in 1973.

Chromatic Number of Q2 44 (D. R. Woodall, [Woo1]).

�.Q3/ D 2:
Then there came a “legendary unpublished manuscript,” as Peter D. Johnson, Jr.
referred [Joh8] to the paper by Miro Benda, then of the University of Washington,
and Micha Perles, then of the Hebrew University, Jerusalem. The widely circulated
and admired manuscript was called Colorings of Metric Spaces. Peter Johnson told
its story on the pages of Geombinatorics [Joh8]. Johnson’s story served as an in-
troduction and homage to the conversion of the unpublished manuscript into the
Benda–Perles publication [BP] in Geombinatorics’ January 2000 issue.

Chromatic Number of Q3 45 (Benda and Perles [BP]).

�.Q4/ D 4:
Chromatic Number of Q4 46 (Benda and Perles [BP]).

�.Q4/ D 4:
Benda and Perles then pose important problems.

Open Problem 47 (Benda and Perles [BP]). Find �.Q5/ and, in general, �.Qn/.

Open Problem 48 (Benda and Perles [BP]). Find the chromatic number of
Q2.
p
2/ and, in general, of any algebraic extension of Q2.

This direction was developed by Peter D. Johnson, Jr. from Auburn University
[Joh1], [Joh2], [Joh3], [Joh4], [Joh5] and [Joh6]; Joseph Zaks from the University
of Haifa, Israel [Zak1], [Zak2], [Zak4], [Zak6], [Zak7]; Klaus Fischer from George
Mason University [Fis1], [Fis2]; Kiran B. Chilakamarri [Chi1], [Chi2], [Chi4]; Dou-
glas Jungreis, Michael Reid, and David Witte ([JRW]); and Timothy Chow (Cho]).

In fact, in 2006 Peter Johnson published in Geombinatorics “A Tentative History
and Compendium” of this direction of research inquiry [Joh9]. I refer the reader
to this survey and the works cited there for many exciting results of this algebraic
direction, and to Peter’s talk at DIMACS May 27–29, 2009 international workshop,
which resulted in the paper [Joh10] that appears in this volume.

Recently Matthias Mann from Germany entered the scene and published his re-
sults in Geombinatorics [Man1].

Lower Bound for Q5 49 (Mann [Man1]).

�.Q5/ � 7:
This jump from �.Q4/ D 4 explains the difficulty in finding �.Q5/, the exact value
of which remains open. Matthias then found a few important lower bounds [Man2].
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Lower Bounds for Q6,Q7 and Q8 50(Mann [Man2]).

�.Q6/ � 10I
�.Q7/ � 13I
�.Q8/ � 16:

On March 31, 2008, Josef Cibulka, a first-year graduate student at Charles Uni-
versity in Prague, submitted to, and in October 2008 published in, Geombinatorics
new lower bounds for the chromatic numbers of rational spaces, improving some of
Mann’s results:

Newest Lower Bounds for Q5 and Q7 51 (Cibulka, [Cib]).

�.Q5/ � 8I
�
�
Q7
� � 15:

10 Axioms of Set Theory and the Chromatic Number of Graphs

A prudent question is one-half of wisdom.

– Francis Bacon21

Theories come and go; examples live forever.

– I. M. Gelfand

I felt that a wide range for the chromatic number of the plane (CNP) – from 4 to 7 –
was an embarrassment for mathematicians. The 4-color map-coloring problem, for
example, from its beginning in 1852 had a conjecture: 4 colors suffice. Since 1890,
thanks to Percy John Heawood [Hea], we knew that the answer was 4 or else 5.
The CNP problem is an entirely different matter. After 60 years of very active work
on the problem, we have not even been able to confidently conjecture the answer!
Have mathematicians been so bad, or has the problem been so good? Have we been
missing something in our assault on the CNP? Perhaps the presence or absence of
the axiom of choice (that matters only for infinite sets) affects the (finite) chromatic
number of the plane?

These were the questions that occupied me as I was flying cross-country from
Colorado Springs to Rutgers University of New Jersey in October 2002 for a week
of joint research with Saharon Shelah. We were able to break some new ground.

Our first task was to expand the definition of the chromatic number.22 How
important is it to select a productive definition? Socrates thought highly of this
undertaking: “The beginning of wisdom is the definition of terms.”23 Without the

21 Quoted from [Pet], p. 494.
22 It is the first task, but we did not think of it then, and so this definition appears for the first time
in [Soi].
23 Quoted from [Pet], p. 494.
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axiom of choice, the minimum, and thus the chromatic number of a graph, may not
exist. In allowing a system of axioms for set theory not to include the axiom of
choice, we need to come up with a much broader definition of the chromatic num-
ber of a graph than the usual one, if we want the chromatic number to exist. In fact,
instead of the chromatic number we ought to talk about the chromatic set. There are
several meaningful ways to define it. I have chosen the following definition.

Definition 52. LetG be a graph and A a system of axioms for set theory. The set of
chromatic cardinalities �A.G/ of G is the set of all cardinal numbers � � jGj such
that there is a proper coloring of the vertices of G in � colors and � is minimum
with respect to this property.

As you can easily see, the set of chromatic cardinalities does not have to have
just one element as was the case when A = ZFC. It can also be empty.

The advantage of this definition is its simplicity. Best of all, we can use inequali-
ties on sets of chromatic cardinalities as follows. The inequality �A.G/ > ˇ, where
ˇ is a cardinal number, means that for every ˛ 2 �A.G/, ˛ > ˇ. The inequalities
<;�, and � are defined analogously. We also agree that the empty set is greater
than or equal to any other set. Finally, if ˇ is a cardinal number, �A.G/ D ˇ means
that �A.G/ D fˇg.

The Zermelo–Fraenkel–Choice system of axioms is denoted as usual, ZFC; the
countable axiom of choice by AC@0

; the principle of dependent choices DC. We use
one more axiom, LM: Every set of real numbers is Lebesgue measurable.

Assuming the existence of an inaccessible cardinal,24 Robert M. Solovay, us-
ing Paul Cohen’s forcing, constructed in 1964 (and published in 1970) a model
that proved a remarkable theorem [Sol1]. We honor this achievement with the
definitions.

The Zermelo–Fraenkel–Solovay system of axioms for set theory, which we denote
by ZFS, is defined as follows,

ZFS D ZFC AC@0
C LM;

and ZFS+ stands for
ZFSC D ZFCDCC LM:

Now Solovay’s theorem formulates very concisely.

The Solovay Theorem 53. ZFS+ is consistent.25

Example 54 (Shelah–Soifer [SS1]). Define a graphG as follows. The setR of real
numbers serves as the vertex set, and the set of edges is f.s; t/ Ws � t �p22Qg.

24 A cardinal � is called inaccessible if � > @0, � is regular, and � is strong limit. An infinite
cardinal @˛ is regular, if cf!˛ D !˛ . A cardinal � is a strong limit cardinal if for every cardinal �,
� < � implies2� < �.
25 Assuming the existence of an inaccessible cardinal.
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Result 55 (Result 55 (Shelah–Soifer [SS1]). For the distance graph G on the line,
�ZF C .G/ D 2, while �ZFS.G/ > @0.

Similar examples for the plane – or En – as the vertex set, were constructed in
[SS2] and [Soi23]. These examples illuminate the influence of the system of axioms
for set theory on combinatorial results. They also suggest that the chromatic number
of En may not exist “in the absolute” (i.e., in ZF), but depend upon the system of
axioms we choose for set theory. The examples we have seen naturally pose the
following open problem.

Open AC Problem 56. For which values of n is the chromatic number � .En/ of
the n-space En defined “in the absolute”, i.e., in ZF regardless of the addition of
the axiom of choice or its relative?

The best example, however, came from the Australian student Michael Payne.
On July 10, 2007, I received his e-mail from Melbourne, Australia:

Dear Professor Soifer,

I am a student from Monash Uni[versity] in Australia and I have done some work on the
chromatic number of the plane problem. I found your various publications on the topic ex-
tremely helpful. I particularly liked your recent work with Saharon Shelah and as part of my
[Honours] bachelor’s thesis I found another example of a graph with ‘ambiguous’ chromatic
number. This graph is a unit distance graph so it may be considered even further evidence
that the plane chromatic number may also be ambiguous as you have suggested. It has been
submitted for review but you can find a pre-print of it here http://arxiv.org/abs/0707.1177 if
you are interested. As you will notice, I am greatly indebted to your work since my proof is
essentially analogous to yours.

Kind regards,

Michael Payne

Indeed, the paper Michael has submitted to arXiv the day before his e-mail to me,
contains a fabulous example. He starts with unit distance graphG1 whose vertex set
is the rational plane Q2 and, of course, two vertices are adjacent if and only if they
are distance 1 apart.

Example 57 (Payne [Pay1]). The desired unit distance graph G on the vertex set
R2 is obtained by tiling of the plane by translates of the graphG1; i.e., its edge set is

˚
.p1; p2/ W p1; p2 2 R2Ip1 � p2 2 Q2I jp1 � p2j D 1

�
:

Claim 1. �ZF C .G/ D 2.

Claim 2. 3 � �ZF S .G/ � 7.

Michael Payne shows first that any measurable set S of positive (Lebesgue) mea-
sure contains the endpoints of a path of length 3 in G. Of course, this would rule
out 2-coloring of S . Payne continues: “We can then proceed in a similar fashion to
Shelah and Soifer’s proof in [SS1].”
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In August 2009 Michael Payne [Pay2] constructed a new class of unit distance
graphs on the vertex set En whose chromatic number depends upon the system of
axioms for set theory.

11 Predicting the Future

Saharon Shelah and I obtained the following surprising result:

Conditional Chromatic Number of the Plane Theorem 58.26 (Shelah-Soifer
[SS1]). Assume that any finite unit distance plane graph has chromatic number not
exceeding 4. Then:

�ZFC.E2/ D 4I
yet

�ZFSC.E2/ � 5:
Can we get anything unconditionally, a piece of mathematical truth-forever result?
Yes, we can, but not yet in ZFC.

Unconditional Chromatic Number of the Plane Theorem 59 [SS1].

�ZFSC.E2/ � 5:
I have been asked – and asked others – what is the most reasonable expected

value of the chromatic number of the plane, and more generally of En – in ZFC? I
believe that the chromatic number of the plane is 4 or 7.

Chromatic Number of the Plane Conjecture 60.

�.E2/ D 4 or 7:

It would be lovely to have 4 as the chromatic number of the plane: this is when our
conditional chromatic number of the plane Theorem 58 would make the chromatic
number dependent upon the system of axioms for set theory. Yet, if you were to
insist on my choosing just one value, I would choose the latter:

Chromatic Number of the Plane Conjecture 61.

�.E2/ D 7:

“OK,” I hear my reader reply, “but then a unit-distance 7-chromatic graph must exist
in the plane!” This is true, but it could be quite large. In fact, in 1998 Dan Pritikin
published the lower bound for the size of such a graph.

Lower Bound for a Unit Distance 7-Chromatic Graph 62 [Pri]. Any unit dis-
tance 7-chromatic graph G satisfies the following inequality:

26 Due to the use of the Solovay’s theorem, we assume the existence of an inaccessible cardinal.
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jv.G/j � 6198;
where v.G/ is the vertex set of G.

In fact, the size of the smallest such graph may have to be even much larger. Now,
try to construct it! For 3-space I conjecture:

Chromatic Number of 3-Space Conjecture 63.

�.E3/ D 15:
In general, I believe in the following conjecture:

Chromatic Number of En Conjecture 64.

�.En/ D 2nC1 � 1:
As Paul Erdős used to say about some of his problems and results, “This conjecture
will likely withstand for centuries, but, we will see!”

I view the problems presented here to be part of Euclidean Ramsey theory, which
is much broader than the scope of my paper. I therefore am taking the pleasure
of recommending to your attention the fine survey “Open Problems in Euclidean
Ramsey Theory” by the leader of the field Ronald L. Graham and his graduate stu-
dent Eric Tressler that appears in this volume.

I thank Peter D. Johnson Jr., Stanislaw Radziszowski, and Pawel Radziszowski
for valuable suggestions, and Col. Dr. Robert Ewell for computer-aided implemen-
tation of my Figs. 5 and 6 and some of the illustrations.
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[E92.19] Erdős, P., On some unsolved problems in elementary geometry (Hungarian), Mat.

Lapok (N.S.) 2(2), (1992), 1–10.



Chromatic Number of the Plane & Its Relatives, History, Problems and Results 159
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[Had4] Hadwiger, H., Ungelöste Probleme, Nr. 11, Elemente der Mathematik 16 (1961),
103–104.

[HD1] Hadwiger, H., and Debrunner, H., Ausgewählte einzelprobleme der kombinatorishen
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Euclidean Distance Graphs
on the Rational Points

Peter Johnson, Jr.

1 Definitions

Throughout, Z, Q, and R denote the usual rings of integers, rational numbers, and
real numbers, respectively. If X is a set and n is a positive integer, Xn denotes, as
usual, the set of n-tuples with entries from X .

If X is nonempty, a distance function on X is a function � W X2 ! Œ0;1/

satisfying: for all x, y 2 X :

(i) �.x; y/ D 0 if and only if x D y, and
(ii) �.x; y/ D �.y; x/.

That is, a distance function satisfies the requirements to be a metric, except, possibly,
the triangle inequality.

If � is a distance function on X and D � .0;1/, the distance graph asso-
ciated with X , �, and D, denoted G.X; D/ (suppressing mention of �, which is
usually fixed in the discussion; if it isn’t, the distance graph is denoted G�.X; D//,
is the graph with vertex set X , and with x, y 2 X adjacent in G.X; D/ if and
only if �.x; y/ 2 D. If D D fd g, a singleton, then we write G.X; d/ rather than
G.X; fd g/. If P is a graph parameter, we shorten P.G.X; D// to P.X; D/.

When X � R
n, � is the usual Euclidean distance: for x D .x1; : : : ; xn/,

y D .y1; : : : ; yn/ 2 R
n,

�.x; y/ D
"

nX
iD1

.xi � yi /
2

#1=2

;

also denoted jx � yj. When X � R
n and X is closed under multiplication by pos-

itive scalars (real numbers), then clearly all of the single-distance graphs G.X; d/,
d 2 .0;1/, are isomorphic.
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As usual, � denotes the chromatic number and ! the clique number. Therefore,
!.Rn; d / D nC 1 for all n D 1; 2; : : : and d > 0, and �.Rn; d / D �.Rn; 1/, the
famous “chromatic number of R

n,” i.e., the chromatic number of the Euclidean unit
distance graph on R

n. There is more on this in the next section.
Suppose � is a distance function on a nonempty set X , and k is a positive integer.

The kth Babai number of .X; �/, denoted Bk.X/, for short, is

Bk.X/ D supŒ�.X; D/ID � .0;1/ and jDj D k�

Very often that “sup” is a “max”. For instance, if X � R
n and D � .0;1/,

jDj D k, we have, as shown in Sect. 3, that �.X; D/ � �.Rn; 1/k , and so the
sup is a max for all such X and all n. However, as shown in [21], it is quite
easy to find .X; �/ such that f�.X; d/jd > 0g D f1; 2; 3; : : : g, whence B1.X/ D
supf1; 2; 3; : : : g D @0, a sup, not a max.

Clearly the idea behind the definition of the Bk can be used to define a sequence
of parameters on pairs .X; �/ associated with any graph parameter whatever, not
just the chromatic number. Only one of these sequences plays a role here; we define
the kth clique number of .X; �/ to be

Ck.X/ D supŒ!.X; D/ W D � .0;1/ and jDj D k�:

Clearly Ck.X/ � Bk.X/ for all .X; �/ and all k.
The Babai numbers are so named because the idea for their definition was sup-

plied by Lázlo Babai, in conversation with Aaron Abrams, some time in the late
1990s. This communication eventually resulted in [1], in which the definition of the
Babai numbers first appeared in print, so far as we know. The debut was marred by
“max” appearing where “sup” should have been: blame for the error belongs entirely
to the second author of [1].

The Babai numbers were also discovered independently by Paul Erdös in [8]; the
definition is confined to the case X D R

2, but it is the same definition. The authors
of [1] did not find out about this until quite recently. It seems reasonable to stick to
terminology of [1] and [18–21] while acknowledging that credit for the underlying
idea belongs also to the great Erdös.

2 The Search for �.Rn; 1/ Leads to the Search for �.Qn; 1/

In 1950, almost 100 years after the 20-year-old Francis Guthrie started a mathe-
matical avalanche by posing the four-color conjecture to his brother Frederick, who
transmitted it to Augustus DeMorgan, Edward Nelson, then 18, posed the following
problem to John Isbell, a fellow student at the University of Chicago: how many
colors are needed to color the Euclidean plane so that no two points in the plane a
distance one apart are the same color? In notation defined in Sect. 1, the problem
was to determine �.R2; 1/. Nelson himself proved that �.R2; 1/ � 4, Isbell proved
that �.R2; 1/ � 7, and neither estimate has been improved since.
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Neither Isbell nor Nelson published any of their work on this new problem,
yet, somehow, by word of mouth, evidently from Isbell by an untraced route to
Leo Moser, to his brother Willy, Martin Gardner, and Paul Erdös, the problem
became known by the 1960s. (As full an account as will ever be known of the
emergence of this problem may be found in [35].) Publication on the matter was
sparse; [12, 13], and [29] were the first green shoots, and then the topic was nursed
along by Erdös, who mentioned it frequently in papers appearing in the 1960s. In
1972 Larman and Rogers proved [26] that �.Rn; 1/ � .3 C o.1//n, the first (as
far as I know) major advance in the problem of estimating �.Rn; 1/, and still the
best-known general upper bound on �.Rn; 1/ D B1.Rn/.

In 1973, suddenly, off-handedly, in a major paper about G.R2; 1/, Woodall
proved [38] that �.Q2; 1/ D 2. This seems to be the very first published result con-
cerning a Euclidean distance graph with vertex set Q

n for some n. The subject had
been broached, and there ensued a drip of results, quickening to a trickle, over the
next 30 years, almost all of which concerned �.Qn; 1/, although there were some
productive forays into questions about the connectedness of G.Qn; 1/ [2, 5] and
even of G.Fn; 1/, with F a real finite-dimensional algebraic extension of Q [10,32].
In almost all of this there was only one distance involved, and that distance was 1.
Here is a sketch, with commentary, of the developments after Woodall around the
question of �.Qn; 1/. This will be an update and elaboration of some of [17], leav-
ing out the discussion there of matters such as distance graphs G.Q.

p
m/2; D/ for

square-free integers m > 1, which are extraneous to our purpose here.
Benda and Perles proved in [2] that �.Q3; 1/ D 2 and �.Q4; 1/ D 4. Although

[2] appeared 28 years after Woodall [38], it was actually circulating as a manuscript
in the late 1970s and early 1980s, and its results were quite well known. (For an
account of the curious history of this influential manuscript, see [16].) These results
on Q

3 and Q
4 also follow from stronger results in [15].

The exact value of �.Qn; 1/ is not known for any n > 4. All progress toward
finding those numbers has been in the form of progress on bounds, and all of that
progress has been on lower bounds. That progress is sketched below.

Why has there been no progress on upper bounds of �.Qn; 1/? A standard
approach to obtaining an upper estimate of �.Qn; 1/ would be to exhibit, or de-
scribe, a proper coloring of G.Qn; 1/; this was how it was shown that �.Q2; 1/ D
�.Q3; 1/ D 2 and �.Q4; 1/ D 4, and there the proper colorings were achieved via
a mixture of very elementary algebra and number theory quite suitable to the task.
After all, if you are dealing with rational numbers, you are really dealing with inte-
gers! Although these methods certainly become more difficult to apply to Q

n when
n > 4, there is hope that they may be brought to bear to produce significantly better
upper bounds on �.Qn; 1/, for n D 5; 6; 7; : : : , than the upper bounds on �.Rn; 1/,
of which the result of Larman and Rogers [26],

�.Rn; 1/ � .3C o.1//n;

is still the champion, for n � 5. [In [30] it is shown that �.R4; 1/ � 54.] In view
of how big these upper bounds on �.Rn; 1/ are, and even how big some of the
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recently found lower bounds on �.Qn; 1/ are, for n D 5; 6; 7, and 8, to achieve
a breakthrough proper coloring of G.Qn; 1/ for small n � 5 you are allowed so
many more colors than 4 D �.Q4; 1/ that the resulting freedom may well offset
the algebraic and number theoretic difficulties. And, as we show in the next section,
the introduction of the Babai numbers into the mix has strengthened the algebraic
approach, although actual results on, say, �.Q5; 1/, are still awaited.

Lower bounds on �.Qn; 1/, 1980–2008. In 1981 Frankl and Wilson proved [11]
that �.Rn; 1/ � .1C o.1//.1:2/n and indicated how their proof might yield a similar
estimate for �.Qn; 1/. The best I can do from the proof is �.Qn; 1/ � .1C o.1//rn

for any r < 33=4=2; r D 1:138 will work. Relatively recently, Raigorodskij [31]
raised the value of r in this inequality to 1:173.

In the late 1980s and early 1990s Kiran Chilakamarri ([5], for instance) and
Joseph Zaks [39] provided the first nontrivial lower estimates of �.Qn; 1/ for
5 � n � 13.

These estimates have been eclipsed by Matthias Mann [27, 28] and Joseph
Cibulka [6]. Here is where things now stand:

�.Q5; 1/ � 8 (Cibulka [6]);
�.Q6; 1/ � 10 (Mann [28]);
�.Q7; 1/ � 15 (Cibulka [6]);
�.Q8; 1/ � 16 (Mann [28]);

since 16 is bigger than 15, which was Zaks’ upper estimate for �.Q13; 1/ [38],
Cibulka and Mann’s results are the reigning champion lower estimates of �.Qn; 1/

for 5 � n � 13.
Both Cibulka and Mann use computer programs to do some of the checking

necessary to their proofs; many will find this alarming, as I did at first, but there
is something to be learned from their methods. Here is an attempted elaboration,
mainly of Cibulka’s methods.

First of all, for any positive rational number r and any positive integer n,
G.Qn; r/ and G.Qn; 1/ are isomorphic (scalar multiplication!), so, in searching
for finite subgraphs of G.Qn; 1/ with large chromatic number, we can search in
G.Qn; r/ instead, and it may be convenient to do so. Cibulka obtains his results by
finding subgraphs of G.Q5; 4/ and G.Q7; 2/.

Mann used a computer search to find the subgraphs that give his estimates [28],
and Cibulka may have; he does not say. To the purist it does not matter how the
subgraphs are found, as long as they are explicitly described, and they are. But
surely the ideas behind the searches are of interest. Mann gives a description of his
search methods in [28].

Where Mann and Cibulka risk purist displeasure is in showing that the chromatic
numbers of the graphs they describe are at least as large as they claim. This is ac-
complished by a computer program; but in Cibulka’s case, at least, the general idea
is transparent, and the calculation can, perhaps, be executed with pencil and paper.
Here is an elaboration of Cibulka’s concise account.
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Suppose that G is a finite simple graph, and w W V.G/ ! .0;1/ is a weighting
of the vertices of G. For S � V.G/, let w.S/ D P

v2S w.v/, and let ˛w.G/ D
maxŒw.I /I I � V.G/ is an independent set of vertices�, the weighted independence
number of G with respect to w. So ˛ D ˛1, with 1 denoting the constant function 1,
is the usual vertex independence number.

By the standard proof that jV.G/j � ˛.G/�.G/ one sees that w.V .G// �
˛w.G/�.G/, and thus that �.G/ � w.V .G//=˛w.G/. Notice that because the lower
estimate of �.G/ thus obtained is a ratio of sums of values of w, we may as well
confine ourselves to w W V.G/ ! Œ1;1/. And because �.G/ 2 Z we may as well
further restrict to w W V.G/! f1; 2; : : : g.

For instance, to show that �.Q7; 1/ � 15, Cibulka exhibits 388 points in Q
7,

considers them as vertices in G.Q4; 2/, gives them a weighting w with total weight
280; 128, and then reports that ˛w � 20; 009, whence �.Q7; 1/ D �.Q7; 2/ �
280; 128=20; 009 > 14. So the unverified-by-hand computer-assist is in the inequal-
ity ˛w � 20; 009, but it seems very likely that the logic of the program can be fol-
lowed to verify this estimate without computer assistance, in view of the simplicity
of the description of the graph.

It would be very interesting to know how Cibulka hunts for his graphs and the
weightings; does he find them together, or first one and then the other? In any case,
there are lessons to be learned! Here is one of them, left as an exercise: Show that
for any finite simple graph G, �.G/ D maxŒdw.V .G//=˛w.G/e; w W V.G/ !
f1; 2; : : : g�.

3 Distances Other Than 1?

Could it have just plain escaped notice that �.Qn; d / might not be the same as
�.Qn; 1/ for all distances d > 0 actually realized between points of Q

n? While
I am quite sure that the thought crossed my mind during the preparation of [15],
I must sheepishly admit that it was over 15 years later that it occurred to me that,
while �.Q3; 1/ D 2, the points .0; 0; 0/; .1; 1; 0/; .1; 0; 1/, and .0; 1; 1/ induce a
K4 in G.Q3;

p
2/, and so �.Q3;

p
2/ � !.Q3;

p
2/ D 4. (The last equality holds

because clearly !.Q3;
p

2/ � 4, and, meanwhile, !.Qn; d / � !.Rn; d / D nC 1

for any n and any d > 0; !.Rn; d / D nC1 for well-known geometric/dimensional
reasons.)

But, I’m slow – thorough, I hope – but very slow. My guess is that the fact that
�.Q3;

p
2/ � 4 was well known, but ignored; the herd was grazing on G.Qn; 1/.

Why? Historical accident and intellectual inertia, perhaps.
This is where the Babai numbers, another historical accident but with a halo

of inevitability that the numbers �.Qn; 1/ just do not possess, come in. If X

is a nonempty set with distance function �, what has a better claim to the ti-
tle, chromatic number of .X; �/, than B1.X/? So, it ought to be B1.Qn/ we’re
after. But if you are emotionally attached to �.Qn; 1/, there is no cause for alarm:
�.Qn; 1/ � B1.Qn/ � B1.Rn/ D �.Rn; 1/, so B1.Qn/ is in the same neighbor-
hood as the big stars of Euclidean coloring.
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A result on Bk.X/, for an arbitrary .X; �/, and one on Bk.Qn/, with short
proofs.

B1. BkCm.X/ � Bk.X/Bm.X/ [1].

Proof. Suppose D � .0;1/ and jDj D k C m. Let D D D0 [ D1 with jD0j D k

and jD1j D m. Let '1 be a proper coloring of G.X; Di / with �.X; Di / colors,
i D 0; 1. Then coloring each x 2 X with the ordered pair .'0.x/; '1.x// gives
a proper coloring of G.X; D/ with �.X; D0/�.X; D1/ � Bk.X/Bm.X/ colors.
Therefore BkCm.X/ D supjDjDkCm �.X; D/ � Bk.X/Bm.X/. ut

Corollary 3.1. Bk.X/ � B1.X/k; k D 1; 2; : : :

B2. For each n; k D 1; 2; : : : ; Bk.Qn/ D Bk.Zn/ [17].

Proof. Clearly Bk.Qn/ � Bk.Zn/. Suppose D � .0;1/, jDj D k, with
�.Qn; D/ D Bk.Qn/. [Since Bk.Qn/ � B1.Qn/k � B1.Rn/k D �.Rn; 1/k �
.3 C o.1//nk is finite, Bk.Qn/ D maxjDjDk �.Qn; D/:] By the famed result of
de Bruijn and Erdös [7] on the chromatic numbers of infinite graphs, there is a
finite set F � Q

n such that �.F; D/ D �.Qn; D/ D Bk.Qn/. Let m be a positive
common multiple of the denominators of the coordinates of the points in F . Then
Bk.Qn/ D �.F; D/ D �.mF; mD/ � �.Zn; mD/ � Bk.Zn/. ut

Therefore �.Qn; 1/ � B1.Qn/ D B1.Zn/. Q
n is a mess, but Z

n is just the set of
all n-tuples of whole numbers! It is the fact that �.Qn; 1/ � B1.Zn/ that makes us
feel that upper bounds for �.Qn; 1/ that are not just upper bounds of �.Rn; 1/ are
within reach.

The proof of the de Bruijn–Erdös result depends greatly on the axiom of choice.
There is a question here for the mavens of mathematical logic: is there a model of
Zermelo–Fraenkel set theory in which B1.Zn/ < B1.Qn/, for some n > 1?

In the remainder of this section we complete our survey of known results on chro-
matic and clique numbers of Euclidean distance graphs G.Qn; D/, D � .0;1/;
almost all of the preceding has been about the case D D f1g. Most developments
in this area have been recent, emerging after the debut of the Babai numbers [1],
but there were some twentieth century stirrings to report; the account is roughly
organized by historical chronology. Some notation:

If D � .0;1/;
p

D D f
p

d jd 2 DgIQ0 D fp=q j p; q

are odd positive integersg.
DGQ1: Evaluation of C1.Qn/.

If d > 0, !.Qn; d / � !.Rn; d / D n C 1, so C1.Qn/ � n C 1. On the other
hand, for n � 2, .0; : : : ; 0/; .1; 1; 0; : : : ; 0/, .1; 0; 1; 0; : : : ; 0/; : : : ; .1; 0; : : : ; 0; 1/

are n vectors in Z
n � Q

n which induce a clique in G.Qn;
p

2/: Consequently,
noting that C1.Q/ D 2, we have that C1.Qn/ 2 fn; nC 1g for each n. The question
is, for which n is C1.Qn/ D n?
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The answer was given in 1937, about 70 years before the question arose. By
the same kind of argument as that given in the proof of B2, above, except that
there is no appeal to the de Bruijn–Erdös theorem necessary, it is easy to see that
Ck.Qn/ D Ck.Zn/ for all positive integers n and k. Clearly C1.Zn/ is the greatest
order (number of extreme points) in a regular simplex with extreme points in Z

n.
This number was given by I. J. Schoenberg in [33], and here it is: C1.Zn/ D nC 1

if and only if either:

(i) n � 3 mod 4, or
(ii) n is one less than an odd square, or

(iii) n is one less than the sum of two odd squares.

Otherwise, C1.Zn/ D C1.Qn/ D n.

DGQ2: A 1980s result in which distances other than one are considered.
Let An be the set of points in Q

n with “odd denominator,” i.e., points with a
representation .a1=b; : : : ; an=b/ in which the ai and b are integers, and b is odd.
It is shown in [15] that �.An;

p
Q0/ D 2 for all n D 1; 2; : : : , and this result is

used to prove that �.Q3;
p

Q0/ D 2 and that �.Q4;
p

Q0/ D 4, a considerable
strengthening of the corresponding results about G.Qn; 1/, n 2 f2; 3; 4g.

Jungreis, Reid, and Witte [24] proved a sort of strong converse of each of the
results above, except one:

Suppose B � fQ; Q
2; Q

3g[fAnjn D 1; 2; : : : g, and d > 0 is a distance actually
occurring between points of B . If �.B; f1; d g/ D 2, then d 2 pQ0.

The remaining open questions of interest in this vein are: If n � 4, for which
d > 0 is it the case that �.Qn; f1; d g/ D �.Qn; 1/? We may as well worry only
about those d that actually occur as distances between points of Q

n! The Jungreis–
Reid–Witte answer for n D 1; 2; 3 is: d 2 pQ0 (if d is a realized distance). I think
that the same answer holds for n D 4, but this has not been shown. It may be implied
by the methods, in [2] and [15], of coloring that show that �.Q4; 1/ D 4, and by
the work of Joseph Zaks in [40], where he proves that for every proper 4-coloring
of G.Q4; 1/ each of the 4 color classes is dense in Q

4.
We leave the resolution of this problem – for which d > 0 realized as a distance

between points of Q
4 is it the case that �.Q4; f1; d g/ D 4? – as a puzzle for the

pleasure of those interested. The more general question – for which n and d > 0

is it the case that �.Qn; f1; d g/ D �.Qn; 1/? – is a bit of a side issue associated
with the problem of finding B2.Qn/. But it is a side issue of more interest than most
because of the historic interest in �.Qn; 1/.

DGQ3: B1.Qn/, n D 1; 2; 3; 4.
It is shown in [1] that B1.Q2/ D 2. (It is clear that B1.Q/ D 2.) As a corollary

we obtain: not only is there no regular polygon with an odd number of sides with
vertices in Q

2, there is no closed walk in Q
2 with an odd number of steps of equal

lengths.
The observation above that B1.Q3/ � !.Q3;

p
2/ D 4 appears in [19]. In [20] it

was shown that B1.Q3/ D 4, and then this result was eclipsed in [18]: B1.Q4/ D 4.
As with �.Qn; 1/, B1.Qn/ is unknown for n > 4. (Of course, all lower bounds of
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�.Qn; 1/ are lower bounds, also, of B1.Qn/.) We can make one simplifying obser-
vation toward the computation of B1.Qn/, besides the fact that B1.Qn/ D B1.Zn/,
noted in B2, above. For D � .0;1/ and r 2 Q, G.Qn; D/ and G.Qn; rD/ are
isomorphic graphs; consequently, to determine B1.Qn/ D maxd>0 �.Qn; d /, it
suffices to determine �.Qn;

p
m/ and �.Qn;

p
2m/ for all square-free odd positive

integers m. By the proof of B2, it suffices, alternatively, to determine �.Zn; d /, d

an integer multiple of
p

m or
p

2m.
There is a logical infelicity in the proofs that B1.Q4/ D B1.Q3/ D 4 and that

B1.Qn/ D 2: the axiom of choice is applied to achieve the results in the following
way. First, suppose that A is an additive subgroup of R

n and D � .0;1/. Let
AD D fx 2 Aj jxj 2 Dg. Then a coloring ' of A is a proper coloring of G.A; D/

if and only if ' “forbids (translation by) AD ,” meaning, if y 2 A and x 2 AD

then '.y/ ¤ '.y C x/. Suppose B is the subgroup of A generated by AD ; suppose
B ¤ A, and suppose ' properly colors G.B; D/. Then ' can be extended to A by
“copying” ' on each coset of B in A. This involves choosing a representative y of
each coset y C B in A and then defining '.y C x/ D '.x/ for each x 2 B . The
resulting extension will forbid AD if ' does, and it uses the same colors as ', and
thus is a proper coloring of G.A; D/, if ' is a proper coloring of G.B; D/, with the
same number of colors.

The axiom of choice – or, if B has countable index in A, the axiom of countable
choice – enters at the choosing of the coset representatives. In the proofs in [1],
[18], and [20], concerning B1.Qn/, n D 2; 3; 4, or in [21], concerning �.Q3; D/

for some choices of D � .0;1/, in which A is always a subgroup of Q
n (usually

Q
n itself) the appeal to the ACC can plausibly be excised by explicitly, recursively

describing a system of representatives of the cosets of B in A. No attempt to do this
has been made; perhaps it would be a worthy exercise to try.

Recently Jeffrey Burkert gave another proof that B1.Q4/ D 4 by applying B2; in
[3] he gives, for each positive integer m, an explicit proper coloring of G.Z4;

p
m/

with four or fewer colors. Because the proof of B2 uses the axiom of choice, or,
at least, the ACC, this proof does not give an ACC-free proof that B1.Q4/ D 4.
However, if you are not choice-squeamish, the methods of the proof show promise
for getting upper bounds on B1.Zn/ D B1.Qn/ � �.Qn; 1/ for n � 5.

DGQ4: Bk.Q/ D Ck.Q/ D k C 1 for all k; B2.Q2/ D C2.Q2/ D 4; further
results on distance graphs on Q

3.
There are but k distances among k C 1 consecutive integers, so, for all k D

1; 2; : : : Bk.R/ � Bk.Q/ D Bk.Z/ � Ck.Z/ � k C 1. As noted in [19], one of
the main results in [25], restated, is that Bk.R/ D k C 1 for all k, so equality holds
throughout.

The proof in [25] uses the de Bruijn–Erdös theorem, and therefore the axiom of
choice, as follows. Suppose that D � .0;1/, jDj D k, and H is a finite subgraph of
G.R; D/. We want to show that �.H/ � kC 1. Let the vertices of H be u1 < u2 <

� � � < um. Each uj has exactly k neighbors, in G.R; D/, in the interval .�1; uj /,
and thus at most k neighbors ui , i < j , in H . Therefore H can be properly colored
from a stock of k C 1 colors by coloring u1; : : : ; un, in that order, coloring each uj

with a color not appearing on any neighbor of uj among the ui , i < j .
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In [34] Shelah and Soifer show that if D D fjrCp2j j r 2 Qg then �.R; D/ D 2

if the axiom of choice is assumed true, but that if the axiom of choice is replaced by
the axiom of countable choice together with the assumption that all sets of real num-
bers are Lebesgue measurable, axioms known to be consistent with the Zermelo–
Fraenkel axioms of set theory, then �.R; D/ > @0. This is quite shocking, and
raises all sorts of questions. For instance, could it be that Bk.R/ > k C 1 if the
axiom of choice is negated? It seems unlikely; the Shelah–Soifer set of distances
is infinite, while Bk.R/ is the maximum of �.R; D/ for sets of k distances only.
And yet, there is that application of the de Bruijn–Erdös theorem in Kemnitz and
Murangio’s argument! Can it be dispensed with?

In the case of Q and Z it appears that it can. Given D � Z \ .0;1/, with
jDj D k, we can easily properly color G.Z; D/ with kC 1 colors by employing the
Kemnitz–Murangio ploy on 0; 1; 2; : : : , and then on �1;�2; : : : , taking care just
to color each integer with a color not on any already colored neighbor of it. In the
case of Q, supposing D � Q \ .0;1/, jDj D k, since G.Q; D/ is isomorphic
to G.Q; rD/ for every positive rational r , we can suppose that D � Z, and then
carry out orderly greedy colorings, with k C 1 colors, of Z, then 1

2
ZnZ, and so on,

coloring, at the nth stage, the elements of .1=n/Z that have not yet been colored at
earlier stages. So Bk.Q/ D Bk.Z/ D k C 1, even if one does not allow the axiom
of choice.

As mentioned in DGQ3, it was shown in [1] that B1.Q2/ D 2. From this it
follows, by B1, that B2.Q2/ � B1.Q2/2 D 4. It was not noticed until [21] that
.0; 0/; .0; 1/; .1; 0/; .1; 1/ form a 4-clique in G.Q2; f1;

p
2g/, whence B2.Q2/ �

C2.Q2/ � 4, so B2.Q2/ D C2.Q2/ D 4. Amusingly or embarassingly, depending
on your point of view, the fact that C2.Q2/ D 4 was used in [21] to draw the
corollary that no regular pentagon in the plane has all five vertices rational; the
reasoning was that since only two distances occur between the vertices of a regular
pentagon the existence of such a pentagon with rational vertices would imply a set
D of two distances such that 5 � !.Q2; D/ � C2.Q2/ D 4, a contradiction.

But, as mentioned early in DGQ3, the mere fact that B1.Q2/ D 2 implies that
no odd-sided regular polygon in the plane has all vertices rational, and even more,
no closed walk in Q

2 with steps of equal length can have an odd number of steps.
However, not everything in [21] is either an oversight or the correction of one.

It is shown that C2.Q3/ � 5; we expect equality here, but the problem is open.
And while B2.Q3/ � C2.Q3/ � 5, it seems that �.Q3; D/ � 4 for many sets D

of two distances. In particular, the first inspiration for [21] was the discovery that
�.Q3; f1;

p
2g/ D 4.

Let Q1 D fp=q j p and q are odd positive integers and p � q mod 4g, and
Q2 D fp=q j p; q are odd positive integers and p 6� q mod 4g. The main result of
[21] is that �.Q3;

p
2Q0 [

p
Qi / D 4 for each i D 1; 2. Earlier results were that

�.Q3;
p

Q0/ D 2 [15], and that �.Q3;
p

2Q0/ D 4 [20]. Pretty clearly the road to
determining B2.Q3/ might lie through the attempt to determine

�.Q3;
p

2rQ0 [
p

Qi /; i D 1; 2; r D 2; 3; : : :

An alternative approach would be to evaluate �.Z3; fs; tg/, for positive integers s; t .
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4 Problems

As noted in [21], n D 3 is the only value for which it is known that �.Qn; 1/ <

B1.Qn/. On the grounds that, as n increases, the importance of the choice of dis-
tance d 2 p

Q \ .0;1/ might diminish in determining �.Qn; d /, might it be the
case that n D 3 is indeed the only value such that �.Qn; 1/ < B1.Qn/? A re-
lated deeper question: for each positive integer n, how many different isomorphism
classes are represented by the graphs G.Qn; d /, d 2 p

Q \ .0;1/, and what is the
corresponding partition of

p
Q \ .0;1/ into equivalence classes of the relation �

defined by d � d 0 if and only if G.Qn; d / ' G.Qn; d 0/? In the case n D 1 there
are two isomorphism classes, one represented by G.Q; 1/ and the other the empty
graph on Q. The equivalence classes on

p
Q \ .0;1/ are Q \ .0;1/ and its com-

plement, the set of square roots of positive rationals which are not perfect squares.
Not very interesting! But the story gets better as n goes up, as I leave it to interested
readers to discover.

Here is a much more modest question list some of which would be easy to answer
if the isomorphism classes of the graphs G.Qn; d /, n D 3; 4, d 2 p

Q \ .0;1/,
were known. Observe that if n 2 f2; 3; 4g and d 2 p

Q \ .0;1/, then B1.Q4/ D 4

implies that �.Qn; d / 2 f1; 2; 3; 4g. When n D 2; 3, values of d are known that are
not realized as distances between points of Q

n (d D p7, for instance); for such d ,
�.Qn; d / D 1. There are no such d for n � 4. (Why not?) For all d 2p

Q \ .0;1/

realized as a distance between points of Q
2, �.Q2; d / D 2. Values of d are known

for which �.Q3; d / D 2 (d D 1, for instance), for which �.Q3; d / D 4 (d D p2,
for instance), and for which �.Q4; d / D 4 (d D 1 or

p
2, for instance). Which

brings us to our questions: Is there any d > 0 such that �.Q3; d / D 3? Do there
exist d > 0 such that �.Q4; d / D 2 or 3?

Is it the case that for every n, or for every n sufficiently large, the numbers
�.Qn; d /, d 2p

Q \ .0;1/, form a block of consecutive integers?
Does there exist D 	 .0;1/, jDj D 2, such that �.Q2; D/ D 3?
There are Euclidean Ramsey problems that are not just about the chromatic num-

bers of distance graphs on R
n, and many of these are quite interesting when R

n is
replaced by Q

n. Since the paper is about distance graphs on Q
n, n D 1; 2; : : : , we

confine the last remarks here to two classes of these problems that bear on or involve
those distance graphs.

If n is a positive integer and D � .0;1/, a rather red coloring of X � R
n

with reference to D is a coloring of X with two colors, red and blue, such that if
u and v are both blue, then ju � vj … D. Such colorings came to fame because of
a result and a problem posed in [9]. The result: if T is a set of three points in R

2,
the plane, then for every rather red coloring of R

2 with reference to f1g (or any
other single distance), the red set contains a translate of T . The problem: is there a
rather red coloring of R

2 with reference to f1g such that the red set does not contain
the vertices of a unit square? This question was soon answered in the negative by
R. Juhász [23] who proved that for any rather red coloring of R

2 with reference
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to f1g, or any other single distance, the red set will contain congruent copies of every
4-point planar set. (Two subsets of R

n are congruent if one is the image of the other
under a composition of a translation and a rotation.)

If D � .0;1/ and X � R
n we define mc.X; D/, respectively mt .X; D/, to be

the smallest size jY j of a subset Y of X such that there exists a rather red coloring of
X with reference to D such that no congruent copy, respectively, translate, of Y in
X is all red. Clearly mt .X; D/ � mc.X; D/. It is a consequence of a generalization
[14] of a theorem first appearing in [36] that if X is closed under vector addition then

�.X; D/ � mt .X; D/I
see [4] for a fuller account of this matter.

So, finding or estimating mt .Q
n; d / and mc.Qn; d / for various d 2p

Q \ .0;1/

is of interest, not only because these problems are worthy in themselves but also
because upper bounds on these numbers will bound �.Qn; d /, and thus may lead to
estimates of B1.Qn/.

On the other hand, B1.Q2/ D 2 implies that mt .Q
2; d / D mc.Q2; d / D 2 for

every distance d actually realized between points of Q
2, and �.Q3; 1/ D 2 implies

that mt .Q
3; 1/ D mc.Q3; 1/ D 2. So it appears that the place to start, the very first

basic open question in this vein, is on the problems of determining mt .Q
3;
p

2/ and
mc.Q3;

p
2/. I volunteer the conjecture that

mc.Q3;
p

2/ D mt .Q
3;
p

2/ D 4:

Finally, there are myriad mixed hypergraph coloring problems in which one of
the hypergraphs is a distance graph on Q

n. For the full Monty on mixed hyper-
graph colorings, see [37], but for some particular geombinatorial cases, see [22].
The general form of these geombinatorial problems involving distance graphs is
this: for X � R

n and S � .0;1/, and a collection Y of subsets of X , for which
k � �.X; D/, if any, is there a proper coloring of G.X; D/ with k colors such that
every Y 2 Y is monochromatic? Or, turning the question around, given X; D, and
k � �.X; D/, for which Y � X is there a proper coloring of G.X; D/ with k colors
such that Y is monochromatic?

In the most promising subclass of these problems, X is an additive subgroup of
R

n – possibly Z
n; Q

n, or R
n itself – and the collection Y is the set of all translates

in X of some Y � X . Suppose that X is a subgroup of R
n and f W X ! C

is a coloring of X (C is some set of “colors”). Let P.f; X/ D fu 2 X j for all
v 2 X; f .uC v/ D f .v/g, the set of “periods” of the coloring f (allowing the zero
vector honorary status as a period). It is shown in [22], and is quite easy to see, that,
in these circumstances:

(a) P.f; X/ is a subgroup of X .
(b) Every translate of Y � X is monochromatic (i.e., f .x C Y / is a singleton for

every x 2 X/ if and only if Y is a translate of a subset of P.f; X/.

So the obvious initial path to follow in exploring this territory is indicated by the
question: given X , a subgroup of R

n, and D � .0;1/, which subgroups P.f; X/ of
X do we get by proper colorings f of G.X; D/? Or, what properties must P.f; X/
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have? For instance, it is shown in [22] that if n 2 f2; 3g, and f is a proper coloring
of G.Qn; 1/ with two colors, then P.f; Q

n/ is dense in Q
n. Do there exist k � 3 and

a proper coloring f or G.Qn; 1/ .n 2 f2; 3g/ with k colors such that P.f; Q
n/ is not

dense in Q
n? Can we have P.f; Q

n/ D f0g for such an f ? In [22] similar questions
are asked about proper 4-colorings of G.Q4; 1/ and G.Q3;

p
2/. Obviously there is

a rich trove of such questions; the interested reader will not need much instruction
on how to unwrap this package. Perhaps it should be mentioned that the key to
answering the question about G.Q4; 1/ might be found in [40].

It must be reported that in [22] it is asserted that if d is a distance realized be-
tween points of Q

2, and f is a proper coloring of G.Q2; d / with two colors, then
P.f; Q

2/ is dense in Q
2, “by an argument similar to the proof of” the corresponding

assertion for d D 1. I wish to declare this question reopened! If the rational points
are dense on the circle fu 2 Q

2 j juj D d g, then the conclusion does hold, with the
same proof as in the case d D 1, but, doubtless due to lacunae in my education, I do
not know whether this is true for all distances d realized between points of Q

2.
What of proper colorings of G.X; D/ for which all subsets of X which are con-

gruent to a given Y D X are monochromatic? It is shown in [22] that if Y � R
n

has at least two points, then there is no such proper coloring of G.Rn; 1/, for n > 1.
The facts that �.Q2; 1/ D �.Q3; 1/ D 2 show that the analogous statement with
R

n replaced by Q
n, n D 2 or 3, does not hold; just take Y D f0; ug where u 2 Q

n

has length juj D 2, and color G.Qn; 1/ properly with two colors. So, the problems
of properly coloring G.Qn; D/ so that congruent copies in Q

n of nonsingletons
Y � Q

n are forced to be monochromatic are open for consideration! I wonder if
any such coloring is possible when �.Qn; D/ > 2. When �.Qn; D/ D 2, n D 2

or 3, then one can force monochromatic congruent copies of arbitrarily large, even
infinite, Y � Q

n, with a proper 2-coloring of G.Qn; D/, by taking Y to be a set of
collinear points in Q

n, spaced at even integer multiples of distances in D along the
line. Are these the only such instances of such phenomena with jY j > 2?
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[13] H. Hadwiger, Ungelöste Probleme, Nr. 11, Elemente der Mathematik 16 (1961), 103–104.
[14] D. G. Hoffman, P. D. Johnson Jr., and A. D. Szlam, A new lemma in Ramsey theory, J. Comb.

Math. Comb. Comput. 38 (2001), 123–128.
[15] P. D. Johnson Jr., Two-colorings of a dense subgroup of Q

n that forbid many distances,
Discrete Math. 79 (1989/1990), 191–195.

[16] P. D. Johnson Jr., Introduction to “Colorings of metric spaces,” by Benda and Perles, Geom-
binatorics 9 (January 2000), 110–112.

[17] Peter Johnson, Coloring the rational points to forbid the distance one – a tentative history and
compendium, Geombinatorics 16 (July, 2006), 209–218.

[18] Peter Johnson, 4 D B1.Q3/ D B1.Q4/!, Geombinatorics 17 (January, 2008), 117–123.
[19] Peter Johnson and Albert Lee, Two theorems concerning the Babai numbers, Geombinatorics

15 (April, 2006), 177–182.
[20] Peter Johnson, Andrew Schneider, and Michael Tiemeyer, B1.Q3/ D 4, Geombinatorics 16

(April, 2007), 356–362.
[21] Peter Johnson and Michael Tiemeyer, Which pairs of distances can be forbidden by a

4-coloring of Q
3? Geombinatorics 18 (April, 2009), 161–170.

[22] Peter Johnson and Vitaly Voloshin, Geombinatorial mixed hypergraph coloring problems,
Geombinatorics 17 (October, 2007), 57–67.

[23] R. Juhász, Ramsey type theorems in the plane, J. Combin. Theory, Ser. A, 27 (1979), 152–
160.

[24] D. J. Jungreis, M. Reid, and D. Witte, Distances forbidden by some 2-coloring of Q
2, Discrete

Math. 82 (1990), 53–56.
[25] Arnfried Kemnitz and Massimiliano Murangio, Coloring the line, Ars Combinatoria 85

(2007), 183–192.
[26] D. G. Larman and C. A. Rogers, The realization of distances within sets in Euclidean space,

Mathematika 19 (1972), 1–24.
[27] Matthias Mann, A new bound for the chromatic number of rational five-space, Geombina-

torics 11 (October, 2001), 49–53.
[28] Matthias Mann, Hunting unit distance graphs in rational n-spaces, Geombinatorics 13

(October, 2003), 86–97.
[29] L. Moser and W. Moser, Solution to Problem 10, Can. Math. Bull. 4 (1961), 187–189.
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Open Problems Session

The workshop is over: Peter D, Johnson, Jr. (left) and Alexander Soifer.

During the workshop Ramsey Theory Yesterday, Today and Tomorrow at Rutgers
University on May 27-29, 2009, I offered a Problem Posing Session. All 30 par-
ticipants of the workshop attended the session, and almost everyone came to the
board and posed favorite open problems. The session was scheduled for an hour and
lasted twice as long. I asked for problem submissions in writing for this volume. Be-
low you will find all submitted problems (which is far from all the problems orally
presented at the workshop).

A. Soifer (ed.), Ramsey Theory: Yesterday, Today, and Tomorrow, 177
Progress in Mathematics 285, DOI 10.1007/978-0-8176-8092-3 10,
c� Springer Science+Business Media, LLC 2011
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In addition, see many more open problems in the surveys of this volume. The
survey by Ronald L. Graham and Eric Tressler, for one, consists entirely of open
problems.

The goal of posing problems is, of course, have them solved. I am happy to report
that one solution has already been submitted to Geombinatorics. You will find the
story of this affair in Peter D. Johnson Jr’s problem offering below.

Alexander Soifer October 28, 2009
Workshop organizer
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1 Problems Submitted by William Gasarch1

1University of Maryland at College Park
gasarch@cs.umd.edu

Consider the following known theorem.

Theorem 1.1. For all 2-colorings of the lattice points of the plane there exists
d 2 N, d � 2, and there exist four points that are the same color and form a d �d2

rectangle whose sides are parallel to the x-axis and y-axis.

The only proof of Theorem 1.1 that we know uses the polynomial Hales–Jewett
theorem, which we do not state here. It was first proven (using ergodic theory) in [2].
A purely combinatorial proof is in [3]. Even though it has a purely combinatorial
proof, it is rather complicated.

Open Problem: Provide a proof of Theorem 1.1 that does not use the polynomial
Hales–Jewett theorem. It may use the Hales–Jewett theorem (which can be found in
any text on Ramsey theory) and/or the polynomial van der Waerden theorem. (See
[1] for the original ergodic theory proof or [3] for a purely combinatorial proof that
appeared later.)

Note 1.2. There is a much more general version of Theorem 1.1 that can also be
proven by the polynomial Hales–Jewett theorem. It is rather complicated to state;
however, we state a corollary of it. For all n 2 N, for all p1; : : : ; p2n 2 ZŒx� such
that pi .0/ D 0, for all finite colorings of Zn there exist d 2 N, d > 0, and an
n-dimensional rectangle (all sides parallel to some axis) with all corners the same
color with sides of length p1.d/; : : : ; p2n.d/. A proof of this theorem, with the
same restrictions as that of the Open Problem, would also be interesting.
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2 Problems Submitted by Peter Johnson, Jr.2

2 Auburn University, Department of Discrete and Statistical Sciences
johnspd@mail.auburn.edu

Throughout, let Z denote the set of integers, Q the set of rational numbers, and R

the set of real numbers.

1. SupposeA, B � Z, and jAj D jBj D 3. Is it necessarily possible to color Z with
two colors so that no translate of either A or B is monochromatic?

Background: It is possible to find A, B � Z, jAj D 3, jBj D 2 so that for
every 2-coloring of Z, some (actually, infinitely many) translate(s) of one of A,
B is (are) monochromatic. For instance, take A D f0; 1; 3g, B D f0; 4g. Also,
it is possible to find A;B;C � Z, jAj D jBj D jC j D 3, such that for every
2-coloring of Z, infinitely many translates of one of A;B;C are monochromatic.
For instance, take A D f0; 1; 2g, B D f0; 1; 3g and C D f0; 4; 8g.

As explained in “An easier analogue of a difficult old Euclidean coloring
problem,” by A. W. Bohannon, P. D. Johnson, and E. G. Thomas, Geombinatorics
12 (January, 2003), 94–101, if the answer to the question in this problem is “yes”
then for every pair of 3-point sets in the Euclidean plane it is possible to 2-color
the plane so that no translate of either set is monochromatic.

Foreground: Since this problem was posed at the Workshop, it has been solved
in the negative, to its poser’s great surprise, by a Hungarian student, Balázs
Gosztonyi, who heard it from András Gyárfás. His example: A D f0; 2; 6g and
B D f0; 1; 8g. The proof that for every 2-coloring of Z some translate of one of
these is monochromatic is nontrivial.; it will appear soon in Geombinatorics.

It would be of interest to characterize those pairs of triplesA andB of integers
such that monochromatic translates of both of them cannot be forbidden by a
2-coloring of Z. It is known, and is easy to see, that for such a pair, every ratio
(difference within A)/(difference within B) must be, in lowest terms, even/odd
or odd/even; what else?

2. Consider the integers Z to be an additive subgroup of the plane R
2 in a natu-

ral way: Z Š f.0; 0/; .˙1; 0/; .˙2; 0/; : : : g. Consider the 2c 4-colorings of the
plane obtainable by coloring each coset of Z in R

2 with red and blue so that the
distance 1 is forbidden (so, the coloring of the coset is one of the two colorings in
which red and blue alternate as you count through the integers), then coloring the
collection R

2=Z of all cosets somehow with two colors, say green and yellow,
and finally coloring each u 2 R

2 with the ordered pair (color of u in uCZ, color
of uC Z).

Do any of these 4-colorings of R
2 forbid the distance 1?

Background: If the chromatic number of the unit distance graph in the plane
is greater than 4, then the answer to the question is no, of course. But perhaps the
answer is yes!

In “Coloring Abelian groups,” Discrete Math. 40 (1982), 219–223, P. D.
Johnson suggests a plan like this for obtaining a 4-coloring of the plane that
forbids the distance 1, but with the role of Z to be played by a large subgroup of

johnspd@mail.auburn.edu
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R
2 which can be 2-colored so as to forbid the distance one within the subgroup.

There is still hope for the success of that program, if only Zorn can provide
a large 2-colorable subgroup with the right properties! But curiosity whispers:
why cannot the program succeed using the smallest nontrivial subgroup of them
all, Z?

3. Suppose thatX and Y are sets, ' W X ! f1; : : : ; rg is an r-coloring ofX , and W
Y ! f1; : : : ; kg is a k-coloring of Y . We call the rk-coloring of X � Y defined
by .x; y/ ! .'.x/;  .y// an r � k simple product coloring. The following is a
conjecture of W. Kuperberg from the early 1980s: There is no positive integer k
such that there is a 2 � k simple product coloring of R

2 D R � R which forbids
the Euclidean distance 1. We may add to the challenge of this conjecture: should
this conjecture be true, what about 2 � @0 simple product colorings of R � R?
Can the distance 1 be forbidden by such a coloring?

Background: It is easy to see that there is a 3 � 3 simple product coloring
of R � R which forbids the distance 1: just color each .x; y/ 2 R

2 with the
ordered pair .bxp2c mod 3, byp2c mod 3/. It is shown in “Simple product
colorings,” by P. D. Johnson, Discrete Math. 48 (1984), 83–85, that there is a
2�2 simple product coloring of Q�Q which forbids the distance 1, but no 2�2
simple product coloring of Q � Q.

p
15/ which does so. Kuperberg’s conjecture

was inspired by a prepublication discussion of that paper with the author, and
the conjecture has already appeared in that paper and in a list of problems and
conjectures associated with the 1985 British Combinatorial Conference.
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3 Problems on Topological Stability of Chromatic Numbers
Submitted by Dmytro Karabash3

3 New York University, Courant Institute of Mathematical Sciences, NY, USA
karabash@cims.nyu.edu

Setting: Let M be a (smooth) n-dimensional Riemannian manifold. For distance
t > 0, let Gt be the t-distance graph defined on vertex set M ; i.e., two vertices of
Gt are adjacent if and only if they are at (M -geodesic) distance t apart. Let .Gt /

be the chromatic number of this graph Gt . For simplicity let us restrict ourselves
to ZFC.

Question 1. How does �.Gt / behave as t goes to 0? Is it necessarily a constant
near 0 or can it oscillate between two or more numbers?

Let us call set S.M/ = ft 2 RC W �.Gt / D �.Rn/g of distances t for which Gt

has the same chromatic number as R
n. We say that elements of S.M/ areM -stable.

For example, consider n D 1 and let M be a circle of circumference 1. Then
�.Gt / D 3 if and only if Gt has an odd cycle and otherwise �.Gt / D 2. Note that
Gt has an odd cycle when t < 1

2
and t D p=q , where p and q are integers and q is

odd. Hence S.M/ in this case all of positive reals except for countably many points.
This leads us to the following conjecture:

Conjecture 1. Set RC n S.M/ is countable; i.e., for any smooth Riemannian
manifold M all but countably many positive reals are M-stable.

For dimensions higher than 1, we have the following conjecture:

Conjecture 2. If M is of dimension n > 2, then for some s > 0, .0; s/� S.M/.

Related Questions and Generalization:

Given a set D of positive reals one can also consider the same questions for graph
Gt where two points are adjacent if and only if they are at (M -geodesic) distance
ts, where s is some element of D.

Corresponding questions can be asked with various restrictions on the chro-
matic sets:

1. We can restrict all chromatic sets in the coloring to be (Lebesgue) measurable;
this is similar (and most likely equivalent) to considering chromatic number in
Solovay system.

2. We can consider only map-type colorings (where the set corresponding to each
color is the union of regions on M ); this might be the most feasible direction
as we understand map-type colorings better due to absence of need of axiom of
choice.

karabash@cims.nyu.edu
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4 Problem on the Gallai–Ramsey Structure, Submitted by
Colton Magnant4

4 Lehigh University, PA, USA
com208@lehigh.edu

We say that a copy of a graphH is rainbow if each edge is colored with a distinct
color. We consider colorings of the edges of a complete graphKn which contain no
rainbow copies of a fixed graphH .

Definition 1. Let H be the set of (connected) graphs H such that in any rainbow
H -free coloring of Kn, there exists a (bi)partition of the vertices of Kn with only k
colors on the edges between the parts where k is a constant depending only on H
(not n).

This definition leads to the following problem.

Problem 1. Classify the graphs in H .

It is known [1, 2] that K3 2H and from this, one may easily show that any tree
or tree with an extra edge (forming a triangle) is also in H . Unfortunately, that’s all
we know for graphs that are in H .

On the other end of the spectrum, suppose H is a graph containing two cycles.
Let k0 be any fixed constant and consider a graph G with girth g > jH j and edge
connectivity k > k0. We color each edge of G with a distinct color (rainbow) and,
in order to finish a coloring of a complete graph, we color the complement NG with
a single (different from all others) color. Suppose this final color is red.

Since the girth g.G/ > jH j and H contains two cycles, any copy of H in this
coloring must use at least two red edges. Hence, this coloring contains no rainbow
copy ofH . Also this construction has no (bi)partition with at most k colors on edges
between the parts. Since k > k0 was chosen arbitrarily, H … H . Hence, if H is
not unicyclic, then H …H .

It seems as though the set of unicyclic graphs is precisely the set of graphs in
H . The following conjecture appears to be, by far, the most interesting case of this
problem.

Conjecture 1. C4 2H .

It is known that the number of colors k for the graph C4 would be at least 4 but
we have, so far, been unable to show that the number is bounded.

A classification of the graphs in H and bounds on the corresponding values of k
would be of great interest in the field of Gallai–Ramsey theory and other rainbow-
coloring-related problems.

This is a joint work with Shinya Fujita. The authors would like to thank Jacob
Fox, András Gyárfás, and Daniel M. Martin for fruitful discussions.

com208@lehigh.edu
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5 Problems Involving Triangles, Submitted
by Stanisław P. Radziszowski5

5 Department of Computer Science, Rochester Institute of Technology, NY, USA
spr@cs.rit.edu

Definition 1. For graphs G and H , R.G;H/ D n if and only if n is the least posi-
tive integer such that in any 2-coloring of the edges of Kn there is a monochromatic
G in the first color or a monochromaticH in the second color. }

We write simply R.k; l/ D R.Kk; Kl/ if the avoided graphs are complete. Two-
colorings of the edges of Kn are often seen as graphs consisting of the edges in
the first color, while their complements correspond to the edges in the second color.
The .k; l In/-graphs are n-vertex graphs lower-boundingR.k; l/, i.e., 2-colorings of
the edges of Kn proving n < R.k; l/. The .k; l/-graphs stand for .k; l In/-graphs
for some n. If n D R.k; l/ � 1 then .k; l In/-graphs are called critical. These con-
cepts naturally generalize to r colors, r graphs, and the multicolor Ramsey numbers
R.G1; : : : ; Gr /.

Computational Problems for Ramsey Numbers, Two Colors

For detailed references to the subproblems listed in this and the next section please
see the dynamic survey “Small Ramsey Numbers” in the Electronic Journal of Com-
binatorics [2]. Many historical comments and background information can be found
in The Mathematical Coloring Book by Alexander Soifer [4].

The first open case of a Ramsey number of the form R.3; k/ is 40 � R.3; 10/ �
43. It seems that in order to determine the largest .3; 10/-graph we need to know
more about .3; 9In � 35/-graphs, which in turn requires the knowledge of .3; 8In �
27/, which in turn requires the knowledge of .3; 7In � 22/. All .3; 6/-graphs and
all critical .3; 7I 22/-graphs are known, and there are 761,692 and 191 of them,
respectively. Thus the sequence of smaller, but still difficult, tasks towards solving
R.3; 10/ could be as follows.

(a) Enumerate more .3; 7/-graphs.
Enumerating all graphs in .3; 7I 21/ should be easy, more difficult for .3; 7I 20/
and perhaps feasible for .3; 7I 19/. More complete enumeration of .3; 7/ can
make it easier to progress on the further steps below.

(b) Enumerate all critical .3; 8I 27/-graphs.
More than 430 K such graphs are already known, but there may be more of them.
Full enumeration of .3; 8I 26/ seems to be very difficult, but it could likely be
done for some well defined part, like graphs with at most 78 edges.

spr@cs.rit.edu
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(c) Enumerate all critical .3; 9I 35/-graphs.
There is only one .3; 9I 35/-graph known, but there might be more of them.
Finding all .3; 9I 34/-graphs also could be feasible.

(d) Finish off 37 � R.3;K10 � e/ � 38.
This number is between R.3; 9/ D 36 and R.3; 10/, and the type of compu-
tations needed to decide the existence of .3;K10 � eI 37/-graphs is similar to
what is needed in (c) and (e). (d) may possibly be easier, hence attacking it first
is a good choice.

(e) Attack R.3; 10/.
We know that 40 � R.3; 10/ � 43. The author feels that 40 is likely the correct
value. First, try to prove computationally that R.3; 10/ � 42. The results from
(a) through (d) should help.

Computational Problems for Ramsey Numbers, Multiple Colors

The computational tasks related to the smallest and most-studied open cases for
multicolor Ramsey numbers are as follows.

(f) Improve on 45 � R.3; 3; 5/ � 57.
The task of just improving the inequality should not be too hard. We are not
aware of any published dedicated attack on this number. The exact evaluation
of R.3; 3; 5/ is a different matter, apparently well beyond what we can cur-
rently do.

(g) Finish off 30 � R.3; 3; 4/ � 31.
This is perhaps the only open case of a classical multicolor Ramsey number, for
which we can anticipate exact evaluation in the not too distant future. A com-
plete solution is likely feasible with a large-scale computational effort similar
to that in [PR1, PR2] as referenced in [2].

(h) Improve on 51 � R4.3/ � 62.
This is the most studied and intriguing open multicolor case. We believe the
lower bound to be close, if not equal, to the actual value. Improving the upper
bound, while difficult, should be feasible with large-scale computational effort,
for example, by extending work [FKR] referenced in [2]. We are not aware of
any heuristic approaches which would come even close to the lower bound 51.
This could be used as an interesting novel test of strength of general heuristic
search techniques. As of now, we do not seem to understand well why known
heuristics are inadequate for this task.

Computational Folkman Problems

The Folkman problems we are concerned with in this part can be expressed using
the usual Ramsey arrowing operator restricted to graphs not containing Km (or not
containing some other graph). For detailed references to the background, history,
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and problems similar to those listed below see The Mathematical Coloring Book by
Alexander Soifer [4]. Many technical comments and further references can be found
in [1] and [3].

Definition 2.

� F ! .s1; : : : ; sr /
e if and only if for every r-coloring of the edges, the graph F

contains a monochromatic copy of Ksi
in some color i , 1 � i � r .

� F ! .G;H/e if and only if for every red/blue edge-coloring of F , the graph F
contains a blue copy of G or a red copy of H .

� Fe.s; t I k/ D fG ! .s; t/e W Kk 6� Gg is called the set of edge Folkman graphs.
� Fe.s; t I k/ is defined as the smallest integer n such that there exists an n-vertex

graphG in Fe.s; t I k/. These are called the edge Folkman numbers. }
Theorem (Folkman 1970).
For all k > max.s; t/ edge Folkman numbers Fe.s; t I k/ exist.

The most wanted edge Folkman number Fe.3; 3I 4/ involves the smallest
parameters for which the problem is nontrivial, and quite surprisingly it is al-
ready extremely difficult to compute. Equivalently, Fe.3; 3I 4/ is equal to the order
of the smallest K4-free graph which is not a union of two triangle-free graphs. We
know that 19 � Fe.3; 3I 4/ � 941, where the lower bound was established in [3]
and the upper bound in [1]. Much of the history of work on such cases is reported in
[3] and [4]. In particular, it seems that even the question if 50 � Fe.3; 3I 4/ � 100
could be very hard to answer.

Computational Folkman Problems to Work on

(i) Improve on Fe.3; 3I 4/ � 941.
This bound was established by Dudek and Rödl in 2008 [1], after a few decades
of colorful history reported in [4] and [3].
One of the possible options to proceed forward is as follows. In 1982, Hill
and Irving defined the graph G127 D .Z127; E/, E D f.x; y/jx � y D ˛3

.mod 127/g in the context of Ramsey numbers. It is a .4; 12I 127/-graph, and
also the monochromatic subgraph in each of three colors of a .4; 4; 4I 127/
witness to the lower bound 128 � R.4; 4; 4/. Exoo suggested studying if
G127 ! .3; 3/e. If true it would prove that Fe.3; 3I 4/ � 127.

(j) Improve on 19 � Fe.3; 3I 4/.
No reasonable, even large-scale, computation seems to be sufficient to improve
on the lower bound of 19, which was established with significant computational
effort in [3].

(k) Study Fe.K4 � e;K4 � eIK4/.
We know that 19 � Fe.3; 3I 4/ � Fe.K4�e;K4�eIK4/ � 30193. The lower
bound follows from monotonicity of Fe./; the upper bound, probably not a
very strong one, was observed by Lu in his work on Fe.3; 3I 4/.
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(l) Study Fe.3; 3IG/ for G 2 fK5 � e;W5 D C4 C xg.
Similar to (k), but this time vary the forbidden graph while still considering
arrowing triangles. We are not aware of any work related to these cases.

(m) Don’t study Fe.3; 3IK4 � e/.
Because after a moment of thought the reader can certainly discover that this
number doesn’t exist.
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6 Problems on Chromatic Number of the Plane and Its Relatives,
Submitted by Alexander Soifer6

6University of Colorado in Colorado Springs, CO, USA
asoifer@uecs.edu

I. General Problem.

Find �ZFC.E2/ and �ZFSC.E2/:

Find �ZFC.En/ and �ZFSC.En/ for n>2:

II. Chromatic Number of the Plane Soft Conjecture.

�
�
E2

� D 5:5˙ 1:5:

III. Chromatic Number of the Plane Conjecture.

�
�
E2

� D 7:

IV. Chromatic Number of 3-Space Conjecture.

�
�
E3

� D 15:

V. Chromatic Number of En Conjecture.

� .En/ D 2nC1 � 1:

VI. Minimum Girth 4, 4-Chromatic Unit Distance Graph.

Find the minimum n such that there is a 4-chromatic graph G of order n of girth 4.
Construct such a graph G:

We know that 11 � n � 23.
(Lower bound is due to Mycielski–Grötsch graph. R. Hochberg and P. O’Donnell

constructed the Fish graph thus proving that n � 23.)

VII. AC Problem.

For which values of n is the chromatic number � .Rn/ of the n-space Rn defined
“in the absolute”, i.e., in ZF regardless of the addition of the axiom of choice or its
relative?
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