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Preface

The purpose of these lecture notes is to serve as a gentle introduction to Ramsey
theory for those undergraduate students interested in becoming familiar with this
dynamic segment of contemporary mathematics that combines, among others, ideas
from number theory and combinatorics.

Since this booklet contains the class lecture notes, the reader will occasionally
need the help of a more knowledgeable other: an instructor, a peer, a book, or Google.
In addition to the bibliography, links with the relevant freely available online resources
are provided at the end of each section.

The only real prerequisites to fully grasp the material presented in these lecture
notes, to paraphrase Professor Fikret Vajzović (1928— 2017), is knowing how to read
and write and possessing a certain level of mathematical maturity.

Any undergraduate student who has successfully completed the standard calculus
sequence of courses and a standard first (or second) year linear algebra course and has
a genuine interest in learning mathematics should be able to master the main ideas
presented here.

My wish is to give to the reader both challenging and enjoyable experiences in
learning some of the basic facts about Ramsey theory, a relatively new mathematical
field.

But what is Ramsey theory?
Probably the best-known description of Ramsey theory is provided by Theodore

S. Motzkin:

Complete disorder is impossible.

Here are a few more:

• Ramsey theory studies the mathematics of colouring. —Alexander Soifer

• Ramsey theory is the study of the preservation of properties under set partitions.
—Bruce Landman and Aaron Robertson

• The fundamental kind of question Ramsey theory asks is: can one always find
order in chaos? If so, how much? Just how large a slice of chaos do we need to
be sure to find a particular amount of order in it? — Imre Leader

• If mathematics is a science of patterns, then Ramsey theory is a science of the
stubbornness of patterns. – V. Jungic

No project such as this can be free from errors and incompleteness. I would be
grateful to anyone who points out any typos, errors, or provides any other suggestion
on how to improve this manuscript.

Veselin Jungic
Department of Mathematics, Simon Fraser University
Contact address: vjungic@sfu.ca
In Burnaby, B.C., November 2020
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Chapter 1

Introduction: Pioneers andTrail-
blazers

1.1 Complete Chaos is Impossible
Complete disorder is impossible. — Theodore S. Motzkin, Israeli-
American mathematician, 1908 — 1970.

What is Ramsey theory?

• Ramsey theory is the mathematics of colouring. - Soifer

• Ramsey theory is the study of the preservation of properties under set partitions.
- Landman-Robertson

• The fundamental kind of question Ramsey theory asks is: can one always find
order in chaos? If so, how much? Just how large a slice of chaos do we need to
be sure to find a particular amount of order in it? - Leader

• If mathematics is a science of patterns, then Ramsey theory is a science of the
stubbornness of patterns. - Jungic

Example 1.1.1 A Ramsey theory problem: If the natural numbers are finitely coloured,
i.e. the set of natural numbers is partitioned into a finite number of cells, must there
exist x, y (with x and y not both equal to 2) with x + y and xy monochromatic, i.e.,
x + y and xy belong to the same partition cell? (See Figure 1.1.2.) �

?
⇒

y

x

x + y x · y

N N

Figure 1.1.2 Monochromatic pattern?

The problem was posed by Neil Hindman in the late 1970s and resolved by Joel
Moreira in 2017: Monochromatic sums and products inN, Annals of Mathematics (2)
185 (2017), no. 3, 1069–1090. [ arXiv]

What makes this problem to be a typical Ramsey theory problem is the following:

1

https://arxiv.org/abs/1605.01469
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• The topic: the problem is to determine the relationship between the set of all
finite partitions of the natural numbers and a certain pattern.

• The fact that any numerically literate person can understand the problem.

• It is a difficult problem.

Example 1.1.3

Schur’s Theorem: For any partition of the positive integers
into a finite number of parts, one of the parts contains three
integers x, y, z with x + y = z. (See Figure 1.1.5.)

Figure 1.1.4 Issai
Schur (1875— 1941)

�

⇒ yx
x + y

N N

Figure 1.1.5 True, by Schur’s theorem

Example 1.1.6

van derWaerden’s Theorem - Special Case. For any partition
of the positive integers into a finite number of parts, one of
the parts contains three integers x, y, z with x + y = 2z. (See
Figure 1.1.8.)

Figure 1.1.7 Bar-
tel Leendert van der
Waerden (1903 —
1996)

�
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⇒

yx
x+y

2

N N

Figure 1.1.8 True, by van der Waerden’s theorem

Example 1.1.9

Rado’s Theorem - Special Case. For any partition of the
positive integers into a finite number of parts, one of the
parts contains three integers x, y, z with ax + by + cz = 0,
a , 0, b , 0, c , 0, if and only if one of the following
conditions holds a + b + c = 0 or a + b = 0 or a + c = 0 or
b + c = 0. (See Figure 1.1.11.)

Figure 1.1.10
Richard Rado (1906
— 1989)

�

+


a + b + c = 0 or

a + b = 0 or
a + c = 0 or

b + c = 0

 ⇒ yx
−

ax+by
c

N N

Figure 1.1.11 True, by Rado’s theorem

Example 1.1.12

Ramsey’s Theorem - Special case. If there are at least
six people at dinner then either there are three mutual
acquaintances or there are three mutual strangers. (See
Figure 1.1.14.)

Figure 1.1.13 Frank
Plumpton Ramsey (1903
— 1930)

�
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�

Blue = acquaintances; Red = strangers.

��

What’s next?

Figure 1.1.14 Proof of a special case of Ramsey’s theorem.

Example 1.1.15

Hales-Jewett Theorem - Informal. In large enough di-
mensions, the game of Tic-Tac-Toe cannot end in a draw.

Figure 1.1.16 Alfred
Hales and Robert Jewett

�

× ×

×

×

Tic-Tac-Toe

⇒

× ×

×

×

It’s a draw!

⇔

31

11 12

22 23

13

32 33

21

13

Same but different

Figure 1.1.17 Tic-Tac-Toe

Tic-Tac-Toe - It is a win!

11 12 13 11 12 13 11 12 13
21 22 23 or 21 22 23 or 21 22 23
31 32 33 31 32 33 31 32 33

Resources.

1. See [2], [3], and [7].

2. Ramsey Theory - Wikipedia

3. Ramsey Theory by R. Graham and B. Rothschild

4. Ramsey Theory by J. Fox

1.2 Paul Erdős
If numbers aren’t beautiful, I don’t know what is. — Paul Erdős, 1913 —
1996.

Who was Paul Erdős? Paul Erdős was a legendary mathematician who was so devoted
to his subject that he lived as a mathematical pilgrim with no home and no job.

Paul Erdős made contributions to:

http://en.wikipedia.org/wiki/Ramsey_theory
http://www.math.ucsd.edu/~fan/ron/papers/78_02_ramsey_theory.pdf
http://math.mit.edu/~fox/MAT307-lecture05.pdf
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• combinatorics including Ramsey theory; a branch of mathematics concerning
the study of finite or countable discrete structures

• graph theory; the study of graphs, which are mathematical structures used to
model pairwise relations between objects

• number theory; a branch of pure mathematics devoted primarily to the study of
the integers

• classical analysis; a branch of mathematics that includes the theories of differ-
entiation, integration, measure, limits, infinite series, and analytic functions

• approximation theory; study of how given quantities can be approximated by
other (usually simpler) ones under appropriate conditions.

• set theory; branch of mathematics that deals with the properties of well-defined
collections of objects, which may or may not be of a mathematical nature

• probability theory; a branch of mathematics concerned with the analysis of
random phenomena

Birth and Death. Paul Erdős was born in
Budapest, Hungary, on March 26, 1913,
and died at the age of 83 on September 20,
1996, in Warsaw, Poland.

Figure 1.2.1 Anna and
Paul Erdős (Source: No-
tices of the AMS, 45(1))

World in 1913 World in 1996
The first wireless transmission between
the USA and Germany

The first version of the Java program-
ming language was released

The concept of the “isotope” intro-
duced

IBM’s Deep Blue wins a game of chess
against Gary Kasparov

Port Coquitlam, BC, established The first surface photos of Pluto

All-purpose zipper patented The 34th known Mersenne prime
21257787 − 1 discovered

The first four engine aircraft built Nintendo 64 goes on sale

The Pacific Highway between Surrey,
BC, andBlaine,WA, opened as a gravel
road

Microsoft releases Internet Explorer
3.0

The brand name “Oreo” was regis-
tered

Netscape Browser 3.0 is released

Mohandas Gandhi arrested for leading
Indian miners march in South Africa

South Africa adopts post-apartheid
constitution

Rabindranath Tagore presented with
the Nobel Prize

The last federally run Indian residen-
tial school closed in Saskatchewan

Paul’s Family. Paul Erdős came from a Jewish family. The original family name
being Engländer. Paul’s father Lajos and his mother Anna had two daughters, aged
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three and five, who died of scarlet fever just days before Paul was born. This had the
effect of making Paul’s parents protective of their son. Both of Paul’s parents were
teachers of mathematics.

Stanisław Ulam About Paul Erdős in 1976:

He had been a true child prodigy, publishing his first results at the age of
eighteen in number theory and in combinatorial analysis. Being Jewish he
had to leave Hungary, and as it turned out, this saved his life. In 1941 he
was twenty-seven years old, homesick, unhappy, and constantly worried
about the fate of his mother who remained in Hungary. (. . . ) Erdős is
somewhat below medium height, an extremely nervous and agitated per-
son. (. . . ) His eyes indicated he was always thinking about mathematics,
a process interrupted only by his rather pessimistic statements on world
affairs, politics, or human affairs in general, which he viewed darkly.
(. . . ) His peculiarities are so numerous it is impossible to describe them
all. (. . . ) Now over sixty, he has more than seven hundred papers to his
credit. (Source: MacTutor.)

Erdős’ Work - Two Examples.

Example 1.2.2 Happy ending problem: �

During the winter of 1932–1933 a group of students was meeting regularly in
the park Városliget, Budapest, Hungary. Among them were Pál “Paul” Erdős, Eszter
“Esther” Klein, György “George” Szekeres, and Endre “Andre” Makai.

Figure 1.2.3 Statue of Anonymous, Városliget, Budapest, Hungary (Source Unknown)

One day, Esther made the following observation:

Among any five points in general position in the Euclidean plane, it is
always possible to select four points that form the vertices of a convex
quadrilateral.

Vocabulary:

• “five points in general position in the Euclidean plane” = no three points are on
the same line (See Figure 1.2.4.)

Figure 1.2.4 Points in general position and points not in general position

https://mathshistory.st-andrews.ac.uk/Biographies/Erdos/
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• “a convex quadrilateral” = a quadrilateral with the property that if two points A
and B are inside of the quadrilateral then the whole segment AB is inside the
quadrilateral. See Figure 1.2.5.

Figure 1.2.5 Convex quadrilateral and non-convex quadrilateral

Proof of Esther’s observation: The convex hull of a set of points S in the Euclidean
plane is the smallest convex set that contains all points from S. See Figure 1.2.6.

Figure 1.2.6 Five points and three cases: (5, 0), (4, 1), and (3, 2).

Makai soon proved that among any nine points in general position, it is always
possible to select five points that form the vertices of a convex pentagon. See Fig-
ure 1.2.7

Figure 1.2.7 Eight points without a convex pentagon.

Klein suggested the following more general problem:

Given any positive integer n, there exists a number K(n) such that among
any K(n) points in general position, it is possible to select n points that
form the vertices of a convex n-gon.

This is what Szekers wrote about what happened next:
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I have no clear recollection how the generalization actually came about;
in the paper we attributed it to Esther, but she assures me that Paul
had much more to do with it. We soon realized that a simple-minded
argument would not do and there was a feeling of excitement that a new
type of geometric problem emerged from our circle which we were only
too eager to solve. For me that it came from Epszi (Paul’s name for Esther,
short for “epsilon” ) added a strong incentive to be the first with a solution
and after a few weeks I was able to confront Paul with a triumphant ‘E.P.
open your wise mind’. What I had really found was Ramsey’s Theorem
from which [the theorem] easily followed. Of course, at that time none
of us knew about Ramsey. (Source “Roots of Ramsey theory” by R.
Graham.)

Esther and George married in 1937. On August 28, 2005, they died within an hour of
each other.
Example 1.2.8 Conjecture: If A is a set of positive integers such that∑

n∈A

1
n
= ∞.

then A contains arithmetic progressions of any given length. �

Paul Erdős offered a prize of US $3000 for a proof of this conjecture. For more
details, see Wikipedia.

Two Saints in St. Gregory of Nyssa
Episcopal Church in San Francisco,
CA

Resources.

1. Paul Erdős - Wikipedia

2. Paul Erdős - Biography

3. Reminiscences of Paul Erdős

4. Paul Erdős (1913-1996)

5. The Erdős Number Project

6. The Man Who Loved Only Numbers

7. N is a number - Film

8. Fun Chang - Some Erdős Stories

9. Imaginary Erdős Number by Ron Graham

http://www.math.ucsd.edu/~fan/ron/papers/92_08_ramsey_roots.pdf
https://en.wikipedia.org/wiki/Erdos_conjecture_on_arithmetic_progressions
https://www.saintgregorys.org/the-dancing-saints.html
https://www.saintgregorys.org/the-dancing-saints.html
https://www.saintgregorys.org/the-dancing-saints.html
http://en.wikipedia.org/wiki/Paul_Erdos
http://www-history.mcs.st-and.ac.uk/Mathematicians/Erdos.html
http://www.maa.org/reminiscences-of-paul-erdos
https://www.ams.org/notices/199801/comm-erdos.pdf
http://www.oakland.edu/enp/
http://www.nytimes.com/books/first/h/hoffman-man.html
https://www.youtube.com/watch?v=zRNGV85kPbI&list=PL6180F0E2E9F9F293
http://www.math.ucsd.edu/~fan/ep/ep.html
https://www.youtube.com/watch?v=izdZPx89ph4&list=PLt5AfwLFPxWIEL4MazWfTqnJIzKbkbQ2M&index=3&t=0s
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1.3 Frank Plumpton Ramsey
Philosophy must be of some use and we must take it seriously; it must
clear our thoughts and so our actions. —Frank Plumpton Ramsey, 1903
— 1930.

Who was Frank Ramsey? British mathematician, economist, and philosopher.
Ramsey made contributions to:

• epistemology; the branch of philosophy concerned with the nature and scope of
knowledge

• semantics; the study of relationships between signs and symbols and what they
represent

• logic; the study of the principles of reasoning

• philosophy of science; the field of rigorous academic study that deals specifically
with what science is, how it works, and the logic through which we build
scientific knowledge

• decision theory; decision theory in economics, psychology, philosophy, mathe-
matics, and statistics is concerned with identifying the values, uncertainties and
other issues relevant in a given decision, its rationality, and the resulting optimal
decision.

• metaphysics; the part of philosophy that is concerned with the basic causes and
nature of things.

• mathematics

• statistics

• probability

• economics

Birth and Death. Frank Plumpton Ramsey
was born on February 22, 1903, and died at
the age of 26 on January 19, 1930. Ramsey
suffered from a chronic and increasingly se-
rious liver complaint, contracted jaundice
after an operation and died at Guy’s Hospi-
tal in London.

Figure 1.3.1

World in 1903 World in 1930
The first west–east transatlantic radio
broadcast was made from the US to
England

Mao Tse-tung writes A Single Spark
Can Star a Prairie Fire

Bertrand Russell published “The Prin-
ciples of Mathematics”

The first diesel engine automobile trip
completed

Wright Brothers make the first flight The first radar detection of planes

Pepsi Cola company forms The world’s first radiosonde is
launched



CHAPTER 1. INTRODUCTION: PIONEERS AND TRAILBLAZERS 10

Paavo Nurmi runs world record 6 mile
29:36.4

The Mersenne number 267 − 1 discov-
ered

The Russian Social Democratic Labor
Party splits into two groups; the Bol-
sheviks and Mensheviks

Child labor laws established in Bel-
gium

The automobile electric starter
patented

The first non-stop airplane flight from
Europe to US

Nobel for physics awarded to Pierre
and Marie Curie

Nazis gain 107 seats in German elec-
tion

Frank’s Family. Ramsey came from a distinguished Cambridge family. His father
was a mathematician, and the President of Magdalene College. His brother, Michael
Ramsey, became the Archbishop of Canterbury. His sister Bridget was a medical
doctor, and his other sister Margaret was a Fellow of Lady Margaret Hall, Oxford.

In 1924, at the age of twenty-one, Ramsey himself got a Fellowship at King’s
College Cambridge, having graduated the year before as Cambridge’s top mathematics
student.

Michael Ramsey about his brother Frank:

He was interested in almost everything. He was immensely widely read
in English literature; he was enjoying classics though he was on the verge
of plunging into being a mathematical specialist; he was very interested
in politics, and well-informed; he had got a political concern and a sort
of left-wing caring-for-the-underdog kind of outlook about politics. I was
aware that he was far cleverer than I was and knew much more, yet there
was such a total lack of uppishness about him that we just conversed in
a friendly way and he never made me feel inferior though I was so vastly
below par intellectually, and that was the wonderful joy of it. (Source
D.H. Mellor ).

Ramsey’s Work - Two Examples.

Example 1.3.2 Conditionals: �

In “General Propositions and Causality” (1929) Frank Ramsey wrote:

When we deliberate about a possible action, we ask ourselves what will
happen if we do this or that. If we give a definite answer of the form ‘If I
do p, q will result’, this can be properly regarded as a material implication
or disjunction ‘Either not p, or q’. But it differs, of course from any
ordinary disjunction in that one of its members is not something of which
we are trying to discover the truth, but something within our power to
make true or false. Besides definite answers ‘If p, q will result’, we often
get ones `If p, q might result or ‘q would probably result’. Here the
degree of probability is not a degree of belief in ‘Not-p or q’, but a degree
of belief in q given p, which it is evidently possible to have without a
definite degree of belief in p, p not being an intellectual problem. And
our conduct is largely determined by these degrees of hypothetical belief.
(Source Stanford Encyclopedia of Philosophy).

For example, take:

p = Dr. J explains to his students that cheating on exams is bad for their
academic growth.

and

q = Dr. J’s students do not cheat on exams.

https://www.repository.cam.ac.uk/bitstream/handle/1810/3484/RamseyText.html?sequence=5
https://plato.stanford.edu/entries/ramsey/#BeliTrut
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Observe that

Not- p = Dr. J does not explain to his students that cheating on exams is
bad for their academic growth.

Recall that in the formal logic:

(p⇒ q) ⇔ ( Not - p or q).

Suppose that Dr. J thinks: “If I do p then q will result.”
If this was an “ordinary” implication it would be equivalent to

“Dr. J does not explain to his students that cheating on exams is bad for
their academic growth” OR “Dr. J’s students do not cheat on exams.”

To paraphrase Ramsey’s words: What Dr. J really thinks is not ‘If p, q will result’, but
rather ‘If p, q might result’ or ‘q would probably result’. Here the degree of probability
is not a degree of Dr. J’s belief in ‘Not-p or q’ but a degree of Dr. J’s belief in q given
p.

Example 1.3.3 Ramsey’s Theorem. �

In On a Problem of Formal Logic, Proceedings of the London Mathematical
Society, 1930 [6]:

Given any r , n, and µ we can find an m0 such that, if m ≥ m0 and the
r- combinations of any Γm are divided in any manner into µ mutually
exclusive classes Ci (i = 1, 2, . . . , µ), then Γm must contain a sub-class ∆n
such that all the r-combinations of members of ∆n belong to the same Ci .

Ramsey Theory. Today Ramsey’s Theorem is one of the cornerstones of Ramsey
theory. Some other results that form the very base of Ramsey theory are Hilbert’s
Theorem (1892), Schur’s Theorem (1916), and van der Waerden’s Theorem (1927).

This clearly contradicts the statement by David Hugh Mellor [5] that

Frank P. Ramsey will be known to readers of the Journal of Graph Theory
as the eponymous discoverer of Ramsey numbers and founder of Ramsey
theory (. . . )

So, when did Ramsey theory become Ramsey theory?
Alexander Soifer [7] offers a detailed account of his own investigation about this

question and concludes:

It seems that The Ramsey Theory has been shaping throughout the 1970s,
and the central engine of this process was new results and two surveys by
Graham and Rothschild. In 1980 the long life of the name was assured
when it appeared as the title of the book Ramsey Theory by Graham,
Rothschild, and Spencer.

Joel Spencer [8] gives us the birthplace of Ramsey theory:

In my opinion, Ramsey theory was born, after a long and healthy embry-
onic stage, at the Combinatorial Conference at Balatonfüred, Hungary,
1973.

Who was the father? In the preface to the first edition of the book [2] the authors,
Graham, Rothschild, and Spencer, attribute Paul Erdős as one

who can rightfully be considered the father of modern Ramsey theory.



CHAPTER 1. INTRODUCTION: PIONEERS AND TRAILBLAZERS 12

Figure 1.3.4 Frank Ramsey: by Simon Roy and Veselin Jungic

Resources.

1. Frank P. Ramsey - Wikipedia

2. Frank P. Ramsey - Biography 1

3. Frank P. Ramsey - Biography 2

4. Frank P. Ramsey - Philosopher

5. Ramsey’s Model - Wikipedia

http://en.wikipedia.org/wiki/Frank_P._Ramsey
http://www-history.mcs.st-and.ac.uk/Biographies/Ramsey.html
https://www.repository.cam.ac.uk/bitstream/handle/1810/3484/RamseyText.html?sequence=5
http://www.informationphilosopher.com/knowledge/philosophers/ramsey/
https://en.wikipedia.org/wiki/Ramsey-E2-80-Cass-Koopmans_model


Chapter 2

Ramsey’s Theorem

2.1 The Pigeonhole Principle
There are three kinds of mathematicians: Those who know how to count
and those who don’t. —Anonymous

Theorem 2.1.1 Pigeonhole Principle: Suppose you have k pigeonholes and n pigeons
to be placed in them. If n > k then at least one pigeonhole contains at least two
pigeons. (See Figure 2.1.2.)
The pigeonhole principle has been attributed to German mathematician Johann Peter
Gustav Lejeune Dirichlet, 1805 — 1859.

a) 8 pigeons in 9 pigeonholes b) 11 pigeons in 9 pigeonholes

Figure 2.1.2 Pigeons and Pigeonholes
Proof. Assume that we have k pigeonholes and n pigeons, with n > k. We view the
notion of placing of n pigeons in k holes as a function

f : {1, . . . , n} → {1, . . . , k}.

The question is if it is possible for f to be an injective function, i.e., a function
with the property that, for all x, y ∈ {1, . . . , n},

x , y ⇒ f (x) , f (y)?

If it is, then there is a one-to-one correspondence between the set {1, . . . , n} and
the set

f ({1, . . . , n}) = {z ∈ {1, . . . , k} : ∃x ∈ {1, . . . , n}, f (x) = z}.

This would mean that:
1. the set f ({1, . . . , n}) is a subset of {1, . . . , k} AND

13
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2. the set f ({1, . . . , n}) has n elements.

This contradicts the assumption that n > k. Therefore f cannot be an injective
function, i.e. there are x, y ∈ {1, . . . , n},

x , y and f (x) = f (y).

�

Example 2.1.3 Show that among any 5 numbers one can find 2 numbers so that their
difference is divisible by 4.
Solution. Say that there are four pigeonholes: 0, 1, 2, and 3. We put the number a in
the pigeonhole i, i ∈ {0, 1, 2, 3}, if i is the remainder when a is divided by 4.

Since there are 5 numbers, at least two of them must be in the same pigeonhole:

a = 4k + i and b = 4n + i.

It follows that
a − b = (4k + i) − (4n + i) = 4(k − n)

is divisible by 4. �

Example 2.1.4 Consider a chess board with two of the diagonally opposite corners
removed. See Figure 2.1.5. Is it possible to cover the board with pieces of domino
whose size is exactly two board squares?
Solution. Observe that there are sixty-two 1× 1 squares on this chess board. Hence,
thirty-one 2 × 1 dominos would be needed to cover the board. Also observe that the
new board contains 32 white squares and that each domino covers one white and one
black square.

Consider 31 dominos as the pigeonholes. Since there are 32 white squares, at least
one domino would have to have two white squares which is impossible. �

Figure 2.1.5Two dominos on a chess boardwith two of the diagonally opposite corners
removed

Example 2.1.6 There are 5 points in a square of side length 2. Prove that at least two
of them are with the distance at most

√
2.

Solution. Divide the given square into for 1 × 1 squares. At least two points must
belong to the same 1 × 1 square. The distance between those two points is not greater
than the length of the diagonal

√
2. �

Example 2.1.7 A grid of 27 points in the plane is given. See Figure 2.1.8. Each point
is coloured red or black. Prove that there exists a monochromatic rectangle, i.e., a
rectangle with all four vertices of the same colour.
Solution. Observe that there are eight different ways to colour three points with two
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colours. Also observe that each coloured column contains two points of the same
colour.

Let the nine columns be the pigeonholes and let the grid be coloured red and black
in any of 227 = 13, 4217, 728 ways. Since there are only eight different ways to colour
a column and since there are nine columns, there must be at least two of the columns
coloured in the same way. �

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Figure 2.1.8 27 points in the plane; 3 rows and 9 columns

Theorem 2.1.9Generalized Pigeonhole Principle: If n pigeons are sitting in k pigeon-
holes, where n > k, then there is at least one pigeonhole with at least d nk e pigeons and
at least one pigeonhole containing not more than b nk c pigeons.
Proof. By definition d nk e is the integer with the property

n
k
≤

⌈n
k

⌉
<

n
k
+ 1.

Hence, if none of the k pigeonholes contains d nk e pigeons, i.e., if the maximum
number of the pigeons per pigeonhole is less than or equal to d nk e − 1 then

the number of pigeons ≤ k ·
(⌈n

k

⌉
− 1

)
< k ·

(( n
k
+ 1

)
− 1

)
= k ·

n
k
= n

which contradicts the assumption that there were n pigeons.
Also, by definition b nk c is the integer with the property

n
k
− 1 <

⌊ n
k

⌋
≤

n
k
.

This means that if each of the k pigeonholes contains more than b nk c pigeons then

the number of pigeons ≥ k ·
( ⌊ n

k

⌋
+ 1

)
> k ·

(( n
k
− 1

)
+ 1

)
= k ·

n
k
= n

which again contradicts the assumption that there were n pigeons. �

Example 2.1.10There are 38 different time periods duringwhich classes at a university
can be scheduled. If there are 677 different classes, how many different rooms will be
needed?
Solution. Here, n = 677 classes (= pigeons) and k = 38 different time slots (=
pigeonholes). By the generalized pigeonhole principle, there is at least one pigeonhole
(time slot) with at least ⌈n

k

⌉
=

⌈
677
38

⌉
=

⌈
17

31
38

⌉
= 18

pigeons.
Observe that 38 · 18 = 684 > 677. Hence 18 classrooms are needed. �
Resources.

1. Pigeonhole principle - Wikipedia

2. A. Bogomolny, Pigeonhole Principle from Interactive Mathematics Miscellany
and Puzzles

3. The Pigeonhole Principle by Gary MacGillivray

http://en.wikipedia.org/wiki/Pigeonhole_principle
http://www.cut-the-knot.org/do_you_know/pigeon.shtml
http://www.cut-the-knot.org/do_you_know/pigeon.shtml
http://www.math.uvic.ca/faculty/gmacgill/guide/pigeonhole.pdf
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4. The Pigeonhole Principle by Olga Radko

2.2 Ramsey’s Theorem: Friends and Strangers
A friend to all is a friend to none. — Aristotle, Greek philosopher, 384
BCE - 322 BCE

Example 2.2.1 Edge 2-Colouring. Use TWO colours, red and blue, for example, to
colour the edges of K6, a complete graph on six vertices. See Figure 2.2.2. Each edge
should be coloured by only one colour. �

Figure 2.2.2 K6 - a complete graph on six vertices

Two Questions:

1. How many different edge 2-colourings of K6 are there?

2. Can you find a monochromatic triangle in your colouring, i.e., three edges
coloured by the same colour that form a triangle?

BIG Question: Does any edge 2-colouring of K6 yield a monochromatic triangle?
BIG Answer: Yes, any edge 2-colouring of K6 yields a monochromatic triangle!

Theorem 2.2.3 Ramsey’s Theorem - Special Case. Any edge 2-colouring of K6 yields
a monochromatic K3.
Proof. Recall the pigeonhole principle: suppose you have k pigeonholes and n pigeons
to be placed in them. If n > k then at least one pigeonhole contains at least two pigeons.
See Figures 2.2.4 and Figures 2.2.5.

�

Fix one vertex.
Colour FIVE adjacent edges.

��

At least three edges
are the same colour!

Figure 2.2.4 Proof: Step 1 and Step 2

http://www.math.ucla.edu/~radko/circles/lib/data/Handout-123-153.pdf
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��

At lease one edge is blue

��

All three edges are red

Figure 2.2.5 Proof: Step 3 — Two cases

�
Question. Is this true for any edge 2-colouring of K5? See Figure 2.2.6.

Figure 2.2.6 Find an edge 2-colouring of K5 that avoids monochromatic triangles

A Dinner Party Problem. Suppose that six people are gathered at a dinner party.
Then there is a group of three people at the party who are either all mutual acquain-
tances or all mutual strangers. See Figure 2.2.7.

Figure 2.2.7 Do we know each other? YES or NO .

Claim 2.2.8 Any edge 2-colouring (blue and red) of K10 yields a red K4 or a blue K3.
Proof. See Figures 2.2.9 and Figure 2.2.10.
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� �

Figure 2.2.9 Fix one vertex: �. There are at least 6 red adjacent edges OR at least 4
blue adjacent edges.

� �

Case 1: At least four blue edges

� �

Case 2: At least six red edges

Figure 2.2.10 Two cases

�

Claim 2.2.11 Any edge 2-colouring (blue and red) of K9 yields a red K4 or a blue K3.
Proof. See Figures 2.2.12 and Figure 2.2.13

� �

Figure 2.2.12 Step 1: If there is a vertex � with at least 6 red adjacent edges OR at
least 4 blue adjacent edges - DONE

�

Figure 2.2.13 Step 2 — EVERY vertex � is adjacent with 5 red edges AND with 3
blue edges

The number of the blue edges altogether is:

(# of vertices ) · #( of incident blue edges )
2

=
9 · 3

2
= 13.5
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Something went wrong! �

Question. Does every blue-red edge colouring of K8 yield a red K4 or a blue K3?
See Figure 2.2.14.

Figure 2.2.14 Find a blue-red edge colouring of K8 with neither red K4 nor blue K3

Theorem 2.2.15 Ramsey’s Theorem - Special Case. Any blue-red edge colouring of
K9 yields a red K4 or a blue K3.

Theorem 2.2.16 Ramsey’s Theorem - Special Case. R(4, 3) = R(3, 4) = 9.

Theorem 2.2.17 Ramsey’s Theorem - Special Case. R(4, 4) ≤ 18.
Proof. Consider a blue-red edge colouring of a K18. See Figures 2.2.18 and Fig-
ure 2.2.19

�

Figure 2.2.18 Step 1: Observe that each vertex � is adjacent to at least 9 edges of the
same colour - say red

�

Case 1- There is a red K3

in the induced K9

�

Case 2: There is a blue K4

in the induced K9

Figure 2.2.19 Step 2 — Two cases

�

Theorem 2.2.20 Actually... R(4, 4) = 18
Resources.

1. Theorem on Friends and Strangers - Wikipedia

2. I. Leader, Friends and Strangers

http://en.wikipedia.org/wiki/Theorem_on_friends_and_strangers
http://plus.maths.org/content/friends-and-strangers
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2.3 Ramsey’s Theorem: Two Colours
To see things in the seed, that is genius. — Laozi, Chinese philosopher,
6th century BC

Recall:

1. R(3, 3) = 6

Figure 2.3.1 K6 - a complete graph on six vertices

2. R(4, 3) = R(3, 4) = 9

Figure 2.3.2 K9 - a complete graph on nine vertices

3. R(4, 4) = 18: Consider a blue-red edge colouring of a K18. See Figures 2.3.3
and Figure 2.2.19.

�

Figure 2.3.3 Step 1: Observe that each vertex � is adjacent to 9 edges of the
same colour - say red

�

There is a red K3

in the induced K9

�

There is a blue K4

in the induced K9

Figure 2.3.4 Step 2 — Two cases
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Jeopardy!

1. There are only two 2-colourings of K16 without a monochromatic K4.

2. There is only one 2-colouring of K17 without a monochromatic K4.

Definition 2.3.5 The Ramsey number R(s, t) is the minimum number n for which any
edge 2-coloring of Kn, a complete graph on n vertices, in red and blue contains a red
Ks or a blue Kt . ♦

Three BIG Questions:

1. Does the Ramsey number R(s, t) exist for any choice of natural numbers s ≥ 2
and t ≥ 2?

2. If R(s, t) exists, can we find the exact value of R(s, t)?

3. If R(s, t) exists and if we cannot find the exact value of R(s, t), what are the best
known bounds for R(s, t)?

What About...

1. R(s, 2)?

2. R(2, t)?

Theorem 2.3.6 Ramsey’s Theorem, Two Colours. For any s, t ∈ N\{1} the Ramsey
number R(s, t) exists and, for s, t ≥ 3,

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

Observation 2.3.7 R(2, 2) = 2, R(3, 2) = R(2, 3) = 3, R(3, 3) = 6, R(4, 2) = R(2, 4) =
4.
Observation 2.3.8 If s, t ∈ N\{1} are such that

s + t = 4 or s + t = 5 or s + t = 6

then R(s, t) exists!

Observation 2.3.9 Since, for any s ≥ 2, R(s, 2) = R(2, s) = s, we are interested only
in the question if R(s, t) exists for s, t ≥ 3.

Observation 2.3.10 (s − 1) + t = s + (t − 1) = (s + t) − 1.

Observation 2.3.11 To prove that R(s, t), s, t ≥ 3, exists it is enough to prove that any
2-colouring, say red and blue, of a complete graph KM where

M = R(s − 1, t) + R(s, t − 1)

yields a monochromatic (red) Ks or a monochromatic (blue) Kt . Why?
Strategy: We prove that any 2-colouring of a complete graph KM where

M = R(s − 1, t) + R(s, t − 1)

yields a red Ks or a blue Kt via induction on the sum s + t.
Proof. (Ramsey’s Theorem, Two Colours.) Let s, t ≥ 3. We use mathematical
induction on the sum s + t to prove that R(s, t) exists.

The base case of induction, s + t = 6, follows from the fact that R(3, 3) = 6.
Suppose that n ≥ 6 is such that for any u, v ≥ 3 such that u + v = n the Ramsey

number R(u, v) exists.
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Let s, t ≥ 3 by such that
s + t = n + 1.

Then, since
(s − 1) + t = s + (t − 1) = n,

by the induction hypothesis R(s − 1, t) and R(s, t − 1) exist. Let

M = R(s − 1, t) + R(s, t − 1)

and we consider a 2-colouring of KM . See Figure 2.3.12.

· · ·

· · ·

· · ·

· · ·

Figure 2.3.12 KM : Each vertex is incident to M −1 = R(s−1, t)+R(s, t −1)−1 edges

Fix a vertex. There are two possibilities. See Figure 2.3.13.

· · ·

Case 1: At least R(s − 1, t) red edges

· · ·

Case 2: At least R(s, t − 1) blue edges

Figure 2.3.13 Pigeonhole principle: Two cases

Suppose that there are at least R(s − 1, t) red edges. See Figure 2.3.14.

· · ·

Case 1.1: There is a red Ks−1

· · ·

Case 1.2: There is a blue Kt

Figure 2.3.14 Recall the definition of R(s − 1, t)

Hence, any red/blue 2-colouring of KM yields a red Ks or a blue Kt . Therefore
R(s, t) exists and

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

�
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Table 2.3.15 Known Ramsey Numbers

s t R(s, t) Who and When
3 3 6 Greenwood and Gleason, 1955
3 4 9 Greenwood and Gleason, 1955
3 5 14 Greenwood and Gleason, 1955
3 6 18 Graver and Yackel, 1968
3 7 23 Kalbfleisch, 1966
3 8 28 McKay and Min, 1992
3 9 36 Grinstead and Roberts, 1982
4 4 18 Greenwood and Gleason, 1955
4 5 25 McKay and Radziszowski, 1995

Table 2.3.16 More Known Facts

s t R(s, t) Who and When
3 10 [40, 42] Exoo 1989, Radziszowski and Kreher 1988
3 11 [46, 51] Radziszowski and Kreher 1988
4 6 [35, 41] Exoo, McKay and Radziszowski 1995
4 7 [49, 61] Exoo 1989, Mackey 1994
5 5 [43, 48] Exoo 1989, McKay and Radziszowski 1995
5 6 [58, 87] Exoo 1993, Walker 1971
6 6 [102, 165] Kalbfleisch 1965, Mackey 1994
6 7 [113, 298] Exoo and Tatarevic 2015, Xu and Xie 2002

In Erdős’ Words.

Suppose aliens invade the earth and threaten to obliterate it in a year’s time
unless human beings can find the Ramsey number for red five and blue
five. We could marshal the world’s best minds and fastest computers,
and within a year we could probably calculate the value. If the aliens
demanded the Ramsey number for red six and blue six, however, we
would have no choice but to launch a preemptive attack.

How Big - Upper Bound.

R(s, t) ≤
(
s + t − 2

t − 1

)
.

Proof. We use mathematical induction to establish that
(s+t−2

t−1
)
is an upper bound for

R(s, t).
Recall that for s ≥ 2 (

s + 2 − 2
2 − 1

)
=

(
s
1

)
= s = R(s, 2)

and that (
3 + 3 − 2

3 − 1

)
=

(
4
2

)
= 6 = R(3, 3).

Hence, if s, t ≥ 2 and s + t ≤ 6 then the inequality

R(s, t) ≤
(
s + t − 2

t − 1

)
holds.

For the inductive step, suppose that n ≥ 6 is such that the inequality holds for all
u, v such that u + v = n and let s, t ∈ N\{1, 2} be such that s + t = n + 1. Observe that
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this implies (s − 1) + t = s + (t − 1) = n and that by our assumption

R(s − 1, t) ≤
(
(s − 1) + t − 2

t − 1

)
=

(
s + t − 3

t − 1

)
and

R(s, t − 1) ≤
(
s + (t − 1) − 2
(t − 1) − 1

)
=

(
s + t − 3

t − 2

)
.

For the next step we need the following two facts:

(∀s, t ∈ N\{1}) R(s, t) ≤ R(s − 1, t) + R(s, t − 1)

and
(∀m, k ∈ N)

(
m
k

)
+

(
m

k − 1

)
=

(
m + 1

k

)
.

It follows that, for s + t = n + 1,

R(s, t) ≤
(
s + t − 3

t − 1

)
+

(
s + t − 3

t − 2

)
=

(
s + t − 2

t − 1

)
which completes the inductive step.

By the Principle of Mathematical Induction it follows that, for all s, t ∈ N\{1}),

R(s, t) ≤
(
s + t − 2

t − 1

)
.

�
How Big - Lower Bound. For s ≥ 3,

R(s, s) > 2s/2.
Proof. Let s ≥ 3 and let n = b2s/2c. Consider a random colouring χ of Kn where
each edge is coloured independently red or blue with probability 1

2 .
We start by choosing any s vertices of Kn and considering the corresponding

complete graph Ks . Recall that Ks has
(s
2
)
edges. This implies, since each edge is

coloured independently red or blue with probability 1
2 ,

Probability all edges blue = (probability a single edge is blue)(number of edges) =
1

2(
s
2)
.
Similarly,

Probability all edges red =
1

2(
s
2)

which implies

Probability all edges blue or all red =
1

2(
s
2)
+

1
2(

s
2)
=

2
2(

s
2)
.

Observe that the number of ways that we can choose s vertices of Kn equals to
(n
s

)
.

This implies that, for s ≥ 3 and n = b2 s
2 c:

Probability χ yields a monochromatic Ks ≤

(
n
s

)
·

2
2(

s
2)
=

n · (n − 1) · . . . · (n − s + 1)
s!

· 21− s2
2 +

s
2 <

ns

s!
· 21− s2

2 +
s
2 ≤

2 s2
2

s!
· 21− s2

2 +
s
2 =

21+ s
2

s!
≤ 1.
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Therefore

Probability χ does not yield a monochromatic Ks > 0

which implies that it is possible to 2-colour Kn and avoid a monochromatic Ks . Hence
R(s, s) > n.

Observe that if s is even then n = 2 s
2 and if s is odd then n < 2 s

2 < n + 1. Since
R(s, s) is an integer, we conclude that, regardless if s is even or odd,

R(s, s) > 2
s
2 .

�
Therefore: For s ≥ 3

2s/2 < R(s, s) ≤
(
2s − 2
s − 1

)
.

Epilogue

Question 2.3.17 Suppose that we decide to use three colours, say blue, red, and green.
Is there a something like R(s, t, u), for s, t, u ∈ N? In other words, is it possible to find
a number n so that if the edges of Kn are coloured by one of the three colours then
there will be always possible to find a blue Ks or a red Kt or a green Ku? �

Definition 2.3.18 Let m ∈ N\{1} and s1, s2, . . . , sm ∈ N\{1} be given. The Ramsey
number R(s1, s2, . . . , sm) is the minimum number n for which any edge m-colouring of
Kn, a complete graph on n vertices, contains a monochromatic Ksi for some i ∈ [1,m].

♦
Three BIG Questions:

1. Does the Ramsey number R(s1, s2, . . . , sm) exist for any choice of natural num-
bers m, s1, s2, . . . , sm ≥ 2?

2. If R(s1, s2, . . . , sm) exists, can we find the exact value of R(s1, s2, . . . , sm)?

3. If R(s1, s2, . . . , sm) exists and ifwe cannot find the exact value of R(s1, s2, . . . , sm),
what are the best known bounds for R(s1, s2, . . . , sm)?

Theorem 2.3.19 Ramsey’s Theorem. For any , s1, s2, . . . , sm ∈ N\{1} the Ramsey
number R(s1, s2, . . . , sm) exists.
Resources.

1. Ramsey’s theorem - Wikipedia

2. Ramsey’s Theory Through Examples Part I by Veselin Jungic

3. Ramsey’s Theory Through Examples Part II by Veselin Jungic

4. On Ramsey Numbers by Evelyn Lamb

5. Ramsey Theory by G.E.W. Taylor, pp 1–8

6. Ramsey Theory by Alan Frieze

7. Cut The Not - Ramsey’s Theorem

8. Cut The Not - Ramsey’s Number R(5, 3)

9. Ramsey Number - Wolfram - MathWorld

10. Applications of Ramsey theory to computer science

http://en.wikipedia.org/wiki/Ramsey's_theorem
http://cms.math.ca/publications/crux/issue/?volume=40&issue=2
http://cms.math.ca/publications/crux/issue/?volume=40&issue=4
https://blogs.scientificamerican.com/roots-of-unity/moores-law-and-ramsey-numbers/
http://web.mat.bham.ac.uk/D.Kuehn/RamseyGreg.pdf
http://www.math.cmu.edu/~af1p/Teaching/Combinatorics/Slides/Ramsey.pdf
http://www.cut-the-knot.org/arithmetic/combinatorics/Ramsey.shtml
http://www.cut-the-knot.org/arithmetic/combinatorics/Ramsey53.shtml
http://mathworld.wolfram.com/RamseyNumber.html
http://www.cs.umd.edu/~gasarch/TOPICS/ramsey/ramsey.html
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2.4 Ramsey’s Theorem, Infinite Case
No finite point has meaning without an infinite reference point. — Jean-
Paul Sartre, French philosopher, playwright, novelist, screenwriter, polit-
ical activist, biographer, and literary critic, 1905 - 1980.

Reminder. For any s, t ∈ N\{1} the Ramsey number R(s, t) exists and, for s, t ≥ 3,

R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

See Figure 2.4.1

Ks

KR(s,t)

There is a red Ks

Kt

KR(s,t)

There is a blue Kt

Figure 2.4.1 KR(s,t): There is a red Ks or there is a blue Kt

Infinite Case - Notation:

• The set of natural numbers: N = {1, 2, 3, . . .}.

• For r ∈ N and any set X we define X (r) to be the set of all subsets on X with
exactly r elements:

X (r) = {A ⊂ X : |A| = r}.

• For k ∈ Nwe define a k-colouring ofN(r) as a function fromN(r) to {1, 2, . . . , k}:

c : N(r) → {1, 2, . . . , k} = [1, k].

• If c is a k-colouring ofN(r) and A ⊂ N such that, for all x, y ∈ A(r), c(x) = c(y),
we say that the set A is monochromatic. See Figure 2.4.2.

A(r)

N(r)

c

c Set of k colours

Figure 2.4.2 A ⊂ N is monochromatic!

We re-state Theorem 2.3.6 in the following form:

Theorem 2.4.3 Whenever N(2) is 2-coloured, there exist arbitrarily large monochro-
matic sets.
Observation 2.4.4An infinite monochromatic set is muchmore than having arbitrarily
large monochromatic sets.

Example 2.4.5 Colour
{1, 2}, {3, 4, 5}, {6, 7, 8, 9}, · · ·
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i.e., colour red all edges within the sets above. Colour all other edges blue.
For example, is the edge between 500500 and 500501 red or blue? What about the

edge between 499499 and 500500?
What about the existence of an infinite red set in this colouring? In other words,

can you find an infinite set A ⊂ N such that the edge between any x, y ∈ A is red? �

Theorem 2.4.6 Ramsey Theorem - Two Colours - Infinite Case: Whenever N(2) is
2-coloured, there exists an infinite monochromatic set.
Proof. We colour elements of N(2) red and blue:

c : N(2) → {•, •},

See Figures 2.4.7– Figure 2.4.10.

a1x

y

N

{a1, x}

{a1, y}

Figure 2.4.7 Step 1: Pick a1 ∈ N. Look at {a1, x} and {a1, y}, x, y ∈ N.

a1a2

y

x

N

{a2, y}

{a2, x}

B1

Figure 2.4.8 Step 2: Say that B1 = {x ∈ N : {a1, x}} is infinite. Pick a2 ∈ B1. Look
at {a2, x} and {a2, y}, x, y ∈ B1.

a1a2

a3

xy

N

B1

B2

Figure 2.4.9 Step 3: Say that B2 = {y ∈ B1 : {a2, y}} is infinite. Pick a3 ∈ B2. Look
at {a3, x} and {a3, y}, x, y ∈ B2.
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a1a2

a3

a4

N

B1

B2 B3

Figure 2.4.10 Step 4: Say that B3 = {x ∈ B2 : {a3, x}} is infinite. Pick a4 ∈ B3. Look
at {a4, x} and {a4, y}, x, y ∈ B3. Note that {a1, a2} {a1, a3} {a1, a4}, {a2, a3} {a2, a4},
and {a3, a4}.

Continue. . .
Summary: We obtain an infinite sequence of natural numbers

a1, a2, a3, . . .

and an infinite sequence of sets

N ⊇ B1 ⊇ B2 ⊇ B3 ⊇ . . .

with the property that, for any i ∈ N

1. Bi is an infinite set

2. ai+1 ∈ Bi

3. c({ai, ai+1}) = c({ai, ai+2}) = c({ai, ai+3}) = . . ..

See Figure 2.4.11.

a1 a2 a3 a4

N

B1

B2

B3 B4
•, •, •

Figure 2.4.11 Conclusion: There must be an infinite number of ai’s that see only red
or an infinite number of ai’s that see only blue.

�

Example 2.4.12 Let a1, a2, a3, . . . be a sequence of mutually distinct real numbers.
Prove that it contains a monotone subsequence. �

Challenge. Whenever N(2) is k-coloured, there exists an infinite monochromatic
set.
Example 2.4.13 Let a1, a2, a3, . . . be a sequence of real numbers. Prove that it contains
either a constant or strictly monotonic subsequence. �

Recall Theorem 2.4.6: Whenever N(r) is 2-coloured, there exists an infinite
monochromatic set.
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Theorem 2.4.14 Ramsey Theorem. Let m, r ∈ N. Whenever N(r) is m-coloured, there
exists an infinite monochromatic set.

Resources.

1. Ramsey’s theorem - Wikipedia

2. Ramsey Theory by I. Leader

3. Ramsey Theory by G.E.W. Taylor, pp 1–10

4. A couple of questions using Ramsey Theorem

5. Applications of the Canonical Ramsey Theorem to Geometry by W. Gasarch
and S. Zbarsky

6. An Application of Ramsey Theorem to Stopping Games by A. Shmaya at al.

2.5 Exercises
Exercise 2.5.1 Essay. Write a short essay (300-400 words) on the life and work of
Frank Ramsey.

Exercise 2.5.2 Essay. Write a short essay (300-400 words) on the life and work of
Paul Erdős.
Exercise 2.5.3 Pigeonhole principle. Prove that if there are 10 pairs of shoes on a
shelf, picking 11 shoes randomly from the shelf will result in picking up at least one
pair of shoes.
Solution. If there are 11 pigeons (shoes) sitting in 10 pigeonholes (one for each pair
of shoes), at least one pigeonhole has 2 pigeons (so a pair of shoes) by the pigeonhole
principle..

Exercise 2.5.4 Pigeonhole principle. Between 1972 and 2012, the 411 Senior Centre
occupied the historic 411 Dunsmuir Street building in Vancouver, British Columbia.
The Centre was an important part of life for generations of elderly Vancouverites.

With this example, we honour the memory of ten members of the Centre: Mirko,
Wanda, John, Hubert, Ursula, Gadafi, two ladies remembered as the Librarian and the
Volunteer, and two gentlemen remembered as the Miner and the Sailor.

The 10 friends formed the “411 Ping Pong Club.”
For the purpose of this example, we assume that each day between January 1, 1997,

and December 31, 1998, four members of the 411 Ping Pong Club got together and
played exactly one game of ping pong doubles.

Prove that in this time period, there was some particular set of four members that
had played at least four games of ping pong doubles together.
Solution. Observe that the number of different groups of four members of the 411
Ping Pong is equal to

r =
(
10
4

)
=

10 · 9 · 8 · 7
1 · 2 · 3 · 4

= 210

and that the number of days between January 1, 1997, and December 31, 1998, is
equal to m = 2 · 365 = 730.

Let r be the number of pigeonholes and let m be the number of pigeons. We need
to prove that at least one of the pigeonholes contains at least four pigeons.

If this is not true, then each of r pigeonholes contains at most three pigeons. This
would imply that m, the number of pigeons, satisfies the inequality

730 = m ≤ 3 · r = 3 · 210 = 630.

http://en.wikipedia.org/wiki/Ramsey's_theorem
https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf
http://web.mat.bham.ac.uk/D.Kuehn/RamseyGreg.pdf
http://math.stackexchange.com/questions/106034/a-couple-of-questions-using-ramsey-theorem
http://arxiv.org/abs/1302.5334
http://arxiv.org/abs/1302.5334
http://ideas.repec.org/p/nwu/cmsems/1323.html
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This is not true, so at least one pigeonhole contains at least four pigeons.
Hence there was some particular set of four members of the 411 Ping Pong Club

that had played at least four games of ping pong doubles together between January 1,
1997, and December 31, 1998.

Exercise 2.5.5 Pigeonhole principle. Show that in a group of n people where n > 2,
there are at least two people who have the same number of friends.
Solution. Let j be the number of people with no friends. If j ≥ 2 then there are at
least two people who have the same number (0) of friends.

If j ∈ {0, 1} then there are n − j > 0 people who have between 1 and n − j − 1
friends.

By the Pigeonhole Principle theremust be at least two people with the same number
of friends..
Exercise 2.5.6 Pigeonhole principle. Colour each point in the xy plane having
integer coefficients Red or Blue. Then some rectangle has all its vertices the same
colour.
Solution. There exists a 3 by 9 grid in the xy-plane. By the result fromExample 2.1.7,
there exists a rectangle with monochromatic vertices in the grid and hence in the whole
xy-plane.

Exercise 2.5.7 Pigeonhole principle. Color each point in the integer grid [1, 257] ×
[1, 4] Red, Green, or Blue.

Show that some rectangle has all its vertices the same colour. In other words, show
that for any function

f : {1, 2, . . . , 257} × {1, 2, 3, 4} → {R,G, B}

there are a, b ∈ {1, 2, . . . , 257}, a < b, and c, d ∈ {1, 2, 3, 4}, c < d, such that

f (a, c) = f (a, d) = f (b, c) = f (b, d).

Solution. Let a colouring

f : {1, 2, . . . , 257} × {1, 2, 3, 4} → {R,G, B}

be given.
For each i ∈ {1, 2, . . . , 257} we define gi , a colouring of the set {1, 2, 3, 4}, by

gi(1) = f (i, 1), gi(2) = f (i, 2), gi(3) = f (i, 3), gi(4) = f (i, 4).

Let P be the the set of all functions g : {1, 2, 3, 4} → {R,G, B}, i.e. let P be the
set of all 3-colouring of the set {1, 2, 3, 4}.

Observe that

• |P | = 43 = 256,

• by the Pigeonhole Principle, for each g ∈ P there are c, d ∈ {1, 2, 3, 4}, c < d,
such that g(c) = g(d).

Let the elements of the set P be pigeonholes and let the elements of the set
{gi : i ∈ {1, 2, . . . , 257}} be pigeons.

By the Pigeonhole Principle, at least one of 256 pigeonholes contains at least two
of 257 pigeons. In other words, there is g ∈ P and a, b ∈ {1, 2, . . . , 257}, a < b, such
that g = ga and g = gb . This means that, for each j ∈ {1, 2, 3, 4},

ga( j) = gb( j).
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Also observe that there are c, d ∈ {1, 2, 3, 4}, c < d, such that

ga(c) = ga(d) = gb(c) = gb(d).

By definition this means that

f (a, c) = f (a, d) = f (b, c) = f (b, d).

Therefore the rectangle with vertices (a, c), (a, d), (b, c), and (b, d) has all its
vertices in the same colour.
Exercise 2.5.8 Pigeonhole principle. There are many beads in a box. There are
two colours of beads, red and blue, divided equally. If someone were to make three
bracelets, using 10 beads each, prove that when the bracelets are stacked on top of
each other, there will be a rectangle with each vertex the same colour.
Solution. Observe that each vertical line of the stacked bracelets has three beads, and
there are two colours, so each vertical line has a dominant colour by the pigeonhole
principle, which means one colour appears a least twice in the vertical line.

Next recall that there are 23 = 8 possible colour different configurations of three
beads stacked vertically.

By the pigeonhole principle there must be at least two (out of ten) vertical lines
with the same colour configurations. In two of those identically configured vertical
lines we chose four beads coloured by the dominant colour that form a rectangle.

Exercise 2.5.9 Pigeonhole principle. If a1, a2, . . . , an+1 ∈ [1, 2n] are distinct, then
there exist i, j, i , j, such that ai divides aj . (This was one of Erdős’ favourite
questions to ask of an ε .)
Solution. Choose {a1, . . . , an+1} from [1, 2n], so that they are distinct. We will show
that there exists i , j such that ai divides aj or aj divides ai .

For each i, we may write ai as follows:

ai = 2bi qi

where qi is an odd number. Consider the numbers {q1, q2, . . . , qn+1}, a set of of n + 1
odd numbers in [1, 2n]. Since there are only n odd numbers in the range [1, n], we
conclude that, for some i , j, qi = qj . Let q = qi = qj . Then

ai = 2bi q and aj = 2b j q.

Since ai , aj , we have that either bi > bj or bj > bi . In the former case, we have
that aj |ai and in the latter case, ai |aj , as required.

Exercise 2.5.10 Pigeonhole principle. Place the numbers 1, 2, . . . , 12 around a circle,
in any order. Then there are three consecutive numbers which sum to at least 19.
Solution. Given the number 1, 2, . . . . , 12 placed around a circle, in some order,
partition the circle into 4 equal sections, each containing 3 consecutive numbers. Let
A1, A2, A3, and A4 be the four sets of consecutive numbers.

We wish to show that
∑
a∈A j

a ≥ 19 for some j ∈ {1, 2, 3, 4}. Let aj =
∑

a∈A j
a for

j = 1, 2, 3, 4. We know that

a1 + a2 + a3 + a4 =

12∑
b=1

b = 78.

By the generalized pigeon-hole principle, we have that some ai for i ∈ {1, 2, 3, 4}
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has the property that

ai ≥
⌊
78
4

⌋
= b19.5c = 19,

as required.

Exercise 2.5.11 Pigeonhole principle. You ask your computer to randomly pick, one
by one, 50 positive integers. This generates a sequence a1, a2, . . . , a50, where the index
i means that the integer ai was the i-th randomly picked positive integer. Observe that,
since the whole process is random, the sequence a1, a2, . . . , a50 may not be ordered.
In other words, for any i ≤ 49, ai+1 may be greater than or equal to or less than ai .

After generating several sequences, you notice that each time you can find at least 8
members of the sequence, say ai1, ai2, . . . , ai8 , that form a nondecreasing subsequence,
i.e. for each j ∈ {1, . . . , 7},

ai j+1 ≥ ai j ,

OR that they form a nonincreasing subsequence, i.e. for each j ∈ {1, . . . , 7},

ai j+1 ≤ ai j .

You wonder if this is just a coincidence or it is true that something like this must
always happen.

What would you do?
Note: Actually, it is true that any sequence of n2 + 1 positive integers, there exists

a nondecreasing or a nonincreasing sequence of length n + 1. Can you prove this
statement?
Solution. Let a1, a2, . . . , a50 be a sequence of positive integers.

For each i ∈ {1, . . . , 50}, let mi be the length of the longest nondeacreasing subse-
quence starting at and including ai . This means that there are integers j1, j2, . . . , jmi ∈

{1, 2, . . . , 50} such that
i = j1 ≤ j2 ≤ · · · ≤ jmi and ai = aj1 ≤ aj2 ≤ · · · ≤ ajmi

but for any s ∈ { jmi + 1, . . . , 50},

jmi
> as .

Since if, for some i, mi ≥ 8, our observation has been supported, let us suppose
that for all i ∈ {1, 2, . . . , 50}, mi ≤ 7.

Next, let the elements of the set {1, 2, 3, 4, 5, 6, 7} be the pigeonholes and let the
elements of the set {mi : i ∈ {1, 2, . . . , 50}} be the pigeons. We put the pigeon mi in
the pigeonhole j if and only if mi = j.

Observe that one of the pigeonholes contains at least eight pigeons. Otherwise,
the number of pigeons would be at most 7 · 7 = 49.

Say that i1, i2, . . . , i8 ∈ {1, 2, . . . , 50} and m ∈ {1, 2, . . . , 7} are such that
i1 ≤ i2 ≤ · · · ≤ i8 and mi1 = mi2 = · · · = mi8 = m.
What can we tell about the subsequence ai1, ai2, . . . , ai8?
Recall that, for each j ∈ {1, 2, . . . , 8}, mi j = m represents the length of the longest

nondecreasing subsequence starting at ai j .
Let j, k ∈ {1, 2, . . . , 8}, j < k. Observe that, under our assumptions, ai j > aik .

Otherwise we will have a nondecreasing sequence starting at ai j and of length m + 1.
(In this scenario, ai j would be followed by an m-term nondicreasing subsequence
determined by aik .)

Therefore
ai1 > ai2 > · · · > ai8

and we have found an 8-term nonincreasing subsequence.
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Exercise 2.5.12 Ramsey’s Theorem. Prove the following statement: Suppose that
nine people are gathered at a dinner party. Then there is a group of four people at the
party who are all mutual acquaintances or there is a group of three people at the party
who are all mutual strangers.
Solution. Observe that the question asks for a proof that R(4, 3) ≤ 9.

See Claim 2.2.11.
Exercise 2.5.13 Ramsey’s Theorem. Show that R(3, 3, 3) ≤ 17. (This means: Every
3-colouring of the edges of K17 gives a monochromatic K3.)
Solution. Consider any 3–edge–colouring c of K17 with colours c1, c2, c3. (This
means that for e, an edge of K17, c(e) denotes the colour of the edge e.) We will show
that there exists a monochromatic K3.

Let x be any vertex in K17. The vertex x is incident to 16 edges, coloured with one
of the three colours. By the generalized pigeonhole principle, we have that there is a
colour ci such that x is incident to 6 edges with colour ci .

Let Y = {y1, . . . , y6} be the six neighbours of x, i.e. the six vertices which are
joined to x by an edge of the colour ci . If any edge joining two vertices in Y is also
coloured with colour ci , then they form a monochromatic K3 with x as its vertex and
we are done.

Otherwise, every edge joining vertices of Y is not coloured with colour ci . Then,
the vertices ofY induce a subgraph of K17 that is a copy of K6, edge–coloured with two
colours. By Ramsey’s theorem every 2-colouring of K6 contains a monochromatic K3,
and the result follows.
Exercise 2.5.14 Ramsey number. Prove that the upper bound for a diagonal Ramsey
number is:

R(s, s) ≤
(
2s − 2
s − 1

)
.

Solution. Recall (Section 2.3) that, for any s, t ≥ 3,
(
s + t − 2

t − 1

)
. Hence, for s = t

R(s, s) ≤
(
2s − 2
s − 1

)
.

Note: For the latest developments (as of December 2020) regarding the upper
bounds for a diagonal Ramsey number see this article byAshwin Sah, an undergraduate
student from MIT: “Diagonal Ramsey via effective quasirandomness”..

Exercise 2.5.15 Ramsey’s Theorem, Infinite Case. Let S be an infinite set of points
in the plane. Show that there is an infinite subset A of S such that either no three points
of A are on a line, or all points of A are on a line.
Solution. Let A = {{x, y, z} : x, y, z ∈ S} = S(3), i.e. let A be the set of all triples
of points from S.

Let f : A → {•,�} be defined in the following way:
f ({x, y, z}) = • ⇔ x, y, z are not colinear
and
f ({x, y, z}) = �⇔ x, y, z are colinear.
By Ramsey’s Theorem, Infinite Case, it follows that there is a monochromatic

infinite subset A ⊂ S.
If

∀{x, y, z} ∈ A(3), f ({x, y, z}) = •

then no three points of A lie on a line.
Let

∀{x, y, z} ∈ A(3), f ({x, y, z}) = �.

https://arxiv.org/abs/2005.09251
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Let x, y ∈ A and let L be the line through x and y. Let z be any other point in A.
Since x, y, z are collinear, z lies on L.

Exercise 2.5.16 Ramsey’s Theorem, Infinite Case. Let

y1, y2, y3, . . .

be a sequence of mutually distinct real numbers. Use Ramsey’s theorem to prove that
the sequence

(1, y1), (2, y2), (3, y3), . . .

of points in R2 contains a subsequence such that the induced function is convex or
concave.
Solution. A function is convex if its epigraph (the set of points on or above the graph
of the function) is a convex set, i.e., any line segment that connect two points in the
epigraph also belongs to the epigraph. A function f is concave if the function − f is
convex. Equivalently, a function f is concave if its hypograph (the set of points on or
below the graph of the function) is a convex set,

Note that any linear function is both convex and concave. For the purpose of this
problem we will take a linear function to be convex.

Let i, j, k ∈ N be such that i < j < k. Since yi , yj , yi , yk , and yj , yk there
are these possibilities:

(i, yi)

( j, yj)

(k, yk)

i j k

(i, yi)

(k, yk)

( j, yj)

i j k

(i, yi)

(k, yk)

( j, yj)

i j k

Figure 2.5.17 The induced function is convex.

(i, yi) ( j, yj)

(k, yk)

i j k

(i, yi)

(k, yk)

( j, yj)

i j k

(i, yi)

(k, yk)

( j, yj)

i j k

Figure 2.5.18 The induced function is concave.

We 2-colour N(3) in the following way:

• Colour {i, j, k}, i < j < k, blue if the points (i, yi), ( j, yj), (k, yk) induce a convex
function.
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• Colour {i, j, k}, i < j < k, red if the points (i, yi), ( j, yj), (k, yk) induce a concave
function.

By Ramsey’s theorem there is an infinite monochromatic set

i1 < i2 < i3 < . . . .

This means that that, for any p, q, r ∈ N, the set {ip, iq, ir } is always of the same
colour.

Say that colour is blue. In particular this means that for any j the function induced
by

(ij, yi j ), (ij+1, yi j+1 ), (ij+2, yi j+2 )

is convex.
Consider two points (x, y) and (x ′, y′), x < x ′, in the epigraph of the function f

induced by the sequence of points

(i1, yi1 ), (i2, yi2 ), (i3, yi3 ), . . . .

If there is j ∈ N such that

ij ≤ x < x ′ ≤ ij+1

then the line segment with the end points (x, y) and (x ′, y′) is on or above the line
segment with the end points (ij, yi j ), (ij+1, yi j+1 ) and thus in the epigraph of the function
f .

Otherwise, there are j and k ≥ 3 such that

ij < x ≤ ij+1 < ij+k−1 ≤ x ′ < ij+k .

Let
zi j+1, zi j+2, . . . , zi j+k−1

be such that, for any l ∈ [1, k − 1], the point (ij+l, zi j+l ) belongs to the line segment
with the end points (x, y) and (x ′, y′). See Figure 2.5.19.

As above, line segments with the end points (ij+l, zi j+l ) and (ij+l+1, zi j+l+1 ), l ∈
[1, k − 2], belong to the epigraph of the function f . It follows that their union, the line
segment with the end points (ij, zi j ) and (ij+k−1, zi j+k−1 ) belongs to the epigraph of the
function f . Finally, if x , ij and/or x ′ , ij+k−1 the segments with end points (x, y)
and (ij, zi j ) and with the endpoints (ij+k−1, zi j+k−1 ) and (x ′, y′) belong to the epigraph
of the function f . This implies that the line segment with the end points (x, y) and
(x ′, y′) belongs to the epigraph of the function f .

Therefore, the function f is convex.
Now we consider the case that for any p, q, r , the set {ip, iq, ir } is always coloured

red. In particular this means that for any p, q, r the function induced by

(ip, yip ), (iq, yiq ), (ir, yir )

is concave. By definition, for any p, q, r the function induced by

(ip,−yip ), (iq,−yiq ), (ir,−yir )

is convex, and as we have already seen, the function g induced by by the sequence of
points

(i1,−yi1 ), (i2,−yi2 ), (i3,−yi3 ), . . .

is convex. It follows that the function −g induced by by the sequence of points

(i1, yi1 ), (i2, yi2 ), (i3, yi3 ), . . .
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is concave.

(x, y)

(xj+1, zj+1)

(xj+1, zj+2)

(x ′, y′)

ij x ij+1 ij+2 x ′ ij+3

Figure 2.5.19 It is convex!

Exercise 2.5.20 Ramsey’s Theorem, Infinite Case. Let

y1, y2, y3, . . .

be a sequence of real numbers. Use Ramsey’s theorem to prove that that the sequence

(1, y1), (2, y2), (3, y3), . . .

of points in R2 contains a subsequence such that the induced function is constant,
convex or concave.
Solution. Let a 3-colouring of N(3) be defined in the following way:

• Colour {i, j, k}, i < j < k, green if yi = yj = yk .

• Colour {i, j, k}, i < j < k, blue if not all of yi, yj, yk are not mutually equal and
if the points (i, yi), ( j, yj), (k, yk) induce a convex function.

• Colour {i, j, k}, i < j < k, red if not all of yi, yj, yk are not mutually equal and
if the points (i, yi), ( j, yj), (k, yk) induce a concave function.

By Ramsey’s theorem there is an infinite monochromatic set:

i1 < i2 < i3 < . . . .

This means that, for any p, q, r , the set {ip, iq, ir } is always of the same colour.
If {{ip, iq, ir }} for any p, q, r then yip = yiq = yir and the induced function is a

constant.
If {{ip, iq, ir }} for any p, q, r then yp, yq, yr are not mutually equal and the points

(ip, yip ), (iq, yiq ), (ir, yir ) induce a convex function. By the previous problem the
function induce by i1 < i2 < i3 < . . . is convex.

If {{ip, iq, ir }} for any p, q, r then yp, yq, yr are not mutually equal and the points
(ip, yip ), (iq, yiq ), (ir, yir ) induce a concave function. By the previous problem the
function induced by i1 < i2 < i3 < . . . is concave.



Chapter 3

van der Waerden’s Theorem

3.1 Bartel van der Waerden
None of the three of my children had any interest in mathematics. —
Bartel Leendert van der Waerden, 1903 — 1996.

Who was Bartel Leendert van der Waerden? Bartel Leendert van der Waerden was a
Dutch mathematician and historian of mathematics and science.
Table 3.1.1 Bartel Leendert van der Waerden made contributions to:

abstract algebra algebraic geometry analysis
combinatorics geometry group theory
history of ancient science history of astronomy history of mathematics
history of modern physics mathematical statistics number theory
probability theory quantum mechanics topology

Birth and Death. Bartel Leendert van der Waerden was born
in Amsterdam, Netherlands, on February 2, 1903 and died
at the age of 92 on January 12, 1996, in Zürich, Switzerland.

Figure 3.1.2
Timeline.

37



CHAPTER 3. VAN DER WAERDEN’S THEOREM 38

Figure 3.1.3 Ramsey, Erdős, van der Waerden

Bartel’s Family. Bartel van der Waerden’s parents were Theodorus van der Waer-
den and Dorothea Adriana Endt. Theo was born in Eindhoven on 21 August 1876
and studied civil engineering at the Delft Technical University. Then, after teaching
mathematics and mechanics in Leeuwarden and Dordrecht, he moved to Amsterdam
in 1902 where again he taught mathematics and mechanics. At university he had
become interested in politics and played a role in politics throughout his life as a left
wing Socialist. He married Dorothea on 28 August 1901. Bartel was the eldest of
their three children, the other two boys being Coenraad (born 29 December 1904) and
Benno (born 2 October 1909). (Source MacTutor).

Van Dalen:

Van der Waerden was an extremely bright student, and he was well aware
of this fact. He made his presence in class known through bright and
sometimes irreverent remarks. Being quick and sharp (much more so
than most of his professors) he could make life miserable for the poor
teachers in front of the blackboard. During the, rather mediocre, lectures
of Van der Waals Jr. he could suddenly, with his characteristic stutter, call
out: “Professor, what kind of nonsense are you writing down now?” He
did not pull such tricks during Brouwer’s lectures, but he was one of the
few who dared to ask questions. [9]

Time of War.

Between 1931-1945 van der Waerden was a professor
ofmathematics at theUniversity of Leipzig, Germany.
During the rise of the Third Reich and through World
War II, van der Waerden remained at Leipzig, and
passed up opportunities to leave Nazi Germany for
Princeton and Utrecht. (van der Waerden’s photo
from Alchetron.) Figure 3.1.4

An extensive description of this part of van der Waerden’s life is published by
Soifer [7].

Facts:

• At the peak of their activity, between the outbreak of World War I in 1914 and
the Nazis’ rise to power in 1933, one-third of all math professors in Germany

https://mathshistory.st-andrews.ac.uk/Biographies/Van_der_Waerden/
https://alchetron.com/Bartel-Leendert-van-der-Waerden
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were Jewish - although Jews constituted less than 1 percent of the total popula-
tion. These mathematicians served on the editorial boards of leading academic
journals and were involved in the founding of the mathematical society.

• Of the 90 Jewish mathematicians chronicled in a recent historic study, three
committed suicide after the Nazis rose to power and two were killed in the
Holocaust. The rest managed to emigrate.

• The situation was particularly dire at Göttingen: Three out of four of the heads
of the university’s mathematics and physics institutes had been Jews. Not long
after the mass expulsion, a reception was held at the university, at which Nazi
education minister Bernhard Rust met the former director of the mathematics
institute. Rust asked him if it had been harmed by the expulsion of the Jews. “It
has not been harmed, sir,” replied the former director. “It has simply ceased to
exist.”

(All from Setting the record straight about Jewish mathematicians in Nazi Ger-
many, by Ofer Aderet, Haaretz, November 25, 2011)

Fact: van der Waerden was not a Nazi.
Question 3.1.5 Why did he stay in Germany during the Nazi era and witnessed
the terrible destruction of private and professional lives of his Jewish friends and
colleagues? �

van der Waerden’s Work - Two Examples.

Example 3.1.6 Burnside Group:
The Burnside group B(m, 3) has exactly 3c elements where

c = m +
m(m − 1)

2
+

m(m − 1)(m − 2)
6

.

(van der Waerden, 1933) �

Vocabulary:
A group is an ordered pair (G, ∗)where G is a set and ∗ : G×G→ G is a function,

called a group operation, with the following properties (we write a ∗ b for ∗(a, b)):

1. Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. Identity element: There exists an element e ∈ G, such that for every element
a ∈ G, e ∗ a = a ∗ e = a. Such an element is unique and it is called the identity
element.

3. Inverse element: For each a ∈ G, there exists an element b ∈ G such that
a ∗ b = b∗ a = e where e is the identity element. We say that a and b are inverse
to each other and write b = a−1 and a = b−1.

A generating set of a group is a subset such that every element of the group can be
expressed as the combination (under the group operation) of finitely many elements
of the subset and their inverses.

The free Burnside group of rank m and exponent n, denoted B(m, n), is a group
with m distinguished generators x1, . . . , xm in which the identity xn = 1 holds for all
elements x, and which is the “largest” group satisfying these requirements.

Example 3.1.7 History of Mathematics:
Yvonne Dold-Samplonius:

His [van derWaerden’s] last book,AHistory of Algebra fromal-Khwārizmı̄
to Emmy Noether, appeared in 1985 and provided a personal account of
the development of algebra. Starting with al-Khwārizmı̄, from whose

https://www.haaretz.com/1.5213290
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treatise the word “algebra” is derived, van der Waerden traced the devel-
opment through the ages to modern times. In his view, modern algebra
began with Galois, who first investigated the structure of fields and groups
and showed that these two structures are closely connected. After Galois,
the efforts of the leading algebraists were mainly directed toward the in-
vestigation of the structure of rings, fields, algebras and the like. van der
Waerden tracked such investigations up through roughly the middle of the
20th century in a discussion that comprises some two-thirds of the book
and that includes some of his own contributions. Only van der Waerden
could have given us this fascinating account. [1]

Figure 3.1.8 Abū Abdallāh Muhammad ibn Mūsā al-Khwārizmı̄, c. 780–c. 850,
Évariste Galois, 1811–1832, and Emmy Noether, 1882–1935. (Source Images of
Mathematicians on Postage Stamps).

�
On a lighter note. . . From J. H. van Lint:

This note allows me to save for posterity a humorous experience of the
late sixties. Van der Waerden, by then retired, had decided to attend
a meeting on combinatorics, a field that he never seriously worked in.
There was a talk by a young mathematician, who was desperately trying
to explain his complete thesis in 20 minutes. I was sitting in the front
row, next to van der Waerden, when the famous conjecture [related to the
minimal permanent among all doubly stochastic matrices] was mentioned
by a speaker and the alleged author inquired what the famous conjecture
stated! The exasperated speaker spent a few seconds of his precious time
to explain and at the end of his talk wandered over to us to read that
badge of the person who had asked this inexcusable question. I knew it
was going to happen and still remember happily how he recoiled. Do not
worry; he had recovered and is now a famous combinatorialist. The lesson
for the reader is the following. If you did not know of the ’conjecture’
then it is comforting to realize that it was 40 years old before van der
Waerden heard that it had this name. [11]

Van der Waerden’s Theorem: For any given positive integers r and k, there is some
number N such that if the set of integers {1, 2, . . . , N} is r-coloured then there there is
a k-term monochromatic arithmetic progression.

Vocabulary:

• For a given r ∈ N, an r-colouring of a set A is any function c : A→ {1, 2, . . . , r}.

• Let c : A→ {1, 2, . . . , r} be an r-colouring of the set A and let B ⊆ A. We say
that the set B is monochromatic if, for any x, y ∈ B

c(x) = c(y).

http://jeff560.tripod.com/stamps.html
http://jeff560.tripod.com/stamps.html
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• We say that a set A is k-term monochromatic arithmetic progression if there are
a, d ∈ R, d , 0, such that

A = {a + jd : j ∈ {0, 1, . . . , k − 1}}

is a monochromatic set.

Resources.

1. Bartel Leendert van der Waerden - Wikipedia

2. Bartel Leendert van der Waerden - Biography

3. A short biography of B.L. van der Waerden

4. Interview with Bartel Leendert van der Waerden

5. Setting the record straight about Jewish mathematicians in Nazi Germany

3.2 van der Waerden’s Theorem: 3–term APs
Say what you know, do what you must, come what may. — Sofia Vasi-
lyevna Kovalevskaya, Russian mathematician, 1850 — 1891

Three Reminders.

1. An l–term arithmetic progression is any set of the form

a, a + d, a + 2d, . . . , a + (l − 1)d

where a, d ∈ R, d , 0.

2. A k-colouring of a set A is any function

c : A→ {1, 2, . . . , k} = [1, k].

3. If c is a k-colouring of the set A and if B ⊆ A is such that for any x, y ∈ B

c(x) = c(y)

then we say that the set B is monochromatic.

Challenge. Colour with 2–colours avoiding monochromatic 3–term arithmetic
progressions:

1 2 3 4 5 6 7 8 9

Figure 3.2.1 Colour each set with 2–colours avoiding monochromatic 3–term arith-
metic progressions

http://en.wikipedia.org/wiki/Bartel_Leendert_van_der_Waerden
http://www-history.mcs.st-andrews.ac.uk/Biographies/Van_der_Waerden.html
http://www.math.rug.nl/~top/vdwbio.pdf
http://www.ams.org/notices/199703/interview.pdf
http://www.haaretz.com/weekend/week-s-end/setting-the-record-straight-about-jewish-mathematicians-in-nazi-germany-1.397629
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Check and Extend: Check if the following 3–colouring of the the set {1, 2, . . . , 17}
avoids monochromatic 4–term arithmetic progressions:

Figure 3.2.2 Can you find a monochromatic 4–term arithmetic progression?

Figure 3.2.3 Can you colour numbers 18 and 19 to avoid a monochromatic 4–term
arithmetic progression?

Question: Do you think that it is possible to extend the colouring above (and
keep it with no monochromatic 4–term arithmetic progression) to the interval [1, 25]?
[1, 50]? [1, 100]? Forever?

Conjecture 3.2.4 Pierre Joseph Henry Baudet, 1891 — 1921: If the sequence of
integers 1, 2, 3, . . . is divided into two classes, at least one of the classes contains an
arithmetic progression of l terms, no matter how large the length l is.

Theorem 3.2.5 van der Waerden’s Theorem: If the sequence of integers 1, 2, 3, . . . is
divided into two classes, at least one of the classes contains an arithmetic progression
of l terms, no matter how large the length l is. [10]

“Beweis einer Baudetschen Vermutung” = “Proof of a Baudet Conjecture”
In van der Waerden’s Words:

Once in 1926, while lunching with Emil Artin and Otto Schreier, I told
them about the conjecture of the Dutch mathematician Baudet: If a
sequence of integers of 1, 2, 3, etc. is divided into two classes, at least one
of the classes contains an arithmetic progression of l terms - a, a + b, a +
2b, . . . , a + (l − 1)b - no matter how large the length l is. After lunch we
went into Artin’s office . . . and tried to find a proof.
. . . One of themain difficulties in the psychology of invention is that most
mathematicians publish their results with condensed proofs, but do not
tell us how they found them. In many cases they do not even remember
their original ideas. Moreover, it is difficult to explain our vague ideas
and tentative attempts in such a way that others can understand them.
. . . All ideas we formed in our minds were at once put into words
and explained by little drawings on the blackboard. We represented the
integers 1, 2, 3, etc. in two classes by means of vertical strokes on two
parallel lines. Whatever one makes explicit and draws is much easier to
remember and to reproduce than mere thoughts.

(For the whole essay “How the proof of Baudet’s conjecture was found” see [7].)

Theorem 3.2.6Van der Waerden’s theorem - any number of colours, length 3: Let k ∈
N. Any k-colouring of positive integers contains a monochromatic 3-term arithmetic
progression. Moreover, there is a natural number N such that any k colouring of
the segment of positive integers [1, N] contains a monochromatic 3-term arithmetic
progression.

Note: The smallest N guaranteed by the theorem is annotated byW(3, k). We have
seen that W(3, 2) = 9.
Proof.

1. Colour-focused arithmetic progressions and spikes: Let c be a finite colouring
of an interval of positive integers [1,m] and l, r ∈ N. We say that the set of
l-term arithmetic progressions A1, A2, . . . , Ar , i.e., for all i ∈ [1, r] we have, for
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some ai, di ∈ N,
Ai = {ai + jdi : j ∈ [0, l − 1]}

is colour-focused at f ∈ N if

(a) Ai ⊆ [1,m] for each i ∈ [1, r].
(b) Each Ai is monochromatic.
(c) If i , j the Ai and Aj are not of the same colour.
(d) a1 + ld1 = a2 + ld2 = · · · = ar + ldr = f .

We call elements of a colour-focused set spikes.

Figure 3.2.7 {1, 4} and {3, 5} are colour-focused at 7.

2. Warm up - k = 2:

(a) Consider a two colouring of [1, 3].

Figure 3.2.8 Any 2-colouring of the set {1, 2, 3} = [1, 3] pro-
duces or a monochromatic 3-term arithmetic progression or one
coloured-focused 2-term arithmetic progression.

(b) Consider the interval of positive integers [1, (2 ·3) · (26+1)] = [1, 390]. Di-
vide this interval into 65 consecutive blocks of length 6. See Figure 3.2.9.

· · · · · ·

[1, 6] [7, 12] [6(i − 1) + 1, 6i] [6 · 26 + 1, 6(26 + 1)]

= [385, 390]

1 2 i 65

Figure 3.2.9 (2 ·3) · (22·3+1) = 65 consecutive blocks of length
2 · 3 = 6.

(c) In how many ways can we 2-colour six consecutive integers?
(d) Let c be a 2-colouring of the interval [1, 2 · 390].
(e) Every 2-colouring of [1, 780] contains a monochromatic 3-term arithmetic

progression! See Figure 3.2.10.

· · · · · ·

Figure 3.2.10 Every 2-colouring of [1, 780] contains a
monochromatic 3-term arithmetic progression!
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(f) Thus W(3, 2) ≤ 780.

3. Next we consider a k-colouring, for any k ≥ 2.

(a) Strategy: We use induction on r to prove the following statement:
For all r ≤ k, there exists a natural number n such that when-
ever [1, n] is k-coloured, either there exists a monochromatic
3-term arithmetic progression or there exist r coloured-focused
arithmetic progressions of length 2.

(b) The base case: Take r = 1 and n = k + 1. See Figure 3.2.11.

· · · · · · · · · · · ·

· · · · · · · · · · · ·

Figure 3.2.11 The base step: If the interval [1, k + 1] is k-
coloured then there is a monochromatic 3-term arithmetic pro-
gression or one coloured-focused 2-term arithmetic progres-
sion.

4. The inductive step: Suppose that for r ∈ [2, k] there is an n such that any k-
colouring of [1, n] contains a monochromatic 3-term arithmetic progression or
r − 1 ‘spikes’, i.e. r − 1 colour focused 2-term arithmetic progressions. See
Figure 3.2.12.

[1, n]

(r − 1) – ‘spikes’

Figure 3.2.12 The inductive step: For 1 < r ≤ k there is an
n such that any k-colouring of [1, n] contains a monochromatic
3-term arithmetic progression or r − 1 ‘spikes’, i.e., r − 1 colour
focused 2-term arithmetic progressions.

(a) How many different k-colourings of the interval [1, 2n] are there?
(b) Consider the interval of positive integers [1, (2 · n) · (k2n + 1)]. Divide this

interval into k2n +1 consecutive blocks of length 2n. Call those blocks Bi ,
1 ≤ i ≤ k2n + 1. See Figure 3.2.13.

· · · · · · · · · · · · · · · · · ·

[1, 2n] [2n + 1, 4n] [2n(i − 1) + 1, 2ni] [2nk2n + 1, 2n(k2n + 1)]

B1 B2 Bi Bk2n+1

Figure 3.2.13 The interval [1, 2n(k2n + 1)] is divided in k2n + 1
blocks of length 2n and k-coloured.
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(c) Let c be a k-colouring of the interval [1, (2 · n) · (k2n + 1)]. Suppose that
c does not contain a monochromatic 3-term arithmetic progression.

(d) Note that by the inductive hypothesis each block Bi contains r − 1 spikes
together with their focus. See Figure 3.2.14.

Bi

(r − 1) – ‘spikes’

Figure 3.2.14 Each block Bi contains r −1 spikes together with
their focus.

(e) There must be two blocks coloured in the same way. See Figures 3.2.15
and Figure 3.2.16.

Bi Bj

(r − 1) – ‘spikes’

Figure 3.2.15 There must be two two blocks coloured in the
same way. Each of them contains r − 1 spikes together with
their focus. r spikes with the same focus emerge.

· · · · · · · · · · · · · · · · · ·

Bi Bj

Figure 3.2.16 A closer look: Two pairs of spikes in Bi and Bj

produce a new pair of spikes.

(f) This completes the induction step:
(g) What happens when r = k? See Figure 3.2.17.

Bi Bj

(k − 1) – ‘spikes’

Figure 3.2.17 What happens when r = k? Do you see how a
monochromatic 3-term arithmetic progression emerges?

�
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BIG Question. How big is W(3, k)?
Resources.

1. van der Waerden’s theorem - Wikipedia

2. Ramsey Theory by I. Leader

3. The ergodic and combinatorial approaches to Szeméredi’s theorem by Terrence
Tao, pp 4–6

4. Van der Waerden’s theorem on arithmetic progressions by R. Swan

5. Commentary by N. G. de Bruijn

3.3 Proof of van der Waerden’s Theorem
Mathematics is really there for you to discover. —RonGraham, American
mathematician, 1935 — 2020

Recall Theorem 3.2.6:
Van der Waerden’s Theorem - any number of colours, length 3: Let k ∈ N.

Any k-colouring of positive integers contains a monochromatic 3-term arithmetic
progression. Moreover, there is a natural number N such that any k colouring of
the segment of positive integers [1, N] contains a monochromatic 3-term arithmetic
progression.

1. Note: The smallest N guaranteed by the theorem is annotated by W(3, k).

2. Proof - the main tool: Colour-focused arithmetic progressions and spikes: Let
c be a finite colouring of an interval of positive integers [1,m] and l, r ∈ N.
We say that the set of l-term arithmetic progressions A1, A2, . . . , Ar , i.e., for all
i ∈ [1, r] we have, for some ai, di ∈ N,

Ai = {ai + jdi : j ∈ [0, l − 1]}

is colour-focused at f ∈ N if

(a) Ai ⊆ [1,m] for each i ∈ [1, r].
(b) Each Ai is monochromatic.
(c) If i , j the Ai and Aj are not of the same colour.
(d) a1 + ld1 = a2 + ld2 = · · · = ar + idr = f .

We call elements of a colour-focused set spikes.

Figure 3.3.1 {1, 4} and {3, 5} are colour-focused at 7.

http://en.wikipedia.org/wiki/Van_der_Waerden's_theorem
https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf
http://arxiv.org/pdf/math/0604456v1.pdf
http://arxiv.org/pdf/math/0604456v1.pdf
http://www.math.uchicago.edu/~swan/expo/vdW.pdf
http://alexandria.tue.nl/repository/freearticles/598841.pdf
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3. Proof - a detail: What happens when r = k?

Bi Bj

(k − 1) – ‘spikes’

Figure 3.3.2 What happens when r = k? Do you see how a monochromatic
3-term arithmetic progression emerges?

Recall that Conjecture 3.2.4was about two colours and amonochromatic arithmetic
progression of any (finite) length:

Baudet’s Conjecture: If the sequence of integers 1, 2, 3, . . . is divided into two
classes, at least one of the classes contains an arithmetic progression of l terms, no
matter how large the length l is.

So what about any finite number of colours and a monochromatic arithmetic
progression of any (finite) length?

Theorem 3.3.3 Van der Waerden’s Theorem - any number of colours, any length:
Let l, k ∈ N. Any k-colouring of positive integers contains a monochromatic l-term
arithmetic progression. Moreover, there is a natural number N such that any k-
colouring of the segment of positive integers [1, N] contains a monochromatic l-term
arithmetic progression.

Definition 3.3.4 The smallest N guaranteed by Theorem 3.3.3 is annotated by W(l, k).
♦

We have seen that W(3, 2) = 9 and that W(3, k) exists for any k ∈ N.
Proof.

1. Strategy: We use induction on l.

2. The base case: We already know that W(l, k) exists if l ≤ 3 and k ∈ N, i.e., that
the claim of the theorem is true for l = 1, 2, 3.

3. The inductive step: Let l ≥ 4 be such that W(l − 1, k) exists for all k.

(a) Claim: For all r ≤ k, there exists a natural number M such that whenever
[1, M] is k-coloured, either there exists a monochromatic l-term arith-
metic progression or there exist r coloured-focused (l −1)-term arithmetic
progressions.
i. The base case: Let r = 1 and let M = 2W(l − 1, k). Any k-colouring

of [1, M] contains a monochromatic l-term arithmetic progression
or at least one coloured-focused (l − 1)-term arithmetic progression
focused at some f ∈ [1, M].

· · · · · · · · · · · · · · · · · ·

[1.W(l − 1, k)]
[1, M] = [1, 2W(l − 1, k)]

Figure 3.3.5 Any k-colouring of the set [1, M] produces or a
monochromatic l-term arithmetic progression or one coloured-
focused (l − 1)-term arithmetic progression.

ii. The inductive step: Suppose that r ∈ [2, k] is such that there is an M
such that any k-colouring of [1, M] contains a monochromatic l-term
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arithmetic progression or r − 1 ‘spikes’, i.e., r − 1 colour focused
(l − 1)-term arithmetic progressions.

The base case:
For any k, W(1, k) = 1, W(2, k) = k + 1, W(3, k) exists

The inductive step: The induction hypothesis is
that l is such that W(l − 1, k) exists for any k

Claim: For all r ≤ k, there exists a natural number M

such that whenever [1, M] is k-coloured, [. . . ]

The base case: r = 1
The inductive step:

You are HERE!

Figure 3.3.6 Where are you?

iii. Observe that any k-colouring of [1, 2M] contains a monochromatic
l-term arithmetic progression or at least r − 1 coloured-focused (l −
1)-term arithmetic progression focused at some f ∈ [1, 2M]. See
Figure 3.3.7.

[1, 2M]

(r − 1) – ‘spikes’

Figure 3.3.7 There are r − 1 spikes.

iv. Consider the interval of positive integers [1, 2M · W(l − 1, k2M )].
(How do we know thatW(l−1, k2M ) exists?) Divide this interval into
W(l−1, k2M ) consecutive blocks Bi , 1 ≤ i ≤ W(l−1, k2M ), of length
2M . See Figure 3.3.8.

· · · · · · · · · · · · · · · · · ·

[1, 2M] [2M + 1, 4M] [2M(i − 1) + 1, 2Mi]

[2M(W(l − 1, k2M ) − 1) + 1, 2MW(l − 1, k2M )]

B1 B2 Bi BW (l−1,k2M )

Figure 3.3.8 The interval [1, 2M ·W(l−1, k2M )] is divided into
W(l − 1, k2M ) consecutive blocks Bi , 1 ≤ i ≤ W(l − 1, k2M ),
of length 2M .

v. Why W(l − 1, k2M )?
vi. Suppose that c is a k-colouring of [1, 2M ·W(l−1, k2M )] that does not

contain a monochromatic l-term arithmetic progression. Each block
Bi is k-coloured in one of the possible k2M ways. See Figure 3.3.9.
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· · · · · · · · · · · · · · · · · ·

· · · · · ·

B1 B2 Bi BW (l−1,k2M )

[1,W(l − 1, k2M )]

Figure 3.3.9 The k-colouring c of [1, 2M · W(l − 1, k2M )]
induces a k2M -colouring of [1,W(l − 1, k2M )].

vii. Any k2M -colouring of [1,W(l − 1, k2M )] contains a monochromatic
(l − 1)-term arithmetic progression. See Figure 3.3.10.

[1,W(l − 1, k2M )]

[1, 2MW(l − 1, k2M )]

(r − 1) – spikes

· · · · · · · · · · · · · · ·
· · · · · ·

· · · · · · · · · · · · · · ·

· · · · · ·

Figure 3.3.10 The k2M -colouring of [1,W(l−1, k2M )] induced
by the colouring c contains a monochromatic (l−1)-term arith-
metic progression. This means that there are l − 1 blocks Bi j ,
1 ≤ j ≤ l − 1, that are coloured by c in the same way and they
are equally spaced between each other.

viii. Every Bi j , 1 ≤ j ≤ l − 1:
• is k-coloured the same way
• contains r − 1 spikes (monochromatic (l − 1)-term arithmetic
progressions) together with their focus. Note that there are no
two spikes of the same colour (by definition!) and that the focus
is of a different colour. (Why?)

ix. The key step! The r th spike appears! See Figures 3.3.11 and Fig-
ure 3.3.12 .

[1, 2MW(l − 1, k2M )]

(r − 1) – spikes

· · · · · · · · · · · · · · ·

· · ·

Bi1 Bi2 Bi3 Bil−1

Figure 3.3.11 The k2M -colouring of [1,W(l−1, k2M )] induced
by the colouring c contains a monochromatic (l−1)-term arith-
metic progression. This means that there are l − 1 blocks Bi j ,
1 ≤ j ≤ l − 1, that are coloured by c in the same way and they
are equally spaced between each other.

Take a closer look:
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· · · · · · · · · · · · · · · · · · · · ·

· · ·

Bi1 Bi2 Bi j BW (l−1,k2M )

Figure 3.3.12 Do you see how r − 1 initial spikes generate r
new spikes?

(b) Where are we?

The base case:

For any k, W(1, k) = 1, W(2, k) = k + 1, W(3, k) exists
The inductive step: The induction hypothesis is
that l is such that W(l − 1, k) exists for any k

Claim: For all r ≤ k, there exists a natural number M

such that whenever [1, M] is k-coloured, [. . . ]
The base case: r = 1

The inductive step:

DONE!

Let r = k

You are HERE!

Figure 3.3.13 Almost there!

(c) Let r = k:

[1, 4MW(l − 1, k2M )]

(k − 1) – spikes

· · · · · · · · · · · · · · ·

· · ·

Bi1 Bi2 Bi3 Bil−1

Which colour?

Figure 3.3.14 Done!

�
Resources.

1. van der Waerden’s theorem - Wikipedia

2. Ramsey Theory by I. Leader pp 4–6

3. The ergodic and combinatorial approaches to Szeméredi’s theorem by Terrence
Tao, pp 4–6

4. Proof of van der Waerden’s Theorem in Nine Figures by A. Blondal and V.
Jungic

5. Van der Waerden’s theorem on arithmetic progressions by R. Swan

6. Commentary by N. G. de Bruijn

http://en.wikipedia.org/wiki/Van_der_Waerden's_theorem
https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf
http://arxiv.org/pdf/math/0604456v1.pdf
http://arxiv.org/pdf/math/0604456v1.pdf
https://link.springer.com/article/10.1007%2Fs40598-018-0090-5
https://link.springer.com/article/10.1007%2Fs40598-018-0090-5
http://www.math.uchicago.edu/~swan/expo/vdW.pdf
http://alexandria.tue.nl/repository/freearticles/598841.pdf
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3.4 van der Waerden’s Theorem: How Far andWhere?
Do not, however, confuse elementary with simple. —Aleksandr Yakovle-
vich Khinchin, Soviet mathematician, 1894 —1959

Figure 3.4.1 Aleksandr Yakovlevich Khinchin

Recall Theorem 3.3.3:
Van der Waerden’s Theorem: Let l, k ∈ N. Any k-colouring of positive integers

contains a monochromatic l-term arithmetic progression. Moreover, there is a natural
number N such that any k-colouring of the segment of positive integers [1, N] contains
a monochromatic l-term arithmetic progression.

Reminder: The smallest N guaranteed by the theorem is annotated by W(l, k). We
have seen that W(3, 2) = 9 and that W(3, k) exists for any k ∈ N.

Two Questions.

1. How big is W(l, k)?

2. If N is k-coloured can we be sure that a certain colour contains an l-term
arithmetic progression?

van der Waerden Numbers. In 1951, Paul Erdős and Richard Rado introduced the
van der Waerden’s function:

W : (l, k) → W(l, k).

The values of van der Waerden’s function are called van der Waerden numbers.
Best known lower bounds to van der Waerden numbers.

Table 3.4.2 Best known lower bounds to van der Waerden numbers.

l = length of AP
k = # of colours 3 4 5 6 7 8 9

2 9 35 178 1132 > 3703 > 7584 > 27113
3 27 > 292 > 1209 > 8886 > 43855 > 238400
4 76 > 1948 > 10437 > 90306 > 387967
5 > 125 > 2254 > 24045 > 246956
6 > 207 > 9778 > 56693 > 600486

Big Question:
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Figure 3.4.3 W(l, k): Can you find me?
Two Lower Bounds: It is a convention to write W(l) instead of W(l, 2). Hence,

• W(3) = 9 and W(4) = 35 (Chvatal, 1970)

• W(5) = 178 (Stevens and Shantaram, 1978)

• W(6) = 1132 (Kouril and Paul, 2008)

If l is a prime then W(l + 1) > l · 2l . (Berlekamp, 1969)

Figure 3.4.4 Elwyn
Ralph Berlekamp
(1940 — 2019)

For any ε > 0,

W(l) ≥
2l

lε

for large enough l. (Szabó, 1990)

Figure 3.4.5 Zoltán
Szabó (1965– )

Upper Bounds.
Prelude:

• f1(x) = DOUBLE(x) = 2x

• f2(x) = EXPONENT(x) = 2x Note that

f (2)1 (1) = f1( f1(1))) = f1(2·1) = 2·2 = 22 = f2(2), f (3)1 (1) = f1(22) = 2·22 = f2(3)

and in general
f2(x) = f (x)1 (1).
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• f3(x) = TOWER (x) = 222·
··
2 }

x = f (x)2 (1)

• f4(x) = WOW (x) = f (x)3 (1)

• fi+1(x) = f (x)i (1)

• fω(x) = ACKERMANN (x) = fx(x)

1 2 3 4 5 6
DOUBLE f1 2 4 6 8 10 12

EXPONENT f2 2 4 8 16 32 64

TOWER f3 2 4 16 65536 265536 ...

WOW f4 2 4 65536 WOW!
...

...

f5 2 4 WOW!
...

...
...

...
...

...
...

...
...

ACKERMANN fω 2 4 16 WOW!
...

...

van der Waerden’s proof implies, for k ≥ 10

W(l) ≤ ACKERMANN (l).

Figure 3.4.6Wilhelm
Friedrich Ackermann
(1896 -1962)

W(l) < WOW (l + 2). (Shelah, 1988)

Figure 3.4.7 Saharon
Shelah (1945– )

W(l) ≤ 22222l+9

. (Gowers, 1998)

Figure 3.4.8 Timothy
Gowers (1963– )
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Ron Graham offered $ 1000 for a proof or disproof of the
bound that W(l) ≤ 2l

2
.

Figure 3.4.9 Ron
Graham (1935–
2020)

Celebrating Erdős:

Figure 3.4.10 Budapest 1999: Ron Graham and Timothy Gowers (Photo by Tom
Brown)

Closer to Home: Given any positive integer r and positive integers k1, k2,. . . , kr ,
there is an integer m such that given any partition {1, 2, . . . ,m} = P1 ∪ P2 ∪ . . . ∪ Pr ,
there is always a class Pj containing an arithmetic progression of length k j . Let us
denote the least m with this property by w(r; k1, k2, . . . , kr ).

Tom Brown, an SFU professor, in 1974 found the following:

w(3; 2, 3, 3) = 14 w(3; 2, 4, 4) = 40 w(4; 2, 2, 3, 3) = 17 w(4; 2, 3, 3, 3) = 40
w(3; 2, 3, 4) = 21 w(3; 2, 4, 5) = 71 w(4; 2, 2, 3, 4) = 25
w(3; 2, 3, 5) = 32 w(4; 2, 2, 3, 5) = 43
w(3; 2, 3, 6) = 40 w(4; 2, 2, 4, 4) = 53

Where to look for monochromatic arithmetic progressions?
Prelude: Let A be a subset of the set of natural numbers N. For any n ∈ N let

A(n) = {1, 2, . . . , n} ∩ A and a(n) = |A(n)|.

We define the upper density d(A) of the set A by

d(A) = lim sup
n→∞

a(n)
n

.

Similarly, d(A), the lower density of A, is defined by

d(A) = lim inf
n→∞

a(n)
n

.
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We say that A has density d(A) if

d(A) = d(A).

Thus
d(A) = lim

n→∞

a(n)
n

.

Two examples:

Example 3.4.11 What is the density of the set of all natural numbers divisible by 3?
�

Example 3.4.12 What is the density of the set of all powers of 2? �

Note: For more examples see: Natural density - Wikipedia

Paul Erdős and Paul Turán conjectured in 1936 that any set
of integers with positive density contains a 3-term arithmetic
progression.

Figure 3.4.13 Paul
Turán (1910-1976)

Any set of integers with positive density contains a 3-term
arithmetic progression. (Roth, 1953)

Figure 3.4.14 Klaus
Friedrich Roth
(1925– 2015)

Any set of integers with positive density contains an arith-
metic progression of any length. (Szemerédi, 1975)

Figure 3.4.15 Endre
Szemerédi (1940 — )

http://en.wikipedia.org/wiki/Natural_density
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Any set of integers with positive density contains an arith-
metic progression of any length. (Furstenberg, 1977)

Figure 3.4.16 Hillel
(Harry) Furstenberg
(1935 — )

For any k ∈ N, there is a k-term progression consisting of
primes. (Green-Tao Theorem, 2004)

Figure 3.4.17 Ben
Green (1977–)

Figure 3.4.18 Ter-
ence Chi-Shen Tao
(1975– )

Resources.

1. For more details see [2], [3], and [7].

2. van der Waerden’s number - Wikipedia

3. van der Waerden number - Wolfram Math World

4. Van der Waerden’s theorem on arithmetic progressions by R. Swan

5. Van der Wearden’s Theorem: Variants and “Applications” by W. Gasarch, C.
Kruskal, and A. Parrish, pp 40–45

6. On the history of van derWaerden’s theorem on arithmetic progressions by Tom
Brown and Peter Jau-Shyong Shiue

7. Mathematicians Catch a Pattern by Figuring Out How to Avoid Its by Kevin
Hartnett

3.5 van der Waerden’s Theorem: A Few Related Ques-
tions
Never measure the height of a mountain until you have reached the top.
Then you will see how low it was. — Dag Hjalmar Agne Carl Ham-
marskjöld, Swedish diplomat, economist, and author, 1905 –1961

http://en.wikipedia.org/wiki/Van_der_Waerden_number
http://mathworld.wolfram.com/vanderWaerdenNumber.html
http://www.math.uchicago.edu/~swan/expo/vdW.pdf
http://www.cs.umd.edu/~gasarch/TOPICS/vdw/GKPbook.pdf
http://www.cs.umd.edu/~gasarch/TOPICS/vdw/GKPbook.pdf
http://people.math.sfu.ca/~vjungic/tbrown/tom-14.pdf
http://people.math.sfu.ca/~vjungic/tbrown/tom-14.pdf
https://www.quantamagazine.org/mathematicians-catch-a-pattern-by-figuring-out-how-to-avoid-it-20191125/
https://www.quantamagazine.org/mathematicians-catch-a-pattern-by-figuring-out-how-to-avoid-it-20191125/
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Recall Theorem 3.3.3:
Van der Waerden’s Theorem: Let l, k ∈ N. Any k-colouring of positive integers

contains a monochromatic l-term arithmetic progression. Moreover, there is a natural
number N such that any k-colouring of the segment of positive integers [1, N] contains
a monochromatic l-term arithmetic progression.

Question 3.5.1 Is it true that any 2-colouring of positive integers contains an infinite
monochromatic arithmetic progression? �

Question 3.5.2 Is it true that any infinite colouring of positive integers contains a
monochromatic l-term arithmetic progression, for l ∈ N? �

Theorem 3.5.3 Canonical form of van der Waerden’s theorem: If f is an arbitrary
function from the positive integers to the positive integers, then there are arbitrarily
large arithmetic progressions P such that the restriction of f to P is either constant or
one-to-one. (See Figures 3.5.4 and Figure 3.5.5.)

c1 c2 c3 cn

· · · · · ·

Figure 3.5.4Divide positive integers in as many parts as you wish. Possibly infinite. . .

a1

a2

a3

al...

A monochromic l-AP

· · · · · · · · · · · · · · ·
a1 a2 a3 al

A rainbow l-AP

Figure 3.5.5 Canonical form: monochromatic or rainbow

Question 3.5.6 Is it true that any finite colouring of positive integers contains a
monochromatic l-term arithmetic progression with an odd common difference? �

Question 3.5.7 Is it true that any finite colouring of positive integers contains a
monochromatic l-term arithmetic progression with an even common difference? �

Theorem 3.5.8
Polynomial van derWaerden Theorem: Let l, r ∈ N and let p
be a polynomial with integer coefficients such that p(0) = 0,
. Then for any r-colouring of Z there are a, d ∈ Z such that
the l-term arithmetic progression

a, a + p(d), a + 2p(d), . . . , a + (l − 1)p(d)

is monochromatic.
Figure 3.5.9 Vitaly
Bergelson (1950–)
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Note: This is a very special case of the Polynomial van der
Waerden Theorem proved by Bergelson and Leibman (Poly-
nomial extensions of van der Waerden’s and Szemeredi’s
theorems, Journal of the American Math Society, Vol. 9,
1996, 725-753.)

Figure 3.5.10
Alexander Leibman

1 2 a a + (l − 1)d2
· · · · · · · · · · · · · · ·

d2 d2

Z

Figure 3.5.11 A monochromatic l-term arithmetic progression with step d2.

2-Large and Large Sets:
We say that a set L ⊆ N is 2-large if any 2-colouring ofN contains long monochro-

matic arithmetic progressions with common difference in L.
We say that a set L ⊆ N is large if any finite colouring of N contains long

monochromatic arithmetic progressions with common difference in L.

Example 3.5.12
1. Is the set of all natural numbers large?

2. Is the set of all odd numbers large?

3. Is the set of all numbers divisible by 3 large?

4. Is the set of all perfect squares large?

5. Is the set {2, 6, 12, , 20, 30, 42, . . .} large?

�

Conjecture 3.5.13

Every 2-large set is large. (T.C. Brown, R.L. Graham, and
B.M. Landman, On the set of common differences in van
der Waerden’s theorem on arithmetic progressions, Canad.
Math. Bull. 42 (1999), 25-36.)

Figure 3.5.14 Bruce
Landman

Example 3.5.15 Colour the 12 points below with three colours so that you use each
colour four times. Can you avoid 3-term rainbow arithmetic progressions? �
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Figure 3.5.16Colour with three colours; use each colour four times; look for a rainbow
3-term arithmetic progression.

Example 3.5.17 What About... Colour the 15 points below with three colours so that
you use each colour five times. Can you avoid 3-term rainbow arithmetic progressions?

�

Figure 3.5.18 Can you avoid rainbow 3-term arithmetic progressions?

Theorem 3.5.19

Every equinumerous 3-colouring of [1, 3n] contains a rain-
bow 3-term arithmetic progression. (Jungić, V., Radoičić,
R., Rainbow Arithmetic Progressions, Integers, Electron. J.
Combin. Number Theory 3 (2003) A18)

Figure 3.5.20 Radoš
Radoičić

Resources.

1. For more details see [2], [3], and [7].

2. Large Sets - Wikipedia

3. On the history of van derWaerden’s theorem on arithmetic progressions by Tom
Brown and Peter Jau-Shyong Shiue

4. Rainbow Ramsey Theory by V. Jungic, J Nesetril, and R. Radoicic

3.6 Exercises
The following exercises are based on the material covered in Chapter 3.

Exercise 3.6.1 Arithmetic Progressions. In this question we interested in counting
arithmetic progressions of the given length k in the given interval [1, n].

1. Let m ∈ N be given and let n = 3m + 1.
Let d be such that for some a ∈ [1, n], the 4-term arithmetic progression
a, a + d, a + 2d, a + 3d is contained in [1, n].

(a) Show that the number of 4-term arithmetic progressions with the step d
contained in [1, n] is equal to s(d) = n − 3d.

(b) Show that the maximum value of d equals to m.
(c) Denote by An(4) the number of 4-term arithmetic progressions contained

in the interval [1, n]. Show that An(4) ≤ n2

2·3 .

http://en.wikipedia.org/wiki/Large_set_(Ramsey_theory)
http://people.math.sfu.ca/~vjungic/tbrown/tom-14.pdf
http://people.math.sfu.ca/~vjungic/tbrown/tom-14.pdf
http://math.colgate.edu/~integers/a9int2003/a9int2003.pdf
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2. Let k ∈ N and let d be such that for some a ∈ [1, n], the k-term arithmetic
progression a, a + d, a + 2d, . . . , a + (k − 1)d is contained in [1, n].

(a) Show that the number of k-term arithmetic progressions with the step d
contained in [1, n] is equal to s(d) = n − (k − 1)d.

(b) Show that the maximum value of d equals to
⌊

n − 1
m − 1

⌋
.

(c) Denote by An(k) the number of k-term arithmetic progressions contained
in the interval [1, n]. Show that An(k) ≤ n2

2·(k−1) .

Solution.

1. (a) Observe that if a, a + d, a + 2d, a + 3d is contained in [1, n], then for any
b ∈ [1, a) the arithmetic progression b, b+d, b+2d, b+3d is also contained
in [1, n]. Hence the question is to find the largest a ∈ [1, n] with the the
property that a, a + d, a + 2d, a + 3d is contained in [1, n]. Clearly, if a is
the largest than a + 3d = n what is the same as a = n − 3d.
It follows that s(d) = n − 3d.

(b) Say that d = m =
n − 1

3
. From

1 + 3 · d = 1 + 3 ·
n − 1

3
= 1 + (n − 1) = n

we conclude that the arithmetic progression 1, 1 + d, 1 + 2d, 1 + 3d is
contained in [1, n].
What about the arithmetic progression 1, 1+(d+1), 1+2(d+1), 1+3(d+1)?
From

1 + 3 · (d + 1) = 1 + 3 ·
(

n − 1
3
+ 1

)
= 1 + (n − 1) + 3 = n + 3 > n

we conclude that this arithmetic progression is not contained in [1, n].

Hence the maximum value of d equals to m =
n − 1

3
.

(c) It follows from (a) and (b) that

An(4) =

n−1
3∑

d=1
s(d) =

n−1
3∑

d=1
(n − 3d) =

n−1
3∑

d=1
n − 3 ·

n−1
3∑

d=1
d

= n ·
n − 1

3
− 3 ·

1
2
·

n − 1
3
·

(
n − 1

3
+ 1

)
=

1
2
·

n − 1
3
·

(
2n − 3 ·

(
n − 1

3
+ 1

))
=

1
2
·

n − 1
3
· (n − 2) <

n2

2 · 3
.

2. (a) Observe that if a, a + d, . . . , a + (k − 1)d is contained in [1, n], then for
any b ∈ [1, a) the arithmetic progression b, b + d, . . . , b + (k − 1)d is also
contained in [1, n]. Hence the question is to find the largest a ∈ [1, n] with
the property that a, a+ d, . . . , a+ (k − 1)d is contained in [1, n]. Clearly, if
a is the largest then a + (k − 1)d = n what is the same as a = n− (k − 1)d.
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(b) Say that d =
⌊

n − 1
k − 1

⌋
.

From
1 + (k − 1) · d = 1 + (k − 1) ·

⌊
n−1
k−1

⌋
≤ 1 + (k − 1) · n−1

k−1 = 1 + (n − 1) = n
we conclude that the arithmetic progression 1, 1 + d, . . . , 1 + (k − 1)d is
contained in [1, n].
What about the arithmetic progression 1, 1+ (d+1), . . . , 1+ (k −1)(d+1)?
From
1+(k−1)·(d+1) = 1+(k−1)·

( ⌊
n−1
k−1

⌋
+ 1

)
> 1+(k−1)· n−1

k−1 = 1+(n−1) = n

we conclude that this arithmetic progression is not contained in [1, n].

Hence the maximum value of d equals to
⌊

n − 1
k − 1

⌋
.

3. It follows from (a) and (b) that

An(k) =
b n−1

k−1 c∑
d=1

s(d) =
b n−1

k−1 c∑
d=1
(n − (k − 1)d) =

b n−1
k−1 c∑
d=1

n − (k − 1) ·
b n−1

k−1 c∑
d=1

d

= n ·
⌊

n − 1
k − 1

⌋
− (k − 1) ·

1
2
·

⌊
n − 1
k − 1

⌋
·

(⌊
n − 1
k − 1

⌋
+ 1

)
=

1
2
·

⌊
n − 1
k − 1

⌋
·

(
2n − (k − 1) ·

(⌊
n − 1
k − 1

⌋
+ 1

))
≤

1
2
·

n − 1
k − 1

·

(
2n − (k − 1) ·

n − 1
k − 1

)
=

1
2
·

n − 1
k − 1

· (n + 1)

=
n2 − 1

2 · (k − 1)
<

n2

2 · (k − 1)
.

Exercise 3.6.2 Arithmetic progressions.
1. Check if the following 4-colouring of the set {1, 2, . . . , 13} avoids monochro-

matic 3-term arithmetic progressions:

R B B G Y R Y G B Y Y B G

2. Add 3 colours to the end to produce a monochromatic 3-term arithmetic pro-
gression.

Solution.

1. • Since there are only two red (R) elements, 1 and 6, there is no a red 3-term
arithmetic progression.

• There are four blue (B) elements, 2, 3, 9 and 12. Clearly this set does not
contain a 3-term arithmetic progression.

• There are three green (G) elements, 4, 8 and 13. These three elements do
not form a 3-term arithmetic progression.

• There are four yellow (Y ) elements, 5, 7, 10 and 11. This set does not
contain a 3-term arithmetic progression.

2. For example,
R B B G Y R Y G B Y Y B G Y B B.



CHAPTER 3. VAN DER WAERDEN’S THEOREM 62

Exercise 3.6.3 van der Waerden’s theorem. Let χ : N → {0, 1} be a 2-colouring
of positive integers and let k ∈ N. Use van der Waerden’s theorem to prove that there
is a χ-monochromatic k-term arithmetic progression with a common difference that
is divisible by 3.
Solution. Let χ : N → {0, 1} be a 2-colouring of positive integers and let k ∈ N.
We define a new colouring χ′ : N→ {0, 1} by

χ′(i) = χ(3i), i ∈ N.

By van der Waerden’s theorem there are a, d ∈ N such that

χ′(a) = χ′(a + d) = χ′(a + 2d) = . . . = χ′(a + (k − 1)d).

By definition of the 2-colouring χ′ this implies that

χ(3a) = χ(3a + 3d) = χ(3a + 2 · 3d) = . . . = χ(3a + (k − 1) · 3d).

Therefore the k-term monochromatic progression

3a, 3a + 3d, 3a + 2 · 3d, . . . , 3a + (k − 1) · 2d

is χ-monochromatic. Note that the common difference of this arithmetic progression
is 3d, a number divisible by 3.

Exercise 3.6.4 Arithmetic progressions. Prove that for any k, l ∈ N there is S(k, l) ∈
N such that any k-colouring of the set of positive integers [1, S(k, l)] contains a
monochromatic arithmetic progression of length l together with its difference.
Solution. We prove the claim bymathematical induction on k, the number of colours.

For k = 1 and any l ∈ N we take S(1, l) = l.
Assume that the claim is true for a fixed k ≥ 1 and any l ∈ N. We fix l ∈ N and

denote by S(k, l) the corresponding number.
Next we define

S(k + 1, l) = w(k + 1, (l − 1)S(k, l) + 1),

where w(∗, ∗) denotes a van der Waerden number.
Let the set of integers [1, S(k+1, l)] be (k+1)-coloured. Then, by van derWaerden’s

Theorem, there is a ((l − 1)S(k, l) + 1)-term monochromatic arithmetic progression

a, a + d, ..., a + (l − 1)S(k, 1)d.

For every x = 1, 2, . . . , S(k, l)d this monochromatic arithmetic progression con-
tains the following l-term arithmetic progression:

a, a + xd, . . . , a + (l − 1)xd.

If for one of the numbers x, the difference xd is coloured by the same colour as
the original progression, we have concluded the proof of our induction step.

Otherwise, the S(k, l)-term arithmetic progression

d, 2d, . . . S(k, l)d

is coloured in only k colours. Now we apply the inductive hypothesis to conclude
that the k-coloured set {d, 2d, . . . S(k, l)d} ⊂ [1, S(k +1, l)] contains a monochromatic
arithmetic progression of length l together with its difference.
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Exercise 3.6.5 Syndetic sets. This question is about so–called syndetic sets.
A syndetic set is any set that can be represented as an increasing sequence of positive

integers with bounded gaps, i.e. as a sequence a1, a2, a3, . . . such that a1 < a2 < · · ·
and such that there is M > 0 for which ai+1 − ai ≤ M , for all i ∈ N.

1. Which of the following two sets is syndetic:

(a) The set of all (positive) powers of 2.
(b) The set of all positive integers that are divisible by 3 or by 5.

2. Prove that if N = A ∪ B, then either A contains arbitrarily long intervals or B is
syndetic.

3. Which of the following two sets contains long arithmetic progressions:

(a) The set of all (positive) powers of 2.
(b) The set of all positive integers that are divisible by 3 or by 5.

4. Prove that every syndetic set contains long arithmetic progressions

5. If the set of positive integers is partitioned into two classes, then at least one of
the following holds:

(a) One class contains arbitrarily long strings of consecutive integers.
(b) Both classes contain arithmetic progressions of arbitrary length.

Solution.

1. (a) The set of all positive powers of 2 may be represented as a sequence
2, 22, . . . , 2i, 2i+1, . . ..
Let M > 0 and let i ∈ N be such that i > log2 M .
Then

2i+1 − 2i = 2i · (2 − 1) = 2i > 2log2 M = M .

Hence there are two consecutive powers of 2 with the gap between them
greater than M . Since M was arbitrarily, it follows that the set of the
powers of 2 is not syndetic.

(b) Thefirst several elements of the sequence representing this set are 3, 5, 6, 9, 10, 12, 15, . . .
We observe that any interval of the form (5k, 5(k + 1)) contains at least
one number divisible by 3. Otherwise, there would an l ∈ N such that
3 = 3(l + 1) − 3l ≥ 4.
Consider two consecutive elements of the sequence above, ai and ai+1. If
both of them are divisible by 3 then ai+1−ai = 3. If, say, ai is not divisible
by 3 then, by the observation above, ai+1 must be divisible by 3. Since
ai+1 − 3 < ai < ai+1 we conclude that 1 ≤ ai+1 − ai ≤ 2.
Therefore, for any i ∈ N,

1 ≤ ai+1 − ai ≤ 3

and this set is syndetic.

2. Suppose that B = {b1 < b2 < · · · } is not syndetic. Then for any M > 0 there
are two consecutive elements of B, say bi and bi+1, such that bi+1 − bi > M .
It follows that the set A contains the interval [bi + 1, bi+1 − 1], an interval of the
length bi+1 − 1 − (bi + 1) + 1 = bi+1 − bi − 1 ≥ M .
Therefore if B is not syndetic then A contains arbitrarily long intervals.
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3. (a) Suppose that 2i, 2j and 2k , with i < j < k, form a 3-term arithmetic
progression.
This would imply that

2j =
2i + 2k

2
⇔ 2j+1 = 2i + 2k ⇔ 2j−i+1 = 1 + 2k−i,

i.e. that a power of 2 is an odd number.
Therefore, the set of the powers of 2 does not contain a 3-term arithmetic
progression.

(b) Let A = {a1, a2, a3, . . .} be the set of all positive integers that are divisible
by 3 or by 5. Recall that, for all i ∈ N, ai+1 − ai ≤ 3.
We partition (colour) the set of all positive integers in the following way:

C0 = A = {a1, a2, a3, . . .}

C1 = {a1 + 1, a2 + 1, a3 + 1, . . .}\C0

C2 = {a1 + 2, a2 + 2, a3 + 2, . . .}\(C0 ∪ C1)

Observe that if a is a positive integer that does not belong to the set A
then its remainder after dividing by 3 must 1 or 2. Hence, a is in C1 or
C2, which proves that this partition is a three colouring of N. By van
der Waerden’s theorem, for any k ∈ N, there is monochromatic k–term
arithmetic progression, a, a + d, . . . , a + (k − 1)d.
Three cases:
i. {a, a + d, . . . , a + (k − 1)d} ⊂ C0 = A
ii. If {a, a+d, . . . , a+(k−1)d} ⊂ C1 then (a−1), (a−1)+d, . . . , (a−1)+
(k −1)d is an arithmetic progression and {(a−1), (a−1)+ d, . . . , (a−
1) + (k − 1)d} ⊂ A.

iii. If {a, a+d, . . . , a+(k−1)d} ⊂ C2 then (a−2), (a−2)+d, . . . , (a−2)+
(k −1)d is an arithmetic progression and {(a−2), (a−2)+ d, . . . , (a−
2) + (k − 1)d} ⊂ A.

Therefore for any k ∈ N, the set A contains a k–term monochromatic
progression.
Solution 2: Notice that the set A contains the k–termarithmetic progression
3, 6, 9, . . . , 3k.

4. Solution 1:
Let A = {a1 < a2 < a3 < · · · } be a syndetic set and let M ∈ N be such that, for
all i ∈ N, ai+1 − ai ≤ M .
We partition (colour) the set of all positive integers in the following way:

C0 = A = {a1, a2, a3, . . .}

C1 = {a1 + 1, a2 + 1, a3 + 1, . . .}\C0

· · ·

Ci = {a1 + i, a2 + i, a3 + i, . . .}\(C0 ∪ C1 ∪ · · · ∪ Ci−1)

· · ·

CM−1 = {a1 + M − 1, a2 + M − 1, a3 + M − 1, . . .}\(C0 ∪ C1 ∪ · · · ∪ CM−2)

Observe that if a is a positive integer that does not belong to the set A then its
remainder after dividing by M belongs to the set {1, 2, . . . , M − 1}. Hence, a
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belongs to Ci for some i ∈ {1, . . . , M − 1}, which proves that this partition is
an M colouring of N. By van der Waerden’s theorem, for any k ∈ N, there is
monochromatic k–term arithmetic progression a, a + d, . . . , a + (k − 1)d.
We distinguish two cases:

(a) {a, a + d, . . . , a + (k − 1)d} ⊂ C0 = A

(b) If for some i ∈ {1, 2, . . . , M − 1}, {a, a + d, . . . , a + (k − 1)d} ⊂ Ci then
(a − i), (a − i) + d, . . . , (a − i) + (k − 1)d is an arithmetic progression and
{(a − i), (a − i) + d, . . . , (a − i) + (k − 1)d} ⊂ A.
Solution 2: (By James Andrews.)
Let S = {a1 < a2 < a3 < . . .} be a syndetic set and let M = maxi∈N |ai+1−
ai |.
We consider the set of intervals I1 = [a1, a1 + M], I2 = [a1 + 1 + M, a1 +
2M], . . . and observe that, for each i ∈ N, the interval Ii contains at least
one element from S.
Next, we M-colour the natural numbers in the following way: c(i) = k if
k is the place in which the first element in S ∩ Ii appears. (So, c(1) = 1.)
Now apply van der Waerden’s theorem to obtain the required property of
syndetic sets.

Therefore for any k ∈ N, the set A contains a k–term monochromatic progres-
sion.

5. Suppose that neither of the classes contains arbitrarily long strings of consecutive
integers. This implies that both classes are syndetic sets and by the previous
exercise, contain arithmetic progressions of arbitrary length.

Exercise 3.6.6 Monochromatic arithmetic progressions. Consider the following
2-colouring of positive integers:

1︸︷︷︸
1

00︸︷︷︸
2

1111︸︷︷︸
4

0 · · · 0︸︷︷︸
8

1 · · · 1︸︷︷︸
16

0 · · · 0︸︷︷︸
32

11 · · ·

1. Check if the claim of van der Waerden’s theorem holds: For any k ∈ N find a
monochromatic k-term arithmetic progression.

2. Show that there is no monochromatic arithmetic progression of infinite length.

Solution.

1. Let k ∈ N and let n ∈ N be such that k < 2n. By definition, the above colouring
contains 2n consecutive integers coloured by 1. Therefore, there is positive
integer a such that all terms of the k-term arithmetic progression

a, a + 1, a + 2, . . . , a + (k − 1)

are coloured by the colour 1.

2. Let
a, a + d, a + 2d, . . . , a + kd, . . .

be an infinite arithmetic progression with the common difference d and let n ∈ N
be such that

d < 2n.

Since d < 2n, any interval of consecutive integers with at least 2n elements
must contain a term from the infinite arithmetic progression with the common
difference d.
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On the other hand, by definition of the colouring we have

11 · · · 1︸  ︷︷  ︸
2n

00 · · · 0︸  ︷︷  ︸
2n+1

or 00 · · · 0︸  ︷︷  ︸
2n

11 · · · 1︸  ︷︷  ︸
2n+1

.

Hence
a, a + d, a + 2d, . . . , a + kd, . . .

is not monochromatic.
Exercise 3.6.7 Monochromatic arithmetic progressions. Consider the following
infinite word on the alphabet {A, B}:

W = A︸︷︷︸
1

BB︸︷︷︸
2

AAAA︸ ︷︷ ︸
4

B · · · B︸ ︷︷ ︸
8

A · · · A︸ ︷︷ ︸
16

B · · · B︸ ︷︷ ︸
32

AA · · ·

1. Show that for any k ∈ N there is a subword of the form X X · · · X︸     ︷︷     ︸
k

, where X = A

or X = B.

2. Show that, in the given word, for any d ∈ N, any sequence of the form

X · · ·︸︷︷︸
d

X · · ·︸︷︷︸
d

X · · ·︸︷︷︸
d

X · · ·︸︷︷︸
d

X · · ·

must terminate at some point. In other words if, for example X = A, after certain
numbers of jumps of the length d, you will have to land at the letter B.

Solution.

1. Let k ∈ N and let n ∈ N be such that k < 2n.
By definition of the wordW we have
AA · · · A︸    ︷︷    ︸

2n

BB · · · B︸    ︷︷    ︸
2n+1

or BB · · · B︸    ︷︷    ︸
2n

AA · · · A︸    ︷︷    ︸
2n+1

.

Therefore, there is the subword AA · · · A︸    ︷︷    ︸
k

and a subword BB · · · B︸    ︷︷    ︸
k

.

2. Let d ∈ N and let

S = A · · ·︸︷︷︸
d

A · · ·︸︷︷︸
d

A · · ·︸︷︷︸
d

A · · ·︸︷︷︸
d

A · · ·

be a sequence of equally spaced letters A in the given infinite wordW.
Let n ∈ N be such that d < 2n. If S is an infinite sequence, then any subword
ofW of length at least 2n would contain a letter A that belongs to S.
On the other hand, by (1) we know that there is a subword BB · · · B︸    ︷︷    ︸

2n

, i.e. a

subword of length 2n that does not contain the letter A.
Therefore S must be finite.

Exercise 3.6.8 van der Waerden numbers. Prove that w(3; 2, 3, 3) ≤ 18.
Solution. Let c be a 3-colouring of the interval [1, 18]. Say that the first colour is
red, the second colour is blue, and the third colour is green. If there are at least two
elements coloured red, then there is a red 2-term arithmetic progression.
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Suppose that there is only one element i ∈ [1, 18] coloured red. If i ∈ [1, 9]
then [i + 1, 18] contains at least nine consecutive integers coloured blue or green.
Since w(3, 3) = 9 there is monochromatic 3-term arithmetic progression contained in
[i + 1, 18]. If i ∈ [10, 18] then [1, i − 1] contains at least nine consecutive integers
coloured blue or green. Since w(3, 3) = 9 there is monochromatic 3-term arithmetic
progression contained in [1, i − 1].

If there is no element coloured red, then the interval [1, 18] is 2-coloured. Since
w(3, 3) = 9 there is monochromatic 3-term arithmetic progression contained in [1, 18].

Therefore any 3-colouring of [1, 18] contains a 2-term arithmetic progression in
the first colour or a 3-term arithmetic progression in the second or third colour.

In 1974 Tom Brown proved that w(3; 2, 3, 3) = 14.

Exercise 3.6.9 van der Waerden numbers. Show that if k ≡ ±1(mod 6) then
w(k, 2, 2; 3) = 3k.
Solution. Suppose that k ≡ ±1(mod 6). The claim is obviously true for k = 1.
Hence suppose that k ≥ 5. Let l ≥ 1 be such that k = 6l + 1 or k = 6l − 1. Observe
that k is an odd number.

To show that w(k, 2, 2; 3) = 3k, it is sufficient to prove that w(k, 2, 2; 3) ≤ 3k and
w(k, 2, 2; 3) ≥ 3k.

To prove that w(k, 2, 2; 3) ≤ 3k we need to show that any 3-colouring (say, red,
blue, and green) of the interval [1, 3k] will yield a red k-term arithmetic progression
or a blue 2-term arithmetic progression or a green 2-term arithmetic progression.

Clearly, any colouring of [1, 3k] that contains two blue or two green elements will
yield a blue 2-term arithmetic progression or a green 2-term arithmetic progression.

Hence we consider a three colouring c : [1, 3k] → {red, blue, green} that colours
at most one element of [1, 3k] blue and at most one element green.

Observe that if one of the colours blue or green is not used then there is a sequence
of at least k consecutive red elements. Clearly, in this case there is a red k-term
arithmetic progression.

Hence assume that c : [1, 3k] → {red, blue, green} is a colouring such that there
is a unique x ∈ [1, 3k] such that c(x) = blue and a unique y ∈ [1, 3k] such that
c(y) = green.

Suppose that y < x.
If y > k or x < 2k then there is a sequence of at least k consecutive red elements

between [1, y−1] or between [x+1, 3k], i.e. there is a red k-term arithmetic progression.
Suppose that 1 ≤ y ≤ k < 2k ≤ x ≤ 3k. Observe that the number of elements

between x and y is given by d = (x − 1) − (y + 1) + 1 = x − y − 1.
Note that if y < k or x > 2k then d ≥ k, which means that there is a sequence of

at least k consecutive red elements between y and x.
Hence the only remaining case is if y = k and x = 2k. Observe that, since

k ≡ ±1(mod 6), neither k nor 2k is divisible by 3.This implies that all elements of the
k-term arithmetic progression

3, 3 + 3, . . . , 3 + 3i, . . . , 3 + 3(k − 1) = 3k

are coloured red.
Therefore w(k, 2, 2; 3) ≤ 3k .
To prove w(k, 2, 2; 3) ≥ 3k, we must show that there is a 3-colouring of [1, 3k − 1]

which does not produce a red k-term arithmetic progression or a blue 2-term arithmetic
progression or a green 2-term arithmetic progression.

Let the colouring c : [1, 3k − 1] → {red, blue, green} be defined in the following
way:

c(k) = green, c(2k) = blue, and c(x) = red, otherwise.

Let
a, a + d, . . . , a + id, . . . , a + (k − 1)d
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be a k-term arithmetic progression contained in [1, 3k − 1].
Observe that d ∈ {1, 2, 3}. Otherwise a + (k − 1)d ≥ 1 + 4(k − 1) = 4k − 3 which

is greater than 3k − 1 for k ≥ 5.
Since any set of k consecutive integers in [1, 3k − 1] must contain the integer k or

the integer 2k we conclude that an arithmetic progression contained in [1, 3k] with the
step d = 1 cannot be c-monochromatic.

If the arithmetic progression a, a + 2, . . . , a + 2i, . . . , a + 2(k − 1) is contained in
[1, 3k − 1] then a + 2(k − 1) ≤ 3k − 1 implies that a ≤ k + 1.

If a is an odd number then, for some i ∈ {0, 1, . . . , k − 1}, a + 2i = k and the
corresponding k-term arithmetic progression is not c-monochromatic.

If a is an even number then, for some i ∈ {0, 1, . . . , k − 1}, a + 2i = 2k and the
corresponding k-term arithmetic progression is not c-monochromatic.

If the arithmetic progression a, a + 3, . . . , a + 2i, . . . , a + 3(k − 1) is contained in
[1, 3k − 1] then a + 3(k − 1) ≤ 3k − 1 implies that a ≤ 2.

If a = 1 and k = 6l+1 then 1+3 · (2l) = k and the corresponding k-term arithmetic
progression is not c-monochromatic.

If a = 1 and k = 6l − 1 then 1 + 3 · (4l − 1) = 12l − 2 = 2(6l − 1) = 2k and the
corresponding k-term arithmetic progression is not c-monochromatic.

If a = 2 and k = 6l + 1 then 2 + 3 · (4l) = 12l + 2 = 2 · (6l + 1) = 2k and the
corresponding k-term arithmetic progression is not c-monochromatic.

If a = 2 and k = 6l − 1 then 1+ 3 · (2l) = 6l + 1 = k and the corresponding k-term
arithmetic progression is not c-monochromatic.

Hence, the colouring c of [1, 3k − 1] does not produce a red k-term arithmetic
progression or a blue 2-term arithmetic progression or a green 2-term arithmetic
progression which proves that w(k, 2, 2; 3) ≥ 3k.

Therefore, k = ±1(mod 6) implies w(k, 2, 2; 3) = 3k.

Exercise 3.6.10 Arithmetic progressions. Prove that for any k, l ∈ N there is
S(k, l) ∈ N such that any k-colouring of the set of positive integers [1, S(k, l)] contains
a monochromatic arithmetic progression of length l together with its difference.
Solution. We prove the claim bymathematical induction on k, the number of colours.

For k = 1 and any l ∈ N we take S(1, l) = l.
Assume that the claim is true for a fixed k ≥ 1 and any l ∈ N. We fix l ∈ N and

denote by S(k, l) the corresponding number.
Next we define

S(k + 1, l) = w(k + 1, (l − 1)S(k, l) + 1),

where w(∗, ∗) denotes a van der Waerden number.
Let the set of integers [1, S(k+1, l)] be (k+1)-coloured. Then, by van derWaerden’s

Theorem, there is a ((l − 1)S(k, l) + 1)-term monochromatic arithmetic progression

a, a + d, ..., a + (l − 1)S(k, 1)d.

For every x = 1, 2, . . . , S(k, l)d this monochromatic arithmetic progression con-
tains the following l-term arithmetic progression:

a, a + xd, . . . , a + (l − 1)xd.

If for one of the numbers x, the difference xd is coloured by the same colour as
the original progression, we have concluded the proof of our induction step.

Otherwise, the S(k, l)-term arithmetic progression

d, 2d, . . . S(k, l)d

is coloured in only k colours. Now we apply the inductive hypothesis to conclude
that the k-coloured set {d, 2d, . . . S(k, l)d} ⊂ [1, S(k +1, l)] contains a monochromatic
arithmetic progression of length l together with its difference.
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Exercise 3.6.11 Density. What is the density of the set of all powers of 3?
Solution. Consider the set of all powers of 3, i.e. consider the set A = {1, 3, 9, 27, . . .}.

Let n ∈ N and let k ∈ N ∪ {0} be such that 3k ≤ n < 3k+1. This is the same as

k ≤ log3(n) < k + 1.

It follows that
a(n) = |A ∩ [1, n]| ≤ 1 + log3(n).

By definition,

Density of A = lim
n→∞

a(n)
n
≤ lim

n→∞

1 + log3(n)
n

= 0.

.
Exercise 3.6.12 Szemerédi’s theorem. Szemerédi’s theorem claims that any set of
integers with positive upper density contains an arithmetic progression of any length.

Let A = {ai : i ∈ N} be a set such that

0 < ai+1 − ai ≤ 2, for all i ∈ N.

1. Show that for any even n ∈ N

|A ∩ [1, n]|
n

≥
1
2
.

2. Conclude that the upper density of A is at least 1/2.

3. Use Szemerédi’s theorem to conclude that A contains arithmetic progressions
of any finite length.

Solution.

1. Note that
0 < ai+1 − ai ≤ 2, for all i ∈ N

implies that for ai and ai+1 one of the following must be true:

• ai+1 − ai = 1 which means that ai and ai+1 are consecutive integers
• ai+1 − ai = 2 which means that ai and ai+1 are consecutive even integers
or consecutive odd integers.

Therefore, for any k ∈ N

A ∩ {2k − 1, 2k} , ∅.

Hence for a chosen even integer n, the set A intersects each of n/2 sets

{1, 2}, {3, 4}, . . . , {2n − 1, n}

which implies that
|A ∩ [1, n]| ≥

n
2
.

Therefore for any even n ∈ N

|A ∩ [1, n]|
n

≥
1
2
.
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2. From (a) it follows that there is an infinite sequence {xi = |A∩[1,2i] |
2i }i∈N such

that
1
2
≤ xi ≤ 1 for all i ∈ N.

The limit of any convergent subsequence of this sequence is greater than 1
2 and

hence
d(A) = lim sup

|A ∩ [1, n]|
n

≥
1
2
.

Therefore the upper density of A is at least 1/2.

3. Since the upper density of the set A is positive, by Szemerédi’s theorem the set
A contains arithmetic progressions of any finite length.

Exercise 3.6.13 Powers of 2. Show that the set

A = {2n : n ∈ N}

does not contain any 3-term arithmetic progressions.
Solution. Suppose that i, j, k ∈ N, i < j < k, are such that 2i , 2j , 2k form a 3-term
arithmetic progression. This means that

2j − 2i = 2k − 2j .

It follows that
2i(2j−i − 1) = 2j(2k−j − 1)

and
2j−i − 1 = 2j−i(2k−j − 1).

But this is impossible since 2j−i − 1 is an odd integer and 2j−1(2k−j − 1) is an even
integer.

Therefore he set
A = {2n : n ∈ N}

does not contain any 3-term arithmetic progressions.

Exercise 3.6.14 Two examples. Give an example of:
1. An infinite colouring of positive integers that does not contain a monochromatic

2-term arithmetic progression.

2. A 3-colouring that avoids 2-term arithmetic progressions with a common dif-
ference that is equal 1 (mod 3).

Solution.

1. Colour every integer differently.

2. Consider the colouring

c(i) =


red if i ≡ 0 (mod 3)
blue if i ≡ 1 (mod 3)
green if i ≡ 2 (mod 3).

It follows that if a and b are of the same colour then a ≡ b (mod 3). Therefore
the colouring c avoids 2-term arithmetic progressions with a common difference
that is equal 1 (mod 3).



Chapter 4

Schur’sTheoremandRado’sThe-
orem

4.1 Issai Schur
To live without hope is to cease to live. — Fyodor Mikhailovich Dos-
toyevsky, Russian novelist, 1821 — 1881.

Who was Issai Schur? Amathematician who was born in the Russian Empire, worked
in Germany for most of his life, and died in Palestine on his 66th birthday.

Table 4.1.1 List of mathematical objects and techniques named after Issai Schur:

Frobenius-Schur indicator Herz-Schur multiplier Jordan-Schur theorem
Lehmer-Schur algorithm Schur algebras Schur complement
Schur complement method Schur decomposition Schur function
Schur index Schur indicator Schur multiplier
Schur orthogonality relations Schur polynomial Schur product
Schur’s inequality Schur-convex function Schur-Horn theorem
Schur-Weyl duality Schur-Zassenhaus theorem Schur test
Schur’s lemma Schur’s lower bound Schur’s property
Schur’s theorems in Ramsey theory, differential geometry, linear algebra, analysis

Birth and Death. Issai Schur was born on January 10, 1875,
in Mogilev, Russian Empire (now Belarus), and died at the
age of 66 on January 10, 1941 in Tel Aviv, Palestine (now
Israel).

Figure 4.1.2 Issai
Schur

World in 1875 World in 1941

71
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• Electric dental drill is patented

• The first recorded hockey game (Montréal)

• Georges Bizet’s opera “Carmen” premieres

• The Supreme Court of Canada is created

• Alexander Graham Bell makes the first voice
transmission

• Tanaka Seisakusho (now Toshiba) company
established

• The first woman licensed to practise medicine
in Canada

• The Metre Convention Treaty signed

• Louis Riel is granted amnesty

Figure 4.1.3 War!

Issai’s Family. Issai Schur was born in the family of a merchant Moses Schur and
Golde Landau. In Berlin, on September 2, 1906, he married Regina Malka Frumkin,
a medical doctor. They had two children, George, born in 1907, and Hilde, born in
1911.

Walter Ledermann about Issai Schur:

I attended many courses. But Schur’s lectures were for me the most
impressive and inspiring ones. It seemed to me that they were perfect
both in content and in form. When I was in Berlin the elementary cycle
consisted of Determinants (for a whole semester!), Algebra, Number
Theory, Theory of Invariants. The more advanced cycle consisted of
Galois Theory, Analytic Number Theory I and II, Ideals. Sometimes
additional courses were offered by Schur; for example, the Theory of
Matrices, Group Representations, Elliptic Functions. Schur was a superb
lecturer. He spoke slowly and clearly and his writing on the blackboard
was very legible. All his courses were carefully structured into chapters
and sections, each bearing a number and an appropriate heading. His
lectures were meticulously prepared. It is known that he had very full
lecture notes, written on loose sheets which he carried in the breast pocket
of his jacket. But I can remember only one occasion when he consulted
his notes: during one of the lectures on invariants he wrote down a list of
invariants of a certain quintic polynomial. He furtively pulled out a sheet
of paper from his pocket in order to check whether he had remembered
the rather complicated formulae correctly (he had!). He never got stuck in
his lecture or failed to remember what he had said in the previous lecture.
[4]

On 7 April 1933 the Nazis passed a law which ordered the retirement of civil servants
who were not of Aryan descent. Schur was ‘retired’.

When Schur’s lectures were cancelled there was an outcry among the
students and professors, for Schur was respected and very well liked.
[Schiffer]

Many years later, Menahem Max Schiffer recalled:

Schur told me [in Palestine] that the only person at the Mathematical
Institute in Berlin who was kind to him was Grunsky, then a young
lecturer. Long after the war, I talked to Grunsky about that remark and
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he literally started to cry: “You know what I did? I sent him a postcard to
congratulate him on his sixtieth birthday. I admired him so much and was
very respectful in that card. How lonely he must have been to remember
such a small thing.” (Source MacTutor.)

Schur left Germany for Palestine in 1939, broken in mind and body.

“This volume is dedicated to the memory of Is-
sai Schur. It opens with some biographical rem-
iniscences of the famous school he established in
Berlin, his brutal dismissal by the Nazi regime and
his tragic end in Palestine. This is followed by an
extensive review of the extraordinary impact of his
lesser known analytic work. Finally, leading math-
ematicians in the representation theory of the sym-
metric groups, of semisimple and affine Lie algebras
and of Chevalley groups have contributed original
and outstanding articles. These concern many areas
inspired by Schur’s work as well as more recent de-
velopments involving crystal and canonical bases,
Hecke algebras, and the geometric approach linking
orbits to representations.”

Figure 4.1.4 Studies in Mem-
ory of Issai Schur

Schur’s Work - Three Examples.

Example 4.1.5 Schur complement: In linear algebra and the theory of matrices, the
Schur complement of a matrix block (i.e., a submatrix within a larger matrix) is defined
as follows. Suppose A, B, C, D are respectively p× p, p× q, q × p and q × q matrices,
and D is invertible. Let

M =
[
A B
C D

]
so that M is a (p + q) × (p + q) matrix. Then the Schur complement of the block D of
the matrix M is the p × p matrix

A − BD−1C.

It is named after Issai Schur who used it to prove Schur’s lemma.

Figure 4.1.6 Source Spiked Math Comics.

Applications: in solving linear equations, probability theory, and statistics. �

Example 4.1.7 Schur’s inequality. For all x, y, z ≥ 0 and t > 0,

xt (x − y)(x − z) + yt (y − z)(y − x) + zt (z − x)(z − y) ≥ 0

with equality if and only if x = y = z or two of them are equal and the other is zero.
When t is an even positive integer, the inequality holds for all real numbers x, y, and
z. �

https://mathshistory.st-andrews.ac.uk/Biographies/Schur/
http://spikedmath.com/366.html
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Proof. Since the inequality is symmetric in x, y, z we take that x ≥ y ≥ z ≥ 0.
Use the fact that

xt (x − y)(x − z) + yt (y − z)(y − x) + zt (z − x)(z − y) =

= (x − y)[xt (x − z) − yt (y − z)] + zt (x − z)(y − z)

to finish the proof. �

Example 4.1.8 Schur product. The Schur product (also known as the Hadamard
product) of two matrices of the same dimensions, A = (ai j) and B = (bi j) is the matrix
C = (ci j) such that

ci j = ai j · bi j .

The Schur product ◦ is commutative, associative and distributive over addition. That
is,

A ◦ B = B ◦ A,

A ◦ (B ◦ C) = (A ◦ B) ◦ C,

A ◦ (B + C) = A ◦ B + A ◦ C.

Question: What is the identity matrix under the Schur product? Applications: The
Schur product appears in algorithms such as JPEG. For more applications see Schur
product - Wikipedia �

Schur and Ramsey Theory.
Schur’s Theorem: If the set of positive integers N is finitely coloured then there

exist x, y, z having the same colour such that

x + y = z.

Schur and van der Waerden’s Theorem: A. Soifer in his “The mathematical
coloring book” (pages 331-332) proved that Schur conjectured the statement that we
know as van der Waerden’s theorem. Schur called it “a helpful lemma.”

Schur and Rado’s Theorem: Schur’s Ph.D. student Richard Rado in his doctoral
thesis “Studien zur Kombinatorik” (1933) completely solved the following problem:

Let Ax = 0 be a system of linear equations, where A is a matrix with integer
entries. Under which conditions for every r-coloring of the set of positive integers N
the system has a monochromatic solution?

Resources.

1. For mored details see [7], pp. 321-334.

2. Issai Schur - Wikipedia

3. Issai Schur - Biography by J J O’Connor and E F Robertson

4. Interview with Walter Ledermann

5. Issai Schur and his algebraic school in Berlin by Reinhard Siegmund-Schultze

6. Issai Schur - Mathematics Genealogy Project

4.2 Schur’s Theorem
The hardest thing to see is what is in front of your eyes. — Johann
Wolfgang von Goethe, German writer and politician, 1749 — 1832.

http://en.wikipedia.org/wiki/Schur_product
http://en.wikipedia.org/wiki/Schur_product
http://en.wikipedia.org/wiki/Issai_Schur
http://www-history.mcs.st-and.ac.uk/Biographies/Schur.html
http://www-history.mcs.st-and.ac.uk/HistTopics/Ledermann_interview.html#s69
http://www.math.uni-bielefeld.de/birep/meetings/wpf2013/wpf2013_siegmund_schultze.pdf
http://genealogy.math.ndsu.nodak.edu/id.php?id=9179&fChrono=1
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Reminder: Schur’s Theorem. If the set of positive integers N is finitely coloured then
there exist x, y, z having the same colour such that

x + y = z.

c1 c2 c3 cr

· · · · · ·

N

An r-colouring of N. . .

y

x + y

x

ck

. . . a monochromatic {x, y, x + y}

Figure 4.2.1 Schur’s Theorem: If the set of positive integers N is finitely coloured
then there exist x, y, z having the same colour such that x + y = z.

Definition 4.2.2 A triple x, y, z that satisfies x + y = z is called a Schur triple. ♦

Reminder: The Ramsey number R(s, t) is the minimum number n for which any
edge 2-coloring of Kn, a complete graph on n vertices, in red and blue contains a red
Ks or a blue Kt .

Recall Definition 2.3.18:
The Ramsey number R(s1, s2, . . . , sr ) is the minimum number n for which any

edge r-colouring of Kn, a complete graph on n vertices, contains an i-monochromatic
Ksi , for some i ∈ [1, r].

c1 c2 c3 cr

· · · · · ·

KR(s1,s2,...,sr )

An r-colouring of KR(s1,s2,...,sr ) . . .

ci

. . . an i-monochromatic Ksi .

Figure 4.2.3 Ramsey Theorem: If the the complete graph KR(s1,s2,...,sr ) is r-coloured
then, for some i ∈ [1, r], there exists a complete graph Ksi that is i-monochromatic.

Example 4.2.4 R(3, 3, 3) ≤ 17. �
Proof. See Figures 4.2.5 and Figure 4.2.6 .

A 3-colouring of the edges of
K17 with a vertex x.

K17

x

x

K6

There are at least 6 edges of the same colour,

say blue, with the common vertex x.

Figure 4.2.5 Use the the pigeonhole principle to conclude that if the edges of K17 are
3-coloured then each vertex is incident to at least six edges that are of the same colour.



CHAPTER 4. SCHUR’S THEOREM AND RADO’S THEOREM 76

x

K6

Case 1: K6 contains at least one blue edge.

K6

Case 2: K6 does not contain any blue edges.

Figure 4.2.6 Two cases . . . Done!

�

Question 4.2.7 What is the meaning of R(3, 4, 5, 6)? R(3, 3, 3, 3, 3)? �

Theorem 4.2.8 Schur’s Theorem. If the set of positive integers N is finitely coloured
then there exist x, y, z having the same colour such that

x + y = z ,

i.e. there is a monochromatic Schur triple.
Proof. Let c : N → [1, 2, . . . , r] and let M = R(3, 3, . . . , 3︸     ︷︷     ︸

r

). See Figures 4.2.9 and

Figure 4.2.10 .

· · ·

· · ·

· · ·

· · ·
7

6

1

x

4

a

b

1
2
3
4
5

|a − b|
...

...

...
...

KM [1, M]

Figure 4.2.9 Denote vertices of KM by 1, 2, . . . , M . For any a, b ∈ [1, M], colour the
edge {a, b} by c(|a − b|). Observe that all we need is the restriction of the r-colouring
c on the interval [1, M].

· · ·

· · ·

· · ·i

j

k
1
2

y = j − i

z = k − i

x = k − j

...

...

...

...

...

...

...

...

KM [1, M]

Figure 4.2.10 There is a monochromatic triangle with vertices i < j < k. (Why?)
Take x = k − j, y = j − i, and z = k − i. Done! (Do you see why?)

�
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Theorem 4.2.11 Actually . . . Schur’s Theorem. For any r ∈ N there is a natural
number M such that any r- colouring of [1, M] contains x, y, z having the same colour
such that

x + y = z.

The least M with such property is called a Schur number and it is detonated by
s(r).

Example 4.2.12 What is s(2)? �

1. Can you 2-colour, say in red and blue, the interval of positive integers [1, 4]
and avoid monochromatic Schur triples? Note that 1, 1, 2 and 2, 2, 4 are Schur
triples. See Figure 4.2.13.

1 2 3 4
Figure 4.2.13 s(2) > 4

2. Can you 2-colour, say in red and blue, the interval of positive integers [1, 5]
and avoid monochromatic Schur triples? Note that 1, 1, 2 and 2, 2, 4 are Schur
triples. See Figure 4.2.14.

1 2 3 4 5
Figure 4.2.14 s(2) = 5

Known Schur Numbers.

s(1) = 2, s(2) = 5, s(3) = 14, s(4) = 45.

Time Machine.
In 1637 Fermat scribbled into the margins of his copy of Arithmetica by Diophan-

tus, that

It is impossible for a cube to be the sum of two cubes, a fourth power to
be the sum of two fourth powers, or in general for any number that is a
power greater than the second to be the sum of two like powers. I have
discovered a truly marvellous demonstration of this proposition that this
margin is too narrow to contain.

The margin note became known as Fermat’s Last Theorem. It was proved by Andrew
Wiles in 1995.

In 1916 Schur proved the following:

Let n > 1. Then, for all primes p > s(n), the congruence

xn + yn ≡ zn(mod p)

has a solution in the integers, such that p does not divide xyz.

Fact:

For any odd prime p, the multiplicative group

Z∗p = Z/pZ = {1, 2, . . . , p − 1}

is cyclic.
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Example 4.2.15 Take p = 5. Then Z∗5 = {1, 2, 3, 4} and the multiplication is given by

· 1 2 3 4
1
2
3
4

Also,Z∗5 = {2, 2
2, 23, 24} = {2, 4, 3, 1} andZ∗7 = {3, 3

2, 33, 34, 35, 36} = {3, 2, 6, 4, 5, 1}.
�

In general, for any odd prime p there is q ∈ {1, . . . , p−1} such thatZ∗p = {q, q2, . . . , qp−1}.

Theorem 4.2.16 (Schur, 1916): Let n > 1. Then, for all primes p > s(n), the
congruence

xn + yn ≡ zn(mod p)

has a solution in the integers, such that p does not divide xyz.
Proof. See Figures 4.2.17 — Figure 4.2.19.

. . .

q1 q2 qp−1

Z∗p = {1, 2, . . . , p − 1}

Figure 4.2.17 Z∗p = {1, 2, . . . , p − 1} = {q, q2, . . . , qp−1}

qn+1 q2nq1q2 qn qmn+1 q(m+1)n qln+1 qln+k

. . . . . . . . . . . .. . . . . .

Z∗p = {1, 2, . . . , p − 1}

Figure 4.2.18 An n-colouring of {1, 2, . . . , p − 1}, p > s(n)

. . . . . . . . . . . .

a = qnr+i b = qns+i a + b = qnt+i

Z∗p = {1, 2, . . . , p − 1}

Figure 4.2.19 There is a monochromatic Schur triple!

From

qnr+i + qns+i = qnt+i ⇔ qi(qnr + qns − qnt ) ≡ 0 (mod p)

we conclude that
p|qi(qnr + qns − qnt ).

Since 0 ≤ qi < n < s(n) ≤ p − 1 it follows that p - qi . Therefore

p|(qnr + qns − qnt )
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or, what is the same
qnr + qns − qnt ≡ 0 (mod p).

By taking x = qr , y = qs , and z = qt we obtain

xn + yn ≡ zn (mod p).

�

Example 4.2.20 Let P be the set of points in the plane x+ y− z = 0 whose coordinates
are positive integers. Let an r-colouring of the set of positive integers be given.

For each (a, b, c) ∈ P, do the following. If a, b, c are of the same colour, then
colour (a, b, c) with that colour. Otherwise, mark (a, b, c) with an X .

Three Questions:
1. Can all of the points be marked with an X?

2. Can we tell if, under any given finite colouring, the planemust contain an infinite
number of coloured points?

3. Same for the plane x + y − 2z = 0.

�
Resources.

1. For more details see [2], pp. 69-70, [3], and [7].

2. Schur’s Theorem - Wikipedia

3. Schur’s theorem and related topics in Ramsey theory - by Summer LynneKisner,
pp 19-53

4. Ramsey Theory - by Jacob Fox (p 3)

4.3 Richard Rado
There are almost as many types of mathematicians as there are types of
human being. Among them are technicians, there are artists, there are
poets, there are dreamers, men of affairs, and many more. — Richard
Rado

Who was Richard Rado? A mathematician who earned two Ph.D.s: in 1933 from the
University of Berlin under Issai Schur, and in 1935 from the University of Cambridge
under Godfrey Harold Hardy.

Table 4.3.1 Mathematical work of Richard Rado:

Convergence of sequences and series Inequalities Ramsey theory
Geometry and measure theory Number theory Graph theory

http://en.wikipedia.org/wiki/Schur's_theorem
http://andrescaicedo.files.wordpress.com/2013/05/summer-kisner-thesis-final-version.pdf
http://andrescaicedo.files.wordpress.com/2013/05/summer-kisner-thesis-final-version.pdf
http://math.mit.edu/~fox/MAT307-lecture05.pdf
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Birth and Death.Richard Rado was born on 28 April 1906 in
Berlin, Germany, and died on 23 December 1989 in Henley-
on-Thames, Oxfordshire, England.

Figure 4.3.2 Richard
Rado

World in 1906 World in 1989
• The first radio set advertised

• The first woman elected to American Society
of Civil Engineers

• The first animated cartoon copyrighted

• Albert Einstein introduces his Theory of Rel-
ativity

• MahatmaGandhi coins the term “Satyagraha”

• Alberta adopts Mountain Standard Time

• SOS adopted as warning signal

• Lee de Forest patents a 3-diode amplification
valve

Figure 4.3.3 Berlin Wall
came down!

Richard’s Family. Richard was born in Berlin. He was the second son of Leopold
Rado, whowas a Hungarian fromBudapest. As a youngman he had to choose between
being a concert pianist or a mathematician. He chose to become a mathematician in
the belief that he could continue with music as a hobby, but that he could never treat
mathematics in that way.

In 1933 he married Luise Zadek, whom he had met when he needed a partner to
play piano duets. They had one son, Peter Rado, born in 1943.

Rado and his wife had a double partnership: she went with him to mathe-
matical conferences and meetings and kept contact with his mathematical
friends, he was an accomplished pianist and she was a singer of profes-
sional standard. They gave many recitals both public and private, often
having musical evenings in their home in Reading. Rado was the kindest
and gentlest of men. (Source MacTutor.)

Paul Erdős about Richard Rado:

I first became aware of Richard Rado’s existence in 1933 when his im-
portant paper Studien zur Kombinatorik appeared. I thought a great deal
about the many fascinating and deep unsolved problems stated in this pa-
per but I never succeeded to obtain any significant results here (. . . ) Our
joint work extends to more than 50 years; we wrote 18 joint papers (. . . )
Our most important work in undoubtedly in set theory and, in particular,
the creation of the partition calculus. The term partition calculus is, of
course, due to Rado. Without him, I often would have been content in
stating only special cases. (Source My joint work with Richard Rado).

https://mathshistory.st-andrews.ac.uk/Biographies/Rado_Richard/
https://users.renyi.hu/~p_erdos/1987-12.pdf
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Canadian Connection.

• Canadian Commonwealth Fellow, University of Waterloo, 1971-1972

• Visiting Professor, University of Calgary, 1973-1974

• Hon. D. Mathematics, University of Waterloo, 1986

Rado’s Work - Two Examples.

Example 4.3.4 Partition Calculus: �

In Erdős and Rado’s words:

The investigation centres roundwhatwe call partition relations connecting
given cardinal numbers or order types and in each given case the problem
arises of deciding whether a particular partition relation is true or false.
It appears that a large number of seemingly unrelated arguments in set
theory are, in fact, concerned with just such a problem. It might therefore
be of interest to study such relations for their own sake and to build up a
partition calculus which might serve as a new and unifying principle in
set theory. (Source Project Euclid.)

In the early 1950s, Rado introduced the partition calculus notation. For example
Ramsey’s Theorem: For any n,m < ω, one has ω→ (ω)nm.

Figure 4.3.5 How complicated?

Example 4.3.6 Rado Graph. �

Figure 4.3.7 Rado graph (Source David Eppstein/Public domain.)

https://projecteuclid.org/download/pdf_1/euclid.bams/1183520996
https://commons.wikimedia.org/wiki/File:Rado_graph.svg
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In 1964 Rado constructed the Rado graph by identifying the vertices of the graph
with the natural numbers 0, 1, 2, . . .. An edge connects vertices x and y in the graph
(with x < y) whenever the xth bit of the binary representation of y is nonzero. Thus,
for instance, the neighbours of vertex 0 consist of all odd-numbered vertices, while
the neighbours of vertex 1 consist of vertex 0 (the only vertex whose bit in the binary
representation of 1 is nonzero) and all vertices with numbers congruent to 2 or 3
modulo 4.

Resources.

1. For mored details see [7], pp. 304-308.

2. Richard Rado - Wikipedia

3. Richard Rado - Biography by J J O’Connor and E F Robertson

4. My Joint Work WIth Richard Rado - by Paul Erdős

5. A Partition Calculus in Set Theory

6. Rado Graph - Wikipedia

7. Mathematicians Begin to Tame Wild “Sunflower” Problem by Kevin Hartnett

4.4 Rado’s Theorem
One must still have chaos in oneself to be able to give birth to a dancing
star. — Friedrich Wilhelm Nietzsche, German philologist, philosopher,
cultural critic, poet and composer, 1844 — 1900

Reminder: Schur’s Theorem. If the set of positive integers N is finitely coloured then
there exist x, y, z having the same colour such that

x1 + x2 − x3 = 0.

Reminder: van der Waerden’s Theorem. If the set of positive integers N is finitely
coloured then there exist x, y, z having the same colour such that

x1 + x2 − 2x3 = 0

Question 4.4.1 Does every 2-colouring of natural numbers contain a monochromatic
solution of the equation

x1 − 2x2 = 0?

See Figure 4.4.2. �

x

2x

N

Figure 4.4.2 If x then 2x.

http://en.wikipedia.org/wiki/Richard_Rado
http://www-history.mcs.st-andrews.ac.uk/Biographies/Rado_Richard.html
http://www.renyi.hu/~p_erdos/1987-12.pdf
http://www.ams.org/journals/bull/1956-62-05/S0002-9904-1956-10036-0/S0002-9904-1956-10036-0.pdf
http://en.wikipedia.org/wiki/Rado_graph
https://www.quantamagazine.org/mathematicians-begin-to-tame-wild-sunflower-problem-20191021/
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Question 4.4.3 Does every finite colouring of positive integers contain a monochro-
matic solution of the equation

x1 − 2x2 + 3x3 = 0?

�
Proof. We define a colouring c : N→ {1, 2, . . . , 6} in the following way:

If n = 7k · (7 · l + i), i ∈ {1, 2, . . . , 6}, k, l ≥ 0, then c(n) = i.

See Figure 4.4.4. For example, in this colouring

c(5) = 5, c(14) = 2, c(25) = 4, and c(49) = 1.

7k(7l + 1)

7i(7 j + 3)

7r (7s + 4)

7m(7n + 2)

7u(7v + 5)

7x(7y + 6)

N N in base 7.

α1 00 . . . 0︸  ︷︷  ︸
k

γ3 00 . . . 0︸  ︷︷  ︸
i

δ4 00 . . . 0︸  ︷︷  ︸
r

β2 00 . . . 0︸  ︷︷  ︸
m

φ6 00 . . . 0︸  ︷︷  ︸
x

η5 00 . . . 0︸  ︷︷  ︸
u

Figure 4.4.4 A 6 colouring of N.

Suppose that there is a c- monochromatic solution of the given equation. Hence
suppose that there are

x1 = 7k(7l + i), x2 = 7s(7t + i), x3 = 7p(7q + i),

with i ∈ {1, 2, · · · , 6} and k, l, s, t, p, q ≥ 0, such that

x1 − 2x2 + 3x3 = 0⇔ 7k(7l + i) − 2 · 7s(7t + i) + 3 · 7p(7q + i) = 0

or, which is the same,

(7k − 2 · 7s + 3 · 7p) · i = 2 · 7s+1 · t − 7k+1 · l − 3 · 7p+1 · q.

Observe that there is one “extra” factor of 7 on the right hand side of the expression
above. What happens if we divide the expression by 7r , where r = min{k, s, p}? Will
the right-hand side of the expression be divisible by 7? What about the left-hand side?

�

Question 4.4.5 Under what conditions does a homogeneous linear equation

c1x1 + c2x2 + · · · + cnxn = 0, c1, c2, . . . , cn ∈ Z

have a monochromatic solution whenever N is finitely coloured? �

Definition 4.4.6 We say that a homogeneous linear equation

c1x1 + c2x2 + · · · + cnxn = 0, c1, c2, . . . , cn ∈ Z

is partition regular over N if it has a monochromatic solution whenever N is finitely
coloured. ♦
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Question 4.4.7 Under what conditions is a homogeneous linear equation

c1x1 + c2x2 + · · · + cnxn = 0, c1, c2, . . . , cn ∈ Z

partition regular over N? �

Observation 4.4.8
1. Equations x1 + x2 − x3 = 0 and x1 + x2 − 2x3 = 0 are partition regular.

2. Equations x1 − 2x2 = 0 and x1 − 2x2 + 3x3 = 0 are not partition regular.

Definition 4.4.9 p-Primer. Let p be a prime. The p-primer is a (p − 1)-colouring of
natural numbers obtained in the way demonstrated at the Figure 4.4.10. ♦

. . . 1 00 . . . 0︸  ︷︷  ︸
r

, r ≥ 0

. . . 2 00 . . . 0︸  ︷︷  ︸
r

, r ≥ 0

. . . 3 00 . . . 0︸  ︷︷  ︸
r

, r ≥ 0

. . . (p − 1) 00 . . . 0︸  ︷︷  ︸
r

, r ≥ 0

...

N in base p

Figure 4.4.10 The p-primer, a (p − 1)-colouring of N.

Proposition 4.4.11 Let integers c1, c2, . . . , cn be such that for any subset J ⊆ [n]∑
i∈J

ci , 0.

Then the equation c1x1 + c2x2 + · · · + cnxn = 0 is NOT partition regular over N.
Proof. Let p be a prime such that

p >
n∑
i=1
|ci |

and let χ : N→ [p − 1] be the p-primer.
Suppose that X = {x1, x2, . . . , xn} is a p-primer monochromatic solution of the

given equation. Then there are i ∈ {1, . . . , p − 1} and r1, r2, . . . , rn ≥ 0 such that

x1 = . . . i 0 · · · 0︸︷︷︸
r1

x2 = . . . i 0 · · · 0︸︷︷︸
r2

...

xn = . . . i 0 · · · 0︸︷︷︸
rn

.

See Figure 4.4.12.
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. . . i 0 . . . 0︸︷︷︸
r+k

. . . i 0 . . . 0︸︷︷︸
r+1

. . . i 0 . . . 0︸︷︷︸
r

. . . i0 . . . i. . . . . . . . .

X = {x1, x2, . . . , xn}

N in base p and the p-primer colour i

Figure 4.4.12 . . . there is a monochromatic solution X = {x1, x2, . . . , xn}.

Let r = min{r1, r2, . . . , rn} and J = { j ∈ [1, n] : rj = r}:

r + 1
↓

x1 = . . . i 0 . . . 0
x2 = . . . i 0 0 . . . 0
x3 = . . . i 0 . . . 0 0 . . . 0
...

xj = . . . i 0 . . . 0
...

xn = . . . i . . . 0 0 . . . 0

Divide

0 =
∑
j∈J

cj xj +
∑

j∈[n]\J

cj xj =
∑
j∈J

cj · pr (pk j + i) +
∑

j∈[n]\J

cj · prj (pk j + i)

by pr to obtain
i
∑
j∈J

cj + p · A = 0, A ∈ Z.

Contradiction. �
Therefore:

Proposition 4.4.13 Let the equation c1x1 + c2x2 + · · · + cnxn = 0 be partition regular
over N. Then there is J ⊆ [n] such that∑

i∈J

ci = 0.

Lemma 4.4.14 Let q ∈ Q and k ∈ N. Every k-colouring of natural numbers contains
a monochromatic solution of the equation x + qy = z.
Proof.

1. q = 0:

2. q < 0:

3. q > 0: Let r, s ∈ N be such that q =
r
s
.

(a) We prove by induction on k that for any k ∈ N there is n ∈ N such that
any k-colouring of [n] contains a monochromatic solution of the equation
x + qy = z.

(b) If k = 1, take n = max{s, r + 1} and x = 1, y = s, and z = r + 1.
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(c) Suppose that k ≥ 1 and n ∈ N are such that any k-colouring of [n] contains
a monochromatic solution of the equation x + qy = z. See Figure 4.4.15.

a, a + d, a + 2d, . . . , a + nrd

k - colours
...

...

[w(nr + 1, k + 1)]

Figure 4.4.15 Let w(nr + 1, k + 1) be a van der Waerden number, i.e., the
least positive integer such that any (k +1)-colouring of [1,w(nr +1, k +1)]
contains a monochromatic nr + 1 arithmetic progression.

(d) Case 1. See Figure 4.4.16.

a, a + d, a + 2d, . . . , a + nrd

k - colours
...

...

ids

[w(nr + 1, k + 1)]

for some i ∈ [1, n]

Figure 4.4.16 Take x = a, y = ids, and z = a + ird.

(e) Case 2. See Figure 4.4.17.

a, a + d, a + 2d, . . . , a + nrd

k - colours
...

...

S

ds

2ds

nds

[w(nr + 1, k + 1)]

Figure 4.4.17 The set S = {ds, 2ds, . . . , nds} is k-coloured.

�
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Proposition 4.4.18 If the set of non-zero integers {c1, c2, . . . , cn} is such that∑
i∈J

ci = 0

for some J ⊆ [n], then the equation c1x1 + c2x2 + · · · + cnxn = 0 is partition regular
over N.
Proof. Let χ be a finite colouring of N. Let i0 ∈ J and let {x, y, z} be a χ-
monochromatic solution of the equation

x +
∑

i<J ci
ci0

y = z

Let

xi =


x if i = i0
y if i < J
z if i ∈ J\{i0}.

Then

c1x1 + c2x2 + · · · + cnxn =
∑
i∈J

ci xj +
∑
i<J

ci xj

= ci0 xi0 +
∑

i∈J\{i0 }

ci xj +
∑
i<J

ci xj

=

�

Theorem 4.4.19 Rado’s Theorem. The equation c1x1 + c2x2 + · · · + cnxn = 0 is
partition regular over N if and only if there is J ⊆ [n] such that∑

i∈J

ci = 0.

Resources.

1. For more details see [7].

2. Rado’s Theorem - Wikipedia

3. Ramsey Theory - by I. Leader - pp 12-13

4. Rado’s single equation theorem - by Neil Lyall

5. Shur’s Theorem and Related Topics in Ramsey Theory - by Summer Lynne
Kisner - pp 71-76

6. Ramsey Theory - by G. Taylor - pp 25-28

4.5 Exercises
These exercises are based on the material covered in Chapter 4.

Exercise 4.5.1 Essay. Write a short essay (300-400 words) on the life and work of
Issai Schur.
Exercise 4.5.2 Essay. Write a short essay (300-400 words) on the life and work of
Richard Rado.

http://en.wikipedia.org/wiki/Rado's_theorem_(Ramsey_theory)
https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf
http://alpha.math.uga.edu/~lyall/REU/rado.pdf
http://andrescaicedo.files.wordpress.com/2013/05/summer-kisner-thesis-final-version.pdf
http://andrescaicedo.files.wordpress.com/2013/05/summer-kisner-thesis-final-version.pdf
http://web.mat.bham.ac.uk/D.Kuehn/RamseyGreg.pdf
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Exercise 4.5.3 Schur number. Show that

s(r) ≤ R(3, 3, . . . , 3︸     ︷︷     ︸
r

) − 1,

where s(r) is the Schur number for r colours.
Solution. Let c be an r-colouring of the interval [1, R(3, 3, . . . , 3︸     ︷︷     ︸

r

) − 1]. Consider the

complete graph on R(3, 3, . . . , 3︸     ︷︷     ︸
r

) vertices denoted by 1, 2, . . . , R(3, 3, . . . , 3︸     ︷︷     ︸
r

). Define

an r-colouring c′ of the edges of this complete graph by

c′({a, b}) = c(|a − b|)

where {a, b} is the edge between the vertices a and b. We observe that, for any
a, b ∈ [1, R(3, 3, . . . , 3︸     ︷︷     ︸

r

)],

|a − b| ≤ R(3, 3, . . . , 3︸     ︷︷     ︸
r

) − 1

and hence the colouring c′ is well-defined. By definition of R(3, 3, . . . , 3︸     ︷︷     ︸
r

) the complete

graph contains a monochromatic triangle, i.e., there are i, j, k, i < j < k, such that

c′({i, j}) = c′({i, k}) = c′({ j, k})

which is the same as
c( j − i) = c(k − i) = c(k − j).

Setting x = j − i, y = k − j, and z = k − i we observe that

x, y, z ∈ [1, R(3, 3, . . . , 3︸     ︷︷     ︸
r

) − 1], x + y = z, and c(x) = x(y) = c(z).

Therefore x, y, z is a c-monochromatic Schur triple.
This proofs that any r-colouring of [1, R(3, 3, . . . , 3︸     ︷︷     ︸

r

)−1] contains a monochromatic

Schur triple. Therefore
s(r) ≤ R(3, 3, . . . , 3︸     ︷︷     ︸

r

) − 1.

Exercise 4.5.4 Schur triples.
1. Find a red/blue colouring of {1, 2, 3, 4, 5, 6, 7} that contains neither a red Schur

triple nor a blue 3-term arithmetic progression.

2. Show that any red/blue colouring of {1, 2, 3, 4, 5, 6, 7, 8} contains a red Schur
triple or a blue 3-term arithmetic progression.

Solution.

1. Consider the positive numbers from 1 to 7.

Figure 4.5.5 Positive numbers from 1 to 7.
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Colour the number 1 red:

Figure 4.5.6 Colour 1 red.

We try to colour [1, 7] to avoid red Schur triples and blue 3-term arithmetic
progressions. Note that 2 must be blue. (Figure 4.5.7.)

Figure 4.5.7 Colour 1 red and 2 blue.

Suppose that 3 is red. Then 6 must blue. This forces 4 to be red, but then there
is a red Schur triple 1, 3, 4. (Figure 4.5.8.)

Figure 4.5.8 Colour 3 red.

Suppose that 3 is blue. Then 4 must red, 5 must be blue, 7 must be red, and 6
must be blue. (Figure 4.5.9.)

Figure 4.5.9 Colouring R-B-B-R-B-B-R.

Colour 1 blue and 2 red. Then 4 must be blue, 7 must be red, 5 must be blue.
None of 3 and 6 can be blue, but if both of them are red, then there is a red Schur
triple 3, 3, 6. (Figure 4.5.10.)

Figure 4.5.10 Colour 1 blue and 2 red.

Colour 1 and 2 blue. Then 3 must be red, 6 must be blue, 4 must be red, 7 must
be blue, and 5 must be red. (Figure 4.5.11.)

Figure 4.5.11 Colouring B-B-R-R-R-B-B.

Hence there are only two blue-red colourings of [1, 7] that avoid red Schur triples
and blue 3-term arithmetic progressions: R-B-B-R-B-B-R and B-B-R-R-R-B-B.

2. Consider the R-B-B-R-B-B-R colouring of [1, 7]. If we colour 8 red then there is
a red Schur triple 1, 7, 8. If we colour 8 blue then there is able 3-term arithmetic
progression 3, 5, 8.
Consider the B-B-R-R-R-B-B colouring of [1, 7]. If we colour 8 red then there
is a red Schur triple 3, 5, 8. If we colour 8 blue then there is a blue 3-term
arithmetic progression 6, 7, 8.
Therefore any blue/red-colouring of [1, 8] contains a red Schur triple or a blue
3-term arithmetic progression.
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Exercise 4.5.12 Schur triples and arithmetic progressions. Show that the minimum
integer n such that any red/blue colouring of [1, n] must admit either a red strict Schur
triple, or a blue 3-term arithmetic progression is n = 10.
Solution. The question is to show that any red/blue colouring of [1, 10]must contain
a red solution to x + y = z (of distinct integers) or a blue solution to x + y = 2z.

We also need to show that there is a red/blue colouring of [1, 9]with no red solution
to x + y = z (of distinct integers) or a blue solution to x + y = 2z. The following
colouring of [1, 9] achieves this:

1 2 3 4 5 6 7 8 9
Next we try to build a red/blue colouring of [1, 10] that avoids a red (R) solution

to x + y = z (of distinct integers) or a blue (B) solution to x + y = 2z.
We start by observing that such a colouring has to avoid monochromatic triples

{1, 2, 3}, {2, 4, 6}, and {3, 6, 9} because these triples are both 3-term arithmetic pro-
gressions and Schur’s triples.

In our attempt to avoid a red solution to x + y = z (of distinct integers) or a blue
solution to x + y = 2z, we consider all possible colourings of the triple {2, 4, 6} with
two colours, R and B:

• Case 1: If 2 = R, 4 = B, 6 = B then 5 = R (because of the arithmetic progression
4, 5, 6). This implies 7 = B (because of 2 + 5 = 7) and 8 = R (because of the
arithmetic progression 6, 7, 8) and 10 = R (because of the arithmetic progression
4, 7, 10), But now, 2, 8, 10 is a red Schur’s triple.

• Case 2: If 2 = B, 4 = R, 6 = B then 10 = R (because of the arithmetic
progression 2, 6, 10).
Now, if 3 = B then 1 = R (because of the arithmetic progression 1, 2, 3) and
9 = B (because of 1 + 9 = 10.) But then 3, 6, 9 is a blue arithmetic progression.
If 3 = R then 7 = B (because of 3+ 4 = 7) and 5 = R (because of the arithmetic
progression 5, 6, 7) and 8 = R (because of the arithmetic progression 6, 7, 8).
But then 3 + 5 = 8 is a red Schur’s triple.

• Case 3: If 2 = B, 4 = B, 6 = R then 3 = R (because of the arithmetic progression
2, 3, 4). It follows that 9 = B (because of 3 + 6 = 9).
Now, if 1 = R then 5 = B (because of 1 + 5 = 6) and 7 = B (because of
1 + 6 = 7.) But then 5, 7, 9 is a blue arithmetic progression.
If 1 = B then 5 = R (because of the arithmetic progression 1, 5, 9) and 7 = B
(because of 1 + 6 = 7.) Also, 8 = B (because of 3 + 5 = 8). This implies 7 = R
(because of the arithmetic progression 7, 8, 9) and then 10 = R (because of the
arithmetic progression 8, 9, 10). Now, 3 + 7 = 10 is a red Schur’s triple.

• Case 4: Let 2 = R, 4 = R, 6 = B.
Now, if 3 = R then 5 = B (because of 2 + 3 = 5) and 7 = B (because of
3 + 4 = 7.) But then 5, 6, 7 is a blue arithmetic progression.
If 3 = B then 9 = R (because of the arithmetic progression 3, 6, 9) and 5 = B
(because of 4 + 5 = 9) and 7 = B (because of 2 + 7 = 9). Now, 5, 6, 7 is a blue
arithmetic progression.

• Case 5: If 2 = R, 4 = B, 6 = R then 8 = B (because of 2 + 6 = 8).
Now, if 5 = R then 1 = B (because of 1+5 = 6), 3 = B (because of 2+3 = 5. and
7 = B (because of 2 + 5 = 7.) But then 1, 4, 7 is a blue arithmetic progression.
If 5 = B then 3 = R (because of the arithmetic progression 3, 4, 5) and 1 = B
(because of 1+ 2 = 3) and 7 = R (because of the arithmetic progression 1, 4, 7).
Now, if 9 = B (because of 2+7 = 9), then 1, 5, 9 is a blue arithmetic progression.
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• Case 5: If 2 = B, 4 = R, 6 = R then 10 = B (because of 4 + 6 = 10).
Now, if 3 = R then 1 = B (because of 1 + 3 = 4), 7 = B (because of 3 + 4 = 7.
and 9 = B (because of 3+6 = 9.) It follows that 8 = R (because of the arithmetic
progression 8, 9, 10) and 5 = B (because of 3 + 5 = 8). But then 1, 5, 9 is a blue
arithmetic progression.
If 3 = B then 1 = R (because of the arithmetic progression 1, 2, 3) and 5 = B
(because of 1 + 4 = 5) and 7 = B (because of 1 + 6 = 7) . But then 3, 5, 7 is a
blue arithmetic progression.

Therefore, it is impossible to colour [1, 10] red and blue and to avoid a red Schur’s
triple or a blue 3-term arithmetic progression.

Exercise 4.5.13 Schur’s theorem. Prove that any finite colouring of positive integers
admits a monochromatic solution to xy = z.
Solution. Let f be a finite colouring of positive integers. Define a finite colouring g
by

g(i) = f (2i), i ∈ N.

By Schur’s theorem there is a g-monochromatic triple (x1, x2, x3) such that x1+x2 = x3.
Let

x = 2x1, y = 2x2, and z = 2x3 .

Then
g(x1) = g(x2) = g(x3) ⇒ f (x) = f (y) = f (z)

and
xy = 2x1 · 2x2 = 2x1+x2 = 2x3 = z.

Exercise 4.5.14 Schur’s theorem. Prove that any finite colouring of positive integers
admits a monochromatic solution to xy + x + y = z.
Solution. Let f be a finite colouring of positive integers. Define a finite colouring g
by

g(i) = f (2i − 1), i ∈ N.

By Schur’s theorem there is a g-monochromatic triple (x1, x2, x3) such that x1+x2 = x3.
Let

x = 2x1 − 1, y = 2x2 − 1, and z = 2x3 − 1.

Then
g(x1) = g(x2) = g(x3) ⇒ f (x) = f (y) = f (z)

and

xy + x + y = (2x1 − 1) · (2x2 − 1) + 2x1 − 1 + 2x2 − 1 = 2x1+x2 − 1 = 2x3 − 1 = z.

Exercise 4.5.15 Generalized Schur number. The generalized Schur number S(4, 5)
is defined as the smallest positive integer n such that any blue/red colouring of the set
{1, 2, . . . , n} contains a blue solution to the equation L(4) : x1 + x2 + x3 = x4 or a red
solution to the equation L(5) : x1 + x2 + x3 + x4 = x5.

1. Consider the following 2-colouring of the interval [1, 13] = {1, 2, . . . , 13}:

B = {1, 2, 12, 13} and R = [3, 11].

Check that this colouring does not contain a blue solution to L(4) or a red
solution to L(4).

2. To show that any blue/red colouring of [1, 14] contains a blue solution to L(4)
or a red solution to L(5) do the following:
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(a) Suppose that 1 ∈ B and build a blue/red colouring trying to avoid a blue
solution to L(4) AND a red solution to L(5).

(b) Suppose that 1 ∈ R and build a blue/red colouring trying to avoid a blue
solution to L(4) AND a red solution to L(5).

3. Carefully justify your conclusion that S(4, 5) = 14.

Solution.

1. Consider x1 + x2 + x3, with x1, x2, x3 ∈ B. For this sum to be less than or equal
to 13, we have to have {x1, x2} ⊆ {1, 2}. But in that case

3 ≤ x1 + x2 + x3 ≤ 6

which implies that L(4) has no a blue solution. If {x1, x2, x3, x4} ⊆ R then

x1 + x2 + x3 + x4 ≥ 3 + 3 + 3 + 3 = 12

which implies that there is no a red solution to L(5).

2. (a) Let B ∪ R = [1, 14], B ∩ R = ∅. Suppose that 1 ∈ B.

• To avoid a blue solution to L(4), 3 ∈ R. Hence, so far, {1} ⊆ B and
{3} ⊆ R.

• To avoid a red solution to L(5), 12 ∈ B. Hence, so far, {1, 12} ⊆ B
and {3} ⊆ R.

• To avoid a blue solution to L(4), 14 ∈ R. Hence, so far, {1, 12} ⊆ B
and {3, 14} ⊆ R.

• To avoid a red solution 3 + 3 + 3 + 5 = 14, 5 ∈ B. Hence, so far,
{1, 5, 12} ⊆ B and {3, 14} ⊆ R.

• To avoid a blue solution 1 + 2 + 2 = 5, 2 ∈ R. Hence, so far,
{1, 5, 12} ⊆ B and {2, 3, 14} ⊆ R.

• To avoid a red solution 2 + 2 + 3 + 7 = 14, 7 ∈ B. Hence, so far,
{1, 5, 7, 12} ⊆ B and {2, 3, 14} ⊆ R.

But now, we have a blue solution 1 + 1 + 5 = 7.
(b) Let B ∪ R = [1, 14], B ∩ R = ∅. Suppose that 1 ∈ R.

• To avoid a red solution to L(5), 4 ∈ B. Hence, so far, {4} ⊆ B and
{1} ⊆ R.

• To avoid a blue solution to L(4), 12 ∈ R. Hence, so far, {4} ⊆ B and
{1, 12} ⊆ R.

• To avoid a red solution 1 + 1 + 1 + 9 = 12, 9 ∈ B. Hence, so far,
{4, 9} ⊆ B and {1, 12} ⊆ R.

• To avoid a blue solution 3+3+3 = 9, 3 ∈ R. Hence, so far, {4, 9} ⊆ B
and {1, 3, 12} ⊆ R.

But now, we have a red solution 3 + 3 + 3 + 3 = 12.

3. In (1) we proved that S(4, 5) ≥ 14. In (1) we proved that S(4, 5) ≤ 14. Hence,
S(4, 5) = 14.

Exercise 4.5.16 Rado’s theorem. Is the following equation partition regular over N:

1
3

x1 −
1
4

x2 + 2x3 −
1
12

x4 = 0?

Justify your answer.
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Solution. Notice that the given equation is equivalent to the equation

4x1 − 3x2 + 24x3 − x4 = 0.

Since a1 + a2 + a4 = 4 − 3 − 1 = 0, by Rado’s theorem this equation is partition
regular overN, i.e., any finite colouring of positive integers contains a monochromatic
solution of this equation. But that implies that any finite colouring of positive integers
contains a monochromatic solution of the original equation. Therefore, the given
equation is partition regular over N.

Exercise 4.5.17 Rado’s theorem. Let the equation

x1 + x2 − 4x3 = 0

be given. Is it possible to find a finite colouring that does not contain monochromatic
solutions of the given equation? If it is, find such a colouring. If it is not, justify your
answer.
Solution. Here a1 = a − 2 = 1 and a3 = −4. From a1 + a2 = 2, a1 + a3 = −3,
a2 + a3 = −3, and a1 + a2 + a3 = −2 we conclude, via Rado’s theorem, that the given
equation is not partition regular overN. Therefore, there is a finite colouring of positive
integers that does not contain a monochromatic solution of the given equation. By the
proof of Rado’s theorem that was demonstrated in the class, the following colouring
would do.

Note that |a1 | + |a2 | + |a3 | = 1+ 1+ 4 = 6. We take p = 7, a prime number greater
than |a1 | + |a2 | + |a3 |, and defined a 6-colouring c : N→ [1, 6] in the following way.

For n ∈ Nwefind k, l ∈ {0, 1, 2 . . .} and i ∈ {1, 2, 3, 4, 5, 6} such that n = 7k(7·l+i).
Then, by definition,

c(n) = c(7k(7 · l + i)) = i.

Now if there is a c-monochromatic solution of the given equation then

x1 = 7k(7 · l + i), x2 = 7m(7 · n + i), x3 = 7r (7 · s + i),

for some k, l,m, n, r, s ∈ {0, 1, 2 . . .} and i ∈ {1, 2, 3, 4, 5, 6}. Hence

0 = 7k(7 · l + i) + 7m(7 · n + i) − 4 · 7r (7 · s + i)

If k = m = r then it follows that

0 = (7 · l + i) + (7 · n + i) − 4 · (7 · s + i)

= 7 · (l + n + s) − 2i.

This would imply that 2i is divisible by 7, what is impossible because i ∈
{1, 2, 3, 4, 5, 6}.

Other cases, lead to a contradiction in a similar way.

Exercise 4.5.18 Rado’s theorem. Check if the equation x − y + 5z − 3w = 0 is
partition regular over N.
Solution. Yes, the given equation is partition regular over N. If we look at all the
coefficients: c1 = 1, c2 = −1, c3 = 5, c4 = −3, the sum of the coefficients c1 and
c2 turns out to be equal to 0. Hence, by Rado’s theorem this equation is partition
regular, i.e it has a monochromatic solution for any finite colouring of the set of
natural numbers.
Exercise 4.5.19 Rado graph. On the Rado graph, will vertex 3 be connected to vertex
9?
Solution. On the Rado graph, vertex 3 will be connected to vertices that have a
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non-zero 3rd bit of the binary representation. Vertex 9 in binary representation is
1001. The 3rd bit of 1001 is 0, therefore vertex 3 will not be connected to vertex 9.



Chapter 5

The Hales-Jewett Theorem

5.1 Combinatorial Lines
Last year I went fishing with Salvador Dali. He was using a dotted
line. He caught every other fish. — Steven Alexander Wright, American
comedian, actor and writer, 1955–

Alphabet. For m ∈ N, any set A such that |A| = m is called an alphabet on m symbols.

Example 5.1.1 Let A = {a, 1, 4}. Then A is an alphabet on |A| = 3 symbols. �

Words. Let A be an alphabet onm symbols. For n ∈ N, any functionw : [1, n] → A
is called a word of length n on the alphabet A. If w(i) = ai , i ∈ [1, n] then we write

w = a1a2 · · · an.

The set of all words of length n on the alphabet A is denoted by An. We say that
An is the n-dimensional cube on alphabet A.

Example 5.1.2 Let A = {a, 1, 4} be an alphabet on three symbols. Then w = a1a1a1
is a word of length 6 on the alphabet A. Here w : [1, 6] → A is defined as w(1) =
w(3) = w(5) = a and w(2) = w(4) = w(6) = 1.

Also, A2 = {w : w : [1, 2] → A} = {aa, a1, a4, 1a, 11, 14, 4a, 41, 44}. �

Roots. Let A be an alphabet (on m symbols) and let ∗ be a symbol such that ∗ < A.
We consider the alphabet A∗ = A∪{∗}. Any word on the alphabet A∗, i.e, any element
of (A∗)n = An

∗ , for some n ∈ N, that contains the symbol ∗ is called a root.

Example 5.1.3 Let A = {a, 1, 4} be an alphabet on three symbols. Then A∗ =
A ∪ {∗} = {a, 1, 4 ∗}. By definition, 1 ∗ 4 and a ∗ a∗ are two roots. �

Words From Roots. For a root τ ∈ An
∗ and a symbol a ∈ A we define the word

τa ∈ An in the following way. For i ∈ [1, n]

τa(i) =
{
τ(i) if τ(i) , ∗,

a if τ(i) = ∗.

Example 5.1.4 Let A = {a, b, c} and let τ = ∗ b c b ∈ A4
∗ be a root. Then

τa = � b c b

τb = � b c b

τc = � b c b.

�

95
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Example 5.1.5 Example: Let A = [1, 4] and let τ = ∗ 1 3 ∗ 4 ∗ ∈ A6
∗ be a root. Then

τ2 = � 1 3 � 4 �.

�
Combinatorial Line: Let A be an alphabet, let n ∈ N, and let τ ∈ An

∗ be a root. A
combinatorial line in An rooted in τ is the set of words

Lτ = {τa : a ∈ A}.

Observation 5.1.6 Lτ ⊆ An.

Example 5.1.7 Let A = {1, 2, 3} and n = 2. Find all combinatorial lines in A2.
1. All roots in A2

∗:

τ = ∗ 1
σ = ∗ 2
θ = ∗ 3
ρ = 1 ∗
χ = 2 ∗
φ = 3 ∗
µ = ∗ ∗ .

2. All combinatorial lines:

Lτ = {1 1, 2 1, 3 1}
Lσ = {1 2, 2 2, 3 2}
Lθ = {1 3, 2 3, 3 3}
Lρ = {1 1, 1 2, 1 3}
Lχ = {2 1, 2 2, 2 3}
Lφ = {3 1, 3 2, 3 3}
Lµ = {1 1, 2 2, 3 3}.

�
All combinatorial lines - Another view:

Lτ Lσ Lθ Lρ Lχ Lφ Lµ
1 1 1 2 1 3 1 1 2 1 3 1 1 1
2 1 2 2 2 3 1 2 2 2 3 2 2 2
3 1 3 2 3 3 1 3 2 3 3 3 3 3

All combinatorial lines - Another view (see Figure 5.1.8):
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1 2 3 4

1

2

3

4

x

y

Lρ Lχ Lφ Lµ

Lθ

Lσ

Lτ

Figure 5.1.8 All combinatorial lines in [1, 3]2.
It looks like. . . (See Figure 5.1.9.)

×

×

× ×

×

×

Tic-Tac-Toe: × wins!

×

×

×

Tic-Tac-Toe: • wins!

Figure 5.1.9 Tic-Tac-Toe: it’s a win!

Example 5.1.10 What About Combinatorial Lines in [1, 3]3? �

Consider roots:
τ = ∗ 2 3, σ = ∗ ∗ 3, θ = ∗ ∗ ∗.

Then (also see Figure 5.1.11):

Lτ Lσ Lθ
123 113 111
223 223 222
323 333 333

(3, 1, 1) (2, 1, 1) (1, 1, 1)

(1, 3, 1)

(1, 3, 2)

(1, 3, 3)

(1, 2, 1)

Lθ

Lτ

Lσ

Figure 5.1.11 Three combinatorial lines in [1, 3]3.
4 × 4 × 4 Tic-Tac-Toe
This is just a 2-player Tic-Tac-Toe game on a 4 x 4 x 4 cube. The player wins who

first gets four in a row of his own pieces - either horizontal, vertical, or diagonal. See
Figure 5.1.12. (Source BoardGameGeek.)

https://boardgamegeek.com/boardgame/13714/qubic
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Figure 5.1.12 The first edition of Qubic by any company was produced by Duplicon
in 1946 or 1947.

Rules of the Game. Create a monochromatic combinatorial line in [1, 4]3.

Question 5.1.13 Let A be an alphabet on m symbols and let An be the n-dimensional
cube on alphabet A:

An = {a1a2 · · · an : ai ∈ A, i ∈ [1, n]}.

If An is k-coloured, canwe be sure that An contains amonochromatic combinatorial
line? �

More precisely . . . Let m, k ∈ N and let A be an alphabet on m symbols. Does
there exist an n ∈ N such that whenever An is k-coloured there exists a monochromatic
line? See Figure 5.2.4.

An is k-coloured. . .

a1

a1

a1

a3

a3

a3

an

an

an1

2

m

. . .

. . .

. . .

...
...

...
...

. . . and a red combinatorial line.

Figure 5.1.14 Is it true that whenever An is k-coloured there exists a monochromatic
line?

5.2 The Hales-Jewett Theorem
The truth is outside of all fixed patterns. — Bruce Lee, a Hong Kong
American martial artist and actor, 1940 — 1973.

Theorem 5.2.1 The Hales-Jewett Theorem. Let m, k ∈ N and let A be an alphabet on
m symbols. There exists an n ∈ N such that whenever An is k-coloured there exists a
monochromatic line.
Definition 5.2.2 The smallest such n is denoted by HJ(m, k). ♦

From “The Mathematical Coloring Book” - page 518 [7]:

This result — as is often case in mathematics — was obtained by the
young mathematicians: Alfred W. Hales was 23, and Robert I. Jewett 24.
Alfred email to me [A. Soifer], on January 3, 2007, and recalled how it
all come about: “Bob and I were undergraduates at Caltech together -
he was a year ahead of me. We had common interest in both math and
volleyball. We also both worked in Sol Golomb’s coding theory group
at the Jet Propulsion Lab, and we continued doing this when we were in
graduate school - he at the University of Oregon and I at Caltech.”
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Figure 5.2.3 50Years of the Hales-Jewett TheoremConference, May 6-8, 2016,WWU
Proof. (The Hales-Jewett theorem)

1. Settings: Let m, k ∈ N. As an alphabet on m symbols we take A = [1,m].
Reminder: A root τ ∈ [1,m]n∗ is an n-word on m + 1 symbols, 1, 2, . . . ,m and ∗,
that contains the symbol ∗. A combinatorial line in [1,m]n rooted in τ is the set
of words

Lτ = {τa : a ∈ [1,m]}.
Here, for a ∈ [1,m] and i ∈ [1, n],

τa(i) =
{
τ(i) if τ(i) , ∗,

a if τ(i) = ∗.

Focussed and Colour-Focussed Lines:

• Let r ∈ N and let and τ(1), τ(2), . . . , τ(r) ∈ [1,m]n∗ be r roots. We say that
the corresponding combinatorial lines are focussed at f ∈ [1,m]n if

τ
(1)
m = τ

(2)
m = · · · = τ

(r)
m = f .

Example:
Consider τ(1), τ(2), τ(3) ∈ [1, 4]4∗ given by

τ(1) = ∗ ∗ 3 ∗, τ(2) = ∗ 4 3 ∗, τ(3) = ∗ 4 3 4.

Then
τ
(1)
4 = � � 3 �, τ(2)4 = � 4 3 �, τ(3)4 = � 4 3 4.

See Figures 5.2.4 and Figure 5.2.5.
Hence the corresponding combinatorial lines are focussed at f = 4 4 3 4:

Lτ(1) Lτ(2) Lτ(3)
1 1 3 1 1 4 3 1 1 4 3 4
2 2 3 2 2 4 3 2 2 4 3 4
3 3 3 3 3 4 3 3 3 4 3 4
4 4 3 4 4 4 3 4 4 4 3 4

3434

2434

1434

4434

3333

2232

1131

3433

2432

1431

Lτ(1) Lτ(2) Lτ(3)

Figure 5.2.4 Three focussed lines in [1, 4]4.
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τ
(3)
3

τ
(3)
2

τ
(3)
1

τ
(1)
3

τ
(1)
2

τ
(1)
1

τ
(2)
3

τ
(2)
2

τ
(2)
1Lτ(1) Lτ(3)

Lτ(2)

f = τ(1)4 = τ
(2)
4 = τ

(3)
4

Figure 5.2.5 Three lines in [1, 4]4 focussed at f .

• Let c be a k-colouring of [1,m]n and let and τ(1), τ(2), . . . , τ(r) ∈ [1,m]n∗
be r roots. See Figures 5.2.6.

τ
(1)
m−1

τ
(1)
2

τ
(1)
1

τ
(2)
m−1

τ
(2)
2

τ
(2)
1

τ
(r)
m−1

τ
(r)
2

τ
(r)
1

τ
(3)
3

τ
(3)
2

τ
(3)
1

τ
(1)
m = τ

(2)
m = · · · = τ

(r)
m

Figure 5.2.6 r colour-focussed lines: different colours and
τ
(1)
m = τ

(2)
m = · · · = τ

(r)
m .

Strategy. Induction on m.
Reminder: The Hales-Jewett Theorem. Let m, k ∈ N and let A be an alphabet
on m symbols. There exists an n ∈ N such that whenever An is k-coloured there
exists a monochromatic line.
Base Case. If m = 1 then H(1, k) = 1 for any number of colours k.
Inductive step. Given m > 1, we assume that HJ(m − 1, k) exists for all k.

(a) Claim. For all 1 ≤ r ≤ k, there exists n such that whenever [1,m]n is
k coloured, there exists either a monochromatic line or r colour-focussed
lines.

(b) Base Case. Let k ∈ N and let r = 1. We take n = HJ(m − 1, k).
Let c be a k-colouring of [1,m]n. See Figure 5.2.7.

[1,m − 1]n

[1,m]n

τ1

τ2

τ3

τm−1

τm

Figure 5.2.7 The colouring c of [1,m]n induces a k-colouring
of [1,m − 1]n. Our choice of n guarantees the existence of a
monochromatic line in [1,m − 1]n.
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The base case:
For any k, HJ(1, k) = 1

The inductive step: The induction hypothesis is
that m > 1 is such that HJ(m − 1, k) exists for any k.

Claim: For all 1 ≤ r ≤ k, there exists a natural number
n such that whenever [1,m]n is k-coloured, [. . . ]
The base case: If r = 1 take n = HJ(m − 1, k).

The inductive step:

You are HERE!

Figure 5.2.8 Where are you?

(c) Inductive Step. Let r ∈ [1, k − 1] and let n = n(r) be such that whenever
[1,m]n is k coloured, there exists either a monochromatic line or r colour-
focussed lines. Let n′ = HJ(m − 1, kmn

) and let N = n + n′. Let c be a
k-colouring of [1,m]N = [1,m]n+n′ without a monochromatic line. See
Figure 5.2.9.

[1,m]N

c

Figure 5.2.9 The k-colouring c of [1,m]N = [1,m]n+n′ without
a monochromatic line.
i. A c induced kmn -colouring of [1,m− 1]n′: Step 1. See Figure 5.2.10.
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[1,m]n [1,m]n′

[1,m − 1]n′

cb(a) = c(ab)

b =
b1b2 · · · bn′

Figure 5.2.10 Choose b = b1b2 · · · bn′ ∈ [1,m− 1]n′ . Con-
sider cb , a k-colouring of [1,m]n such that for a ∈ [1,m]n,
cb(a) = c(ab).

Step 2. Note that there are kmn
k-colourings of [1,m]n. See Figur 5.2.11.

[1,m]n [1,m]n′

[1,m − 1]n′

cb(a) = c(ab)

← b

Figure 5.2.11 The mapping χ : b 7→ cb is a kmn -colouring
of [1,m − 1]n′ .

Step 3. There is a χ-monochromatic line in [1,m − 1]n′ . See Fig-
ure 5.2.12.
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[1,m]n [1,m]n′

[1,m − 1]n′

[1,m]N = [1,m]n+n′ = [1,m]n × [1,m]n′

τ1
τ2

τm−1

τm

Figure 5.2.12There is a χ-monochromatic line Lτ in [1,m−
1]n′ .

ii. Reminder - Inductive Step. Let r ∈ [1, k − 1] and let n = n(r)
be such that whenever [1,m]n is k–coloured, there exists either a
monochromatic line or r colour-focussed lines. Let n′ = HJ(m −
1, kmn

) and let N = n + n′. Let c be a k-colouring of [1,m]N =
[1,m]n+n′ without a monochromatic line. See Figure 5.2.13.

[1,m]N

Figure 5.2.13 The k-colouring c of [1,m]N = [1,m]n+n′

without a monochromatic line.
iii. A c induced k-colouring of [1,m]n: Step 1There is a χ-monochromatic

line in [1,m − 1]n′ . See Figure 5.2.14.

[1,m]n [1,m]n′

[1,m − 1]n′

cτ1 (a) = c(aτ1)

← τ1

[1,m]n [1,m]n′

[1,m − 1]n′

cτ2 (a) = c(aτ2)

← τ2
. . .

[1,m]n [1,m]n′

[1,m − 1]n′

cτm−1 (a) = c(aτm−1)

← τm−1

Figure 5.2.14 Lτ is monochromatic: cτ1 = cτ2 = · · · = cτm−1 .

Step 2. A k-colouring cτ of [1,m]n emerges. See Figure 5.2.15.
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[1,m]n

cτ

τ1
τ2

τm−1

← Lτ =

Figure 5.2.15 The k-colouring cτ of [1,m]n is with the
property that, for any a ∈ [1,m]n and any i ∈ [1,m − 1],
cτ(a) = c(aτi).

Step 3. Back to colour-focussed lines. See Figure 5.2.16.

[1,m]n

cτ χ

[1,m]n′

τ1

τ2

τm−1

τm

f = σ(1)m = · · · = σ
(r)
m

σ
(r)
1

σ
(r)
2

σ
(r)
m−1

σ
(1)
1

σ
(1)
2

σ
(1)
m−1

r lines

Figure 5.2.16 There are r cτ-coloured-focussed lines
Lσ(1) ,. . . , Lσ(r ) in [1,m]n with the focus f and one χ-
monochromatic line Lτ in [1,m]n

′ with the focus τm. None
of the lines Lσ(1) , . . . , Lσ(r ) is monochromatic.

iv. Making new roots from old: We define r+1 roots in [1,m]N∗ as follows
(see Figure 5.2.17):

τ(1) = σ(1)τ, τ(2) = σ(2)τ, . . . , τ(r) = σ(r)τ, τ(r+1) = f τ.
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f τm = τ
(1)
m = · · · = τ

(r)
m = τ

(r+1)
m

τ
(r)
1

τ
(r)
2

τ
(r)
m−1 τ

(r+1)
1

τ
(r+1)
2

τ
(r+1)
m−1

τ
(1)
1

τ
(1)
2

τ
(1)
m−1

r lines

c

[1,m]N

Figure 5.2.17 There are r + 1 c-coloured-focussed lines
Lτ(1) , . . . , Lτ(r+1) in [1,m]N with the focus f τm.

v. Where Are You?

The base case:
For any k, HJ(1, k) = 1

The inductive step: The induction hypothesis is
that m > 1 is such that HJ(l − 1, k) exists for any k.

Claim: For all 1 ≤ r ≤ k, there exists a natural number
n such that whenever [1,m]n is k-coloured, [. . . ]
The base case: If r = 1 take n = HJ(m − 1, k).

The inductive step:

DONE!

Let r = k. You are here!

Figure 5.2.18Where are you?

vi. Let r = k. See Figure 5.2.19.

f

τ
(k)
1

τ
(k)
2

τ
(k)
m−1

τ
(2)
1

τ
(2)
2

τ
(2)
m−1

τ
(1)
1

τ
(1)
2

τ
(1)
m−1

k colour-focussed lines

k colouring c

[1,m]N

Figure 5.2.19 What is the colour of the focus f ? There is
a monochromatic line!

vii. Done!
HJ(m − 1, k) exists ⇒ HJ(m, k) exists



CHAPTER 5. THE HALES-JEWETT THEOREM 106

- �
Resources.

1. See [7], pp. 517-518.

2. Wikipedia

3. Ramsey Theory - by I. Leader - pp 8 -10

4. The Hales-Jewett Theorem - by Andreas Razen

5. The Hales-Jewett Theorem - Blog post by Jay Cumings

6. Blogging, Tic Tac Toe and the Future of Math - by Steve Landsburg

5.3 Exercises
These exercises are based on the material covered in Chapter 5.

Exercise 5.3.1 van der Waerden’s theorem. Use the Hales-Jewett theorem to prove
van der Waerden’s theorem.
Solution. Let l, k ∈ N be given. Let c : N → {1, 2, . . . , k} be a k-colouring of the
set of natural numbers. Let N = HJ(l, k).

We define a k-colouring of the N-cube [1, l]N as follows

c′(x1x2 · · · xN ) = c(x1 + x2 + . . . + xN ), x1x2 · · · xN ∈ [1, l]N .

By the Hales-Jewett theorem there is a c′-monochromatic line rooted in the root
τ ∈ [1, l]N∗ . Let S ⊂ [1, N] be such that

τ(i) ∈ [1, l] if i ∈ S and τ(i) = ∗ if i ∈ [1, N]\S.

Let
a =

∑
i∈S

τ(i) and d = |[1, N]\S |.

Note that
N∑
i=1

τ1(i) =
∑
i∈S

τ1(i) +
∑

i∈[1,N ]\S
τ1(i) = a +

∑
i∈[1,N ]\S

1 = a + d

N∑
i=1

τ2(i) =
∑
i∈S

τ2(i) +
∑

i∈[1,N ]\S
τ2(i) = a +

∑
i∈[1,N ]\S

2 = a + 2d

...

N∑
i=1

τl(i) =
∑
i∈S

τl(i) +
∑

i∈[1,N ]\S
τl(i) = a +

∑
i∈[1,N ]\S

l = a + ld.

On the other hand
c′(τ1) = c′(τ2) = · · · = c′(τl)

which together with

c′(τj) = c

(
N∑
i=1

τj(i)

)
= c(a + jd), for each j ∈ [1, l],

implies that
c(a + d) = c(a + 2d) = · · · = (a + ld).

Thus, there is a c-monochromatic l-term arithmetic progression.

https://en.wikipedia.org/wiki/Hales%E2%80%93Jewett_theorem
https://www.dpmms.cam.ac.uk/~par31/notes/ramsey.pdf
http://www.ti.inf.ethz.ch/ew/courses/extremal04/razen.pdf
http://whateversuitsyourboat.wordpress.com/2012/01/04/rt-part-8-hales-jewett-and-how-to-make-tic-tac-toe-interesting/
http://www.thebigquestions.com/2010/04/08/blogging-tic-tac-toe-and-the-future-of-math/
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Exercise 5.3.2 Combinatorial lines. Let A = {a, b, c, d}. Find all combinatorial
lines in A2.
Solution. Since all roots in A2

∗ are given by

∗a, ∗b, ∗c, ∗d, a∗, b∗, c∗, d∗, ∗ ∗ ,

all combinatorial lines given by

aa ab ac ad aa ba ca da aa
ba bb bc bd ab bb cb db bb
ca cb cc cd ac bc cc dc cc
da db dc dd ad bd cd dd dd

Exercise 5.3.3 Combinatorial lines.
1. Draw the 2-dimensional cube corresponding to A = {1, 2, 3}. What does each

word in the cube represent if we are playing tic-tac-toe?

2. First, list all the combinatorial lines in A2. Explain why a combinatorial line is
a winning line in tic-tac-toe. Are there any winning lines in tic-tac-toe that is
not a combinatorial line?

3. In Figure 5.3.4 you will see 4 lines on a 4x4x4 cube. For each line, write the
combinatorial line and the root associated with the combinatorial line. If it is
not a combinatorial line, briefly explain why.

(4, 1, 1) (3, 1, 1) (2, 1, 1) (1, 1, 1)

(1, 4, 1)

(1, 4, 2)

(1, 4, 3)

(1, 4, 4)

(1, 2, 1)

(1, 3, 1)

L3

L2

L1

L4

Figure 5.3.4 Three combinatorial lines in [1, 3]4.

Solution.

1. Eachword on the 2-dimensional cube corresponds to a position on the tic-tac-toe
board.
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1 2 3 4

1

2

3

4

x

y

Lτ4 Lτ5 Lτ6 Lτ7

Lτ3

Lτ2

Lτ1

Figure 5.3.5 All combinatorial lines in [1, 3]2.

2. Below is the list of all the roots in A2 together with the corresponding combina-
torial line:

τ1 = ∗1 =⇒ Lτ1 = {1 1, 2 1, 3 1}

τ2 = ∗2 =⇒ Lτ2 = {1 2, 2 2, 3 2}

τ3 = ∗3 =⇒ Lτ3 = {1 3, 2 3, 3 3}

τ4 = 1∗ =⇒ Lτ4 = {1 1, 1 2, 1 3}

τ5 = 2∗ =⇒ Lτ5 = {2 1, 2 2, 2 3}

τ6 = 3∗ =⇒ Lτ6 = {3 1, 3 2, 3 3}

τ7 = ∗∗ =⇒ Lτ7 = {1 1, 2 2, 3 3}

Based on the tic-tac-toe board, we can see that τ1, τ2, τ3 correspond to a horizontal
winning line in each row, τ4, τ5, τ6 correspond to a vertical winning line in each
column, and τ7 is the diagonal winning line starting at 1 1 and finishing at 3 3.
Onewinning line that cannot be represented by a combinatorial line is {31, 22, 13}.
This is because there is no root to represent this line. We can see that each word
is changing in more than one position and to different letters.

3. We can see that L2 is not a combinatorial line. Observe that the line L2
begins at (1, 2, 4) and ends at (4, 2, 1). This means L2 contains the points
{1 2 4, 2 2 3, 3 2 2, 4 2 1}. Since the first and third letter in each word change to
different letters at different times, this set of words cannot be obtained from a
root. It follows that L2 is not a combinatorial line.
The corresponding roots and lines for the rest are:

τ1 = ∗32 =⇒ Lτ1 = L1 = {1 3 2, 2 3 2, 3 3 2, 4 3 2}

τ3 = ∗ ∗ ∗ =⇒ Lτ3 = L3 = {1 1 1, 2 2 2, 3 3 3, 4 4 4}

τ4 = 24∗ =⇒ Lτ4 = L4 == {2 4 1, 2 4 2, 2 4 3, 2 4 4}

Exercise 5.3.6 Combinatorial lines. Let A = {a, b, c, d}.
Can you find a 2-colouring of A2 that does not contain a monochromatic combi-

natorial line? If yes, does this contradict the claim of Hales-Jewett theorem?
Justify your answer.
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Solution. A possible red/black colouring is given by:

aa ab ac ad aa ba ca da aa
ba bb bc bd ab bb cb db bb
ca cb cc cd ac bc cc dc cc
da db dc dd ad bd cd dd dd

This does not contradict the Hales-Jewett theorem. It just shows that HJ(4, 2) > 2.

Exercise 5.3.7 Combinatorial lines. Let m, n ∈ N and let |A| = m, i.e. let A be an
alphabet on m symbols.

Prove that the number of combinatorial lines in An equals (m + 1)n − mn.
Solution. Observe that

# of combinatorial lines = # of roots in (A ∪ {∗})n.

The number of all words of length n on the alphabet A ∪ {∗} equals to (m + 1)n.
Since the number of all all words of length n on the alphabet A equals to mn it follows
that

# of combinatorial lines = # of roots in (A ∪ {∗})n = (m + 1)n − mn.

Exercise 5.3.8 Arithmetic progressions. Use the Hales-Jewett theorem to prove
that any 2-colouring of positive integers contains a monochromatic 5-term arithmetic
progression.
Solution. Let c : N → {1, 2} be a 2-colouring of the set of natural numbers. Let
N = HJ(5, 2).

We define a 2-colouring of the N-cube [1, 5]N as follows

c′(x1x2 · · · xN ) = c(x1 + x2 + . . . + xN ), x1x2 · · · xN ∈ [1, 5]N .

By the Hales-Jewett theorem there is a c′-monochromatic line rooted in the root
τ ∈ [1, 5]N∗ . Let S ⊂ [1, N] be such that

τ(i) ∈ [1, N] if i ∈ S and τ(i) = ∗ if i ∈ [1, N]\S.

Let
a =

∑
i∈S

τ(i) and d = |[1, N]\S |.

Note that
N∑
i=1

τ1(i) =
∑
i∈S

τ1(i) +
∑

i∈[1,N ]\S
τ1(i) = a +

∑
i∈[1,N ]\S

1 = a + d

N∑
i=1

τ2(i) =
∑
i∈S

τ2(i) +
∑

i∈[1,N ]\S
τ2(i) = a +

∑
i∈[1,N ]\S

2 = a + 2d

...

N∑
i=1

τ5(i) =
∑
i∈S

τ5(i) +
∑

i∈[1,N ]\S
τ5(i) = a +

∑
i∈[1,N ]\S

5 = a + 5d.

On the other hand
c′(τ1) = c′(τ2) = · · · = c′(τ5)

which together with

c′(τj) = c

(
N∑
i=1

τj(i)

)
= c(a + jd), for each j ∈ [1, 5],
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implies that
c(a + d) = c(a + 2d) = · · · = (a + 5d).

Thus, there is a c-monochromatic 5-term arithmetic progression.

Exercise 5.3.9 Hilbert’s Cube Lemma. In 1892, David Hilbert, one of the most
prominent mathematicians of the 19th and early 20th centuries, proved a statement
known as Hilbert’s Cube Lemma:

For any r-colouring χ ofN and for anym ∈ N there exist a, a1, . . . , am ∈ N
such that the m-cube, i.e. the set

Qm(a, a1, . . . , am) = {a +
m∑
i=0

εiai : εi ∈ {0, 1}}

is monochromatic.

Together with Schur’s theorem, van der Waerden’s theorem and Ramsey’s theorem,
Hilbert’s Cube Lemma is considered as one of the early pillars of Ramsey Theory.

The purpose of this exercise is to establish the proof of Hilbert’s Cube Lemma in
the case m = 3. Those students interested to prove the general case should use the
ideas presented below and mathematical induction.

1. Determine all elements of the 3-cube Q(1, 2, 3, 4).

2. Recall that χ is an r-colouring of N. Prove that the interval [k + 1, k + (r + 1)],
where k is a non-negative integer, contains a χ-monochromatic 1-cube.

3. We say that a χ-monochromatic 1-cube Q(a, a1) ⊂ [k + 1, k + (r + 1)], where k
is a non-negative integer, is of the type (a1, i) if χ(Q(a, a1)) = i.
How many different types of χ-monochromatic 1-cubes in [k + 1, k + (r + 1)]
are possible?

4. Consider the interval [1, (r2 + 1)(r + 1)] and observe that this interval is the
union of r2 + 1 consecutive intervals of length r + 1: [1, (r2 + 1)(r + 1)] =
[1, r + 1] ∪ [(r + 1) + 1, 2(r + 1)] ∪ · · · ∪ [r2(r + 1) + 1, (r2 + 1)(r + 1)].

• Prove that there are p, q, 0 ≤ p ≤ q ≤ r2 such that the intervals [p(r + 1)+
1, (p+1)(r +1)] and [q(r +1)+1, (q+1)(r +1)] contain χ-monochromatic
1-cubes of the same type.

• Prove that the interval [1, (r2 + 1)(r + 1)] contains a χ-monochromatic
2-cube.

5. Observe that from (4) it follows that any interval [k+1, k+(r2+1)(r+1)], where k
is a non-negative integer, contains a χ-monochromatic 2-cube Q(a, a1, a2) with
a1 ∈ [1, r].
Say that a χ-monochromatic 2-cube Q(a, a1, a2) ⊂ [k + 1, k + (r2 + 1)(r + 1)],
where k is a non-negative integer and a1 ∈ [1, r], is of the type (a1, a2, i) if
χ(Q(a, a1, a2)) = i.
Establish that the number of possible types of χ-monochromatic 2-cubes in
[k + 1, k + (r2 + 1)(r + 1)] is less than (1 + r)5.

6. Prove that the interval [1, (r2+1)(r +1)6] = [1, (r +1)5 · (r2+1)(r +1)] contains
a χ-monochromatic 3-cube.

Solution.
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1. By definition
Q(1, 2, 3, 4) = {1+ ε1 · 2+ ε2 · 3+ ε3 · 4 : ε1, ε2, ε3 ∈ {0, 1}} = {1, 1+ 2, 1+ 3, 1+
4, 1 + 2 + 3, 1 + 2 + 4, 1 + 3 + 4, 1 + 2 + 3 + 4} = {1, 3, 4, 5, 6, 7, 10}.

2. By the Pigeonhole Principle, there are a, b ∈ [k + 1, k + (r + 1)], a ≤ b, such
that χ(a) = χ(b). Hence the 1-cube Q(a, b − a) = {a, b} is monochromatic.

3. Since a1, i ∈ [1, r], there are r2 possible types of χ-monochromatic 1-cubes in
[k + 1, k + (r + 1)].

4. • Since there are r2 possible types of χ-monochromatic cubes and since
there are r2 + 1 intervals, by the Pigeonhole Principle, there are p, q,
0 ≤ p ≤ q ≤ r2 such that the intervals [p(r + 1) + 1, (p + 1)(r + 1)] and
[q(r +1)+1, (q+1)(r +1)] contain χ-monochromatic 1-cubes of the same
type.

• Let p, q, 0 ≤ p ≤ q ≤ r2 be such that the intervals [p(r+1)+1, (p+1)(r+1)]
and [q(r + 1) + 1, (q + 1)(r + 1)] contain χ-monochromatic 1-cubes of the
same type (a1, i). Hence there are monochromatic 1-cubes Q(a, a1) ⊆
[p(r + 1) + 1, (p + 1)(r + 1)] and Q(b, a1) ⊆ [q(r + 1) + 1, (q + 1)(r + 1)]
coloured by the same colour i.
Next, we consider the 2-cube Q(a, a1, b − a).
Observe that

Q(a, a1, b − a) = {a, a + a1, a + (b − a) = b,

a + a1 + (b − a) = b + a1} = Q(a, a1) ∪Q(b, a1)

implies that the 2-cube Q(a, a1, b − a) is χ-monochromatic.

5. Recall that a1, r ∈ [1, r]. Note that (k + 1)+ 1+ a2 ≤ k + (r2 + 1)(r + 1) implies
that 1 ≤ a2 ≤ (r2 + 1)(r + 1) − 2. Hence the number of possible types (a1, a2, i)
is

r · ((r2 + 1)(r + 1) − 2) · r ≤ r2(r2 + 1)(r + 1).

This together with

r2 ≤ (r + 1)2 and r2 + 1 ≤ (r + 1)2

establishes that there are less than (r + 1)5 different (a1, a2, i) types.

6. Observe that the interval [1, (r2 + 1)(r + 1)6] = [1, (r + 1)5 · (r2 + 1)(r + 1)]
contains (r + 1)5 consecutive intervals of length (r2 + 1)(r + 1).
By (5) (and the Pigeonhole Principle) there are p, q ∈ [0, (r + 1)2 − 1], p < q,
such that the intervals [p + 1, p + (r2 + 1)(r + 1)] and [q + 1, q + (r2 + 1)(r + 1)]
contain χ-monochromatic 2-cubes of the same type, say Q(a, a1, a2) ⊆ [p +
1, p + (r2 + 1)(r + 1)] and Q(b, a1, a2) ⊆ [q + 1, q + (r2 + 1)(r + 1)].
Next, we consider the 3-cube Q(a, a1, a2, b − a).
Observe that

Q(a, a1, a2, b − a) = {a, a + a1, a + a2, a + (b − a) = b, a + a1 + a2,

a + a1 + (b − a) = b + a1, a + a2 + (b − a) = b + a2,

a + a1 + a2 + (b − a) = b + a1 + a2}

= Q(a, a1, a2) ∪Q(b, a1, a2)

implies that the 3-cube Q(a, a1, a2, b − a) is χ-monochromatic.
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Exercise 5.3.10 Folkman’s theorem. The purpose of this exercise is to establish a
proof of Folkman’s theorem:

For all r, k ∈ N there exists a natural number M(r, k) such that foe every r
-colouring of [1, M] there exist a1, a2, . . . , ak ∈ [1, M] with all ai distinct,
such that the set

Fk(a1, . . . , am) =

{
m∑
i=0

εiai : εi ∈ {0, 1} and ε2
1 + . . . + ε

2
k , 0

}
is monochromatic.

1. What is the set F3(1, 2, 5)?

2. Show that Folkman’s theorem is a generalization of Schur’s theorem.

3. Next we prove the following claim by induction on k:

For all r, k ∈ N there exists a natural number n(r, k) such that for
any r-colouring χ of [1, n] there exist a1, a2, . . . , ak such that for any
nonempty subset I of the set [1, k]

a(I) =
∑
i∈I

ai ∈ [1, n] and χ(a(I)) = χ(amax (I )).

• Prove the base case, i.e prove that that n(r, 1) exists.
• For the inductive step suppose that k ≥ 1 is such that there exists a
natural number n(r, k) such that for any r-colouring χ of [1, n] there exist
a1, a2, . . . , ak such that for any nonempty subset I of the set [1, k]

a(I) =
∑
i∈I

ai ∈ [1, n] and χ(a(I)) = χ(amax (I )).

Let N = 2 ·W(r, n(r, k)+1), whereW(r, n(r, k)+1) is the van der Waerden
number that guarantees the existence of amonochromatic (n(r, k)+1)-term
arithmetic progressionwhenever is an interval that containsW(r, n(r, k)+1)
consecutive positive integers r-coloured.
Fix an r-colouring ξ of the interval [1, N].
◦ Part 1: Prove that there are ak+1 ∈

[
N
2 + 1, N

]
and d ∈ N such that the

arithmetic progression {ak+1 + j · d : 0 ≤ j ≤ n(r, k)} ⊂
[
N
2 + 1, N

]
is ξ- monochromatic.
◦ Part 2: Let d be as above. Explain why there exist a1, a2, . . . , ak ∈
{d, 2d, . . . , n(r, k) · d} such that for any nonempty subset I of the set
[1, k]:

a(I) =
∑
i∈I

ai ∈ {d, 2d, . . . , n(r, k) · d} and ξ(a(I)) = ξ(amax (I )).

◦ Part 3: Complete the proof of the inductive step.

4. To complete the proof of Folkman’s theorem show that one can take M =

M(r, k) = n(r, r · (k −1)+1), where n(r, r · (k −1)+1) is the number guaranteed
by the lemma proved in (3).
Fix an r-colouring χ of [1, M].

• Justify the following claim: There exist a1, a2, . . . , ar(k−1)+1 such that for
any nonempty subset I of the set [1, r(k − 1) + 1]

a(I) =
∑
i∈I

ai ∈ [1, M] and χ(a(I)) = χ(amax (I ))..
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• Define the r-colouring η of the set [1, r(k − 1) + 1] in the following way:
For any j ∈ [1, r(k − 1) + 1]

η( j) = χ(a(I)) = χ

(∑
i∈I

ai

)
where ∅ , I ⊆ [1, r(k − 1) + 1] and max(I) = j .
Is the colouring η well defined? Why yes, or why not?

• Prove that there is an η-monochromatic set S ⊂ [1, r(k − 1) + 1] such that
|S | = k.

• Finish the proof of Folkman’s theorem by proving that the set of all sums
of the elements of the set A = {ai : i ∈ C} is χ-monochromatic.

Solution.

1. F3(1, 2, 5) = {1, 1 + 2, 1 + 5, 1 + 2 + 5, 2, 2 + 5, 5} = {1, 2, 3, 5, 6, 7, 8}.

2. Observe that Folkman’s theorem guaranties the existence of a monochromatic
F2(a, b) = {a, b, a + b} in any r-colouring of the set of natural numbers.

3. .

We take n(r, 1) = 1. Observe that I = {1} is the only nonempty subset of
the set [1] = {1} and a(I) = F1(1) = {1}.

•• ◦ Part 1: Apply van der Waerden’s theorem.
◦ Part 2: Define an r-colouring ξ ′ of [1, n(r, k)] by

ξ ′( j) = ξ( j · d), for any j ∈ [1, n(r, k)].

Observe that n(r, k) ≤ W(r, n(r, k) + 1) = N
2 . Thus we can apply the

inductive hypothesis and find b1, b2, . . . , bk ∈ [1, n(r, k)] such that for
any nonempty subset I of the set [1, k]

b(I) =
∑
i∈I

bi ∈ [1, n(r, k)]] and ξ ′(b(I)) = ξ ′(bmax (I )).

This implies that for ai = i · d, i ∈ [1, k], we have, for any nonempty
subset I of the set [1, k],

a(I) =
∑
i∈I

ai ∈ {d, 2d, . . . , n(r, k) · d} and ξ(a(I)) = ξ(amax (I )).

◦ Consider the sequence a1, a2, . . . , ak, ak+1, where ai , i ∈ [1, k + 1],
are established in Part 1 and Part 2.
Let I be a non-empty subset of the set [1, k + 1].
If max(I) < k + 1 then, by Part 2,

a(I) =
∑
i∈I

ai ∈ [1, N] and ξ(a(I)) = ξ(amax (I )).

If max(I) = k + 1 then, by Part 2,∑
i∈I\{k+1}

ai ∈ {d, 2d, . . . , n(r, k) · d}

which implies that

a(I) =
∑
i∈I

ai = ak+1 +
∑

i∈I\{k+1}
ai
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is a term in the ξ-monochromatic arithmetic progression that we
established in Part 1.
Hence

ξ(a(I)) = ξ(ak+1),

which completes the proof of the inductive step.

4. • This follows from the lemma and our choice of M .
• Yes, it is. By our choice of a1, a2, . . . , ar(k−1)+1, if I, J ⊆ [1, r(k − 1) + 1]
and max(I) = max(J) = j then

chi(a(I)) = χ(a(J)) = χ(aj).

• By the Pigeonhole Principle, at least one of the r colours (pigeonholes)
must contain at least k elements (pigeons) of the set [1, r(k − 1) + 1].

• This follows from the lemma and our choice of M .
• Let S = {s1, s2, . . . , sk} with si < sj if i < j.
For i ∈ [1, k], let a′i = asi .
Let I, J ⊆ [1, k] be two non-empty subsets with p = max(I) and q =
max(J).
Then

χ

(∑
i∈I

a′i

)
= χ

(∑
i∈I

asi

)
= χ(asp )

and

χ

(∑
i∈J

a′i

)
= χ

(∑
i∈J

asi

)
= χ(asq ).

But since sp, sq ∈ S it follows that η(sp) = η(sq) which is the same as
χ(asp ) = χ(asq ). Therefore for any ∅ , I, J ⊆ [1, k] we have that

χ

(∑
i∈I

a′i

)
= χ

(∑
i∈J

a′i

)
.



Chapter 6

Colourings of the Plane

6.1 Erdős-Szekeres Problem of Convex Polygons
Where there is love there is life. —Mahatma Gandhi, Indian leader, 1869
— 1948

Warm Up. Consider a finite set of points S in the plane, and ask, for example, this
question: Is it true that there will always be a set of three points in S that are the
vertices of a triangle?

Points in General Position in Plane. We say that the set of points A in the plane is in
general position if there is no line that contains three points from A. See Figure 6.1.1.

Figure 6.1.1 Which of the two sets is a set of points in general position?

Problem. For any integer n ≥ 3, determine the smallest positive integer N(n) such
that any set of at least N(n) points in general position in the plane (i.e., no three of the
points are on a line) contains n points that are the vertices of a convex n-gon.

Convex n-gon. A convex n-gon is an n-gon with the property that if two points A
and B are inside of the n-gon then the whole segment AB is inside of the n-gon. See
Figure 6.1.2.

Figure 6.1.2 A convex quadrilateral and a non-convex quadrilateral

Example 6.1.3 N(3) = 3. �

Example 6.1.4 n = 4. In 1932 Esther Klein made the following observation: Among
any five points in general position in the Euclidean plane, it is always possible to select

115
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four points that form the vertices of a convex quadrilateral. �

Question 6.1.5 Is it possible to find four points in the plane that do not form a convex
quadrilateral? �

Therefore. . . N(4) =
n = 5. See Figures 6.1.6 an d 6.1.7.

C

A

D

B

G

E

H

F

C

A

D

B

G

E

H

F

Can you find a convex pentagon?

Figure 6.1.6 Eight points in general position.
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G

E

H

F

Figure 6.1.7 No! - A few cases.

Therefore . . . N(5) ≥ 9.
n = 5 . . . Part II Let S be a set of nine points in the plane in general position. Let

S be the convex hull of S.

1. If S has five or more vertices, we are done. See Figure 6.1.8.

C

A

D

B

G

E

H

F

I

Figure 6.1.8 The convex hull of S has six points.

2. Let the convex hull S, the convex hull of S, has three or four vertices. Then the
set T = S\S contains six or five (remaining) points of S and they are all inside
of S. Let T be the convex hull of T .

3. If |T | = 5 or |T | = 6. . . Done! See Figure 6.1.9.
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C

A

D

B

G

E

H
F

I

Figure 6.1.9 Example: |S | = |{A, B, . . . , I}| = 9, |S | = |{A, B,C}| = 3, |T | =
|{D, E, . . . , I}| = 6, and |T | = |{D, E, F,G,H}| = 5.

4. For the remaining cases see Figure 6.1.10.

Type (3, 4, 2) Type (3, 3, 3) Type (4, 4, 1) Type (4, 3, 2)

Figure 6.1.10 Four remaining cases.

Configuration of the type (3, 3, 2).

1. Consider the inside triangle and the line segment.

• The line that contains the line segment intersects two sides of the triangle.
• Notice the vertex where those two sides of the triangle intersect.
• Draw rays starting at the end points of the line segment as on Figure 6.1.11

Figure 6.1.11 A triangle, a line segment, and four rays.

Three regions. Notice the three open regions in the plane on the Figure 6.1.12:

• None of the three regions intersects the interior of the triangle

• Region 1 and Region 2 intersect (part of the plane ‘above’ the top vertex.)

• Region 3 does not intersect either Region 1 or Region 2.
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Region 1 Region 2

Region 3

Figure 6.1.12 Three regions.

Three points outside of the triangle. Note that the remaining three points in the
configuration 3− 3− 2 cannot be on the boundary of any of Regions 1-3. (Why?) See
Figure 6.1.13.

Region 1 Region 2

Region 3

One of the outside points belongs to Region 3.

Region 1
Region 2

Region 3

None of the outside points belongs to Region 3.

Figure 6.1.13 There is a convex pentagon!

Configuration of the type (3, 3, 3). Note that the configuration the 8-point configu-
ration (3, 3, 2) is contained in the configuration (3, 3, 3). See Figure 6.1.14.

Type (3, 3, 3) Type (3, 3, 2)

Figure 6.1.14 Type (3, 3, 3) contains Type (3, 3, 2).

Therefore the configuration of the type (3, 3, 3) contains a convex pentagon.
Configuration of the type (4, 3, 1).

1. Consider a triangle and a single point inside of it, and note three regions,
Figure 6.1.15.
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A triangle and a point

Region 1 Region 2

Region 3

Three regions

Figure 6.1.15 Type (∗, 3, 1).

2. By the Pigeonhole Principle, at least two of the remaining four points must
belong to the same region, say Region 2. See Figure 6.1.16.

Region 1 Region 2

Region 3

Figure 6.1.16 There is a convex pentagon!

Configuration of the type (4, 4, 1). Note that the configuration (4, 4, 1) contains the
configuration (4, 3, 1). See Figure 6.1.17.

Type (4, 4, 1) Type (4, 3, 1)

Figure 6.1.17 The configuration of the type (4, 4, 1) contains a convex pentagon..

Configuration of the type (4, 3, 2). Note that the configuration (4, 3, 2) contains the
configuration (4, 3, 1). See Figure 6.1.18.

Type (4, 3, 2) Type (4, 3, 1)

Figure 6.1.18 The configuration of the type (4, 3, 2) contains a convex pentagon..
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Configuration of the type (3, 4, 2). Consider the inside quadrilateral and the line
segment. See Figures 6.1.19 — Figure 6.1.21.

The line intersects the adjacent sides. There is a convex pentagon!

Figure 6.1.19 Case 1: The line that contains the line segment intersects the adjacent
sides of the quadrilateral.

The line intersects the opposite sides.

R1

R2

R3

R4

Four regions.

Figure 6.1.20 Case 2: The line that contains the line segment intersects the opposite
sides of the quadrilateral.

R1

R2

R3

R4

Case 2.1:
One point belongs to Region 2 or Region 4.

R1

R2

R3

R4

Case 2.2:
Two points belong to Region 1 or Region 3.

Figure 6.1.21 Case 2: There is a convex pentagon!
Therefore

N(5) = 9.

6.2 Erdős-Szekeres Problem of Convex Polygons - Part
Two
All generalizations are false, including this one. — Mark Twain, Ameri-
can author, 1835 — 1910
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Reminder. For any integer n ≥ 3, determine the smallest positive integer N(n) such
that any set of at least N(n) points in general position in the plane (i.e. no three of the
points are on a line) contains n points that are the vertices of a convex n-gon.

1. N(3) =

2. N(4) =

3. N(5) =

Question 6.2.1
1. Does N(n) exist for any n ≥ 3?

2. Which values of N(n) are known?

3. Are there any bounds for the size of N(n)?

�
Pattern?

1. N(3) = 3 = 21 + 1 = 23−2 + 1

2. N(4) = 5 = 22 + 1 = 24−2 + 1

3. N(5) = 9 = 23 + 1 = 25−2 + 1

Well. . . Szekeres and Peters, 2006:

N(6) = 17 = 24 + 1 = 26−2 + 1.

Conjecture 6.2.2 For any n ≥ 3

N(n) = 2n−2 + 1.
Not long before his death in 1996, Erdős wrote that he would pay $500 for a proof

of this conjecture.
Still. . . How do we prove that N(n) exists for all n ≥ 3?
Two Theorems:
Recall Theorem 2.3.19:
Ramsey’s Theorem. For any natural numbers k, r, l1, . . . , lr there exists the least

natural number m0 = R(k; l1, l2, . . . , lr ) such that for any m ≥ m0, if the set of all k-
element subset of the set Sm, where |Sm | = m, is r-coloured then there exists i ∈ [1, r]
and the li-element subset ∆li ⊆ Sm such that all its k-element subsets have the colour
i.
Lemma 6.2.3 Let n ≥ 4 be an integer. Then n points in the plane form a convex
polygon if and only if every four of them form a convex quadrilateral.

For a proof by induction, see Exercise 6.6.9.

Theorem 6.2.4 Erdős-Szekeres’ Theorem N(n) exists for any n ≥ 3.
Proof. We already know that N(3) = 3, N(4) = 5, and N(5) = 9.

Let n ≥ 4. Let m > R(4; n, 5) and let Sm be a set of m points in the plane in general
position. Let

S(4)m = {{A, B,C,D} : A, B,C,D ∈ Sm},

i.e., let S(4)m be the set of all four-element subsets of Sm.
We define a 2-colouring

c : S(4)m → {•, •}
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in the following way. For T ∈ S(4)m

c(T) =
{
• if T forms a concave quadrilateral
• if T forms a convex quadrilateral.

See Figure 6.2.5.

Sm

Figure 6.2.5 A convex quadrilateral and a non-convex quadrilateral

By Ramsey’s theorem (and our choice of m > R(4; n, 5)) there is an n-element set
∆n ⊂ Sm such that all of its four-element subsets are coloured blue or a 5-element set
∆5 ⊂ Sm such that all of its four-element subsets are coloured red.

Since N(4) = 5, any set of five points in the plane in general position contains a
convex quadrilateral. This implies that it is impossible to find a 5-element set ∆5 ⊂ Sm
such that all of its four-element subsets are coloured red.

Hence there must be an n-element set ∆n ⊂ Sm such that all of its four-element
subsets are coloured blue. But then, by Lemma, the set ∆n forms a convex n-gon. �

Therefore. . . For any n ≥ 4, N(n) ≤ R(4; n, 5).
Cups and Caps. See Figure 6.2.6.

6-cup 4-cap Neither cup nor cap

Figure 6.2.6 Cups and caps

Observation 6.2.7 Note that in a k-cup, the sequence of slopes is increasing and that
in an l-cap, the sequence of slopes is decreasing.

Observation 6.2.8 It is clear that if we find a cup or a cap in a set S in some system
of coordinates, then we will also find a convex polygon. See Figure 6.2.9.
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Convex hexagon Convex quadrilateral

Figure 6.2.9 Convex polygons from cups and caps

Observation 6.2.10The expression “in some system of coordinates” can be substituted
for the expression “in any system of coordinates, in which there are no two points in
S that belong to the vertical line”. Let us call any system of coordinates with such
property right for S. In what follows we will always assume that, for a given set S of
points in general position, we have chosen a coordinate system that is right for S. See
Figure 6.2.11.

Neither cup nor cap 5-cup 5-cap

Figure 6.2.11 Making a right coordinate system

Definition 6.2.12 For k, l ≥ 3 we define f (k, l) to be the least positive integers such
that any set S of points in the plane (with a given coordinate system that is ‘right’ for
S) in general position such that

|S | ≥ f (k, l)

contains either a k-cup or an l-cap. ♦

Theorem 6.2.13 Theorem about cups and caps: For k, l ≥ 3 the number f (k, l) exists
and, for k, l ≥ 4 we have that

f (k, l) ≤ f (k − 1, l) + f (k, l − 1) − 1.
Proof. We prove the theorem by induction on m = k + l if m ≥ 6.

1. Base Case: For any k ≥ 3,

f (k, 3) = f (3, k) = k.

Take a set S with k points in the plane in general position. Let

S = {A1, A2, . . . , Ak}

where for i < j, the x-coordinate of Ai is less than the the x-coordinate of Aj .

Let si be the slope of the line segment Ai Ai+1, for i ∈ [1, k − 1]. If

s1 < s2 < · · · < sk−1

then S contains a k-cup.
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If, for some i ∈ [1, k − 2],
si > si+1

then the set S contains a 3-cap {Ai, Ai+1, Ai+2}.

A2
A3

A4
A5

A1

Ak

k-cup: s1 < s2 < · · · < sk−1

A2
A3

A5

A1 A4

Ak

3-cap: s3 > s4

Figure 6.2.14 f (k, 3) = f (3, k) = k

2. Note that we have proved that f (3, 3) = 3 and f (4, 3) = f (3, 4) = 4. In particular
this means that if k, l ≥ 3 are such that k + l ≤ 7 then f (k, l) exists.

3. Inductive Step: Let m ≥ 7 and k, l ≥ 3 be such whenever k + l = m then f (k, l)
exists. We choose k, l ≥ 3 such that

k + l = m + 1.

This implies that
(k − 1) + l = k + (l − 1) = m

and, hence f (k − 1, l) and f (k, l − 1) exist.
Let

n = f (k − 1, l) + f (k, l − 1) − 1.

Let us fix a set S of cardinality n and any right for S system of coordinates. We
have to prove that S contains either a k-cup or an l-cap. Let L be the set of all
points that are the left ends of (k − 1)-cups in S.

Figure 6.2.15 For k − 1 = 4, the top left point belongs to L.

(a) Let us assume first that the set S\L has at least f (k − 1, l) points. Then
it contains either a (k − 1)-cup or an l-cap. But taking the set L out of S
destroys all (k−1)-cups in S. Hence S\L does not contain any (k−1)-cups
and therefore must contain an l-cap.

(b) Suppose then that |S\L | ≤ f (k − 1, l) − 1. It follows

|L | = |S | − |S\L | ≥ n − f (k − 1, l) + 1 = f (k, l − 1).
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Therefore, there exists a k-cup in L (and everything is alright) or there
exists a (l − 1)-cap in L.
Let us consider the point Y , the right end of that cap.
Let X be the point that is immediately to the left of Y in the (l − 1)-cap in
L. Since Y ∈ L, the point Y is a left end of some (k − 1)-cup in S.
Let Z be the point that is immediately to the right of Y in the (k − 1)-cup
in S. If

Slope of XY > Slope of Y Z

then adding the point Z to the (l − 1)-cap in L makes an l-cap in S. (See
Figure 6.2.16.)

X
Y

Z

(k − 1)-cup in S

(l − 1)-cap in L
X

Y

Z

l-cap in L

Figure 6.2.16 Getting an l-cap in S from an (l − 1)-cap in L.

If
Slope of XY < Slope of Y Z

then adding the point X to the (k − 1)-cup in S makes an k-cup in S. (See
Figure 6.2.17.)

X

Y

Z

(k − 1)-cup in S

(l − 1)-cap in L

X

Y

Z

k-cup in S

Figure 6.2.17 Getting a k-cup in S from an l-cap in L.

Therefore, any set S such that

|S | = n = f (k − 1, l) + f (k, l − 1) − 1

contains either a k-cup or an l-cup which implies that f (k, l) exists and
that

f (k, l) ≤ f (k − 1, l) + f (k, l − 1) − 1.

By the Principle of Mathematical Induction, f (k, l) exists for any k, l ≥ 3.

�
How big is f (k, l)?

Theorem 6.2.18 If k, l ∈ N are such that k + l ≥ 6 then

f (k, l) ≤
(
k + l − 4

k − 2

)
+ 1.
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Proof. Proof via induction on k + l: If k + l = 6 then k = l = 3 and

f (3, 3) = 3 and
(
3 + 3 − 4

3 − 2

)
+ 1 = 2 + 1 = 3.

If k + l = 7 then k = 4 and l = 3 or k = 3 and l = 4. From

f (4, 3) = f (3, 4) = 4 and
(
4 + 3 − 4

4 − 2

)
+ 1 = 3 + 1 = 4 and

(
3 + 4 − 4

3 − 2

)
+ 1 = 4

we conclude that in the case that k + l = 7 we have

f (k, l) ≤
(
k + l − 4

k − 2

)
+ 1.

Suppose that m ≥ 7 is such that whenever k, l ≥ 3 are such such that k + l = m
then

f (k, l) ≤
(
k + l − 4

k − 2

)
+ 1.

Suppose that k + l = m + 1. Observe that

(k − 1) + l = k + (l − 1) = m

together with Theorem 6.2.13 implies that

f (k, l) ≤ f (k − 1, l) + f (k, l − 1) − 1 ≤
(
k + l − 5

k − 3

)
+

(
k + l − 5

k − 2

)
+ 1.

To finish the proof recall that(
a

b − 1

)
+

(
a
b

)
=

(
a + 1

b

)
.

�
Actually. . .

f (k, l) =
(
k + l − 4

k − 2

)
+ 1.

Back to N(n):

N(n) ≤ f (n, n) ≤
(
2n − 4
n − 2

)
+ 1.

Also. . .
N(n) ≥ 2n−2 + 1.

What is known?

1. The next step is if not to prove the hypothesis, then at least to improve the
estimation a little bit.

2. The inequality

N(n) ≤
(
2n − 4
n − 2

)
+ 1

was proved by Erdős and Szekeres in 1935.

3. And in 1998 there were three improvements at once!

(a) The first of them was made by F. Chung and R. Graham:

N(n) ≤
(
2n − 4
n − 2

)
.
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(b) D. Kleitman and L. Pachtler showed that it is true that

N(n) ≤
(
2n − 4
n − 2

)
+ 7 − 2n

(c) The third improvement was achieved by G. Tot and P. Vultr:

N(n) ≤
(
2n − 5
n − 2

)
+ 2.

The last result is approximately twice as good as the result of Erdős - Szekeres.

4. The current record also belongs to Tot and Vultr (2005).

N(n) ≤
(
2n − 5
n − 2

)
+ 1, n ≥ 5.

5. Chung and Graham offered $100 for the first proof that

N(n) ≤ cn,

where c < 4 is a constant.

Resources.

1. Happy Ending Problem - Wikipedia

2. Happy Ending Problem by Ron Graham

3. Happy Ending Problem by D. Harvey

4. Erdős, P.; Szekeres, G. (1935), "A combinatorial problem in geometry", Com-
positio Math 2: 463-470.

5. The Erdos-Szekeres problem on points in convex position - a survey by W.
Morris and V. Soltan

6. A Puzzle of Clever Connections Nears a Happy End by Kevin Hartnett

6.3 The Chromatic Number of the Plane
It doesn’t matter how long my hair is or what colour my skin is or whether
I’m a woman or a man. — John Lennon, English musician, singer and
songwriter, 1940 - 1980

Problem. What is the smallest number of colours sufficient for colouring the plane in
such a way that no two points of the same colour are unit distance apart? — Edward
Nelson, 1950

Edward Nelson was born on May 4, 1932, in Decatur, Geor-
gia. He is a professor in the Mathematics Department at
Princeton University.

Figure 6.3.1 Edward
Nelson (Source:
Wikipedia)

http://en.wikipedia.org/wiki/Happy_Ending_problem
https://www.youtube.com/watch?v=xPk3SZiFEvQ
https://www.parabola.unsw.edu.au/2000-2009/volume-38-2002/issue-1/article/happy-end-problem
http://www.numdam.org/item?id=CM_1935__2__463_0
http://www.numdam.org/item?id=CM_1935__2__463_0
http://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00877-6/home.html
http://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00877-6/home.html
https://www.quantamagazine.org/a-puzzle-of-clever-connections-nears-a-happy-end-20170530/
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Definition 6.3.2 Chromatic Number of the Plane. The smallest number of colours
sufficient for colouring the plane in such a way that no two points of the same colour
are unit distance apart is called the chromatic number of the plane and it is denoted
by χ. ♦

Question 6.3.3 Are two colours enough?
Solution.

1
1

1

Figure 6.3.4 No, two colours are not enough!

�

Proposition 6.3.5 χ ≥ 3.

Question 6.3.6 Are three colours enough? �

Leo Moser was a professor of mathematics at the University
of Alberta. William Moser a was a professor of Mathe-
matics at the University of Saskatchewan, the University of
Manitoba and McGill University.

Figure 6.3.7 Leo
Moser, 1921 — 1970

Be generous and patient as teachers, be active in projects
which benefit the mathematical community and, above all,
have as long and as happy a mathematical life as I have
had, and am still having. — W. Moser in 2003. (Source
MacTutor.)

Figure 6.3.8 William
Moser, 1927 — 2009

The Moser brothers’ construction:

https://mathshistory.st-andrews.ac.uk/Biographies/Moser_William/


CHAPTER 6. COLOURINGS OF THE PLANE 129

1

A

B

Figure 6.3.9 Step 1

Start by choosing a pointA in the plane and then
draw a circle with the centre at A and radius 1.
Denote this circle by C1. Next, choose a point
B on the circle C1. Draw the line segment AB.

1 1

A

B C

D

Figure 6.3.10 Step 2

Draw a circle with the centre at B and radius
1. Denote this circle by C2. Let C be the
intersection point of C1 and C2. Draw a circle,
call it C3, with the centre at C and radius 1.
Observe that the point A belongs to both C2 and
C3. Let D be the the other intersection point
of C2 and C3. Draw the line segments AC,
BC, BD, and CD. Observe that all those line
segments are of length 1.

1 1

A

B C

D

E

Figure 6.3.11 Step 3

Draw a circle, call it C4, with the centre at D
and radius 1. Draw a circle with the centre at
A and passing through the point D. Denote this
circle by C5 Next, choose a point E in the in-
tersection of C4 and C5. Draw the line segment
DE . Observe that |DE | = 1.

1 1

A

B C

D

E
F

G

Figure 6.3.12 Step 4

Draw a circle with the centre at E and radius 1.
Denote this circle by C6. Let F and G be the
intersection point of C1 and C6.
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1 1

A

B C

D

E
F

G

Figure 6.3.13 Step 5

Draw the line segments AF, AG, EF, and
EG. Observe that all those line segments are of
length 1.

A

B C

D

E
F

G

Figure 6.3.14 Step 6

The Moser Spindle

Reminder: Question. Are three colours enough?

A

B C

D

E

F

G

So far, so good . . .

A

B C

D

E

F

G

We are still fine . . .

A

B C

D

E

F

G

Trouble . . .

A

B C

D

E

F

G

Trouble again . . .

Figure 6.3.15 Toss the Moser Spindle on the red/blue/green coloured plane. Remem-
ber that every edge in the Moser Spindle is of length 1.

Proposition 6.3.16 χ ≥ 4.
Question. Are three colours enough? (Again.)
Hugo Hadwiger in 1961: Consider a three colouring of the plane: c : Π →

{•, •, •}.
Hugo Hadwiger used the following construction to show that there must be two

points, say, X and Y , such that

|XY | = 1 and c(X) = C(Y ).

A

B

C

|AB| = |AC | = |BC | = 1

Figure 6.3.17 Step 1

Start by choosing a point A in the plane and then
draw a circle with the centre at A and radius 1.
Denote this circle byC1. Suppose that c(A) = •.
If there is a green point on the circle C1, then
we have two points coloured by the same colour
that are one unit apart. Suppose that all points
on the circle C1 are coloured either blue or red.
Next, choose a point B on the circle C1 and
suppose that c(B) = •. There are two points
on C1 that are one unit apart from B. (Why?)
If one of them is red, we are done. Suppose
that both of them are blue and pick one of them.
Call it C.
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√
3

A

B

C

D

|BD | = |CD | = 1

Figure 6.3.18 Step 2

Draw a circle with the centre at A and radius√
3. Denote this circle by C2. Let D be the

intersection point of the circle C2 and the line
of symmetry of the line segment BC that is not
on the same side of the line BC as the point A.
Observe that |BD | = |CD | = 1. (Why?) If the
point D is coloured red or blue thenwe have two
points that are one unit apart and of the same
colour. Suppose that c(D) = •.

1 √
3

A

B

C

D

E

F

G

|DE | = |EF | = |EG | = |FG | = 1

Figure 6.3.19 Step3

Let E be a point on the circle C2 such that
|DE | = 1. Draw a circle with the centre at E
and radius 1. Denote this circle by C3. Observe
that C3 intersects the circle C1 at two points, F
and G and that |FG | = 1. (Why?) Recall our
assumption that all points on the circle C1 are
coloured or blue or red. Colour E by any of the
three colours. What happens?

Therefore. . . χ ≥ 4.
Question. Are three colours enough? (Again.)
Golomb Graph. By Solomon Golomb (1965).

B

C

D

E

F

G

A

|AB| = |BC | = |CD| = · · · = |GB | = 1

Figure 6.3.20 Step 1

Draw a circle with the centre at A and radius 1.
Denote this circle by C1. Let BCDEFG be a
regular hexagon inscribed in the circle C1.
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B

C

D

E

F

G

H
A

|CH | = 1

Figure 6.3.21 Step 2

Draw a circle with the centre at A and radius√
3

3 . Denote this circle by C2. Draw a circle
with the centre at C and radius 1. Let H be an
intersection point of C2 and C3. Observe that
|CH | = 1.

B

C

D

E

F

G

H

I

J

A

|HI | = |HJ | = |I J | = 1

Figure 6.3.22 Step 3

Let 4HI J be an equilateral triangle inscribed in
C2. Observe that, since the radius of C2 equals
to
√

3
3 , |HI | = |HJ | = |I J | = 1.

B

C

D

E

F

G

H

I

J

A

|GJ | = |EI | = 1

Figure 6.3.23 Step 4

Let r be the clockwise rotation by 2π
3 with the

centre at A. Then r(C) = G and r(H) = J.
Since r is an isometry it follows that |GJ | =
|CH | = 1. Similarly, |EI | = |CH | = 1.



CHAPTER 6. COLOURINGS OF THE PLANE 133

B

C

D

E

F

G

H

I

J

A

|GJ | = |EI | = 1

Figure 6.3.24 Step 5

The Golomb Graph.

Are three colours enough?
Toss the Golomb graph on the red/blue/green coloured plane. Recall that every

edge in the Golomb graph is of length 1.

B

C

D

E

F

G

H

I

J

A

Figure 6.3.25 Start ...

Suppose that the point A is coloured red and that
each triangle that has A as a vertex is a rainbow
triangle.

B

C

D

E

F

G

H

I

J

A

Figure 6.3.26 ... and finish!

If H is coloured green, then there are two
points, C and H, at the unit distance coloured
by the same colour. Suppose that the point H is
coloured blue. What are our options for colour-
ing I and J? What if we assume that the point
H is coloured red?

Therefore. . . χ ≥ 4.
What About Upper Bounds?

0.9

0.9√
2

Figure 6.3.27 Step 1

Consider the grid in which the length of the side
of each square in the grid equals 0.9√

2
. Observe

that the length of the diagonal of each grid cell
is d = 0.9.
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Figure 6.3.28 Step 2

A 9-colouring in which all neighbours of each
square are of different colours. Is it possible to
find two points of the same colour that are one
unit apart?

Theorem 6.3.29 χ ≤ 7. (Hadwiger, 1961)

6

6

6

6

7

7

7

7

5

5

5

5

2

2

2

2

1

1

1

1

4

4

4

4

3

3

3

3

Figure 6.3.30Hadwiger, 1961

A 7-colouring of a tessellation of the plane by
regular hexagons, with diameter slightly less
than one. Observe that each hexagon is sur-
rounded by hexagons of a different colour.

Proposition 6.3.31 χ ≤ 7. (Szekely, 1983)

6 0 1 2 3 4 5 6 0 1

3 4 5 6 0 1 2 3 4 5 6

1 2 3 4 5 6 0 1 2 3

5 6 0 1 2 3 4 5 6 0 1

3 4 5 6 0 1 2 3 4 5

Figure 6.3.32 Szekely, 1983

7-colouring by László Székely: Start with a
row of squares of diagonal 1, with cyclically
alternating colours from 0 to 6 of the squares.
Obtain the consecutive rows of coloured squares
by shifting the previous row by 2.5 squares.
Upper and right boundaries are included in each
square, except for the upper left and lower right
corner.

3 4 5

0 1 2

5 6 0

Figure 6.3.33 Székely: Closer
look

Closer look: Upper and right boundaries are
included in each square, except for the upper
left and lower right corner.

Theorem 6.3.34 χ ≥ 5. (de Grey, 2018)
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“In seeking graphs that can serve as M in our construction,
we focus on graphs that contain a high density of Moser
spindles. The motivation for exploring such graphs is that
a spindle contains two pairs of vertices distance

√
3 apart,

and these pairs cannot both be monochromatic. Intuitively,
therefore, a graph containing a high density of interlocking
spindles might be constrained to have its monochromatic√

3-apart vertex pairs distributed rather uniformly (in some
sense) in any 4-colouring. Since such graphs typically also
contain regular hexagons of side- length 1, one might be op-
timistic that they could contain some such hexagon that does
not contain a monochromatic triple in any 4-colouring of
the overall graph, since such a triple is always an equilateral
triangle of edge

√
3 and thus constitutes a locally high den-

sity, i.e. a departure from the aforementioned uniformity, of
monochromatic

√
3-apart vertex pairs.” — de Grey, Aubrey

D.N.J. (2018), “The Chromatic Number of the Plane Is at
least 5”, Geombinatorics, 28: 5–18, arXiv:1804.02385.

Figure 6.3.35Aubrey
de Grey, 1963 –

One of de Grey’s tools: Multiple tightly linked Moser spindles:

α

A

D

C

Figure 6.3.36 The angle α

Consider a Moser spindle and observe that
(A,C) and (A,D) are two pairs of vertices dis-
tance

√
3 apart. Also, observe that the measure

of the angle ∠DAC is α = arccos
(

5
6

)
≈ 33.560.

A

D

C

Figure 6.3.37 Rotation by α

Rotate the Moser spindle through α about the
point A to obtain another Moser spindle. Ob-
serve that the two spindles share four vertices
and five edges.

https://arxiv.org/abs/1804.02385


CHAPTER 6. COLOURINGS OF THE PLANE 136

Figure 6.3.38 Three Moser
spindles

An additional clockwise rotation by α
2 produces

"three tightly linked Moser spindles."

de Grey’s Proof. Initially, de Grey constructed a graph with 20425 vertices. He
“developed a custom program” to test this graph for the existence of monochromatic
points with the unit distance under a 4-colouring. In de Grey’s words, “This algorithm
was implemented in Mathematica 11 on a standard MacBook Air and terminated in
only a few minutes.”

Follow up. In his original paper, de Gray describes a construction of graph G with
1581 vertices that yields, under any 4-colouring, a pair of monochromatic points one
unit apart. Again in de Grey’s words, “Happily, G has turned out to be within the
reach of standard SAT solvers.”

On August 3, 2019, as part of the Polymath16 project, Jaan Parts posted an image
of a unit distance graph with 510 vertices and 2508 edges that confirms that χ ≥ 5.

Question 6.3.39
1. Is it possible to further reduce the size of the “good” graph?

2. How to find a human-verifiable proof that χ ≥ 5?
In October 2020, Jaan Parts from Kazan, Russia, published an article entitled
“The chromatic number of the plane is at least 5 – a human-verifiable proof”
(Geombinatorics 30/2 (2020) 77 – 102) accessible at arXiv:2010.12661v1:
“De Grey’s proof [of the fact that χ ≥ 5] is not only the first, but, in our opinion,
the best of the known ones. But like all others found thus far, it has an annoying
flaw: it cannot be verified without using a computer. Here we make an attempt
to fill this gap: that is, we present a proof of the known fact χ ≥ 5, which can
be verified manually in full in a reasonable time.”

�
Three facts:

1. Computing has become an instrumental part of mathematical research.

2. Mathematical research has become increasingly collaborative. See, for example,
the Polymath Project.

3. Ron Graham offered $250 for a proof that χ ≤ 6. (If you are the first one to
prove that χ ≤ 6, please contact Steve Buttler to collect the cheque.)

Resources.

1. See [7], pp. 13-20.

2. Hadwiger-Nelson problem – Wikipedia

3. Chromatic Number of the Plane by Cut The Knot

4. Open problems in Euclidean Ramsey Theory by Ron Graham and Eric Tressler

https://dustingmixon.wordpress.com/2019/07/08/polymath16-thirteenth-thread-bumping-the-deadline/#comment-23999
https://arxiv.org/abs/2010.12661
https://en.wikipedia.org/wiki/Polymath_Project
https://en.wikipedia.org/wiki/Hadwiger-Nelson_problem
http://www.cut-the-knot.org/proofs/ChromaticNumber.shtml
http://www.math.ucsd.edu/~ronspubs/10_14_euclid.pdf
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5. The chromatic number of the plane is at least 5 by Aubrey D.N.J. de Grey

6. The Moser Spindle by Evelyn Lamb

6.4 The Polychromatic Number of the Plane
Things forbidden have a secret charm. — Publius Cornelius Tacitus, a
senator and a historian of the Roman Empire, c. 56 — 117

Problem. What is the smallest number of colours needed for colouring the plane in
such a way that no colour realizes all distances? (Paul Erdős, 1958)

Example 6.4.1 A 7-colouring that avoids the distance 1 in each colour:
Solution.

6

6

6

6

7

7

7

7

5

5

5

5

2

2

2

2

1

1

1

1

4

4

4

4

3

3

3

3

Figure 6.4.2 Hugo Hadwiger in 1961:

A 7-colouring of a tessellation
of the plane by regular hexagons,
with diameter slightly less than
one. Observe that each hexagon is
surrounded by hexagons of a dif-
ferent colour.

�

Definition 6.4.3 The smallest number of colours sufficient for colouring the plane in
such a way that no colour realizes all distances is called the polychromatic number
of the plane and it is denoted by χp . ♦

Observation 6.4.4 χp ≤ χ

The Lower Bound: 4 ≤ χp . (Established by Dmitry E. Raiskii in 1970. This proof
is by Alexei Merkov from 1997.)
Proof.

1. Assume that there is a 3-colouring of the plane

c : E2 → {•, •, •}

such that

• There are no two points coloured red at the distance r;
• There are no two points coloured blue at the distance b;
• There are no two points coloured green at the distance g.

2. Let a Cartesian coordinate system in E2 be given.

3. We construct three Moser spindles like on Figure 6.4.5:

https://arxiv.org/abs/1804.02385
https://blogs.scientificamerican.com/roots-of-unity/a-few-of-my-favorite-spaces-the-moser-spindle/
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r

b

g

Figure 6.4.5 Three Moser spindles share the origin O as a common
point and with the edges of lengths r , b, and g.

4. Consider 18 vectors, each of them with its initial point at the origin and the
terminal point being a vertex in one of the three Moser spindles.
Call those vectors

®v1, ®v2, . . ., ®v6, ®v7, ®v8, . . ., ®v12, ®v13, ®v14, . . ., ®v18.

Here the terminal points of the vectors ®v1, ®v2, . . . , ®v6 belong to the Moser spindle
with all edges of length r , the terminal points of the vectors ®v7, ®v8, . . . , ®v12 belong
to the Mosers spindle with all edges of length b, and the terminal points of the
vectors ®v13, ®v14, . . . , ®v18 belong to the Moser spindle with all edges of length g.
See Figure 6.4.6.

r

b

g

®v1, ®v2, . . . , ®v6

®v7, ®v8, . . . , ®v12

®v13, ®v14, . . . , ®v18

Figure 6.4.6 Eighteen vectors with the same initial point.

5. Next we define a 3-colouring c′ of the vector space

E18 = {(a1, a2, . . . , a18) : a1, a2, . . . , a18 ∈ R}
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by
c′(a1, a2, . . . , a18) = c(P)

where P is the terminal point of the vector

a1 · ®v1 + · · · + a6 · ®v6 + a7 · ®v7 + · · · + a12 · ®v12 + a13 · ®v13 + · · · + a18 · ®v18.

6. Let M ⊂ E18 be the set of all 18-tuples such that (a1, a2, . . . , a18) ∈ M if and
only if all of the following conditions are satisfied:

(a) ai ∈ {0, 1} for all i ∈ {1, 2, . . . , 18};
(b) a1 + a2 + a3 + a4 + a5 + a6 ∈ {0, 1}
(c) a7 + a8 + a9 + a10 + a11 + a12 ∈ {0, 1}
(d) a13 + a14 + a15 + a16 + a17 + a18 ∈ {0, 1}

For example

(1, 0, 0, 0, 0, 0︸        ︷︷        ︸
1≤i≤6

, 0, 0, 0, 0, 0, 1︸        ︷︷        ︸
7≤i≤12

, 1, 0, 0, 0, 0, 0︸        ︷︷        ︸
13≤i≤18

) ∈ M

but
(1, 0, 0, 0, 0, 0︸        ︷︷        ︸

1≤i≤6

, 0, 0, 0, 0, 0, 0︸        ︷︷        ︸
7≤i≤12

, 1, 1, 0, 0, 0, 0︸        ︷︷        ︸
13≤i≤18

) < M .

7. Note that
|M | = 73.

8. Consider the set

Mr = {(a1, a2, a3, a4, a5, a6, 0, 0, · · · , 0︸      ︷︷      ︸
All 0’s

) ∈ M : a1, . . . , a6 ∈ {0, 1}}

and note that |Mr | = 7.

9. Two observations and a conclusion:

(a) If (a1, a2, a3, a4, a5, a6, 0, 0, · · · , 0︸      ︷︷      ︸
All 0’s

) ∈ Mr and ai , 0 for some i ∈ {1, . . . , 6},

then

®OP = a1 · ®v1 + · · ·+ a6 · ®v6 + 0 · ®v7 + · · ·+ 0 · ®v12 + 0 · ®v13 + · · ·+ 0 · ®v18 = ®vi

and P is one of the points in the Moser spindle that has all edges of length
r .

(b) The Moser spindle that has all edges of length r cannot have three red
vertices:
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Figure 6.4.7 If there are three r vertices then two of them are r
units apart.

(c) The set Mr can have at most two elements coloured r by the colouring c′.

Another observation:

®a

®a

Figure 6.4.8 A translate of the Moser spindle is the Moser spindle.

For each of the 49 elements of the set

Mbg = {(0, 0, 0, 0, 0, 0, a7, a8, . . . , a18) ∈ M : a7, . . . , a18 ∈ {0, 1}}

we make a translate of Mr in E18:

Mr
a = a + Mr, a ∈ Mbg.

Clearly
M = ∪a∈Mbg

Ma
r

and, for all a, b ∈ Mbg,

a , b⇒ Mr
a ∩ Mr

b = ∅.

In other words we have divided the set M into 72 = 49 mutually disjunct copies
of Mr .
How many elements in Mr

a, a ∈ Mbg, are coloured red by c′?

10. Let (0, 0, 0, 0, 0, 0, a7, a8, . . . , a18) ∈ Mbg and let

®a = 0 · ®v1 + · · · + 0 · ®v6 + a7 · ®v7 + · · · + a12 · ®v12 + a13 · ®v13 + · · · + a18 · ®v18.
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Then the elements of Mr
a are coloured by c′ in the same way that c colours

the vertices of the Moser spindle that is obtained as the translate of the original
Moser spindle by ®a!
Therefore, for each a ∈ Mbg, the set Mr

a can have at most TWO red elements.

11.

# of red elements of M =
∑

a∈Mbg

# of red elements of Mr
a

≤
∑

a∈Mbg

2 = 2 · 49 = 98.

12. Similarly
# of blue elements of M ≤ 98

and
# of green elements of M ≤ 98.

Therefore

73 = (# of red elements of M) + (# of blue elements of M)

+ (# of green elements of M) ≤ 3 · 98 = 3 · (2 · 72) = 6 · 72.

Contradiction!

13. Therefore, our assumption that there is a 3-colouring of the plane

c : E2 → {•, •, •}

such that

• There are no two points coloured red at the distance r;
• There are no two points coloured blue at the distance b;
• There are no two points coloured green at the distance g;

led to a contradiction!

14. There is at least one colour in every 3-colouring of the plane that realizes all
distances. This implies

4 ≤ χp .

�
The Upper Bound. χp ≤ 6. (S.B. Stechkin, 1970)

Figure 6.4.9 Steichkin’s 6-coloring of the plane.

Take a Closer Look.
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0.5 0.5

0.5

Figure 6.4.10 Steichkin’s 6-coloring of the plane - a closer look.
Note:

• All sides of all triangles and hexagons are of length 0.5.

• Every hexagon includes its boundary except its rightmost and two lowest ver-
tices.

• Triangles do not include their boundaries.

Which Distances are Avoided?

0.5 0.5

1

1

Figure 6.4.11 No two green points that are 1 unit apart.
Note:

• Four colours used to colour hexagons do not realize the distance 1.

• Two colours used to colour triangles do not realize the distance 0.5.

Notation. Steichkin’s colouring is of the type (1, 1, 1, 1, 1
2,

1
2 ).

Theorem 6.4.12 4 ≤ χp ≤ 6.
Resources.

1. See [7], pp 32-44.

2. Open problems in Euclidean Ramsey Theory by R. Graham and E. Tressler

6.5 Fractional Chromatic Number
Perhaps I am doomed to retrace my steps under the illusion that I am
exploring, doomed to try and learn what I should simply recognize,
learning a mere fraction of what I have forgotten. — André Breton,
a French writer and poet,1896 — 1966.

http://www.math.ucsd.edu/~ronspubs/10_14_euclid.pdf
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Definition 6.5.1 For a given graphG = (V, E) and the positive integers m and n, m ≤ n,
a proper n/m-colouring with n colours of the graph G is a function that assigns to each
vertex a set of m distinct colours, in such a way that adjacent vertices are assigned
mutually disjoint sets.

The fractional chromatic number of G is defined as

χf (G) = inf
{ n

m
: there is a proper n/m colouring of G

}
.

Let m and n be positive integers with m ≤ n. An n/m-colouring is a function with
n colours of the plane that assigns a set of m distinct colours to each point in the plane
so that any two points that are one unit apart are assigned mutually disjoint sets.

The fractional chromatic number of the plane is:

χf (R
2) = inf

{ n
m

: there is a proper n/m colouring of the plane
}
.

♦
The current lower bound for the fractional chromatic number of the plane, χf (R2) ≥
1999983
512933 ≈ 3.8991, was established in 2020 by Bellitto, Pêcher, and Sédillot, and the
upper bound, 4.3599, was established in 1993 by Hochberg and O’Donnell.

Example 6.5.2 The Moser spindle (MS) is used to establish an early lower bound of
the chromatic number of the plane. Four colours are required to colour the vertices,
so that no two adjacent vertices are of the same colour.

We can apply the definition of the fractional colouring to the above fact to establish
that χf (MS) ≤ 4/1 = 4.

Figure 6.5.3 A 4/1-fractional colouring of the vertices of the Moser spindle.

But can we do better? If we place three colours in each vertex, we find that we only
need eleven colours to colour theMoser spindle. Which gives us χf (MS) ≤ 11

3 ≈ 3.66.
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Figure 6.5.4 A graph isomorphic to the Moser spindle together with its proper 11/3
colouring

In fact, it is known that the fractional chromatic number of the Moserr spindle is
3.5. This is because the Moser spindle has 7 vertices and the independence number 2.
This was first observed in 1992 by David Fisher and Daniel Ullman.

Figure 6.5.5 A graph isomorphic to the Moser spindle together with its proper 7/2
colouring

Observe that the fact that χf (MS) = 3.5 implies that χf (R2) ≥ 3.5. �

Resources:
Bellitto, T., Pêcher, A., and Sédillot, A. (2020). On the density of sets of the

Euclidean plane avoiding distance 1. https://arxiv.org/abs/1810.00960
Cranston, D.W., Rabern, L. (2017). The fractional chromatic number of the plane.

Combinatorica. 37(5): 837-861.
Hochberg, R., O’Donnell, P. (1993). A large independent set in the unit distance

graph. Geombinatorics. 2(4):83-84.
D. Fisher and D. Ullman. (1992). The fractional chromatic number of the plane.

Geombinatorics, 2(1):8-12.

6.6 Exercises
Exercise 6.6.1 Convex quadrilaterals. Show that, given five points in the plane with
no three collinear, the number of convex quadrilaterals formed by these points is odd.
Solution. We consider three cases.

• Case 1: Suppose that the five vertices form a convex pentagon. Then any four

https://arxiv.org/abs/1810.00960
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of them form a convex quadrilateral.
There are five convex quadrilaterals in this case.

• Case 2: Suppose that four points form a convex quadrilateral (say A1, A2, A3,
and A4 in clockwise order) which contains the fifth point A5 in its interior. Let
S be the intersection of the diagonals A1 A3 and A2 A4 . Then the point A5 lies
in one of the four triangles into which diagonals dissect the quadrilateral, say
4SA1 A2. Observe that the quadrilaterals A1 A5 A3 A4 and A2 A3 A4 A5 are convex
but the other two are not.
There are three convex quadrilaterals in this case.

• Case 3: Suppose that three points (say A1, A2, A3) form a triangle with A4 and
A5 in its interior. The line A4 A5 intersects two of the three sides, say A1 A2 and
A1 A3. Then A2, A3 A4 A5 is the only convex quadrilateral.

Exercise 6.6.2 Convex hexagon. Find 10 points in the plane in general position that
do not contain a convex hexagon. Justify your answer!
Solution. Consider the following configuration:

Figure 6.6.3 Ten points in general position.

This is a (4, 4, 2) configuration. As we already know, the eight points in the (4,4)
part of the given configuration do not contain a convex pentagon.

Suppose that there is a convex hexagon in this configuration. Then the hexagon has
to contains both green points inside of the blue quadrilateral. (If the convex hexagon
contains only one green point then the remaining five points belong to the set of red
and blue points, which contradicts the fact that those points do not contain a convex
pentagon.)

Since the line determined by the two green points divides the plane in the way
that each of the two half-planes contains only two red and two blue points, the convex
hexagon must have two red, two blue, and two green vertices. But this hexagon is not
convex because the blue points are inside of the quadrilateral determined by the red
and green points. See Figure 6.6.4.

Figure 6.6.4 There is no convex hexagon.

Exercise 6.6.5 Convex quadrilaterals. Prove that any five points in the plane in
general position contain an empty convex quadrilateral, i.e. a convex quadrilateral that
does not contain in its interior the remaining point.

Is this true if you take more than five points in general position?
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Solution. If the given five points are vertices of a convex pentagon then any four
points form and empty convex quadrilateral.

By Esther Klein’s result we know that any five points in the plane in general
position contain convex quadrilateral, Say that the given five points S do not determine
a convex pentagon. Then the convex hull of the set S has three or four points. In both
cases there is an empty convex quadrilateral. See Figure 6.6.6

Figure 6.6.6 Empty convex quadrilaterals.

Let S be a set of n points in the plane in general position, with n ≥ 6. Let

L = {li : i ∈ [1, n(n − 1)/2]}

be the set of all lines in the plane determined by pairs of points from the set S. Let p be
a line that is not parallel to any line from the set L and such that all points that belong
to the set S are on the same side of p. (In other words, none of the line segments with
the end points from S intersects the line p.)

Move the line p towards the set S. Let p′ be the line that contains a point from S,
that is parallel to the line p and that there is no element form S between lines p and p′.
(See Figure 6.6.7.)

p p

p′

Figure 6.6.7 Note that p′ contains only one point from S. Why?

Continue moving the line p till it reaches five points from S. (See Figure 6.6.8.)
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p

p′

p(V )

Figure 6.6.8 Note that the line p(V ) divides the set S so that one point from S is on the
p(V ), only four points from S are on the same side of the line p(V ) as it is the line p.

What should we do next?
Exercise 6.6.9 Convex polygons. Use mathematical induction to prove that if n ≥ 4
then n points in the plane in general position form a convex polygon if and only if
every four of them form a convex quadrilateral.
Solution. The base case is trivial.

Suppose that the claim is true for some fixed n ≥ 4, i.e. suppose that n ≥ 4 is such
that any n points in the plane in general position form a convex polygon if and only if
every four of them form a convex quadrilateral.

Let S be the set of n + 1 points in the plane in the general position. If the points
from S form a convex (n + 1)-gon then any four points from S are vertices on that
convex polygon and thus form a convex quadrilateral.

Suppose that any four points from S form a convex quadrilateral. We note that by
the inductive hypothesis this means that any n points from S form a convex n-gon.

Let S be the convex hull of S. The |S | = n + 1 or |S | = n. (Is it possible that
|S | < n? Why?)

If |S | = n + 1 then S = S and S is convex (n + 1)-gon.
Let |S | = n. Then the point A such that {A} = S\S is inside the n-gon determined

by the points from S. Let X ∈ S and consider the line through the points A and X .
This line intersects the line segment with the endpoints Y, Z ∈ S. See Figure 6.6.10.

Y

Z

X

A

Figure 6.6.10 Is the quadrilateral determined by the points A, X , Y , and Z convex?

Observe that the quadrilateral determined by the points A, X , Y , and Z is not
convex which contradicts our assumption that any four points from S form a convex
quadrilateral.



CHAPTER 6. COLOURINGS OF THE PLANE 148

Hence |S | = n + 1 and S is a convex (n + 1)-gon, which completes the inductive
step.

Exercise 6.6.11 Tarsi’s proof. Michael Tarsi proved Erdős-Szekeres theorem on
convex polygons in the following way:

1. Take n ≥ 4.

2. Take a set S of points in the plane in general position of the size m = R(3; n, n).

3. Enumerate the elements of the set S by numbers from 1 to m.

4. Colour 3-element subsets of S in the following way:

• Colour the set {i, j, k}, i < j < k, red if we travel from i to j to k in a
clockwise direction.

• Colour the set {i, j, k}, i < j < k, blue if we travel from i to j to k in a
counterclockwise direction.

Complete Tarsi’s proof!
Solution. By Ramsey’s theorem there is a set T , T ⊂ S, and |T | = n, such that for
any i, j, k ∈ T , i < j < k, the set {i, j, k} is always of the same colour, say blue.
But this implies that any four points from T form a convex quadrilateral. To see this
take x, y, z,w ∈ T and suppose that x, y, z, and w determine a concave quadrilateral.
Suppose that the point w is inside of the triangle determined by x, y, and z. Also,
suppose that x < y < z.

z x

y

w

Figure 6.6.12 {x, y, z}
We consider four cases given on Figure 6.6.13:

z x

y

w

w < x: {w, x, z}

z x

y

w

x < w < y: {x,w, y}

z x

y

w

y < w < z: {y,w, z}

z x

y

w

z < w: {x, z,w}

Figure 6.6.13 Four cases.

Exercise 6.6.14 f (5, 5). Prove that f (5, 5) = 21.
Directions: Adopt the proof of Theorem 2.5 in The Erdős-Szekeres problem on

points in convex position - a survey by W. Morris and V. Soltan for the case k = l = 5.

http://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00877-6/home.html
http://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00877-6/home.html
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Solution. We take the following facts as given:

1. f (k, l) = f (l, k)

2. From
f (k, l) ≤

(
k + l − 4

k − 2

)
+ 1

it follows that f (4, 4) ≤ 7, f (5, 4) ≤ 11, and f (5, 5) ≤ 21.

3. f (k, 3) = f (3, k) = k.

Consider the set S of 6 points in the plane in general position given on Figure 6.6.15.

Figure 6.6.15 Six points in general position with no a 4-cup or a 4-cap.

Note that there is NO a 4-cup or a 4-cap in this configuration. Hence f (4, 4) ≥ 7,
which implies that f (4, 4) = 7.

Next we consider a configuration of 6 points with no 4-cup or 4-cap, like one
above. We call this configuration A. Let B be a 4-cup. We place the configurations A
and B in the way that the following conditions are satisfied:

1. Every point in B has greater first coordinate than the first coordinates of any
point in A.

2. The slope of any line connecting a point in A with a point in B is greater than
the slope of any line connecting two points in the same configuration.

Let S = A ∪ B. See Figure 6.6.16.

A

B

Figure 6.6.16 The 10 point configuration S with no a 5-cup or a 4-cap.

Also note

1. Any cup in S that contains both points from A and B can contain only ONE
point from B. (Why?)
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2. Therefore the configuration S can contain at most a 4-cup.

3. The configuration S does not contain a 4 cap. (Why?)

Hence, the configuration S contains neither a 5-cap nor a 4-cap. It follows that

f (5, 4) ≥ |S | + 1 = |A| + |B | + 1 = 6 + 4 + 1 = 11.

Thus, f (5, 4) = f (4, 5) = 11.
Finally we consider two configurations, X and Y , that satisfy the following condi-

tions:

1. |X | = |Y | = 10.

2. The configuration X does not contain a 4-cap or a 5-cap. This is possible because
10 < f (4, 5).

3. The configuration Y does not contains a 5-cup or a 4-cap. This is possible
because 10 < f (5, 4).

4. Every point in Y has greater first coordinate than the first coordinates of any
point in X .

5. The slope of any line connecting a point in X with a point in Y is greater than
the slope of any line connecting two points in the same configuration.

Let Z = X ∪ Y . See Figure 6.6.17.

X

Y

Figure 6.6.17 The 20 point configuration Z with no a 5-cup or a 5-cap.

Also note

1. Any cup in Z that contains both points from X and Y can contain only ONE
point from Y . (Why?)

2. Therefore the configuration Z can contain at most a 4-cup.

3. Any cap in Z that contains both points from X and Y can contain only ONE
point from X . (Why?)

4. The configuration Z can contain at most a 4-cap. (Why?)

Hence, the configuration S contains neither a 5-cap nor a 5-cap. It follows that

f (5, 5) ≥ |Z | + 1 = |X | + |Y | + 1 = 10 + 10 + 1 = 21.

Thus, f (5, 5) = 21.
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Exercise 6.6.18 Moser spindle. In theMay 1961 issue of the CanadianMath Bulletin,
Leo and William Moser posted their solution to the following problem:

1. Prove that every set of six points in the plane can be coloured in three colours
in such a way that no two points a unit distance apart have the same colour.

2. Show that in (a) six cannot be replaced by seven.

In other words, Leo and William Moser established that the chromatic number of
the plane χ ≥ 4.

In this exercise we will follow Leo and William Moser’s solution to the problem
above.

Let two points which are a unit distance apart be called “friends”, otherwise they
are “strangers”. If a finite set of points can be coloured by k colours so that no pair of
friends have the same colour we say that this set permits a proper k-colouring. In the
rest of this note we assume that any set of four or more points is a subset of a plane.

1. Prove that χ ≥ 3,in other words prove that if the points in the plane are coloured
by one of the two given colours then there must exist two points that are at a unit
distance and coloured by the same colour.

2. Show that four points in the plane cannot be friends to each other and that two
points cannot have three common friends.

3. Show that any set of four points permits a proper 3-colouring.

4. Show that any set of five points permits a proper 3-colouring.

5. Show that any set of six points permits a proper 3-colouring.

6. Use the Moser spindle to prove that χ ≥ 4.

Solution.

1. Consider an equilateral triangle.

2. Observe that the existence of four points that are friends with each other would
imply the existence of a triangle inscribed in the unit circle with all its sides
equal to 1. A mutual friend of two friends, say A and B, must belong to the
intersection of circles with their centres at A and B and radii equal to 1.

3. Say that A and B are friends. Use two colours to colour those two points. Only
one of C ad D can be a mutual friend to A and B, say C. Use the third colour to
colour C. How should we colour the point D?

4. Observe that from the second part of (2) it follows that not all of the points A,
B, C, D, and E can have exactly three friends each. Suppose that the point A
does not have three friends. Say that A has two friends, B and C. Use (3) to
properly 3-colour points B, C, D, and E . How should we colour the point A? If
A has four friends then those four points belong to a circle with the centre at A
and we can colour them properly with two colours.

5. Let A, B, C, D, E , and F be six points in the plane. If there is a point with two
or four or five friends then we can use a similar argument as in (4). Suppose
that all points have exactly three friends. Say that A is a friend with B, C, and
D. Observe that A, E , and F have a common friend, say B. If E and F are
strangers then there is a proper 2-colouring of the six points. If E and F are
friends, consider the following two cases: (1) B is the only common friend for
E and F; (2) E and F have another common friend.
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6. Use three colours and try to avoid colouring two friends with the same colour.

?

?

?

?

Figure 6.6.19 Three colours are not enough!

Exercise 6.6.20 Density and chromatic number. The “density version” of the
problem of finding the chromatic number of the plane was attributed to Leo Moser in
H. T. Croft, Incidence incidents, Eureka (Cambridge) 30 (1967), 22 − 26:

“What is m1(R
2), the maximum density of a measurable set in the plane that does

not contain a unit-distance pair?”
In more casual terms, the question is to determine the size (in terms of the portion

of the plane) that a set that avoids the unit distance cannot exceed.
Erdős said that “it seems very likely” that m1(R

2) < 0.25.
The current best upper upper bound for m1(R

2) is 0.25688 and it is obtained by
G. Ambrus and M. Matolcsi (“Density estimates of 1-avoiding sets via higher order
correlations,” arXiv:1809.05453).

In 1967, Croft established that 0.2293 < m1(R
2) ≤ 2

7 = 0.2857 and commented
that “the bounds are surprisingly close.”

In this exercise we will follow Croft’s argument that m1(R
2) > 0.2293. Interest-

ingly enough this is still the best known lower bound for m1(R
2).

Start by covering the plane with an infinite equilateral triangular lattice. The
length of the side of the triangles in the lattice will be determined by the following
construction.

Say that 4XY Z is one of the triangles in the lattice. We construct three mutually
congruent “lumps” in 4XY Z in the following way:

• Choose an angle θ ∈
(
0, π6

)
.

• Let B and C be points inside of 4XY Z such that XB = XC =
1
2

and that
∠(Y XC) = ∠(Z XB) = θ.

• Draw the arc BC on the circle with the centre at X and radius equal to
1
2
.

• Let A be the point on the line segment X Z such that AB ⊥ X Z .

• Let D be the point on the line segment XY such that CD ⊥ XY .

• Call the “interior” of the region in the plane bounded by the line segments X A,
XD, AB, CD, and the arch BC, a “lump” centred at X with the angle θ.

• Do the same construction for the vertices Y and Z . Keep the angle θ same as
above to obtain two more congruent lumps in 4XY Z .

• Choose |XY |, the length of the side of the equilateral triangle so that the distance
between the corresponding points (obtained in this construction) on the line
segment XY equals to 1.

• Do the same construction for all triangles in the lattice.

See Figure 6.6.21.

https://arxiv.org/abs/1809.05453
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1

θ
0.5

X Y

Z

A

A B

C
D E

Legend:
|XY | = |X Z | = |Y Z |
|XB | = |XC | = 0.5

Arc BC is on the circle (X; 0.5)
∠(DXC) = ∠(BX A) = θ

|DE | = 1
AB ⊥ X Z , CD ⊥ XY

Figure 6.6.21 Croft’s construction of “three lumps”

Let S = S(θ) be the set of all points in the plane that belong to one of the lumps
obtained by the above construction for some (fixed) θ.

1. What is the length of the line segment XY?

2. Show that if M, N ∈ S then |MN | , 1.

3. Find the area A = A(θ) of a lump.

4. Determine the area A4 = A4(θ) of a triangle in the lattice.

5. Find the density δ(S) = δ(S(θ)) of the set S = S(θ).

6. Use your knowledge of calculus to find the maximum value of δ(S(θ)). Use
technology to determine the maximum value.

7. Are you convinced that m1(R
2) > 0.2293? Why yes or why not?

Solution.

1. From the 4XDC it follows that

|XD| = |XC | · cos θ =
cos θ

2
.

Hence

|XY | = |XD | + |DE | + |EY | =
cos θ

2
+ 1 +

cos θ
2
= 1 + cos θ.

2. We distinguish two cases:

• Case 1: There is a vertex X in the lattice such that M and N belong to the
same lump or that they belong to two different lumps that are associated
to X (i.e M and N are in two different triangles in the lattice that share the
vertex X).
In this case M and N belong to the interior of a circle with radius equal to
1
2
which implies that |MN | < 1.
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• Case 2: There are two different vertices in the lattice, X and X ′, such that
M belongs to a lump centred at X and N belongs to a lump centred at X ′.
By construction, the distance between a point that belongs to the boundary
of the lump centred at X and a point that belongs to the boundary of
the lump centred at X ′ is greater than or equal to 1. Hence, in this case
|MN | > 1.

3. Consider the lump centred at the vertex X on Figure 6.6.21 and observe that

A = (Area of 4XDC) + (Area of circular sector XBC) + (Area of 4X AB).

Next, from

(Area of 4XDC) = (Area of 4X AB) =
1
2
·

(
1
2
· sin θ

)
·

(
1
2
· cos θ

)
=

sin(2θ)
16

and

(Area of circular sector XBC) =
1
2
·

(
1
2

)2
·

( π
3
− 2θ

)
=

1
8
·

( π
3
− 2θ

)
it follows that

A = A(θ) =
sin(2θ)

8
+

1
8
·

( π
3
− 2θ

)
=

1
8
·

(
sin(2θ) +

π

3
− 2θ

)
.

4. Since the side of the equilateral triangle equals to 1 + cos θ it follows that

A4 =

√
3 · (1 + cos θ)2

4
.

5. Recall that the question is to determine the portion of the plane that the set
S = S(θ) occupies. Because all triangles in the lattice are congruent, the density
of the set S in the plane will be equal to the portion of a single triangle in the
lattice that the three lumps occupy. Hence

Density of S(θ) = δ(S(θ)) =
3 · A

A4

= 3 ·
1
8 ·

(
sin(2θ) + π

3 − 2θ
)

√
3·(1+cos θ)2

4

=

√
3

2
·

sin(2θ) + π
3 − 2θ

(1 + cos θ)2
.

6. From

dδ
dθ
=

√
3

2
·
(2 cos(2θ) − 2)(1 + cos θ)2 − 2(sin(2θ) + π

3 − 2θ)(1 + cos θ) · (− sin θ)
(1 + cos θ)4

=
√

3 ·
(cos(2θ) − 1)(1 + cos θ) + (sin(2θ) + π

3 − 2θ) · sin θ
(1 + cos θ)3

=
√

3 ·
−2 sin2 θ · (1 + cos θ) + (sin(2θ) + π

3 − 2θ) · sin θ
(1 + cos θ)3

=
√

3 ·
sin θ · (−2 sin θ − 2 sin θ cos θ + sin(2θ) + π

3 − 2θ)
(1 + cos θ)3

=
√

3 ·
sin θ · (−2 sin θ + π

3 − 2θ)
(1 + cos θ)3
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= 2
√

3 ·
sin θ · ( π6 − sin θ − θ)
(1 + cos θ)3

it follows that
dδ
dθ
= 0⇔ sin θ + θ =

π

6
.

Observe that by the Intermediate Value Theorem there is θ0 ∈
(
0, π6

)
such that

sin θ0 + θ0 =
π

6
.

WolframAlpha gives θ0 ≈ 0.263316 radians.
To decide if the critical number θ = θ0 yields the absolute maximum value of
δ = δ(S(θ)) we use the First Derivative Test.
Observe that

dδ
dθ

> 0⇔ η(θ) =
π

6
− sin θ − θ > 0.

But
dη
dθ
= − cos θ − 1 < 0, θ ∈

(
0,
π

6

)
which means that the function η(θ) is decreasing from η(0) = π

6 to η( π6 ) = −
1
2 .

Also, this implies that θ0 is the only only critical number of the function δ.

Hence, when passing through θ = θ0,
dδ
dθ

changes its sign from positive to
negative, and by the First Derivative Test the number δ = δ(S(θ0)) is the local
and absolute maximum value of the function δ = δ(S(θ)).
From

δ(S(θ)) =

√
3

2
·

sin(2θ) + π
3 − 2θ

(1 + cos θ)2

it follows that

δ(S(θ0)) ≈ δ(S(0.263316)) ≈
√

3
2
·
sin(0.526632) + π

3 − 0.526632
(1 + cos(0.263316))2

≈ 0.229365.

7. Let T be the family of all sets in the plane that avoid the unit distance. By
definition

m1(R
2) = sup{δ(T) : T ∈ T }.

Since S(θ0) ∈ T , it follows that

m1(R
2) ≥ δ(S(θ0)) > 0.2293.
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