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1 Introduction

In 1928 the English mathematician Frank Plumpton Ramsey published his pa-
per On a problem of formal logic [13] in which he proved what would become
known as Ramsey’s Theorem. The paper has led to a large area of combina-
torics now known as Ramsey Theory. We shall explore some major results in
Ramsey Theory which all, broadly speaking, find some degree of order within
a large disordered set.

The field of Ramsey Theory has only relatively recently come together to
be viewed as one body and many seemingly basic results are still not known,
and there is no prospect of them being known in the near future.

In 1916 Issai Schur proved that in any finite colouring of the natural numbers
there must exist three monochromatic elements, x, y and z such that x+y = z.
This basic result was generalised by Richard Rado in 1933 to give a characteri-
sation of the homogeneous systems to which a monochromatic solution can be
found in any finite colouring of the natural numbers. We examine these results
in Chapter 4.

Between Schur proving this theorem in 1916 and Rado publishing his theo-
rem in 1933, Ramsey and Van der Waerden published theorems now considered
central to Ramsey Theory.

We shall begin by examining Ramsey’s Theorem, initially for graphs, and
then, more generally, for sets. For example Ramsey’s theorem for graphs states
that in any large enough finitely coloured complete graph there must exist some
large monochromatic substructure. Little is known about the actual orders that
these complete graphs must have to ensure that they contain some particular
monochromatic substructure.

Van der Waerden’s Theorem was proved in 1927, a year earlier than Ram-
sey’s. Van der Waerden proved that in any finite colouring of the natural
numbers there must exist some monochromatic arithmetic progression with k
terms. We shall give an elegant and short proof based on colour focussing.

Finally we shall turn to Hindman’s Theorem, the most recent theorem which
we shall examine, it was proved in 1974. Hindman’s Theorem states that, for
every finite colouring of the natural numbers there exists some infinite subset
S ⊆ N such that all the finite sums of the elements of S are monochromatic.
Although it is not hard to understand this theorem, it requires some powerful
mathematical tools in its proof. In Chapter 5 we shall build up these ideas
before finally proving the result.
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2 Ramsey’s Theorem

A result relating to many problems in Ramsey Theory is the Pigeonhole prin-
ciple, we introduce it here.

2.1 The Pigeonhole principle

The pigeonhole principle, also known as the Dirichlet pigeonhole principle, sim-
ply states that if there exists n pigeonholes containing n+1 pigeons, one of the
pigeonholes must contain at least two pigeons. This can be generalised to say
that if there are a finite number of pigeonholes containing an infinite number
of pigeons at least one of the pigeonholes must contain an infinite number of
pigeons.

2.2 Small Ramsey numbers

To understand Ramsey numbers and Ramsey’s Theorem we must first unders-
tand what is meant by a coloured graph.

Definition 2.2.1. A 2-coloured graph is a graph whose edges have been coloured
with 2 different colours.

Example. Three ways in which 1K4 could be 2-coloured are given in Figures
1, 2 and 3.

Ramsey’s Theorem assets that there exists a number R(s) such that that
any complete 2-coloured graph of order n ≥ R(s) must contain a complete
monochromatic subgraph of order s. That is, in any 2-colouring of Kn with the
colours red and blue there must exist either a red or a blue Ks. Equivalently,
every graph of order n ≥ R(s) has either a complete or empty subgraph of
order s. These two statements are equivalent because, any graph, G, of order
n gives rise to a 2-colouring of Kn, since we may colour G with one colour and
its complement the other colour. Colouring a graph is simply a convenient way
of splitting it’s edges into separate subgraphs.

Definition 2.2.2. The Ramsey number, R(s, t), is the order of the smallest
complete graph which, when 2-coloured, must contain a red Ks or a blue Kt.

1Kx denotes the complete graph of order x.
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R(s, t) = R(t, s) since the colour of each edge can be swapped. Two simple
results are R(s, 1) = 1 and R(s, 2) = s. R(s, 1) = 1 is trivial since K1 has no
edges and so no edges to colour, thus any colouring of K1 will always contain a
blue K1. R(s, 2) = s is also a simple result; if all the edges of Ks are coloured
red, it will contain a red Ks, however if one edge is coloured blue it will contain
a blue K2. The edges of any graph of order less that s could all be coloured
red in which case the graph would contain neither a red Ks or a blue K2.

The values of these Ramsey numbers are, perhaps surprisingly, very difficult
to determine and only a small number of them are known, for example R(5, 5)
is still unknown. The known non-trivial Ramsey numbers for two colours are
listed in the table below.

R(s,t) 3 4 5 6 7 8 9

3 6 9 14 18 23 28 36

4 9 18 25

5 14 25

6 18

7 23

8 28

9 36

Given below are two examples which illustrate the methods by which Ram-
sey numbers may be found.

Example. R(3, 3) = 6.
We see first that R(3, 3) > 5 from the colouring of K5 below. This colouring

shows K5 may be 2-coloured such that it does not contain a red or blue K3 as
a subgraph.

It is then simple to see that R(3, 3) ≤ 6 and so R(3, 3) = 6. Indeed, in any
colouring of K6 each vertex must be incident to at least three red or three blue
edges by the pigeonhole principle. We take a vertex, say x, which is incident to
at least three red edges. These edges are clearly incident to three other vertices.
If every edge between these three vertices is blue then we have a blue K3 and so
we assume that at least one of these edges is red. This red edge, together with
the two edges incident to x will form a red K3. If there does not exist a vertex
x which is incident to three red edges then every vertex must be incident to at
least three blue edges, causing a monochromatic K3 to arise in a similar way.

Example. R(4, 3) = 9.
We see first that R(4, 3) > 8 from the colouring of K8 below. This colouring

shows K8 may be 2-coloured such that it does not contain a red K4 or a blue
K3 as a subgraph.
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To show that R(4, 3) ≤ 9, we consider any 2-colouring of K9. In any graph the
number of vertices with odd degree must be even. For this reason there cannot
exist a red 5-regular subgraph of K9 or a blue 3-regular subgraph of K9. This
implies that in a complete 2-coloured graph of order nine there must be at least
one vertex which is incident to at least six red or at least four blue edges.

We already have that R(3, 3) = 6 so taking a vertex, say x, which is incident to
six red edges, the six vertices connected to these red edges must induce a red
or blue K3. We are done if we have a blue K3 so we assume that we have a red
K3, this red K3 together with the edges connecting K3 to x must induce a red
K4, and we are done.

We now turn to the case where x is incident to four blue edges. Between two of
the vertices connected to x by blue edges there must exist either a blue edge or
all the edges must be red. If there exists a blue edge we have, together with the
edges incident to x, a blue K3, we call this case (i). Otherwise all four vertices
are connected by red edges and we have a red K4, we call this case (ii).

In either case there must exist a red K4 or a blue K3 and so in any 2-coloured
complete K9 there must exist either a red K4 or a blue K3 as a subgraph.
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2.3 Ramsey’s Theorem for coloured graphs

Theorem 2.3.1. For any two natural numbers, s and t, there exists a natural
number, R(s, t) = n, such that any 2-coloured complete graph of order at least
n, coloured red and blue, must contain a monochromatic red Ks or blue Kt.

Proof. We prove that R(s, t) exists by proving it is bounded. We shall use
proof by induction first assuming that R(s− 1, t) and R(s, t− 1) exist. As was
shown earlier R(s, 2) = R(2, s) = s and R(s, 1) = R(1, s) = 1 are trivial results.
Claim. R(s, t) ≤ R(s − 1, t) + R(s, t − 1).

We first take a 2-colouring of a complete graph with n = R(s−1, t)+R(s, t−
1) vertices. We now pick one of the vertices in Kn, say x. We then produce
two sets, Rx and Bx, Rx is the set of vertices adjacent to x such that every
edge connecting a vertex in Rx to x is red. Similarly Bx is the set of vertices
adjacent to x such that every edge connecting a vertex in Bx to x is blue.

Since Kn is a complete graph Bx = [n]\(Rx∪{x}) and so |Rx|+|Bx| = n−1.
If |Rx| < R(s−1, t) and |Bx| < R(s−1, t) then since n = R(s−1, t)+R(s, t−1)
we must have |Rx| + |Bx| ≤ n − 2, a contradiction. So |Bx| ≥ R(s, t − 1) or
|Rx| ≥ R(s − 1, t).

If |Bx| ≥ R(s, t − 1) and Bx induces a red Ks we are done. If Bx induces a
blue Kt−1 then Kn must contain a blue Kt since Bx ∪ {x} must induce a blue
Kt. Indeed, each edge xt is blue for all t ∈ Bx, from the definition of Bx. So
Bx ∪ {x} must induce a blue Kt if Bx contains a blue Kt−1. The case for Rx is
completely symmetric, that is, if Rx induces a blue Kt we are done and if Rx

induces a red Ks−1 then Kn must contain a red Ks since Rx ∪{x} must induce
a red Ks.

We have shown that a 2-coloured complete graph of order R(s − 1, t) +
R(s, t − 1) must contain a red Ks or a blue Kt, proving that R(s, t) ≤ R(s −
1, t) + R(s, t − 1). This completes our induction. �

We now prove the infinite case of Ramsey’s Theorem for two colours.

Definition 2.3.2. KN is the complete graph whose vertex set is countably in-
finite.

Theorem 2.3.3. Every 2-coloured KN must contain a countably infinite mo-
nochromatic complete graph.

Proof. Fix a 2-colouring of the edges of the complete graph, KN. We label
each vertex with an element from N and take the vertex, x, which we have
labeled 1, we now consider all the edges incident with x. Since the graph is
infinite, using the pigeonhole principle, there must be an infinite set of red (or
blue) edges incident with x. Define X to be the infinite set of vertices connected
to x by a red (or blue) edge. Now consider a vertex within X, say y > 1. Again
because the set X is infinite there must be an infinite set of blue (or red) edges
incident with y and some vertex in X. Define Y ⊂ X to be the infinite set
of vertices which are connected to y by a blue (or red) edge. Now consider a
vertex within Y say z, where z > y. Again because the set Y is infinite there
must be infinite number of red (or blue) edges connecting z to vertices in Y .
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Define Z ⊂ Y to be the infinite set of vertices which are connected to z by a
red (or blue) edge.

We can continue picking successive vertices indefinitely since our graph is infi-
nite, this will result in a set of vertices V = {x, y, z, . . .} ⊆ KN. We define E
to be the set of edges connecting the vertices in V , so E is {xy, xz, . . . , yz, . . .}.
From this definition of the set E it is clear that the colour of any edge in E is
determined by the smaller of its end vertices. That is, if we assume that the
colour of each edge in the set of edges {xx̄ | x̄ ∈ X}, is red, each edge in the
set of edges {yȳ | ȳ ∈ Y }, is blue and each edge in the set of edges {zz̄ | z̄ ∈ Z},
is red. Then any edge xv for v ∈ V must be red, any edge yv for v ∈ V \ {x}
must be blue and any edge zv for v ∈ V \ {x, y} must be red. We can now
produce a 2-colouring of V , we colour any vertex in V , say p, red if every edge
in {pp̄ | p̄ ∈ P}, is coloured red, where P is defined in the same way that X,Y
and Z were. Similarly, we colour any vertex in V , say q, blue if every edge in
{qq̄ | q̄ ∈ Q}, is coloured blue, where Q is defined in the same way that X,Y
and Z were. In our case the colouring of V is {x, y, z, . . .}. Since V consists of
infinitely many vertices, coloured with only two colours, the pigeonhole prin-
ciple allows us to conclude there must be an infinite monochromatic set within
V , we call this set M . This infinite set of monochromatic vertices induces an
infinite monochromatic complete subgraph of KN. Each vertex in M is adjacent
to every other vertex in M . Every vertex in M is the same colour, so every
edge in the graph induced by M must have the same colour. Thus the graph
induced by the vertex set M is a countably infinite monochromatic complete
graph. �

Definition 2.3.4. A graph is r-coloured if we colour each edge of the graph
with one of r colours.

Definition 2.3.5. The Ramsey Number, Rr(s), is the order of the smallest
complete graph which, when r-coloured, must contain a monochromatic Ks.
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Rr(s) can also be written R(

r times︷ ︸︸ ︷
s, s, . . . , s). Generally, as above, we write R(s)

for R2(s) but we could also be write R(s, s). Any complete r-coloured graph of
order n ≥ Rr(s) must contain a complete monochromatic subgraph of order s.
We call Ramsey numbers of the form R(s, s, . . . , s) diagonal Ramsey numbers.
Other Ramsey numbers are of the form R(s, t, . . . , n).

We may now deduce Ramsey’s Theorem for a finite number of colours di-
rectly from Theorem 2.3.3.

Theorem 2.3.6. Every r-coloured KN must contain a countably infinite mo-
nochromatic complete graph, where 1 ≤ r < ∞.

Proof. Suppose that KN is coloured with r colours, say k1, k2, . . . , kr. We
may produce a graph K1

N
by changing the colouring of KN. Each edge of K1

N

that was coloured with k1 in KN is coloured with l1 in K1
N
. Each edge that was

coloured with one of k2, k3, . . . , kr−1 or kr in KN is coloured with l2 in K1
N
.

From Theorem 2.3.3, since K1
N

is a complete countably infinite graph co-
loured using only two colours, l1 and l2, K1

N
must contain a countably infinite

monochromatic complete graph coloured with either l1 or l2. If K1
N

contains
a countably infinite monochromatic complete graph coloured with l1 we are
done since KN must then also contain this countably infinite monochromatic
complete graph. If K1

N
contains a countably infinite monochromatic complete

graph coloured with l2, then we produce the graph K2
N
.

We define K2
N

to be the countably infinite monochromatic complete graph
coloured with l2 in K1

N
. Each edge of K2

N
that was coloured with k2 in KN

is coloured with m1 in K2
N
. Each edge of K2

N
that was coloured with any of

k3, k4, . . . , kr−1 or kr in KN is coloured with m2 in K2
N
. From Theorem 2.3.3,

since K2
N

is a countably infinite complete graph coloured using only two colours,
m1 and m2, K2

N
must contain a countably infinite monochromatic complete

graph coloured with either m1 or m2. If K2
N

contains a countably infinite
monochromatic complete graph coloured with m1 we are done since KN must
then also contain this countably infinite monochromatic complete graph. If K2

N

contains a countably infinite monochromatic complete graph coloured with m2,
then we produce the graph K3

N
. We may define K3

N
in exactly the same way we

defined K2
N

using K1
N
.

We may continue in this way, however, since KN is only coloured with a
finite number of colours at some step we must find either a countably infinite
monochromatic complete graph coloured with one of k1, k2, k3, . . . kr−2 or we
shall define Kr−1

N
. Kr−1

N
must be a complete infinite graph, coloured using only

kr−1 and kr. Again from Theorem 2.3.3 Kr−1
N

contains a countably infinite
monochromatic complete graph coloured with either kr−1 or kr. Since both the
sets of edges coloured with kr−1 and kr in Kr−1

N
are also in KN we must have

that KN contains some countably infinite monochromatic complete graph.
�

The second of the results, proved as a direct consequence of Theorem 2.3.3
is Theorem 2.3.1, we give a second proof here. We must first give a definition.
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Definition 2.3.7. If we label the vertices of Kn with the natural numbers,
1, 2, 3, . . . , n, then we may restrict a colouring of Kn to a colouring of Km

where m ≤ n. We restrict the colouring by only colouring the complete graph
on the first m vertices in Kn. In this restricted colouring Km is coloured in
exactly the same way it was coloured in Kn.

Second proof of Theorem 2.3.1. This is a proof by contradiction. We first
assume we can find a 2-colouring of Kn which does not contain a red Ks or a
blue Kt for every n ∈ N. Let Cn be such a 2-colouring of Kn.

We first note that for every n ∈ N there are a finite number, 2(
n

2), ways
of 2-colouring Kn. We take a subsequence of the colourings C2, C3, C4, . . .,
consisting only of the colourings which when restricted to K2 colour it’s edge
in exactly the same way. K2 can only be coloured in two different ways with
two colours so, by the pigeonhole principle, there must be an infinite number
of the colourings, Ci for i ∈ N and i ≥ 2, which colour K2 in the same way.
We call this subsequence of colourings C2 and define I2 such that Ci ∈ C2 only
if i ∈ I2. We can then find a subset C3 ⊆ C2, consisting only of the colourings
which when restricted to K3 colour all edges in exactly the same way. K3 can
only be coloured in eight different ways with two colours so, by the pigeonhole
principle, there must be an infinite number of the colourings, Ci for i ∈ I2,
which colour K3 in the same way. We call this subset of colourings C3 and
define I3 such that Ci ∈ C3 only if i ∈ I3. We note that I3 ⊆ I2. We may
continue in this way indefinitely.

We now produce a 2-colouring, C, of KN. We define C, as follows. For every
R ∈ N with 2 ≤ R ≤ x we set C(KR) = Ci(KR) where Ci ∈ Cx. This colouring
is well defined, if R ≤ x ≤ y then defining the colouring C(KR) using Cx or
Cy will give equal results since C(KR) = Ci(KR) = Cj(KR) for Ci ∈ Cx and
Cj ∈ Cy. This is clear since the subset of colourings Cy consists of the colourings
Ci such that i ∈ Iy ⊆ Ix ⊆ IR, so they all colour KR in the same way.

We now assume that there exists some natural number, n, such that under
the colouring C the graph Kn contains some red Ks or blue Kt. We can
see from the definition of C that C(Kn) = Ci(Kn) for some Ci ∈ Cν where
n ≤ ν. However, by definition any colouring in Cν colours any complete graph
of order n so that is does not contain a red Ks or a blue Kt. So we have a
contradiction. Thus under the 2-colouring C there does not exist a natural
number, n, such that C(Kn) contains some red Ks or blue Kt. This is also a
contradiction, from Theorem 2.3.3, every 2-colouring of KN contains a countably
infinite monochromatic complete graph. C is a 2-colouring of KN which does
not contain a red Ks or blue Kt so certainly does not contain a countably
infinite monochromatic complete graph. So there must exist some n ∈ N such
that in any 2-colouring of Kn there exists a red Ks or a blue Kt. �

2.4 Ramsey’s Theorem for sets

Definition 2.4.1. For some set, A, and natural number, k, the subsets of A
of size k are called k-tuples. The set of all k-tuples in A is A(k).

Example. The 4-tuples of the set A = {1, 2, 3, 4, 5} are the sets {1, 2, 3, 4},
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{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5} and {2, 3, 4, 5}. The set A(4) is {{1, 2, 3, 4},
{1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}. A 3-colouring of A(4) is
{{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}}.

Theorem 2.4.2. Let χ be an r-colouring of A(k) where 1 ≤ k < ∞ and A is a
countably infinite set. Then A contains a monochromatic infinite set, M , that
is, M (k) is monochromatic.

Proof. This proof is one of induction on k. The result for k = 1 is trivial,
since the set is split into sets of size one, that is, we colour each element with
one of the r colours. Since these elements are coloured with a finite number
of colours and the set is infinite, by the pigeonhole principle, there must be a
monochromatic infinite set of these elements.

We assume that the theorem is true for subsets of size less than k. In
particular, for every r-colouring of A(q) where A is a countably infinite set and
q is a natural number such that q < k, A contains a monochromatic infinite
set. We first fix an r-colouring, χ, of A(k). We now set A0 = A and choose
an element a0 ∈ A0. Let B1 = A0 \ {a0}. We then define an r-colouring,
χ1, of the (k − 1)-tuples of B1. The colouring of each (k − 1)-tuple, τ , in B1

is defined by χ1(τ) = χ(τ ∪ {a0}). From our induction hypothesis, B1 must
contain an infinite set, A1, all of whose (k − 1)-tuples are monochromatic. We
now take a1 ∈ A1 and define B2 = A1 \ {a1} and an r-colouring, χ2, of the
(k − 1)-tuples of B2. The colouring of each (k− 1)-tuple, τ , in B2 is defined by
χ2(τ) = χ(τ ∪ {a1}). Again by the induction hypothesis, B2 must contain an
infinite set A2 all of whose (k−1)-tuples are monochromatic. This argument can
be continued indefinitely to obtain an infinite sequence of r-coloured elements
{a0, a1, a2, . . .}. Each element, ai, of this sequence is given the same colour as
the infinite set of monochromatic (k − 1)-tuples, Ai+1. An infinite sequence of
nested sets A0 ⊃ A1 ⊃ A2 ⊃ · · · with an ∈ An is also produced since Ai is an
infinite set in Ai−1 \ {ai−1} and therefore contained in Ai−1. All the k-tuples
in A whose only element outside Ai is ai−1 must have the same colour because
of the way χi coloured the (k − 1)-tuples. Any k-tuple in {a0, a1, a2, . . .} which
contains ai and k − 1 elements from {ai+1, ai+2, . . .} must be red if ai is red.
From the pigeonhole principle there must be infinitely many monochromatic
elements in {a0, a1, a2, . . .}. Each k-tuple of this monochromatic infinite set
must be monochromatic. That is, if in {a0, a1, a2, . . .} there are an infinite
number of red elements then our infinite monochromatic set, M , would consist
of every red element ai. �

From Theorem 2.4.2, Ramsey’s Theorem for countably infinite sets sets,
we may deduce Theorem 2.4.3, Ramsey’s Theorem for finite sets. We will only
prove this theorem for two colours, however the proof can be simply generalised
for any finite colouring.

Theorem 2.4.3. Given natural numbers, s and k, there exists some natural
number n such that for any 2-colouring of [n](k) there is a monochromatic set,
S, of size s, such that S ⊆ [n].
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Proof. This is a proof by contradiction. We first assume we can find a
2-colouring of [n](k) which does not contain a monochromatic set of size s for
every n ∈ N. Let Cn be such a 2-colouring.

We first note that for every n ∈ N there are a finite number, 2(
n

k), ways of
2-colouring [n](k). We take a subsequence of the colourings, Ck, Ck+1, Ck+2, . . .,
consisting only of the colourings which when restricted to [k](k) colour it in

exactly the same way. There are only 2(
k

k) = 2 possible colourings of [k](k) so,
by the pigeonhole principle, there must be an infinite number of the colourings,
Ci, for i ∈ N and i ≥ k, which colour [k](k) in the same way. We call this subset
of colourings Ck and define Ik such that Ci ∈ Ck only if i ∈ Ik. We can then
find a subset Ck+1 ⊆ Ck, consisting only of the colourings which when restricted
to [k + 1](k) colour it in exactly the same way. [k + 1](k) can only be coloured
in a finite number of ways with two colours so, by the pigeonhole principle,
there must be an infinite number of the colourings, Ci for i ∈ Ik, which colour
[k+1](k) in the same way. We call this subset of colourings Ck+1 and define Ik+1

such that Ci ∈ Ck+1 only if i ∈ Ik+1. We note that Ik+1 ⊆ Ik. We can continue
to produce subsets of the colourings in this way. A subset of colourings, Cx,
each of which colour [x](k) in exactly the same way can be restricted to a subset
of colourings, Cy, each of which colour [y](k) in exactly the same way, whenever
y ≥ x.

We now produce a 2-colouring, C, of N(k). We define the 2-colouring, C,
as follows. For every R ∈ N with k ≤ R ≤ x we set C([R](k)) = Ci([R](k))
where Ci ∈ Cx. This colouring is well defined, since if [R] ⊆ [x] ⊆ [y] then
defining the colouring C([R](k)) using Cx or Cy will give equal results since
C([R](k)) = Ci([R](k)) = Cj([R](k)) for Ci ∈ Cx and Cj ∈ Cy. This is clear
since the subset of colourings Cy is just the set of colourings Ci such that
i ∈ Iy ⊆ Ix ⊆ IR, so they all colour [R](k) in the same way.

We now assume that there exists some natural number, n, such that C([n](k))
contains a monochromatic set of size s. We can see from the definition of C that
C([n](k)) = Ci([n](k)) for some Ci ∈ Cν , where ν ≥ n. However, by definition
any colouring in Cν colours [n](k) so that it does not contain a monochromatic
set of size s. So we have a contradiction. Thus under the colouring C there
does not exist a natural number, n, such that C([n](k)) contains a monochro-
matic set of size s. This is is also a contradiction, from Theorem 2.4.2, every
2-colouring of N(k) contains an infinite monochromatic set. C is a 2-colouring
of N(k) which does not contain a monochromatic set of size s, so certainly does
not contain an infinite monochromatic set. Therefore, we may conclude there
must exist some natural number, n, such that for any 2-colouring of [n](k) there
is a monochromatic set, S, of size s, such that S ⊆ [n]. �
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3 Van der Waerden’s Theorem

In 1927, a year earlier than Ramsey published his theorem, the Dutch mathe-
matician Bartel Leendert van der Waerden published his paper Beweis einer
Baudetschen Vermutung [14] in which he proved what would become known as
Van der Waerden’s Theorem.

Van der Waerden’s Theorem states that for all positive integers, k and r,
there exists a natural number W (k, r) such that, if the set of natural numbers
{1, 2, . . . ,W (k, r)} is r-coloured, then it must contain at least one monochro-
matic k-term arithmetic progression.

3.1 Small Van der Waerden numbers

Van der Waerden numbers, similarly to Ramsey numbers, are not extensively
known. The known non-trivial Van der Waerden numbers are are listed in the
table below.

W (k, r) r=2 3 4

k=3 9 27 76

4 35

5 178

Trivially W (1, r) = 1, W (2, r) = r + 1 and W (k, 1) = k.

Example. W (3, 2) = 9.
To find W (3, 2) we find the set of natural numbers {1, 2, . . . ,W (3, 2)} which

when 2-coloured must contain some monochromatic 3-term arithmetic progres-
sion. We can see W (3, 2) > 8 from the 2-coloured set {1, 2, 3, 4, 5, 6, 7, 8} which
does not contain a monochromatic 3-term arithmetic progression.

The proof that W (3, 2) ≤ 9 is simple since the 2-colourings of {1, . . . , 9} can
be reduced to a small number of cases. We may 2-colour {1, 2, 3, 4} in sixteen
ways, half of which colour 1 red and half of which colour 1 blue. We may sim-
ply consider the eight cases where 1 is coloured blue, the other eight cases are
completely symmetric. We may also ignore the colourings of {1, 2, 3, 4} which
contain a monochromatic 3-term arithmetic progression, so we are left with only
five cases. We take the first case, {1, 2, 3, 4, 5, 6, 7, 8, 9}, since 3 and 4 are red,
colouring 5 red would form a monochromatic 3-term arithmetic progression,
therefore we colour 5 blue. We must then colour 8 red since otherwise a blue
3-term arithmetic progression would be formed by 2,5 and 8. To avoid the red
3-term arithmetic progression in the terms 4,6 and 8 we colour 6 blue, however,
this then forces 7 to be coloured red to avoid producing a blue 3-term arith-
metic progression in the terms 5,6 and 7. For these reasons this colouring of
{1, 2, 3, 4} forces the colouring {1, 2, 3, 4, 5, 6, 7, 8, 9} where 9 cannot be coloured
without producing a monochromatic 3-term arithmetic progression. Similarly
{1, 2, 3, 4, 5, 6, 7, 8, 9} forces the colouring {1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 5, 6, 7, 8, 9} forces the colouring {1, 2, 3, 4, 5, 6, 7, 8, 9},
{1, 2, 3, 4, 5, 6, 7, 8, 9} forces the colouring {1, 2, 3, 4, 5, 6, 7, 8, 9} and
{1, 2, 3, 4, 5, 6, 7, 8, 9} forces the colouring {1, 2, 3, 4, 5, 6, 7, 8, 9}. These colou-
rings show that it is impossible to 2-colour {1, 2, . . . , 9} without producing a mo-
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nochromatic 3-term arithmetic progression. We have shown 8 < W (3, 2) ≤ 9,
so W (3, 2) = 9.

For larger Van der Waerden numbers the numerical method used above
becomes increasingly protracted. As with Ramsey numbers, while upper and
lower bounds for many Van der Waerden numbers have been found, their exact
values are still unknown and without a huge amount of computing or a mathe-
matical breakthrough will remain so. An example of how an upper bound for
one Van der Waerden number is found is given below. In Section 3.2 we will
generalise the method used in Proposition 3.1.1 to prove Van der Waerden’s
Theorem.

Proposition 3.1.1. W (3, 2) ≤ 325

Proof. The set of natural numbers, {1, 2, . . . , 325}, are first divided into 65
blocks, each of order five. That is, {1, 2, . . . , 325} = {1, . . . , 5} ∪ {6, . . . , 10} ∪
. . . ∪ {321, . . . , 325}. We then label these block B1, B2, . . . , B65 where
B1 = {1, . . . , 5}, B2 = {6, . . . , 10}, . . . , B65 = {321, . . . , 325}. Each of these
blocks could be coloured in any one of 25 = 32 ways. We now label each
element of {1, 2, . . . , 325}, bx,y, where x denotes the index of the block which
the element is in and y denotes its position within Bx, for example 6 is labeled
b2,1. Since there are only 32 ways in which any of the blocks may be 2-coloured,
by the pigeonhole principle, at least two of the first 33 blocks must be coloured
in the same way. We call these blocks Ba and Ba+d. Since each block is coloured
with only two colours, again by the pigeonhole principle, we can say that at
least two of the first three elements in each block must be monochromatic. We
call the two monochromatic elements in the first three elements of Ba, ba,α and
ba,α+δ. Since both these elements are in the first three terms of Ba the difference
between ba,α and ba,α+δ can only be one or two, so δ = 1 or δ = 2. There are
five elements in each block so the third term in the arithmetic progression,
ba,α, ba,α+δ, must be an element of Ba, namely ba,α+2δ . If ba,α+2δ has the same
colour as ba,α and ba,α+δ then we have a monochromatic 3-term arithmetic
progression. Therefore we assume ba,α+2δ is not of the same colour as ba,α,
and turn to the block Ba+2d. ba,α and ba+d,α+δ are monochromatic, since Ba

and Ba+d are equally coloured. Therefore if ba+2d,α+2δ is of the same colour as
ba,α and ba+d,α+δ we have a monochromatic 3-term arithmetic progression and
we are done. Therefore, we assume ba+2d,α+2δ is a different colour to ba,α and
ba+d,α+δ. Since there are only two colours which any of the numbers can be
coloured with, ba+2d,α+2δ must be the same colour as ba,α+2δ. Since Ba and Ba+d

are equally coloured ba,α+2δ , ba+d,α+2δ and ba+2d,α+2δ must be monochromatic,
so we have a monochromatic 3-term arithmetic progression. Thus we have
shown that no matter how {1, 2, . . . , 325} is 2-coloured there must always exist
some monochromatic 3-term arithmetic progression, so W (3, 2) ≤ 325. �

Example. We take the example when the two monochromatic blocks in
{1, 2, . . . , 165} are B11 and B31. A colouring of B11 might be
B11 = {51, 52, 53, 54, 55} and since the colourings of B11 and B31 are equal
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B31 = {151, 152, 153, 154, 155}. We can see there is no monochromatic 3-
term arithmetic progression in these two sets. In this case we use B51 to
find a monochromatic 3-term arithmetic progression. We arrive at the two
possible 2-colourings of B51. They are, B51 = {251, 252, 253, 254, 255} and
B51 = {251, 252, 253, 254, 255} where the uncoloured numbers may be red or
blue. In the first case we have the monochromatic 3-term arithmetic progres-
sion {51, 152, 253}, and in the second we have {53, 153, 253}.

3.2 Van der Waerden’s Theorem

To prove Van der Waerden’s Theorem for the general case we must first un-
derstand Colour focusing.

Definition 3.2.1. In some r-colouring of the natural numbers, t different k-
term arithmetic progressions are colour focused if

• each k-term arithmetic progression is monochromatic,

• none of the t arithmetic progressions have the same colour,

• the (k + 1)th terms of each of the t arithmetic progressions are equal.

The (k +1)th terms of the t arithmetic progressions is called the colour focus of
those arithmetic progressions.

In a t-colouring the colour focus of the t monochromatic k-term arithmetic
progressions must have the same colour as one of the t progressions and so a
monochromatic (k + 1)-term arithmetic progression must be formed.

Example. A colour focus was used in the previous example. The colour focus
for the two monochromatic 2-term arithmetic progressions in the 2-colouring of
{1, 2, . . . , 325} was 253.

Example. In the 2-colouring {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, where the
uncoloured numbers may be red or blue, 13 is a colour focus. Indeed, 13 is
the fourth term of both the monochromatic arithmetic progressions 1, 5, 9 and
4, 7, 10. Also, no matter whether 13 is coloured red or blue there must be a
monochromatic 4-term arithmetic progression in the set.

We now prove Van der Waerden’s Theorem.

Theorem 3.2.2. For all positive integers, k and r, there exists a natural num-
ber W (k, r) such that, if the set of natural numbers {1, 2, . . . ,W (k, r)} is r-
coloured, then this set must contain at least one monochromatic k-term arith-
metic progression.

Proof. We shall prove that W (k, r) exists by showing it is bounded. We use
a proof by induction, on k. We already have that we can find a natural number
W (1, r). We now assume that, for any q ≤ k and any l we can find W (q, l). We
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now show that W (k + 1, r) exists for every r.
Claim. For any t, such that t ≤ r, there exists a natural number W (t, k, r)
such that whenever the set, {1, 2, . . . ,W (t, k, r)} is r-coloured, it must contain
either a monochromatic (k +1)-term arithmetic progression or t colour focused
monochromatic k-term arithmetic progressions together with their colour focus.

We prove this claim by induction, on t. We have previously assumed that
we can find a natural number W (k, r). Since there exists one monochromatic
k-term arithmetic progression in {1, 2, . . . ,W (k, r)} it must be colour focused
and its focus must be its (k +1)th-term. The arithmetic progression’s (k +1)th-
term must be less than or equal to 2W (k, r). Therefore {1, 2, . . . , 2W (k, r)}
must contain a colour focused monochromatic k-term arithmetic progression
together with its colour focus. So W (1, k, r) = 2W (k, r).

We now assume that W (t, k, r) exists and must prove the existence of W (t+
1, k, r).

We begin by taking the natural number, X = 2W (t, k, r)W (k, rW (t,k,r)).
We may then split the interval, [1,X], into blocks, each of order W (t, k, r). We
label each block Bi where i denotes the blocks position in [1,X]. So we have

[1,X] ={1, 2, . . . ,W (t, k, r)} ∪ {W (t, k, r) + 1,W (t, k, r) + 2, . . . , 2W (t, k, r)}∪

. . . ∪ {X − (W (t, k, r) − 1),X − (W (t, k, r) − 2), . . . ,X},

=B1 ∪ B2 ∪ · · · ∪ B2W (k,rW (t,k,r))−1 ∪ B2W (k,rW (t,k,r)).

We now consider an r-colouring of {1, 2, . . . ,X}. There are rW (t,k,r) ways in
which a set of order W (t, k, r) can be r-coloured, so each block, Bi, must be
coloured in one of these rW (t,k,r) ways.

If, when the interval [1,X] is r-coloured, any of the blocks of order W (t, k, r)
contain a monochromatic (k + 1)-term arithmetic progression we are done. So
we assume that each block contains t colour focused monochromatic k-term
arithmetic progressions.

From the definition of W (k, rW (t,k,r)), the set of natural numbers {1, 2, . . . ,
W (k, rW (t,k,r))} must contain a monochromatic k-term arithmetic progression
when rW (t,k,r)-coloured. Our r-colouring of {1, 2, . . . ,W (t, k, r)W (k, rW (t,k,r))}
induces an rW (t,k,r)-colouring of the set of blocks, {B1, B2, . . . , BW (k,rW (t,k,r))},

since each block has size W (t, k, r) and thus is r-coloured in one of rW (t,k,r)

ways. Therefore, the first W (k, rW (t,k,r)) blocks must contain a monochromatic
k-block arithmetic progression. That is, there must exist k identically coloured
blocks, Ba, Ba+d, Ba+2d, . . . , Ba+(k−1)d, whose indices form an arithmetic pro-
gression. Since each block is of order W (t, k, r) we may assume that they all
contain t colour focused monochromatic k-term arithmetic progressions toge-
ther with their colour focus, since otherwise one of the blocks must contain a
monochromatic (k + 1)-term arithmetic progression and we would be done.

We now label each element in {1, 2, . . . ,X}, bx,y, where x denotes the index
of the block the element is in and y denotes that elements position in Bx. We
denote the t colour focused monochromatic k-term arithmetic progressions in

14



Ba as

Pa,1 = ba,α, ba,α+δ, ba,α+2δ , . . . , ba,α+(k−1)δ ,

Pa,2 = ba,µ, ba,µ+ν , ba,µ+2ν , . . . , ba,µ+(k−1)ν ,

...

Pa,t = ba,φ, ba,φ+ψ, ba,φ+2ψ , . . . , ba,φ+(k−1)ψ .

These progressions each have their colour focus at ba,f . That is, ba,α+kδ =
ba,µ+kν = · · · = ba,φ+kψ = ba,f . Since all of the k blocks, Ba, Ba+d, Ba+2d,
. . . , Ba+(k−1)d, are identically coloured there must exist monochromatic k-term
arithmetic progressions,

Pa,1 = ba,α, ba,α+δ , ba,α+2δ , . . . , ba,α+(k−1)δ ,

Pa+d,1 = ba+d,α, ba+d,α+δ, ba+d,α+2δ , . . . , ba+d,α+(k−1)δ ,

...

Pa+(k−1)d,1 = ba+(k−1)d,α, ba+(k−1)d,α+δ , ba+(k−1)d,α+2δ , . . . , ba+(k−1)d,α+(k−1)δ ,

Pa,2 = ba,µ, ba,µ+ν , ba,µ+2ν , . . . , ba,µ+(k−1)ν ,

...

Pa+(k−1)d,2 = ba+(k−1)d,µ, ba+(k−1)d,µ+ν , ba+(k−1)d,µ+2ν , . . . , ba+(k−1)d,µ+(k−1)ν ,

...

Pa+(k−1)d,t = ba+(k−1)d,φ, ba+(k−1)d,φ+ψ , ba+(k−1)d,φ+2ψ , . . . , ba+(k−1)d,φ+(k−1)ψ ,

such that

χ(Pa,1) = χ(Pa+d,1) = · · · = χ(Pa+(k−1)d,1),

χ(Pa,2) = χ(Pa+d,2) = · · · = χ(Pa+(k−1)d,2),

...

χ(Pa,t) = χ(Pa+d,t) = · · · = χ(Pa+(k−1)d,t),

where χ(Pi,j) denotes the colour of the elements of the progression Pi,j . To-
gether, each of the t progressions in each of the k blocks produce t + 1 colour
focused monochromatic k-term arithmetic progression. Indeed, consider the
following k-term arithmetic progressions,

F1 = ba,α, ba+d,α+δ , ba+2d,α+2δ , . . . , ba+(k−1)d,α+(k−1)δ ,

F2 = ba,µ, ba+d,µ+ν , ba+2d,µ+2ν , . . . , ba+(k−1)d,µ+(k−1)ν ,

...

Ft = ba,φ, ba+d,φ+ψ, ba+2d,φ+2ψ , . . . , ba+(k−1)d,φ+(k−1)ψ .

Since each of the terms in Fi were taken from Pj,i, where j ∈ {a, a + d, . . . , a +
(k−1)d}, each Fi must be monochromatic. Clearly the (k+1)th term of each of
these progressions is equal, that is ba+kd,α+kδ = ba+kd,µ+kν = · · · = ba+kd,φ+kψ.
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This element is in X since X = 2W (t, k, r)W (k, rW (t,k,r)) and each element we
have used so far we have taken from the first W (t, k, r)W (k, rW (t,k,r)) elements.
Thus each of the t monochromatic k-term arithmetic progressions we have pro-
duced, F1, F2, . . . , Ft, have their colour focus at ba+kd,α+kδ = ba+kd,µ+kν = · · · =
ba+kd,φ+kψ = ba+kd,f . Clearly bi,f must be the same colour in every block in the
monochromatic k-block arithmetic progression. Therefore the colour focuses of
the blocks, Ba, Ba+d, . . . , Ba+(k−1)d, also form a monochromatic k-term arith-
metic progression. These terms, along with the other t monochromatic k-term
arithmetic progressions, have their colour focus at ba+kd,f . The k-term arith-
metic progression, ba,f , ba+d,f , . . . , ba+(k−1)d,f , must have a different colour to
each of F1, F2, . . . , Ft, since otherwise a monochromatic k + 1 term arithmetic
progression would have been formed in one of Ba, Ba+d, . . . , Ba+(k−1)d, from
the definition of a colour focus. Thus ba+kd,f is the colour focus for t + 1 mo-
nochromatic k-term arithmetic progressions. Therefore X = W (t + 1, k, r) and
our claim is proved.

Since we have that W (t, k, r) must exist for all t ≤ r we have that W (r, k, r)
must exist. That is, we can always find r colour focused k-term arithmetic
progressions or a monochromatic (k + 1)-term arithmetic progression in the
r-coloured set of natural numbers {1, 2, . . . ,W (r, k, r)}. If there exists a mo-
nochromatic (k + 1)-term arithmetic progression in this set we are done, so we
assume one does not exist. Since we have only used r colours to colour this set
of natural numbers, the colour focus of all the r arithmetic progressions must
be coloured with one of the r colours. Therefore the colour focus must have the
same colour as one of the r k-term arithmetic progression. Together with the
colour focus this arithmetic progression then forms a monochromatic (k + 1)-
term arithmetic progression . Therefore, by induction for all positive integers,
k and r, there exists a natural number W (k, r) so that, if the set of natural
numbers {1, 2, . . . ,W (k, r)} is r-coloured, there is at least one monochromatic
k-term arithmetic progression. �

Van der Waerden’s Theorem cannot be extended to the infinite case, that
is, there exists an r-colouring of N, for r > 1, under which there is no mo-
nochromatic infinite arithmetic progression. We give an example of one case
below.

Example. We can 2-colour the natural numbers and avoid an infinite mono-
chromatic arithmetic progression. We colour 1 red, 2,3 blue, 4,5,6 red, and so
on, ad infinitum. The colouring produced in this way is
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, . . .}. We then
label these monochromatic blocks Bk, where k represents the block’s order and
position. For example, B4 = {7, 8, 9, 10} is the fourth monochromatic block
and |B4| = 4. We can now label each element of N, bx,y, where x represents the
index of the block in which the number is and y represents the number’s posi-
tion in the block Bx. We assume that we can find some monochromatic infinite
arithmetic progression, say P . We take two successive elements of P , say bk,m

and bl,n. The difference between bk,m and bl,n is ( l(l−1)
2 +n)−(k(k−1)

2 +m). The-

refore the difference between each term in P must be ( l(l−1)
2 +n)−(k(k−1)

2 +m).
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Since the size of successive blocks, Bi, increase at a constant rate, there must
exist some block, Bh, such that h > ( l(l−1)

2 + n) − (k(k−1)
2 + m), where Bh is

coloured a different colour to P and h > k. There cannot exist a number in Bh

which is also in P , but then there must exist two successive terms in P whose
difference is greater than ( l(l−1)

2 +n)− (k(k−1)
2 +m), a contradiction. Since each

block is of finite size it is impossible that an infinite monochromatic arithmetic
progression can be contained inside one block. We have thus shown an infinite
monochromatic arithmetic progression cannot exist in this 2-colouring of N.
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4 Rado’s Theorem

In Richard Rado’s 1933 thesis, Studien zur Kombinatorik [15], he generalised
a basic result, proved by his supervisor Issai Schur to give Rado’s Theorem.
Schur’s Theorem, proved in 1916, in Über die Kongruenz xm+ym ≡ zm mod p
[16], is the earliest result we will look at, and one of the earliest in Ramsey
Theory. Rado’s Theorem gives the properties which a system of linear homoge-
neous equations must have in order for them to have a monochromatic solution
in any r-colouring of the natural numbers, for r ∈ N.

We shall first examine what is meant by a system being regular and satis-
fying the Columns condition, while doing this we will consider Schur’s Theorem.
We will then move on to generalise Schur’s Theorem to all single linear homo-
geneous equations. We shall then give the proof of Rado’s Theorem which
generalises this result even further.

Theorem 4.0.1. For a matrix C, the system Cx = 0 is regular if and only if
C satisfies the Columns condition.

Theorem 4.0.1 is Rado’s Theorem, however, to understand it we must first
understand what it mean for a system to be regular and to satisfy the Columns
Condition.

4.1 Regular systems

In this section we will define what is meant by a regular system and give two
examples, one of a system which is regular and another of a system which is
not.

Definition 4.1.1. Let S = S(x1, . . . , xn) denote a system of linear homoge-
neous equations with variables x1, . . . , xn. S is r-regular over A, the set on
which S is defined, if given any r-colouring of A there exists a monochromatic
set {x1, . . . , xn} ∈ A so that S(x1, . . . , xn) holds. S is regular over A if it is r-
regular for all positive integers r. Equivalently, a matrix C is said to be regular
over A if the system Cx = 0 has a monochromatic solution, x, in every finite
colouring of A. Generally we will be looking at systems on N, for this reason if
a system is said to be regular we will mean that the system is regular over N.

4.1.1 Two examples

An example of a simple regular system is given by Schur’s Theorem.

Theorem 4.1.2. For every r ∈ N there exists some natural number, n, such
that in any r-colouring of [n] there must exist a monochromatic set x, y, z ∈ [n]
such that x + y = z.

Proof. Take n such that 2Rr(3) = n + 1, that is, if we r-colour a complete
graph of order n + 1, it must contain a monochromatic K3. We now fix an r-
colouring, say χ, of [n], and define an r-colouring, say χ∗, of Kn+1 by χ∗(i, j) =

2Rr(3) is defined as in Ramsey’s Theorem.
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χ(|i− j|). Since Kn+1 is a complete graph on n+1 vertices, from the definition
of Rr(3) it must contain a monochromatic K3, so there must exist a set of
vertices {i, j, k} where k < j < i, such that χ∗(i, j) = χ∗(j, k) = χ∗(k, i).
Setting x = i − j, y = j − k and z = i − k gives χ(x) = χ(y) = χ(z) so we
have our monochromatic set {x, y, z} where x + y = z. We must specify that
k < j < i so that x, y, z ∈ [n]. �

Example. The system
(

1 −2
)(

x1
x2

)
=
(

0
0

)
is not 2-regular. We can show this

by constructing a red-blue colouring of N in which there is no monochromatic
vector x =

(
x1
x2

)
such that

(
1 −2

)(
x1
x2

)
=
(

0
0

)
.

We define a colouring of N such that for every x ∈ N, the numbers x and 2x
have different colours. We colour the odd natural numbers blue and the even
natural numbers the opposite colour to half their value. Thus N will be colou-
red {1, 2, 3, 4, 5, 6, 7, 8, 9, . . .}. This colouring does not contain a monochromatic
solution,

(
x1
x2

)
, to

(
1 −2

)(
x1
x2

)
= 0. Indeed, we would need a monochromatic

vector,
(
x1
x2

)
, satisfying x1 = 2x2, so x1 must be even. We defined our colou-

ring so that any even term was coloured the opposite colour to half it’s value.
x2 = 1

2x1 and so x1 and x2 can never be monochromatic.

4.1.2 Basic properties of regular systems

We now develop our understanding of what it means to be regular over counta-
bly infinite sets, namely N, Z \ {0} and Q \ {0}. In Lemma 4.1.3 we will prove
that any system which is regular over N, Z \ {0} or Q \ {0} is also regular over
some finite subset of N, Z \ {0} or Q \ {0} respectively.

Lemma 4.1.3. Let S(x1, . . . , xn) = 0 be a regular system of linear homogeneous
equations.

1. For every r ∈ N there exists an R ∈ N such that any r-colouring of [R]
contains a monochromatic solution to the system, S.

2. For every r ∈ N there exists a finite set R ⊂ Z \ {0} such that any r-
colouring of R contains a monochromatic solution to the system, S.

3. For every r ∈ N there exists a finite set R ⊂ Q \ {0} such that any
r-colouring of R contains a monochromatic solution to the system, S.

Proof. We shall first prove 1. The proofs of 2. and 3. follow.
This is a proof by contradiction. We first assume we can find an r-colouring

of [R] which does not contain a monochromatic solution to the system S for
every R ∈ N. Let CR be such an r-colouring of [R].

We first note that for every R ∈ N there are a finite number, rR, ways
of r-colouring [R]. We take a subsequence of the colourings C1, C2, C3, . . .,
consisting only of the colourings which colour [1] in exactly the same way. [1]
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can only be coloured in r ways with r colours so, by the pigeonhole principle,
there must be an infinite number of the colourings, Ci for i ∈ N, which colour
[1] in the same way. We call this subset of colourings C1 and define I1 such that
Ci ∈ C1 only if i ∈ I1. We can then find a subset C2 ⊆ C1, consisting only of the
colourings which when restricted to [2] colour the interval in exactly the same
way. The set [2] can only be coloured in r2 different ways with r colours so, by
the pigeonhole principle, there must be an infinite number of the colourings, Ci
for i ∈ I1, which colour [2] in the same way. We call this subset of colourings
C2 and define I2 such that Ci ∈ C2 only if i ∈ I2. We note that I2 ⊆ I1. We
may continue in this way indefinitely.

We now produce an r-colouring, C, of N. We define C as follows. For every
R ∈ N with R ≤ x we set C([R]) = Ci([R]) where Ci ∈ Cx. This colouring is
well defined, if R ≤ x ≤ y then defining the colouring C([R]) using Cx or Cy
will give equal results since C([R]) = Ci([R]) = Cj([R]) for all Ci ∈ Cx and all
Cj ∈ Cy. This is clear since the subset of colourings Cy consists of the colourings
Ci such that i ∈ Iy ⊆ Ix ⊆ IR, so they all colour [R] in the same way.

We now assume that there exists some natural number, n, such that under
the colouring C the set [n] contains a monochromatic solution to the system
S. We can see from the definition of C that C([n]) = Ci([n]) for some Ci ∈ Cν
where n ≤ ν. However, by definition any colouring in Cν colours [n] such that
it does not contain a monochromatic solution to the system S. So we have a
contradiction. Thus under the r-colouring, C, there does not exist a natural
number, n, such that [n] contains a monochromatic solution to the system S.
This is a contradiction, since S(x1, . . . , xn) = 0 is a regular system it must have
a solution in every finite colouring of N from the definition of regularity. C is
an r-colouring of N which does not contain a monochromatic solution to the
system S. Therefore we can conclude that for any finite number of colours, r,
we can find a natural number, R, such that any r-colouring of [R] contains a
monochromatic solution to the system S.

Since Z \ {0} and Q \ {0} are countably infinite the proof given above for
part 1. can be simply altered to prove parts 2. and 3. �

We are now able to prove that regularity over N, Z \ {0} and Q \ {0} are
equivalent.

Lemma 4.1.4. The system Cx = 0 is regular over N if and only if Cx = 0 is
regular over Z \ {0}.

Proof. Clearly if Cx = 0 is regular over N then Cx = 0 is regular over Z\{0}.
Indeed, we may take any finite colouring of Z \ {0} and use it to define a finite
colouring of N. We simply define a finite colouring, χ, of N by colouring each
natural number with the same colour it is coloured with in the finite colouring
of Z \ {0}. If Cx = 0 is regular over N then under the χ colouring there must
exist some monochromatic solution, x ∈ Nn, to the system Cx = 0. Since in
the χ colouring each element of N was coloured with the same colour as in the
finite colouring of Z \ {0}, the monochromatic solution found in Nn must also
be a monochromatic solution in (Z \ {0})n. Therefore Cx = 0 is regular over
Z \ {0}.
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We now prove that if Cx = 0 is regular over Z \ {0} then Cx = 0 is regular
over N by contradiction. We assume that there exists a finite colouring, χ, of
N in which there does not exist a monochromatic vector, x, such that Cx = 0.
We label the colours used to colour N, r1, . . . , rn, we then find a set of different
colours r′1, . . . , r

′
n. We can then produce a colouring χ̄ of Z\{0} in which −N is

coloured in the same way as N but with the new set of colours, the colouring of
N is the same as under the χ colouring. That is, if x is coloured using r1 under
the colouring χ then under the colouring χ̄ we use r′1 to colour −x. We can see
that under the colouring χ̄, of Z \ {0}, there is no monochromatic vector, x,
such that Cx = 0. This can be seen by considering any vector

x′ =




x1

x2

x3
...

xn




∈ (Z \ {0})n

such that 


c11 c21 · · · cn1

c21
. . .

...
...

. . .
...

c1n · · · · · · cnn







x1

x2

x3
...

xn




=




0
0
0
...
0




.

From our definition of the colouring χ̄, we can see that every vector, x′, with
only positive entries cannot be a monochromatic vector since χ̄ colours N in
the same way as χ. However, there are also no monochromatic vectors, x′,
with only negative entries satisfying Cx′ = 0 under the χ̄ colouring. Indeed, if
there existed a monochromatic vector, x′, with only negative entries satisfying
Cx′ = 0 under the χ̄ colouring of Z \ {0} then −x′ would be a monochromatic
vector with entries only from N. This is a contradiction since under the χ̄
colouring there are no monochromatic solutions to Cx = 0 in N. Therefore x′

cannot be a vector with only negative or only positive entries.
Under the χ̄ colouring we have coloured Z− and Z+ with two different set

of colours, namely r1, . . . , rn and r′1, . . . , r
′
n, so we cannot produce a monochro-

matic vector which contain both negative and positive entries. We have thus
shown that Cx = 0 is not regular over Z \ {0} and we have a contradiction.
Therefore if Cx = 0 is regular over Z\{0} then Cx = 0 is regular over N. �

Lemma 4.1.5. The system Cx = 0 is regular over Z\{0} if and only if Cx = 0

is regular over Q \ {0}.

Proof. Clearly if Cx = 0 is regular over Z \ {0} then Cx = 0 is regular
over Q \ {0}. Indeed, we may take any finite colouring of Q \ {0} and use it to
define a finite colouring of Z \ {0}. We simply define the finite colouring, χ, of
Z\{0} by colouring each element with the same colour it is coloured with in the
finite colouring of Q \ {0}. If Cx = 0 is regular over Z \ {0} then under the χ
colouring there must exist some monochromatic solution, x ∈ (Z\{0})n, to the
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system Cx = 0. Since in the χ colouring each element of Z \ {0} was coloured
with the same colour as in the finite colouring of Q \ {0}, the monochromatic
solution found in Z \ {0} must also be a monochromatic solution in Q \ {0}.
Therefore Cx = 0 is regular over Q \ {0}.

It remains to prove that if Cx = 0 is regular over Q \ {0} then Cx = 0 is
regular over Z \ {0}.

Lemma 4.1.3 implies that since Cx = 0 is regular over Q \ {0}, for every
r ∈ N there must exist some finite set, Q ⊂ Q \ {0}, such that in every r-
colouring of Q there exists a monochromatic vector,

x′ =




x1

x2

x3
...

xn




∈ Qn,

such that 


c11 c21 · · · cn1

c21
. . .

...
...

. . .
...

c1n · · · · · · cnn







x1

x2

x3
...

xn




=




0
0
0
...
0




.

We now take some k ∈ N such that kQ ∈ Z \ {0}, this is possible since Q is
finite. For a given r-colouring of Z \ {0} we may now define an r-colouring of
Q. We colour each element of Q, say q, with the colour given to kq under the
r-colouring of Z \ {0}. There must exist some monochromatic solution, say q,
to Cx = 0 in Qn. Therefore, since kQ is coloured in exactly the same way as
Q, there must also exist a monochromatic solution, kq ∈ (kQ)n ⊂ (Z \ {0})n.
Therefore, if Cx = 0 is regular over Q\{0} then in any colouring of Z\{0} there
must exist a monochromatic solution to Cx = 0, that is, Cx = 0 is regular over
Z \ {0}. �

4.2 The Columns condition

In this section we will define what is meant by a system satisfying the Columns
condition and consider the examples given in Section 4.1.1.

Definition 4.2.1. An m × n matrix C = (cij) is said to satisfy the Columns
condition if its columns can be partitioned as C1 ∪ C2 ∪ · · · ∪ Ck, where each Ci
is a set of column vectors from C, such that the following conditions hold. The
column vectors of the first partition set sum to zero, that is

∑
ci∈C1

ci = 0, and
for all j > 1 the sum

∑
ci∈Cj

ci can be written as a linear combination of vectors
from the set C1 ∪ · · · ∪ Cj−1.

We now look back to two examples given in Section 4.1.1, one of a matrix
which is regular and one of a matrix which is not. We will show that the regular
matrix satisfies the Columns condition and the matrix which is not regular does
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not satisfy the Columns condition. This will help us gain a better understanding
of what it means for a matrix to satisfy the Columns condition.

Example. The system
(

1 −2
)(

x1
x2

)
=
(

0
0

)
does not satisfy the Columns

condition. Indeed, there is no partition under which the vectors in the first
partition set sum to give the zero vector. The equation in Schur’s Theorem

corresponds to the system
(

1 1 −1
)( x1

x2
x3

)
= 0. This system does satisfy the

Columns condition. We can label the columns of the vector as c1, c2, c3 and
produce the partition C1 = {c1, c3} and C2 = {c2}. Thus, c1 + c3 = 0 and
c2 = c1 so the Columns condition is satisfied.

4.3 Preliminary results

Although the results in this section do not appear to be immediately related to
Rado’s Theorem it will become clear that they are essential to it’s proof. They
are proved here in advance of the proof of Rado’s Theorem to aid the clarity of
the main proof. The following theorem is a strengthening of Van der Waerden’s
Theorem given in the last chapter. Along with a monochromatic arithmetic
progression we also prove that we can find some multiple of the difference of
the terms in the arithmetic progression which has the same colour.

Theorem 4.3.1. For all k, r, s ∈ N there exists a natural number n = n(k, r, s)
such that, if [n] is r-coloured, there exist a, d ∈ N so that

{a, a + d, a + 2d, . . . , a + (k − 1)d} ∪ {sd} (4.3.1)

is a monochromatic subset of [n].

Proof. We shall prove this result using a proof by induction on r, the number
of colours. First, suppose that r = 1. Trivially n(k, 1, s) = max{k, s}. Indeed,
we only colour [n(k, 1, s)] with one colour and so any series in [n(k, 1, s)] must
be monochromatic. For n(k, 1, s) we take a = 1 and d = 1. If s ≤ a+(k−1)d =
1+ (k− 1) = k we only need n = k. If s > a+ (k− 1)d = k we must take n = s
to ensure sd = s ∈ [n(k, 1, s)].

We now assume that r > 1 and n(k, r − 1, s) exists. We must prove that
n(k, r, s) exists.
Claim. We may take n(k, r, s) = sW (kn(k, r − 1, s), r).

Take some r-colouring of [n(k, r, s)]. From the definition of 3W (k, r) we can
now find a monochromatic, say red, set {a + id′ | 0 ≤ i ≤ kn(k, r − 1, s)− 1} in
the first W (kn(k, r − 1, s), r) natural numbers.

If there exists some 1 ≤ j ≤ n(k, r − 1, s) such that sd′j is red then setting
d = jd′ we find {a, a+d, a+2d, . . . , a+(k−1)d}∪{sd} is red. Clearly we can find
a red set {a, a+d, a+2d, . . . , a+(k−1)d} since {a+id′ | 0 ≤ i ≤ kn(k, r−1, s)−1}
is red. Indeed, sd ∈ [sW (kn(k, r−1, s), r)] since d = d′j ∈ [W (kn(k, r−1, s), r)].

If there does not exist some 1 ≤ j ≤ n(k, r − 1, s) such that sd′j is red then
{sd′j | 1 ≤ j ≤ n(k, r − 1, s)} is at most (r − 1)-coloured. From the definition

3W (k, r) is defined as in Van der Waerden’s Theorem.
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of n(k, r − 1, s), which we already assumed to exist, we have the desired result.
Indeed, we may define an (r − 1)-colouring of [n(k, r − 1, s)] by giving every
number x in this set the colour of sd′x. There must exist a monochromatic
set, {a, a + d, . . . , a + (k − 1)d} ∪ {sd} in [n(k, r − 1, s)] from the definition
of n(k, r − 1, s). From the definition of the colouring of [n(k, r − 1, s)], the set
{sd′a, sd′a+sd′d, . . . , sd′a+(k−1)sd′d}∪{s2d′d} must be monochromatic since
{a, a + d, a + 2d, . . . , a + (k − 1)d} ∪ {sd} is monochromatic in [n(k, r − 1, s)].

�

We now turn to an example where we can describe the set {a, a + d, a +
2d, . . . , a+(k−1)d}∪{sd} as the solution of a homogeneous system of equations,
thus showing that the corresponding matrix must be regular. The matrix also
satisfies the Columns condition.

Example. We take the matrix

C =




−1 2 −1 0 0 0 · · · 0 0 0 0
0 −1 2 −1 0 0 · · · 0 0 0 0
0 0 −1 2 −1 0 · · · 0 0 0 0
1 0 0 −1 2 −1 · · · 0 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

0 0 0 0 0 0 · · · −1 2 −1 0
−s s 0 0 0 0 · · · 0 0 0 −1




.

The system, Cx = 0, corresponding to the matrix C is

−x1 + 2x2 − x3 = 0,

−x2 + 2x3 − x4 = 0,

−x3 + 2x4 − x5 = 0,

−x4 + 2x5 − x6 = 0,

. . .
...

−xn−3 + 2xn−2 − xn−1 = 0,

−sx1 + sx2 − xn = 0,

which could equally be written as

x3 − x2 = x2 − x1,

x4 − x3 = x3 − x2,

...

xn−1 − xn−2 = xn−2 − xn−3,

xn = s(x2 − x1).

Thus any solution to the the system Cx = 0 has the form x1 = a, x2 =
a + d, x3 = a + 2d, . . . , xn = sd. We have now shown that this system is
equivalent to the set in Theorem 4.3.1. In Theorem 4.3.1 it was shown that in
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any finite colouring of N we can find a monochromatic set of this type, there-
fore the system, Cx = 0, is regular. We can also see that the matrix C satisfies
the Column condition. Let c1, c2, . . . , cn be the columns of C, we can take the
partitions to be C1 = {c1, c2, c3, . . . , cn−1} and C2 = {cn} then

∑n−1
i=1 ci = 0

and cn = 1
s
c1 −

∑n−1
i=3

i−2
s

ci. So C satisfies the Columns condition.

Corollary 4.3.2. For all k, r, s ∈ N there exists a natural number n = n′(k, r, s)
such that, if [n] is r-coloured, there exists a, d ∈ N such that

{a + λd | |λ| ≤ (k − 1)} ∪ {sd}

is a monochromatic subset of [n].

Proof. Using Theorem 4.3.1 and replacing (k − 1) by 2(k − 1) we can
find a′, d′ ∈ N such that {a′, a′ + d′, a′ + 2d′, . . . , a′ + 2(k − 1)d′} ∪ {sd′} is
monochromatic. This is clearly possible since k can be any natural number.
We can then define d = d′ and a = a′ + (k − 1)d′ so that the elements in
{a−(k−1)d, a−(k−2)d, . . . , a−d, a, a+d, . . . , a+(k−2)d, a+(k−1)d}∪{sd}
correspond to the elements in {a′, a′ + d′, a′ + 2d′, . . . , a′ + 2(k − 1)d′} ∪ {sd′}
which we found to be monochromatic. Therefore, since n(k, r, s) was proved to
exist in Theorem 4.3.1, for all k, r, s ∈ N there must exists a natural number
n′(k, r, s). �

4.4 Rado’s Theorem for a single linear homogeneous constraint

We first define the Np colouring of the natural numbers.

Definition 4.4.1. For any n ∈ N we may write out the p-expansion of n, that
is, we may write n = n0 + n1p + n2p

2 + · · · + nkp
k where ni ∈ {0, 1, . . . , p − 1}

for all i and p ≥ 2. We define the Np colouring of N by setting Np(z) = ni
where i is the smallest natural number such that ni 6= 0 for all z ∈ N. The rank
of z under the Np colouring is i, where i is the smallest natural number such
that ni 6= 0.

Lemma 4.4.2. If Np(y) = Np(z) then Np(p
−m1y) = Np(p

−m1z) where m1 is
the minimum of the rank of y and that of z.

Proof. Since Np(y) = Np(z) we must have that y = apmi + nmi+1p
mi+1 +

· · ·+ nmj
pmj and z = apmk + nmk+1

pmk+1 + · · ·+ nml
pml for some i, j, k, l ∈ N.

Without loss of generality we may assume that mi ≤ mk. Now,

p−miy = p−miapmi + p−minmi+1p
mi+1 + · · · + p−minmj

pmj ,

= a + nmi+1p
m1 + · · · + nmj

pmj−i ,

and

p−miz = p−miapmk + p−minmk+1
pmk+1 + · · · + p−minml

pml ,

= apmk−i + nmk+1
pmk+1−i + · · · + nml

pml−i .

Therefore Np(p
−miy) = a and Np(p

−miz) = a, so Np(p
−miy) = Np(p

−miz).
�
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We now use the Np colouring to prove Theorem 4.4.3, Rado’s Theorem for
a single linear homogeneous constraint.

Theorem 4.4.3. Let S(x1, . . . , xn) be the system given by the single linear
homogeneous constraint

c1x1 + · · · + cnxn = 0

for ci ∈ Z \ {0} and xi ∈ N. S is regular if and only if some non-empty subset
of the ci sums to zero.

Proof. We fix a finite colouring of N and reorder the coefficients if necessary
so that we can write c1 + · · · + ck = 0 for some k ≤ n. If k = n we can set
x1 = xi, for all 1 ≤ i ≤ k, this set must be monochromatic since it is made up
of only one element. Since the coefficients sum to zero, we have

c1x1 + c2x2 + · · · + cnxn = c1x1 + c2x1 + · · · + cnx1,

= x1(c1 + c2 + · · · + cn),

= 0.

We now assume that k < n. We define A = hcf(c1, c2, . . . , ck) and B =
ck+1 + · · ·+ cn. We set s = A

hcf(A,B) . Note that s ∈ N. If B = 0 then, as before,
we can easily find a monochromatic solution. If B 6= 0, we can find some t ∈ Z
so that At + Bs = 0, indeed, t = −B

hcf(A,B) . By the fundamental theorem of
arithmetic we can then then find λ1, ..., λk ∈ Z such that c1λ1 + ...+ ckλk = At,
since A = hcf(c1, c2, . . . , ck). We can now produce a parametric solution to
c1x1 + · · · + cnxn = 0. Set

xi =

{
a + λid if 1 ≤ i ≤ k,

sd if k < i ≤ n.

Note that

k∑

i=1

ci(a + λid) =
k∑

i=1

cia +
k∑

i=1

ciλid = 0 + Atd = Atd,

and
n∑

i=k+1

cisd =

(
n∑

i=k+1

ci

)
sd = Bsd.

Therefore

c1x1 + · · · + cnxn =

k∑

i=1

ci(a + λid) +

n∑

i=k+1

cisd,

= Atd + Bsd,

= (At + Bs)d,

= 0d,

= 0.
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Because of the form of the parametric solution, by Corollary 4.3.2, we must
be able to find a, d ∈ N such that {xi | 1 ≤ i ≤ n} is monochromatic. Our
parametric solution lies in N, proving that S is regular over N.

This completes the proof that if some non-empty subset of the ci sums to
zero then S is regular. To complete the proof of Theorem 4.4.3 we will prove
that if S is regular then some non-empty subset of the ci sums to zero.

We shall prove this using a proof by contradiction. We suppose that we can
find some prime, p, such that the sum of any non-empty subsets of {ci | 1 ≤ i ≤
n} is indivisible by p. Therefore no subset of {ci | 1 ≤ i ≤ n} will sum to zero.
Claim. Under this condition c1x1 + · · · + cnxn = 0 has no monochromatic
solution in N when coloured using Np.

If our claim is true S is not regular over N. We will prove this claim by
contradiction, first we assume that we have a set x1, . . . , xn which, under the
Np colouring, forms a monochromatic solution to c1x1+· · ·+cnxn = 0. We may
assume that p ∤ xi for some i since Lemma 4.4.2 implies that p−kx1, . . . , p

−kxn
also forms a monochromatic solution to c1x1 + · · ·+cnxn = 0 in which p ∤ p−kxi
for some i, where k is the minimum of the ranks of all the xi. We can now
reorder the equation such that p ∤ xi for 1 ≤ i ≤ k and p | xi for k < i ≤ n.
Now,

c1x1 + · · · + cnxn ≡ 0 mod p,

that is
n∑

i=1

c̄ix̄i = 0̄.

Clearly for k < i ≤ n, x̄i = 0̄. All the xi were defined to be monochromatic
integers, so from the definition of Np(xi) and since p ∤ xi we see that for all
1 ≤ i, j ≤ k, x̄1 = x̄i = x̄j. Therefore

n∑

i=1

c̄ix̄i =
k∑

i=1

c̄ix̄i = (
k∑

i=1

c̄i)x̄1 = 0̄.

Since x̄1 6= 0̄ we have
∑k

i=1 c̄i = 0̄ which implies that p divides the sum of a
non-empty subset of {ci | 1 ≤ i ≤ n}, contrary to the assumption. We have
proved the claim, c1x1 + · · · + cnxn = 0 has no monochromatic solutions when
coloured using the Np colouring. This proves that for ci ∈ Z, if S is regular
over N then some non-empty subset of the ci sums to zero. �

Example. To illustrate the proof of Theorem 4.4.3, consider the linear
homogeneous equation

x1 + 9x2 + 5x3 − x4 − 2x5 + 3x6 − 7x7 = 0. (4.4.1)

We have, c1 = 1, c2 = 9, c3 = 5, c4 = −1, c5 = −2, c6 = 3, c7 = −7. Since

c1 + c2 + c4 + c5 + c7 = 0,

we can relabel the sum as

x1 + 9x2 − x3 − 2x4 − 7x5 + 5x6 + 3x7 = 0.
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Now, k = 5, A = hcf(1, 9,−1,−2,−7) = 1, B = 5 + 3 = 8, s = 1
hcf(1,8) = 1

1 = 1

and t = −8
hcf(1,8) = −8

1 = −8. We then take λ1 = 0, λ2 = 0, λ3 = 1, λ4 = 0, λ5 = 1
which satisfy c1λ1 + c2λ2 + c3λ3 + c4λ4 + c5λ5 = At, that is λ1 + 9λ2 − λ3 −
2λ4 − 7λ5 = −1 − 7 = −8. Our monochromatic solution is then

x1 = a,

x2 = a,

x3 = a + d,

x4 = a,

x5 = a + d,

x6 = d,

x7 = d,

and equation 4.4.1 can now be written

a + 9(a) − (a + d) − 2(a) − 7(a + d) + 5d + 3d = 0.

4.5 Rado’s Theorem for regular homogeneous systems

We now extend Rado’s Theorem from one linear homogeneous equation to a sys-
tem of linear homogeneous equations. We begin by proving a result seemingly
unrelated to Rado’s Theorem.

Lemma 4.5.1. Let a, c1, . . . , ck ∈ Zn. Suppose that a is not in the vector space
over Q generated by ci. Then for all but a finite number of primes p, a cannot
be expressed as a linear combination of the ci mod p. Moreover, for all but a
finite number of primes p, apm cannot be expressed as a linear combination of
the ci mod pm+1 for any m ≥ 0.

Proof. We shall only prove that for all but a finite number of primes p,
apm cannot be expressed as a linear combination of the ci mod pm+1 for any
m ≥ 0. Clearly, setting m = 0 we will then have also proved that for all but a
finite number of primes p, a cannot be expressed as a linear combination of the
ci mod p.

We begin by noting that since a is not in the vector space generated by ci
we can find a vector, u ∈ Qn, such that u · ci = 0, for 1 ≤ i ≤ k, but u · a 6= 0.
We can then easily multiply u by a suitable constant so that u ∈ Zn. We set
u · a = s. Since a ∈ Zn and u ∈ Zn we know s ∈ Z \ {0}. Suppose that apm

can be expressed as a linear combination of the ci mod pm+1, that is,

apm ≡ c1x1 + · · · + ckxk mod pm+1.

Then multiplying by u gives,

u · apm ≡
k∑

i=1

u · cixi mod pm+1.
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However, we have already defined u · a = s and u · ci = 0 so,

spm ≡ 0 mod pm+1.

This implies that pm+1|spm but then p|s, that is p|a · u. Clearly this is only
true for a finite number of primes. �

For our next result we must first define some terminology.

Definition 4.5.2. Given a matrix C with column vectors c1, c2, · · · , ck such
that c1+c2 + · · ·+ck 6= 0, we define E(c1, c2, · · · , ck) to be the set of all primes,
p, for which c1 + c2 + · · · + ck ≡ 0 mod p.

Definition 4.5.3. Let c1, c2, . . . , ck and a be vectors such that a is not a linear
combination of c1, c2, . . . , ck. We define E(c1, c2, · · · , ck;a) to be the set of
all primes, p, for which apm ≡ c1x1 + c2x2 + · · · + ckxk mod pm+1 for some
m ∈ N.

Definition 4.5.4. E is the union of E(c1, c2, · · · , ck) and
E(c1, c2, · · · , ck;a). The vectors used to find E will be clear from the context.

We may now begin to prove Rado’s Theorem for regular homogeneous sys-
tems.

Lemma 4.5.5. Take a matrix C. Let p be a prime such that p /∈ E. If
Cx = 0 has a monochromatic solution under the Np colouring then C satisfies
the Columns condition.

Proof. Let x1, . . . , xn be a monochromatic solution to Cx = 0 under the Np

colouring. We first order x1, . . . , xn by their rank, as given in Definition 4.4.1,
so that

rank(xi) =





m1 if 1 ≤ i ≤ k1,

m2 if k1 < i ≤ k2,
...

...

ms if ks−1 < i ≤ n.

We can assume that m1 = 0 since Lemma 4.4.2 implies we can replace each xi
with xip

−m1 and they will remain monochromatic. We take r to be the colour
by which all the xi are coloured, that is Np(xi) = r. From Definition 4.4.1 we
have that for all xi such that i ≤ k1 there must exist some zi ∈ N such that
xi = r + zip. Clearly p|xi for all i ≥ k1 so there must exist some zi ∈ N such
that xi = zip. So the system of equations Cx = 0 can be written as

0 = Cx,

= c1x1 + · · · + cnxn,

= c1(r + z1p) + · · · + ck1(r + zk1p) + ck1+1zk1+1p + · · · + cnznp,

≡ c1r + · · · + ck1r mod p,

≡ (c1 + · · · + ck1)r mod p.
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From the definition of the Np colouring we can see that r 6≡ 0 mod p since
0 < r < p. Therefore c1 + · · · + ck1 ≡ 0 mod p but since p /∈ E and therefore
p /∈ E(c1, c2, · · · , ck1) we must have c1 + c2 + · · · + ck1 = 0.

Let 1 < j ≤ s. Then

0 ≡ c1x1 + · · · + cnxn mod pmj+1,

≡

kj−1∑

i=1

cixi +

kj∑

i=kj−1+1

cip
mjr mod pmj+1.

We can then multiply by r−1, which must exist since Z
p

mj+1 is a field, giving

kj∑

i=kj−1+1

cip
mj ≡ −

kj−1∑

i=1

cir
−1xi mod pmj+1.

This can be rewritten as

apmj ≡ −

kj−1∑

i=1

cir
−1xi mod pmj+1,

where a =
∑kj

i=kj−1+1 ci. Again we note p /∈ E, from the above equation we

can see that apmj ≡ −
∑kj−1

i=1 cir
−1xi mod pmj+1. Thus from Definition 4.5.3

we can see that a is a linear combination of the vectors c1, c2, . . . , ckj−1
. Since

j was an arbitrary natural number such that 1 < j ≤ s we see that the matrix
C must satisfy the Columns condition. �

Lemma 4.5.5 proves that if the system Cx = 0 is regular over N then C
satisfies the Columns condition. We now go on to finish the proof of Rado’s
Theorem by proving that if C satisfies the Columns condition then the system
Cx = 0 is regular over N.

We must first introduce families and their relation to the proof of Rado’s
Theorem.

Definition 4.5.6. A family, F, of finite subsets of N is called homogeneous if
for every set A ∈ F and a ∈ N we have that aA ∈ F.

Example. The set of solutions to a homogeneous system is a homogeneous
family. That is, the sets of entries of the vectors, x, satisfying the system
Cx = 0 together form a family of solutions to Cx = 0. These solutions form a
homogeneous family since if we multiply a vector x by some natural number,
it remains a solution to the system.

Definition 4.5.7. A family, F, of finite subsets of N is called regular if in every
finite colouring of N there exists a monochromatic set A ∈ F.

Example. The set of solutions to a regular homogeneous system is a regular
homogenous family. For a regular homogeneous system we can find a mono-
chromatic vector, x ∈ Nn, satisfying the system Cx = 0 in any finite colouring
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of the natural numbers. Therefore we may find a monochromatic set in the
family of solutions to the system Cx = 0 in any finite colouring of N.

We now prove two results involving families so that we may use them in the
proof of Rado’s Theorem.

Theorem 4.5.8. Let F, a family of finite subsets of N, be homogeneous and
regular. Let M be a positive integer. If N is finitely coloured there exists A ∈ F

and some positive integer d, such that

{a + λd | a ∈ A, |λ| ≤ M}

is a monochromatic subset of N.

Proof. We first take an arbitrary number of colours, r say. Clearly the proof
of Lemma 4.1.3 may be simply modified to show that there exists some R ∈ N
such that any r-colouring of [R] must contain a monochromatic set A′ ∈ F.

Given an r-colouring, χ, of N, we can define an rR-colouring, χ∗ of N
by χ∗(α) = χ∗(β) if and only if χ(αi) = χ(βi) for 1 ≤ i ≤ R. That is
two natural numbers, α and β, are monochromatic under χ∗ if and only if
χ(α) = χ(β), χ(2α) = χ(2β), . . . , χ(Rα) = χ(Rβ). We can see that χ∗ is an
rR-colouring since there are rR possible colourings of {α, 2α, 3α, . . . , Rα} for
α ∈ N under the χ colouring.

We now set T = MRn−1. By Van der Waerden’s Theorem we can find a
monochromatic arithmetic progression of length 2T + 1 in the χ∗ colouring of
N. Clearly Van der Waerden’s Theorem also implies that there exists g, e ∈ N
such that the set {g + µe | |µ| ≤ T} is monochromatic and lies in N.

We may define a new r-colouring of [R] by colouring each element m ∈ [R]
the same colour as gm ∈ g[R], where g[R] is coloured using the χ colouring.
Since in the new r-colouring there must exist some monochromatic set A′ ∈ F

such that A′ ∈ [R], from the way in which [R] was coloured there must also
exist a monochromatic set gA′ ∈ g[R]. Since A′ ∈ F and F is a homogeneous
family we must have that gA′ ∈ F. We label the elements of the finite set A′ =
{y1, y2, . . . , yn} and therefore gA′ = {gy1, gy2, . . . , gyn}, we also set gA′ = A.

We now set ai = gyi and d = ey where y = lcm(y1, . . . , yn). We will show
that A and d are as required in the statement of the Theorem, however, we first
note that

ai + λd = gyi + λey = yi

[
g + λe

y

yi

]

for all |λ| ≤ M . We showed earlier that the set {g + µe | |µ| ≤ T} is monochro-
matic under the χ∗ colouring. We now note that |λ( y

yi
)| ≤ MRn−1 = T since

|λ| ≤ M , yi ∈ [R] and y = lcm(y1, . . . , yn) so | y
yi
| ≤ Rn−1. We can therefore,

say the set {g + λ( y
yi

)e | |λ| ≤ M, i = 1, 2, . . . , n} is monochromatic under the
χ∗ colouring. That is,

χ∗(g) = χ∗

(
g + λe

(
y

y1

))
= χ∗

(
g + λe

(
y

y2

))
= · · · = χ∗

(
g + λe

(
y

yn

))
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for |λ| ≤ M . From the definition of the colouring χ∗ we can see

χ(y1g) = χ

(
y1

[
g + λe

(
y

y1

)])
,

χ(y2g) = χ

(
y2

[
g + λe

(
y

y2

)])
,

...

χ(yng) = χ

(
yn

[
g + λe

(
y

yn

)])
.

We have already shown that ai + λd = yi[g + λe( y
yi

)] and so we can now write

χ(y1g) = χ(a1 + λd),

χ(y2g) = χ(a2 + λd),

...

χ(yng) = χ(an + λd).

We previously stated that the set, {gy1, gy2 . . . , gyn} ∈ F is monochromatic
under the χ∗ colouring. So χ∗(gy1) = χ∗(gy2) = · · · = χ∗(gyn). This implies
that χ(gy1) = χ(gy2) = · · · = χ(gyn) since if χ∗(α) = χ∗(β) then χ(α) = χ(β).
Now we may say that for |λ| ≤ M , χ(a1 + λd) = χ(a2 + λd) = · · · = χ(an + λd)
as desired. �

Corollary 4.5.9. Let F, a family of subsets of N, be homogeneous and regular.
Let M and c be positive integers. In any finite colouring of N there must exist
some A ∈ F and some positive integer, d, such that

{a + λd | a ∈ A, |λ| ≤ M} ∪ {cd}

is a monochromatic subset of N.

Proof. We first define T = T (M, r, c) to be a natural number such that for
any r-colouring of [T ] there must exist d ∈ N and A ∈ F such that the set
{a + λd | a ∈ A, |λ| ≤ M} ∪ {cd} is monochromatic. We shall prove the result
by proving that T exists for all r ∈ N, using a proof by induction on the number
of colours, r. First, suppose that r = 1. Trivially T (M, 1, c) = max{mF+M, c}
where mF = min{max{a ∈ A} |A ∈ F}. Indeed, we only colour [T (M, 1, c)] with
one colour so any set in [T (M, 1, c)] must be monochromatic. Therefore we can
take d = 1 and A ∈ F such that mF = max{a ∈ A}. If mF+M ≤ c then we must
take T (M, 1, c) = c to ensure cd = c ∈ [T (M, 1, c)]. If c ≤ mF+M then we must
take T (M, 1, c) = mF + M to ensure a + λd = a + λ ≤ mF + M ∈ [T (M, 1, c)]
for all a ∈ A.

We now assume that r > 1 and T = T (M, r − 1, c) exists. We must prove
that T ′ = T (M, r, c) exists.

By Theorem 4.5.8 in any r-colouring of N there exists A ∈ F and d′ > 0
such that

{a + λd′ | a ∈ A, |λ| ≤ TM}
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is monochromatic. If we can find some µ ≤ T such that {a + λd′ | a ∈ A, |λ| ≤
TM}∪{µcd′} is monochromatic then, by setting d = µd′, we have a monochro-
matic set

{a + λd | a ∈ A, |λ| ≤ M} ∪ {cd}

of the desired form. However, if there is no such µ then {µcd′ |µ ≤ T} is at
most (r − 1)-coloured. From the definition of T (M, r − 1, s), which we already
assumed to exist, we have the desired result. Indeed, we may define a new
(r − 1)-colouring of [T (M, r − 1, c)] by colouring every number x in this set the
same colour as xcd′. There must exist d ∈ N and A ∈ F such that the set,
{a + λd | a ∈ A, |λ| ≤ M} ∪ {cd} ⊆ [T (M, r − 1, c)] is monochromatic from the
definition of T (M, r − 1, c). Therefore, from the definition of the new colouring
of [T (M, r − 1, c)], the set {a + λcd′d | a ∈ cd′A, |λ| ≤ M} ∪ {c2dd′} must be
monochromatic in the old colouring. Since F is homogeneous we must have that
cd′A ∈ F. Therefore we have the desired monochromatic set, where d is taken
to be cd′d and A is cd′A in the statement of Corollary 4.5.9. �

To complete the proof of Rado’s Theorem we must introduce (m, p, c)-sets.

Definition 4.5.10.

Zm,p,c = {(λ1, . . . , λm+1) ∈ Z(m+1) | some λi 6= 0, the first non-zero λi = c,

|λj | ≤ p for all other λj}.

Definition 4.5.11. An (m, p, c)-set, generated by the set of positive integers,
{y1, y2, . . . , ym+1}, is a set S of the form

S =

{
m+1∑

i=1

λiyi

∣∣∣∣ (λ1, . . . , λm+1) ∈ Zm,p,c

}
.

Example. A (1, 2, 2)-set generated by y1 and y2 is

S =

{
2∑

i=1

λiyi

∣∣∣∣ (λ1, λ2) ∈ Z1,2,2

}
,

where
Z1,2,2 = {(2, 0), (2, 1), (2,−1), (2, 2), (2,−2), (0, 2)}.

That is, S = {2y1, 2y1 + y2, 2y1 − y2, 2y1 + 2y2, 2y1 − 2y2, 2y2}.

Example. A (2, 2, 1)-set generated by y1, y2 and y3 is

S =

{
3∑

i=1

λiyi

∣∣∣∣ (λ1, λ2, λ3) ∈ Z2,2,1

}
,

33



where

Z2,2,1 ={(1,−2,−2), (1,−2,−1), (1,−2, 0), (1,−2, 1), (1,−2, 2),

(1,−1,−2), (1,−1,−1), (1,−1, 0), (1,−1, 1), (1,−1, 2),

(1, 0,−2), (1, 0,−1), (1, 0, 0), (1, 0, 1), (1, 0, 2),

(1, 1,−2), (1, 1,−1), (1, 1, 0), (1, 1, 1), (1, 1, 2),

(1, 2,−2), (1, 2,−1), (1, 2, 0), (1, 2, 1), (1, 2, 2),

(0, 1,−2), (0, 1,−1), (0, 1, 0), (0, 1, 1), (0, 1, 2),

(0, 0, 1)}.

If the generators, y1, y2, . . . , ym+1, of an (m, p, c)-set, S, satisfy y1 ≫ y2 ≫
· · · ≫ ym+1 ≥ 0 then S ⊆ N.

Theorem 4.5.12. Let m, p, c ∈ N. If N is coloured with a finite number of
colours there exists a monochromatic (m, p, c)-set, S.

Proof. We will prove this theorem by induction on m.
For the case in which m = 1 we refer to Corollary 4.3.2. We first take an

r-colouring of N, say χ. We now define an r-colouring of N, say χ̄, in which we
colour x with the colour given to cx under the χ colouring, for all x ∈ N. A
general (1, p, c)-set takes the form

S = {cy1, cy1 + y2, cy1 − y2, . . . , cy1 + py2, cy1 − py2, cy2},

where
Z1,p,c = {(c, 0), (c, 1), (c,−1), . . . , (c, p), (c,−p), (0, c)}.

Setting k = p + 1 and s = c in Corollary 4.3.2 we may deduce that under the χ̄
colouring there exists a monochromatic set of the form {a+λd | |λ| ≤ p}∪{cd}.
From the definition of our χ̄ colouring, the set {ca + λcd | |λ| ≤ p} ∪ {c2d}
must also be monochromatic under the χ colouring. We may now set a = y1

and cd = y2 and we have shown that the monochromatic set {cy1 + λy2 | |λ| ≤
p} ∪ {cy2} can be found in any r-colouring of N. Since this set is a (1, p, c)-set
we have shown that in any r-colouring of N there must exist a monochromatic
(1, p, c)-set for any p, c ∈ N.

We now assume that if N is coloured with a finite number of colours there
exists a monochromatic (m, p, c)-set and we must prove that an (m+1, p, c)-set
exists.

We may take F to be the family of (m, p, c)-sets. F is regular from the
induction hypothesis. F is homogeneous since multiplying the elements of an
(m, p, c)-set by some a ∈ N will produce an (m, p, c)-set. The generators of
the new (m, p, c)-set will be ay1, ay2, . . . , aym+1, where previously they were
y1, y2, . . . , ym+1. Therefore, from Corollary 4.5.9 if N is coloured with a finite
number of colours there must exist a monochromatic (m + 1, p, c)-set S. In-
deed, we replace the M in Corollary 4.5.9 with p, d now becomes ym+1 and A
represents our (m, p, c)-set. �
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To complete the proof of Rado’s Theorem we now prove Theorem 4.5.13,
the converse of Lemma 4.5.5.

Theorem 4.5.13. If C satisfies the Columns condition then the system Cx = 0

is regular over N.

Proof. We prove this theorem by producing a monochromatic parametric
solution to the system Cx = 0. We will produce a solution of the form

x = a1y1 + a2y2 + · · · + anyn,

where ai ∈ Zm and yj ∈ Z+. We then will show that in any finite colouring
of N there exist y1, y2, . . . , yn ∈ N such that x ∈ Nm, and such that x is a
monochromatic solution to Cx = 0. We note that the matrix C satisfies the
Columns condition, and assume that C has n partition sets. We now label
the columns of the matrix C as c1, c2, . . . , ckn

, and the n partition sets as
C1 = {c1, . . . , ck1}, C2 = {ck1+1, . . . , ck2}, . . . , Cn = {ckn−1+1 + · · · + ckn

}. That
is,

c1 + · · · + ck1 = 0,

ck1+1 + · · · + ck2 = α1c1 + · · · + αk1ck1 ,

...

ckn−1+1 + · · · + ckn
= γ1c1 + · · · + γkn−1ckn−1 .

We now define the vectors x1,x2, . . . ,xn ∈ Qkn as follows,

x1 = (x1
1, x

1
2, . . . , x

1
k1

, x1
k1+1, . . . , x

1
k2

, . . . , x1
kn−1+1, . . . , x

1
kn

)T ,

= (1, 1, . . . , 1, 0, . . . , 0, . . . , 0, . . . , 0)T ,

x2 = (x2
1, x

2
2, . . . , x

2
k1

, x2
k1+1, . . . , x

2
k2

, . . . , x2
kn−1+1, . . . , x

2
kn

)T ,

= (−α1,−α2, . . . ,−αk1 , 1, . . . , 1, . . . , 0, . . . , 0)
T ,

...

xn = (xn1 , xn2 , . . . , xnk1 , x
n
k1+1, . . . , x

n
k2

, . . . , xnkn−1+1, . . . , x
n
kn

)T ,

= (−γ1,−γ2, . . . ,−γk1,−γk1+1, . . . ,−γk2, . . . , 1, . . . , 1)
T .

Note that each of these vectors, x1,x2, . . . ,xn, is a solution to the system
Cx = 0. We multiply these vectors by an appropriate c ∈ N, to produce n
integer solutions. We call these n solutions a1,a2, . . . ,an. Thus

a1 = cx1 = (c, c, . . . , c, 0, . . . , 0, . . . , 0, . . . , 0)T ,

a2 = cx2 = (−cα1,−cα2, . . . ,−cαk1 , c, . . . , c, . . . , 0, . . . , 0)
T ,

...

an = cxn = (−cγ1,−cγ2, . . . ,−cγk1 ,−cγk1+1, . . . ,−cγk2 , . . . , c, . . . , c)
T .
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We are now able to produce our parametric solution to Cx = 0,

x =




x1

x2
...

xk1
xk1+1

...
xk2
...

xkn−1

...
xkn




=




c
c
...
c
0
...
0
...
0
...
0




y1 +




−cα1

−cα2
...

−cαk1
c
...
c
...
0
...
0




y2 + · · · +




−cγ1

−cγ2
...

−cγk1
−cγk1+1

...
−cγk2

...
c
...
c




yn.

Indeed, x is a solution to Cx = 0, since it is a linear combination of the vectors
a1,a2, . . . ,an, which are all solutions to Cx = 0.

Clearly the first non-zero coefficient of each of the parametric solutions will
be c. For example, xk2 = cy2 + . . . − cγk2yn, here the coefficient of y2 is c.

To prove that we can find a monochromatic solution of this form in any finite
colouring of N we set p to be the largest modulus of an entry from the vectors
a1,a2, . . . ,an and m = n − 1. From Theorem 4.5.12, for any finite colouring
of N we can find a monochromatic (m, p, c)-set, S = {

∑n
i=1 λiyi | (λ1, . . . , λn) ∈

Zn−1,p,c}. S must contain the parametric solution. Indeed, the modulus of the
maximum coefficient of each yi in our parametric solution is at most p, there
are n terms yi, and every leading non-zero coefficient in the parametric solution
is c. Therefore the system Cx = 0 is regular over N. �

This completes the proof of Rado’s Theorem: a system Cx = 0 is regular
over N if and only if C satisfies the Columns condition.

We now give an example of how a particular parametric solution, used in
the proof of Theorem 4.5.13, is found.

Example. Take the system Cx = 0 where

C =




2 −2 0 2 0 0 1
3 −2 −1 −9 12 0 4
1 −1 0 −1 2 0 1
0 1 −1 −10 10 2 0


 ,

giving the set of equations

2x1 − 2x2 + 2x4 + 1x7 =0,

3x1 − 2x2 − 1x3 − 9x4 + 12x5 + 4x7 =0,

1x1 − 1x2 − 1x4 + 2x5 + 1x7 =0,

1x2 − 1x3 − 10x4 + 10x5 + 2x6 =0.

(4.5.1)
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We have

c1 = (2, 3, 1, 0)T ,

c2 = (−2,−2,−1, 1)T ,

c3 = (0,−1, 0,−1)T ,

c4 = (2,−9,−1,−10)T ,

c5 = (0, 12, 2, 10)T ,

c6 = (0, 0, 0, 2)T ,

c7 = (1, 4, 1, 0)T .

The matrix, C, satisfies the Columns condition. The partitions of C are
{c1, c2, c3}, {c4, c5} and {c6, c7}, since

c1 + c2 + c3 = 0,

c4 + c5 = c1,

c6 + c7 =
1

2
c1 +

1

2
c3 +

1

4
c5.

Therefore we have solutions to the system,

x1 = (1, 1, 1, 0, 0, 0, 0)T ,

x2 = (−1, 0, 0, 1, 1, 0, 0)T ,

x3 = (−
1

2
, 0,−

1

2
, 0,−

1

4
, 1, 1)T .

We multiply these solution by 4 so that they are all integer solutions, making

a1 = (4, 4, 4, 0, 0, 0, 0)T ,

a2 = (−4, 0, 0, 4, 4, 0, 0)T ,

a3 = (−2, 0,−2, 0,−1, 4, 4)T ,

where c = 4. So our parametric solution is




x1

x2

x3

x4

x5

x6

x7




=




4
4
4
0
0
0
0




y1 +




−4
0
0
4
4
0
0




y2 +




−2
0
−2
0
−1
4
4




y3. (4.5.2)

Since p is to be the largest modulus of an entry from the vectors a1,a2,a3

and m = n − 1 we have p = 4 and m = 2. In any finite colouring of N
there is a monochromatic (2, 4, 4)-set, S, and this must contain a solution
as in (4.5.2) and so a solution to the system (4.5.1). Indeed, S = {4y1 −
4y2 − 4y3, 4y1 − 4y2 − 3y3, . . . , 4y1 − 4y2 + 3y3, 4y1 − 4y2 + 4y3, . . . , 4y1 − 3y2 +
4y3, . . . , 4y1 + 4y2 + 4y3, 4y2 − 4y3, . . . , 4y2 + 4y3, . . . , 4y3}. In particular 4y1 −
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4y2 − 2y3, 4y1, 4y1 − 2y3, 4y2, 4y2 − 1y3, 4y3 ∈ S and since 4y1 − 4y2 − 2y3 =
x1, 4y1 = x2, 4y1 − 2y3 = x3, 4y2 = x4, 4y2 − 1y3 = x5, 4y3 = x6 = x7 we have
that x1, x2, x3, x4, x5, x6, x7 ∈ S. S is a monochromatic set so x is a monochro-
matic solution.

4.6 Consistency of finite linear systems

Definition 4.6.1. Consider two regular systems, Ax = 0 and By = 0. So
in any finite colouring of N there exists a monochromatic vector x such that
Ax = 0 and in every finite colouring of N there exists a monochromatic vector
y such that By = 0. These two systems are said to be consistent if in every
finite colouring of N there exist monochromatic vectors x and y, which have the
same colour, such that Ax = 0 and By = 0.

Example. We can easily see that

A =




1 −1 −2
2 −2 −4
−3 3 6




and

B =




0 1 −1 2
1 0 −1 3
−1 2 −1 1




satisfy the Columns condition and so by Rado’s Theorem are regular. Therefore,
in any any finite colouring of N we can find a monochromatic vector x and
a monochromatic vector y such that Ax = 0 and By = 0. However we can
only say these two systems are consistent if we can always find monochromatic
vectors x and y, which have the same colour, such that Ax = 0 and By = 0.
It is completely analogous to say the systems are consistent if we can find a
monochromatic vector z such that Cz = 0 where

C =




0 0 0 0(
A

)
0 0 0 0

0 0 0 0
0 0 0

0 0 0

(
B

)

0 0 0




=




1 −1 −2 0 0 0 0
2 −2 −4 0 0 0 0
−3 3 6 0 0 0 0
0 0 0 0 1 −1 2
0 0 0 1 0 −1 3
0 0 0 −1 2 −1 1




.

We can see C satisfies the Columns condition. Let c1, . . . , c7 be the columns
of C, we take the partitions to be C1 = {c1, c2, c4, c5, c6} and C2 = {c3, c7}.∑2

i=1 ci +
∑6

i=4 ci = 0 and c3 + c7 = 2c2 + c4 − 2c6 so C satisfies the Columns
condition and by Rado’s Theorem is regular. Since C is regular we can certainly
find a monochromatic vector, z, in any r-colouring of N such that Cz = 0 and
so Ax = 0 and By = 0 are consistent.
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Using Rado’s Theorem we will now formally prove that finite linear systems
are always consistent.

Theorem 4.6.2. Any two finite regular linear homogeneous systems are
consistent.

Proof. We take two regular linear homogeneous systems Ax = 0 and By = 0.
From Rado’s Theorem we can see that these matrices satisfy the Columns condi-
tion. Let A1,A2, . . . ,Am be the partition of the columns of A and B1,B2, . . . ,Bn
the partition of the columns of B. Let the matrix C be the diagonal sum of
A and B, that is C = (A 0

0 B ). We can now define a partition of the columns
of C which satisfies the Columns condition. The first partition set of C is
C1 = A1∪B1, the sum of the columns in this partition set must sum to zero since
the columns in A1 and B1 sum to zero. The remaining partition sets are defined
as C2 = A2, C3 = A3, . . . , Cm = Am, Cm+1 = B2, Cm+2 = B3, . . . , Cm+n−1 = Bn.
It is clear that the sum of the vectors in each of these partitions sets can be
written as a linear combination of the vectors in the partitions sets of lower
index as they were in A and B. Therefore C is regular and A and B are
consistent. �

4.7 The Finite Sums Theorem

The Finite Sums Theorem is also known as Folkman’s Theorem, Sanders’ Theo-
rem and the Folkman-Rado-Sanders Theorem. The reason for the differing
names is that various proofs, published and unpublished, have been produced
by Sanders, Rado and Folkman. Sanders’ proof was published in 1969 and
Rado’s in 1970.

To understand the Finite Sums Theorem Theorem we must first define a
sum-set.

Definition 4.7.1. Given a set S ⊆ N,

S(S) =

{
∑

s∈S

zss

∣∣∣∣ zs = 0 or 1 for all s ∈ S and

zs = 1 for some non-zero finite number of s ∈ S

}
.

We call S(S) the sum-set for the set S.

Example. If S = {2, 4, 6, 8} then S(S) = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. If
S = {2, 4, 5} then S(S) = {2, 4, 5, 6, 7, 9, 11}.

We state the Finite Sums Theorem below as Theorem 4.7.2.

Theorem 4.7.2. In any r-colouring of N there exists some k-element set, S,
such that S(S) is monochromatic.
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Proof. We shall first prove that the monochromatic set, S(S), exists for
k = 4. We take the matrix

C =




1 1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 −1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 −1 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 −1 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 −1 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 −1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 −1




.

C satisfies the Columns condition, indeed, labeling C’s columns c1, c2, . . . , c15,
we see that c4 +

∑15
i=9 ci = 0, c1 + c5 + c7 + c8 = −c9 − c12 − c14 − c15,

c2 + c6 = −c5 − c8 − c10 − c12 − c13 − c15 and c3 = −
∑8

i=6 ci− c11 −
∑15

i=13 ci.
That is, the partition sets of C are C1 = {c4, c9, c10, c11, c12, c13, c14, c15}, C2 =
{c1, c5, c7, c8}, C3 = {c2, c6} and C4 = {c3}. From Rado’s Theorem we may
deduce that since C satisfies the Columns condition it is a regular matrix. Since
C is regular there must exist some monochromatic vector, x, such that Cx = 0.
The sum-set, S(S), consist of all the elements of the vector x. Indeed, Cx = 0

may also be written

x1 + x2 = x5,

x2 + x3 = x6,

x1 + x3 = x7,

x1 + x2 + x3 = x8,

x1 + x4 = x9,

x2 + x4 = x10,

x3 + x4 = x11,

x1 + x2 + x4 = x12,

x2 + x3 + x4 = x13,

x1 + x3 + x4 = x14,

x1 + x2 + x3 + x4 = x15.

From this set of equations we can see that, since Cx = 0 is a regular system,
not only will the elements, x1, x2, x3 and x4 be monochromatic but also every
sum in the sum-set, S(x1, x2, x3, x4).

The proof for a general k is clearly an extension of the example given here
for k = 4. We must simply produce the matrix which represents the sums in
the sum-set, these matrices will all have the Columns condition, since they will
be of the same form as C. �

40



5 Hindman’s Theorem

In Neil Hindman’s paper, Finite sums from sequences within cells of a partition
of N [17], he proved the theorem which would later become known as Hindman’s
Theorem. Hindman’s theorem states that if N is coloured with some finite
number of colours there must exist some infinite set S ⊆ N such that S(S) is
monochromatic. S(S) is defined as in the Finite Sums Theorem, in Definition
4.7.1.

To prove Hindman’s Theorem we will use ultrafilters. Therefore, we will
begin by defining filters and ultrafilters and studying some of their properties.
Throughout this chapter we shall denote the complement of a set A by Ā.

5.1 Filters and ultrafilters

Definition 5.1.1. A filter on N is a collection F ⊂ P(N) such that

• ∅ /∈ F and N ∈ F ,

• if A ∈ F and A ⊂ B then B ∈ F ,

• if A,B ∈ F then A ∩ B ∈ F .

Example. Some examples of filters are given by {A ⊂ N | 1 ∈ A}, {A ⊂
N | 1, 2 ∈ A}, {A ⊂ N |B ⊂ A}, for some fixed B ⊂ N. Another example is
{A ⊂ N | Ā is finite }, this is called the cofinite filter and denoted by Fcof .

Definition 5.1.2. An ultrafilter is a maximal filter.

Lemma 5.1.3. Every filter is contained in some ultrafilter.

Proof. We shall prove that every filter is contained in a maximal filter using
Zorn’s Lemma. Zorn’s Lemma states that every partially ordered set, P , has a
maximal element if P has the Zorn Property. P has the the Zorn property if
for every chain C in P there is an upper bound p ∈ P of C.

For some filter F1 we take F1 ⊆ F2 ⊆ F3 ⊆ · · · to be any chain of filters
containing F1, and must find an upper bound of the chain. We will show that
F =

⋃∞
i=1 Fi is an upper bound of the chain. We first check that F is a filter.

Clearly ∅ 6∈ F since ∅ 6∈ Fi for all i. Since N ∈ Fi for all i, N ∈
⋃∞
i=1 Fi = F .

If A ∈ F and A ⊂ B then A ∈ Fi for some i, and since Fi is a filter B ∈ Fi,
but then B ∈ F . If A,B ∈ F then A ∈ Fi for some i and B ∈ Fj for some
j. If i = j we are done, since Fi is a filter so A ∩ B ∈ Fi. If i < j then since
Fi ⊆ Fj we must have that A ∈ Fj, and again since Fj is a filter A ∩ B ∈ Fj .
If i > j then we must have that B ∈ Fi, and A∩B ∈ Fi. Therefore F is a filter
since is satisfies the definition of a filter given in Definition 5.1.1. Therefore the
set of all filters containing F1 has a maximal element. A maximal filter is an
ultrafilter, so every filter is contained in some ultrafilter. �
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Lemma 5.1.4. U is an ultrafilter if and only if for all A ⊂ N either A ∈ U or
Ā ∈ U .

Proof. We shall prove this lemma using a proof by contradiction. For some
ultrafilter, U , we assume there exists a set A such that A, Ā /∈ U . From the
maximality of U there must exist some set B ∈ U such that B ∩ A = ∅ and
B ∩ Ā = ∅. It is then clear that B ∩ (A ∪ Ā) = ∅ and A ∪ Ā = N but then
B ∩ (A∪ Ā) = B ∩N = ∅ so B = ∅ and ∅ ∈ U . This is a contradiction since the
empty set is defined not to be in any filter and U is a filter. So one of A and Ā
must be in U . We cannot have that both A and Ā are subsets of a filter since
if A, Ā ∈ F then from the definition of a filter A ∩ Ā = ∅ ∈ F . The empty set
is defined not to be in any filter. Therefore, either A ∈ U or Ā ∈ U .

We have shown that if U is an ultrafilter then for all A ⊂ N either A ∈ U
or Ā ∈ U . We must now show that if for all sets A ⊂ N either A ∈ U or Ā ∈ U
then U is an ultrafilter.

We take some filter U which is not an ultrafilter and therefore is not a
maximal filter. We assume, for all A ⊂ N either A ∈ U or Ā ∈ U . Since U is not
a maximal filter there must exist some filter V such that U $ V and so there
must exist some set, say B, such that B 6∈ U but B ∈ V. From our assumption
we have that if B 6∈ U then B̄ ∈ U , however, U $ V so B̄ ∈ V. This is a
contradiction since both B and B̄ cannot both be in V from our assumption.
Therefore U must be a maximal filter, an ultrafilter. �

Proposition 5.1.5. For every ultrafilter, U we have that A1 ∪ A2 ∈ U if and
only if A1 ∈ U or A2 ∈ U .

Proof. We assume that A1 ∪A2 ∈ U but A1, A2 /∈ U . Since U is an ultrafilter
from Lemma 5.1.4 we must have Ā1, Ā2 ∈ U . Taking A3 = Ā1 ∩ Ā2 we have
that A3 ∈ U but, using De Morgan’s laws, Ā3 = A1 ∪ A2, and we already have
that A1 ∪A2 ∈ U so Ā3 ∈ U . Since U is an filter, Ā3 and A3 cannot both be in
U . We have a contradiction and so A1 ∈ U or A2 ∈ U . From the definition of
an ultrafilter we can see that if A1 ∈ U or A2 ∈ U then since A1 ⊂ A1 ∪A2 and
A2 ⊂ A1 ∪ A2 we have A1 ∪ A2 ∈ U . �

Lemma 5.1.6. Suppose that U is an ultrafilter and A1, A2, . . . , An are subsets
of N. Then the subsets of N, A1, A2, . . . , An, are all in U if and only if A1 ∩
A2 ∩ · · · ∩ An ∈ U .

Proof. We shall prove the case for two sets, A1 and A2, and then three sets,
A1, A2 and A3, the general case follows similarly.

From the definition of a filter we have, if A1, A2 ∈ U then A1 ∩ A2 ∈ U . If
A1 ∩ A2 ∈ U then since A1 ∩ A2 ⊂ A1 and A1 ∩ A2 ⊂ A2 we may say, again
from the definition of a filter, A1, A2 ∈ U .

Again, from the definition of a filter we have, if A1, A2, A3 ∈ U then A1∩A2 ∈
U , but then (A1 ∩ A2), A3 ∈ U so we must have that A1 ∩ A2 ∩ A3 ∈ U .
If A1 ∩ A2 ∩ A3 ∈ U then since A1 ∩ A2 ∩ A3 ⊂ A1, A1 ∩ A2 ∩ A3 ⊂ A2

and A1 ∩ A2 ∩ A3 ⊂ A3 we may say, again from the definition of a filter,
A1, A2, A3 ∈ U . �
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Definition 5.1.7. ñ = {A ⊂ N |n ∈ A} is called the principal ultrafilter at n.

Example. The principal ultrafilter at 1 is {A ⊂ N | 1 ∈ A}.

There is clearly a bijective mapping between the elements of N and the
principal ultrafilters. Under this mapping n ∈ N is mapped to the principal
ultrafilter, ñ. This is a bijective mapping since any principal ultrafilter is map-
ped onto by exactly one element of N. This allows us, in some circumstances,
to use n and ñ interchangeably.

Proposition 5.1.8. If A1, . . . , An are subsets of N and U is an ultrafilter then
A1 ∪ · · · ∪ An ∈ U if and only if there exists some i ∈ {1, 2, . . . , n} such that
Ai ∈ U .

Proof. We set A = A1 ∪ · · · ∪ An and assume that A ∈ U . It is clear that
A = A1 ∪ (A2 ∪ · · · ∪ An) ∈ U and so Proposition 5.1.5 implies A1 ∈ U or
A2 ∪ · · · ∪ An ∈ U . If A1 /∈ U then A2 ∪ · · · ∪ An ∈ U . We may now write
A2 ∪ · · · ∪ An = A2 ∪ (A3 ∪ · · · ∪ An). Again, Proposition 5.1.5 implies that
A2 ∈ U or A3 ∪ · · · ∪ An ∈ U . We can continue in this way. Since A consists
of the union of a finite number of sets, Ai, we know that at some stage there
must exist some i ∈ {1, . . . , n} such that Ai ∈ U .

If there exists some i ∈ {1, . . . , n} such that Ai ∈ U then from the definition
of a filter, since Ai ⊂ (A1∪· · ·∪An), we must have that A1∪· · ·∪An ∈ U . �

Corollary 5.1.9. If U is an ultrafilter and A is a finite set such that A ∈ U
then there exists some n ∈ A such that U = ñ.

Proof. Since A = {n1, n2, . . . , nk} = {n1}∪{n2}∪· · ·∪{nk}, from Proposition
5.1.8 we have that for some i ∈ {1, 2, . . . , n}, {ni} ∈ U . However, since {ni} ∈ U ,
we must have, from the definition of a filter, that for every set B ⊂ N such that
ni ∈ B, B ∈ U . Moreover, if B ⊆ N and ni 6∈ B then B 6∈ U since otherwise,
from the definition of a filter, B ∩ {ni} = ∅ ∈ U . Thus U = ñi. �

Proposition 5.1.10. Any ultrafilter, U , containing the cofinite filter, Fcof , is
non-principal.

Proof. We assume U is a principal ultrafilter containing the Fcof . Then
ñ = U for some n ∈ N and from the definition of ñ, {n} ∈ U . The complement
of {n} is N\{n}, an infinite set, so {n} /∈ Fcof and N\{n} ∈ Fcof . Fcof ⊂ U and
so N \ {n} ∈ U . U is a filter and thus {n} and its complement, N \ {n}, cannot
both be in U , since otherwise {n} ∩ N \ {n} = ∅ ∈ U . We have a contradiction
and so U must be a non-principal ultrafilter. �

Proposition 5.1.11. If U is a non-principal ultrafilter then Fcof ⊆ U .

Proof. We assume there exists some set A where A /∈ U and Ā is finite. Since
U is an ultrafilter Lemma 5.1.4 implies that Ā ∈ U . Since Ā is a finite set and
Ā ∈ U , Proposition 5.1.9 implies that there exists some n ∈ Ā such that ñ = U .
This is a contradiction since U is a non-principal ultrafilter. Therefore, A ∈ U
for every set A whose complement, Ā, is finite. This is the definition of the
cofinite filter. So Fcof ⊆ U . �
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Proposition 5.1.10 and Proposition 5.1.11 together imply that Fcof ⊆ U if
and only if U is a non-principal ultrafilter.

5.2 A topology on βN

We must now produce a topological space on the set of all ultrafilters on N.
This will enable us to prove results concerning the set of all ultrafilters on N
which we will need in the proof of Hindman’s Theorem.

Definition 5.2.1. The set of all ultrafilters on N is called βN.

We define a topology on βN by taking basic open sets of the form CA =
{U ∈ βN |A ∈ U} for A ⊆ N.

Lemma 5.2.2. Let A1, A2, . . . , An be subsets of N. Then CA1∩CA2∩· · ·∩CAn =
CA1∩A2∩···∩An, a basic open set.

Proof. We shall prove the case for two basic open sets, CA1 and CA2 , and
then three basic open sets, CA1, CA2 and CA3 , the general case follows similarly.

CA1 ∩ CA2 = {U ∈ βN |A1 ∈ U} ∩ {U ∈ βN |A2 ∈ U} = {U ∈ βN |A1 ∩
A2 ∈ U} = CA1∩A2 . Indeed, this holds since from Lemma 5.1.6 we have that
A1, A2 ∈ U if and only if A1∩A2 ∈ U . So the set of ultrafilters containing A1 and
A2 is precisely the set of ultrafilters containing A1∩A2. So CA1∩CA2 = CA1∩A2 .
Now, (CA1 ∩ CA2) ∩ CA3 = CA1∩A2 ∩ CA3 , since CA1∩A2 is a basic open set we
may say CA1∩A2 ∩ CA3 = CA1∩A2∩A3 . Clearly we may generalise this proof for
any finite number of basic open sets. �

The union of a collection of basic open sets in the topology, CA1, CA2 , CA3 . . .,
is open since they are open sets. That is, CA1 ∪CA2 ∪CA3 . . . is an open set for
any basic open sets CA1, CA2 , CA3 . . .. The intersection of finitely many basic
open sets is a basic open itself. Therefore the open sets in βN are the basic
open sets and their unions.

Proposition 5.2.3. βN \ CA = CĀ.

Proof. As proved in Proposition 5.1.4 for any set A ⊂ N, every ultrafilter
must contain A or Ā. So βN\CA, the set of all ultrafilters which do not contain
A, must be the set of all ultrafilters which do contain Ā, the set CĀ. �

The complement of an open set is, by definition, a closed set and so our
basic open sets are clopen.

Proposition 5.2.4. Let A1, A2, . . . , An be subsets of N. Then CA1 ∪CA2 ∪· · ·∪
CAn = CA1∪A2∪···∪An and βN \ {CA1 ∪ CA2 ∪ · · · ∪ CAn} = CĀ1∩Ā2∩···∩Ān

.

Proof. CA1 ∪ CA2 ∪ · · · ∪ CAn is the set of ultrafilters which contain at least
one of the sets A1, A2, . . . , An. From Proposition 5.1.8, an ultrafilter contains
Ai for some i ∈ {1, 2, . . . , n} if and only if it contains A1 ∪ A2 ∪ · · · ∪ An.
Therefore the set of ultrafilters CA1 ∪ CA2 ∪ · · · ∪ CAn is equal to the set of
ultrafilters CA1∪A2∪···∪An . Therefore the set βN \ {CA1 ∪ CA2 ∪ · · · ∪ CAn} =

44



βN \ CA1∪A2∪···∪An . We may set A = A1 ∪ A2 ∪ · · · ∪ An and then from Pro-
position 5.2.3 we have βN \ CA1∪A2∪···∪An = CA1∪A2∪···∪An

, but then, from De

Morgan’s Laws, we have that A1 ∪ A2 ∪ · · · ∪ An = Ā1 ∩ Ā2 ∩ · · · ∩ Ān. The-
refore CA1∪A2∪···∪An

= CĀ1∩Ā2∩···∩Ān
, and so βN \ {CA1 ∪ CA2 ∪ · · · ∪ CAn} =

CĀ1∩Ā2∩···∩Ān
. �

We note that Proposition 5.2.4 implies that a finite union of basic open sets
in also basic open set.

Definition 5.2.5. A subset, A, of a topological space, X, is dense if every
non-empty open subset of X intersects A.

Lemma 5.2.6. N is dense in βN.

Proof. We recall that every element of N may be identified with a principal
ultrafilter. Consider any basic open set, CA, where A 6= ∅, then for every
n ∈ A, we have A ∈ ñ and thus ñ ∈ CA. Since ñ ∈ CA we have that CA
intersects N. For any n ∈ I where I ∈ {A1, A2, A3, . . .} we have ñ ∈ CI so
ñ ∈ CA1 ∪ CA2 ∪ CA3 . . .. Therefore the union of any basic open sets intersect
N. So the basic open sets in βN and the union of any number of those sets both
intersect N. So every non-empty open set in βN intersects N and N is dense in
βN. �

Definition 5.2.7. A neighbourhood of a point, x, in a topological space, X, is
any open set containing x.

Definition 5.2.8. An element, x, of a topological space, X, is said to be an
isolated point, if there exists a neighbourhood of x, say U , such that X∩U = {x}.
That is, the one-point set {x} is open in X.

Lemma 5.2.9. Every point of N is isolated in βN.

Proof. For any element n ∈ N we can take

C{n} = {U ∈ βN | {n} ∈ U},

= {ñ},

where ñ is the principal ultrafilter at n. C{n} is an open set and contains only
ñ, so the definition of an isolated point is satisfied. Since n was an arbitrary
element of N, every point in N must be isolated in βN. �

Lemma 5.2.10. For a topological space, X, and a collection of closed sets,
(Fi)i∈I , ⋂

i∈I

Fi = ∅ ⇔ (Ui)i∈I is an open cover of X

where Ui = X \ Fi.
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Proof. We first assume that
⋂
i∈I Fi = ∅. By De Morgan’s laws we have

⋃

i∈I

(X \ Fi) = X \
⋂

i∈I

Fi.

Now, since Ui = X \ Fi and
⋂
i∈I Fi = ∅

⋃

i∈I

(X \ Fi) = X \ ∅, and so

⋃

i∈I

Ui = X.

Thus the collection of open sets, (Ui)i∈I , is an open cover of X.
We now assume the collection of open sets, (Ui)i∈I , is an open cover of X

and we must prove that
⋂
i∈I Fi = ∅. Again by De Morgan’s law,

⋃

i∈I

(X \ Fi) = X \
⋂

i∈I

Fi , therefore

⋃

i∈I

Ui = X \
⋂

i∈I

Fi.

Since (Ui)i∈I is an open cover of X we must have
⋃
i∈I(Ui) = X but then

X = X \
⋂
i∈I Fi so we must have

⋂
i∈I Fi = ∅. �

Definition 5.2.11. A collection, (Fi)i∈I , of closed sets of a topological space,
X, has the finite intersection property if the intersection of any finite number
of these sets is non-empty. That is, if for any finite J ⊂ I we have that

⋂

j∈J

Fj 6= ∅.

Definition 5.2.12. A topological space, X, is compact if and only if every open
cover of X has a finite subcover.

Lemma 5.2.13. A topological space is compact if and only if for every collec-
tion of closed sets, (Fi)i∈I , satisfying the finite intersection property we have⋂
i∈I Fi 6= ∅.

Proof. For this proof we must show that our lemma is equivalent to the
definition of compactness given in Definition 5.2.12. We shall do this by proving
that for every collection of closed sets, (Fi)i∈I , satisfying the finite intersection
property we have

⋂
i∈I Fi 6= ∅ if and only if every open cover of X has a finite

subcover.
We first assume that for any collection of closed sets, (Fi)i∈I , satisfying the

finite intersection property we have
⋂
i∈I Fi 6= ∅. We now take an open cover

of X and assume that this open cover does not have a finite subcover. We take
(Ui)i∈I to be the collection of sets in the open cover of X. We may take any
finite subcollection of open sets from (Ui)i∈I , say (Uj)j∈J where J ⊂ I. Since
this collection of open sets cannot be a cover of X we must have that there
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exists some element of X, say x, which is not in
⋃
j∈J Uj. But then, by De

Morgan’s laws, we have x ∈
⋂
j∈J Fj , where Fj = X \ Uj. This is true of any

finite subcollection of open sets from (Ui)i∈I so
⋂
j∈J Fj 6= ∅ for all finite J such

that J ⊂ I. Therefore (Fi)i∈I has the finite intersection property, but then from
our assumption

⋂
i∈I Fi 6= ∅, and Lemma 5.2.10 implies that (Ui)i∈I is not an

open cover of X. We have a contradiction and so there must exist some finite
open subcover of X in every open cover of X.

This completes the proof that if, for every collection of closed sets, (Fi)i∈I ,
satisfying the finite intersection property we have

⋂
i∈I Fi 6= ∅ then every open

cover of X has a finite subcover. We must now prove the converse of this
statements.

We now assume that every open cover of X has a finite subcover of X.
Considering any collection of closed set (Fi)i∈I , with the finite intersection
property, we assume that

⋂
i∈I Fi = ∅. Since our collection of closed set (Fi)i∈I

has the finite intersection property we have that
⋂
j∈J Fj 6= ∅ for all finite

J ⊂ I. Since
⋂
i∈I Fi = ∅, from Lemma 5.2.10 we have that (Ui)i∈I forms an

open cover of X, where Ui = X \ Fi. However, again from Lemma 5.2.10, we
have that (Uj)j∈J does not form a finite open subcover of X for all finite J ⊂ I.
This is a contradiction since every open cover of X has a finite subcover of X.
Therefore

⋂
i∈I Fi 6= ∅ for every collection of closed sets, (Fi)i∈I , satisfying the

finite intersection property in a compact topological space. �

Definition 5.2.14. Consider a topological space, X. If a and b are elements
of this topological space we call them separated by neighbourhoods if we can find
two neighbourhoods, A and B, of a and b respectively such that A ∩ B = ∅.

Definition 5.2.15. We call a topological space, X, a Hausdorff space if any
two distinct points of X can be separated by neighborhoods.

We shall later prove results about general compact Hausdorff spaces. Using
Theorem 5.2.16 we will be able to use these results to deduce results about βN.

Theorem 5.2.16. βN is a compact Hausdorff space.

Proof. First we take two distinct ultrafilters, U and V. Since U and V are
distinct there must exist some set A such that A ∈ U and A /∈ V. V is an
ultrafilter and A /∈ V so Lemma 5.1.4 implies Ā ∈ V. Since A ∈ U we have
U ∈ CA and since Ā ∈ V we have V ∈ CĀ. The two neighbourhoods, CA and
CĀ, of U and V respectively are disjoint since no ultrafilter can contain both A
and Ā. So βN is a Hausdorff space.

We must now prove that βN is compact. To do this we must prove that for
every family of closed sets, say (Fi)i∈I , with the finite intersection property we
have

⋂
i∈I Fi 6= ∅. We assume that each Fi is basic, that is, Fi = CAi

. Recall
that Lemma 5.2.2 implies CAi1

∩CAi2
∩CAi3

∩· · · ∩CAin
= CAi1

∩Ai2
∩Ai3

∩···∩Ain

for all i1, i2, . . . , in ∈ I.
We define a filter,

F = {A ⊂ N |Ai1 ∩ Ai2 ∩ Ai3 ∩ · · · ∩ Ain ⊂ A

for some i1, i2, i3 . . . , in ∈ I and some n ∈ N}.
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We now prove that F is indeed a filter. From our assumption, the family
of closed sets, (Fi)i∈I = (CAi

)i∈I , has the finite intersection property so CAi1
∩

CAi2
∩ CAi3

∩ · · · ∩ CAin
= CAi1

∩Ai2
∩Ai3

∩···∩Ain
6= ∅ for any i1, i2, i3 . . . , in ∈ I.

Since CAi1
∩Ai2

∩Ai3
∩···∩Ain

6= ∅ we must have that Ai1 ∩Ai2 ∩Ai3 ∩ · · · ∩Ain 6= ∅
and since Ai1 ∩ Ai2 ∩ Ai3 ∩ · · · ∩ Ain ⊂ A clearly A 6= ∅ and ∅ 6∈ F . Ai ⊂ N for
every i ∈ I so from the definition of F , N ∈ F .

If A ∈ F and A ⊂ B then Ai1 ∩ Ai2 ∩ Ai3 ∩ · · · ∩ Ain ⊂ A for some
i1, i2, i3 . . . , in ∈ I thus Ai1 ∩ Ai2 ∩ Ai3 ∩ · · · ∩ Ain ⊂ B and so B ∈ F .

If A,B ∈ F then Ai1 ∩ Ai2 ∩ · · · ∩ Ain ⊂ A for some i1, i2 . . . , in ∈ I and
Aj1 ∩ Aj2 ∩ · · · ∩ Ajn ⊂ B for some j1, j2 . . . , jn ∈ I. Since Ai1 ∩ Ai2 ∩ · · · ∩
Ain ∩ Aj1 ∩ Aj2 ∩ · · · ∩ Ajn ⊂ A ∩ B and i1, i2 . . . , in, j1, j2 . . . , jn ∈ I we have
A ∩ B ∈ F .

We have shown that ∅ /∈ F and N ∈ F , if A ∈ F and A ⊂ B then B ∈ F
and if A,B ∈ F then A ∩ B ∈ F . Therefore F is a filter since is satisfies the
definition of a filter given in Definition 5.1.1.

From Lemma 5.1.3 we may take W, an ultrafilter extending F . Since Ai ∈ F
for all i ∈ I and F ⊆ W we have Ai ∈ W for all i ∈ I so W ∈ CAi

for all i ∈ I.
Therefore W ∈

⋂
i∈I CAi

and
⋂
i∈I CAi

6= ∅ so Lemma 5.2.13 implies that βN is
compact. �

In order to prove Hindman’s Theorem we must define U + V for two ultra-
filters U and V. Therefore we turn our attention to ultrafilter quantifiers which
will enable us to manage the notation more easily.

5.3 Ultrafilter quantifiers

Definition 5.3.1. (∀Ux)p(x) if and only if {x ∈ N | p(x)} ∈ U where p(x) is
some statement with variable x.

The following lemma demonstrates that (∀Ux) and (∀Vy) are not always
commutative.

Lemma 5.3.2. For two non-principal ultrafilters U and V

(∀Ux)(∀Vy)x < y 6= (∀Vy)(∀Ux)x < y.

Proof. First we note (∀Ux)(∀Vy)x < y if and only if {x ∈ N | (∀Vy)x <
y} ∈ U if and only if {x ∈ N | {y ∈ N |x < y} ∈ V} ∈ U . Comparatively
(∀Vy)(∀Ux)x < y if and only if {y ∈ N | (∀Ux)x < y} ∈ V if and only if
{y ∈ N | {x ∈ N |x < y} ∈ U} ∈ V. So to prove that

(∀Ux)(∀Vy)x < y 6= (∀Vy)(∀Ux)x < y

we must show

{x ∈ N | {y ∈ N |x < y} ∈ V} ∈ U 6= {y ∈ N | {x ∈ N |x < y} ∈ U} ∈ V,

when U and V are non-principal ultrafilters. For any natural number there
exists an infinite number of larger natural numbers. Therefore, if we choose
any element, say x ∈ N, then the set {y ∈ N |x < y} ∈ V since the complement
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of this set is {z ∈ N |x ≥ z}, which is clearly finite. Since x was an arbitrary
natural number we must have that {x ∈ N | {y ∈ N |x < y} ∈ V} = N. There-
fore {x ∈ N | {y ∈ N |x < y} ∈ V} ∈ U . Conversely, if we choose any element,
say y ∈ N, then the set {x ∈ N |x < y} 6∈ U . Indeed, any set in U must be
infinite, and the set {x ∈ N |x < y} is clearly finite. Since y was an arbitrary
natural number we must have that {y ∈ N | {x ∈ N |x < y} ∈ U} = ∅. However,
since V is an ultrafilter, ∅ 6∈ V so {y ∈ N | {x ∈ N |x < y} ∈ U} 6∈ V. Therefore
(∀Ux)(∀Vy)x < y is not equal to (∀Vy)(∀Ux)x < y. �

To be able to effectively use ultrafilter quantifiers we must first prove some
results about them.

Proposition 5.3.3. Take an ultrafilter, say U , and statements p(x) and q(x).
Then

1. (∀Ux)(p(x) and q(x)) ⇔ ((∀Ux)p(x) and (∀Ux)q(x)),

2. (∀Ux)(p(x) or q(x)) ⇔ ((∀Ux)p(x) or (∀Ux)q(x)),

3. If (∀Ux)(p(x)) does not hold then (∀Ux)(not p(x)).

Proof. Take A = {x ∈ N | p(x)} and B = {x ∈ N | q(x)}.
Part 1. now states that A ∩ B ∈ U if and only if A ∈ U and B ∈ U . This

was proved in Lemma 5.1.6.
Part 2. now states that A∪B ∈ U if and only if A ∈ U or B ∈ U . This was

proved in Proposition 5.1.5.
Part 3. now states that if A /∈ U then Ā ∈ U . This was proved in Lemma

5.1.4. �

Definition 5.3.4. For U ,V ∈ βN we define an addition on the topological space
βN as

U + V = {A ⊂ N | (∀Ux)(∀Vy)x + y ∈ A}.

We may also write U + V in a less elegant form,

U + V = {A ⊂ N | (∀Ux)(∀Vy)x + y ∈ A},

= {A ⊂ N | {x ∈ N | (∀Vy)x + y ∈ A} ∈ U},

= {A ⊂ N | {x ∈ N | {y ∈ N |x + y ∈ A} ∈ V} ∈ U}.

Example. 3̃ + 5̃ = 8̃.

3̃ + 5̃ = {A ⊂ N | {x ∈ N | {y ∈ N |x + y ∈ A} ∈ 5̃} ∈ 3̃},

= {A ⊂ N | {x ∈ N | {y ∈ N | y ∈ A − x} ∈ 5̃} ∈ 3̃},

= {A ⊂ N | {x ∈ N |A − x ∈ 5̃} ∈ 3̃},

= {A ⊂ N | 3 ∈ {x ∈ N |A − x ∈ 5̃}},

= {A ⊂ N |A − 3 ∈ 5̃},

= {A ⊂ N | 5 ∈ A − 3},

= {A ⊂ N | 8 ∈ A},

= 8̃.
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We may generalise this example for the addition of any two principal ultra-
filters.

Lemma 5.3.5. ñ1 + ñ2 = ñ1 + n2.

Proof.

ñ1 + ñ2 = {A ⊂ N | {x ∈ N | {y ∈ N |x + y ∈ A} ∈ ñ2} ∈ ñ1},

= {A ⊂ N | {x ∈ N | {y ∈ N | y ∈ A − x} ∈ ñ2} ∈ ñ1},

= {A ⊂ N | {x ∈ N |A − x ∈ ñ2} ∈ ñ1},

= {A ⊂ N |n1 ∈ {x ∈ N |A − x ∈ ñ2}},

= {A ⊂ N |A − n1 ∈ ñ2},

= {A ⊂ N |n2 ∈ A − n1},

= {A ⊂ N |n1 + n2 ∈ A},

= ñ1 + n2.

�

Lemma 5.3.6. U + V is an ultrafilter.

Proof. To prove that U+V is an ultrafilter we must check it satisfies Definition
5.1.1, the definition of a filter, and that if A /∈ U + V then Ā ∈ U + V for all
A ⊂ N. That is, we must check that U +V is a filter and satisfies the conditions
given in Lemma 5.1.4 for it to be an ultrafilter.

Since U and V are ultrafilters we have ∅ /∈ U ,V and N ∈ U ,V . We first show
∅ /∈ U + V and N ∈ U + V. If ∅ ∈ U + V then there must exist some x ∈ U and
y ∈ V such that x + y = ∅. No two natural numbers add together to give the
empty set so ∅ /∈ U + V. N ∈ U + V since N ∈ U ,V . Indeed, for any x ∈ N we
have {y ∈ N |x + y ∈ N} = N ∈ V. Thus {x ∈ N | {y ∈ N |x + y ∈ N} ∈ V} =
N ∈ U and so N ∈ U + V.

We now write U + V in a different form,

U + V = {A ⊂ N | {x ∈ N | {y ∈ N |x + y ∈ A} ∈ V} ∈ U},

= {A ⊂ N | {x ∈ N | {y ∈ N | y ∈ A − x} ∈ V} ∈ U},

= {A ⊂ N | {x ∈ N |A − x ∈ V} ∈ U}.

We must now show that if A ∈ U + V and A ⊂ B then B ∈ U + V. For
ease of notation we define the sets DA = {x ∈ N |A − x ∈ V} and DB = {x ∈
N |B − x ∈ V}. From the above it is clear that for any A ∈ U + V we have
DA ∈ U . We already have that A ⊂ B, therefore A − x ⊂ B − x. Since V is
a filter it follows that B − x ∈ V whenever A − x ∈ V. Thus DA ⊆ DB , and
since DA ∈ U and U is a filter we must have that DB ∈ U . We now have that
B ∈ U + V, so we have shown if A ∈ U + V and A ⊂ B then B ∈ U + V.

We must now show that if A,B ∈ U + V then A ∩ B ∈ U + V. We have
A,B ∈ U + V so (∀Ux)(∀Vy)x + y ∈ A and (∀Ux)(∀Vy)x + y ∈ B, then from
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Proposition 5.3.3.1 we have (∀Ux)(∀Vy)(x + y ∈ A and x + y ∈ B) so clearly
(∀Ux)(∀Vy)x + y ∈ A ∩ B, and A ∩ B ∈ U + V.

Finally, if A /∈ U + V then (∀Ux)(∀Vy)x + y ∈ A does not hold. From
Proposition 5.3.3.3 we have (∀Ux)(∀Vy)x + y /∈ A and so (∀Ux)(∀Vy)x + y ∈ Ā.
This shows that if A /∈ U + V then Ā ∈ U + V. �

Lemma 5.3.7. The operation + on βN is associative.

Proof. For three ultrafilters U , V and W we must prove (U + V) + W =
U + (V + W). We first set BA = {t ∈ N | (∀Wz)t + z ∈ A}. Then

(U + V) + W = {A ⊂ N | (∀U+Vt)(∀Wz)t + z ∈ A},

= {A ⊂ N | {t ∈ N | (∀Wz)t + z ∈ A} ∈ U + V},

= {A ⊂ N | (∀Ux)(∀Vy)x + y ∈ BA},

= {A ⊂ N | (∀Ux)(∀Vy)(∀Wz)x + y + z ∈ A}.

On the other hand,

U + (V + W) = {A ⊂ N | (∀Ux)(∀V+Ws)x + s ∈ A},

= {A ⊂ N | (∀Ux)(∀V+Ws)s ∈ A − x},

= {A ⊂ N | (∀Ux){s ∈ N | s ∈ A − x} ∈ V + W},

= {A ⊂ N | (∀Ux)A − x ∈ V + W},

= {A ⊂ N | (∀Ux)(∀Vy)(∀Wz)y + z ∈ A − x},

= {A ⊂ N | (∀Ux)(∀Vy)(∀Wz)x + y + z ∈ A}.

Therefore (U + V) + W = U + (V + W). �

Definition 5.3.8. If ⋆ is a binary operation on a set S, then ⋆ is left-continuous
if f(x) = y ⋆ x is a continuous mapping for all y ∈ S.

Lemma 5.3.9. Addition on βN is left continuous. That is for every fixed V,

f : βN → βN × βN
U 7→ U + V

is a continuous mapping.

Proof. For the mapping to be continuous the preimage of any open set
in U + V must be an open set in U . Clearly, it is sufficient to consider any
basic open set CA in U + V and show that f−1(CA) is an open set in U . We
can see that f−1(CA) = {U ∈ βN |A ∈ U + V}. Now, A ∈ U + V if and
only if {x ∈ N | (∀Vy)x + y ∈ A} ∈ U . We can now define the set B =
{x ∈ N | (∀Vy)x + y ∈ A}. Then A ∈ U + V if and only if B ∈ U . Thus
f−1(CA) = {U ∈ βN |B ∈ U} = CB. CB is an open set in U , therefore for every
fixed V, f is a continuous mapping. �
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Definition 5.3.10. If ⋆ is a binary operation on a set S, an element, x, of S
is an idempotent for ⋆ if x ⋆ x = x.

Before going on to prove Hindman’s Theorem we must use our knowledge
of ultrafilters and the topology on βN to find an ultrafilter in βN which is
idempotent under addition. We shall first prove an idempotent element exists
for a general Hausdorff space, X, of the form of βN we may then apply this
result to βN. We do this using good subsets.

5.4 Good subsets

Throughout this section X is a non-empty compact Hausdorff space, and + :
X × X → X is an associative left-continuous binary operation on X.

Definition 5.4.1. A subset, M , of X is good if it is compact, non-empty and
satisfies M + M ⊆ M .

Lemma 5.4.2. There exists a minimal good subset of X.

Proof. We shall prove that a minimal good subset of X exists using Zorn’s
Lemma. Zorn’s Lemma states that every partially ordered set, P , has a maximal
element if P has the Zorn Property. P has the the Zorn property if for every
chain C in P there is an upper bound p ∈ P of C. We are concerned with
finding a minimal element and so we take the reverse order of the set.

We take M1 ⊇ M2 ⊇ M3 ⊇ · · · to be the chain of good sets and must
find a lower bound of the chain. Under the reverse order this chain would be
M1 ⊆ M2 ⊆ M3 ⊆ · · · and we would need to have a upper bound for Zorn’s
lemma to hold, it is completely equivalent to find a lower bound in our ordering.
Claim. M =

⋂∞
i=1 Mi is a lower bound of the chain.

X is defined to be a compact Hausdorff space. M1,M2,M3, . . . are all good
sets, and so are all compact in X. Compact subsets of Hausdorff spaces must
be closed so all the sets Mi, for i ∈ N, are closed. Since M is the intersection of
these closed sets M is also closed. M is a closed subset of X, a compact space
and so M is compact.

Since each Mi is a subset of Mi−1 for i ≥ 2, every element of Mi must also
be in Mi−1. Therefore any intersection of some finite collection of these sets
cannot be empty since it must contain at least all the elements of Mj where
Mj is the smallest set in the intersection. Thus the collection of closed sets,
(Mi)i∈N, satisfies the finite intersection property and so, by Theorem 5.2.13,
the intersection of all the Mi must be non-empty. We now have M 6= ∅.

Finally M + M = {m1 + m2 |m1,m2 ∈
⋂∞
i=1 Mi} and any two points in⋂∞

i=1 Mi must both be in every Mi. So from the definition of a good set m1+m2

must also be in every Mi, and therefore in
⋂∞
i=1 Mi. So M + M ⊆ M

Since M is compact, non-empty and M + M ⊆ M it is a good set, so M
is the lower bound. Therefore, by Zorn’s Lemma, there must exist a minimal
good set. �
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Lemma 5.4.3. Let M be a minimal good set (which must exist by Lemma
5.4.2) and take x ∈ M . Then the set M + x is good.

Proof. M + x is the image of M under the continuous function,

f : X → X

m 7→ m + x.

We already have that + is an associative left-continuous binary operation on X,
so f is a continuous mapping. The image of a compact space under a continuous
mapping is compact. Since M is compact and M + x is the image of M under
a continuous mapping, M + x is compact.

M + x is non-empty since M is non-empty. That is, there exists some
element, say a, in M . This element will map to an element of M + x, in
particular a will map to a + x, therefore M + x is non-empty.

From the definition of M we have M + M ⊆ M . But x ∈ M and so
M + x ⊆ M . We can now see that M + x satisfies (M + x) + (M + x) ⊆ M + x
since (M + x) + (M + x) = (M + x + M) + x ⊆ (M + M) + x ⊆ M + x.

This proves that the set M + x is good since it is compact, non-empty and
satisfies (M + x) + (M + x) ⊆ M + x. �

M is a good set and x ∈ M so we have that M + x ⊆ M . We have now
shown that M + x is a good set, but M is the minimal good set so we must
have M + x = M .

Theorem 5.4.4. There exists some x ∈ X such that x + x = x. That is, there
exists an idempotent element of X.

Proof. Since M + x = M there must exist some element of M , say y, such
that y + x = x. We take a set Y = {y ∈ M | y + x = x}. This set is the inverse
image of {x} under the function

g : X → X

y 7→ y + x.

We already have that + is an associative left-continuous binary operation on
X, so g is a continuous mapping. Therefore, Y is closed, since it is the inverse
image of a singleton under a continuous function.

A closed subspace of a compact space is compact, therefore since X is a
compact Hausdorff space and Y is a closed subspace of X, Y is also compact.

For two elements in Y , say y1 and y2, we have (y1 +y2)+x = y1 +(y2 +x) =
y1 + x = x. So y1 + y2 ∈ Y .

We now have that Y is compact, non-empty and Y + Y ⊆ Y , so Y is good.
We may now conclude that Y = M since M ⊆ Y as M is the minimal good set
and Y ⊆ M from the definition of Y . Since Y = M we must have that x ∈ Y .
Thus we have an element x such that x + x = x, as required. �
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We are now ready to prove Hindman’s Theorem. First we shall clarify
exactly what the results we have proved imply.

The results for the general compact Hausdorff space, X, may now be applied
to our compact Hausdorff space, βN. In particular Theorem 5.4.4 may be
applied to βN. In Lemma 5.3.7 and Lemma 5.3.9 we showed that + is an
associative left-continuous binary operation on βN. Therefore we may conclude
that there exists some idempotent element of βN, that is, there exists some U
in βN such that U + U = U .

5.5 Hindman’s Theorem

Theorem 5.5.1. If N is coloured with some finite number of colours there must
exist some infinite set S ⊆ N such that S(S) is monochromatic.

Proof. As shown above there must exist an idempotent ultrafilter U in
βN. If U is the principal ultrafilter ñ we must have that ñ = ñ + ñ = 2̃n, a
contradiction. So U is a non-principal idempotent ultrafilter. We first show
that in a colouring of N with some finite number of colours, r1, r2, r3, . . . , rn
there must exist some infinitely large monochromatic set A1 in U . Indeed, if N
is n-coloured then R1 ∪R2 ∪ · · · ∪Rn = N where Ri is the set of all ri coloured
natural numbers. From Proposition 5.1.8 there must exist some i ∈ {1, 2, . . . , n}
such that Ri ∈ U since R1 ∪ R2 ∪ · · · ∪ Rn = N ∈ U . Since U is a non-principal
ultrafilter Proposition 5.1.9 implies that any set in U cannot be finite. Therefore
the set Ri in U , must be infinite, so we have our desired monochromatic infinite
set in U . We call this set A1. We may write U + U as

U + U = {A ⊂ N | {x ∈ N | {y ∈ N |x + y ∈ A} ∈ U} ∈ U}

= {A ⊂ N | {x ∈ N | {y ∈ N | y ∈ A − x} ∈ U} ∈ U}

= {A ⊂ N | {x ∈ N |A − x ∈ U} ∈ U}.

Since A1 ∈ U and U = U + U we must have that A1 ∈ U + U . Therefore
there must exist some x1 ∈ A1 such that A1 − x1 ∈ U . Indeed, otherwise
{x ∈ N |A1 −x ∈ U} ⊆ Ā1 since A1 ∪ Ā1 = N. That is, for any x ∈ N such that
A1 − x ∈ U we must have x ∈ Ā1 since x 6∈ A1. A contradiction, since then
A1, Ā1 ∈ U , which from the definition of a filter cannot happen. We now define
A2 = A1 ∩ (A1 − x1), since A1 ∈ U and A1 − x1 ∈ U , we must have from the
definition of a filter that A2 ∈ U . Therefore A2 ∈ U + U . As with A1, there must
exist some x2 ∈ A2 such that A2 − x2 ∈ U . We may continue in this fashion,
defining A3 = A2 ∩ (A2 − x2). This produces an infinite sequence of nested
sets, A1 ⊇ A2 ⊇ A3 ⊇ · · · and elements, xi ∈ Ai such that Ai − xi ⊇ Ai+1.
Therefore Ai ⊇ Ai+1 + xi and Ai ⊇ Aj + xi for all j ≥ i + 1. We have thus
found the monochromatic set S = {xi | i ∈ N}. We will now show that S(S)
is monochromatic. To do this we consider a subset of S, the natural numbers
xi1 , xi2 , . . . , xin , where i1 < i2 < · · · < in−1 < in.

Since Ain + xin−1 ⊆ Ain−1 we have xin + xin−1 ∈ Ain−1 , but then since
Ain−1 + xin−2 ⊆ Ain−2 we have (xin + xin−1) + xin−2 ∈ Ain−2 . We may continue
in this way until we reach Ai1 , where we have xin + xin−1 + xin−2 + · · · + xi1 ∈
Ai1 ⊆ A1. This shows that S(S) is in A1 and is therefore monochromatic. So
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we have shown that if N is coloured with some finite number of colours there
must exist some infinite set S ⊆ N such that S(S) is monochromatic. �
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6 Conclusion

We began by introducing Ramsey’s numbers and giving examples of ways in
which some of these smaller numbers may be found. We then went on to prove
Ramsey’s Theorem, initially for graphs, which we were able to prove in two
ways, and then, more generally, for sets. Next we proved Van der Waerden’s
Theorem. An interesting example enabled us to see that Van der Waerden’s
Theorem cannot be extended to infinite arithmetic progressions.

We then gave the proof of Rado’s Theorem which provided a characterisation
of the homogeneous systems to which a monochromatic solution can be found
in any finite colouring of the natural numbers. This result enabled us to prove
that any two finite regular linear homogeneous systems are consistent. We also
proved the Finite Sums Theorem using Rado’s Theorem.

Finally we proved Hindman’s Theorem which is a natural extension of the
Finite Sums Theorem. In order to prove this theorem we had to prove many
quite abstract results. After understanding ultrafilters and their quantifiers we
were able to prove results about a topology on the set of ultrafilters.

The origins of the theorems proved here are far from common. The inten-
sions of the mathematicians were, in general, not advancing the field of Ramsey
Theory. Ramsey himself came across the field which now bares his name while
attempting to solve problems of decidability in logic. Ramsey died aged only
twenty six in 1930. A year later it was proved that the problem which he
had been working on is in fact impossible to solve. So Ramsey is now famous
for proving a theorem he didn’t need while trying prove something which he
couldn’t prove. Schur was trying to solve Fermat’s last theorem over finite fields.
Van der Waerden became interested in his theorem when Baudet, a student at
Göttingen, asked if it could be proved. The academics at Göttingen had been
struggling to find a proof before Van der Waerden produced his.

Ramsey Theory began to expand in the second half of the twentieth century
and is now recognised as an interesting and expanding area of mathematics.
In 1983 Frank Harary [18] wrote about Ramsey Theory, unsolved problems
abound, and additional interesting open questions arise faster than solutions
to the existing problems. This remains true, indeed, there are many problems
which are natural and easy to understand but have not been solved.

An example of one of these open problems follows directly from Chapter 4.
We proved in Section 4.6 that any two finite regular linear homogeneous systems
are consistent. A characterisation of the infinite regular linear homogeneous
systems which are consistent has not been produced. There are results which
show that certain types of infinite matrices are consistent and certain other
types are inconsistent. The proofs of these results can be found in papers by
Leader and Russell, [8] and [9]. However, the characterisation in general is far
from complete.

Another open question is an extension of Schur’s Theorem. If N is 2-
coloured, does there always exists x, y ∈ N such that x, y, x + y and xy are
all monochromatic?

Another problem are the bounds for the Ramsey, and Van der Waerden
numbers which are not generally known with any accuracy. These bounds are
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unlikely to be improved upon without some deeper mathematical understan-
ding. For example 43 ≤ R(5, 5) ≤ 49, however to prove that R(5, 5) 6= 43 by

drawing every possible 2-colouring of K43 would require us to draw 2(
43
2 ) = 2903

graphs. As we take larger Ramsey and Van der Waerden numbers the bounds
become less informative. Some of these open questions have prizes attached to
them. For example, in 1998 Ronald Graham offered $1000 to anyone who could
prove or disprove that W (k, 2) < 2k

2
.
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7 Sources

The book Ramsey Theory [1] has been my main source, however, in some chap-
ters I referred to other sources.

Throughout Chapter 2, Ramsey’s Theorem, I mainly referred to the book
Ramsey Theory [1], however, I also referred to Modern Graph Theory [2], A
Friendly Introduction to Graph Theory [3], Asymptotic Bounds for Classical
Ramsey Numbers [4] and Combinatorics: set systems, hypergraphs, families of
vectors and combinatorial probability [5].

In Chapter 3, Van der Waerden’s Theorem, I mainly referred to Ramsey
Theory [1], however, I have also referred to Three Pearls of Number Theory [7].

In Chapter 5, Hindman’s Theorem, I referred to Ramsey Theory [1]. Ho-
wever my main resource was Partition Regular Equations [8]. I also referred to
Topology [11] and Combinatorial Topology [12] in Chapter 5 for formal topolo-
gical definitions.

Rudiments of Ramsey Theory [6] and Ramsey Theory on the Integers [10]
provided some of the historical information which was included.
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Appendix

A Bounding W (3, 3)

We give an example here of how the value of W (3, 3) may be bounded. In
Proposition 3.1.1 we showed how the value for W (3, 2) may be bounded, this
example uses an extension of the method used in that proposition.

Example. W (3, 3) ≤ 7(2 · 37 + 1)(2 · 37(2·37+1) + 1)
The set of integers, {1, 2, . . . , 7(2 ·37 +1)(2 ·37(2·37+1) +1)}, are first divided

into 2 · 37(2·37+1) + 1 blocks, each of order 7(2 · 37 + 1). That is, {1, 2, . . . , 7(2 ·
37 + 1)(2 · 37(2·37+1) + 1)} = {1, . . . , 7(2 · 37 + 1)} ∪ {7(2 · 37 + 1) + 1, . . . , 14(2 ·
37 +1)}∪ . . .∪{7(2 ·37 +1)(2 ·37(2·37+1))+1, . . . , 7(2 ·37 +1)(2 ·37(2·37+1) +1)}.
We then label these blocks B1, B2, . . . , B2·37(2·37+1)+1

where B1 = {1, . . . , 7(2 ·

37 + 1)}, B2 = {7(2 · 37 + 1) + 1, . . . , 14(2 · 37 + 1)}, . . . , B
2·37(2·37+1)+1

= {7(2 ·

37 +1)(2 ·37(2·37+1))+1, . . . , 7(2 ·37 +1)(2 ·37(2·37+1) +1)}. Since there are only
37(2·37+1) ways in which any of the blocks may be 3-coloured, by the pigeonhole
principle, at least two of the first 37(2·37+1) + 1 blocks must be coloured in
the same way. We call these blocks Ba and Ba+d. Each block is of order
7(2 · 37 + 1) so we may split each into subblocks, SBi,j, each of order 7, where i
denotes the block which the subblock is in and y denotes its position within that
block. For example, SB1,2 = {8, 9, . . . , 14}. Since each subblock is coloured
with only three colours there are only 37 ways in which a subblock may be
coloured. So again by the pigeonhole principle we must have that at least two
of the first 37 + 1 subblocks must be identically coloured. We call the two
identically coloured subblocks of Ba, SBa,α and SBa,α+δ. We now label each

element of {1, 2, . . . , 7(2 · 37 + 1)(2 · 37(2·37+1) + 1)}, bx,y,z, where x denotes the
block which the element is in, y denotes the subblock the element is in, in
the block Bx, and z denotes the elements position within SBx,y. For example
7(2 · 37 + 1) + 2 is labeled b2,1,2. Since each subblock is coloured with only
three colours, again by the pigeonhole principle, we can say that at least two
of the first four elements in each subblock must be monochromatic. We call
the two monochromatic elements of SBa,α, ba,α,ϕ and ba,α,ϕ+ψ. The next term
in this arithmetic progression must be in SBa,α since ba,α,ϕ and ba,α,ϕ+ψ are
both in its first four terms, we call the next term ba,α,ϕ+2ψ. If ba,α,ϕ+2ψ is the
same colour as ba,α,ϕ and ba,α,ϕ+ψ we would have our monochromatic 3-term
arithmetic progression, so we assume ba,α,ϕ+2ψ is a different colour. Since SBa,α

and SBa,α+δ are identically coloured the elements ba,α,ϕ, ba,α,ϕ+ψ, ba,α+δ,ϕ and
ba,α+δ,ϕ+ψ must be monochromatic. However this also means that ba,α,ϕ+2ψ

and ba,α+δ,ϕ+2ψ must be monochromatic. We now turn to the next subblock
in the arithmetic progression of subblocks, SBa,α and SBa,α+δ , this subblock
must be in Ba since SBa,α and SBa,α+δ are both in the first 37 + 1 subblocks
of Ba. We label this subblock SBa,α+2δ and turn to the element ba,α+2δ,ϕ+2ψ.
If ba,α,ϕ+2ψ, ba,α+δ,ϕ+2ψ and ba,α+2δ,ϕ+2ψ are monochromatic then we have a
monochromatic 3-term arithmetic progression, so we assume ba,α+2δ,ϕ+2ψ is a
different colour. Equally we must assume that ba,α+2δ,ϕ+2ψ is a different colour
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to ba,α,ϕ and ba,α+δ,ϕ+ψ otherwise, again, we have a monochromatic 3-term
arithmetic progression.

We noted earlier that there must exist a block, Ba+d, coloured identi-
cally to Ba. We can also see that since Ba and Ba+d were both taken from
the first 37(2·37+1) + 1 blocks, the next block in the arithmetic progression
of blocks, Ba+2d, is in the first 2 · 37(2·37+1) + 1 blocks. Therefore we turn
to the element ba+2d,α+2δ,ϕ+2ψ. ba+2d,α+2δ,ϕ+2ψ must be the same colour as
one of ba,α,ϕ, ba,α,ϕ+2ψ or ba,α+2δ,ϕ+2ψ since these are each coloured using
a different colour in our 3-colouring. Therefore we either have the mono-
chromatic 3-term arithmetic progression ba,α,ϕ, ba+d,α+δ,ϕ+ψ, ba+2d,α+2δ,ϕ+2ψ or
ba,α,ϕ+2ψ, ba+d,α+δ,ϕ+2ψ, ba+2d,α+2δ,ϕ+2ψ or
ba,α+2δ,ϕ+2ψ, ba+d,α+2δ,ϕ+2ψ, ba+2d,α+2δ,ϕ+2ψ . Since one of these monochromatic
3-term arithmetic progressions must exist in the set of integers, {1, 2, . . . , 7(2 ·
37+1)(2·37(2·37+1)+1)}, we must have that W (3, 3) ≤ 7(2·37+1)(2·37(2·37+1)+1).
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