HW 01 Some Solutions

William Gasarch-U of MD

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class.

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.
2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.
2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.
SKETCH $c=1$ trivial. $c=2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c^{\prime}<c$. We will only be using $c-1$ and 2 .

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.
2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.
SKETCH $c=1$ trivial. $c=2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c^{\prime}<c$. We will only be using $c-1$ and 2 .
When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c-1$ colors:
$1,2, \ldots, c-2$ and color $\{c-1, c\}$ for those edges colored EITHER. Get homog set.

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.
2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.
SKETCH $c=1$ trivial. $c=2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c^{\prime}<c$. We will only be using $c-1$ and 2 .
When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c-1$ colors:
$1,2, \ldots, c-2$ and color $\{c-1, c\}$ for those edges colored EITHER. Get homog set.
If its Homog with color 1 or $\cdots c-2$ then done.

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.
2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.
SKETCH $c=1$ trivial. $c=2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c^{\prime}<c$. We will only be using $c-1$ and 2 .
When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c-1$ colors:
$1,2, \ldots, c-2$ and color $\{c-1, c\}$ for those edges colored EITHER. Get homog set.
If its Homog with color 1 or $\cdots c-2$ then done.
If its homog color $\{c-1, c\}$ then use 2 -color case.

Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. SKETCH When processing a node x_{i} instead of saying Either an inf numb of R or B edges come out of x_{i}.
say
Either an inf numb of R_{1} or \cdots or R_{c} edges come out of x_{i}.
2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.
SKETCH $c=1$ trivial. $c=2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c^{\prime}<c$. We will only be using $c-1$ and 2 .
When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c-1$ colors:
$1,2, \ldots, c-2$ and color $\{c-1, c\}$ for those edges colored EITHER. Get homog set.
If its Homog with color 1 or $\cdots c-2$ then done.
If its homog color $\{c-1, c\}$ then use 2 -color case.
VOTE Which proof did you like better.

Problem 2- A Subtle Point

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

Problem 2- A Subtle Point

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color $\{c-1, c\}$ occurs inf often we use 2-ary Ramsey.

Problem 2- A Subtle Point

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color $\{c-1, c\}$ occurs inf often we use 2-ary Ramsey.

So I am using the theorem
(\forall) COL: $\binom{N}{2} \rightarrow[2](\exists)$ inf homog set.

Problem 2- A Subtle Point

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color $\{c-1, c\}$ occurs inf often we use 2-ary Ramsey.

So I am using the theorem
(\forall) COL: $\binom{N}{2} \rightarrow[2](\exists)$ inf homog set.
NO, I am not using that! The set I am coloring is an infinite subset of \mathbb{N}. So I am really using the following trivial corollary of the above theorem:
$(\forall) \inf A \subseteq \mathbb{N},(\forall)$ COL: $\binom{A}{2} \rightarrow[2](\exists)$ inf homog set.

Problem 3

Proof for a-ary c-color Ramsey.
SKETCH Given COL: $\binom{\mathbb{N}}{a} \rightarrow[c]$, form $\mathrm{COL}^{\prime}:\binom{N}{a-1} \rightarrow[c]$ via

$$
\operatorname{COL}^{\prime}\left(z_{1}, \ldots, z_{a-1}\right)=\operatorname{COL}\left(x_{1}, z_{1}, \ldots, z_{a-1}\right)
$$

Problem 3

Proof for a-ary c-color Ramsey.
SKETCH Given COL: $\binom{\mathbb{N}}{a} \rightarrow[c]$, form COL $: ~\binom{N}{a-1} \rightarrow[c]$ via

$$
\operatorname{COL}^{\prime}\left(z_{1}, \ldots, z_{a-1}\right)=\operatorname{COL}\left(x_{1}, z_{1}, \ldots, z_{a-1}\right)
$$

Find homog set inductively and kill all vertices not in that set.

Problem 3

Proof for a-ary c-color Ramsey.
SKETCH Given COL: $\binom{\mathbb{N}}{a} \rightarrow[c]$, form $\mathrm{COL}^{\prime}:\binom{N}{a-1} \rightarrow[c]$ via

$$
\operatorname{COL}^{\prime}\left(z_{1}, \ldots, z_{a-1}\right)=\operatorname{COL}\left(x_{1}, z_{1}, \ldots, z_{a-1}\right)
$$

Find homog set inductively and kill all vertices not in that set. x_{2} is min element of homog set.

Problem 3

Proof for a-ary c-color Ramsey.
SKETCH Given COL: $\binom{\mathbb{N}}{a} \rightarrow[c]$, form $\mathrm{COL}^{\prime}:\binom{N}{a-1} \rightarrow[c]$ via

$$
\operatorname{COL}^{\prime}\left(z_{1}, \ldots, z_{a-1}\right)=\operatorname{COL}\left(x_{1}, z_{1}, \ldots, z_{a-1}\right)
$$

Find homog set inductively and kill all vertices not in that set. x_{2} is min element of homog set.
Lather, Rinse, Repeat to get x_{1}, x_{2}, \ldots.

Problem 4 (slightly modified)

$x_{1}, x_{2}, x_{3}, \ldots$ is an inf seq of reals.

Problem 4 (slightly modified)

$x_{1}, x_{2}, x_{3}, \ldots$ is an inf seq of reals.
For $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } x_{i}<x_{j} \tag{1}\\ B L U E & \text { if } x_{i}>x_{j} \\ G R E E N & \text { if } x_{i}=x_{j}\end{cases}
$$

Problem 4 (slightly modified)

$x_{1}, x_{2}, x_{3}, \ldots$ is an inf seq of reals.
For $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } x_{i}<x_{j} \tag{1}\\ B L U E & \text { if } x_{i}>x_{j} \\ G R E E N & \text { if } x_{i}=x_{j}\end{cases}
$$

Apply Ramsey Theory to get a theorem.

Problem 4 (slightly modified)

$x_{1}, x_{2}, x_{3}, \ldots$ is an inf seq of reals.
For $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } x_{i}<x_{j} \tag{1}\\ B L U E & \text { if } x_{i}>x_{j} \\ G R E E N & \text { if } x_{i}=x_{j}\end{cases}
$$

Apply Ramsey Theory to get a theorem.
If homog RED then get subseq set $x_{i_{1}}<x_{i_{2}}<\ldots$
If homog BLUE then get subseq set $x_{i_{1}}>x_{i_{2}}>\ldots$
If homog GREEN then get subseq set $x_{i_{1}}=x_{i_{2}}=\ldots$

Problem 4 (slightly modified)

$x_{1}, x_{2}, x_{3}, \ldots$ is an inf seq of reals.
For $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } x_{i}<x_{j} \tag{1}\\ B L U E & \text { if } x_{i}>x_{j} \\ G R E E N & \text { if } x_{i}=x_{j}\end{cases}
$$

Apply Ramsey Theory to get a theorem.
If homog RED then get subseq set $x_{i_{1}}<x_{i_{2}}<\ldots$
If homog BLUE then get subseq set $x_{i_{1}}>x_{i_{2}}>\ldots$
If homog GREEN then get subseq set $x_{i_{1}}=x_{i_{2}}=\ldots$
Thm Every inf seq of R has either an inf \uparrow seq, an inf \downarrow seq, or an inf $=$ seq.

Problem 4 Extra

Can generalize to R^{n} by either applying Ramsey with 3-colors n times, or applying Ramsey with 3^{n} colors.
Thm Every inf seq of R^{n} has an inf subseq where, for each coordinate, either \uparrow seq, or \downarrow or $=$.

Problem 4 Extra

Can generalize to R^{n} by either applying Ramsey with 3-colors n times, or applying Ramsey with 3^{n} colors.
Thm Every inf seq of R^{n} has an inf subseq where, for each coordinate, either \uparrow seq, or \downarrow or $=$.

This is a part of the proof of the Bolzano-Weierstrass Theorem. Next Slide.

Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges to a real.
2. Any decreasing sequence bounded sequence of reals converges to a real.
This is not obvious. This depends on the construction of the Reals.

Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges to a real.
2. Any decreasing sequence bounded sequence of reals converges to a real.
This is not obvious. This depends on the construction of the Reals.
BW Thm If $p_{1}, p_{2}, p_{3}, \ldots$ is an inf sequence of points in R^{n} that is contained in a box, then there exists a subsequence that converges to a point in R^{n}.

Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges to a real.
2. Any decreasing sequence bounded sequence of reals converges to a real.
This is not obvious. This depends on the construction of the Reals.
BW Thm If $p_{1}, p_{2}, p_{3}, \ldots$ is an inf sequence of points in R^{n} that is contained in a box, then there exists a subsequence that converges to a point in R^{n}.

Proof

Problem 4 yields that there is a subsequence in each coordinate that is either \downarrow, \uparrow, or $=$. Lemma yields each coord converges.

Problem 5- History

The BW thm was proven in 1817, way before Ramsey's Theorem.

Problem 5- History

The BW thm was proven in 1817, way before Ramsey's Theorem.
The proof used a Ramsey-like argument.

Problem 5- History

The BW thm was proven in 1817, way before Ramsey's Theorem.
The proof used a Ramsey-like argument.
Our approach is cleaner.

Problem 5- History

The BW thm was proven in 1817, way before Ramsey's Theorem.
The proof used a Ramsey-like argument.
Our approach is cleaner.
When I first taught this application 4 years ago I Googled Bolzano-Weierstrass to get more information about this.

Problem 5- History

The BW thm was proven in 1817, way before Ramsey's Theorem.
The proof used a Ramsey-like argument.
Our approach is cleaner.
When I first taught this application 4 years ago I Googled Bolzano-Weierstrass to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap
which I then added to my collection.

Problem 5- History

The BW thm was proven in 1817, way before Ramsey's Theorem.
The proof used a Ramsey-like argument.
Our approach is cleaner.
When I first taught this application 4 years ago I Googled Bolzano-Weierstrass to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap
which I then added to my collection.
It is the worst math novelty song ever. Listen for yourself:
https://www. youtube.com/watch?v=df018klwKHg

Problem 5

$$
p_{1}, p_{2}, p_{3}, \ldots
$$

be an infinite sequence of points in R^{2}.
Consider the following coloring of $\binom{N}{2}$.

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } d\left(p_{i}, p_{j}\right)>1 \tag{2}\\ B L U E & \text { if } d\left(p_{i}, p_{j}\right)<1\end{cases}
$$

Apply Ramsey Theorem. What do you get?

SOLUTION

Thm Given an infinite sequence of points in R^{2} there exists an infinite subset so that either (a) they are all within 1 of each other, or (b) they are all more than 1 apart.

Problem 4 and 5 thoughts

The proofs of the theorems in Problem 4 and 5 are FAR EASIER with Ramsey Theory. The proofs without Ramsey end up doing Ramsey in context.

Problem 6 (Extra Credit)

Prove or disprove:
For every 2-coloring of the edges of $K_{\mathbb{N}, \mathbb{N}}$ there exists H_{1}, H_{2} infinite such that $\left(H_{1}, H_{2}\right)$ is a homog set.

Problem 6 (Extra Credit)

Prove or disprove:
For every 2-coloring of the edges of $K_{\mathbb{N}, \mathbb{N}}$ there exists H_{1}, H_{2} infinite such that $\left(H_{1}, H_{2}\right)$ is a homog set.
Discuss and Vote

Problem 6 (Extra Credit)

Prove or disprove:
For every 2-coloring of the edges of $K_{\mathbb{N}, \mathbb{N}}$ there exists H_{1}, H_{2} infinite such that $\left(H_{1}, H_{2}\right)$ is a homog set.
Discuss and Vote SOLUTION FALSE. Color with

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } i<j \tag{3}\\ B L U E & \text { if } i \geq j\end{cases}
$$

Problem 6 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an (H_{1}, H_{2}) homog set that only has TWO colors. We will call that a 2 -homog set.

Problem 6 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an (H_{1}, H_{2}) homog set that only has TWO colors. We will call that a 2 -homog set.
Prove or disprove:
For every 100 -coloring of the edges of $K_{\mathbb{N}, \mathbb{N}}$ there exists H_{1}, H_{2} infinite such that $\left(H_{1}, H_{2}\right)$ is a 2-homog set. 3-homog set(?). Some c-homog with $c<100$?

Problem 7 (Extra Credit)

Prove or disprove:
For all colorings COL : $\binom{\mathrm{Z}}{2} \rightarrow[2]$ there exists a set $H \subseteq \mathrm{Z}$ that is order-equiv to Z and is homogenous.

Problem 7 (Extra Credit)

Prove or disprove:
For all colorings COL : $\binom{\mathrm{Z}}{2} \rightarrow[2]$ there exists a set $H \subseteq \mathrm{Z}$ that is order-equiv to Z and is homogenous.
Discuss and Vote

Problem 7 (Extra Credit)

Prove or disprove:
For all colorings COL : $\binom{\mathrm{Z}}{2} \rightarrow[2]$ there exists a set $H \subseteq \mathrm{Z}$ that is order-equiv to Z and is homogenous.
Discuss and Vote SOLUTION FALSE. Color with

$$
\operatorname{COL}(i, j)= \begin{cases}R E D & \text { if } i, j \geq 0 \tag{4}\\ B L U E & \text { if } i, j<0 \\ B L U E & \text { if one is } \geq 0 \text { and the other is }<0\end{cases}
$$

Problem 7 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2 -homog set.

Problem 7 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2 -homog set.
Prove or disprove:
For every 100-coloring of the edges of K_{Z} there exists 2-homog H that is order-isom to Z. 3-homog. Some c-homog with $c<100$?

