HW 01 Some Solutions

William Gasarch-U of MD

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class.

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .

- 1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say
- Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .
- 2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.

- 1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say
 - Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .
- 2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** c=1 trivial. c=2 is the proof your saw in class. Assume $c\geq 3$ Assume theorem true for all c'< c. We will only be using c-1 and c.

- 1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say
 - Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .
- 2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** c=1 trivial. c=2 is the proof your saw in class.

Assume $c \ge 3$ Assume theorem true for all c' < c. We will only be using c-1 and 2.

When *c*-color $\binom{\mathbb{N}}{2}$ with colors $\{1,\ldots,c\}$ view it as c-1 colors:

 $1, 2, \dots, c-2$ and color $\{c-1, c\}$ for those edges colored EITHER. Get homog set.

- 1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say
 - Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .
- 2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** c=1 trivial. c=2 is the proof your saw in class.

Assume $c \ge 3$ Assume theorem true for all c' < c. We will only be using c-1 and 2.

When *c*-color $\binom{\mathbb{N}}{2}$ with colors $\{1,\ldots,c\}$ view it as c-1 colors:

 $1,2,\ldots,c-2$ and color $\{c-1,c\}$ for those edges colored EITHER. Get homog set.

If its Homog with color 1 or \cdots c-2 then done.

- 1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say
 - Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .
- 2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** c=1 trivial. c=2 is the proof your saw in class.

Assume $c \ge 3$ Assume theorem true for all c' < c. We will only be using c - 1 and 2.

When *c*-color $\binom{\mathbb{N}}{2}$ with colors $\{1,\ldots,c\}$ view it as c-1 colors:

 $1,2,\ldots,c-2$ and color $\{c-1,c\}$ for those edges colored EITHER. Get homog set.

If its Homog with color 1 or \cdots c-2 then done.

If its homog color $\{c-1,c\}$ then use 2-color case.

- 1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying Either an inf numb of R or B edges come out of x_i . say
 - Either an inf numb of R_1 or \cdots or R_c edges come out of x_i .
- 2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.

SKETCH c = 1 trivial. c = 2 is the proof your saw in class.

Assume $c \ge 3$ Assume theorem true for all c' < c. We will only be using c-1 and 2.

When *c*-color $\binom{\mathbb{N}}{2}$ with colors $\{1,\ldots,c\}$ view it as c-1 colors:

 $1, 2, \dots, c-2$ and color $\{c-1, c\}$ for those edges colored EITHER. Get homog set.

If its Homog with color 1 or \cdots c-2 then done.

If its homog color $\{c-1,c\}$ then use 2-color case.

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color $\{c-1,c\}$ occurs inf often we use 2-ary Ramsey.

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color $\{c-1,c\}$ occurs inf often we use 2-ary Ramsey.

So I am using the theorem $(\forall) \ \mathrm{COL} \colon \binom{N}{2} \to [2] \ (\exists) \ \textit{inf homog set.}$

A Subtle Point that I will not take off points for. I didn't realize it myself until a student asked me about it.

When doing the case where color $\{c-1,c\}$ occurs inf often we use 2-ary Ramsey.

So I am using the theorem $(\forall) \ \mathrm{COL} \colon \binom{N}{2} \to [2] \ (\exists) \ \textit{inf homog set.}$

NO, I am not using that! The set I am coloring is an infinite subset of \mathbb{N} . So I am really using the following trivial corollary of the above theorem:

 (\forall) inf $A \subseteq \mathbb{N}$, (\forall) COL: $\binom{A}{2} \to [2]$ (\exists) inf homog set.

Proof for a-ary c-color Ramsey.

SKETCH Given COL:
$$\binom{\mathbb{N}}{a} \to [c]$$
, form COL': $\binom{N}{a-1} \to [c]$ via

$$\mathrm{COL}'(z_1,\ldots,z_{\mathsf{a}-1}) = \mathrm{COL}(x_1,z_1,\ldots,z_{\mathsf{a}-1}).$$

Proof for a-ary c-color Ramsey.

SKETCH Given COL:
$$\binom{\mathbb{N}}{a} \to [c]$$
, form COL': $\binom{N}{a-1} \to [c]$ via

$$\mathrm{COL}'(z_1,\ldots,z_{\mathsf{a}-1}) = \mathrm{COL}(x_1,z_1,\ldots,z_{\mathsf{a}-1}).$$

Find homog set inductively and kill all vertices not in that set.

Proof for a-ary c-color Ramsey.

SKETCH Given COL:
$$\binom{\mathbb{N}}{a} \to [c]$$
, form COL': $\binom{N}{a-1} \to [c]$ via

$$\mathrm{COL}'(z_1,\ldots,z_{\mathsf{a}-1}) = \mathrm{COL}(x_1,z_1,\ldots,z_{\mathsf{a}-1}).$$

Find homog set inductively and kill all vertices not in that set. x_2 is min element of homog set.

Proof for a-ary c-color Ramsey.

SKETCH Given COL:
$$\binom{\mathbb{N}}{a} \to [c]$$
, form COL': $\binom{N}{a-1} \to [c]$ via

$$\mathrm{COL}'(z_1,\ldots,z_{\mathsf{a}-1}) = \mathrm{COL}(x_1,z_1,\ldots,z_{\mathsf{a}-1}).$$

Find homog set inductively and kill all vertices not in that set. x_2 is min element of homog set.

Lather, Rinse, Repeat to get x_1, x_2, \ldots

 x_1, x_2, x_3, \dots is an inf seq of reals.

 x_1, x_2, x_3, \dots is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$
 (1)

 x_1, x_2, x_3, \dots is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$
 (1)

Apply Ramsey Theory to get a theorem.

 x_1, x_2, x_3, \dots is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$
 (1)

Apply Ramsey Theory to get a theorem. If homog RED then get subseq set $x_{i_1} < x_{i_2} < \dots$ If homog BLUE then get subseq set $x_{i_1} > x_{i_2} > \dots$ If homog GREEN then get subseq set $x_{i_1} = x_{i_2} = \dots$

 x_1, x_2, x_3, \dots is an inf seq of reals. For i < j.

$$COL(i,j) = \begin{cases} RED & \text{if } x_i < x_j \\ BLUE & \text{if } x_i > x_j \\ GREEN & \text{if } x_i = x_j \end{cases}$$
 (1)

Apply Ramsey Theory to get a theorem.

If homog RED then get subseq set $x_{i_1} < x_{i_2} < \dots$

If homog BLUE then get subseq set $x_{i_1} > x_{i_2} > \dots$

If homog GREEN then get subseq set $x_{i_1} = x_{i_2} = \dots$

Thm Every inf seq of R has either an inf \uparrow seq, an inf \downarrow seq, or an inf = seq.

Problem 4 Extra

Can generalize to \mathbb{R}^n by either applying Ramsey with 3-colors n times, or applying Ramsey with 3^n colors.

Thm Every inf seq of \mathbb{R}^n has an inf subseq where, for each coordinate, either \uparrow seq, or \downarrow or =.

Problem 4 Extra

Can generalize to \mathbb{R}^n by either applying Ramsey with 3-colors n times, or applying Ramsey with 3^n colors.

Thm Every inf seq of \mathbb{R}^n has an inf subseq where, for each coordinate, either \uparrow seq, or \downarrow or =.

This is a part of the proof of the Bolzano-Weierstrass Theorem. Next Slide.

Bolzano-Weierstrass Theorem

Lemma

- 1. Any increasing sequence bounded sequence of reals converges to a real.
- 2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

Bolzano-Weierstrass Theorem

Lemma

- 1. Any increasing sequence bounded sequence of reals converges to a real.
- 2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

BW Thm If $p_1, p_2, p_3, ...$ is an inf sequence of points in \mathbb{R}^n that is contained in a box, then there exists a subsequence that converges to a point in \mathbb{R}^n .

Bolzano-Weierstrass Theorem

Lemma

- 1. Any increasing sequence bounded sequence of reals converges to a real.
- 2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

BW Thm If $p_1, p_2, p_3, ...$ is an inf sequence of points in \mathbb{R}^n that is contained in a box, then there exists a subsequence that converges to a point in \mathbb{R}^n .

Proof

Problem 4 yields that there is a subsequence in each coordinate that is either \downarrow , \uparrow , or =. Lemma yields each coord converges.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled **Bolzano-Weierstrass** to get more information about this.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled **Bolzano-Weierstrass** to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to **Bolzano-Weierstrass Rap** which I then added to my collection.

The BW thm was proven in 1817, way before Ramsey's Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled **Bolzano-Weierstrass** to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap

which I then added to my collection.

It is the worst math novelty song ever. Listen for yourself: https://www.youtube.com/watch?v=df018klwKHg

$$p_1, p_2, p_3, \ldots,$$

be an infinite sequence of points in \mathbb{R}^2 . Consider the following coloring of $\binom{N}{2}$.

$$COL(i,j) = \begin{cases} RED & \text{if } d(p_i, p_j) > 1\\ BLUE & \text{if } d(p_i, p_j) < 1 \end{cases}$$
 (2)

Apply Ramsey Theorem. What do you get?

SOLUTION

Thm Given an infinite sequence of points in \mathbb{R}^2 there exists an infinite subset so that either (a) they are all within 1 of each other, or (b) they are all more than 1 apart.

Problem 4 and 5 thoughts

The proofs of the theorems in Problem 4 and 5 are FAR EASIER with Ramsey Theory. The proofs without Ramsey end up doing Ramsey in context.

Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ there exists H_1 , H_2 infinite such that (H_1,H_2) is a homog set.

Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ there exists H_1 , H_2 infinite such that (H_1,H_2) is a homog set.

Discuss and Vote

Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ there exists H_1 , H_2 infinite such that (H_1,H_2) is a homog set.

Discuss and Vote

SOLUTION FALSE. Color with

$$COL(i,j) = \begin{cases} RED & \text{if } i < j \\ BLUE & \text{if } i \ge j \end{cases}$$
 (3)

Problem 6 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an (H_1, H_2) homog set that only has TWO colors. We will call that a 2-homog set.

Problem 6 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an (H_1, H_2) homog set that only has TWO colors. We will call that a 2-homog set.

Prove or disprove:

For every 100-coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ there exists H_1 , H_2 infinite such that (H_1,H_2) is a 2-homog set. 3-homog set(?). Some c-homog with c<100?

Problem 7 (Extra Credit)

Prove or disprove:

For all colorings $COL: \binom{Z}{2} \to [2]$ there exists a set $H \subseteq Z$ that is order-equiv to Z and is homogenous.

Problem 7 (Extra Credit)

Prove or disprove:

For all colorings $\mathrm{COL}: {Z \choose 2} \to [2]$ there exists a set $H \subseteq Z$ that is order-equiv to Z and is homogenous.

Discuss and Vote

Problem 7 (Extra Credit)

Prove or disprove:

For all colorings $\mathrm{COL}: {Z \choose 2} \to [2]$ there exists a set $H \subseteq Z$ that is order-equiv to Z and is homogenous.

Discuss and Vote
SOLUTION FALSE. Color with

$$COL(i,j) = \begin{cases} RED & \text{if } i,j \ge 0 \\ BLUE & \text{if } i,j < 0 \\ BLUE & \text{if one is } \ge 0 \text{ and the other is } < 0 \end{cases}$$
 (4)

Problem 7 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2-homog set.

Problem 7 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2-homog set.

Prove or disprove:

For every 100-coloring of the edges of K_Z there exists 2-homog H that is order-isom to Z. 3-homog. Some c-homog with c < 100?