HW 01 Some Solutions

William Gasarch-U of MD
Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class.

SKETCH

When processing a node x_i instead of saying "Either an inf numb of R or B edges come out of x_i." say "Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.

2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.

SKETCH

c = 1 trivial.
c = 2 is the proof your saw in class.

Assume $c \geq 3$ Assume theorem true for all $c' < c$. We will only be using $c - 1$ and 2.

When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c - 1$ colors: 1, 2, \ldots, $c - 2$ and color $\{c - 1, c\}$ for those edges colored EITHER. Get homog set.

If it's homog with color 1 or \cdots $c - 2$ then done.

If it's homog color $\{c - 1, c\}$ then use 2-color case.

VOTE Which proof did you like better.
Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying
 Either an inf numb of R or B edges come out of x_i.
 say
 *Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.***
Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying *Either an inf numb of R or B edges come out of x_i*, say *Either an inf numb of R_1 or \cdots or R_c edges come out of x_i*.

2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c.

VOTE Which proof did you like better.
Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying

Either an inf numb of R or B edges come out of x_i.

say

Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.

2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** $c = 1$ trivial. $c = 2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c' < c$. We will only be using $c - 1$ and 2.
Problem 2

1. Prove that for every c, for every c coloring of $\left(\mathbb{N}^2\right)$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying *Either an inf numb of R or B edges come out of x_i.* say *Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.*

2. Prove that for every c, for every c coloring of $\left(\mathbb{N}^2\right)$, there is an inf homogenous set USING induction on c. **SKETCH** $c = 1$ trivial. $c = 2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c' < c$. We will only be using $c - 1$ and 2.

When c-color $\left(\mathbb{N}^2\right)$ with colors $\{1, \ldots, c\}$ view it as $c - 1$ colors:

1, 2, \ldots, $c - 2$ and color $\{c - 1, c\}$ for those edges colored EITHER. Get homog set.
Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying

 Either an inf numb of R or B edges come out of x_i.

 say

 Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.

2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** $c = 1$ trivial. $c = 2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c' < c$. We will only be using $c - 1$ and 2. When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c - 1$ colors:

 1, 2, \ldots, $c - 2$ and color $\{c - 1, c\}$ for those edges colored EITHER. Get homog set.

 If its Homog with color 1 or \cdots $c - 2$ then done.
Problem 2

1. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying

Either an inf numb of R or B edges come out of x_i. say

Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.

2. Prove that for every c, for every c coloring of $\binom{\mathbb{N}}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** $c = 1$ trivial. $c = 2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c' < c$. We will only be using $c - 1$ and 2. When c-color $\binom{\mathbb{N}}{2}$ with colors $\{1, \ldots, c\}$ view it as $c - 1$ colors: $1, 2, \ldots, c - 2$ and color $\{c - 1, c\}$ for those edges colored EITHER. Get homog set. If its Homog with color 1 or \cdots $c - 2$ then done. If its homog color $\{c - 1, c\}$ then use 2-color case.
Problem 2

1. Prove that for every c, for every c coloring of $\binom{N}{2}$, there is a homogenous set USING a proof similar to what I did in class. **SKETCH** When processing a node x_i instead of saying *Either an inf numb of R or B edges come out of x_i.* say

*Either an inf numb of R_1 or \cdots or R_c edges come out of x_i.***

2. Prove that for every c, for every c coloring of $\binom{N}{2}$, there is an inf homogenous set USING induction on c. **SKETCH** $c = 1$ trivial. $c = 2$ is the proof your saw in class. Assume $c \geq 3$ Assume theorem true for all $c' < c$. We will only be using $c - 1$ and 2.

When c-color $\binom{N}{2}$ with colors $\{1,\ldots, c\}$ view it as $c - 1$ colors:

1, 2, \ldots, $c - 2$ and color $\{c - 1, c\}$ for those edges colored EITHER. Get homog set.

If its Homog with color 1 or \cdots $c - 2$ then done.

If its homog color $\{c - 1, c\}$ then use 2-color case.

VOTE Which proof did you like better.
A Subtle Point that I \textbf{will not} take off points for.
I didn’t realize it myself until a student asked me about it.
A Subtle Point that I will not take off points for. I didn’t realize it myself until a student asked me about it.

When doing the case where color \{c – 1, c\} occurs inf often we use 2-ary Ramsey.
Problem 2- A Subtle Point

A Subtle Point that I **will not** take off points for. I didn’t realize it myself until a student asked me about it.

When doing the case where color \(\{c-1, c\}\) occurs infinitely often we use 2-ary Ramsey.

So I am using the theorem

\[(\forall) \text{ COL: } (N) \rightarrow [2] (\exists) \text{ inf homog set.}\]
Problem 2- A Subtle Point

A Subtle Point that I \textbf{will not} take off points for. I didn’t realize it myself until a student asked me about it.

When doing the case where color \{c − 1, c\} occurs \textit{inf} often we use 2-ary Ramsey.

So I am using the theorem
\((\forall) \text{COL} : \binom{\mathbb{N}}{2} \rightarrow [2] (\exists) \text{inf homog set.}\)

NO, I am not using that! The set I am coloring is an infinite subset of \(\mathbb{N}\). So I am really using the following trivial corollary of the above theorem:
\((\forall) \text{inf } A \subseteq \mathbb{N}, (\forall) \text{COL} : \binom{A}{2} \rightarrow [2] (\exists) \text{inf homog set.}\)
Problem 3

Proof for a-ary c-color Ramsey.

SKETCH Given $\text{COL} : \binom{\mathbb{N}}{a} \to [c]$, form $\text{COL}' : \binom{\mathbb{N}}{a-1} \to [c]$ via

$$\text{COL}'(z_1, \ldots, z_{a-1}) = \text{COL}(x_1, z_1, \ldots, z_{a-1}).$$
Problem 3

Proof for a-ary c-color Ramsey.

SKETCH Given $\text{COL} : \binom{\mathbb{N}}{a} \to [c]$, form $\text{COL}' : \binom{\mathbb{N}}{a-1} \to [c]$ via

$$\text{COL}'(z_1, \ldots, z_{a-1}) = \text{COL}(x_1, z_1, \ldots, z_{a-1}).$$

Find homog set inductively and kill all vertices not in that set.
Proof for a-ary c-color Ramsey.

SKETCH Given $\text{COL} : \binom{N}{a} \rightarrow [c]$, form $\text{COL}' : \binom{N}{a-1} \rightarrow [c]$ via

$$\text{COL}'(z_1, \ldots, z_{a-1}) = \text{COL}(x_1, z_1, \ldots, z_{a-1}).$$

Find homog set inductively and kill all vertices not in that set. x_2 is min element of homog set.
Problem 3

Proof for a-ary c-color Ramsey.

SKETCH Given $\text{COL} : \binom{\mathbb{N}}{a} \rightarrow [c]$, form $\text{COL}' : \binom{\mathbb{N}}{a-1} \rightarrow [c]$ via

$$\text{COL}'(z_1, \ldots, z_{a-1}) = \text{COL}(x_1, z_1, \ldots, z_{a-1}).$$

Find homog set inductively and kill all vertices not in that set.

x_2 is min element of homog set.

Lather, Rinse, Repeat to get x_1, x_2, \ldots.
Problem 4 (slightly modified)

\(x_1, x_2, x_3, \ldots \) is an inf seq of reals.
Problem 4 (slightly modified)

\(x_1, x_2, x_3, \ldots\) is an inf seq of reals.
For \(i < j\).

\[
COL(i, j) = \begin{cases}
 \text{RED} & \text{if } x_i < x_j \\
 \text{BLUE} & \text{if } x_i > x_j \\
 \text{GREEN} & \text{if } x_i = x_j
\end{cases}
\]

Apply Ramsey Theory to get a theorem.
If homog RED then get subseq set \(x_{i_1} < x_{i_2} < \ldots\)
If homog BLUE then get subseq set \(x_{i_1} > x_{i_2} > \ldots\)
If homog GREEN then get subseq set \(x_{i_1} = x_{i_2} = \ldots\)

Thm
Every inf seq of \(\mathbb{R}\) has either an inf \(\uparrow\) seq, an inf \(\downarrow\) seq, or an inf = seq.
Problem 4 (slightly modified)

\[x_1, x_2, x_3, \ldots \text{ is an inf seq of reals.} \]
For \(i < j \).

\[
COL(i, j) = \begin{cases}
 RED & \text{if } x_i < x_j \\
 BLUE & \text{if } x_i > x_j \\
 GREEN & \text{if } x_i = x_j
\end{cases}
\] (1)

Apply Ramsey Theory to get a theorem.
Problem 4 (slightly modified)

\[x_1, x_2, x_3, \ldots \text{ is an inf seq of reals.} \]

For \(i < j \).

\[COL(i, j) = \begin{cases}
 RED & \text{if } x_i < x_j \\
 BLUE & \text{if } x_i > x_j \\
 GREEN & \text{if } x_i = x_j
\end{cases} \quad (1) \]

Apply Ramsey Theory to get a theorem.

If homog RED then get subseq set \(x_{i_1} < x_{i_2} < \ldots \)

If homog BLUE then get subseq set \(x_{i_1} > x_{i_2} > \ldots \)

If homog GREEN then get subseq set \(x_{i_1} = x_{i_2} = \ldots \)
Problem 4 (slightly modified)

\(x_1, x_2, x_3, \ldots\) is an inf seq of reals.
For \(i < j\).

\[
\text{COL}(i, j) = \begin{cases}
\text{RED} & \text{if } x_i < x_j \\
\text{BLUE} & \text{if } x_i > x_j \\
\text{GREEN} & \text{if } x_i = x_j
\end{cases}
\] \hspace{1cm} (1)

Apply Ramsey Theory to get a theorem.
If homog RED then get subseq set \(x_{i_1} < x_{i_2} < \ldots\)
If homog BLUE then get subseq set \(x_{i_1} > x_{i_2} > \ldots\)
If homog GREEN then get subseq set \(x_{i_1} = x_{i_2} = \ldots\)

Thm Every inf seq of \(R\) has either an inf \(\uparrow\) seq, an inf \(\downarrow\) seq, or an inf = seq.
Problem 4 Extra

Can generalize to \mathbb{R}^n by either applying Ramsey with 3-colors n times, or applying Ramsey with 3^n colors.

Thm Every inf seq of \mathbb{R}^n has an inf subseq where, for each coordinate, either \uparrow seq, or \downarrow or \equiv.
Problem 4 Extra

Can generalize to \mathbb{R}^n by either applying Ramsey with 3-colors n times, or applying Ramsey with 3^n colors.

Thm Every inf seq of \mathbb{R}^n has an inf subseq where, for each coordinate, either ↑ seq, or ↓ or =$.$

This is a part of the proof of the Bolzano-Weierstrass Theorem. Next Slide.
Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges to a real.
2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.
Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges to a real.

2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

BW Thm If p_1, p_2, p_3, \ldots is an inf sequence of points in R^n that is contained in a box, then there exists a subsequence that converges to a point in R^n.
Bolzano-Weierstrass Theorem

Lemma

1. Any increasing sequence bounded sequence of reals converges to a real.
2. Any decreasing sequence bounded sequence of reals converges to a real.

This is not obvious. This depends on the construction of the Reals.

BW Thm If p_1, p_2, p_3, \ldots is an inf sequence of points in R^n that is contained in a box, then there exists a subsequence that converges to a point in R^n.

Proof

Problem 4 yields that there is a subsequence in each coordinate that is either ↓, ↑, or =. Lemma yields each coord converges.
Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.
Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.

The proof used a Ramsey-like argument.
Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.
Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled Bolzano-Weierstrass to get more information about this.
Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled Bolzano-Weierstrass to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap.

which I then added to my collection.
Problem 5- History

The BW thm was proven in 1817, way before Ramsey’s Theorem.

The proof used a Ramsey-like argument.

Our approach is cleaner.

When I first taught this application 4 years ago I Googled Bolzano-Weierstrass to get more information about this.

Google, knowing that I collect Math Novelty Songs, completed it to Bolzano-Weierstrass Rap which I then added to my collection.

It is the worst math novelty song ever. Listen for yourself: https://www.youtube.com/watch?v=df018klwKHg
Problem 5

\[p_1, p_2, p_3, \ldots, \]

be an infinite sequence of points in \(\mathbb{R}^2 \).
Consider the following coloring of \(\binom{N}{2} \).

\[
COL(i, j) = \begin{cases}
RED & \text{if } d(p_i, p_j) > 1 \\
BLUE & \text{if } d(p_i, p_j) < 1
\end{cases}
\] (2)

Apply Ramsey Theorem. What do you get?

SOLUTION

Thm Given an infinite sequence of points in \(\mathbb{R}^2 \) there exists an infinite subset so that either (a) they are all within 1 of each other, or (b) they are all more than 1 apart.
Problem 4 and 5 thoughts

The proofs of the theorems in Problem 4 and 5 are FAR EASIER with Ramsey Theory. The proofs without Ramsey end up doing Ramsey in context.
Prove or disprove:

For every 2-coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ there exists H_1, H_2 infinite such that (H_1, H_2) is a homog set.
Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of $K_{\mathbb{N}, \mathbb{N}}$ there exists H_1, H_2 infinite such that (H_1, H_2) is a homog set.

Discuss and Vote

SOLUTION FALSE. Color with $COL(i, j) = \begin{cases} \text{RED} & \text{if } i < j \\ \text{BLUE} & \text{if } i \geq j \end{cases}$
Problem 6 (Extra Credit)

Prove or disprove:

For every 2-coloring of the edges of $K_{\mathbb{N},\mathbb{N}}$ there exists H_1, H_2 infinite such that (H_1, H_2) is a homog set.

Discuss and Vote

SOLUTION FALSE. Color with

$$
\text{COL}(i, j) = \begin{cases}
\text{RED} & \text{if } i < j \\
\text{BLUE} & \text{if } i \geq j
\end{cases}
$$
Problem 6 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an \((H_1, H_2)\) homog set that only has TWO colors. We will call that a 2-homog set.
Thought What if we use 100 colors? The same counterexample works but you end up with an \((H_1, H_2)\) homog set that only has TWO colors. We will call that a 2-homog set.

Prove or disprove:

For every 100-coloring of the edges of \(K_{\mathbb{N},\mathbb{N}}\) there exists \(H_1, H_2\) infinite such that \((H_1, H_2)\) is a 2-homog set. 3-homog set(?)

Some \(c\)-homog with \(c < 100\)?
Problem 7 (Extra Credit)

Prove or disprove:

For all colorings \(\text{COL} : (\mathbb{Z}/2) \rightarrow [2]\) there exists a set \(H \subseteq \mathbb{Z}\) that is order-equiv to \(\mathbb{Z}\) and is homogenous.
Problem 7 (Extra Credit)

Prove or disprove:

For all colorings $\text{COL} : \left(\mathbb{Z} \right) \rightarrow [2]$ there exists a set $H \subseteq \mathbb{Z}$ that is order-equiv to \mathbb{Z} and is homogenous.

Discuss and Vote

Solution

FALSE. Color with $\text{COL}(i, j) = \begin{cases}
\text{RED} & \text{if } i, j \geq 0 \\
\text{BLUE} & \text{if } i, j < 0 \\
\text{BLUE} & \text{if one is } \geq 0 \text{ and the other is } < 0
\end{cases}$.
Problem 7 (Extra Credit)

Prove or disprove:

For all colorings \(\text{COL} : (\mathbb{Z}^2) \rightarrow [2] \) there exists a set \(H \subseteq \mathbb{Z} \) that is order-equiv to \(\mathbb{Z} \) and is homogenous.

Discuss and Vote

SOLUTION FALSE. Color with

\[
\text{COL}(i,j) = \begin{cases}
\text{RED} & \text{if } i, j \geq 0 \\
\text{BLUE} & \text{if } i, j < 0 \\
\text{BLUE} & \text{if one is } \geq 0 \text{ and the other is } < 0
\end{cases}
\]
Problem 7 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2-homog set.
Problem 7 (Future Extra Credit)

Thought What if we use 100 colors? The same counterexample works but you end up with an H homog set that only has TWO colors. We will call that a 2-homog set.

Prove or disprove:

For every 100-coloring of the edges of K_Z there exists 2-homog H that is order-isom to Z. 3-homog. Some c-homog with $c < 100$?