HW 02 Some Solutions

William Gasarch-U of MD

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL $^{\prime}:\binom{N}{4} \rightarrow[16]$ defined in class.

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL' $:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL'-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL' $^{\prime}:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL^{\prime}-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Show that this set, or an infinite subset of it, is COL-homog.

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL $^{\prime}:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL^{\prime}-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Show that this set, or an infinite subset of it, is COL-homog. SOL $H=\left\{a_{1}<a_{2}<\cdots\right\}$.
We take $H *=\left\{a_{2}, a_{3}, \cdots\right\}$. We show $H *$ is COL-homog.

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL' $:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL^{\prime}-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Show that this set, or an infinite subset of it, is COL-homog. SOL $H=\left\{a_{1}<a_{2}<\cdots\right\}$.
We take $H *=\left\{a_{2}, a_{3}, \cdots\right\}$. We show $H *$ is COL-homog.
Let $2 \leq i_{1}<i_{2}$ and $2 \leq j_{1}<j_{2}$. Let $k=\max \left\{i_{2}, j_{2}\right\}+1$.

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL' $:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL^{\prime}-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Show that this set, or an infinite subset of it, is COL-homog. SOL $H=\left\{a_{1}<a_{2}<\cdots\right\}$.
We take $H *=\left\{a_{2}, a_{3}, \cdots\right\}$. We show $H *$ is COL-homog.
Let $2 \leq i_{1}<i_{2}$ and $2 \leq j_{1}<j_{2}$. Let $k=\max \left\{i_{2}, j_{2}\right\}+1$.
From $\operatorname{COL}^{\prime}\left(a_{1}, a_{i_{1}}, a_{i_{2}}, a_{k}\right)$ we know $\operatorname{COL}\left(a_{1}, a_{k}\right)=\operatorname{COL}\left(a_{i_{1}}, a_{i_{2}}\right)$.

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL' $:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL^{\prime}-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Show that this set, or an infinite subset of it, is COL-homog. SOL $H=\left\{a_{1}<a_{2}<\cdots\right\}$.
We take $H *=\left\{a_{2}, a_{3}, \cdots\right\}$. We show $H *$ is COL-homog.
Let $2 \leq i_{1}<i_{2}$ and $2 \leq j_{1}<j_{2}$. Let $k=\max \left\{i_{2}, j_{2}\right\}+1$.
From $\operatorname{COL}^{\prime}\left(a_{1}, a_{i_{1}}, a_{i_{2}}, a_{k}\right)$ we know $\operatorname{COL}\left(a_{1}, a_{k}\right)=\operatorname{COL}\left(a_{i_{1}}, a_{i_{2}}\right)$.
From $\operatorname{COL}^{\prime}\left(a_{1}, a_{j_{1}}, a_{j_{2}}, a_{k}\right)$ we know $\operatorname{COL}\left(a_{1}, a_{k}\right)=\operatorname{COL}\left(a_{j_{1}}, a_{j_{2}}\right)$.

Problem 2

COL: $\binom{N}{2} \rightarrow \omega$. COL' $:\binom{N}{4} \rightarrow[16]$ defined in class.
Assume there is a COL'-homog set such that:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Show that this set, or an infinite subset of it, is COL-homog. SOL $H=\left\{a_{1}<a_{2}<\cdots\right\}$.
We take $H^{*}=\left\{a_{2}, a_{3}, \cdots\right\}$. We show $H *$ is COL-homog.
Let $2 \leq i_{1}<i_{2}$ and $2 \leq j_{1}<j_{2}$. Let $k=\max \left\{i_{2}, j_{2}\right\}+1$.
From $\operatorname{COL}^{\prime}\left(a_{1}, a_{i_{1}}, a_{i_{2}}, a_{k}\right)$ we know $\operatorname{COL}\left(a_{1}, a_{k}\right)=\operatorname{COL}\left(a_{i_{1}}, a_{i_{2}}\right)$.
From $\operatorname{COL}^{\prime}\left(a_{1}, a_{j_{1}}, a_{j_{2}}, a_{k}\right)$ we know $\operatorname{COL}\left(a_{1}, a_{k}\right)=\operatorname{COL}\left(a_{j_{1}}, a_{j_{2}}\right)$.
Hence $\operatorname{COL}\left(a_{i_{1}}, a_{i_{2}}\right)=\operatorname{COL}\left(a_{j_{1}}, a_{j_{2}}\right)$.

Problem 2 (misc)

Could we have left a_{1} in? We have:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

Problem 2 (misc)

Could we have left a_{1} in?
We have:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

The following coloring has that property but is NOT homog.

Problem 2 (misc)

Could we have left a_{1} in?
We have:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

The following coloring has that property but is NOT homog.

$$
\operatorname{COL}\left(a_{1}, a_{2}\right)=R
$$

Problem 2 (misc)

Could we have left a_{1} in?
We have:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

The following coloring has that property but is NOT homog.

$$
\operatorname{COL}\left(a_{1}, a_{2}\right)=R
$$

$$
(\forall j \geq 3)\left[\operatorname{COL}\left(a_{1}, a_{j}\right)=B\right]
$$

Problem 2 (misc)

Could we have left a_{1} in?
We have:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

The following coloring has that property but is NOT homog.

$$
\begin{gathered}
\operatorname{COL}\left(a_{1}, a_{2}\right)=R \\
(\forall j \geq 3)\left[\operatorname{COL}\left(a_{1}, a_{j}\right)=B\right] \\
(\forall i, j \geq 2)\left[\operatorname{COL}\left(a_{i}, a_{j}\right)=B\right]
\end{gathered}
$$

Problem 2 (misc)

Could we have left a_{1} in?
We have:

$$
\left(\forall x_{1}<x_{2}<x_{3}<x_{4} \in H\right)\left[\operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right)\right] .
$$

The following coloring has that property but is NOT homog.

$$
\begin{gathered}
\operatorname{COL}\left(a_{1}, a_{2}\right)=R \\
(\forall j \geq 3)\left[\operatorname{COL}\left(a_{1}, a_{j}\right)=B\right] \\
(\forall i, j \geq 2)\left[\operatorname{COL}\left(a_{i}, a_{j}\right)=B\right]
\end{gathered}
$$

Can check it satisfies condition.
Easily seen to not be homog.

Problem 3

$|X|=n$, COL : $\binom{X}{2} \rightarrow[\omega]$. For all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$.

Problem 3

$|X|=n$, COL : $\binom{X}{2} \rightarrow[\omega]$. For all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. SOL Assume, BWOC, $|M| \leq f(n)$, so $|X-M| \geq n-f(n)$.

Problem 3

$|X|=n$, COL : $\binom{X}{2} \rightarrow[\omega]$. For all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. SOL Assume, BWOC, $|M| \leq f(n)$, so $|X-M| \geq n-f(n)$. Map $X-M$ into $\binom{M}{2} \times M$:
$x \in X-M$ maps to $(\{p, q\}, r)$ with $\operatorname{COL}(x, r)=\operatorname{COL}(p, q)$.

Problem 3

$|X|=n$, COL : $\binom{X}{2} \rightarrow[\omega]$. For all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. SOL Assume, BWOC, $|M| \leq f(n)$, so $|X-M| \geq n-f(n)$. Map $X-M$ into $\binom{M}{2} \times M$:
$x \in X-M$ maps to $(\{p, q\}, r)$ with $\operatorname{COL}(x, r)=\operatorname{COL}(p, q)$.
From $\operatorname{deg}_{c}(x) \leq 1$ get Map is 1-1.

Problem 3

$|X|=n$, COL : $\binom{X}{2} \rightarrow[\omega]$. For all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. SOL Assume, BWOC, $|M| \leq f(n)$, so $|X-M| \geq n-f(n)$. Map $X-M$ into $\binom{M}{2} \times M$:
$x \in X-M$ maps to $(\{p, q\}, r)$ with $\operatorname{COL}(x, r)=\operatorname{COL}(p, q)$.
From $\operatorname{deg}_{c}(x) \leq 1$ get Map is 1-1.
There is a 1-1 map from $X-M$ to $M \times\binom{ M}{2}$.

Problem 3

$|X|=n$, COL : $\binom{X}{2} \rightarrow[\omega]$. For all $x \in X$ and colors c, $\operatorname{deg}_{c}(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. SOL Assume, BWOC, $|M| \leq f(n)$, so $|X-M| \geq n-f(n)$.
Map $X-M$ into $\binom{M}{2} \times M$:
$x \in X-M$ maps to $(\{p, q\}, r)$ with $\operatorname{COL}(x, r)=\operatorname{COL}(p, q)$.
From $\operatorname{deg}_{c}(x) \leq 1$ get Map is 1-1.
There is a 1-1 map from $X-M$ to $M \times\binom{ M}{2}$.
Finish on next slide.

Problem 3 (cont)

There is a 1-1- map from $X-M$ to $M \times\binom{ M}{2}$. So

$$
|X-M| \leq\left|M \times\binom{ M}{2}\right| \leq \frac{|M|^{3}}{2} \leq \frac{f(n)^{3}}{2}
$$

Problem 3 (cont)

There is a 1-1- map from $X-M$ to $M \times\binom{ M}{2}$. So

$$
|X-M| \leq\left|M \times\binom{ M}{2}\right| \leq \frac{|M|^{3}}{2} \leq \frac{f(n)^{3}}{2}
$$

Recall that $|M| \leq f(n)$ so $|X-M| \geq n-f(n)$.

Problem 3 (cont)

There is a 1-1- map from $X-M$ to $M \times\binom{ M}{2}$. So

$$
|X-M| \leq\left|M \times\binom{ M}{2}\right| \leq \frac{|M|^{3}}{2} \leq \frac{f(n)^{3}}{2}
$$

Recall that $|M| \leq f(n)$ so $|X-M| \geq n-f(n)$.

$$
n-f(n) \leq|X-M| \leq\left|M \times\binom{ M}{2}\right| \leq \frac{|M|^{3}}{2} \leq \frac{f(n)^{3}}{2}
$$

We seek a contradiction. $f(n)=n^{1 / 3}$ will work.

Problem 4

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X),|Y|=\infty$, so that all of the distances between points in Y are different.

Problem 4

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X),|Y|=\infty$, so that all of the distances between points in Y are different.
Proof Order the points arbitrarily.

$$
X=\left\{p_{1}, p_{2}, \ldots\right\}
$$

Problem 4

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X),|Y|=\infty$, so that all of the distances between points in Y are different.
Proof Order the points arbitrarily.

$$
X=\left\{p_{1}, p_{2}, \ldots\right\}
$$

Let COL: $\binom{N}{2} \rightarrow \mathrm{R}$ be defined by $\operatorname{COL}(i, j)=\left|p_{i}-p_{j}\right|$.

Problem 4

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X),|Y|=\infty$, so that all of the distances between points in Y are different.
Proof Order the points arbitrarily.

$$
X=\left\{p_{1}, p_{2}, \ldots\right\}
$$

Let COL: $\binom{N}{2} \rightarrow \mathrm{R}$ be defined by $\operatorname{COL}(i, j)=\left|p_{i}-p_{j}\right|$.
The number of reals in the image of the colorings is countable so we can apply Can Ramsey. When we apply it we find that there is a set $H \subseteq \mathrm{~N},|H|=\infty$ that is either homog, max-homog, min-homog, or rainb. We show H rainb, so all distances different.

Problem 4

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X),|Y|=\infty$, so that all of the distances between points in Y are different.
Proof Order the points arbitrarily.

$$
X=\left\{p_{1}, p_{2}, \ldots\right\}
$$

Let COL: $\binom{N}{2} \rightarrow \mathrm{R}$ be defined by $\operatorname{COL}(i, j)=\left|p_{i}-p_{j}\right|$.
The number of reals in the image of the colorings is countable so we can apply Can Ramsey. When we apply it we find that there is a set $H \subseteq \mathrm{~N},|H|=\infty$ that is either homog, max-homog, min-homog, or rainb. We show H rainb, so all distances different.
Three cases: homog, min-homog, max-homog.

Problem 4, H Homog
H is homog.

Problem 4, H Homog

H is homog.
Then there are an infinite number of points that are all the same distance apart.

Problem 4, H Homog

H is homog.
Then there are an infinite number of points that are all the same distance apart.

Exercise: cannot have 4 points in the plane with all distances the same.

Problem 4, H Min-Homog

$(\forall i, j \geq 2)\left[\left|p_{1}-p_{i}\right|=\left|p_{1}-p_{j}\right|\right]$.
So p_{2}, p_{3}, \ldots are on a circle centered at p_{1}.

Problem 4, H Min-Homog

$(\forall i, j \geq 2)\left[\left|p_{1}-p_{i}\right|=\left|p_{1}-p_{j}\right|\right]$.
So p_{2}, p_{3}, \ldots are on a circle centered at p_{1}.
$(\forall i, j \geq 3)\left[\left|p_{2}-p_{i}\right|=\left|p_{2}-p_{j}\right|\right]$.
So p_{3}, p_{4}, \ldots are on a circle centered at p_{2}.

Problem 4, H Min-Homog

$(\forall i, j \geq 2)\left[\left|p_{1}-p_{i}\right|=\left|p_{1}-p_{j}\right|\right]$.
So p_{2}, p_{3}, \ldots are on a circle centered at p_{1}.
$(\forall i, j \geq 3)\left[\left|p_{2}-p_{i}\right|=\left|p_{2}-p_{j}\right|\right]$.
So p_{3}, p_{4}, \ldots are on a circle centered at p_{2}.
Combine: p_{3}, p_{4}, p_{5} are all on both a circle centered at p_{1} and a circle centered at p_{2}.

Problem 4, H Min-Homog

$(\forall i, j \geq 2)\left[\left|p_{1}-p_{i}\right|=\left|p_{1}-p_{j}\right|\right]$.
So p_{2}, p_{3}, \ldots are on a circle centered at p_{1}.
$(\forall i, j \geq 3)\left[\left|p_{2}-p_{i}\right|=\left|p_{2}-p_{j}\right|\right]$.
So p_{3}, p_{4}, \ldots are on a circle centered at p_{2}.
Combine: p_{3}, p_{4}, p_{5} are all on both a circle centered at p_{1} and a circle centered at p_{2}.

But two circles with diff centers intersect in at most 2 points. Contradiction.

Problem 4, H Max-Homog

$(\forall i, j \leq 4)\left[\left|p_{4}-p_{i}\right|=\left|p_{4}-p_{j}\right|\right]$.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4}.

Problem 4, H Max-Homog

$(\forall i, j \leq 4)\left[\left|p_{4}-p_{i}\right|=\left|p_{4}-p_{j}\right|\right]$.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4}.
$(\forall i, j \leq 4)\left[\left|p_{5}-p_{i}\right|=\left|p_{5}-p_{j}\right|\right]$.
So $p_{1}, p_{2}, p_{3}, p_{4}$ are on a circle centered at p_{5}.

Problem 4, H Max-Homog

$(\forall i, j \leq 4)\left[\left|p_{4}-p_{i}\right|=\left|p_{4}-p_{j}\right|\right]$.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4}.
$(\forall i, j \leq 4)\left[\left|p_{5}-p_{i}\right|=\left|p_{5}-p_{j}\right|\right]$.
So $p_{1}, p_{2}, p_{3}, p_{4}$ are on a circle centered at p_{5}.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4} and p_{5}.

Problem 4, H Max-Homog

$(\forall i, j \leq 4)\left[\left|p_{4}-p_{i}\right|=\left|p_{4}-p_{j}\right|\right]$.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4}.
$(\forall i, j \leq 4)\left[\left|p_{5}-p_{i}\right|=\left|p_{5}-p_{j}\right|\right]$.
So $p_{1}, p_{2}, p_{3}, p_{4}$ are on a circle centered at p_{5}.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4} and p_{5}.
But two circles intersect in at most 2 points. Contradiction

Problem 4, H Max-Homog

$(\forall i, j \leq 4)\left[\left|p_{4}-p_{i}\right|=\left|p_{4}-p_{j}\right|\right]$.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4}.
$(\forall i, j \leq 4)\left[\left|p_{5}-p_{i}\right|=\left|p_{5}-p_{j}\right|\right]$.
So $p_{1}, p_{2}, p_{3}, p_{4}$ are on a circle centered at p_{5}.
So p_{1}, p_{2}, p_{3} are on a circle centered at p_{4} and p_{5}.
But two circles intersect in at most 2 points. Contradiction
End of Proof of Theorem

