HW 02 Some Solutions

William Gasarch-U of MD

・ロト ・ 理ト ・ ヨト ・ ヨー・ つへぐ

$\operatorname{COL}: \binom{N}{2} \to \omega. \ \operatorname{COL}': \binom{N}{4} \to [16]$ defined in class.

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

 $(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

 $(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$

ション ふぼう メリン メリン しょうくしゃ

Show that this set, or an infinite subset of it, is COL-homog.

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

 $(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$

Show that this set, or an infinite subset of it, is COL-homog. **SOL** $H = \{a_1 < a_2 < \cdots\}$. We take $H^* = \{a_2, a_3, \cdots\}$. We show H^* is COL-homog.

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

 $(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$ Show that this set, or an infinite subset of it, is COL-homog. **SOL** $H = \{a_1 < a_2 < \cdots\}.$ We take $H^* = \{a_2, a_3, \cdots\}.$ We show H^* is COL-homog.

Let $2 \le i_1 < i_2$ and $2 \le j_1 < j_2$. Let $k = \max\{i_2, j_2\} + 1$.

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

Show that this set, or an infinite subset of it, is COL-homog. **SOL** $H = \{a_1 < a_2 < \cdots\}$. We take $H^* = \{a_2, a_3, \cdots\}$. We show H^* is COL-homog.

Let $2 \le i_1 < i_2$ and $2 \le j_1 < j_2$. Let $k = \max\{i_2, j_2\} + 1$. From $\text{COL}'(a_1, a_{i_1}, a_{i_2}, a_k)$ we know $\text{COL}(a_1, a_k) = \text{COL}(a_{i_1}, a_{i_2})$.

ション ふぼう メリン メリン しょうくしゃ

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

Show that this set, or an infinite subset of it, is COL-homog. **SOL** $H = \{a_1 < a_2 < \cdots\}$. We take $H^* = \{a_2, a_3, \cdots\}$. We show H^* is COL-homog.

Let $2 \le i_1 < i_2$ and $2 \le j_1 < j_2$. Let $k = \max\{i_2, j_2\} + 1$. From $\text{COL}'(a_1, a_{i_1}, a_{i_2}, a_k)$ we know $\text{COL}(a_1, a_k) = \text{COL}(a_{i_1}, a_{i_2})$. From $\text{COL}'(a_1, a_{j_1}, a_{j_2}, a_k)$ we know $\text{COL}(a_1, a_k) = \text{COL}(a_{j_1}, a_{j_2})$.

 $\operatorname{COL}: \binom{N}{2} \to \omega$. $\operatorname{COL}': \binom{N}{4} \to [16]$ defined in class. Assume there is a COL' -homog set such that:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

Show that this set, or an infinite subset of it, is COL-homog. **SOL** $H = \{a_1 < a_2 < \cdots\}$. We take $H^* = \{a_2, a_3, \cdots\}$. We show H^* is COL-homog.

Let $2 \le i_1 < i_2$ and $2 \le j_1 < j_2$. Let $k = \max\{i_2, j_2\} + 1$. From $\text{COL}'(a_1, a_{i_1}, a_{i_2}, a_k)$ we know $\text{COL}(a_1, a_k) = \text{COL}(a_{i_1}, a_{i_2})$. From $\text{COL}'(a_1, a_{j_1}, a_{j_2}, a_k)$ we know $\text{COL}(a_1, a_k) = \text{COL}(a_{j_1}, a_{j_2})$. Hence $\text{COL}(a_{i_1}, a_{i_2}) = \text{COL}(a_{j_1}, a_{j_2})$.

Could we have left a_1 in? We have:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Could we have left a_1 in? We have:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

The following coloring has that property but is NOT homog.

Could we have left a_1 in? We have:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

The following coloring has that property but is NOT homog.

$$\operatorname{COL}(a_1, a_2) = R$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Could we have left a_1 in? We have:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

The following coloring has that property but is NOT homog.

$$\operatorname{COL}(a_1, a_2) = R$$

$$(\forall j \geq 3)[\operatorname{COL}(a_1, a_j) = B]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Could we have left a_1 in? We have:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

The following coloring has that property but is NOT homog.

$$\operatorname{COL}(a_1, a_2) = R$$

$$(\forall j \geq 3)[\operatorname{COL}(a_1, a_j) = B]$$

$$(\forall i, j \geq 2)[\operatorname{COL}(a_i, a_j) = B]$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 二目 - のへで

Could we have left a_1 in? We have:

$$(\forall x_1 < x_2 < x_3 < x_4 \in H)[COL(x_2, x_3) = COL(x_1, x_4)].$$

The following coloring has that property but is NOT homog.

 $\operatorname{COL}(a_1, a_2) = R$

$$(\forall j \geq 3)[\operatorname{COL}(a_1, a_j) = B]$$

$$(\forall i, j \geq 2)[\operatorname{COL}(a_i, a_j) = B]$$

Can check it satisfies condition. Easily seen to not be homog.

|X| = n, COL : $\binom{X}{2} \rightarrow [\omega]$. For all $x \in X$ and colors c, $\deg_c(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

|X| = n, COL: $\binom{X}{2} \rightarrow [\omega]$. For all $x \in X$ and colors c, deg_c(x) ≤ 1 . If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. **SOL** Assume, BWOC, $|M| \leq f(n)$, so $|X - M| \geq n - f(n)$.

|X| = n, COL: $\binom{X}{2} \rightarrow [\omega]$. For all $x \in X$ and colors c, $\deg_c(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. **SOL** Assume, BWOC, $|M| \leq f(n)$, so $|X - M| \geq n - f(n)$. Map X - M into $\binom{M}{2} \times M$:

 $x \in X - M$ maps to $(\{p,q\},r)$ with COL(x,r) = COL(p,q).

|X| = n, COL: $\binom{X}{2} \rightarrow [\omega]$. For all $x \in X$ and colors c, $\deg_c(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. **SOL** Assume, BWOC, $|M| \leq f(n)$, so $|X - M| \geq n - f(n)$. Map X - M into $\binom{M}{2} \times M$:

 $x \in X - M$ maps to $(\{p, q\}, r)$ with COL(x, r) = COL(p, q).

From $\deg_c(x) \leq 1$ get Map is 1-1.

|X| = n, COL: $\binom{X}{2} \rightarrow [\omega]$. For all $x \in X$ and colors c, $\deg_c(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. **SOL** Assume, BWOC, $|M| \leq f(n)$, so $|X - M| \geq n - f(n)$. Map X - M into $\binom{M}{2} \times M$:

 $x \in X - M$ maps to $(\{p, q\}, r)$ with COL(x, r) = COL(p, q).

From $\deg_c(x) \leq 1$ get Map is 1-1.

There is a 1-1 map from X - M to $M \times {\binom{M}{2}}$.

|X| = n, COL: $\binom{X}{2} \rightarrow [\omega]$. For all $x \in X$ and colors c, $\deg_c(x) \leq 1$. If M is MAXIMAL rainb then $|M| \geq \Omega(f(n))$. **SOL** Assume, BWOC, $|M| \leq f(n)$, so $|X - M| \geq n - f(n)$. Map X - M into $\binom{M}{2} \times M$:

 $x \in X - M$ maps to $(\{p,q\},r)$ with COL(x,r) = COL(p,q).

From $\deg_c(x) \leq 1$ get Map is 1-1.

There is a 1-1 map from X - M to $M \times {\binom{M}{2}}$. Finish on next slide.

Problem 3 (cont)

There is a 1-1- map from X - M to $M \times {\binom{M}{2}}$. So

$$|X-M| \leq \left|M \times \binom{M}{2}\right| \leq \frac{|M|^3}{2} \leq \frac{f(n)^3}{2}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Problem 3 (cont)

There is a 1-1- map from X - M to $M \times {\binom{M}{2}}$. So

$$|X-M| \leq \left|M \times {M \choose 2}\right| \leq \frac{|M|^3}{2} \leq \frac{f(n)^3}{2}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that $|M| \leq f(n)$ so $|X - M| \geq n - f(n)$.

Problem 3 (cont)

There is a 1-1- map from X - M to $M \times {\binom{M}{2}}$. So

$$|X-M| \leq \left|M \times {M \choose 2}\right| \leq \frac{|M|^3}{2} \leq \frac{f(n)^3}{2}.$$

Recall that $|M| \leq f(n)$ so $|X - M| \geq n - f(n)$.

$$|n-f(n)| \leq |X-M| \leq \left|M \times \binom{M}{2}\right| \leq \frac{|M|^3}{2} \leq \frac{f(n)^3}{2}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We seek a contradiction. $f(n) = n^{1/3}$ will work.

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X), |Y| = \infty$, so that all of the distances between points in Y are different.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X), |Y| = \infty$, so that all of the distances between points in Y are different.

Proof Order the points arbitrarily.

 $X = \{p_1, p_2, \ldots\}$

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X), |Y| = \infty$, so that all of the distances between points in Y are different.

Proof Order the points arbitrarily.

$$X = \{p_1, p_2, \ldots\}$$

ション ふゆ アメビア メロア しょうくしゃ

Let COL: $\binom{N}{2} \to \mathbb{R}$ be defined by COL $(i, j) = |p_i - p_j|$.

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X), |Y| = \infty$, so that all of the distances between points in Y are different.

Proof Order the points arbitrarily.

$$X = \{p_1, p_2, \ldots\}$$

Let COL: $\binom{N}{2} \to \mathbb{R}$ be defined by $\operatorname{COL}(i,j) = |p_i - p_j|$. The number of reals in the image of the colorings is countable so we can apply Can Ramsey. When we apply it we find that there is a set $H \subseteq \mathbb{N}$, $|H| = \infty$ that is either homog, max-homog, min-homog, or rainb. We show H rainb, so all distances different.

Theorem Let X be an infinite set of points in the plane. Then $(\exists Y \subseteq X), |Y| = \infty$, so that all of the distances between points in Y are different.

Proof Order the points arbitrarily.

$$X = \{p_1, p_2, \ldots\}$$

Let COL: $\binom{N}{2} \to \mathbb{R}$ be defined by $\operatorname{COL}(i,j) = |p_i - p_j|$. The number of reals in the image of the colorings is countable so we can apply Can Ramsey. When we apply it we find that there is a set $H \subseteq \mathbb{N}$, $|H| = \infty$ that is either homog, max-homog, min-homog, or rainb. We show H rainb, so all distances different. Three cases: homog, min-homog, max-homog.

Problem 4, H Homog

H is homog.

Problem 4, H Homog

H is homog.

Then there are an infinite number of points that are all the same distance apart.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

H is homog.

Then there are an infinite number of points that are all the same distance apart.

Exercise: cannot have 4 points in the plane with all distances the same.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $(\forall i, j \ge 2)[|p_1 - p_i| = |p_1 - p_j|].$ So p_2, p_3, \dots are on a circle centered at p_1 .

 $(\forall i, j \ge 2)[|p_1 - p_i| = |p_1 - p_j|].$ So p_2, p_3, \ldots are on a circle centered at p_1 .

 $(\forall i, j \ge 3)[|p_2 - p_i| = |p_2 - p_j|].$ So p_3, p_4, \dots are on a circle centered at p_2 .

 $(\forall i, j \ge 2)[|p_1 - p_i| = |p_1 - p_j|].$ So p_2, p_3, \ldots are on a circle centered at p_1 .

 $(\forall i, j \ge 3)[|p_2 - p_i| = |p_2 - p_j|].$ So p_3, p_4, \dots are on a circle centered at p_2 .

Combine: p_3 , p_4 , p_5 are all on both a circle centered at p_1 and a circle centered at p_2 .

 $(\forall i, j \ge 2)[|p_1 - p_i| = |p_1 - p_j|].$ So p_2, p_3, \ldots are on a circle centered at p_1 .

 $(\forall i, j \ge 3)[|p_2 - p_i| = |p_2 - p_j|].$ So p_3, p_4, \dots are on a circle centered at p_2 .

Combine: p_3 , p_4 , p_5 are all on both a circle centered at p_1 and a circle centered at p_2 .

But two circles with diff centers intersect in at most 2 points. Contradiction.

 $(\forall i, j \leq 4)[|p_4 - p_i| = |p_4 - p_j|].$ So p_1, p_2, p_3 are on a circle centered at p_4 .

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 $(\forall i, j \leq 4)[|p_4 - p_i| = |p_4 - p_j|].$ So p_1, p_2, p_3 are on a circle centered at p_4 .

 $(\forall i, j \leq 4)[|p_5 - p_i| = |p_5 - p_j|].$ So p_1, p_2, p_3, p_4 are on a circle centered at p_5 .

 $(\forall i, j \leq 4)[|p_4 - p_i| = |p_4 - p_j|].$ So p_1, p_2, p_3 are on a circle centered at p_4 .

 $(\forall i, j \leq 4)[|p_5 - p_i| = |p_5 - p_j|].$ So p_1, p_2, p_3, p_4 are on a circle centered at p_5 .

So p_1, p_2, p_3 are on a circle centered at p_4 and p_5 .

ション ふゆ アメビア メロア しょうくしゃ

 $(\forall i, j \leq 4)[|p_4 - p_i| = |p_4 - p_j|].$ So p_1, p_2, p_3 are on a circle centered at p_4 .

 $(\forall i, j \le 4)[|p_5 - p_i| = |p_5 - p_j|].$ So p_1, p_2, p_3, p_4 are on a circle centered at p_5 .

So p_1, p_2, p_3 are on a circle centered at p_4 and p_5 .

But two circles intersect in at most 2 points. Contradiction

 $(\forall i, j \leq 4)[|p_4 - p_i| = |p_4 - p_j|].$ So p_1, p_2, p_3 are on a circle centered at p_4 .

 $(\forall i, j \le 4)[|p_5 - p_i| = |p_5 - p_j|].$ So p_1, p_2, p_3, p_4 are on a circle centered at p_5 .

So p_1, p_2, p_3 are on a circle centered at p_4 and p_5 .

But two circles intersect in at most 2 points. Contradiction

End of Proof of Theorem