
Homework 03
Morally Due Tue Feb 15 at 3:30PM. Dead Cat Feb 17 at 3:30

1. (0 points) What is your name? Write it clearly. When is the take-home
midterm due?

2. (35 points) Give a well written complete proof of Mileti’s proof of the
2-ary Can Ramsey Theorem. (I did the first two steps in class, but you
will need to include those as well.)
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3. (35 points) In this problem we have a part of a proof, but want a
theorem. Fill in the BLANK and the BLAH BLAH to get a theorem
OF INTEREST.

Theorem Let X be a countable infinite set of points in the plane, no
three colinear. Then there exists Y ⊆ X, |Y | =∞, such that BLANK.

Proof Order the points in X arbitrarily, so

X = {p1, p2, p3, . . .}.

Define a coloring COL:
(
N
3

)
→R via COL(i, j, k) is the area of the tri-

angle created by pi, pj, pk.

The number of reals used is countable so we can apply Can Ramsey.

Hence there exists H ⊆ N, |H| = ∞, H is A-homog for some A ⊆
{1, 2, 3}. Look at the set of points

Y = {pi : i ∈ H}.

Then BLAH BLAH so Y is BLANK.

End of Proof of Theorem
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4. (30 points) Point of this Problem The first day of class we proved
that no matter how you color the edges of K6 there will be a monochro-
matic triangle. What about K5? It turns out that there IS a coloring
of K5 with NO mono triangles. But how common is that? In this
problem you will generate 1000 random 2-colorings of the edges of K5

and COUNT how many have 0 mono triangle, 1 mono triangle, . . .,
10 mono triangles. You will generate these colorings 9 different ways.
Each time you do it you will count how many of the colorings had 0
mono triangles, 1 mono triangle, . . ., 9 mono triangles. For 0 ≤ i ≤ 10,
ni will be the number that have i mono triangles.

NOTE: All we want to hand in will be the table of data, and some
speculation about theorems, NOT the code itself.

On the next page IS the problem formally.
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ONE (0 points but you need to do this for later parts) Write a program
that will take input 0 ≤ p ≤ 1 and randomly assign colors to the edges
of K5 with each edge being RED with prob p and BLUE with prob
1−p. (You might want to use 0 and 1 instead of RED and BLUE since
computers operate that way.)

TWO (0 points but you need to do it for later parts) Write a program
that will, given a 2-coloring of K5, count how many monochromatic
triangles it has.

THREE (0 points but you need this for later parts) Write a program
that does the following (I use psuedocode.)

For p = 0.1, 0.2, . . . , 0.9

i. n0 = 0, n1 = 0, . . ., n10 = 0. (Recall that ni will be the
number of colorings that have i mono triangles. Initially this
is 0.)

ii. For i = 1 to 1000

A. Randomly color the edges of K5 by coloring RED with
prob p and BLUE with prob 1−p. (You may want to use
colors 0 and 1 instead.)

B. Find j, the number of mono triangles.

C. nj = nj + 1.

FOUR (30 points) Use your program to produce the a table of data
The table should look like what is below except that (1) I made up the
numbers, and (2) your table should not have any DOT DOT DOT in
it, it should have all the numbers.

p n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

0.1 0 10 10 10 10 10 10 10 10 5 5
0.2 0 10 10 10 10 10 10 10 10 7 3
...

...
...

...
...

...
...

...
...

...
...

...
0.9 100 0 0 0 0 0 0 0 0 0 0

FIVE (0 points) Looking at the data formulate a conjecture about
colorings of K5. Prove your conjecture.
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5. (Extra Credit) Give a well written clean proof of 3-ary Can Ramsey.
There are three ways to do this. The more ways you do, the more extra
credit you get!

(a) Use some a-ary Ramsey Theorem and lots of cases (with good
notation you can consolidate them), and all cases easy.

(b) Use some a-ary Ramsey Theorem with fewer cases than the proof
suggested in Part 1 (with good notation you can consolidate them),
and the rainbow case will need a version of maximal sets.

(c) Use a Mileti-style proof. Note that 2-ary Mileti used 1-ary Can
Ramsey. Similarly, 3-ary Mileti will use 2-ary Can Ramsey. It will
be similar to the proof of 3-ary Ramsey from 2-ary Ramsey.
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