HW 03 Some Solutions

William Gasarch-U of MD

Problem 3

Theorem Let X be a countable infinite set of points in the plane, no three colinear. Then there exists $Y \subseteq X,|Y|=\infty$, such that all of the triangles formed have different areas.
Proof Order the points in X arbitrarily, so $X=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$.
COL: $\binom{N}{3} \rightarrow R$ via $\operatorname{COL}(i, j, k)$ area $\operatorname{TRI}\left(p_{i}, p_{j}, p_{k}\right)$
By Can Ramsey $(\exists H \subseteq N,|H|=\infty, H$-homog, some $A \subseteq\{1,2,3\}$.

$$
Y=\left\{p_{i}: i \in H\right\}
$$

We show that the only A-homog set possible is $\{1,2,3\}$-homog (Rainbow).

If $\{1,2\}$-Homog then Contradiction

If H is $\{1,2\}$-homog then every triangle that has p_{1}, p_{2} has same area.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$

If $\{1,2\}$-Homog then Contradiction

If H is $\{1,2\}$-homog then every triangle that has p_{1}, p_{2} has same area.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$
Then $p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$ are all the same distance from line $p_{1} p_{2}$.

If $\{1,2\}$-Homog then Contradiction

If H is $\{1,2\}$-homog then every triangle that has p_{1}, p_{2} has same area.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$
Then $p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$ are all the same distance from line $p_{1} p_{2}$.
Three of them are on the same side of that line.

If $\{1,2\}$-Homog then Contradiction

If H is $\{1,2\}$-homog then every triangle that has p_{1}, p_{2} has same area.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$
Then $p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$ are all the same distance from line $p_{1} p_{2}$.
Three of them are on the same side of that line.
These three points are COLINEAR a contradiction.

If $\{1,2\}$-Homog then Contradiction

If H is $\{1,2\}$-homog then every triangle that has p_{1}, p_{2} has same area.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$
Then $p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$ are all the same distance from line $p_{1} p_{2}$.
Three of them are on the same side of that line.
These three points are COLINEAR a contradiction.
Similar for $\{1,3\}$-Homog, $\{2,3\}$-Homog.

If $\{1\}$-Homog

If H is $\{1\}$-homog then every triangle that has p_{1} has same area.
Proof is the same as last case.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$

If $\{1\}$-Homog

If H is $\{1\}$-homog then every triangle that has p_{1} has same area.
Proof is the same as last case.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$
Then $p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$ are all the same distance from line $p_{1} p_{2}$.

If $\{1\}$-Homog

If H is $\{1\}$-homog then every triangle that has p_{1} has same area.
Proof is the same as last case.
AREA of the following triangles is the same:
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{3}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{4}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{5}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{6}\right)$
$\operatorname{TRI}\left(p_{1}, p_{2}, p_{7}\right)$
Then $p_{3}, p_{4}, p_{5}, p_{6}, p_{7}$ are all the same distance from line $p_{1} p_{2}$.
Three of them are on the same side of that line.

If \emptyset-Homog

If H is \emptyset-homog then every triangle that has the same area. Proof the same as the other two cases.

$\{1,2,3\}$-Homog

The only case left is $\{1,2,3\}$-Homog which is rainbow.

$\{1,2,3\}$-Homog

The only case left is $\{1,2,3\}$-Homog which is rainbow.
We now have two theorem in geometry proven easily be Can Ramsey:

$\{1,2,3\}$-Homog

The only case left is $\{1,2,3\}$-Homog which is rainbow.
We now have two theorem in geometry proven easily be Can Ramsey:

- If $X \subseteq R^{2}$ then there exists infinite subset $Y \subseteq X$ such that all of the distances between points in Y are different.
- If $X \subseteq R^{2}$, no three colinear, then there exists infinite subset $Y \subseteq X$ such that all of the areas of triangles formed by three points of Y are different.

$\{1,2,3\}$-Homog

The only case left is $\{1,2,3\}$-Homog which is rainbow.
We now have two theorem in geometry proven easily be Can Ramsey:

- If $X \subseteq R^{2}$ then there exists infinite subset $Y \subseteq X$ such that all of the distances between points in Y are different.
- If $X \subseteq R^{2}$, no three colinear, then there exists infinite subset $Y \subseteq X$ such that all of the areas of triangles formed by three points of Y are different.

VOTE

- These are Applications!
- These are "Applications"
- These are crap!

Problem 4

Write a program that randomly color the edges of K_{5} by coloring RED with prob p and BLUE with prob $1-p$ and count the number of mono triangles. From this make conjectures.

Problem 4

Write a program that randomly color the edges of K_{5} by coloring RED with prob p and BLUE with prob $1-p$ and count the number of mono triangles. From this make conjectures.

You will have noticed that you literally never got 6 or 8 or 9 triangles.

Problem 4

Write a program that randomly color the edges of K_{5} by coloring RED with prob p and BLUE with prob $1-p$ and count the number of mono triangles. From this make conjectures.

You will have noticed that you literally never got 6 or 8 or 9 triangles.

Conjecture For all COL: $\binom{[5]}{2} \rightarrow[2]$ there are never 6 or 8 or 9 mono triangles.

Problem 4

Write a program that randomly color the edges of K_{5} by coloring RED with prob p and BLUE with prob $1-p$ and count the number of mono triangles. From this make conjectures.

You will have noticed that you literally never got 6 or 8 or 9 triangles.

Conjecture For all COL: $\binom{[5]}{2} \rightarrow[2]$ there are never 6 or 8 or 9 mono triangles.

This is actually True.

Problem 5 (Extra Credit)

Prove the 3-ary Can Ramsey.
Will do on the White Board.

