HW 03 Some Solutions

William Gasarch-U of MD

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Theorem Let X be a countable infinite set of points in the plane, no three colinear. Then there exists $Y \subseteq X$, $|Y| = \infty$, such that all of the triangles formed have different areas. **Proof** Order the points in X arbitrarily, so $X = \{p_1, p_2, p_3, ...\}$. $COL: \binom{N}{3} \rightarrow R$ via COL(i, j, k) area $TRI(p_i, p_j, p_k)$ By Can Ramsey $(\exists H \subseteq N, |H| = \infty, H A$ -homog, some $A \subseteq \{1, 2, 3\}$.

 $Y = \{p_i \colon i \in H\}.$

We show that the only A-homog set possible is $\{1, 2, 3\}$ -homog (Rainbow).

If H is $\{1,2\}$ -homog then every triangle that has p_1, p_2 has same area.

AREA of the following triangles is the same:

 $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

If H is $\{1,2\}$ -homog then every triangle that has p_1, p_2 has same area.

AREA of the following triangles is the same:

 $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

Then p_3 , p_4 , p_5 , p_6 , p_7 are all the same distance from line p_1p_2 .

If H is $\{1,2\}$ -homog then every triangle that has p_1, p_2 has same area.

AREA of the following triangles is the same:

 $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

Then p_3 , p_4 , p_5 , p_6 , p_7 are all the same distance from line p_1p_2 .

Three of them are on the same side of that line.

If H is $\{1,2\}$ -homog then every triangle that has p_1, p_2 has same area.

AREA of the following triangles is the same:

 $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

Then p_3 , p_4 , p_5 , p_6 , p_7 are all the same distance from line p_1p_2 .

Three of them are on the same side of that line.

These three points are COLINEAR a contradiction.

If H is $\{1,2\}$ -homog then every triangle that has p_1, p_2 has same area.

AREA of the following triangles is the same:

 $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

Then p_3 , p_4 , p_5 , p_6 , p_7 are all the same distance from line p_1p_2 .

Three of them are on the same side of that line.

These three points are COLINEAR a contradiction.

```
Similar for \{1,3\}-Homog, \{2,3\}-Homog.
```

If $\{1\}$ -Homog

If *H* is {1}-homog then every triangle that has p_1 has same area. Proof is the same as last case. AREA of the following triangles is the same: $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

ション ふゆ アメビア メロア しょうくしゃ

If $\{1\}$ -Homog

If *H* is {1}-homog then every triangle that has p_1 has same area. Proof is the same as last case. AREA of the following triangles is the same: $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

Then p_3 , p_4 , p_5 , p_6 , p_7 are all the same distance from line p_1p_2 .

ション ふゆ アメビア メロア しょうくしゃ

If $\{1\}$ -Homog

If *H* is {1}-homog then every triangle that has p_1 has same area. Proof is the same as last case. AREA of the following triangles is the same: $TRI(p_1, p_2, p_3)$ $TRI(p_1, p_2, p_4)$ $TRI(p_1, p_2, p_5)$ $TRI(p_1, p_2, p_6)$ $TRI(p_1, p_2, p_7)$

Then p_3 , p_4 , p_5 , p_6 , p_7 are all the same distance from line p_1p_2 .

Three of them are on the same side of that line.

If Ø-Homog

If *H* is \emptyset -homog then every triangle that has the same area. Proof the same as the other two cases.

・ロト・日本・ヨト・ヨト・日・ つへぐ

$\{1,2,3\}\text{-Homog}$

The only case left is $\{1, 2, 3\}$ -Homog which is rainbow.

・ロト・日本・ヨト・ヨト・日・ つへぐ

$\{1,2,3\}$ -Homog

The only case left is $\{1, 2, 3\}$ -Homog which is rainbow.

We now have two theorem in geometry proven easily be Can Ramsey:

$\{1,2,3\}$ -Homog

The only case left is $\{1, 2, 3\}$ -Homog which is rainbow.

We now have two theorem in geometry proven easily be Can Ramsey:

- If X ⊆ R² then there exists infinite subset Y ⊆ X such that all of the distances between points in Y are different.
- If X ⊆ R², no three colinear, then there exists infinite subset Y ⊆ X such that all of the areas of triangles formed by three points of Y are different.

$\{1,2,3\}$ -Homog

The only case left is $\{1, 2, 3\}$ -Homog which is rainbow.

We now have two theorem in geometry proven easily be Can Ramsey:

- If X ⊆ R² then there exists infinite subset Y ⊆ X such that all of the distances between points in Y are different.
- If X ⊆ R², no three colinear, then there exists infinite subset Y ⊆ X such that all of the areas of triangles formed by three points of Y are different.

VOTE

- These are Applications!
- ► These are "Applications"
- These are crap!

Write a program that randomly color the edges of K_5 by coloring RED with prob p and BLUE with prob 1 - p and count the number of mono triangles. From this make conjectures.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Write a program that randomly color the edges of K_5 by coloring RED with prob p and BLUE with prob 1 - p and count the number of mono triangles. From this make conjectures.

You will have noticed that you literally **never** got 6 or 8 or 9 triangles.

Write a program that randomly color the edges of K_5 by coloring RED with prob p and BLUE with prob 1 - p and count the number of mono triangles. From this make conjectures.

You will have noticed that you literally **never** got 6 or 8 or 9 triangles.

Conjecture For all COL: $\binom{[5]}{2} \rightarrow [2]$ there are **never** 6 or 8 or 9 mono triangles.

Write a program that randomly color the edges of K_5 by coloring RED with prob p and BLUE with prob 1 - p and count the number of mono triangles. From this make conjectures.

You will have noticed that you literally **never** got 6 or 8 or 9 triangles.

Conjecture For all COL: $\binom{[5]}{2} \rightarrow [2]$ there are **never** 6 or 8 or 9 mono triangles.

This is actually **True**.

Problem 5 (Extra Credit)

Prove the 3-ary Can Ramsey. Will do on the White Board.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで