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Problem 3

Theorem Let X be a countable infinite set of points in the plane,
no three colinear. Then there exists Y ⊆ X , |Y | =∞, such that
all of the triangles formed have different areas.
Proof Order the points in X arbitrarily, so X = {p1, p2, p3, . . .}.
COL :

(N
3

)
→ R via COL(i , j , k) area TRI(pi , pj , pk)

By Can Ramsey (∃H ⊆ N, |H| =∞, H A-homog, some
A ⊆ {1, 2, 3}.

Y = {pi : i ∈ H}.

We show that the only A-homog set possible is {1, 2, 3}-homog
(Rainbow).



If {1, 2}-Homog then Contradiction

If H is {1, 2}-homog then every triangle that has p1, p2 has same
area.
AREA of the following triangles is the same:
TRI (p1, p2, p3)
TRI (p1, p2, p4)
TRI (p1, p2, p5)
TRI (p1, p2, p6)
TRI (p1, p2, p7)

Then p3, p4, p5, p6, p7 are all the same distance from line p1p2.

Three of them are on the same side of that line.

These three points are COLINEAR a contradiction.

Similar for {1, 3}-Homog, {2, 3}-Homog.
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If ∅-Homog

If H is ∅-homog then every triangle that has the same area. Proof
the same as the other two cases.



{1, 2, 3}-Homog

The only case left is {1, 2, 3}-Homog which is rainbow.

We now have two theorem in geometry proven easily be Can
Ramsey:

I If X ⊆ R2 then there exists infinite subset Y ⊆ X such that
all of the distances between points in Y are different.

I If X ⊆ R2, no three colinear, then there exists infinite subset
Y ⊆ X such that all of the areas of triangles formed by three
points of Y are different.

VOTE

I These are Applications!

I These are “Applications”

I These are crap!
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Problem 4

Write a program that randomly color the edges of K5 by coloring
RED with prob p and BLUE with prob 1− p and count the
number of mono triangles. From this make conjectures.

You will have noticed that you literally never got 6 or 8 or 9
triangles.

Conjecture For all COL :
([5]
2

)
→ [2] there are never 6 or 8 or 9

mono triangles.

This is actually True.
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Problem 5 (Extra Credit)

Prove the 3-ary Can Ramsey.
Will do on the White Board.


