Homework 06
Morally Due Tue March 8 at 3:30PM. Dead Cat March 10 at 3:30

1. (0 points) What is your name? Write it clearly. When is the take-home midterm due?

2. (35 points) Let $R_{a}(k)$ be the least n such that

 for all COL: $(\binom{n}{a}) \rightarrow [2]$ there exists a homog set of size k.

 For this problem assume $R_{2}(k) \leq 2^{2k}$ (which is true).

 In class I sketched the beginning of the proof that $R_{3}(k) \leq 2^{2^{O(k)}}$.

 For this problem give a complete rigorous proof.
3. (35 points) Prove the following:

For all k there exists n such that for all $COL : \binom{\{k,\ldots,n\}}{1} \to \omega$ there exists either

- a LARGE homog set, or
- a LARGE rainbow set (all the numbers are colored differently).
4. (30 points) Prove the following: For all k there exists n such that for all $COL : \binom{\{k, ..., n\}}{2} \rightarrow [100]$ there exists an $H \subseteq [n]$ such that

- H is a homog set, and
- $|H| \geq 2^{\min(H)}$.