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 THE JOURNAL OF SYMmouc LoGic
 Volume 37, Number 2, June 1972

 RAMSEY'S THEOREM AND RECURSION THEORY

 CARL G. JOCKUSCH, JR.1

 ?1. Let N be the set of natural numbers. If A a N, let [A]n denote the class of all
 n-element subsets of A. If P is a partition of [N]n into finitely many classes C1, * * -,

 C, let H(P) denote the class of those infinite sets A c N such that [A]n c Ci for
 some i. Ramsey's theorem [8, Theorem A] asserts that H(P) is nonempty for any
 such partition P. Our purpose here is to study what can be said about H(P) when

 P is recursive, i.e. each Ci is recursive under a suitable coding of [N]n. We show that
 if P is such a recursive partition of [N]n, then H(P) contains a set which is 11? in the
 arithmetical hierarchy. In the other direction we prove that for each n 2 2 there
 is a recursive partition P of [N]t into two classes such that H(P) contains no SO
 set. These results answer a question raised by Specker [12].

 A basic partition is a partition of [N]2 into two classes. In ??2, 3, and 4 we con-
 centrate on basic partitions and in so doing prepare the way for the general results
 mentioned above. These are proved in ?5. Our "positive" results are obtained by
 effectivizing proofs of Ramsey's theorem which differ from the original proof in
 [8]. We present these proofs (of which one is a generalization of the other) in ??4 and
 5 in order to clarify the motivation of the effective versions.

 We now develop some terminology and notation. If A c N, then X denotes
 N - A. The set A is called bi-immune if both A and X are immune, i.e. are infinite

 but have no infinite r.e. subset. If D is a finite set, ID] is its cardinality. Iff, g:
 N-* N, g is said to majorizef in case g(n) > f(n) for all n e N. Iff: N x N-* N
 and limsf(n, s) exists for all n e N, then limfis defined to be {n: limsf(n, s) = 0}.

 If A c N, then A' denotes the jump of A and A(,)t denotes the n-fold jump of A.
 We fix a recursive set denoted by 0 and let 0. O', O" denote the degrees of 0, O',
 O respectively. For sets A, B the expressions "A is recursive in B," "A is B-

 recursive," and "A ?TB" are used synonymously. A set A c N is called Sn
 [fln] if it has a definition consisting of an (n + 1)-place recursive predicate pre-
 ceded by n number quantifiers with the leftmost quantifier existential [universal].
 According to the strong hierarchy theorem [9, ?14.5] the 10 sets of numbers are
 exactly the sets r.e. in 0(tn 1) for n > 0. For further information on the arithmetical
 hierarchy the reader is referred to [9, Chapter 14].

 ?2. In considering effective versions of Ramsey's theorem, the first question to
 arise naturally is whether H(P) contains a recursive set for every recursive basic
 partition P. To the author's knowledge, the question was first answered negatively

 Received September 8, 1970.
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 RAMSEY'S THEOREM AND RECURSION THEORY 269

 by Specker, who presented his result in a talk at Manchester in 1966 and in a later
 paper [12]. Specker's proof was based on the existence of incomparable r.e. degrees
 [1]. Some time ago, Yates [14, Corollary 1.5] and the present author also obtained
 negative answers using, respectively, the existence of a bi-immune retraceable set
 ([7, Theorem 3] or [14, Theorem 1.1]) and the existence of a bi-immune semi-
 recursive set [2, Theorem 5.2]. We now give a proof which is simpler in that it
 merely uses the existence of a bi-immune set recursive in 0'.

 PROPOSITION 2.1. If a set A is recursive in 0', then there exists a recursive basic

 partition P such that every element of H(P) is a subset of A or of A.
 PROOF. Since A < T 0', it follows from [11, Theorem 2] that there is a recursive

 function f such that A = limf. Let one class of a basic partition P consist of all
 pairs {n, s} such that n < s and f(n, s) = 0. Let the other class of P consist of all
 other 2-element sets. Clearly P has the desired property.

 COROLLARY 2.2 (SPECKER). There exists a recursive basic partition P such that
 H(P) has no recursive member.

 PROOF. Let A be a bi-immune set recursive in 0', and apply Proposition 201.
 (The existence of such a set A follows from any of the existence results cited at the
 beginning of this section or [3, Theorem 3] but may also be established by a very
 simple direct construction.)

 Corollary 2.2 will be considerably extended in ??3 and 5. We present here a pair
 of minor extensions which were announced in [4]. The original proofs of these
 results have been simplified and unified by combining Proposition 2.1 with the
 following observation.

 REMARK. If A A T C <T 0' and the partition P is determined from A as in
 Proposition 2.1, then H(P) has an element of the same degree as C.

 To prove the remark, assume that A = limf and C = lim g, where f, g are
 binary recursive functions andf determines P. Also assume that A is infinite, since

 otherwise A may be replaced by A. We now define a function h. Assuming induc-
 tively that h(i) is defined and in A for all i < n, define h(n) to be the least member k
 of A sufficiently large that (n e C*-+ g(n, k) = 0) and for all i < n, h(i) < k and
 f(h(i), k) = 0. Clearly the range of h is the desired member of H(P) of the same
 degree as C.

 COROLLARY 2.3. If a is a degree and 0 < a < O', then there exists a recursive

 basic partition P such that H(P) has a member of degree a but no recursive member.
 Also H(P) contains only hyperimmune sets.

 PROOF. Let A be a set of degree a such that both A and A are hyperimmune
 [2, Theorem 5.2], and let A = C in the Remark.

 It can be seen from the proof of [6, Theorem 5.1] that 0' cannot be replaced by
 0" in Corollary 2.3.

 COROLLARY 2.4. If {Aj} is a sequence of sets uniformly recursive in 0', then there
 exists a recursive basic partition P such that H(P) has a member of degree 0', but no

 At is in H(P).
 PROOF. First obtain by direct construction a set A < T O' such that no infinite

 Ai is contained in A or A. Then let C have degree O' in the Remark.

 ?3. In ?2 several methods are mentioned for obtaining recursive basic partitions
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 270 CARL G. JOCKUSCH, JR.

 P such that H(P) has no recursive set. However, if P is obtained by any of these
 methods, H(P) necessarily contains a set recursive in O'. We now prove by direct
 construction that this does not extend to recursive basic partitions in general.

 THEoREM 3.1. There exists a recursive basic partition P such that H(P) has no
 member recursive in 0'.

 PROOF. Shoenfield [11, Theorem 2] proved that every set recursive in O' is

 limf for some binary recursive functions His proof actually shows the existence of
 a uniformly recursive sequence of recursive functions {fe} such that for each
 A ? T 0', A = limfe for some e. We now write Ae for limfe. (We consider Ae to be
 undefined if for some n, limsfe(n, s) does not exist.)

 If Ae is defined and has at least 2e + 2 members, let De consist of the least
 2e + 2 members of Ae. (Otherwise let De be undefined.) We construct a recursive
 basic partition P such that for all e, P satisfies the eth requirement: if De is defined,
 then it is not contained in any member of H(P). Clearly the theorem follows once
 this is done.

 We now define a finite set Ds to approximate De at stage s. If there are at least

 2e + 2 numbers u such that u < s and fe(u, s) = 0, let Ds consist of the least
 2e + 2 such numbers. Otherwise, let Ds be undefined.

 The partition P is obtained by placing each pair {n, s} of distinct integers in
 exactly one of the two classes C1, C2. If n < s, the pair {n, s} goes into C1 U C2 at
 stage s of the construction, which we now give.

 Stage s (s 2 0). There will be successive substages e 0, 1, ... , s. Note that
 at each substage except possibly the last, at most two pairs {n, s} (n < s) enter
 C1 U C2.

 Substage e (e < s). This substage is devoted to the eth requirement. If D$ is
 undefined, do nothing. If Ds is defined, let Fe be the set of numbers n such that the
 pair {n, s} is already in Cl U C2. Since at most two pairs entered Cl u C2 at each of

 the e previous substages, IFjl < 2e. Also I D81 = 2e + 2, so we may (effectively)
 choose distinct numbersje, ke, each in Ds - Fe and hence also less than s. Place the
 pair {je, s} in C1 and {fe, s} in C2. This ensures that Ds u {s} is contained in no
 member of H(P).

 Substage s. For each n < s, if {n, s} is not yet in C1 U C2, place it in (say) C1.
 This completes the construction. Clearly the partition P determined by C1 and

 C2 is recursive. Also if De is defined, then Ds is defined and equal to De for all
 sufficiently large s. Hence De u {s} is not contained in any member of H(P), for s
 sufficiently large, by construction. Therefore the eth requirement is satisfied and
 the theorem follows.

 COROLLARY 3.2. There exists a recursive basic partition P such that H(P) con-
 tains no 12 set.

 PROOF. Let P be the partition of Theorem 3.1. Assume H(P) has a 12 member
 A. Then A is r.e. in O' by the strong hierarchy theorem [9, ?14.5] and so A has an
 infinite subset B which is recursive in O'. Then B E H(P), contradicting Theorem
 3.1.

 In the following section we show that Corollary 3.2 is optimal with respect to the
 arithmetical hierarchy.
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 RAMSEY'S THEOREM AND RECURSION THEORY 271

 ?4. We first give a proof of Ramsey's theorem for basic partitions which we
 learned from D. Kleitman. Using this proof as a model, we will then show that if P
 is a recursive basic partition, then H(P) contains both a f1' set and a set A such that
 A' l T 0'. The former result can also be obtained by suitably effectivizing Ramsey's
 original proof [8, Theorem A], although the proof obtained in this way is perhaps
 less natural than the one given here. We do not see how to obtain the latter result
 starting from Ramsey's original proof. A generalization of this latter result will be
 the crucial tool in ?5.

 THEOREM 4.1 (RAMSEY). If P is any basic partition, then H(P) is nonempty.
 PROOF. Assume that each pair of numbers is labeled " red" or " blue" according

 to its class in the given partition P. We shall define an increasing sequence of num-
 bers {aj} (i e N) and each aj will also be colored red or blue when it is defined. The
 coloring of the air's will be arranged so that if i < i then the pair {aj, a>} has the
 same color as aj. To this end, a number c is defined to be k-acceptable if for each
 i < k, aj has the same color as {aj, c} and aj < c.

 Assume inductively that aj has been defined and colored for all i < k and that the
 set Ak of all k-acceptable numbers is infinite. Let ak be the least element of Ak. If
 ak forms a red pair with infinitely many members of Ak, color ak red, and otherwise
 color ak blue. Clearly there are infinitely many (k + 1)-acceptable numbers in
 either case and so the induction assumption persists.

 Let R be the set of red aj's and B the set of blue ai's. Either R or B is infinite. If R
 is infinite then R E H(P) because any two elements of R form a red pair by defini-
 tion of "acceptability." Similarly, if B is infinite, then B E H(P).

 E. P. Specker [12] and A. Manaster [private communication] each proved several
 years ago that if P is a recursive basic partition, then H(P) contains a set recursive
 in 0". This can be seen directly from the above argument (or Ramsey's original
 proof) by noting that the only nonrecursive questions asked in it are whether cer-
 tain explicitly given recursive sets are infinite. (We except of course the single ques-
 tion as to whether R is infinite.) In order to refine this result, we now use a priority
 argument which is similar to, but easier than, Sacks' construction of a minimal
 degree below O' [10]. Yates presents an alternative proof of this refinement in
 [14, Theorem 2].

 REMARK. The existence of the single question mentioned above makes the proof
 that H(P) has a member recursive in 0" nonuniform. This nonuniformity is essen-
 tial because it can be shown that there is no recursive function f such that for all
 e, if e is an index of a basic recursive partition P, thenf(e) is an index of a reduction
 procedure from O to a member of H(P). On the other hand, given such an e this
 argument shows that one can effectively find two numbers, at least one of which
 indexes an appropriate reduction procedure. Even this level of uniformity cannot
 be achieved in the next theorem however; it can be shown that there is no recursive
 procedure which for each index of a basic recursive partition P effectively yields
 finitely many numbers, at least one of which is a fI1-index of a member of H(P).
 These proofs of nonuniformity, which are not difficult, use the recursion theorem.

 THEOREM 4.2. If P is a recursive partition of all pairs of integers into p classes,
 then H(P) contains a H1 set.

 PROOF. We first assume that p = 2 (i.e., P is basic) and then at the end indicate
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 272 CARL G. JOCKUSCH, JR.

 the treatment of the general case. We assume as in Theorem 4.1 that each pair of
 integers is labeled red or blue according to its partition class. In terms of the proof of
 Theorem 4.1, the method of proof here is roughly to assume that ak may be colored
 red, thus avoiding the O' question as to the proper color for ak. This assumption
 may later prove incorrect, and when this happens the color of ak is changed from
 red to blue and the part of the constructed set predicated on the false assumption is
 destroyed. Because of this, we must also allow the value of ak to change, and we
 write as for the number used at stage s to approximate ak. For fixed k, ak will be
 defined and equal to a limiting value (denoted ak) for all sufficiently large s.

 Following Rogers [9, Chapter 10], we shall also speak of ak as "the position of
 the marker Ak at (the beginning of) stage s". A number c is called k-acceptable at s
 if, for each i < k, a' is defined and has the same color at s as {a?, c} and as < c. A
 number c is called free at s if prior to stage s it has not been the position of any
 marker and c 2 s. We now describe the construction.

 Stage s (s 2 0). Assume inductively that there is a number n(s) such that the
 markers presently having a position are exactly the Ai for i < n(s). The first case
 below corresponds exactly to the proof of Theorem 4.1 while the second case
 corresponds to rectification of a previous incorrect assumption.

 Case 1. There exists a number c which is free and n(s)-acceptable at s. Attach
 An(s) to the least such number c and color c red.

 Case 2. Otherwise. Let j(s) be the largest number j such that there exists a
 number which is free and j-acceptable at s. (Such numbers I exist because every
 number is 0-acceptable at all stages. Also j(s) < n(s) since Case 1 does not apply.)
 Change the color of al(S,) and (if j(s) + 1 < n(s)) detach all markers Ai for j(s) <
 i < n(s).

 In either case, any unmentioned marker is left unchanged. The construction may
 be carried out recursively in O' because the only nonrecursive questions asked in it
 are whether certain explicitly given recursive sets are nonempty.

 LEMMA 4.3. For any k there is a number ak such that Ak has position ak from some
 stage on. The color of ak may change onlyfrom red to blue.

 PROOF. We assume inductively that the lemma holds for all k < n and prove it
 for k = n. Let s0 be the least stage s such that for all k < n, A,, has position ak and
 ak has its eventual color at the beginning of stage s. At stage so, A,, becomes
 attached to a number c through Case 1 of the construction. Also A, can never be
 detached from c after so because no ak (k < n) changes color after so. Thus a, = c.
 Let A,, be the set of all numbers which are n-acceptable at stage so. If s 2 so, A,, is
 also the set of n-acceptable numbers at s, because no ak (k < n) changes color after
 so. Hence A,, is infinite because A,, contains a number free at s for all s 2 so. If A,,
 contains infinitely many numbers which form a red pair with a., then a,, will retain
 its initial red color forever. Otherwise, the color of a,, will change from red to blue
 at some stage s5 > so, but the color of a,, will never again change after s5 because
 A,, has infinitely many numbers which form a blue pair with an.

 LEMMA 4.4. If i < j, the pair {ai, aj} has the same color as the eventual color of aj.
 PROOF. When aj first is the position of A,, a, must bejI-acceptable. The color of

 aj cannot later be changed, lest aj forever lose its marker. The lemma now follows
 from the definition of "I-acceptable."
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 RAMSEY' S THEOREM AND RECURSION THEORY 273

 We define M to be the set of all aU's, R to be the set of all ai's which are eventually
 red, and B to be the set of aj's which are eventually blue. It follows from Lemma
 4.4 that if R is infinite then R e H(P) and similarly for B. Also M is infinite because

 {aj is a nonrepeating sequence.
 LEMMA 4.5. The sets M and R are each f11.

 PROOF. By the definition of "free" and the fact that a number which loses a
 marker never again bears a marker, we have, for all x,

 x e My+ (3s)[s ? x and x has no marker at s].

 Because the color of an a, can be changed only from red to blue, we have, for
 all x,

 x eRe- x e M or (3s)[x is blue at s].

 In each of the above equivalences, the bracketed portion is a O'-recursive predi-
 cate of x and s. Hence M and A are each r.e. in 0', so by the strong hierarchy
 theorem M and R are I10.

 The proof is now complete for basic partitions because if R is infinite, then
 R e H(P) and if R is finite, then B (= M - R) is infinite and fl9, so B e H(P).

 REMARK. If R is finite, one can actually show that B < T 0'. Observe that for all

 i, at = at+ l, where s is the least stage such that for all j < i, a3 has (at stage s) the
 eventual color of a1. But if R is finite, then the eventual color of aj can be determined
 recursively, and hence aj is a O'-recursive function of i. It is an immediate con-
 sequence of this observation that if a recursive basic partition P is determined by
 classes C1, C2 then either H(P) has a member recursive in O' or there exist infinite

 rls sets R1, R2 such that [R]2 C Cj for i = 1, 2.
 By a generalization of the above observation it can be shown, using the separa-

 tion principle for H10 sets, that B is HO only if H(P) has a member recursive in O'.
 This points up the asymmetric roles of R and B.

 Consider now the more general case where the given partition P consists of p

 classes, represented by colors C1, * * *, C,. The numbers are colored in the same way
 as before except that a number is first colored C1 and all changes of color are from

 Ct to C1 + 1 for some i < p. The markers and colors stabilize as before. Let Mt be the
 set of numbers which from some stage on have a marker and have color Ca. Then

 Ui S ,M1 is rla for all] < p. Thus if io is the least i such that Ml is infinite, M1o is the
 desired ll2 set in H(P).

 A fl0 class offunctions is one which has the form {f: f e NN and (Vk)R(f, k)},
 where R is a recursive predicate of one function and one number variable [9,
 Chapter 15]. More intuitively, a ITO class of functions can be represented as the set
 of infinite paths through some recursive tree of finite sequences. The following
 proposition will allow us to deduce results about H(P) from theorems on such
 classes.

 PROPOSITION 4.6. If P is a recursive basic partition, then there is a nonempty
 IT? class offunctions .9" such that

 (f e Y)(3A e H(P))[A < Tf ].

 Y9 has the additional property that there is a O'-recursirefitnction it, which majorizes
 all members of Y.
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 274 CARL G. JOCKUSCII, JR.

 PROOF. The proof is closely related to the proof of Theorem 4.1. Assume again

 that P is specified by a red-blue coloring of pairs. By a string we mean a finite

 sequence of natural numbers. Let a be a nonempty string <aO, . * *, ak>. A number c
 is called a-acceptable if c > ak and for all i < k, the color of {ai, c} is the same as the
 color of {at, aj + 1}. Let r(a) [b(a)] be the least number c such that c is a-acceptable
 and {ak, c} is red [blue], if such exists. Then r(a), b(a) have recursive graphs (al-
 though not necessarily recursive domains). Define 9' to be the class of all strictly
 increasing functions h such that h(O) = 0 and

 (Vk)[h(k + 1) = r(<h(O), * * *, h(k)>) or h(k + 1) = b(<h(O), * * *, h(k)>)].

 Then the matrix of the above is a recursive predicate of h and k, so Y is a ll0
 class of functions.

 Assume h e Y. Label h(k) as red if {h(k), h(k + 1)} is a red pair, and otherwise
 blue. Then if i < j, h(i) has the same color as {h(i), h(j)}. As in Theorem 4.1, either
 R E H(P) or B e H(P), where R is the set of red h(i)'s and B is the set of blue h(i)'s.
 Both R and B are recursive in h, so H(P) has a member recursive in h.

 The proof of Theorem 4.1 shows that Y is nonempty. It remains to define a
 O'-recursive function wv which majorizes every member of 9Y. We define w in-
 ductively. Let w(O) = 0. Assuming that w(O), * * *, w(k) are defined, let w(k + 1) be
 the largest of all the (finitely many) numbers of the form r(a) or b(a) where a has the

 form <ao, . * *, ak> and a{ < w(i) for all i < k. Clearly w has the desired properties,
 so the proof is complete.

 If the majorizing function w of Proposition 4.6 were recursive instead of only
 O'-recursive, then 9Y would be a recursively bounded Ho class, and the results of [6]
 would apply to 9'. However, because w is actually O'-recursive, the results of [6]
 must be relativized to O' to be applicable to 9Y. For instance, Theorem 2.1 of [6]
 states that every nonempty recursively bounded II? class of functions has a member
 whose degree a satisfies a' = O'. Relativizing this and applying Proposition 4.6, we
 obtain

 COROLLARY 4.7. If P is a recursive basic partition, then H(P) contains a set A
 such that A' T 0"?

 We do not know whether it is possible to extend Corollary 4.7 so that A" - T ?"
 in its conclusion, but we conjecture it is not.

 Similarly, Theorem 2.4 of [6] yields
 COROLLARY 4.8. If P is a recursive basic partition, then H(P) contains a set A

 such that every function recursive in A is majorized by a O'-recursive function.
 Also Corollary 2.9 of [6] yields
 COROLLARY 4.9. If P is a recursive basic partition, then H(P) has members

 A1, A2 Such that every set recursive in both A1 and A2 is recursive in 0'.
 We do not know whether it is possible to strengthen Corollary 4.9 by replacing

 " recursive in 0"' by "recursive." In the other direction it is conceivable that there
 is a recursive basic P such that H(P) contains only sets of degree 0'.

 We mention one final application of Proposition 4.6. The proof of that result
 shows that if P is a recursive basic partition, the corresponding class Y may be
 represented as the set of infinite branches of a recursive tree Tin which the branch-
 ing is at most binary. If P is chosen so that H(P) has no member recursive in O'
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 RAMSEY S THEOREM AND RECURSION THEORY 275

 (Theorem 3. 1), then T easily yields a finite-one retracing function which retraces no
 infinite set recursive in 0'. Such a retracing function was shown to exist by Yates
 [13, Theorem 6]; another proof is given in [5, Theorem 4.22].

 ?5. We now study partitions of [N]n using the methods developed for the case
 n = 2. We take the liberty of assuming that all of our previous results hold in re-
 lativized form and even assume that induction assumptions hold in relativized form.

 First we point out that the simple idea of Proposition 2.1 suffices to yield the
 desired extension of Theorem 3.1.

 THOREM 5.1. If n 2 2, there exists a recursive partition P of [N]n into two
 classes such that H(P) contains no set recursive in on-, and hence no Eo set.

 PROOF. We first need a lemma.

 LEMMA 5.2. If Pn is a 0'-recursive partition of [NAT into two classes then there

 exists a recursive partition P +I of [N]n +l into two classes such that H(Pn + 1) c
 H(Pn).

 PROOF. For n = 1, this is a restatement of Proposition 2.1. The proof for
 arbitrary n is the same as for Proposition 2. 1, except that the role of least element
 of a pair is taken over by the set of the least n elements of an (n + 1)-tuple.

 Theorem 5.1 is now proved by induction on n. For n = 2, it is Theorem 3.1.
 Now assume it to be true for n. Relativizing this assumption to 0', we see that there
 is a O'-recursive partition Pn of [N]n into two classes such that H(Pn) has no set
 recursive in 08'. Then by Lemma 5.2 there is a recursive partition Pn + 1 of [N]t +1
 into two classes such that H(Pn + 1) has no member recursive in Q(tm).

 We now turn to the problem of showing that if P is a recursive partition of [N]n
 into finitely many classes, then H(P) contains a [IO set. By "Ramsey's theorem for
 n " we mean the assertion that H(P) is nonempty for every partition P of [N]t into
 finitely many classes. In Ramsey's original proof, Ramsey's theorem for n + 1 is
 proved essentially by iterating Ramsey's theorem for nt infinitely often. It does not
 seem possible to obtain any sort of reasonable effectivization by this method for

 n 2 2 because each application of Ramsey's theorem for n introduces new quanti-
 fiers. However, if n > 1, there is also a proof of Ramsey's theorem for n + 1 in
 which Ramsey's theorem for n is used only once. (The author is grateful to J. D.
 Halpern for pointing this out to him.) We now give this proof.

 THEOREM 5.3 (RAMSEY). If P is a partition of [N]t into finitely maniy classes,
 H(P) is nonempty.

 PROOF. We employ induction on n. If n = 1, the assertion is obvious. We
 assume it for n and prove it for n + 1. If D e [VN] + 1, let D* be the set of the least ii
 elements of D. Assume that the given partition P of [N]tm +1 into p classes corres-
 ponds to a functionf: [N]nt+m1 - {i: i < p}. (Thusf assigns to each D e [N]nt+m the
 index of its class.) We shall construct an infinite set A and a function g: [A]n
 {i: i < p} such that f(D) = g(D*) for all D e [A]t.

 Let aj be the ith member of A in natural order. Assume inductively that a, has
 already been defined for all i < k and g(D) has been defined for all D e [4k~n,
 where Ak = {aj: i < k}. A number c is called k-acceptable if c > max Ak and for all
 D e [AkJn, f(D u {c}) = g(D). Assume inductively that there are infinitely many k-
 acceptable numbers. Define a, to be the least k-acceptable number. If D e [,k]n - 1
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 and i < p, let Si(D) be the set of k-acceptable numbers c such thatf(D U {a,,, c}) =
 i. We now extend g to [Ak U {a}]n SO as to preserve our inductive assumptions. If
 k + 1 < n, then the extension is vacuous so assume k + 1 2 n. Let the (n - 1)-

 element subsets of Ik be D1,* * , Dt, where t =(nk ). Define g(D1 U {ak}) = il.
 where il is chosen so that Sf1(Dl) is infinite. (Such an il exists because there are
 infinitely many k-acceptable numbers.) Then define g(D2 U {ak}) = i2 where i2 is
 chosen so that Si,(D1) n Si2(D2) is infinite, and continue in this manner for t steps.

 All elements of Sil(Dl) ran Si,(Dt) are (k + 1)-acceptable, so the induction
 assumption is preserved.

 Let F' be the partition of [A]n defined by g. Since Ramsey's theorem for n clearly
 applies to partitions of [A]n just as well to partitions of [N]n, we have 0 #

 H(P') c= H(P).
 If P is recursive, then a direct analysis of the above argument shows that we may

 arrange A < T 0". From this it follows at once by induction on n that if P1 is a
 recursive partition of [N]n, then H(Pn) contains a set recursive in o(2m- 2). This
 result was proved years ago by Manaster. The following lemma, which is essentially
 an extension of Proposition 4.6, will allow this result to be considerably sharpened.
 If P is a partition of [N]ntm , let H*(P) be the class of those infinite sets A such that
 for all D e [A]n + 1, the partition class of D in P is determined by its least n elements,
 i.e., by D*.

 LEMMA 5.4. If P is a recursive partition of [N]t into finitely many classes, then
 H*(P) contains a set A such that A' < T 0f.

 PROOF. It suffices to construct a nonempty ll? class of functions 9' which con-
 tains only increasing functions which enumerate members of H*(P) and such that
 there is a O'-recursive function which majorizes every member of 9'. (The lemma
 then follows in the same way as Corollary 4.7.) Let the partition P be defined by a

 function f: [N]n _* {i: i < p}. Define 9Y to be the class of strictly increasing func-
 tions h such that h(O) = 0 and for all k there exists a (finite) function gk: [{h(0), - * ,

 h(k)}]n _ {i: i < p} such that h(k + 1) is the least number c > h(k) such that for all
 D e [{h(0), * * *, h(k), c}]n+1, f(D) = gk(D*). Then 9' is HO and 9Y is nonempty by
 the proof of Theorem 5.3. If h e 9' then gk C gk +1 for all k and so f (D) = g(D*) for
 all D e [range h]ntm 1, where g = Ukgk. Hence if h E 9', then (range h) E H*(P).
 Finally, there is a 0'-recursive function which majorizes every member of Y
 because, as in the proof of Proposition 4.6, once h(O), * * * , h(k) are determined
 there are only finitely many possibilities for h(k + 1) over all h E 9Y.

 Our main result now follows easily.

 THEOREM 5.5. If P is a recursive partition of [Nf]n intofinitely many classes, then
 H(P) contains a HO set.

 PROOF. We prove this by induction on n. For n = 1 it is obvious and for n = 2
 it is Theorem 4.2. Thus we may assume it is true for n (n 2 2) and prove it for
 n + 1. Let P be a recursive partition of [N]n + 1. Let A be a member of H*(P) such
 that A' < T 0". Then P induces a natural partition F' of [A]n which is recursive in
 A. (The P'-class of D c [A]n is determined by the P-class of D u {c} where c E A and
 c > max D. By assumption this is independent of the choice of c.) By induction
 assumption relativizedd to A), H(P') has a member B c A which is HII in A. Then
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 B E H(P) so it remains to show that B is ?1 Since B is HI in A, there is an A-
 recursive (n + 1)-place predicate R such that, for all x,

 x c- Be<- (Vxj) ... (Q.fxn)R(xs x, * e e 9 xn).

 Then (Qnxn)R is recursive in A' and hence in O". Applying Post's hierarchy
 theorem, one may replace (Qnxn)R by a 3 or H1 predicate, according as Qn-, is
 3 or V. The resulting predicate is the required lO+,, definition of B. (This makes
 sense because n ? 2.)

 We may also extend Corollary 4.7 in a similar way.
 THEoREM 5.6. If P is a recursive partition of [Nf]n intofinitely many classes, then

 H(P) contains a set B such that B' ? T 0(f)-
 PROOF. We use induction on n. For n = 1 it is obvious. We assume it for n and

 prove it for n + 1. Let P be a recursive partition of [N]n + 1, and let A be a member
 of H*(P) with A' < T O". By the induction assumption applied to the induced par-
 tition P' (defined as in Theorem 5.5), H(P) has a member B such that B' ? T AG
 But A () < T Q(fl + 1) so the induction is complete.

 We have mentioned that we do not know whether there exists a recursive par-
 tition P of [N]2 such that every member of H(P) has degree at least O'. On the
 other hand, we now construct a recursive partition P of [N]3 (rather than [N]2)
 such that every member of H(P) has degree strictly above O'. The proof will be
 facilitated and the statement of the result strengthened by use of the following
 terminology:

 DEFINITION. If P is a partition of [N]n into two classes C1 and C2, then for
 i e {1, 2}, Hj(P) is defined to be the class of all infinite sets A such that [A]n C C C.
 (Thus H(P) = H1(P) U H2(P).) The partition P is called unbalanced if either
 H1(P) or H1(P) is empty.

 THEOREM 5.7. If n > 2, there is a recursive unbalancedpartition P of [N]n + 1 Such
 that every element of H(P) has degree strictly above Q(n - 1).

 PROOF. The result will be a consequence of the following three lemmas.
 LEMMA 5.8. For any recursive partition P of [N]n (into finitely many classes)

 there is a recursive unbalanced partition P# of [N]"n+l (into two classes) such that
 H(P#) = H(P).

 PROOF. Let Cf be the class of all sets D in [N]n + such that all n-element subsets
 of D belong to the same partition class of the given partition P of [N]". Let
 Pi be the partition of [N]n+l determined by the classes C#j C#a where C#-
 [N]" +1 _ C#. Obviously P# is recursive if P is and H(P) c H1(P#). From the latter
 it follows that H2(P#) is empty. (For if A is any infinite set, A has an infinite sub-
 set B E H(P) by Ramsey's theorem for n, applied inside A. Therefore B E H1(P#), so

 A O H2(P#) as required.) It remains to show that H1(P#) c H(P). Assume A e
 H1(P#) and D, D* are distinct n-element subsets of A. In order to conclude that
 A e H(P), we must show that D, D* belong to the same class of P. Clearly there is a
 sequence, D1, * * *, Dk, of n-element subsets of A such that D1 = D, Dk = D* and

 ID, U D1+11 = n + 1 for 1 < i < k. (Just let Di+1 = Di u {a} - {b}, where a, b
 are chosen from D* - Di, Di - D* respectively.) Since Di u Di,, +E [A]"n+1 c
 H1(P#) we see that Di, Di + , must belong to the same partition class of P. Thus all
 Di's have the same class and so D, D* have the same class.
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 REMARK. If n 2 2, Lemma 5.8 and Theorem 5.1 already yield the existence of a
 recursive unbalanced partition P# of [N]n+l such that no element of H(P#) is
 recursive in On"- 1). The next lemma will establish another special case of our
 theorem.

 LEMMA 5.9. If n 2 1 there is a recursive unbalanced partition P* of [N]n+1 such
 that H(P*) contains only sets in which 0(n - 1) is recursive.

 PROOF. Let n be given and letf be an increasing function of degree Of ') such
 thatfis recursive in every function g which majorizesf. (Such a functions exists by
 [5, Theorem 4.13]. In fact if n 2 2 it is easy to see inductively that iff is any increas-
 ing function which is recursive in 0(n- 1) and dominates all functions recursive in
 0(n-2), thenf has the desired property.) Let C1 a [N]2 be the set of all pairs {n, s}
 such s > n and s > f(n), and let C2 = [N]2 - C,. If P is the partition of [N]2
 determined by C1, C2, clearly P is recursive in Q(n- 1), and P is unbalanced because

 H2(P) = o. Also if A e H1(P) and ao, a,, - * * are the elements of A in their natural
 order, then ai +, > f(a1) > f(i) for all i. It follows that f (and hence (n- 1)) is
 recursive in every member of H(P). Since P is a On" ')-recursive partition of [N]2
 into two classes, it follows from Lemma 5.2 (relativized to 0(n-2)) that there is a
 0(n - 2-recursive partition P' of [N]3 into two classes such that H(P') c H(P) (and
 in fact Hi(P') c Hi(P) for i = 1, 2). Iterating this observation n - 1 times, reduc-
 ing by a jump each time, we finally arrive at a recursive partition P* of [N]n+l into
 two classes such that Hi(P*) c H1(P) for i = 1, 2. This P* is the desired recursive
 unbalanced partition.

 By an argument similar to the proof of Lemma 5.9 (but using the full strength of
 [5, Theorem 4.13]) one may show that there is an unbalanced partition P of [N]2,
 recursive in Kleene's 0, such that H(P) contains only sets in which all hyperarith-
 metic sets are recursive.

 The last lemma will conclude the argument by showing that there is a single
 partition P which satisfies both the conditions of the Remark after Lemma 5.8 and
 those of Lemma 5.9.

 LEMMA 5.10. If Pi, P* are each unbalanced recursive partitions of [N]n + 1, there
 is a recursive unbalanced partition P of [N]nf1 such that H(P) = H(P#) r) H(P*).

 PROOF. Suppose P# is given by classes Cf, Co and P* by classes Cr, C2* and that
 H2(P#) = H2(P*) - 0. Let P be the partition determined by C! r C*, Cf u C*.
 Obviously H1(P) = H1(P) n H1(P*), so it suffices to show that H2(P)=0.
 Suppose, for a contradiction, that H2(P) # 0 and choose A e H2(P). Let PO be the
 partition of [A]n defined by the classes [A]n ro C2, [A]n - Cf. Then (since [A]n-
 Cf G [A]" n C2), H(PO) a H2(P#) U H2(P*) so H(PO) = 0, contradicting
 Ramsey's theorem for n, applied inside A. This completes the proof of Lemma 5.10
 and thus of Theorem 5.7.

 Lemma 5.8 implies the truth of the "unbalanced analogue" of any existence
 theorem (in terms of H(P)) for recursive partitions P of [N]". (The unbalanced
 analogue is obtained by replacing "partition of [N]n into finitely many classes"
 by "unbalanced partition of [N]n + 1 "s throughout the statement of the result.) We
 do not know of a result comparable to Lemma 5.8 for showing that universal results
 about H(P) imply their unbalanced analogues. (In fact, one can show that for each
 n there is a recursive unbalanced partition P# of [N]" + 1 such that no partition P of
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 [N]n into finitely many classes (recursive or otherwise) satisfies H(P#) = H(P).)
 On the other hand, the unbalanced analogues of many positive results do hold.
 For instance, it is obvious that H(P) contains a recursive set for any recursive
 partition P of [N]1. One can prove the unbalanced analogue of this result by ana-
 lyzing the proof of Ramsey's theorem for n = 2 (following either [8] or Theorem
 4.1). It follows that Theorem 5.7 fails for n = 1. Also, Alfred Manaster has pointed
 out that the unbalanced analogue of Theorem 5.6 holds. This shows that Theorem
 5.7 is near optimal. Below we prove a slightly stronger result.

 THEOREM 5.1 1. If n > 1 and P is a recursive partition of [N]n + 1 into two classes,

 then either Hi(P) has a member Ai such that A" <?T (in + ')for i = 1, 2 or H(P) has a
 member A such that A' < T Q(n) (and A is recursive if n = 1).

 SKETCH OF PROOF. For n = 1, the result follows from the observation that if the
 set R defined in the proof of Proposition 4.6 is finite, then the set B defined there is
 recursive. Also if B is finite, then R is recursive. The general proof is by induction
 on n using Lemma 5.4.

 We do not know whether the unbalanced analogue of our main result (Theorem
 5.5) is true. On the other hand, it is possible to extend Theorem 5.5 by showing
 that if P is any recursive partition of [N]n +1 into two classes, then either H(P) has
 a member recursive in O(n) or Hi(P) has a [II+1 member for i = 1, 2. For n = 1
 this is proved in the Remark just after Lemma 4.5 and the general result is proved
 by induction on it using Lemma 5.4.
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