Logic Seminar Computability Cheat Sheet

Notation 0.1

- 1. M_0, M_1, \ldots is a standard list of Turing Machines (TMs).
- 2. $M_{e,s}(x)$ means that we run M_e for s steps. $M_e(x) \downarrow$ means that M_e halt on input x.
- 3. $W_e = \{x \colon M_e(x) \downarrow\}. W_{e,s} = \{x \colon M_{e,s}(x) \downarrow\}.$

Sets are classified in the Arithmetic hierarchy.

Notation 0.2

- 1. $A \in \Sigma_0$ if A is computable. $A \in \Pi_0$ if A is computable.
- 2. For $i \ge 1$ $A \in \Sigma_i$ is there exists $B \in \Pi_{i-1}$ such that $A = \{x \mid (\exists y) [(x, y) \in B]\}$
- 3. For $i \ge 1$ $A \in \Pi_i$ is there exists $B \in \Sigma_{i-1}$ such that $A = \{x \mid (\forall y) [(x, y) \in B]\}$

Examples and Facts

- 1. W_0, W_1, \ldots is a list of all Σ_1 sets.
- 2. $\Sigma_0 \subset \Sigma_1 \subset \Sigma_2 \subset \cdots$. AND $\Pi_0 \subset \Pi_1 \subset \Pi_2 \subset \cdots$.
- 3. If $A = \{x \colon (\exists y)[B(x,y)] \text{ where } B \leq_{\mathrm{T}} HALT \text{ then } A \in \Sigma_2.$

Theorem 0.3 There is a computable $COL: \binom{N}{2} \to [2]$ such that there is no infinite Σ_1 homog set.

Theorem 0.4 There is a computable COL: $\binom{N}{2} \rightarrow [2]$ such that there is no infinite Σ_2 homog set.

Theorem 0.5 For every computable coloring COL: $\binom{N}{2} \rightarrow [2]$ there is an infinite Π_2 homog set.