
Computability Theory and Ramsey Theory

An Exposition by William Gasarch

All of the results in this document are due to Jockusch [2]. For more results in computable

combinatorics see the survey by Gasarch [1].

1 A Crash Course in Computability Theory

Notation 1.1

1. M1,M2, . . . is a standard list of Turing Machines (TMs). You can think of them as all Java

programs.

2. We assume that from e we can extract the code for Me.

3. Me,s(x) means that we run Me for s steps.

4. M(x) ↓= a means that M(x) halts and outputs a.

5. M(x) = a means that M(x) halts and outputs a (we use the ↓ when we want to emphasize

that M(x) halts).

6. M(x) ↑ means that M(x) does not halt.

7. A set A is computable if there is a TM M such that

x ∈ A =⇒ M(x) ↓= 1

x /∈ A =⇒ M(x) ↓= 0

(Older books use the term recursive instead of computable.)

8. If M is a TM such that on every input x, M(x) ↓∈ {0, 1} (so M computes some set) then

L(M) = {x : M(x) = 1} (so L(M) is the set that M computes).
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9. A set A is computably enumerable (c.e.) if there is a TM M such that

x ∈ A =⇒ M(x) ↓

x /∈ A =⇒ M(x) ↑

(Older books use the term recursively enumerable (r.e.) instead of computably enumerable

(c.e.).)

10. We is the domain of Me, that is, We = {x : (∃s)[Me,s(x) ↓].

11. We,s = {x : Me,s(x) ↓}.

12. A functionf is computable if there is a TM M such that, for all x, M(x) ↓= f(x). (Older

books use the term recursive instead of computable.)

Sets are classified in the Arithmetic hierarchy.

Notation 1.2

1. A ∈ Σ0 if A is computable.

2. A ∈ Π0 if A is computable.

3. A ∈ Σ1 is there exists B ∈ Π0 such that A = {x : (∃y)[(x, y) ∈ B]}.

4. A ∈ Π1 is there exists B ∈ Σ0 such that A = {x : (∀y)[(x, y) ∈ B]}.

5. Alternative definition: A ∈ Π1 if A ∈ Σ1.

6. For i ≥ 1 A ∈ Σi is there exists B ∈ Πi−1 such that A = {x : (∃y)[(x, y) ∈ B]}

7. For i ≥ 1 A ∈ Πi is there exists B ∈ Σi−1 such that A = {x : (∀y)[(x, y) ∈ B]}

8. Alternative definition: A ∈ Πi if A ∈ Σi.
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Examples and Facts

1. HALT = {(e, x) : (∃s)[Me,s(x) ↓} ∈ Σ1 − Σ0

2. W0,W1, . . . is a list of all Σ1 sets.

3. FIN is the set of all e such that We is finite.

FIN = {e : (∃x)(∀y, s)[y > x =⇒ y /∈ We,s} ∈ Σ2 − Π2.

(The proof that FIN /∈ Π2 is not easy.)

4. INF is the set of all e such that We is infinite. INF ∈ Π2 − Σ2. (The proof that INF /∈ Σ2 is

not easy.)

5. COF is the set of all e such that We is co-finite. We leave it to you to show that COF ∈ Σ3.

(The proof that COF /∈ Π3 is not easy.)

6. Σ0 ⊂ Σ1 ⊂ Σ2 ⊂ · · · .

7. Π0 ⊂ Π1 ⊂ Π2 ⊂ · · · .

8. For all i ≥ 1, Σi and Πi are incomparable.

2 A Computable Coloring With No Infinite Σ1 Homog Set

Theorem 2.1 There exists a computable COL:
(
N
2

)
→ [2] such that there is no infinite Σ1 homog

set.

Proof: We use that W0,W1, . . . is a list of all Σ1 sets.

We construct computable COL:
(
N
2

)
→ [2] to satisfy the following requirements (NOTE- re-

quirements is the most important word in computability theory.)
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Re : We infinite =⇒ We NOT a homog set .

How can we achieve this? If x, y, s ∈ We and COL(x, s) ̸= COL(y, x) then We is not a

homog set. Note that if a set is homog then every pair is the same color, so just having two pairs

be different colors is enough to make the set not homog.

We restate the requirement.

Re : We infinite =⇒ (∃x, y, s ∈ We)[COL(x, s) ̸= COL(y, s)].

Requirement will either be activated or not activated. Here are some notes about that before

doing the formal construction.

1. If Re is activated then we will associate a set De ⊆ We with |De| = 2e+1 to it. When a

requirement is in this state we will be working on satisfying it. We won’t actually know

when it is satisfied; however, we will later prove that it was.

2. If Re is not activated then we are probably waiting 2e+1 elements of We to appear. If this

never happens then We is finite so Re is satisfied. If it does happen then Re is activated.

3. You might think that we make all of the De’s disjoint. Alas, this is not possible. But note the

following:

|D0| = 2

|D1| = 4. Hence |D1 −D0| ≥ 2.

|D2| = 8. Hence |D2 − (D1 ∪D0)| ≥ 2.

and more generally:

|De| = 2e+1. Hence |De − ∪e−1
i=1Di| ≥ 2e+1 −

∑e−1
i=0 2

i+1 = 2.
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CONSTRUCTION OF COLORING

Stage 0: COL is not defined on anything. For all e, Re is not activated.

Stage s: We will define COL(0, s), . . . ,COL(s−1, s). We will may also activate some requirement

and make some progress on requirements that are already activated.

For e = 0, 1, . . . , s:

1. If Re is not activated then check if there exists De ⊆ We,s∩{0, . . . , s} such that |De| = 2e+1.

If YES then activated Re and associate De to it.

2. If Re is activated then let x, y ∈ De be the least numbers that are not in D0 ∪ · · · ∪ De−1.

Hence COL(x, s) and COL(y, s) have not yet been satisfied. Assume x < y. Let:

• COL(x, s) = RED

• COL(y, s) = BLUE .

After you to through all all of the 0 ≤ e ≤ s, define all other COL(x, s) where 0 ≤ x ≤ s− 1

that have not been defined by COL(x, y) = RED . This is arbitrary. The important things is that

ALL COL(x, s) where 0 ≤ x ≤ s−1 are now defined. This is why COL is computable— at stage

s we have defined all COL(x, y) with 0 ≤ x < y ≤ s.

END OF CONSTRUCTION

We show that each requirement is eventually satisfied.

For pedagogue we first look at R0.

If W0 is finite then R0 is satisfied.

Assume W0 is infinite. We show that R0 is satisfied. Let x < y be the first two elements that

show up in W0. Let s0 be the least number such that x, y ∈ W0,s0 . At state s0, R0 will be activated

with D0 = {x, y}. Note that, for ALL s ≥ s0 − 1:

COL(x, s) = RED

COL(y, s) = BLUE
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Since W0 is infinite there is SOME s ≥ s0 +1 with s ∈ We. Hence x, y, s ∈ W0 and show that

W0 is NOT homogenous.

Can we show R1 is satisfied the same way? Yes but with a caveat- we won’t use the first two

elements that show up on W1. We’ll use the first two elements that show up on W1 that are not in

D0. But there is a further caveat which we illustrate with an example.

1. At Stage 100 R1 is activated with D1 = {10, 11, 19, 22}. R0 has still not been activated.

2. For 101 ≤ s ≤ 999 R0 has still not been activated. Hence when R1 is processed we get:

(a) COL(10, s) = RED

(b) COL(11, s) = BLUE

3. Stage 1000: R0 gets activated with D0 = {11, 111, 299, 788}?

4. Let s ≥ 1000.

When R0 is processed we get:

(a) COL(11, s) = RED

(b) COL(111, s) = BLUE .

When R1 is processed we get:

(a) COL(10, s) = RED

(b) COL(19, s) = BLUE .

Lets just look at R1. If W1 is infinite then there exists an s ≥ 100 such that s ∈ W1. If

100 ≤ s ≤ 999 then we R1 is satisfied by using {10, 11, s}. If s ≥ 1000 then we R1 is satisfied by

using {10, 19, s}. Note that all that matters is that once R1 is activated, R1 will be satisfied and it

does not matter what R0 is doing.
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We now prove that the all requirements are satisfied.

Claim: Let e ∈ N. Then We is satisfied.

Proof of Claim:

If We is finite then Re is satisfied. So we assume We is infinite. Let se be the least number such

that

• e ≤ se.

• |We,se ∩ {0, . . . , se}| ≥ 2e+1.

Then Re will be activated at stage se and De will be created.

For every stage s ≥ se, when Re is processed there will be x < y ∈ De such that

• COL(x, s) = RED

• COL(y, s) = BLUE .

We know that x, y ∈ We but we know nothing about s. However, We is infinite. Let s be the

least element of

{se, se + 1, se + 2, . . .}

that is in We. At stage s we will set COL(x, s) = RED and COL(y, s) = BLUE . Since x, y, s ∈

We, requirement Re is satisfied.

End of Proof of Claim

3 Every Computable Coloring has an Infinite Σ3 Homog set

Take the standard proof of the infinite 2-ary Ramsey Theorem. Let COL be the given coloring of(
N
2

)
. Assume COL is computable.
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The function COL′ from N to {R,B} can be computed by asking Π2 questions. Hence we say

informally COL′ ≤T Π2. One can show that using this all three sets: R, B, and DEAD are Σ3.

We now have a subtle point. If all we want to know is the complexity of a homog set we can

say that ONE OF R or B is infinite, hence there IS a Σ3-homog set. And this is the answer we

will give. But notice that we do not know which of R or B is the homog set. That would require a

Σ4-question.

Can we do better? YES! See the next section.

4 Every Computable Coloring has an Infinite Π2 Homog set

We obtain this with a modification of the usual proof of Ramsey’s theorem. the key is that we don’t

really toss things out- we guess on what the colors are and change our mind.

Theorem 4.1 For every computable coloring COL:
(
N
2

)
→ [2] there is an infinite Π2 homog set.

Proof:

We are given computable COL:
(
N
2

)
→ [2].

CONSTRUCTION of x1, x2, . . . and c1, c2, . . ..

NOTE: at the end of stage s we might have x1, . . . , xi defined where i < s. We will not try to

keep track of how big i is. Also, we may have at stage (say) 1000 a sequence of length 50, and

then at stage 1001 have a sequence of length only 25. The sequence will grow eventually but do

so in fits and starts.

x1 = 1

c1 = RED We are guessing. We might change our mind later

Let s ≥ 2, and assume that x1, . . . , xs−1 and c1, . . . , cs−1 are defined.

1. Ask HALT
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Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 1, COL(xi, x) = ci?

2. If YES then (using that COL is computable) find the least such x.

xi = x

ci = RED We are guessing. We might change our mind later

We have implicitly tossed out all of the numbers between xi−1 and xi.

3. If NO then we ask HALT how far back we can go. More rigorously we ask the following

sequence of questions until we get a YES.

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 2, COL(xi, x) = ci)?

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ s− 3, COL(xi, x) = ci)?

•
...

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ 2, COL(xi, x) = ci)?

• Does there exists x ≥ xs−1 such that, for all 1 ≤ i ≤ 1, COL(xi, x) = ci)?

(One of these must be a YES since (1) if c1 = RED and there are NO red edges coming out

of x1 then there must be an infinite number of BLUE edges, and (2) if c1=BLUE its because

there are only a finite number of RED edges coming out of x1 so there are an infinite number

of BLUE edges. Let i0 be such that There exists x ≥ xs−1 such that, for all 1 ≤ i ≤ i0,

COL(xi, x) = ci) Do the following:

(a) Change the color of ci+1. (We will later see that this change must have been from RED

to BLUE .

(b) Wipe out xi+2, . . . , xs−1.

(c) Search for the x ≥ xs−1 that the question asked says exist.
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(d) xi+2 is now x.

(e) ci+2 is now RED .

END OF CONSTRUCTION of x1, x2 . . . and c1, c2, . . ..

We need to show that there is a Π2 homog set.

Let X be the set of xi that are put on the board and stay on the board.

Let R be the set of xi ∈ X whose final color is RED .

Claim 1: Once a number turns from RED to BLUE it can’t go back to RED again.

Proof:

If a number is turned BLUE its because there are only a finite number of RED edges coming

out of it. Hence there must be an infinite number of BLUE edges coming out of it. Hence it will

never change color (though it may be tossed out).

End of Proof

Claim 1: X,R ∈ Π2.

Proof:

We show that X ∈ Σ2. In order to NOT be in X you must have, at some point in the construc-

tion, been tossed out.

X = {x : (∃x)[ at stage s of the construction x was tossed out ]}.

Note that the condition is computable-in-HALT. Hence X is c.e.-in-HALT. It is known that if

a set is c.e.-in-HALT then it is in Σ2. Hence X ∈ Σ2.

We show that R ∈ Σ2. In order to NOT be in R you must have to either NOT be in X or have

been turned blue. Note that once you turn at some point in the construction, been tossed out.

R = X ∪ {x : (∃x)[ at stage s of the construction x was turned BLUE]}.
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Note that the condition is computable-in-HALT. Hence R is c.e.-in-HALT. so R ∈ Σ2.

End of Proof

We have shown X,R are Π2 but have not shown that B is- and in fact B might not be. But we

show that B is Π2 when we need it to be.

There are two cases:

1. If R is infinite then R is an infinite homog set that is Π2.

2. If R is finite then B is X minus a finite number of elements. Since X is Π2, B is Π2.
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