
The Infinite Ramsey Theorem and the Large Ramsey Theorem

1 The Infinite Ramsey Theorem

Def 1.1 Let a, c ∈ N. Let A be a set (A will usually be N or [n] or
{k, . . . , n}). Let COL:

(
A
a

)
→ [c]. H ⊆ A is homogenous if COL is con-

stant on
(
H
a

)
.

In this manuscript we will only talk about 2-colorings of
(
A
2

)
. Generaliza-

tions to any number of colors are trivial. Generalizations to different values
of a are fairly easy but may require some thought.

Theorem 1.2 Every 2-coloring
(
N
2

)
has an infinite homogenous set.

Proof: Let COL:
(
N
2

)
→ [2]. We define an infinite sequence of vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL.
Here is the intuition: Vertex x1 = 1 has an infinite number of edges

coming out of it. Some are RED, and some are BLUE. Hence there are
an infinite number of RED edges coming out of x1, or there are an infinite
number of BLUE edges coming out of x1 (or both). Let c1 be a color such
that x1 has an infinite number of edges coming out of it that are colored c1.
Let V1 be the set of vertices v such that COL({v, x1}) = c1. Then keep
iterating this process.

We now describe it formally.

V0 = N
x1 = 1

c1 =

{
RED if |{v ∈ V0 | COL({v, x1}) = RED}| is infinite;

BLUE otherwise
(1)
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V1 = {v ∈ V0 | COL({v, x1}) = c1} (note that |V1| is infinite)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci =

{
RED if |{v ∈ Vi−1 | COL({v, xi}) = RED}| is infinite;

BLUE otherwise
(2)

Vi = {v ∈ Vi−1 | COL({v, xi}) = ci} (note that |Vi| is infinite)

How long can this sequence go on for? Well, xi can be defined if Vi−1 is
nonempty. We an show by induction that, for every i, Vi is infinite. Hence
the sequence

x1, x2, . . . ,

is infinite.
Consider the infinite sequence

c1, c2, . . .

Each of the colors in this sequence is either RED or BLUE. Hence there
must be an infinite sequence i1, i2, . . . such that i1 < i2 < · · · and

ci1 = ci2 = · · ·

Denote this color by c, and consider the vertices

H = {xi1 , xi2 , · · · }

It is easy to show that H is homog.
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2 Finite Ramsey from Infinite Ramsey

Having proved the infinite Ramsey Theorem, we then want to prove the
finite Ramsey Theorem. Can we prove the finite Ramsey Theorem from the
infinite Ramsey Theorem? Yes, we can! This proof will not give any bounds.
Other proofs do.

Theorem 2.1 For all k there exists n such that for all COL:
(
[n]
2

)
→ [2]

there exists a homog set of size k.

Proof: Suppose, by way of contradiction, that there is some k ≥ 2 such
that no such n exists. For every n ≥ k, there is some way to color

(
[n]
2

)
so

that there is no homog set of size k. Hence there exist the following:

1. COL0, a 2-coloring of
(
[k]
2

)
that has no homog set of size k.

2. COL1, a 2-coloring of
(
[k+1]
2

)
that has no homog set of size k.

3. COL2, a 2-coloring of
(
[k+2]
2

)
that has no homog set of size k.

4. COL3, a 2-coloring of
(
[k+3]
2

)
that has no homog set of size k.

...

j. COLL, a 2-coloring of
(
[k+L]

2

)
that has no homog set of size k.

...

We will use these 2-colorings to form a 2-coloring COL of
(
N
2

)
that has

no infinite homog set. This contradiction Theorem 1.2.
Let e1, e2, e3, . . . be a list of every element of

(
N
2

)
. We will color e1, then

e2, etc.
How should we color e1? We will color it the way an infinite number of

the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:

J0 = N
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COL(e1) =

{
RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite;

BLUE otherwise.
(3)

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}

Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,
furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,

COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =

{
RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite;

BLUE otherwise.
(4)

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}

One can show by induction that, for every i, Ji is infinite. Hence this
process never stops.
Claim: Let A be a finite subset of {k, k + 1, . . . , }. Then there exists an
infinite number of i such that COL on

(
A
2

)
agrees with COLi on

(
A
2

)
.

Proof of Claim
Left to the reader.

End of Proof of Claim
We have produced a 2-coloring of

(
N
2

)
. Let By Theorem 1.2 there is an

infinite homog set for COL:

H = {x1 < x2 < x3 < · · · }.

Look at

H ′ = {x1 < x2 < · · · < xk}
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This is a homog set with respect to COL. By the claim there is an i (in
fact, infinitely many) such that COL and COLi agree on

(
H′

2

)
. Clearly H ′ is

a homog set of size k for COLi. This contradicts the definition of COLi.

3 Proof of Large Ramsey Theorem

In all of the theorems presented earlier, the labels on the vertices did not
matter. In this section, the labels do matter.

Def 3.1 A finite set F ⊆ N is called large if the size of F is BIGGER than
the smallest element of F .

Example 3.2

1. The set {1, 2, 10} is large: It has 3 elements, the smallest element is 1,
and 3 > 1.

2. The set {5, 10, 12, 17, 20} is NOT large: It has 5 elements, the smallest
element is 5, and 5 is NOT strictly greater than 5.

3. The set {20, 30, 40, 50, 60, 70, 80, 90, 100} is NOT large: It has 9 ele-
ments, the smallest element is 20, and 9 < 20.

4. The set {5, 30, 40, 50, 60, 70, 80, 90, 100} is large: It has 9 elements, the
smallest element is 5, and 9 > 5.

5. The set {101, . . . , 190} is not large: It has 90 elements, the smallest
element is 101, and 90 < 101.

We will be considering monochromatic Km’s where the underlying set of
vertices is a large set. We need a definition to identify the underlying set.

Let COL be a 2-coloring of
(
[n]
2

)
. Consider the set {1, 2}. It is clearly both

homogeneous and large (using our definition of large). Hence the statement

“for every n ≥ 2, every 2-coloring of Kn has a large homogeneous set”

is true but trivial.
What if we used V = {k, k + 1, . . . , n} as our vertex set? Then a large

homogeneous set would have to have size at least k.
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Notation 3.3 LR(k) is the least n, if it exists, such that every 2-coloring of({k,...,n}
2

)
has a large homogeneous set.

Theorem 3.4 For every k ≥ 2 there exists n such that for all 2-colorings of({k,...,n}
2

)
there exists a large homog set.

Proof: This proof is similar to our proof of the finite Ramsey Theorem
from the infinite Ramsey Theorem (the proof of Theorem 2.1).

Suppose, by way of contradiction, that there is some k ≥ 2 such that no
such n exists. For every n ≥ k, there is some way to color

({k,...,n}
2

)
so that

there is no large homog sets. Hence there exist the following:

1. COL1, a 2-coloring of
({k,k+1}

2

)
that has no large homog set.

2. COL2, a 2-coloring of
({k,k+1,k+2}

2

)
that has no large homog set.

3. COL3, a 2-coloring of
({k,...,k+3}

2

)
that has no large homog set.

...

j. COLL, a 2-coloring of
({k,...,k+L}

2

)
that has no large homog set.

...

We will use these 2-colorings to form a 2-coloring COL of
({k,k+1,...}

2

)
.

This coloring will have an infinite homog set by Theorem 1.2. This will give
us a contradiction to the definition of one of the COLi.

Let e1, e2, e3, . . . be a list of every element of
({k,k+1,...}

2

)
. We will color e1,

then e2, etc.
How should we color e1? We will color it the way an infinite number of

the COLi’s color it. Call that color c1. Then how to color e2? Well, first
consider ONLY the colorings that colored e1 with color c1. Color e2 the way
an infinite number of those colorings color it. And so forth.

We now proceed formally:

J0 = N
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COL(e1) =

{
RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite;

BLUE otherwise.
(5)

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}
Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume,

furthermore, that Ji−1 is infinite and, for every j ∈ Ji−1,

COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =

{
RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite;

BLUE otherwise.
(6)

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}
One can show by induction that, for every i, Ji is infinite. Hence this

process never stops.
Claim: Let A be a finite subset of {k, k + 1, . . . , }. Then there exists an
infinite number of i such that COL on

(
A
2

)
agrees with COLi on

(
A
2

)
.

Proof of Claim
Left to the reader.

End of Proof of Claim
By Theorem 1.2 there is an infinite homog set for COL:

H = {x1 < x2 < x3 < · · · }.
Look at

H ′ = {x1 < x2 < · · · < xx1+1}
This is a homog set with respect to COL. By the claim there is an i (in

fact, infinitely many) such that COL and COLi agree on
(
H′

2

)
. Clearly H ′ is

a large homog set for COLi. This contradicts the definition of COLi.
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