The Infinite Ramsey Theorem and the Large Ramsey Theorem

1 The Infinite Ramsey Theorem

Def 1.1 Let $a, c \in \mathbb{N}$. Let A be a set (A will usually be \mathbb{N} or [n] or $\{k, \ldots, n\}$). Let COL: $\binom{A}{a} \to [c]$. $H \subseteq A$ is homogenous if COL is constant on $\binom{H}{a}$.

In this manuscript we will only talk about 2-colorings of $\binom{A}{2}$. Generalizations to any number of colors are trivial. Generalizations to different values of a are fairly easy but may require some thought.

Theorem 1.2 Every 2-coloring $\binom{N}{2}$ has an infinite homogenous set.

Proof: Let COL: $\binom{N}{2} \rightarrow [2]$. We define an infinite sequence of vertices,

 $x_1, x_2, \ldots,$

and an infinite sequence of sets of vertices,

 $V_0, V_1, V_2, \ldots,$

that are based on *COL*.

Here is the intuition: Vertex $x_1 = 1$ has an infinite number of edges coming out of it. Some are RED, and some are BLUE. Hence there are an infinite number of RED edges coming out of x_1 , or there are an infinite number of BLUE edges coming out of x_1 (or both). Let c_1 be a color such that x_1 has an infinite number of edges coming out of it that are colored c_1 . Let V_1 be the set of vertices v such that $COL(\{v, x_1\}) = c_1$. Then keep iterating this process.

We now describe it formally.

$$V_0 = \mathsf{N}$$
$$x_1 = 1$$

$$c_1 = \begin{cases} \text{RED if } |\{v \in V_0 \mid COL(\{v, x_1\}) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise} \end{cases}$$
(1)

$$V_1 = \{ v \in V_0 \mid COL(\{v, x_1\}) = c_1 \}$$
 (note that $|V_1|$ is infinite)

Let $i \geq 2$, and assume that V_{i-1} is defined. We define x_i , c_i , and V_i :

 $x_i =$ the least number in V_{i-1}

$$c_{i} = \begin{cases} \text{RED if } |\{v \in V_{i-1} \mid COL(\{v, x_{i}\}) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise} \end{cases}$$
(2)

$$V_i = \{v \in V_{i-1} \mid COL(\{v, x_i\}) = c_i\} \text{ (note that } |V_i| \text{ is infinite)}$$

How long can this sequence go on for? Well, x_i can be defined if V_{i-1} is nonempty. We an show by induction that, for every i, V_i is infinite. Hence the sequence

 $x_1, x_2, \ldots,$

is infinite.

Consider the infinite sequence

 c_1, c_2, \ldots

Each of the colors in this sequence is either RED or BLUE. Hence there must be an infinite sequence i_1, i_2, \ldots such that $i_1 < i_2 < \cdots$ and

 $c_{i_1} = c_{i_2} = \cdots$

Denote this color by c, and consider the vertices

$$H = \{x_{i_1}, x_{i_2}, \cdots\}$$

It is easy to show that H is homog.

2 Finite Ramsey from Infinite Ramsey

Having proved the infinite Ramsey Theorem, we then want to prove the finite Ramsey Theorem. Can we prove the finite Ramsey Theorem *from* the infinite Ramsey Theorem? Yes, we can! This proof will not give any bounds. Other proofs do.

Theorem 2.1 For all k there exists n such that for all COL: $\binom{[n]}{2} \rightarrow [2]$ there exists a homog set of size k.

Proof: Suppose, by way of contradiction, that there is some $k \ge 2$ such that no such *n* exists. For every $n \ge k$, there is some way to color $\binom{[n]}{2}$ so that there is no homog set of size *k*. Hence there exist the following:

1. COL_0 , a 2-coloring of $\binom{[k]}{2}$ that has no homog set of size k.

2. COL_1 , a 2-coloring of $\binom{[k+1]}{2}$ that has no homog set of size k.

3. COL_2 , a 2-coloring of $\binom{[k+2]}{2}$ that has no homog set of size k.

4. COL_3 , a 2-coloring of $\binom{[k+3]}{2}$ that has no homog set of size k.

j. COL_L , a 2-coloring of $\binom{[k+L]}{2}$ that has no homog set of size k.

÷

We will use these 2-colorings to form a 2-coloring COL of $\binom{N}{2}$ that has no infinite homog set. This contradiction Theorem 1.2.

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{N}{2}$. We will color e_1 , then e_2 , etc.

How should we color e_1 ? We will color it the way an infinite number of the COL_i 's color it. Call that color c_1 . Then how to color e_2 ? Well, first consider ONLY the colorings that colored e_1 with color c_1 . Color e_2 the way an infinite number of those colorings color it. And so forth.

We now proceed formally:

$$J_0 = \mathsf{N}$$

$$COL(e_1) = \begin{cases} \text{RED if } |\{j \in J_0 \mid COL_j(e_1) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$
(3)

$$J_1 = \{ j \in J_0 \mid COL(e_1) = COL_j(e_1) \}$$

Let $i \geq 2$, and assume that e_1, \ldots, e_{i-1} have been colored. Assume, furthermore, that J_{i-1} is infinite and, for every $j \in J_{i-1}$,

$$COL(e_1) = COL_j(e_1)$$
$$COL(e_2) = COL_j(e_2)$$
$$\vdots$$
$$COL(e_{i-1}) = COL_j(e_{i-1})$$

We now color e_i :

$$COL(e_i) = \begin{cases} \text{RED if } |\{j \in J_{i-1} \mid COL_j(e_i) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$
(4)

$$J_i = \{j \in J_{i-1} \mid COL(e_i) = COL_j(e_i)\}$$

One can show by induction that, for every i, J_i is infinite. Hence this process *never* stops.

Claim: Let A be a finite subset of $\{k, k + 1, \ldots, \}$. Then there exists an infinite number of *i* such that COL on $\binom{A}{2}$ agrees with COL_i on $\binom{A}{2}$. **Proof of Claim**

Left to the reader.

End of Proof of Claim

We have produced a 2-coloring of $\binom{N}{2}$. Let By Theorem 1.2 there is an infinite homog set for COL:

$$H = \{ x_1 < x_2 < x_3 < \cdots \}.$$

Look at

$$H' = \{x_1 < x_2 < \dots < x_k\}$$

This is a homog set with respect to COL. By the claim there is an i (in fact, infinitely many) such that COL and COL_i agree on $\binom{H'}{2}$. Clearly H' is a homog set of size k for COL_i . This contradicts the definition of COL_i .

3 Proof of Large Ramsey Theorem

In all of the theorems presented earlier, the labels on the vertices did *not* matter. In this section, the labels *do* matter.

Def 3.1 A finite set $F \subseteq \mathbb{N}$ is called *large* if the size of F is BIGGER than the smallest element of F.

Example 3.2

- 1. The set $\{1, 2, 10\}$ is large: It has 3 elements, the smallest element is 1, and 3 > 1.
- 2. The set {5, 10, 12, 17, 20} is NOT large: It has 5 elements, the smallest element is 5, and 5 is NOT strictly greater than 5.
- 3. The set $\{20, 30, 40, 50, 60, 70, 80, 90, 100\}$ is NOT large: It has 9 elements, the smallest element is 20, and 9 < 20.
- 4. The set $\{5, 30, 40, 50, 60, 70, 80, 90, 100\}$ is large: It has 9 elements, the smallest element is 5, and 9 > 5.
- 5. The set $\{101, \ldots, 190\}$ is not large: It has 90 elements, the smallest element is 101, and 90 < 101.

We will be considering monochromatic K_m 's where the underlying set of vertices is a large set. We need a definition to identify the underlying set.

Let COL be a 2-coloring of $\binom{[n]}{2}$. Consider the set $\{1, 2\}$. It is clearly both homogeneous and large (using our definition of large). Hence the statement

"for every $n \ge 2$, every 2-coloring of K_n has a large homogeneous set"

is true but trivial.

What if we used $V = \{k, k + 1, ..., n\}$ as our vertex set? Then a large homogeneous set would have to have size at least k.

Notation 3.3 LR(k) is the least *n*, if it exists, such that every 2-coloring of $\binom{\{k,\ldots,n\}}{2}$ has a large homogeneous set.

Theorem 3.4 For every $k \ge 2$ there exists n such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a large homog set.

Proof: This proof is similar to our proof of the finite Ramsey Theorem *from* the infinite Ramsey Theorem (the proof of Theorem 2.1).

Suppose, by way of contradiction, that there is some $k \ge 2$ such that no such *n* exists. For every $n \ge k$, there is some way to color $\binom{\{k,\dots,n\}}{2}$ so that there is no large homog sets. Hence there exist the following:

- 1. COL_1 , a 2-coloring of $\binom{\{k,k+1\}}{2}$ that has no large homog set.
- 2. COL_2 , a 2-coloring of $\binom{\{k,k+1,k+2\}}{2}$ that has no large homog set.
- 3. COL_3 , a 2-coloring of $\binom{\{k,\dots,k+3\}}{2}$ that has no large homog set.
 - ;
- *j.* COL_L , a 2-coloring of $\binom{\{k,\dots,k+L\}}{2}$ that has no large homog set.

÷

We will use these 2-colorings to form a 2-coloring COL of $\binom{\{k,k+1,\ldots\}}{2}$. This coloring will have an infinite homog set by Theorem 1.2. This will give us a contradiction to the definition of one of the COL_i .

Let e_1, e_2, e_3, \ldots be a list of every element of $\binom{\{k, k+1, \ldots\}}{2}$. We will color e_1 , then e_2 , etc.

How should we color e_1 ? We will color it the way an infinite number of the COL_i 's color it. Call that color c_1 . Then how to color e_2 ? Well, first consider ONLY the colorings that colored e_1 with color c_1 . Color e_2 the way an infinite number of those colorings color it. And so forth.

We now proceed formally:

$$J_0 = \mathsf{N}$$

$$COL(e_1) = \begin{cases} \text{RED if } |\{j \in J_0 \mid COL_j(e_1) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$
(5)

$$J_1 = \{ j \in J_0 \mid COL(e_1) = COL_j(e_1) \}$$

Let $i \geq 2$, and assume that e_1, \ldots, e_{i-1} have been colored. Assume, furthermore, that J_{i-1} is infinite and, for every $j \in J_{i-1}$,

$$COL(e_1) = COL_j(e_1)$$
$$COL(e_2) = COL_j(e_2)$$
$$\vdots$$
$$COL(e_{i-1}) = COL_j(e_{i-1})$$

We now color e_i :

$$COL(e_i) = \begin{cases} \text{RED if } |\{j \in J_{i-1} \mid COL_j(e_i) = \text{RED}\}| \text{ is infinite;} \\ \text{BLUE otherwise.} \end{cases}$$
(6)

$$J_i = \{j \in J_{i-1} \mid COL(e_i) = COL_j(e_i)\}$$

One can show by induction that, for every i, J_i is infinite. Hence this process *never* stops.

Claim: Let A be a finite subset of $\{k, k + 1, ..., \}$. Then there exists an infinite number of *i* such that COL on $\binom{A}{2}$ agrees with COL_i on $\binom{A}{2}$.

Proof of Claim

Left to the reader.

End of Proof of Claim

By Theorem 1.2 there is an infinite homog set for COL:

$$H = \{x_1 < x_2 < x_3 < \cdots \}.$$

Look at

$$H' = \{x_1 < x_2 < \dots < x_{x_1+1}\}$$

This is a homog set with respect to COL. By the claim there is an i (in fact, infinitely many) such that COL and COL_i agree on $\binom{H'}{2}$. Clearly H' is a large homog set for COL_i . This contradicts the definition of COL_i .