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Abstract

Many programs allow the user to input data several times during its execution.
If the program runs forever the user may input data infinitely often. A program
terminates if it terminates no matter what the user does.

We discuss various ways to prove that program terminates. The proofs use well-
founded orders, Ramsey Theorem, and matrices. These techniques are used by real
program checkers.

General Terms: Verification, Theory.
Keywords and Phrase: Proving programs terminate, Well Orderings, Ramsey Theory,
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1 Introduction

We describe several ways to prove that programs terminate. By this we mean terminate on
any sequence of inputs. The methods employed are well-founded orders, Ramsey’s theorem,
and matrices. This paper is self contained; it does not require knowledge of any of these
topics or of programming languages. The methods we describe are used by real program
checkers.

Our account is based on the articles of B. Cook, Podelski,Rybalchenko [10, 11, 12, 30,
31, 32, 33] Lee, Jones, Ben-Amram [25, 26]. Termination checkers that use the methods
discussed in this paper include:

1. Loopfrog http://www.verify.inf.unisi.ch/loopfrog/termination.

2. Terminator. http://www7.in.tum.de/~rybal/papers/.

3. ACL2 http://acl2s.ccs.neu.edu/acl2s/doc/. (Applicative common lisp 2).

4. AProVE http://aprove.informatik.rwth-aachen.de/. (Automatic program veri-
fication environment).

5. Julia http://julia.scienze.univr.it/.

Convention 1.1 The statement The Program Terminates means that it terminates no mat-
ter what the user does. The user will be supplying inputs as the program runs; hence we
are saying that the user cannot come up with some (perhaps malicious) inputs that make
the program run forever. A more realistic scenario is if the programs input is a sequence of
requests for devices.
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In Section 2 we establish a standard notation. In Sections 3,4 we prove particular pro-
grams terminate using well founded orderings. In Section 5 we present a general theorem
that encapsulates the technique of using well founded orderings. In Section 6 we prove a
program terminates by using Ramsey Theory. In Section 7 we prove a general theorem that
encapsulates the technique using Ramsey Theory. In Sections 8,9 we use Ramsey Theory
and Matrices to prove particular programs terminate, and also state a general theorem that
encapsulates the technique In Sections 10 and 11 we use Ramsey Theroy and invariants to
prove particular programs terminate.

All of the results are about showing particular types of prgrams can be be proven to
terminate. In Section 12 we state (without proof) many theorems about particular types of
prgrams for which one can decide if the program terminates.

In Section 13 we discuss informally how much Ramsey Theory we need. In particular, in
most cases, the transitive Ramsey Theorem (which is a weaker version of Ramsey Theory)
suffices.

In the appendix we give some strange examples of programs and the proofs that they
terminate, and then give a tutorial on Ramsey’s Theorem and the Transitive Ramsey The-
orem.

2 Notation and Definitions

Notation 2.1

1. N is the set {0, 1, 2, 3, . . . , }.

2. Z is the set of integers, {. . . ,−2,−1, 0, 1, 2, . . .}.

3. R is the set of reals.

Notation 2.2

1. In a program the command

x = Input(Z)

means that x gets an integer provided by the user.

2. More generally, if A is any set, then

x = Input(A)

means that x gets a value from A provided by the user.

3. If we represent the set A by listing it out we will write (for example)

x = Input(y, y + 2, y + 4, y + 6, . . .)

rather than the proper but cumbersome

x = Input({y, y + 2, y + 4, y + 6, . . .})
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Program 1

(x, y, z) = (Input(N), Input(N), Input(N))
While x > 0 and y > 0 and z > 0

c o n t r o l = Input(1, 2, 3)
i f c o n t r o l == 1

(x, y, z) = (x2 + 10, y − x, z − 10)
else
i f c o n t r o l == 2

(x, y, z) = (y2 + 17, y − z2, x− y)
else
i f c o n t r o l == 3

(x, y, z) = (y + 17, xyz, x + y + z)

In a program the command
(x, y, z) = (Input(Z), Input(N), Input(N))

means that x gets an integer provided by the user, y gets a natural provied by the user, and
z gets a natural provied by the user. One can generalize this to longer vectors of variables.
In a program the command

(x, y, z) = (y − z, x + y + z, Input(Z)
means that simultaneously x gets y − z, y gets x + y + z, and z gets an integer provided by
the user. One can generalize this to longer vectors of variables and any computable functions
of them.

All of the programs we discuss do the following: initially the variables get values supplied
by the user, then there is a While loop. Within the While loop the user can specify which
one of a set of statements get executed through the use of a variable called control. We focus
on these programs for two reasons: (1) programs of this type are a building block for more
complicated programs, and (2) programs of this type will illustrate our points well. One
drawback is that the programs we present will not do anything of interest.

Example 2.3

1. Program 1 does not terminate since the user can set (x, y, z) = (1, 1, 1) and then keep
setting control==3.

2. Let n,m ∈ N. Let gi as 1 ≤ i ≤ m be computable functions from Zn+1 to Zn. These
functions are used in Program 2 which is very general. All of the programs in this
paper will essentially be of this type.
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Program 2

Comment : X i s (x[1], . . . , x[n])
Comment : The gi are computable f u n c t i o n s from Zn+1 to Zn

X = (Input(Z), Input(Z), . . . , Input(Z))
While x[1] > 0 and x[2] > 0 and · · · and x[n] > 0

c o n t r o l = Input(1, 2, 3, ...,m)
i f c o n t r o l==1
X = g1(X, Input(Z))

else
i f c o n t r o l==2
X = g2(X, Input(Z))

else
.
.
.

else
i f c o n t r o l==m
X = gm(X, Input(Z))

We define this type of program formally. We call it a program though it is actually a
program of this restricted type. We also give intuitive comments in parenthesis.

Def 2.4

1. A program is a tuple (S, I, R) where the following hold.

• S is a decidable set of states. (If (x1, . . . , xn) are the variables in a program and
they are of types T1, . . . , Tn then S = T1 × · · · × Tn.)

• I is a decidable subset of S. (I is the set of states that the program could be in
initially.)

• R ⊆ S × S is a decidable set of ordered pairs. (R(s, t) iff s satisfies the condition
of the While loop and there is some choice of instruction that takes s to t. Note
that if s does not satisfy the condition of the While loop then there is no t such
that R(s, t). This models the While loop termination condition.)

2. A computation is a (finite or infinite) sequence of states s1, s2, . . . such that

• s1 ∈ I.

• For all i such that si and si+1 exist, R(si, si+1).

• If the sequence is finite and ends in s then there is no pair in R whose first
coordinate is s. Such an s is called terminal.

3. A program terminates if every computation of it is finite.
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4. A computational segment is a sequence of states s1, s2, . . . , sn such that, for all 1 ≤ i ≤
n− 1, R(si, si+1). Note that we do not insist that s1 ∈ I nor do we insist that sn is a
terminal state.

Consider Program 3.

Program 3

(x, y) = (Input(Z), Input(Z))
While x > 0

c o n t r o l = Input(1, 2)
i f c o n t r o l == 1

(x, y) = (x + 10, y − 1)
else
i f c o n t r o l == 2

(x, y) = (y + 17, x− 2)

Program 3 can be defined as follows:

• S = I = Z× Z.

• R = {((x, y), (x + 10, y − 1)) : x, y ≥ 1}
⋃
{((x, y), (y + 17, x− 2)) : x, y ≥ 1}.

3 A Proof Using the Order (N,≤)
We show that every computation of Program 4 terminates. To prove this we will find a
quantity that, during every iteration of the While Loop, decreases. None of x, y, z qualify.
However, the quantity x + y + z does. We use this in our proof.

Program 4

(x, y, z) = (Input(Z), Input(Z), Input(Z))
While x > 0 and y > 0 and z > 0

c o n t r o l = Input(1, 2, 3)
i f c o n t r o l == 1 then

(x, y, z) = (x + 1, y − 1, z − 1)
else
i f c o n t r o l == 2 then

(x, y, z) = (x− 1, y + 1, z − 1)
else
i f c o n t r o l == 3 then

(x, y, z) = (x− 1, y − 1, z + 1)
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Program 5

(w, x, y, z) = (Input(Z), Input(Z), Input(Z), Input(Z))
While w > 0 and x > 0 and y > 0 and z > 0

c o n t r o l = Input(1, 2, 3)
i f c o n t r o l == 1 then

x = Input(x + 1, x + 2, . . .)
w = w − 1

else
i f c o n t r o l == 2 then

y = Input(y + 1, y + 2, . . . , )
x = x− 1

else
i f c o n t r o l == 3 then

z = Input(z + 1, z + 2, . . .)
y = y − 1

Theorem 3.1 Every computation of Program 4 is finite.

Proof:
Let

f(x, y, z) =

{
0 if any of x, y, z are ≤ 0;

x + y + z otherwise.
(1)

Assume, by way of contradition, that there is a nonterminating computation.

(x1, y1, z1), (x2, y2, z2), . . . ,

Before every iteration of the While loop f(x, y, z) > 0. After every iteration of the
While loop f(x, y, z) has decreased. Hence

f((x1, y1, z1) > f(x2, y2, z2) > . . . ,

This is impossible since the range of f is N.

The keys to the proof of Theorem 3.1 are (1) x + y + z decreases with every iteration,
and (2) there is no infinite decreasing sequence of naturals. We will later state a general
theorem that can be used on any program that satisfies generalizations of those properties.

4 A Proof Using the Ordering (N× N× N× N, <lex)
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To prove that every computation of Program 5 is finite we need to find a quantity that,
during every iteration of the While Loop, decreases. None of x, y, z qualify. No arithmetic
combination of w, x, y, z qualifies.

Def 4.1 Let P be an order and k ≥ 1. The lexicographic order on P k is the order

(a1, . . . , ak) <lex (b1, . . . , bk)

if for the least i such that ai 6= bi, ai < bi.

Example 4.2 In the order (N4, <lex)

(1, 10, 10000000000, 99999999999999) <lex (1, 11, 0, 0).

We leave the following lemma to the reader.

Lemma 4.3 If P is an well founded order and k ≥ 1 then (P,<lex) is a well founded order.

Theorem 4.4 Every computation of Program 5 is finite.

Proof:
Assume, by way of contradiction, that there is a nonterminating computation.

(w1, x1, y1, z1), (w2, x2, y2, z2), . . . ,

Let

f(w, x, y, z) =

{
(0, 0, 0, 0) if any of w, x, y, z are ≤ 0;

(w, x, y, z) otherwise.
(2)

We will be concerned with the order (N4, <lex).
Claim 1: In every iteration of the While loop f(w, x, y, z) decreases.
Proof of Claim 1:

Consider an iteration of the While loop. There are three cases.

1. control=1: w decreases by 1, x increases by an unknown amount, y stays the same,
z stays the same. Since the order is lexicographic, and w is the first coordinate, the
tuple decreases no matter how much x increases.

2. control=2: w stays the same, x decreases by 1, y increases by an unknown amount,
z stays the same. Since the order is lexicographic, w is the first coordinate and stays
the same, and x is the second coordinate and decreases, the tuple decreases no matter
how much y increases.
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3. control=3: w stays the same, x stays the same, y decreases by 1, z increases by an
unknown amount. This case is similar to the two other cases.

End of Proof of Claim 1
Before every iteration of the While loop f(w, x, y, z) > 0. After every iteration of the

While loop f(w, x, y, z) has decreased. Hence

f(w1, x1, y1, z1) > f(w1, x2, y2, z2) > . . . ,

This is impossible since the range of f is P and, by Lemma 4.3, P has no infinite
descending sequences.

5 A General Theorem about Proving Programs Ter-

minate Using Well Founded Orderings

The proofs of Theorems 3.1 and 4.4 look very much alike. There is a general theorem, due
to Floyd [15], that captures both of these proofs and many more.

Def 5.1 An order T is well-founded if every nonempty subset has a minimal element. Note
that if T is well-founded then there are no infinite descending sequences of elements of T .

Theorem 5.2 Let PROG = (S, I, R) be a program. Assume that there is a well-founded
order (P,<P ), and a map f : S → P such that if R(s, t) then f(t) <P f(s). Then any
computation of PROG is finite.

Proof: Assume the premise holds. We denote <P by <. Assume, by way of contradiction,
that the program does not terminate. Then there exists an infinite sequence of states

s1, s2, s3, . . . ,

such that, for all i, R(si, si+1). By the premise on f we have

f(s1) > f(s2) > f(s3) > · · ·

This contradicts < being a well-founded order.

Note 5.3 It turns out that this theorem is iff. That is, if every computation of PROG is
finite then there is a (perhaps contrived) well-order that satisfies the premise.
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6 A Proof Using Ramsey’s Theorem

In the proof of Theorem 4.4 we showed that during every single step of Program 5 the
quantity (w, x, y, z) decreased with respect to the order <lex. The proof of termination was
easy in that we only had to deal with one step but hard in that we had to deal with the
lexicographic order on N× N× N× N rather than just the order N.

In this section we will prove that Program 5 terminates in a different way. We will not
need an order on 4-tuples. We will only deal with w, x, y, z individually. However, we will
need to prove that, for each finite computational segment, at least one of w, x, y, z decreases.

We will use the infinite Ramsey’s Theorem. In the Appendix we will give some history
and the proof of Ramsey’s Theorem. For now we state it and use it.

Notation 6.1

1. If n ≥ 1 then Kn is the complete graph with vertex set V = {1, . . . , n}.

2. KN is the complete graph with vertex set N.

Def 6.2 Let c, n ≥ 1. Let G be Kn or KN. Let COL be a c-coloring of the edges of G. A
set of vertices V is homogeneous with respect to COL if all the edges between vertices in V
are the same color. We will drop the with respect to COL if the coloring is understood.

Infinite Ramsey’s Theorem:

Theorem 6.3 Let c ≥ 1. For every c-coloring of the the edges of KN there exists an infinite
homogeneous set.

Theorem 6.4 Every computation of Program 5 is finite.

Proof:
We show Program 5 terminates. Assume, by way of contradiction, that there is an infinite

computation. Let this computation be

(w1, x1, y1, z1), (w2, x2, y2, z2), . . . .

We show that for each finite computational segment one of w, x, y will decrease. Let
i < j. We look at the finite computational segment

(wi, xi, yi, zi), (wi+1, xi+1, yi+1, zi+1), . . . , (wj, xj, yj, zj).

There are several cases.

1. If control=1 ever occurs in the segment then wi > wj. No other case makes w increase,
so we are done. In all later cases we can assume that control is never 1 in the segment.
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2. If control=2 ever occurs in the segment then xi > xj. Since control=1 never occurs
and control=3 does not make x increase, x decreases, and we are done. In all later
cases we can assume that control is never 1 or 2 in the segment.

3. If control=3 is the only case that occurs in the segment then yi > yj.

Since in for each finite computational segment one of w, x, y decreases we have that, for
all i < j, either wi > wj or xi > xj or yi > yj. We use this to create a coloring of the edges
of KN. Our colors are W,X, Y . In the coloring below each case assumes that the cases above
it did not occur.

COL(i, j) =


W if wi > wj;

X if xi > xj;

Y if yi > yj.

(3)

By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

such that

COL(i1, i2) = COL(i2, i3) = · · · .

(We actually know more. We know that all pairs (ij, ik) have the same color. We do not
need this fact here; however, see the second note after Theorem 7.3.)

Assume the color is W (the cases for X, Y are similar). Then

wi1 > wi2 > wi3 > · · · .

Hence eventually w must be less than 0. When this happens the program terminates.
This contradicts the program not terminating.

7 A General Theorem about Proving Programs Ter-

minate Using Ramsey Theorem

The keys to the proof of Theorem 6.4 are (1) in every finite computational segment one of
w, x, y decreases, and (2) by Ramsey’s Theorem any nonterminating computation leads to
an infinite decreasing sequence in a well-founded set. These ideas are from Theorem 1 of [31],
though similar ideas were in [26].

Theorem 1 of [31] is a very general statement about program termination. We present
three theorems in increasing order of generality. The last one is Theorem 1 of [31].
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Theorem 7.1 Let PROG = (S, I, R) be a program of the form of Program 2. Note that
the variables are x[1], . . . , x[n]. Assume that for each computational segment t1, . . . , tL there
exists a 1 ≤ k ≤ m such that x[k] in t1 is strictly less than x[k] in tL. Then any computation
of PROG is finite.

Proof:
We show Program (S, I, R) terminates. Assume, by way of contradiction, that there is

an infinite computation. Let this computation be

s1, s2, s3, . . .

where each si is an n-tuple of values for (x[1], . . . , x[n]).
By the premise, for every i < j, in the finite computational segment

si, si+1, . . . , sj

there is a k such that x[k] in si is less than x[k] in sj.
We use this to create a coloring of the edges of KN. Our colors are {1, . . . ,m}. COL(i, j)

is the least index k such that x[k] in si is greater than x[k] in sj.
By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

and a color L such that

L = COL(i1, i2) = COL(i2, i3) = · · · .

Hence the value of x[L] in s1 is larger than it is in s2 is larger than it is in s3, etc. This
means that there is a time when the value of x[L] is ≤ 0. Hence the program terminates.
This is a contradiction.

To prove that a program terminates we might use some function of the variables rather
than the variables themselves. The next theorem, which is a generalization of Theorem 7.1,
captures this.

Theorem 7.2 Let PROG = (S, I, R) be a program of the form of Program 2. Note that
the variables are x[1], . . . , x[n]. We denote the vector of variables by ~x. Assume there exists
functions f1(~x), . . . , fM(~x) with range N such that the following holds: For each computa-
tional segment t1, . . . , tL there exists a 1 ≤ k ≤ M such that fk(~x) in t1 is strictly less than
fk(~x) in tL. Then any computation of PROG is finite.

Proof sketch:
This proof is virtually identical to the proof of Theorem 7.1 The only difference comes

towards the end, so we do the last few lines.
COL(i, j) is the least index k such that f(~x) in si is greater than f(~x) in sj.
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By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

and a color L such that

L = COL(i1, i2) = COL(i2, i3) = · · · .

Hence the value of fL(~x) in s1 is larger than it is in s2 is larger than it is in s3, etc. This
means that there is a time when the value of fL(~x) is ≤ −1. This is a contradiction since f
has range N.

In the statement of Theorem 7.2 the functions f mapped to the natural numbers. What
was it about the natural numbers that we used? At first glance it seems like we only use
that −1 /∈ N. However, we really used that N is well-founded. This leads to a more general
theorem.

Theorem 7.3 Let PROG = (S, I, R) be a program of the form of Program 2. Note that
the variables are x[1], . . . , x[n]. We denote the vector of variables by ~x. Assume there exists
functions f1(~x), . . . , fM(~x) such that fi has range Pi where Pi is a well-founded set. for each
computational segment t1, . . . , tn there exists a 1 ≤ k ≤ M such that fk(~x) in t1 is strictly
less than (using the order Pk) fk(~x) in tn. Then any computation of PROG is finite.

Proof sketch:
This proof is virtually identical to the proof of Theorem 7.1 The only difference comes

towards the end, so we do the last few lines.
COL(i, j) is the least index k such that f(~x) in si is greater than (using the order Pk)

f(~x) in sj.
By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

and a color L such that

L = COL(i1, i2) = COL(i2, i3) = · · · .

Hence the value of fL(~x) in s1 is larger (using the order Pk) than it is in s2 is larger than
(using the order Pk) it is in s3, etc. Hence we have an infinite decreasing sequence in Pk.
This is a contradiction since Pk is a well-founded ordering.

Note 7.4 It turns out that this theorem is iff. That is, if every omputation of PROG is
finite then there are (perhaps contrived) functions fi and well-founded orderings Pi as stated
in Theorem 7.3. This is the actual statement of Theorem 1 of [31].
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Note 7.5 The proofs of Theorems 6.4, 7.1 and 7.3 do not need the full strength of Ramsey’s
Theorem. Consider Theorem 7.1. For any i, j, k if COL(i, j) = a (so a is the least number
such that x[a] in si is greater than x[a] in sj) COL(j, k) = a (so a is the least number such
that x[a] in sj is greater than x[a] in sk) one can show COL(i, k) = a. Such colorings are
called transitive. Hence we only need Ramsey’s Theorem for transitive colorings. We discuss
this further in Section 13.

8 A Proof Using Matrices and Ramsey’s Theorem

Part of the proof of Theorem 6.4 involved showing that, for any finite computational segment
of Program 5, one of w, x, y, z decreases. Can such proofs be automated?

Ben-Amram [2] developed a way to partially automate such proofs. He uses matrices and
Ramsey’s Theorem. An earlier version by Lee, Jones, and Ben-Aram [26] used size-change
graphs instead of matrices. We discuss the difference later.

We use Ben-Amram’s matrix techniques to give a proof that Program 5 terminates. We
will then discuss their general technique.

Program 5 has variables w, x, y, z. To use Theorem 7.1 on it we need to know that in
every finite computational segment one of these variables decreases. We would rather reason
about what happens during one step. Let us capture what we do know about one step.

If control=1 then
w = w − 1
x = Input(x + 1, x + 2, . . .)
y = y
z = z

We represent this by a matrix. The rows and columns are both indexed by the variables,
so it will be a four by four matrix. In the (say) (w, y) entry we put the difference between
the new y and the old w. If we do not know the difference we put ∞ (this will happen most
of the time). It is easy to see that the matrix is:

C1 =


−1 ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


The matrix for control=2 is

C2 =


0 ∞ ∞ ∞
∞ −1 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


The matrix for control=3 is
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C3 =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −1 ∞
∞ ∞ ∞ ∞


Clearly if the program executes any one of these commands then some variable decreases.

In terms of the matrices this means that some entry on the diagonal is negative.
We need that any finite sequence of instructions leads to some variable decreacing We

want to express any finite sequence of instructions as a matrix. How?

Def 8.1 If A and B are n× n matrices then we define (just for this paper) the product AB
in the following (nonstandard) way:

AB[i, j] = min
1≤k≤n

{aik + bkj}.

By convention, for any x ∈ N ∪ {∞}, ∞+ x = x +∞ =∞.

We leave the proof of the following easy lemma to the reader.

Lemma 8.2 Let ~x be variables and g1(~x), g2(~x) be computable functions. Let PROG1 be
the short program ~x = g1(~x). Let PROG2 be the short program ~x = g2(~x). (We think of
PROG1 and PROG2 as being what happens in the various control cases.) Let C1 be the
matrix that represents what is known whenever PROG1 is executed. Let C2 be the matrix
that represents what is known whenever PROG2 is executed. Then the matrix product C1C2

as defined above represents what is known when PROG1 and then PROG2 are executed.

Hence every finite sequence of instructions corresponds to some finite product of C1’s,
C2’s and C3’s. In the case at hand we need only show that every such product has a negative
number on some diagonal. We state this in general.

Theorem 8.3 Let PROG = (S, I, R) be a program in the form of Program 2. Let C1, C2, . . . , Cm

be the matrices associated to control=1, . . ., control=m cases. If every product of the Ci’s
yields a matrix with a negative integer on the diagonal then the program terminates.

Proof: Consider computational segment s1, . . . , sn. Let the corresponding matrices be
Ci1 , . . . , Cin . By the premise the product of these matrices has a negative integer on the
diagonal. Hence some variable decreases. By Theorem 7.1 the program terminates.

Note 8.4 Lee, Jones, and Ben-Amram used size-change graphs rather than matrices. Their
results can be interpreted as matrices where, instead of having the difference, you have
whether or not the (say) old y is bigger than the old x, or smaller, or unknown. [26]

In the case at hand it may seem difficult to show that every product C1’s, C2’s and C3’s
has a negative number on the diagonal. Howver, we can show this:
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Theorem 8.5 Every computation of Program 5 is finite.

Proof:
Let C1, C2, C3 be the matrices that represent the cases of Control=1,2,3 in Program 5.

(These matrices are above.) We show that the premise of Theorem 8.3 holds. To do this we
prove items 0-7 below. Item 0 is easily proven directly. Items 1,2,3,4,5,6,7 are easily proven
by induction on the number of matrices being multiplied.

0. C1C2 = C2C1, C1C3 = C3C1, C2C3 = C3C2.

1. For all a ≥ 1

Ca
1 =


−a ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


2. For all b ≥ 1

Cb
2 =


0 ∞ ∞ ∞
∞ −b ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


3. For all c ≥ 1

Cc
3 =


0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −c ∞
∞ ∞ ∞ ∞


4. For all a, b ≥ 1

Ca
1C

b
2 =


−a ∞ ∞ ∞
∞ −b ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


5. For all a, c ≥ 1

Ca
1C

c
3 =


−a ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −c ∞
∞ ∞ ∞ ∞


6. For all b, c ≥ 1

Cb
2C

c
3 =


0 ∞ ∞ ∞
∞ −b ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
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7. For a, b, c ≥ 1

Ca
1C

b
2C

c
3 =


−a ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


Since the multiplication of these matrices is commutative we need only concern ourselves

with Ca
1C

b
2C

c
3 for a, b, c ∈ N. In all of the cases below a, b, c ≥ 1.

1. Ca
1 : w decreases.

2. Cb
2: x decreases.

3. Cc
3: y decreases.

4. Ca
1C

b
2: Both w and x decrease.

5. Ca
1C

c
3: Both w and y decrease.

6. Cb
2C

c
3: x decreases.

7. Ca
1C

b
2C

c
3: w decreases.

The keys to the proof of Theorem 8.5 are (1) represent how the old and new variables
relate after one iteration with a matrix, (2) use these matrices and a type of matrix multi-
plication to determine that for every finite computational segment some variable decreases,
(3) use Theorem 7.1 to conclude the program terminates.

Theorem 8.3 leads to the following algorithm to test if a programs terminates. There is
one step (alas, the important one) which we do not say how to do. If done in the obvious
way it may not halt.

1. Input Program P.

2. Form matrices for all the cases of control. Let them be C1, . . . , Cm.

3. Find a finite set of types of matricesM such that that any product of the Ci’s (allowing
repeats) is inM. (If this step is implemented by looking at all possible products until
a pattern emerges then this step might not terminate.)

4. If all of the elements ofM have some negative diagonal element then output YES the
program terminates!

5. If not the then output I DO NOT KNOW if the program terminates!
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If all products of matrices fit a certain pattern, as they did in the proof of Theorem 8.5,
then this idea for an algorithm will terminate. Even in that case, it may output I DON”T
KNOW if the program terminates!. However, this algorithm can be used to prove that
some programs terminate, just not all. It cannot be used to prove that a program will not
terminate.

The premise of Theorem 8.3 is designed so that we can apply Theorem 7.1. Hence we
are only looking at the variables of the program and the natural numbers. We generalize
Theorem 8.3 so it feeds into Theorem 7.2, We omit the proof which is similar to that of
Theorem 8.3.

Let PROG = (S, I, R) be a program in the form of Program 2. Note that the variables
are x[1], . . . , x[n]. We denote the vector of variables by ~x. Let functions f1(~x), . . . , fM(~x)
have range N. We can now form k × k matrices C1, . . . , Cm such that matrix CL[i, j] is the
difference between the new fj(~x) and the old fi(~x).

Theorem 8.6 Let PROG = (S, I, R) be a program in the form of Program 2. Note that
the variables are x[1], . . . , x[n]. We denote the vector of variables by ~x. Let functions
f1(~x), . . . , fM(~x) have range N. Assume that C1, . . . , Cm are the matrices associated to them
as noted above. If every product of the matrices has a negative number on the diagonal then
the program terminates.

Is there a further generalization of Theorem 8.3 that feeds into Theorem 7.3. Recall in
the premise of Theorem 7.3 the functions f has range some well-founded order. The matrices
we work with deal with differences. Since the different f ’s in Theorem 7.3 have ranges in
different well-founded orders, we cannot take their difference. What if we require that the
f ’s all have the same well-founded order as their range? This still does not work since some
well-founded order (e.g., (N× N, <lex)) do not have a notion of difference. The approach of
Lee, Jones, and Ben-Amram that used size-change graphs insead of matrices (see note after
Theorem 8.3) might work here.

9 Another Proof Using Matrices and Ramsey’s Theo-

rem

We prove Program 6 terminates using matrices. The case control=1 is represented by
the matrix

C1 =

(
−1 0
∞ ∞

)
.

The case control=2 is represented by the matrix

C2 =

(
∞ −2
1 ∞

)
.
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Program 6

(x, y) = (Input(Z), Input(Z))
While x > 0 and y > 0

c o n t r o l = Input(1, 2)
i f c o n t r o l == 1 then

(x, y) = (x− 1, x)
else
i f c o n t r o l == 2 then

(x, y) = (y − 2, x + 1)

This will not work! Note that C2 is has no negative numbers on its diagonal. Hence we
cannot use these matrices in our proof! What will we do!? Instead of using x, y we will use
x, y, and x + y. We comment on whether or not you can somehow use C1 and C2 after the
proof.

Theorem 9.1 Every computation of Program 6 is finite.

Proof: We will use Theorem 8.6 with functions x, y, and x + y. Note that x + y is not
one of the original variables which is why we need Theorem 8.6 rather than Theorem 8.3.

The control=1 case of Program 6 corresponds to

D1 =

 −1 0 1
∞ ∞ ∞
∞ ∞ ∞


The control=2 case of Program 6 corresponds to

D2 =

 ∞ 1 ∞
−2 ∞ ∞
∞ ∞ −1


We show that the premises of Theorem 8.6 hold. The following are true and easily proven

by induction on the number of matrices being multiplied.

1. For all a ≥ 1

Da
1 =

 −a −a + 1 −a + 2
∞ ∞ ∞
∞ ∞ ∞


2. For all b ≥ 1, b odd, b = 2d− 1,

Db
2 =

 −d ∞ ∞
∞ −d ∞
∞ ∞ −2d
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3. For all b ≥ 2, b even, b = 2e,

Db
2 =

 ∞ −e + 1 ∞
−e− 2 ∞ ∞
∞ ∞ −2e− 1


4. For all a, b ≥ 1, b odd, b = 2d− 1.

Da
1D

b
2 =

 −a− d −a− d + 1 −a− 2d + 2
∞ ∞ ∞
∞ ∞ ∞


5. For all a, b ≥ 1, b even, b = 2e.

Da
1D

b
2 =

 −a− e− 1 −a− e + 1 −a− 2e + 1
∞ ∞ ∞
∞ ∞ ∞


6. For all a, b ≥ 1, a is odd,

Da
2D

b
1 =

 ∞ ∞ ∞
−(ba/2c+ b + 2) −(ba/2c+ b + 1) −(ba/2c+ b)

∞ ∞ ∞


7. If a, b ≥ 1, a is even,

Da
2D

b
1 =

 −(a/2) + b −(a/2) + b− 1 −ba/2c+ b− 2
∞ ∞ ∞
∞ ∞ ∞


We use this information to formulate a lemma.

Convention: If we put < 0 (≤ 0) in an entry of a matrix it means that the entry is some
integer less than 0 (less than or equal to 0). We might not know what it is.
Claim: For all n ≥ 2, any product of n matrices all of which are D1’s and D2’s must be of
one of the following type:

1.  < 0 ≤ 0 ≤ 0
∞ ∞ ∞
∞ ∞ ∞


2.  ∞ ∞ ∞

< 0 < 0 < 0
∞ ∞ ∞
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3.  < 0 ∞ ∞
∞ < 0 ∞
∞ ∞ < 0


4.  ∞ < 0 ∞

< 0 ∞ ∞
∞ ∞ < 0


End of Claim

This can be proved easily by induction on n.

One can show that every computation of Program 6 terminates using the original matrices
2 × 2 matrices C1, C2. Ben-Amram has done this and has allowed us to place his proof in
the appendix of this paper.

10 A Proof Using Transition Invariants and Ramsey’s

Theorem

We present an example from [31] of a program (Program 6 ) where the proof of termination
using Ramsey’s Theorem is obtained by using transition invariants (to be defined). Podelski
and Rybalchenko found this proof by hand and later their termination checker found it
automatically. A proof of termination using a well-founded order seems difficult to find.
Ben-Amram and Lee [3, 25] have shown that a termination proof that explicitly exhibits a
well-founded order can be automatically derived when the matrices only use entries 0,−1,
and ∞. Alas, Program 6 is not of this type; however, using some manipulation Ben-Amram
(unpublished) has used this result to show that Program 6 terminates. (The proof is in the
Appendix.) Hence there is a proof that Program 6 terminates that uses a well-founded order;
however, it was difficult to obtain.

Theorem 10.1 Every computation of Program 6 is finite.

Proof:
We assume that the computational segment enters the While loop, else the program has

already terminated.
We could try to show that, in each finite computational segment, either x or y decreases.

This statement is true but seems hard to prove directly. Instead we show that either x or
y or x + y decreases. This turns out to be easier. Intuitively we are loading our induction
hypothesis. We now proceed formally.

We show that the premises of Theorem 7.2 hold with f1(x, y) = x, f2(x, y) = y, and
f3(x, y) = x+ y. It may seem as if knowing that x+ y decreases you know that either x or y
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decreases. However, in our proof, we will not know which of x, y decreases. Hence we must
use x, y, and x + y.
Claim 1: For each finite computational segment, one of x, y, x + y decreases.
Proof of Claim 1:

We want to prove that, for all n ≥ 2, for each computational segment of length n

(x1, y1), (x2, y2), . . . , (xn, yn),

either x1 > xn or y1 > yn or x1 + y1 > xn + yn. However, we will prove something stronger.
We will prove that, for all n ≥ 2, for each computational segment of length n

(x1, y1), (x2, y2), . . . , (xn, yn),

one of the following occurs.

(1) x1 > 0 and y1 > 0 and xn < x1 and yn ≤ x1 (so x decreases),

(2) x1 > 0 and y1 > 0 and xn < y1 − 1 and yn ≤ x1 + 1 (so x + y decreases),

(3) x1 > 0 and y1 > 0 and xn < y1 − 1 and yn < y1 (so y decreases),

(4) x1 > 0 and y1 > 0 and xn < x1 and yn < y1 (so x and y both decreases, though we
just need one of them).

(We will later refer to the OR of these four statements as the invariant.)
We prove this by induction on n.

Base Case: n = 2 so we only look at one instruction.
If (x2, y2) = (x1 − 1, x1) is executed then (1) holds.
If (x2, y2) = (y1 − 2, x1 + 1) is executed then (2) holds.

Induction Step: We prove Claim 1 for n + 1 assuming it for n. There are four cases, each
with two subcases.

1. xn < x1 and yn ≤ x1.

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < x1 − 1 < x1

• yn+1 = xn < x1

Hence (1) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 ≤ x1 − 2 < x1

• yn+1 = xn + 1 ≤ x1

Hence (1) holds.
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2. xn < y1 − 1 and yn ≤ x1 + 1

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1

Hence (3) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 ≤ x1 − 1 < x1

• yn+1 = xn < y1

Hence (4) holds.

3. xn < y1 − 1 and yn < y1

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1.

Hence (3) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1

Hence (3) holds.

4. xn < x1 and yn < y1

(a) If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < x1 − 1 < x1

• yn+1 = xn < x1

Hence (1) holds.

(b) If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 < y1 − 2 < y1 − 1.

• yn+1 = xn < x1 < x1 + 1.

Hence (2) holds.

We now have that, for each finite computational segment either x, y, or x + y decreases.
End of Proof of Claim 1

The following claim is obvious.
Claim 2: If any of x, y, x + y is 0 then the program terminates.

By Claims 1 and 2 the premise of Theorem 7.2 is satisfied. Hence Program 6 terminates.
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Consider the following four orderings on N× N and the OR of them.

• T1 is the ordering (x′, y′) <1 (x, y) iff x > 0 and y > 0 and x′ < x and y′ ≤ x.

• T2 is the ordering (x′, y′) <2 (x, y) iff x > 0 and y > 0 and x′ < y − 1 and y′ ≤ x + 1.

• T3 is the ordering (x′, y′) <3 (x, y) iff x > 0 and y > 0 and x′ < y − 1 and y′ < y.

• T4 is the ordering (x′, y′) <4 (x, y) iff x > 0 and y > 0 and x′ < x and y′ < y.

• T = T1 ∪ T2 ∪ T3 ∪ T4. We denote this order by <T .

Note that (1) each Ti is well-founded, and (2) for each computational segment

(x1, y1), (x2, y2), . . . , (xn, yn)

we have (x1, y1) <T (xn, yn)
It is easy to see that these properties of T are all we needed in the proof. This is Theorem

1 of [31] which we state and prove.

Def 10.2 Let PROG = (S, I, R) be a program.

1. An ordering T , which we also denote <T , on S × S is transition invariant if for each
computational segment s1, . . . , sn we have sn <T s1.

2. An ordering T is disjunctive well-founded if there exists well-founded orderings T1, . . . , Tk

such that T = T1 ∪ · · · ∪ Tk. Note that the Ti need not be total orderings, they need
only be well-founded. This will come up in the proof of Theorem 11.1.

Theorem 10.3 [31] Let PROG = (S, I, R) be a program. If there exists a disjunctive well-
founded transition invariant then every run of PROG terminates.

Proof: Let T = T1 ∪ · · · ∪ Tk be the disjunctive well-founded transition invariant for
PROG. Let <c be the ordering for Tc.

Assume, by way of contradiction, that there is an infinite sequence s1, s2, s3, . . . , such
that each (si, si+1) ∈ R. Define a coloring COL by, for i < j,

COL(i, j) = the least L such that sj <L si.

By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

such that

COL(i1, i2) = COL(i2, i3) = · · · .
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Let that color be L. For notational readability we denote <L by < and >L by >. We
have

si1 > si2 > · · · >

This contradicts < being well-founded.

Note 10.4 It turns out that this theorem is iff. That is, if every computation of PROG is
finite then there is a (perhaps contrived) transition invariant.

Finding an appropriate T is the key to the proofs of termination for the termination
checkers Loopfrog and Terminator.

The proof of Theorem 10.3 seems to need the full strength of Ramsey’s Theorem (unlike
the proofs of Theorems 7.1,7.2,7.3, see the note following its proof). In the appendix we give
an example, due to Ben-Amram, of a program with a disjunctive well-founded transition
invariant where the coloring is not transitive.

If in the premise of Theorem 10.3 all of the Ti’s are total (that is, every pair of elements
is comparable) then the transitive Ramsey Theorem suffices for the proof.

11 Another Proof using Transition Invariants and Ram-

sey’s Theorem

Showing Program 7 terminates seems easy: eventually y is negative and after that point x
will steadily decrease until x < 0. But this proof might be hard for a termination checker to
find since x might increases for a very long time. Instead we need to find the right disjunctive
well-founded transition invariant.

Program 7

(x, y) = (Input(Z), Input(Z))
While x > 0

(x, y) = (x + y, y − 1)

Theorem 11.1 Every run of Program 7 terminates.

Proof: We define orderings T1 and T2 which we also denote <1 and <2.

• (x′, y′) <1 (x, y) iff 0 < x′ < x.

• (x′, y′) <2 (x, y) iff 0 ≤ y′ < y.
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Let

T = T1 ∪ T2.

Clearly T1 and T2 are well-founded (though see note after the proof). Hence T is dis-
junctive well-founded. We show that T is a transition invariant.

We want to prove that, for all n ≥ 2, for each computational segment of length n

(x1, y1), (x2, y2), . . . , (xn, yn)

either (xn, yn) <1 (x1, y1) or (xn, yn) <2 (x1, y1).
We illustrate this with an example. Say (x1, y1) = (5, 4). Then the computation will

initially look lie this:

(5, 4), (9, 3), (12, 2), (14, 1), (15, 0)

This looks odd since x is increasing and we want it to be 0. but note that

(5, 4) >2 (9, 3) >2 (12, 2) >2 (14, 1) >2 (15, 0)

so the pairs are decreasing in the <2 ordering.
After that the computation looks like this:

(15,−1), (14,−2), (12,−3), (9,−4), (5,−5), (0,−6)

At this point the computation terminates. We note that

(15,−1) >1 (14,−2) >1 (12,−3) >1 (9,−4) >1 (5,−5) >1 (0,−6)

Hence in this part of the computation the pairs decrease in the <1 ordering. Hence the
every step of the computation decreases in the T ordering.

By splitting the computational segment

(x1, y1), (x2, y2), . . . , (xn, yn)

into two parts depending on if y is≥ 0 or y < 0 we can show that either (x1, y1) >1 (xn, yn)
or (x1, y1) >2 (xn, yn), so (x1, y1) >T (xn, yn). Hence we can apply Theorem 7.3 to conclude
that the program terminates.

T1 and T2 are partial orders not total orders. In fact, for both T1 and T2 there are an
infinite number of minimal elements. In particular

• the minimal elements for T1 are {(x, y) : x ≤ 0}, and

• the minimal elements for T2 are {(x, y) : y < 0}.

Recall that the definition of a transition invariant, Definition 10.2, allows partial orders. We
see here that this is useful.
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12 Solving Subcases of the Termination Problem

The problem of determining if a program is terminating is unsolvable. This problem is not
the traditional Halting problem since we allow the program to have a potentially infinite
number of user-supplied inputs.

Def 12.1

1. Let M
(··· )
1 ,M

(··· )
2 , . . . be a standard list of oracle Turing Machines. These Turing Ma-

chines take input in two ways: (1) the standard way, on a tape, and (2) we interpret
the oracle as the user-supplied inputs.

2. If A ⊆ N and s ∈ N then MA
i,s ↓ means that if you run MA

i (no input on the tape) it
will halt within s steps.

3. Let M
(··· )
1 ,M

(··· )
2 , . . . be a standard list of oracle Turing Machines.

TERM = {i : (∀A)(∃s)[MA
i,s ↓]}.

Def 12.2

1. If A and B are subsets of N then A ≤m B means that there is a computable function
f such that x ∈ A iff f(x) ∈ B. (The m is a historical anachronism- it means that
f may be many-to-1. There was also a definition ≤1 where we insist f be one-to-one.
We do not care anymore, and I personally wonder why anyone ever did.)

2. X ∈ Π1
1 if there exists an oracle Turing machine M (··· ) such that

X = {x : (∀A)(∃x1)(∀x2) · · · (Qnxn)[MA(x, x1, . . . , xn) = 1]}.

(Qn is a quantifier.)

3. A set X is Π1
1-complete if X ∈ Π1

1 and, for all Y ∈ Π1
1, Y ≤m X.

The following were proven by Kleene [23, 22] (see also [36]).

Theorem 12.3

1. X ∈ Π1
1 if there exists an oracle Turing machine M (··· ) such that

X = {x : (∀A)(∃y)[MA(x, y) = 1]}.

2. TERM is Π1
1-complete.

3. If X is Π1
1-complete then, for all Y in the arithmetic hierarchy, Y ≤m X.

26



4. For all Y in the arithmetic hierarchy Y ≤m TERM . This follows from (2) and (3).
(See Definition 13.6 for the definition of the Arithmetic Hierarchy.)

Hence TERM is much harder than the halting problem. Therefore it will be very inter-
esting to see if some subcases of it are decidable.

Def 12.4 Let n ∈ N. Let FUN(n) be a set of computable functions from Zn+1 to Zn. Let
m ∈ N. An (F (n),m))-program is a program of the form of Program 2 where the functions
gi used in Program 2 are all in FUN(n).

Open Question: For which FUN(n),m is the Termination Problem restricted to (FUN(n),m)-
programs decidable?

We list all results we know. Some are not quite in our framework. Some of the results
use the While loop condition Mx ≥ b where M is a matrix and b is a vector. Such programs
can easily be transformed into programs of our form.

1. Tiwari [40] has shown that the following problem is decidable: Given matrices A,B
and vector c, all over the rationals, is Program 8 in TERM . Note that the user is
inputting a real.

Program 8

x = Input(R)
while (Bx > b)

x = Ax + c

2. Braverman [5] has shown that the following problem is decidable: Given matrices
A,B1, B2 and vectors b1, b2, c, all over the rationals, is Program 9 in TERM . Note
that the user is inputting a real.

Program 9

x = Input(R)
while (B1x > b1 ) and (B2x ≥ b2 )

x = Ax + c

3. Ben-Amram, Genaim, and Masud [4] have shown that the following problem is unde-
cidable: Given matrices A0, A1, B and vector v all over the integers, and i ∈ N does
Program 10 terminate.
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Program 10

x = Input(Z)
while (Bx ≥ b)

i f x[i] ≥ 0
then x = A0x

else
x = A1x

4. Ben-Amram [2] has shown a pair of contrasting results:

• The termination problem is undecidable for (FUN(n),m)-programs where m = 1
and FUN(n) is the set of all functions of the form

f(x[1], . . . , x[n]) = min{x[i1] + c1, x[i2] + c2, . . . , x[ik] + ck}
where 1 ≤ i1 < · · · < ik and c1, . . . , ck ∈ Z.

• The termination problem is decidable for (FUN(n),m)-programs when m ≥ 1
and FUN(n) is the set of all functions of the form

f(x[1], . . . , x[n]) = x[i] + c

where 1 ≤ i ≤ n and c∈ Z. Note that Program 6 falls into this category.

5. Joel Ouakine [28, 8, 27, 29, 7] has proven that, for many types of programs that involve
matrices, it is decidable if the program terminates.

13 How Much Ramsey Theory Do We Need?

Podelski and Rybalchenko [33] noted that the proofs of Theorems 6.4, 7.1, 7.2, and 7.3 do
not need the strength of the full Ramsey’s Theorem. In the proofs of these theorems the
coloring is transitive.

Def 13.1 A coloring of the edges of Kn or KN is transitive if the following holds: for every
i < j < k, if COL(i, j) = COL(j, k) then both are equal to equal COL(i, k).

Def 13.2 Let c, n ≥ 1. Let G be Kn or KN. Let COL be a c-coloring of the edges of G. A set
of vertices V is a monochromatic increasing path with respect to COL if V = {v1 < v2 < · · · }
and

COL(v1, v2) = COL(v2, v3) = · · · .
(If G = Kn then the · · · stop at some k ≤ n.) We will drop the with respect to COL if the
coloring is understood. We will abbreviate monochromatic increasing path by MIP from
now on.

Here is the theorem we really need. We will refer to it as the Transitive Ramsey’s
Theorem.
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Theorem 13.3 Let c ≥ 1. For every transitive c-coloring of KN there exists an infinite
MIP.

The Transitive Ramsey Theorem is weaker than Ramsey’s Theorem. We show this in
three different ways: (1) Reverse Mathematics, (2) Computable Mathematics, (3) Finitary
Version.

Def 13.4

1. For all c ≥ 1 let RT (c) be Ramsey’s theorem for c colors.

2. Let RT be (∀c)[RT (c)].

3. For all c ≥ 1 let TRT (c) be the Transitive Ramsey’s theorem for c colors.

4. Let TRT be (∀c)[TRT (c)]. (This is the theorem that we really need.)

13.1 Reverse Mathematics

Reverse Mathematics [39] looks at exactly what strength of axioms is needed to prove results
in mathematics. A weak axiom system called RCA0 (Recursive Comprehension Axiom) is
at the base. Intuitively a statement proven in RCA0 is proven constructively.

Notation 13.5

Let A and B be statements.

• A→ B means that one can prove B from A in RCA0.

• A ≡ B means that A→ B and B → A.

• A 6→ B means that, only using the axioms in RCA0, one cannot prove B from A. It
may still be the case that A implies B but proving this will require a stronger base
axiom system.

The following are known. Items 1 and 2 indicate that the proof-theoretic complexity of
RT is greater than that of TRT .

1. RT → TRT . The usual reasoning for this can easily be carried out in RCA0.

2. Hirschfeldt and Shore [19] have shown that TRT 6→ RT .

3. For all c, RT (2) ≡ RT (c). The usual reasoning for this can easily be carried out in
RCA0. Note how this contrasts to the next item.

4. Cholak, Jockusch, and Slaman [6] showed that RT (2) 6→ (∀c)[RT (c)].
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The proof of Theorem 6.4 showed that, over RCA0,

TRT (3)→ Program 5 terminates.

Does the following hold over RCA0?

Program 5 terminates→ TRT (3).

We do not know.
In the spirit of the reverse mathematics program we ask the following: For each c is there

a program Pc such that the following holds over RCA0?

P terminates ⇐⇒ TRT (c).

The following is open: for which i, j ≥ 2 does TRT (i)→ TRT (j)?

13.2 Computable Mathematics

Computable Mathematics [14] looks at theorems in mathematics that are proven non-
effectively and questions if there is an effective (that is computable) proof. The answer
is usually no. Then the question arises as to how noneffective the proof is. Ramsey’s
Theorem and the Transitive Ramsey’s Theorem have been studied and compared in this
light [16, 19, 20, 21, 38].

Def 13.6 Let M
(··· )
1 ,M

(··· )
2 , . . . be a standard list of oracle Turing Machines.

1. If A is a set then A′ = {e : MA
e (e) ↓}. This is also called the Halting problem relative

to A. Note that ∅′ = HALT .

2. A set A is called low if A′ ≤T HALT . Note that decidable sets are low. It is known
that there are undecidable sets that are low; however, they have some of the properties
of decidable sets.

3. We define the levels of the arithmetic hierarchy.

• A set is in Σ0 and Π0 if it is decidable.

• Assume n ≥ 1. A set A is in Σn if there exists a set B ⊆ N × N that is in Πn−1
such that

A = {x : (∃y)[(x, y) ∈ B]}.

• Assume n ≥ 1. A set A is in Πn if A is in Σn.

• A set is in the Arithmetic hierarchy if it is in Σn or Πn for some n.

The following are known. Items 1 and 3 indicate that the Turing degree of the infinite
homogenous set induced by a coloring is greater than the Turing degree of the infinite
homogenous set induced by a transitive coloring.
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1. Jockusch [21] has shown that there exists a computable 2-coloring of the edges of KN

such that, for all infinite homogeneous sets H, H is not computable in the halting set.

2. Jockusch [21] has shown that for every computable 2-coloring of the edges of KN there
exists an infinite homogeneous sets H ∈ Π2.

3. For all c, for every computable transitive c-coloring of the edges of KN, there exists an
infinite MIP P that is computable in the halting set. This is folklore.

4. There exists a computable transitive 2-coloring of the edges of KN with no computable
infinite MIP . This is folklore.

5. Hirschfeldt and Shore [19] have shown that there exists a computable transitive 2-
coloring of the edges of KN with no infinite low MIP .

13.3 Finitary Version

There are finite versions of both Ramsey’s Theorem and the Transitive Ramsey’s Theorem.
The finitary version of the Transitive Ramsey’s Theorem yields better upper bounds.

Notation 13.7 Let c, k ≥ 1.

1. R(k, c) is the least n such that, for any c-coloring of the edges of Kn, there exists a
homogeneous set of size k.

2. TRT (k, c) is the least n such that, for any transitive c-coloring of the edges of Kn,
there exists a MIP of length k.

It is not obvious that R(k, c) and TRT (k, c) exist; however, they do.
The following is well known [17, 18, 24] and will be prove the c = 2 case in the appendix.

Theorem 13.8 For all k, c ≥ 1, ck/2 ≤ R(k, c) ≤ cck−c+1,

Improving the upper and lower bounds on the R(k, c) (often called the Ramsey Numbers)
is a long standing open problem. The best known asymptotic results for the c = 2 case are
by Conlon [9]. For some exact values see Radziszowski’s dynamic survey [34].

The following theorem is easy to prove; however, neither the statement, nor the proof,
seem to be in the literature. We will prove it in the appendix.

Theorem 13.9 For all k, c ≥ 1 TRT (k, c) = (k − 1)c + 1.
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14 Open Problems

1. For which (FUN(n),m) is the Termination Problem restricted to (FUN(n),m)-programs
decidable?

2. Find a natural example showing that Theorem 10.3 requires the Full Ramsey Theorem.

3. Prove or disprove that Theorem 10.3 is equivalent to Ramsey’s Theorem.

4. Classify more types of Termination problems into the classes Decidable and Unde-
cidable. It would be of interest to get a more refined classification. Some of the
undecidable problems may be equivalent to HALT while others may be complete in
some level of the arithmetic hierarchy or Π1

1 complete

5. Prove or disprove the following conjecture: for every c there is a program Pc such that,
over RCA0, TRT (c) ⇐⇒ every run of Program Pc terminates.

15 Summary

In this survey we discussed various ways to prove that a program always terminates. The
techniques used were well-founded orderings, Ramsey Theory, and Matrices. These tech-
niques work on some programs but not all programs. We then discussed classes of programs
where decidabilty of termination has been proven.

The applications of Ramsey Theory only used the transitive Ramsey Theorem. We
discussed the distinction between the two.

Lastly, we listed several open problems.
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A Using Just C1 and C2 to Prove Termination

Def A.1 If C is a set of square matrices of the same dimension then clos(C) is the set
of all finite products of elements of C. For example, if C = {C1, C2} then C2

1C2C
3
1C

17
2 ∈

clos(C1, C2).
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This section is due to Ben-Amram and is based on a paper of his [2]. He gives an example
of a proof of termination of Program 6 where he uses the matrices C1, C2 that come out of
Program 6 directly (in contrast to our proof in Theorem 9.1 which used 3 × 3 matrices by
introducing x+y). Of more interest: there is an element of clos(C1, C2) that has no negative
numbers on the diagonal, namely C2 itself. Hence we cannot use Theorem 8.3 to prove
termination.

Theorem A.2 Every computation of Program 6 is finite.

Proof:
The case control=1 is represented by the matrix

C1 =

(
−1 0
∞ ∞

)
.

The case control=2 is represented by the matrix

C2 =

(
∞ −2
+1 ∞

)
.

We find a representation of a superset of clos(C1, C2). Let

E =
⋃
Y

EY where Y ∈ {C1, C2, C1C2, C2C1}

and
EY = {Y Za, a ≥ 1}.

Thus E is an infinite set of matrices formed by uniting four classes, each of a simple structure
(periodic sets, in an appropriate sense of the word). We show that clos(C1, C2) ⊆ E . We
prove this by induction on the number of matrices that are multiplied to form the element
of clos(C1, C2).

The base case is trivial since clearly C1, C2 ∈ E .
We show the induction step by multiplying each of the four “patterns” in E on the left

by each of the matrices C1, C2. We use the following identities: C2
1 = ZC1 = C1Z = C1C2,

C2
2 = Z, ZC2 = C2Z.

1. C1(C1Z
a) = C2

1Z
a = C1ZZ

a = C1Z
a+1

2. C2(C1Z
a) = (C2C1)Z

a

3. C1(C2Z
a) = (C1C2)Z

a

4. C2(C2Z
a) = C2

2Z
a = ZZa = Za+1

5. C1(C1C2Z
a) = C2

1C2Z
a = C1ZC2Z

a = C1C2ZZ
a = (C1C2)Z

a+1
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6. C2(C1C2Z
a) = C2(C1ZZ

a = (C2C1)Z
a+1

7. C1(C2C1Z
a) = (C1C2)C1Z

a = C1(ZC1)Z
a = C2

1Z
a+1 = C1Z

a+2

8. C2(C2C1Z
a) = ZC1Z

a = C1Z
a+1

We have shown that clos(C1, C2) ⊆ E . Next, we verify that for every class EY , either
every matrix in EY , or every product of a certain finite number of matrices in EY , has a
negative integer on the diagonal. This suffices for a proof of termination by Theorem 10.3,
since every class induces a well-founded order (if an order is not well-founded, every finite
power of it is not well-founded either). The second case occurs here only once (for the second
class) and the negative number occurs already for a product of two such matrices.

1. M = C1Z
a, for some a ⇒M =

(
−1− a −a
∞ ∞

)
2. M1 = C2Z

a, M2 = C2Z
b ⇒M1M2 = C2

2Z
a+b = Za+b+1

3. M = C1C2Z
a ⇒M = C1ZZ

a = C1Z
a+1

4. M ∈ C2C1Z
a ⇒M =

(
∞ ∞
−3 −2

)
Za =

(
∞ ∞
−3 −2− a

)
.

B A Verification that Needs The Full Ramsey Theorey

The proof of Theorem 10.3 seems to need the full strength of Ramsey’s Theorem (unlike
the proof of Theorem 7.3, see the note following its proof). We give an example, due to
Ben-Amram, of a program with a disjunctive well-founded transition invariant where the
coloring is not transitive. Consider Program not-transitive

Program not-transitive

x = Input(Z)
While x > 0

x = x÷ 2

It clearly terminates and you can use the transition invariant {(x, x′) : x > x′} to prove it.
This leads to a transitive coloring. But what if instead your transition-invariant-generator
came up with the following rather odd relations instead:

1. T1 = {(x, x′) : x > 3x′}

2. T2 = {(x, x′) : x > x′ + 1}
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Note that T1∪T2 is a disjunctive well-founded transition invariant. We show that the coloring
associated to T1 ∪ T2 is not transitive.

• COL(4, 2) = 2. That is, (4, 2) ∈ T2 − T1.

• COL(2, 1) = 2. That is, (2, 1) ∈ T2 − T1.

• COL((4, 1) = 1. That is (4, 1) ∈ T1.

Hence COL is not a transitive coloring.

C Ramsey’s Theorem

Ramsey Theory is a deep branch of combinatorics. For two books on the sujbect see [24, 35].
We will present the finite and infinite Ramsey theorem. and also the finite and infinite

transitive Ramsey theorem. The only theorem used in this paper is the infinite transtive
Ramsey theorem; however, we give you more so you will have some context.

It is somewhat remarkable that this branch of pure math has an application in program-
ming languages. See www.cs.umd.edu/~gasarch/ramsey/ramsey.html or [37] for other
applications of Ramsey Theory. These applications are largely to other theorems in math-
ematics or theoretical computer science. Hence one could argue that the application to
proving programs terminate is the first real application.

C.1 If There are Six People at a Party. . .

The following is well known recreational math problem:
Question: Show that if there are six people at a party, either three of them mutually know
each other, or three of them mutually do not know each other. We call such a set of people
homogenous since they all bear the same relationship to each other. We will call set of three
either homogenous-K (all three pairs know each other) or homogenous-DK (none of the pair
knows each other).

Solution: Let the people be A,B,C,D,E, F . Look at how F relates to the rest: there must
be either ≥ 3 that he knows, or ≥ 3 that he does not know. We will assume that there are
≥ 2 that he knows (the other case is similar).

We can assume that F knows A,B and C. If any of A,B,C know each other than we
have a homogenous-K set: F and the pair of A,B,C who know each other. If none of A,B,C
know each other than we have a homogenous-DK set: namely A,B,C. (End of Proof)

What if you only had five people at the party? Are you still guanteed a homogenous set?
No: Take A,B,C,D,E where the following pairs know each other: (A,B), (B,C), (C,D),
(D,E), (E,A), and the remaining pairs do not know each other. We leave it to the reader
that in this scenario there is no homogenous set.
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What if you want to have a homogenous set of size four? It turns out that if there are
18 people at a party there must be a homogenous set of size four; however, if there are 17
people at a party there is a scenario where there is no homogenous set of size four.

What if you want to have a homogenous set of size five? It turns out that if there are
49 people at a party there must be a homogenous set of size five; however, if there are 43
people at a party there is a scenario where there is no homogenous set of size five. It is
an open problem to determine the exact number. See http://www.cs.umd.edu/~gasarch/

BLOGPAPERS/ramseykings.pdf for an interesting take on the problem.
What if you want to have a homogenous set of size m? It turns out that if there is a large

number R(m) such that if there are R(m) people at a party there must be a homogenous
set. We will prove this.

What if you want to have an infinite (countable) homogenous set? It turns out that there
is an infinite number of people at a party1 then there is an infinite homogenous set. We will
prove this.

We will now state this more mathematically and prove the last assertions, though in the
reverse order.

C.2 Notation

Note C.1 In the Graph Theory literature there are (at least) two kinds of coloring. We
present them in this note so that if you happen to read the literature and they are using
coloring in a different way then in these notes, you will not panic.

• Vertex Coloring. Usually one says that the vertices of a graph are c-colorable if there
is a way to assign each vertex a color, using no more than c colors, such that no two
adjacent vertices (vertices connected by an edge) are the same color. Theorems are
often of the form ‘if a graph G has property BLAH BLAH then G is c-colorable’ where
they mean vertex c-colorable. We will not be considering these kinds of colorings.

• Edge Colorings. Usually this is used in the context of Ramsey Theory and Ramsey-
type theorems. Theorems begin with ‘for all c-coloring of Kn there exists BLAH such
that BLAH. We will be considering these kinds of colorings.

Lets go back to our party! We can think of the 6 people as vertices of K6. We can color
edge {i, j} RED if i and j know each other, and BLUE if they do not.

Def C.2 Let n ≥ 2. Then Kn has a homogeenous Km if there is a set V ′ of m vertices
(in V ) such that

• there is an edge between every pair of vertices in V ′:
{{i, j} | i, j ∈ V ′} ⊆ E

1perhaps they all fit because person i is of height 2−i × 6 feet and of width 2−i feet
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• all the edges between vertices in V ′ are the same color: there is some l ∈ [c] such that
COL({i, j}) = l for all i, j ∈ V ′.

Notation C.3 KN is the graph (V,E) where

V = N
E = {{x, y} | x, y ∈ N}

We now restate our 6-people-at-a-party theorem:

Theorem C.4 Every 2-coloring of the edges of K6 has a homogenous set of size 3.

The finite Ramsey’s Theorem, usually called Ramsey’s Theorem, is as follows:

Theorem C.5 For all c, for all m, there exists an n such that every c-coloring of the edges
of Kn has a homogenous set of size m.

The infinite Ramsey’s Theorem is as follows:

Theorem C.6 For all c, Every c-coloring of the edges of KN has an infinite homogenous
set.

We need a way to state these theorems more succintcly. We introduce some notation.

Notation C.7

1. If A is a set then
(
A
2

)
is the set of all unordered pairs of distinct elements of A. Note

that the phrase for all c-colorings of Kn can now be states as for all COL :
(
[n]
2

)
→ [c].

2. Rc(m) is the least n such that for any c-coloring of
(
[n]
2

)
there is a homogenous set of

size m. R(m) is R2(m). We have not shown that Rc(m) exists; however, we will state
theorems like . . . Rc(m) ≤ . . . which will mean that Rc(m) exists and we have a bound
for it.

3. Rc(∞) =∞ means that for any c-coloring of
(
N
2

)
there is an infinite homogenous set

In the sections below we state the infinite and finite Ramsey’s Theorem using this nota-
tion.
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C.3 Proof of the Infinite Ramsey Theorem

We will prove the infinite Ramsey Theorem. We prove this one first for three reasons

1. The infinite one is the only one that we use in this paper.

2. The infinite one is easier to prove than the finite one. The combinatorist Joel Spencer
has said infinite combinatorics is easier than finite combinatorics since all of those
messy constants go away.

3. We can derive the finite Ramsey Theorem (usually just called Ramsey’s Theorem) from
the infinite one. We will present this proof as well two more standard proofs.

Theorem C.8 R(∞) =∞.

Proof:
Let COL be a 2-coloring of KN. We define an infinite sequence of vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL.
Here is the intuition: Vertex x1 = 1 has an infinite number of edges coming out of it.

Some are RED, and some are BLUE. Hence there are an infinite number of RED edges
coming out of x1, or there are an infinite number of BLUE edges coming out of x1 (or both).
Let c1 be a color such that x1 has an infinite number of edges coming out of it that are
colored c1. Let V1 be the set of vertices v such that COL({v, x1}) = c1. Then keep iterating
this process.

We now describe it formally.

V0 = N
x1 = 1

c1 =

{
RED if |{v ∈ V0 | COL({v, x1}) = RED}| is infinite

BLUE otherwise

V1 = {v ∈ V0 | COL({v, x1}) = c1} (note that |V1| is infinite)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci =

{
RED if |{v ∈ Vi−1 | COL({v, xi}) = RED}| is infinite

BLUE otherwise

Vi = {v ∈ Vi−1 | COL({v, xi}) = ci} (note that |Vi| is infinite)
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How long can this sequence go on for? Well, xi can be defined if Vi−1 is nonempty. We
can show by induction that, for every i, Vi is infinite. Hence the sequence

x1, x2, . . . ,

is infinite.
Consider the infinite sequence

c1, c2, . . .

Each of the colors in this sequence is either RED or BLUE. Hence there must be an infinite
sequence i1, i2, . . . such that i1 < i2 < · · · and

ci1 = ci2 = · · ·

Denote this color by c, and consider the vertices

xi1 , xi2 , · · ·

It is easy to see they form an infinite homogenous set.

We leave it as an easy exercise to prove c-color case:

Theorem C.9 Rc(∞) =∞.

C.4 Proof of the Finite Ramsey Theorem from the Infinite Ram-
sey Theorem

Theorem C.10 For every m ≥ 2, R(m) exists.

Proof: Suppose, by way of contradiction, that there is some m ≥ 2 such that R(m)
does not exist. Then, for every n ≥ m, there is some way to color Kn so that there is no
monochromatic Km. Hence there exist the following:

1. COL1, a 2-coloring of Km that has no monochromatic Km

2. COL2, a 2-coloring of Km+1 that has no monochromatic Km

3. COL3, a 2-coloring of Km+2 that has no monochromatic Km

...

j. COLj, a 2-coloring of Km+j−1 that has no monochromatic Km

...
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We will use these 2-colorings to form a 2-coloring COL of KN that has no monochromatic
Km.

Let e1, e2, e3, . . . be a list of all unordered pairs of elements of N such that every unordered
pair appears exactly once. We will color e1, then e2, etc.

How should we color e1? We will color it the way an infinite number of the COLi’s color
it. Call that color c1. Then how to color e2? Well, first consider ONLY the colorings that
colored e1 with color c1. Color e2 the way an infinite number of those colorings color it. And
so forth.

We now proceed formally:

J0 = N

COL(e1) =

{
RED if |{j ∈ J0 | COLj(e1) = RED}| is infinite

BLUE otherwise

J1 = {j ∈ J0 | COL(e1) = COLj(e1)}
Let i ≥ 2, and assume that e1, . . . , ei−1 have been colored. Assume, furthermore, that

Ji−1 is infinite and, for every j ∈ Ji−1,

COL(e1) = COLj(e1)
COL(e2) = COLj(e2)

...
COL(ei−1) = COLj(ei−1)

We now color ei:

COL(ei) =

{
RED if |{j ∈ Ji−1 | COLj(ei) = RED}| is infinite

BLUE otherwise

Ji = {j ∈ Ji−1 | COL(ei) = COLj(ei)}
One can show by induction that, for every i, Ji is infinite. Hence this process never

stops.

Claim: If KN is 2-colored with COL, then there is no monochromatic Km.

Proof of Claim:
Suppose, by way of contradiction, that there is a monochromatic Km. Let the edges

between vertices in that monochromatic Km be

ei1 , . . . , eiM ,

where i1 < i2 < · · · < iM and M =
(
m
2

)
. For every j ∈ JiM , COLj and COL agree on the

colors of those edges. Choose j ∈ JiM so that all the vertices of the monochromatic Km are
elements of the vertex set of Km+j−1. Then COLj is a 2-coloring of the edges of Km+j−1
that has a monochromatic Km, in contradiction to the definition of COLj.
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End of Proof of Claim
Hence we have produced a 2-coloring of KN that has no monochromatic Km. This

contradicts Theorem C.8. Therefore, our initial supposition—that R(m) does not exist—is
false.

We leave it as an easy exercise to prove c-color case:

Theorem C.11 For all c, for all m, Rc(m) exists.

C.5 A Direct Proof of the Finite Ramsey’s Theorem

The proof of Ramsey’s theorem give for Theorem C.10 did not give a bound on R(m). The
following proof gives a bound. It is similar i spirit to the proof of Theorem C.8.

Theorem C.12 For every m ≥ 2, R(m) ≤ 22m−2.

Proof:
Let COL be a 2-coloring of K22m−2 . We define a sequence of vertices,

x1, x2, . . . , x2m−1,

and a sequence of sets of vertices,

V0, V1, V2, . . . , V2m−1,

that are based on COL.
Here is the intuition: Vertex x1 = 1 has 22m−2−1 edges coming out of it. Some are RED,

and some are BLUE. Hence there are at least 22m−3 RED edges coming out of x1, or there
are at least 22m−3 BLUE edges coming out of x1.

Let c1 be a color such that x1 has at least 22m−3 edges coming out of it that are colored
c1. Let V1 be the set of vertices v such that COL({v, x1}) = c1. Then keep iterating this
process.

We now describe it formally.

V0 = [22m−2]
x1 = 1

c1 =

{
RED if |{v ∈ V0 | COL({v, x1}) = RED}| ≥ 22m−3

BLUE otherwise

V1 = {v ∈ V0 | COL({v, x1}) = c1} (note that |V1| ≥ 22m−3)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

41



xi = the least number in Vi−1

ci =

{
RED if |{v ∈ Vi−1 | COL({v, xi}) = RED}| ≥ 2(2m−2)−i;

BLUE otherwise.

Vi = {v ∈ Vi−1 | COL({v, xi}) = ci} (note that |Vi| ≥ 2(2m−2)−i)

How long can this sequence go on for? Well, xi can be defined if Vi−1 is nonempty. Note
that

|V2m−2| ≥ 2(2m−2)−(2m−2) = 20 = 1

Thus if i − 1 = 2m − 2 (equivalently, i = 2m − 1), then Vi−1 = V2m−2 6= ∅, but there is no
guarantee that Vi (= V2m−1) is nonempty. Hence we can define

x1, . . . , x2m−1

Consider the colors
c1, c2, . . . , c2m−2

Each of these is either RED or BLUE. Hence there must be at least m− 1 of them that are
the same color. Let i1, . . . , im−1 be such that i1 < · · · < im−1 and

ci1 = ci2 = · · · = cim−1

Denote this color by c, and consider the m vertices

xi1 , xi2 , · · · , xim−1 , xim−1+1

To see why we have listed m vertices but only m − 1 colors, picture the following scenario:
You are building a fence row, and you want (say) 7 sections of fence. To do that, you need 8
fence posts to hold it up. Now think of the fence posts as vertices, and the sections of fence
as edges between successive vertices, and recall that every edge has a color associated with
it.

Claim: The m vertices listed above form a monochromatic Km.
Proof of Claim:

First, consider vertex xi1 . The vertices

xi2 , . . . , xim−1 , xim−1+1

are elements of Vi1 , hence the edges

{xi1 , xi2}, . . . {xi1 , xim−1}, {xi1 , xim−1+1}

are colored with ci1 (= c).
Then consider each of the remaining vertices in turn, starting with vertex xi2 . For

example, the vertices
xi3 , . . . , xim−1 , xim−1+1
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are elements of Vi2 , hence the edges

{xi2 , xi3}, . . . {xi2 , xim−1}, {xi2 , xim−1+1}

are colored with ci2 (= c).
End of Proof of Claim

Note that this is really the same proof as Theorem C.8 except that we had to keep track
of the constants. This is an excellent example of Joel Spencer’s quote given above.

We leave it as an easy exercise to prove c-color case:

Theorem C.13 For every c, Rc(m) ≤ ccm−c+1.

C.6 Another Direct Proof of the Finite Ramsey’s Theorem

We give an alternative proof of the finite Ramsey’s theorem that is similar in spirit to
the original 6-people-at-a-party problem and yields slightly better bounds. slightly better
bounds.

Given m, we really want n such that every 2-coloring of Kn has a RED Km or a
BLUE Km. However, it will be useful to let the parameter for BLUE differ from the pa-
rameter for RED.

Notation C.14 Let a, b ≥ 2. Let R(a, b) denote the least number, if it exists, such that
every 2-coloring of KR(a,b) has a RED Ka or a BLUE Kb. Note that R(m) = R(m,m).

We state some easy facts.

1. For all a, b, R(a, b) = R(b, a).

2. For b ≥ 2, R(2, b) = b: First, we show that R(2, b) ≤ b. Given any
2-coloring of Kb, we want a RED K2 or a BLUE Kb. Note that a RED K2 is just a
RED edge. Hence EITHER there exists one RED edge (so you get a RED K2) OR all
the edges are BLUE (so you get a BLUE Kb). Now we prove that R(2, b) = b. If b = 2,
this is obvious. If b > 2, then the all-BLUE coloring of Kb−1 has neither a RED K2

nor a BLUE Kb, hence R(2, b) ≥ b. Combining the two inequalities (R(2, b) ≤ b and
R(2, b) ≥ b), we find that R(2, b) = b.

3. R(3, 3) ≤ 6. (This is the 6-people-at-a-party theorem.)

We want to show that, for every n ≥ 2, R(n, n) exists. In this proof, we show something
more: that for all a, b ≥ 2, R(a, b) exists. We do not really care about the case where a 6= b,
but that case will help us get our result. This is a situation where proving more than you
need is easier.

Lemma C.15 For all x, y ≥ 1,
(

x
y−1

)
+
(
x−1
y−1

)
=
(
x
y

)
.
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Proof: One could prove this with algebra; however, we will prove it combinatorially. How
many ways are there to choose y people out of x? The answer is of course

(
x
y

)
. We solve it a

different way: consider one of the people, named Alice. If we do not choose Alice then there
are

(
x

y−1

)
ways to choose y people. If we choose Alice then there are

(
x−1
y−1

)
ways to choose y

people. Hence there are
(

x
y−1

)
+
(
x−1
y−1

)
was to choose y people. Hence

(
x

y−1

)
+
(
x−1
y−1

)
=
(
x
y

)
.

Theorem C.16

1. For all a, b ≥ 3: If R(a− 1, b) and R(a, b− 1) exist, then R(a, b) exists and

R(a, b) ≤ R(a− 1, b) + R(a, b− 1)

2. For all a, b ≥ 2, R(a, b) exists and R(a, b) ≤
(
a+b−2
a−1

)
.

3. For all m ≥ 2, R(m) ≤
(
22m√
m

)
.

Proof:

1: Assume R(a− 1, b) and R(a, b− 1) exist. Let

n = R(a− 1, b) + R(a, b− 1)

Let COL be a 2-coloring of Kn, and let x be a vertex. Note that there are

R(a− 1, b) + R(a, b− 1)− 1

edges coming out of x (edges {x, y} for vertices y).
Let NUM-RED-EDGES be the number of red edges coming out of x, and let NUM-BLUE-EDGES

be the number of blue edges coming out of x. Note that

NUM-RED-EDGES + NUM-BLUE-EDGES = R(a− 1, b) + R(a, b− 1)− 1

Hence either
NUM-RED-EDGES ≥ R(a− 1, b)

or
NUM-BLUE-EDGES ≥ R(a, b− 1)

There are two cases:
Case 1: NUM-RED-EDGES ≥ R(a− 1, b). Let

U = {y | COL({x, y}) = RED}

U is of size NUM-RED-EDGES ≥ R(a−1, b). Consider the restriction of the coloring COL
to the edges between vertices in U . Since

|U | ≥ R(a− 1, b),

this coloring has a RED Ka−1 or a BLUE Kb. Within Case 1, there are two cases:
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1. There is a RED Ka−1. Recall that all of the edges in

{{x, u} | u ∈ U}

are RED, hence all the edges between elements of the set U ∪ {x} are RED, so they
form a RED Ka and WE ARE DONE.

2. There is a BLUE Kb. Then we are DONE.

Case 2: NUM-BLUE-EDGES ≥ R(a, b− 1). Similar to Case 1.

2: To show that R(a, b) exists and R(a, b) ≤
(
a+b−2
a−1

)
, we use induction on n = a + b. Since

a, b ≥ 2, the smallest value of a + b is 4. Thus n ≥ 4.

Base Case: n = 4. Since a + b = 4 and a, b ≥ 2, we must have a = b = 2. From part 1, we
know that R(2, 2) exists and R(2, 2) = 2. Note that

R(2, 2) = 2 ≤
(

2 + 2− 2

2− 1

)
=

(
2

1

)
= 2.

Induction Hypothesis: For all a, b ≥ 2 such that a + b = n, R(a, b) exists and R(a, b) ≤(
a+b−2
a−1

)
.

Inductive Step: Let a, b be such that a, b ≥ 2 and a + b = n + 1.
By Part 1, the induction hypothesis, and Lemma C.15 we have

R(a, b) ≤ R(a, b− 1) + R(a− 1, b) ≤
(
a + b− 3

a− 1

)
+

(
a + b− 3

a− 2

)
=

(
a + b− 2

a− 1

)
.

3: By Part 2 R(m,m) ≤
(
2m−2
m−1

)
. By Stirling’s formula this can be bounded above by O(2

2m
√
m

).

We leave it as an easy exercise to prove c-color case:

Theorem C.17 For every c, Rc(a1, . . . , ac) ≤
(
(
∑c

i=1)−c
a1!a2!···ac!

)
.

C.7 Our Last Word on Ramsey Numbers

The best known asymptotic results for the c = 2 case are by Conlon [9] who has shown

R(m) ≤ 22m

mc log s/ log log s
.

For some exact values of the Ramsey Numbers see Radziszowski’s dynamic survey [34].
What about lower bounds? Erdös found the first nontrivial bound and in the process

invented the probabilitisc method.
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Theorem C.18 R(m) ≥ Ω(m2m/2).

Proof:
Let n = cm2m/2 where we determine c later.
We need to find a 2-coloring of

(
[n]
2

)
that has no homogenous set of size n. Or do we?

We only have to show that such a coloring exists.
We do the following probabilitistic experiment: for each edge randomly pick RED or

BLUE to color it (the probaility of each is 1/2). We show that the probability the graph
has a homogenous set of size m is less than one. Hence there exists a coloring with no
homogenous set of size m.

The number of colorings is 2(n
2) The number of colorings that have a homogenous set of

size m is bounded above by (
n

m

)
× 2× 2(n

2)−(m
2 ).

Hence the probability that the coloring has a homogenous set of size m is bounded above
by (

n
m

)
× 2× 2(n

2)−(m
2 )

2(n
2)

=

(
n
m

)
× 2

2−(m
2 )

Stirlings formula and algeba show that there is a choice for m where this is less than one.

Note C.19 If the above proof is done carefully then c can be taken to be 1
e
√
2
.

The probabilistic method is when you show something exists by showing that the prob-
abiliity that it does not exist is less than one. It has many applications. See the book by
Alon and Spencer [1].

D The Transitive Ramsey Theorem

D.1 A Common Math Competition Problem

The following problem will likely appear on some math competition in 2014:
Problem: Find x such that the following hold:

1. All sequences of 2014 distinct real numbers has a monotone subsequence of length x.

2. There exists a sequence of 2014 distince real numbers that has a monotone subsequence
of length x + 1.
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Solution: x = 45.
1) Let x1, x2, . . . , x2014 be a sequence of 2014 distinct reals. Assume, by way of contradiction,
that there is no monotone subsequence of length 45.

We define a map from [2014] to [44]× [44] as follows: Map x to the the ordered pair (a, b)
such that (1) the longest increasing subsequence that ends at x has length a. (2) the longest
decreasing subsequence that ends at x has length h.

The map is 1-1: Assume, by way of contradiction, that if i < j both map to (a, b).
Assume that xi < xj (the case of xi > xj is similar). The longest increasing subsequence
that ends at xi has length a. Since xi < xj, the longest increasing subsequence that ends at
xj has length at least a + 1. Hence j does not map to (a, b). Contradiction. Hence the map
is 1-1.

The domain has size 2014. The range has size 44× 44 = 1936. Hence there is a 1-1 map
between a set of size 2014 and a set of size < 2014, which is a contradiction.

2) We construct a sequence of length 2025 (longer than we need) that has no monotone
subsequence of length 46.

Let y1 < y2 < · · · < y45 be numbers such that yi + 46 < yi+1.
Consider the sequence
y1, y1 − 1, y1 − 2, . . . , y1 − 44,
y2, y2 − 1, y2 − 2, . . . , y2 − 44,
...
y45, y44 − 1, y44 − 3, . . . , y44 − 44.
This sequence has 45×45 = 2025 elements. We call each line a block. Within a block the

only monotone subsequences are decreasing and are of length ≤ 45. A monotone subsequence
that uses different blocks must use one from each block and be increasing. Such a sequence
must be of length ≤ 45.

This problem and solution are a subcase of a theorem by Erdös and Szekeres [13]. They
showed the following:

• For all k, for all sequences of distinct reals of length (k − 1)2 + 1, there is either an
increasing monotone subsequence of length k or a decreasing monotone subsequence
of length k.

• For all k, there exists a sequences of distinct reals of length (k − 1)2 with neither an
increasing monotone subsequence of length k or a decreasing monotone subsequence
of length k.

D.2 View in terms of Colorings

Note that we can view a sequence x1, . . . , xn as a 2-coloring of
(
[n]
2

)
via

COL(i < j) =

{
RED if xi < xj

BLUE if xi > xj

(4)
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Using Ramsey Theory we would obtain the weak result that there is montone subsequence
of length roughly log2 n. A modification of the solution above yields a montone subsequence
of length roughly

√
n. The key is that this is not juste any coloring— its a transitive coloring.

With that in mind we can generalize the theorem of Erdös and Szekeres.

Def D.1 A transitive c-coloring of
(
[n]
2

)
is a mapping where if COL(i, j) = COL(j, k) then

that color is also COL(i, k).

D.3 The Transitive Ramsey Theorem

Def D.2 Let c ≥ 1 and n ∈ N ∪ {N}. Let COL be a c-coloring of
(
[n]
2

)
A set of vertices V

is a monochromatic increasing path with respect to COL if V = {v1 < v2 < · · · } and

COL(v1, v2) = COL(v2, v3) = · · · .

(If G = Kn then the · · · stop at some k ≤ n.) We will drop the with respect to COL if the
coloring is understood. We will abbreviate monochromatic increasing path by MIP from
now on.

Def D.3 TRTc(m) is the least n such that any transitive c-coloring of
(
[n]
2

)
has a homoge-

nous set. Note that by Ramsey’s theorem (Theorem C.13) TRTc(m) ≤ ccm−c+1. (Using
Theorem C.17 there is a slightly lower, but still exponential, upper bound.) We will provide
an alternative proof with a much smaller upper bound. TRTc(∞) can be defined in the
obvious say. By Ramsey’s Theorem it exists and is ∞. We will supply an alternative proof
that uses less machinery.

Theorem D.4 TRTc(m) ≤ (m− 1)c + 1.

Proof:
1) Let n = (m− 1)c + 1. Assume, by way of contradiction, that there is transitive c-coloring
of
(
[n]
2

)
that has no MIP of length m.

We define a map from {1, . . . , n} to {1, . . . ,m− 1}c as follows: Map x to the the vector
(a1, . . . , ac) such that the longest mono path of color i that ends at x has length ai. Since
there are no MIP ’s of length m the image is a subset of {1, . . . ,m− 1}c.

It is easy to show that this map is 1-1. Since n > (m− 1)c this is a contradiction.

2) TRTc(m) ≥ (m− 1)c + 1.
Fix m ≥ 1. We show by induction on c, that, for all c ≥ 1, there exists a transitive

c-coloring of
(
[n]
2

)
that has no MIP of length m.

Base Case: c = 1. We color the edges of Km−1 all RED. Clearly there is no MIP of length
m.
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Induction Step: Assume there is a transitive (c−1)-coloring COL of the edges of K(m−1)c−1

that has no homogeneous set of size m. Assume that RED is not used. Replace every vertex
with a copy of Km−1. Color edges between vertices in different groups as they were colored
by COL. Color edges within a group RED. It is easy to see that this produces a transitive
c-coloring of the edges of and that there are no MIP of length m.

Theorem D.5 TRTc(∞) =∞

Proof: This is similar to the proof of part 1 of Theorem D.4.
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