There is no 3-coloring of 15×15

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{15,15}$.

$$
15 \times 15=225
$$

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{15,15}$.

$$
15 \times 15=225
$$

There is a rectangle free set $X,|X| \geq \frac{225}{3}=75$.

Our Plan

For $1 \leq i \leq 15$
let x_{i} be the number of elements of X in the i th column.

Our Plan

For $1 \leq i \leq 15$
let x_{i} be the number of elements of X in the i th column.
The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X : one in the j-spot, one in the k-spot is

$$
\sum_{i=1}^{15}\binom{x_{i}}{2}
$$

Our Plan

For $1 \leq i \leq 15$
let x_{i} be the number of elements of X in the i th column.
The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X : one in the j-spot, one in the k-spot is

$$
\sum_{i=1}^{15}\binom{x_{i}}{2}
$$

Plan The number of pairs of $\{1, \ldots, 15\}$ is $\binom{15}{2}=105$.
We will find a lower bound L on $\sum_{i=1}^{15}\binom{x_{i}}{2}$.

Our Plan

For $1 \leq i \leq 15$
let x_{i} be the number of elements of X in the i th column.
The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X : one in the j-spot, one in the k-spot is

$$
\sum_{i=1}^{15}\binom{x_{i}}{2}
$$

Plan The number of pairs of $\{1, \ldots, 15\}$ is $\binom{15}{2}=105$.
We will find a lower bound L on $\sum_{i=1}^{15}\binom{x_{i}}{2}$.
We will show $L>105$, hence some four elements of X form a rectangle.

Inequality

Want to show that $\sum_{i=1}^{15}\binom{x_{i}}{2} \geq 106$.

Inequality

Want to show that $\sum_{i=1}^{15}\binom{x_{i}}{2} \geq 106$.
Want to find MIN of

$$
\sum_{i=1}^{15}\binom{x_{i}}{2}
$$

relative to the constraint

$$
\sum_{i=1}^{15} x_{i}=75
$$

Well Known Theorem

Over the REALS:
$\sum_{i=1}^{15} \frac{x_{i}\left(x_{i}-1\right)}{2}$
relative to the constraint
$\sum_{i=1}^{15} x_{i}=75$.
is MINIMIZED if all of the $x_{i} s$ are equal.
We take $x_{i}=75 / 15=5$.

$$
\sum_{i=1}^{15} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq \sum_{i=1}^{15} \frac{5 \times 4}{2}=15 \times 10=150
$$

Recap and Finish

The number of vertical pairs is $\binom{15}{2}=105$
The number of vertical pairs of points in X is

$$
\geq \sum_{i=1}^{15} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq \sum_{i=1}^{15} \frac{5 \times 4}{2}=15 \times 10=150
$$

Recap and Finish

The number of vertical pairs is $\binom{15}{2}=105$
The number of vertical pairs of points in X is

$$
\geq \sum_{i=1}^{15} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq \sum_{i=1}^{15} \frac{5 \times 4}{2}=15 \times 10=150 .
$$

Hence some vertical pair of points occurs twice, so X is not rectangle free.

There is no 3－coloring of 14×14

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{14,14}$.

$$
14 \times 14=196
$$

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{14,14}$.

$$
14 \times 14=196
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{196}{3}\right\rceil=66$.

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{14,14}$.

$$
14 \times 14=196
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{196}{3}\right\rceil=66$.
For $1 \leq i \leq 14$
let x_{i} be the number of elements of X in the i th column. Need

$$
\sum_{i=1}^{14}\binom{x_{i}}{2} \geq\binom{ 14}{2}=91
$$

MIN the sum

Over the REALS:
$\sum_{i=1}^{14} \frac{x_{i}\left(x_{i}-1\right)}{2}$
relative to the constraint
$\sum_{i=1}^{14} x_{i}=66$.
is MINIMIZED if all of the x_{i} 's are equal.
We take $x_{i}=\frac{66}{14}=\frac{33}{7}$.
We note that $\frac{1}{2} \times \frac{33}{7}\left(\frac{33}{7}-1\right)=\frac{429}{49}$

$$
\sum_{i=1}^{14} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq \sum_{i=1}^{14} \frac{429}{49}=\frac{858}{7}=122+>91
$$

DONE.

There is no 3－coloring of 13×13

Rectangle Free Sets

Assume there is a 3-coloring of $G_{13,13}$.

$$
13 \times 13=169
$$

Rectangle Free Sets

Assume there is a 3-coloring of $G_{13,13}$.

$$
13 \times 13=169
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{169}{3}\right\rceil=57$.

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{13,13}$.

$$
13 \times 13=169
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{169}{3}\right\rceil=57$.
For $1 \leq i \leq 13$
let x_{i} be the number of elements of X in the i th column. Need

$$
\sum_{i=1}^{13}\binom{x_{i}}{2} \geq\binom{ 13}{2}=78
$$

MIN the sum

Over the REALS:
$\sum_{i=1}^{13} \frac{x_{i}\left(x_{i}-1\right)}{2}$
relative to the constraint
$\sum_{i=1}^{13} x_{i}=57$.
is MINIMIZED if all of the x_{i} 's are equal.
We take $x_{i}=\frac{57}{13}$
We note that $\frac{1}{2} \times \frac{57}{13}\left(\frac{57}{13}-1\right)=\frac{1254}{169}$

$$
\sum_{i=1}^{13} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq 13 \times \frac{1254}{169}=96+>78
$$

DONE.

There is no 3－coloring of 12×12

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{12,12}$.

$$
12 \times 12=144
$$

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{12,12}$.

$$
12 \times 12=144
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{144}{3}\right\rceil=48$.

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{12,12}$.

$$
12 \times 12=144
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{144}{3}\right\rceil=48$.
For $1 \leq i \leq 12$
let x_{i} be the number of elements of X in the i th column. Need

$$
\sum_{i=1}^{12}\binom{x_{i}}{2} \geq\binom{ 12}{2}=66
$$

MIN the sum

Over the REALS:
$\sum_{i=1}^{12} \frac{x_{i}\left(x_{i}-1\right)}{2}$
relative to the constraint
$\sum_{i=1}^{12} x_{i}=48$.
is MINIMIZED if all of the x_{i} 's are equal.
We take $x_{i}=\frac{48}{12}=4$
We note that $\frac{1}{2} \times 4 \times 3=6$.

$$
\sum_{i=1}^{12} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq 12 \times 6=72>66
$$

DONE.

There is no 3－coloring of 11×11

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{11,11}$.

$$
11 \times 11=121
$$

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{11,11}$.

$$
11 \times 11=121
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{121}{3}\right\rceil=41$.

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{11,11}$.

$$
11 \times 11=121
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{121}{3}\right\rceil=41$.
For $1 \leq i \leq 11$
let x_{i} be the number of elements of X in the i th column. Need

$$
\sum_{i=1}^{11}\binom{x_{i}}{2} \geq\binom{ 11}{2}=55
$$

MIN the sum

Over the REALS:
$\sum_{i=1}^{11} \frac{x_{i}\left(x_{i}-1\right)}{2}$
relative to the constraint
$\sum_{i=1}^{11} x_{i}=41$.
is MINIMIZED if all of the x_{i} 's are equal.
We take $x_{i}=\frac{41}{11}$
We note that $\frac{1}{2} \times \frac{41}{11}\left(\frac{41}{11}-1\right)=\frac{615}{121}$.

$$
\sum_{i=1}^{11} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq 11 \frac{615}{121}=55+>55
$$

DONE.

There is no 3－coloring of 10×10

Rectangle Free Sets

Assume there is a 3-coloring of $G_{10,10}$.

$$
10 \times 10=100
$$

Rectangle Free Sets

Assume there is a 3-coloring of $G_{10,10}$.

$$
10 \times 10=100
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{100}{3}\right\rceil=34$.

Rectangle Free Sets

Assume there is a 3 -coloring of $G_{10,10}$.

$$
10 \times 10=100
$$

There is a rectangle free set $X,|X| \geq\left\lceil\frac{100}{3}\right\rceil=34$.
For $1 \leq i \leq 10$
let x_{i} be the number of elements of X in the i th column. Need

$$
\sum_{i=1}^{10}\binom{x_{i}}{2} \geq\binom{ 10}{2}=45
$$

MIN the sum

Over the REALS:
$\sum_{i=1}^{10} \frac{x_{i}\left(x_{i}-1\right)}{2}$
relative to the constraint
$\sum_{i=1}^{10} x_{i}=34$.
is MINIMIZED if all of the x_{i} 's are equal.
We take $x_{i}=\frac{34}{10}=\frac{17}{5}$
We note that $\frac{1}{2} \times \frac{17}{5}\left(\frac{17}{5}-1\right)=\frac{102}{25}$.

$$
\sum_{i=1}^{10} \frac{x_{i}\left(x_{i}-1\right)}{2} \geq 10 \frac{102}{25}=41+>45
$$

THAT LAST LINE IS FALSE! So DO NOT have Proof that $G_{10,10}$ is NOT 3-col.

