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Lets Party Like Its 2019

The following is the first theorem in Ramsey Theory:
If there are 6 people at a party, either 3 know each other
or 3 do not know each other.

We state this in terms of colorings of edges of graphs.
For all 2-coloring of the edges of K6 there is a mono K3.
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Proof of First Theorem: Whiteboard

Let COL be a 2-coloring of the edges of K6.

Let degR(v) be the red degree of v .
Let degB(v) be the blue degree of v .
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Proof of First Theorem: In Text

Claim For all v either degR(v) ≥ 3 OR degB(v) ≥ 3.

Proof If not then degR(v) ≤ 2 AND degB(v) ≤ 2, so deg(v) ≤ 4.
But all vertices have degree 5.

Assume ∃v , x , y , z COL(v , x) = COL(v , y) = COL(v , z) = RED.

If COL(x , y) = RED OR COL(x , z) = RED OR COL(y , z) = RED
then we have a RED K3.

If COL(x , y) = BLUE AND COL(x , z) = BLUE AND
COL(y , z) = BLUE then we have a BLUE K3.

I either case we get a mono K3’s.
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Trivial Theorem, Non Trivial Extension

For all 2-cols of edges of K12 there are 2 mono K3’s

Question Find n such that

1. For all 2-coloring of the edges of Kn there are 2 mono K3’s

2. There exists a 2-coloring of the edges of Kn−1 that does not
have 2 mono K3’s.

VOTE (1) n = 12, (2) 9 ≤ n ≤ 10, (3) 6 ≤ n ≤ 8.
n = 6.

1. For all 2-coloring of the edges of K6 there are 2 mono K3’s

2. There exists a 2-coloring of the edges of K5 that does not
have 2 mono K3’s.
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Proof of K6 Two Triangles Theorem

Theorem For all 2-cols of edges of K6 there are 2 mono K3’s
Proof Let COL be a 2-coloring of the edges of K6.
Let R, B, M, be the SET of RED, BLUE, and MIXED triangles.

|R|+ |B|+ |M| =

(
6

3

)
= 20.

We show that |M| ≤ 18, so |R|+ |B| ≥ 2.



A Mixed Triangle Has a Vertex Such That

v1

v2 v3

I (v2, v1) is red, (v2, v3) is blue. View this as (v2, {v1, v3}).

I (v3, v1) is red, (v3, v2) is blue. View this as (v3, {v1, v2}).



Map ZAN to M

Definition A Zan is an element (v , {u,w}) ∈ V ×
(V
2

)
such that

v /∈ {u,w} and COL(v , u) 6= COL(v ,w). ZAN is the set of Zan’s.

Map ZAN to M by mapping (v , {u,w}) to triangle {v , u,w}.
Claim This mapping is exactly 2-to-1.
What Zan’s map to the triangle:

v1

v2 v3

(v2, {v1, v3}) and (v3, {v1, v2}).
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Upper Bound on M

There is a 2-to-1 map from ZAN to M. Hence

|M| ≤ |ZAN|/2

Now we want to bound |ZAN|.
Look at vertex v . How many ZAN’s use v as their base point?
Depends on degR(v) and degB(v).
Thought experiment If degR(v) = 3 and degB(v) = 2 then how
many ZAN’s are of the form

{v , {x , y}}

x : COL(v , x) = RED. There are degR(v) of them.
y : COL(v , y) = BLUE. There are degB(v) of them.
So v contributes degR(v)× degB(v).
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Contributions!

Cases

1. v has degR(v) = 5 or degB(v) = 0: v contributes 0.

2. v has degR(v) = 4 or degB(v) = 1: v contributes 4.

3. v has degR(v) = 3 or degB(v) = 2: v contributes 6. Max.

6 vertices, each contribute ≤ 6, so

|M| ≤ |ZAN|/2 ≤ 6× 6/2 = 18, so

|R|+ |B| ≥ 20− |M| ≥ 2
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Summary

|R|+ |B|+ |M| =

(
6

3

)
= 20

Map ZAN to M. Map is 2-to-1, so |M| ≤ |ZAN|/2.

ZAN is max when each vertex: 3 R and 2 B (or 2 R and 3 B).
|ZAN| ≤ 6× 6 = 36.

|M| ≤ |ZAN|/2 = 18.

|R|+ |B| ≥ 20− |M| ≥ 2.

So there are at least 2 Mono Triangles.
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Generalization

If we 2-color the edges of Kn how many mono K3’s do we have?

VOTE: (1) ∼ nc for some c < 1, (2) ∼ n (3) ∼ n2, (4) ∼ n3.

∼ n3. Actually n3

24 + Θ(n2).

We do one case: n ≡ 1 (mod 2).
Let COL be a coloring of the edges of Kn.
Then degree of each vertex is n − 1 ≡ 0 (mod 2).

We find an upper bound on |ZAN|.
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We find an upper bound on |ZAN|.



Maximize |ZAN |

To maximize |ZAN| we would, at each vertex, color half of the
edges RED and half BLUE.

Each vertex contributes (n−1
2 )2 (this is in N since n − 1 ≡ 0

(mod 2)).

|ZAN| ≤ n
(n − 1)2

4
=

(n − 1)2n

4
so

|M| = |ZAN|/2 ≤ (n − 1)2n

8
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Finishing Up The Proof

Recap

|M| ≤ (n − 1)2n

8

Recall

|R|+ |B|+ |M| =

(
n

3

)
=

n(n − 1)(n − 2)

6
hence

|R|+ |B| =

(
n

3

)
=

n(n − 1)(n − 2)

6
− |M| hence

|R|+ |B| ≥ n(n − 1)(n − 2)

6
− (n − 1)2n

8

=
n3

24
− n2

4
+

5n

24
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Can This Be Improved?

The bound is known to be tight.


