PH(2) \leq 14

Exposition by William Gasarch

March 8, 2022
Review of $\text{PH}(k)$

Def $A \subseteq \mathbb{N}$ is \textbf{large} if $|A| > \min(A)$.
Review of \(\text{PH}(k) \)

Def \(A \subseteq \mathbb{N} \) is **large** if \(|A| > \min(A) \).

Def \(\text{PH}(k) \) is the least \(n \) such that for all 2-colorings of \(\binom{\{k,\ldots,n\}}{2} \) there exists a large homog set.

(\(\text{PH} \) stands for Paris-Harrington.)
Review of PH(k)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least n such that for all 2-colorings of $\binom{\{k,\ldots,n\}}{2}$ there exists a large homog set. (PH stands for Paris-Harrington.)

Def PH(2) is the least n such that for all 2-colorings of $\binom{\{2,\ldots,n\}}{2}$ there exists a large homog set.
Let $\text{COL} : \binom{\{2,\ldots,14\}}{2} \rightarrow [2]$. We show there is a large homog set.
PH(2) \leq 14

Let \(\text{COL}: \binom{\{2,\ldots,14\}}{2} \rightarrow [2] \). We show there is a large homog set.

Note The graph has 13 vertices so every point has degree 12.
\[\text{deg}_R(2) \geq 8, \text{ so } \text{deg}_B(2) \leq 4 \]

Case 1 \(\text{deg}_R(2) \geq 8 \). Let the 8 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_8 \).
\[\deg_R(2) \geq 8, \text{ so } \deg_B(2) \leq 4 \]

Case 1 \(\deg_R(2) \geq 8 \). Let the 8 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_8 \).

- There exists \(1 \leq i < j \leq 8 \) such that \(\text{COL}(x_i, x_j) = R \).
 - Large homog set: \(\{2, x_i, x_j\} \).
\[\text{deg}_R(2) \geq 8, \text{ so } \text{deg}_B(2) \leq 4 \]

Case 1 \(\text{deg}_R(2) \geq 8 \). Let the 8 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_8 \).

- There exists \(1 \leq i < j \leq 8 \) such that \(\text{COL}(x_i, x_j) = R \). Large homog set: \(\{2, x_i, x_j\} \).
- For all \(1 \leq i < j \leq 8 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \leq 7 \). Large homog set: \(\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\} \).
\(\text{deg}_R(2) \geq 8, \text{ so } \text{deg}_B(2) \leq 4 \)

Case 1 \(\text{deg}_R(2) \geq 8 \). Let the 8 smallest \(R \)-neighbors of \(2 \) be \(x_1 < \cdots < x_8 \).

- There exists \(1 \leq i < j \leq 8 \) such that \(\text{COL}(x_i, x_j) = R \).
 - Large homog set: \(\{2, x_i, x_j\} \).
- For all \(1 \leq i < j \leq 8 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \leq 7 \).
 - Large homog set: \(\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\} \).
- For all \(1 \leq i < j \leq 8 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \geq 8 \).
Case 1 $\deg_R(2) \geq 8$. Let the 8 smallest R-neighbors of 2 be $x_1 < \cdots < x_8$.

- There exists $1 \leq i < j \leq 8$ such that $\text{COL}(x_i, x_j) = R$.
 Large homog set: $\{2, x_i, x_j\}$.
- For all $1 \leq i < j \leq 8$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \leq 7$.
 Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.
- For all $1 \leq i < j \leq 8$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \geq 8$.
 $x_2 \geq 9$, $x_3 \geq 10$, \cdots, $x_8 \geq 15$.

Contradiction since we are coloring $\{2, \ldots, 14\}$.
$\deg_{\text{R}}(2) \geq 8$, so $\deg_{\text{B}}(2) \leq 4$

Case 1 $\deg_{\text{R}}(2) \geq 8$. Let the 8 smallest R-neighbors of 2 be $x_1 < \cdots < x_8$.

- There exists $1 \leq i < j \leq 8$ such that $\text{COL}(x_i, x_j) = \text{R}$.
 - Large homog set: $\{2, x_i, x_j\}$.
- For all $1 \leq i < j \leq 8$, $\text{COL}(x_i, x_j) = \text{B}$ AND $x_1 \leq 7$.
 - Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.
- For all $1 \leq i < j \leq 8$, $\text{COL}(x_i, x_j) = \text{B}$ AND $x_1 \geq 8$.
 - $x_2 \geq 9$, $x_3 \geq 10$, \cdots, $x_8 \geq 15$.
 - Contradiction since we are coloring $\binom{\{2,\ldots,14\}}{2}$.
\[\deg_R(2) = 7, \text{ so } \deg_B(2) = 5 \]

Case 2 \(\deg_R(2) = 7 \). Let the 7 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_7 \).
Case 2 \(\deg_R(2) = 7 \). Let the 7 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_7 \).

There exists \(1 \leq i < j \leq 7 \) such that \(\text{COL}(x_i, x_j) = R \).
Large homog set: \(\{2, x_i, x_j\} \).
Case 2 $\deg_R(2) = 7$. Let the 7 smallest R-neighbors of 2 be $x_1 < \cdots < x_7$.

- There exists $1 \leq i < j \leq 7$ such that $\text{COL}(x_i, x_j) = R$.
 Large homog set: $\{2, x_i, x_j\}$.

- For all $1 \leq i < j \leq 7$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \leq 6$.
 Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$.

$\deg_R(2) = 7$, so $\deg_B(2) = 5$
Case 2 $\deg_R(2) = 7$. Let the 7 smallest R-neighbors of 2 be $x_1 < \cdots < x_7$.

- There exists $1 \leq i < j \leq 7$ such that $\text{COL}(x_i, x_j) = R$.
 Large homog set: $\{2, x_i, x_j\}$.

- For all $1 \leq i < j \leq 7$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \leq 6$.
 Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$.

Last Case on Next Slide.
Case 2 $\deg_R(2) = 7$. Let the 7 smallest R-neighbors of 2 be $x_1 < \cdots < x_7$.
\[\text{deg}_R(2) = 7, \text{ so } \text{deg}_B(2) = 5 \] (cont)

Case 2 \(\text{deg}_R(2) = 7 \). Let the 7 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_7 \).

Remaining Case
$\deg_R(2) = 7$, so $\deg_B(2) = 5$ (cont)

Case 2 $\deg_R(2) = 7$. Let the 7 smallest R-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all $1 \leq i < j \leq 7$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \geq 7$.

Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$.

Hence B neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$.
Case 2 $\deg_R(2) = 7$. Let the 7 smallest R-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all $1 \leq i < j \leq 7$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \geq 7$.

Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$.

Hence B neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$.

Cases
Case 2 $\deg_R(2) = 7$. Let the 7 smallest R-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all $1 \leq i < j \leq 7$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \geq 7$.

Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$.

Hence B neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$.

Cases

- There exists $3 \leq i < j \leq 6$ such that (i, j) is B.
 Large Homog Set: $\{2, i, j\}$.
Case 2 \(\deg_R(2) = 7 \). Let the 7 smallest \(R \)-neighbors of 2 be \(x_1 < \cdots < x_7 \).

Remaining Case

For all \(1 \leq i < j \leq 7 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \geq 7 \). Hence \(\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\} \).

Hence \(B \) neighbors of 2 are \(\supseteq \{3, 4, 5, 6\} \).

Cases

- There exists \(3 \leq i < j \leq 6 \) such that \((i, j)\) is \(B \).
 Large Homog Set: \(\{2, i, j\} \).

- For all \(3 \leq i < j \leq 6 \), \((i, j)\) is \(R \).
 Large Homog Set: \(\{3, 4, 5, 6\} \).
Case 3 \(\deg_R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be
\[x_1 < x_2 < x_3 < x_4 < x_5 < x_6. \]
\[\text{deg}_R(2) = 6, \text{ so } \text{deg}_B(2) = 6 \]

Case 3 \(\text{deg}_R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be \(x_1 < x_2 < x_3 < x_4 < x_5 < x_6 \).

- There exists \(1 \leq i < j \leq 6 \) such that \(\text{COL}(x_i, x_j) = R \).
 - Large homog set: \(\{2, x_i, x_j\} \).
Case 3 \(\deg_R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be \(x_1 < x_2 < x_3 < x_4 < x_5 < x_6 \).

- There exists \(1 \leq i < j \leq 6 \) such that \(\text{COL}(x_i, x_j) = R \).

 Large homog set: \(\{2, x_i, x_j\} \).

- For all \(1 \leq i < j \leq 6 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \leq 5 \).

 Large homog set: \(\{x_1, x_2, x_3, x_4, x_5, x_6\} \).
Case 3 $\deg_R(2) = 6$. Let the 6 smallest R-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

- There exists $1 \leq i < j \leq 6$ such that $\text{COL}(x_i, x_j) = R$.
 - Large homog set: $\{2, x_i, x_j\}$.

- For all $1 \leq i < j \leq 6$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \leq 5$.
 - Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6\}$.

Last Case on Next Slide
\[\text{deg}_R(2) = 6, \text{ so } \text{deg}_B(2) = 6 \text{ (cont)} \]

Case 3 \(\text{deg}_R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be \(x_1 < x_2 < x_3 < x_4 < x_5 < x_6 \).
\[\deg R(2) = 6, \text{ so } \deg B(2) = 6 \] (cont)

Case 3 \(\deg R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be \(x_1 < x_2 < x_3 < x_4 < x_5 < x_6 \).

Remaining Case
Case 3 \(\deg_R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be
\[x_1 < x_2 < x_3 < x_4 < x_5 < x_6. \]

Remaining Case

For all \(1 \leq i < j \leq 6 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \geq 6 \).
Hence \(R \) neighbors of 2 are \(\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\} \).
Hence \(B \) neighbors of 2 are
\[y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6. \]
Case 3 $\deg_R(2) = 6$. Let the 6 smallest R-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

Remaining Case

For all $1 \leq i < j \leq 6$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \geq 6$.
Hence R neighbors of 2 are $\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$.
Hence B neighbors of 2 are
$y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$.

Cases
$\deg_R(2) = 6$, so $\deg_B(2) = 6$ (cont)

Case 3 $\deg_R(2) = 6$. Let the 6 smallest R-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

Remaining Case

For all $1 \leq i < j \leq 6$, $\text{COL}(x_i, x_j) = B$ AND $x_1 \geq 6$.
Hence R neighbors of 2 are $\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$.
Hence B neighbors of 2 are $y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$.

Cases

- There exists $1 \leq i < j \leq 6$ such that (y_i, y_j) is B.
 Large Homog Set: $\{2, y_i, y_j\}$.
\(\text{deg}_R(2) = 6, \text{ so } \text{deg}_B(2) = 6 \) (cont)

Case 3 \(\text{deg}_R(2) = 6 \). Let the 6 smallest \(R \)-neighbors of 2 be \(x_1 < x_2 < x_3 < x_4 < x_5 < x_6 \).

Remaining Case

For all \(1 \leq i < j \leq 6 \), \(\text{COL}(x_i, x_j) = B \) AND \(x_1 \geq 6 \). Hence \(R \) neighbors of 2 are \(\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\} \). Hence \(B \) neighbors of 2 are \(y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6 \).

Cases

- There exists \(1 \leq i < j \leq 6 \) such that \((y_i, y_j) \) is \(B \). Large Homog Set: \(\{2, y_i, y_j\} \).

- For all \(1 \leq i < j \leq 6 \), \((y_i, y_j) \) is \(R \). Large Homog Set: \(\{3, 4, 5, y_4, y_5, y_6\} \).
$\text{deg}_R(2) \leq 5$

Case 4 $\text{deg}_R(2) \leq 5$. Then $\text{deg}_B(2) \geq 7$.
If $\text{deg}_B(2) = 7$ use the argument used for $\text{deg}_R(2) = 7$.
If $\text{deg}_B(2) \geq 8$ use the argument used for $\text{deg}_R(2) \geq 8$.
Exact Bound on $\text{PH}(2)$

We have

$$\text{PH}(2) \leq 14.$$
Exact Bound on $\text{PH}(2)$

We have

$$\text{PH}(2) \leq 14.$$

Known

$$\text{PH}(2) = 8.$$
What About $\text{PH}(3)$? $\text{PH}(4)$?

We know that $\text{PH}(2) = 8$.

Known $\text{PH}(3) = 13$ Gee, that's not so big.

Known $\text{PH}(4) \leq 687$ Gee, looking bigger.
What About PH(3)? PH(4)?

We know that PH(2) = 8.
What about PH(3)?
What About PH(3)? PH(4)?

We know that PH(2) = 8.
What about PH(3)?

Known

PH(3) = 13 Gee, thats not so big.
What About \(\text{PH}(3) \)? \(\text{PH}(4) \)?

We know that \(\text{PH}(2) = 8 \).

What about \(\text{PH}(3) \)?

Known

\[\text{PH}(3) = 13 \] Gee, that's not so big.

What about \(\text{PH}(4) \)?
What About $\text{PH}(3)$? $\text{PH}(4)$?

We know that $\text{PH}(2) = 8$.

What about $\text{PH}(3)$?

Known

$$\text{PH}(3) = 13$$

Gee, that's not so big.

What about $\text{PH}(4)$?

Known

$$\text{PH}(4) \leq 687$$

Gee, looking bigger.
What About $\text{PH}(3)$? $\text{PH}(4)$?

We know that $\text{PH}(2) = 8$.

What about $\text{PH}(3)$?

Known

$$\text{PH}(3) = 13 \text{ Gee, thats not so big.}$$

What about $\text{PH}(4)$?

Known

$$\text{PH}(4) \leq 687 \text{ Gee, looking bigger.}$$

The results on $\text{PH}(2), \text{PH}(3), \text{PH}(4)$ were done in 1978.
What About \(\text{PH}(3) \)? \(\text{PH}(4) \)?

We know that \(\text{PH}(2) = 8 \).

What about \(\text{PH}(3) \)?

Known

\[\text{PH}(3) = 13 \] Gee, thats not so big.

What about \(\text{PH}(4) \)?

Known

\[\text{PH}(4) \leq 687 \] Gee, looking bigger.

The results on \(\text{PH}(2), \text{PH}(3), \text{PH}(4) \) were done in 1978.

I do not think anyone has looked at actual \(\text{PH} \) numbers since then.
What About $\text{PH}(3)$? $\text{PH}(4)$?

We know that $\text{PH}(2) = 8$.
What about $\text{PH}(3)$?

Known

PH(3) = 13 Gee, thats not so big.

What about $\text{PH}(4)$?

Known

PH(4) \leq 687 Gee, looking bigger.

The results on $\text{PH}(2)$, $\text{PH}(3)$, $\text{PH}(4)$ were done in 1978.
I do not think anyone has looked at actual PH numbers since then.
Surely we can make progress now, perhaps with computers.
What About $\text{PH}(3)$? $\text{PH}(4)$?

We know that $\text{PH}(2) = 8$.
What about $\text{PH}(3)$?

Known

$\text{PH}(3) = 13$ Gee, that's not so big.

What about $\text{PH}(4)$?

Known

$\text{PH}(4) \leq 687$ Gee, looking bigger.

The results on $\text{PH}(2)$, $\text{PH}(3)$, $\text{PH}(4)$ were done in 1978.
I do not think anyone has looked at actual PH numbers since then.
Surely we can make progress now, perhaps with computers.
Yes, but don’t call me Shirley.