$\mathrm{PH}(2) \leq 14$

Exposition by William Gasarch

March 8, 2022

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Review of PH(k)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Review of PH(k)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least n such that for all 2-colorings of $\binom{\{k,...,n\}}{2}$ there exists a large homog set. (PH stands for Paris-Harrington.)

Review of PH(k)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least n such that for all 2-colorings of $\binom{\{k,...,n\}}{2}$ there exists a large homog set.

(PH stands for Paris-Harrington.)

Def PH(2) is the least *n* such that for all 2-colorings of $\binom{\{2,...,n\}}{2}$ there exists a large homog set.

ション ふぼう メリン メリン しょうくしゃ

$\mathrm{PH}(2) \leq 14$

Let COL: $\binom{\{2,...,14\}}{2} \rightarrow [2]$. We show there is a large homog set.

・ロト・日本・ビート・ビート しょうくう

$\mathrm{PH}(2) \leq 14$

Let COL: $\binom{\{2,...,14\}}{2} \rightarrow [2]$. We show there is a large homog set. Note The graph has 13 vertices so every point has degree 12.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Case 1 deg_R(2) \geq 8. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

・ロト・日本・モト・モト・モー うへぐ

Case 1 deg_R(2) \geq 8. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

▶ There exists $1 \le i < j \le 8$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.

Case 1 deg_R(2) \geq 8. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

- ▶ There exists $1 \le i < j \le 8$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.
- ► For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \le 7$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.

Case 1 deg_R(2) \geq 8. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

- ▶ There exists $1 \le i < j \le 8$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.
- ► For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \le 7$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.
- For all $1 \le i < j \le 8$, $\operatorname{COL}(x_i, x_j) = B$ AND $x_1 \ge 8$.

Case 1 deg_R(2) \geq 8. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

- ▶ There exists $1 \le i < j \le 8$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.
- ► For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \le 7$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.
- For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \ge 8$. $x_2 \ge 9, x_3 \ge 10, \cdots, x_8 \ge 15$.

Case 1 deg_R(2) \geq 8. Let the 8 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_8$.

- ▶ There exists $1 \le i < j \le 8$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.
- ► For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \le 7$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$.
- For all $1 \le i < j \le 8$, $COL(x_i, x_j) = B$ AND $x_1 \ge 8$. $x_2 \ge 9$, $x_3 \ge 10$, \cdots , $x_8 \ge 15$. Contradiction since we are coloring $\binom{\{2, \dots, 14\}}{2}$.

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

・ロト・日本・モト・モト・モー うへぐ

 $\deg_{\mathsf{R}}(2) = \mathsf{7}$, so $\deg_{\mathsf{B}}(2) = \mathsf{5}$

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

▶ There exists $1 \le i < j \le 7$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

- ▶ There exists $1 \le i < j \le 7$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.
- For all $1 \le i < j \le 7$, $COL(x_i, x_j) = B$ AND $x_1 \le 6$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$.

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

- ▶ There exists $1 \le i < j \le 7$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.
- For all $1 \le i < j \le 7$, $COL(x_i, x_j) = B$ AND $x_1 \le 6$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$.

Last Case on Next Slide.

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all $1 \le i < j \le 7$, $COL(x_i, x_j) = B$ AND $x_1 \ge 7$. Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$. Hence *B* neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$.

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all $1 \le i < j \le 7$, $COL(x_i, x_j) = B$ AND $x_1 \ge 7$. Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$. Hence *B* neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$. Cases

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all
$$1 \le i < j \le 7$$
, $COL(x_i, x_j) = B$ AND $x_1 \ge 7$.
Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$.
Hence *B* neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$.
Cases

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$\deg_{R}(2) = 7$, so $\deg_{B}(2) = 5$ (cont)

Case 2 deg_R(2) = 7. Let the 7 smallest *R*-neighbors of 2 be $x_1 < \cdots < x_7$.

Remaining Case

For all
$$1 \le i < j \le 7$$
, $COL(x_i, x_j) = B$ AND $x_1 \ge 7$.
Hence $\{x_1, \ldots, x_7\} \subseteq \{7, 8, 9, 10, 11, 12, 13, 14\}$.
Hence *B* neighbors of 2 are $\supseteq \{3, 4, 5, 6\}$.
Cases

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 3 deg_R(2) = 6. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

Case 3 deg_R(2) = 6. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

▶ There exists $1 \le i < j \le 6$ such that $COL(x_i, x_j) = R$. Large homog set: $\{2, x_i, x_j\}$.

Case 3 deg_R(2) = 6. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

- ► There exists 1 ≤ i < j ≤ 6 such that COL(x_i, x_j) = R. Large homog set: {2, x_i, x_j}.
- For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \le 5$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6\}$.

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

- ► There exists 1 ≤ i < j ≤ 6 such that COL(x_i, x_j) = R. Large homog set: {2, x_i, x_j}.
- For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \le 5$. Large homog set: $\{x_1, x_2, x_3, x_4, x_5, x_6\}$.

Last Case on Next Slide

$\deg_{R}(2) = 6$, so $\deg_{B}(2) = 6$ (cont)

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$.

・ロト・日本・モト・モト・モー うへぐ

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$. **Remaining Case**

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$. Remaining Case

For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \ge 6$. Hence *R* neighbors of 2 are $\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Hence *B* neighbors of 2 are $y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$.

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$. Remaining Case

For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \ge 6$. Hence *R* neighbors of 2 are $\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Hence *B* neighbors of 2 are $y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$. Cases

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$. Remaining Case

For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \ge 6$. Hence *R* neighbors of 2 are $\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Hence *B* neighbors of 2 are $y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$. Cases

► There exists 1 ≤ i < j ≤ 6 such that (y_i, y_j) is B. Large Homog Set: {2, y_i, y_j}.

Case 3 $\deg_{\mathbb{R}}(2) = 6$. Let the 6 smallest *R*-neighbors of 2 be $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$. Remaining Case

For all $1 \le i < j \le 6$, $COL(x_i, x_j) = B$ AND $x_1 \ge 6$. Hence *R* neighbors of 2 are $\subseteq \{6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Hence *B* neighbors of 2 are $y_1 = 3 < y_2 = 4 < y_3 = 5 < y_4 < y_5 < y_6$. Cases

► There exists 1 ≤ i < j ≤ 6 such that (y_i, y_j) is B. Large Homog Set: {2, y_i, y_j}.

$\deg_{R}(2) \leq 5$

Case 4 $\deg_{\mathbf{R}}(2) \leq 5$. Then $\deg_{\mathbf{B}}(2) \geq 7$. If $\deg_{\mathbf{B}}(2) = 7$ use the argument used for $\deg_{\mathbf{R}}(2) = 7$. If $\deg_{\mathbf{B}}(2) \geq 8$ use the argument used for $\deg_{\mathbf{R}}(2) \geq 8$.

Exact Bound on PH(2)

We have

 $\mathrm{PH}(2) \leq 14.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Exact Bound on PH(2)

We have

 $\mathrm{PH}(2) \leq 14.$

Known

PH(2) = 8.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We know that PH(2) = 8.

(ロト (個) (E) (E) (E) (E) のへの

We know that PH(2) = 8. What about PH(3)?

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

What about PH(4)?

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

```
What about PH(4)?
```

Known

 $\mathrm{PH}(4) \leq 687$ Gee, looking bigger.

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

```
What about PH(4)?
```

Known

 $PH(4) \leq 687$ Gee, looking bigger.

The results on PH(2), PH(3), PH(4) were done in 1978.

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

```
What about PH(4)?
```

Known

 $PH(4) \leq 687$ Gee, looking bigger.

The results on PH(2), PH(3), PH(4) were done in 1978.

I do not think anyone has looked at actual PH numbers since then.

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

```
What about PH(4)?
```

Known

 $PH(4) \leq 687$ Gee, looking bigger.

The results on PH(2), PH(3), PH(4) were done in 1978. I do not think anyone has looked at actual PH numbers since then. Surely we can make progress now, perhaps with computers.

We know that PH(2) = 8. What about PH(3)? Known

PH(3) = 13 Gee, thats not so big.

```
What about PH(4)?
```

Known

 $PH(4) \leq 687$ Gee, looking bigger.

The results on PH(2), PH(3), PH(4) were done in 1978. I do not think anyone has looked at actual PH numbers since then. Surely we can make progress now, perhaps with computers. Yes, but don't call me Shirley.