$\mathrm{PH}(1) \leq 8$

Exposition by William Gasarch

March 31, 2022

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
$\operatorname{Def} \operatorname{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $\binom{\{k, \ldots, n\}}{2}$ there exists a homog set H such that (a) $|H|>\min (H)$ and ${ }^{2}(\mathrm{~b})|H| \geq 3$.
(PH stands for Paris-Harrington.)

$\mathrm{PH}(1) \leq 8$

Let COL: $\binom{\{1, \ldots, 8\}}{2} \rightarrow[2]$. We show there is a large homog set with ≥ 3 elements.

$\mathrm{PH}(1) \leq 8$

Let COL: $\binom{\{1, \ldots, 8\}}{2} \rightarrow[2]$. We show there is a large homog set with ≥ 3 elements.
Note The graph has 8 vertices so every point has degree 7 .

$\operatorname{deg}_{R}(1) \geq 5$

Case $1 \operatorname{deg}_{R}(1) \geq 5$. Let the 5 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$.

$\operatorname{deg}_{R}(1) \geq 5$

Case $1 \operatorname{deg}_{R}(1) \geq 5$. Let the 5 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$.

- There exists $1 \leq i<j \leq 5$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.

$\operatorname{deg}_{R}(1) \geq 5$

Case $1 \operatorname{deg}_{R}(1) \geq 5$. Let the 5 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$.

- There exists $1 \leq i<j \leq 5$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 4$. Large homog set: $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.

$\operatorname{deg}_{R}(1) \geq 5$

Case $1 \operatorname{deg}_{R}(1) \geq 5$. Let the 5 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$.

- There exists $1 \leq i<j \leq 5$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 4$. Large homog set: $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 5$.

$\operatorname{deg}_{R}(1) \geq 5$

Case $1 \operatorname{deg}_{R}(1) \geq 5$. Let the 5 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$.

- There exists $1 \leq i<j \leq 5$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 4$. Large homog set: $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 5$.

$$
x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8, x_{5} \geq 9
$$

$\operatorname{deg}_{R}(1) \geq 5$

Case $1 \operatorname{deg}_{R}(1) \geq 5$. Let the 5 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}<x_{5}$.

- There exists $1 \leq i<j \leq 5$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 4$. Large homog set: $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$.
- For all $1 \leq i<j \leq 5, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 5$.
$x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8, x_{5} \geq 9$.
Contradiction since we are coloring $\binom{\{1, \ldots, 8\}}{2}$.

$\operatorname{deg}_{R}(1)=4$

Case $2 \operatorname{deg}_{\mathrm{R}}(1)=4$. Let the 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

$\operatorname{deg}_{R}(1)=4$

Case $2 \operatorname{deg}_{\mathrm{R}}(1)=4$. Let the 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

- There exists $1 \leq i<j \leq 4$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.

$\operatorname{deg}_{R}(1)=4$

Case $2 \operatorname{deg}_{\mathrm{R}}(1)=4$. Let the 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

- There exists $1 \leq i<j \leq 4$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 3$. Large homog set: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

$\operatorname{deg}_{R}(1)=4$

Case $2 \operatorname{deg}_{\mathrm{R}}(1)=4$. Let the 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

- There exists $1 \leq i<j \leq 4$ such that $\operatorname{COL}\left(x_{i}, x_{j}\right)=R$. Large homog set: $\left\{1, x_{i}, x_{j}\right\}$.
- For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \leq 3$. Large homog set: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
Last Case on Next Slide.

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 4$. Hence $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq\{4,5,6,7,8\}$.
Hence B neighbors of 1 are $\{2,3\}$ and $x \in\{4,5,6,7,8\}$.

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 4$. Hence $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq\{4,5,6,7,8\}$.
Hence B neighbors of 1 are $\{2,3\}$ and $x \in\{4,5,6,7,8\}$.
Cases

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

Remaining Case

For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 4$. Hence $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq\{4,5,6,7,8\}$.
Hence B neighbors of 1 are $\{2,3\}$ and $x \in\{4,5,6,7,8\}$. Cases

- If $\operatorname{COL}(2,3)=B$ then Large homog set is $\{1,2,3\}$.

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

Remaining Case

For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 4$. Hence $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq\{4,5,6,7,8\}$.
Hence B neighbors of 1 are $\{2,3\}$ and $x \in\{4,5,6,7,8\}$.
Cases

- If $\operatorname{COL}(2,3)=B$ then Large homog set is $\{1,2,3\}$.
- If $\operatorname{COL}(2, x)=B$ then Large homog set is $\{1,2, x\}$.

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

Remaining Case

For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 4$. Hence $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq\{4,5,6,7,8\}$.
Hence B neighbors of 1 are $\{2,3\}$ and $x \in\{4,5,6,7,8\}$.
Cases

- If $\operatorname{COL}(2,3)=B$ then Large homog set is $\{1,2,3\}$.
- If $\operatorname{COL}(2, x)=B$ then Large homog set is $\{1,2, x\}$.
- If $\operatorname{COL}(3, x)=B$ then Large homog set is $\{1,3, x\}$.

$\operatorname{deg}_{R}(2)=4$ (cont)

Case $2 \operatorname{deg}_{R}(1)=4$. Let the 3 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

Remaining Case

For all $1 \leq i<j \leq 4, \operatorname{COL}\left(x_{i}, x_{j}\right)=B$ AND $x_{1} \geq 4$. Hence $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq\{4,5,6,7,8\}$.
Hence B neighbors of 1 are $\{2,3\}$ and $x \in\{4,5,6,7,8\}$.
Cases

- If $\operatorname{COL}(2,3)=B$ then Large homog set is $\{1,2,3\}$.
- If $\operatorname{COL}(2, x)=B$ then Large homog set is $\{1,2, x\}$.
- If $\operatorname{COL}(3, x)=B$ then Large homog set is $\{1,3, x\}$.
- If none of he above hold then Large homog set is $\{2,3, x\}$.

$\operatorname{deg}_{R}(1) \leq 3$

Case $3 \operatorname{deg}_{R}(1) \leq 3$. Then $\operatorname{deg}_{B}(1) \geq 4$. If $\operatorname{deg}_{B}(1)=4$ use the argument used for $\operatorname{deg}_{R}(1)=4$. If $\operatorname{deg}_{B}(1) \geq 5$ use the argument used for $\operatorname{deg}_{R}(1) \geq 5$.

Exact Bound on PH(1)

Not Sure The paper I got this out of defined Large Homog differently, They use

$$
|A| \geq \min (A)
$$

So I do not have a source on $P H(1)$ as it is normaly defined.

Exact Bound on PH(1)

Not Sure The paper I got this out of defined Large Homog differently, They use

$$
|A| \geq \min (A)
$$

So I do not have a source on $P H(1)$ as it is normaly defined. Maybe you do!

