$\mathrm{PH}(1) \leq 8$

Exposition by William Gasarch

March 31, 2022

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Review of PH(k)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Review of PH(k)

Def $A \subseteq \mathbb{N}$ is **large** if $|A| > \min(A)$.

Def PH(k) is the least $n \ge$ such that for all 2-colorings of $\binom{\{k,\dots,n\}}{2}$ there exists a homog set H such that (a) $|H| > \min(H)$ and (b) $|H| \ge 3$. (PH stands for Paris-Harrington.)

$\mathrm{PH}(1) \leq 8$

Let COL: $\binom{\{1,\ldots,8\}}{2} \rightarrow [2]$. We show there is a large homog set with ≥ 3 elements.

$\mathrm{PH}(1) \leq 8$

Let COL: $\binom{\{1,...,8\}}{2} \rightarrow [2]$. We show there is a large homog set with ≥ 3 elements. Note The graph has 8 vertices so every point has degree 7.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Case 1 deg_R(1) \geq 5. Let the 5 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4 < x_5$.

Case 1 deg_R(1) \geq 5. Let the 5 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4 < x_5$.

► There exists 1 ≤ i < j ≤ 5 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.

Case 1 deg_R(1) \geq 5. Let the 5 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4 < x_5$.

- ► There exists 1 ≤ i < j ≤ 5 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.
- For all 1 ≤ i < j ≤ 5, COL(x_i, x_j) = B AND x₁ ≤ 4. Large homog set: {x₁, x₂, x₃, x₄, x₅}.

Case 1 deg_R(1) \geq 5. Let the 5 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4 < x_5$.

- ► There exists 1 ≤ i < j ≤ 5 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.
- For all 1 ≤ i < j ≤ 5, COL(x_i, x_j) = B AND x₁ ≤ 4. Large homog set: {x₁, x₂, x₃, x₄, x₅}.

For all $1 \le i < j \le 5$, $\operatorname{COL}(x_i, x_j) = B$ AND $x_1 \ge 5$.

Case 1 deg_R(1) \geq 5. Let the 5 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4 < x_5$.

- ► There exists 1 ≤ i < j ≤ 5 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.
- For all 1 ≤ i < j ≤ 5, COL(x_i, x_j) = B AND x₁ ≤ 4. Large homog set: {x₁, x₂, x₃, x₄, x₅}.

For all $1 \le i < j \le 5$, $COL(x_i, x_j) = B$ AND $x_1 \ge 5$. $x_2 \ge 6, x_3 \ge 7, x_4 \ge 8, x_5 \ge 9$.

Case 1 deg_R(1) \geq 5. Let the 5 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4 < x_5$.

- ► There exists 1 ≤ i < j ≤ 5 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.
- For all 1 ≤ i < j ≤ 5, COL(x_i, x_j) = B AND x₁ ≤ 4. Large homog set: {x₁, x₂, x₃, x₄, x₅}.

For all $1 \le i < j \le 5$, $COL(x_i, x_j) = B$ AND $x_1 \ge 5$. $x_2 \ge 6$, $x_3 \ge 7$, $x_4 \ge 8$, $x_5 \ge 9$. Contradiction since we are coloring $\binom{\{1,\ldots,8\}}{2}$.

Case 2 deg_R(1) = 4. Let the 4 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Case 2 $\deg_{\mathbf{R}}(1) = 4$. Let the 4 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

► There exists 1 ≤ i < j ≤ 4 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.

Case 2 $\deg_{\mathbb{R}}(1) = 4$. Let the 4 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

- ► There exists 1 ≤ i < j ≤ 4 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.
- For all 1 ≤ i < j ≤ 4, COL(x_i, x_j) = B AND x₁ ≤ 3. Large homog set: {x₁, x₂, x₃, x₄}.

Case 2 $\deg_{\mathbb{R}}(1) = 4$. Let the 4 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

- ► There exists 1 ≤ i < j ≤ 4 such that COL(x_i, x_j) = R. Large homog set: {1, x_i, x_j}.
- For all 1 ≤ i < j ≤ 4, COL(x_i, x_j) = B AND x₁ ≤ 3. Large homog set: {x₁, x₂, x₃, x₄}.

Last Case on Next Slide.

$\deg_{R}(2) = 4$ (cont)

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$\deg_{R}(2) = 4$ (cont)

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

For all $1 \le i < j \le 4$, $COL(x_i, x_j) = B$ AND $x_1 \ge 4$. Hence $\{x_1, x_2, x_3, x_4\} \subseteq \{4, 5, 6, 7, 8\}$. Hence *B* neighbors of 1 are $\{2, 3\}$ and $x \in \{4, 5, 6, 7, 8\}$.

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

For all $1 \le i < j \le 4$, $COL(x_i, x_j) = B$ AND $x_1 \ge 4$. Hence $\{x_1, x_2, x_3, x_4\} \subseteq \{4, 5, 6, 7, 8\}$. Hence *B* neighbors of 1 are $\{2, 3\}$ and $x \in \{4, 5, 6, 7, 8\}$. Cases

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

For all $1 \le i < j \le 4$, $COL(x_i, x_j) = B$ AND $x_1 \ge 4$. Hence $\{x_1, x_2, x_3, x_4\} \subseteq \{4, 5, 6, 7, 8\}$. Hence *B* neighbors of 1 are $\{2, 3\}$ and $x \in \{4, 5, 6, 7, 8\}$. Cases

• If COL(2,3) = B then Large homog set is $\{1,2,3\}$.

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

For all $1 \le i < j \le 4$, $COL(x_i, x_j) = B$ AND $x_1 \ge 4$. Hence $\{x_1, x_2, x_3, x_4\} \subseteq \{4, 5, 6, 7, 8\}$. Hence *B* neighbors of 1 are $\{2, 3\}$ and $x \in \{4, 5, 6, 7, 8\}$. Cases

- If COL(2,3) = B then Large homog set is $\{1,2,3\}$.
- If COL(2, x) = B then Large homog set is $\{1, 2, x\}$.

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

For all $1 \le i < j \le 4$, $COL(x_i, x_j) = B$ AND $x_1 \ge 4$. Hence $\{x_1, x_2, x_3, x_4\} \subseteq \{4, 5, 6, 7, 8\}$. Hence *B* neighbors of 1 are $\{2, 3\}$ and $x \in \{4, 5, 6, 7, 8\}$. Cases

- If COL(2,3) = B then Large homog set is $\{1,2,3\}$.
- If COL(2, x) = B then Large homog set is $\{1, 2, x\}$.
- If COL(3, x) = B then Large homog set is $\{1, 3, x\}$.

Case 2 deg_R(1) = 4. Let the 3 smallest *R*-neighbors of 1 be $x_1 < x_2 < x_3 < x_4$.

Remaining Case

For all $1 \le i < j \le 4$, $COL(x_i, x_j) = B$ AND $x_1 \ge 4$. Hence $\{x_1, x_2, x_3, x_4\} \subseteq \{4, 5, 6, 7, 8\}$. Hence *B* neighbors of 1 are $\{2, 3\}$ and $x \in \{4, 5, 6, 7, 8\}$. Cases

- If COL(2,3) = B then Large homog set is $\{1,2,3\}$.
- If COL(2, x) = B then Large homog set is $\{1, 2, x\}$.
- If COL(3, x) = B then Large homog set is $\{1, 3, x\}$.
- If none of he above hold then Large homog set is $\{2, 3, x\}$.

$\deg_{\text{R}}(1) \leq 3$

Case 3 $\deg_{\mathbb{R}}(1) \leq 3$. Then $\deg_{\mathbb{B}}(1) \geq 4$. If $\deg_{\mathbb{B}}(1) = 4$ use the argument used for $\deg_{\mathbb{R}}(1) = 4$. If $\deg_{\mathbb{B}}(1) \geq 5$ use the argument used for $\deg_{\mathbb{R}}(1) \geq 5$.

Not Sure The paper I got this out of defined Large Homog differently, They use

 $|A| \geq \min(A).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

So I do not have a source on PH(1) as it is normaly defined.

Not Sure The paper I got this out of defined Large Homog differently, They use

 $|A| \geq \min(A).$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

So I do not have a source on PH(1) as it is normaly defined. Maybe you do!