$\mathrm{PH}(1) \leq 7$

Proof by Morgan Bryant, Issac Mammal, Adam Melrod. Exposition by William Gasarch

April 3, 2022

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
$\operatorname{Def} \operatorname{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $(\underset{2}{\{k, \ldots, n\}})$ there exists a set H such that the following hold.

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
$\operatorname{Def} \operatorname{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $(\underset{2}{\{k, \ldots, n\}})$ there exists a set H such that the following hold.

- H is homog.

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
$\operatorname{Def} \operatorname{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $(\underset{2}{\{k, \ldots, n\}})$ there exists a set H such that the following hold.

- H is homog.
- $|H|>\min (H)$.

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
$\operatorname{Def} \operatorname{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $(\underset{2}{\{k, \ldots, n\}})$ there exists a set H such that the following hold.

- H is homog.
- $|H|>\min (H)$.
- $|H| \geq 3$.

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
Def $\mathrm{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $(\underset{2}{\{k, \ldots, n\}})$ there exists a set H such that the following hold.

- H is homog.
- $|H|>\min (H)$.
- $|H| \geq 3$.
(PH stands for Paris-Harrington.)

Review of $\mathrm{PH}(k)$

Def $A \subseteq \mathbb{N}$ is large if $|A|>\min (A)$.
Def $\operatorname{PH}(k)$ is the least $n \geq$ such that for all 2-colorings of $(\underset{2}{\{k, \ldots, n\}})$ there exists a set H such that the following hold.

- H is homog.
- $|H|>\min (H)$.
- $|H| \geq 3$.
(PH stands for Paris-Harrington.)
Notation We call a set like H a Large Homog Set and abbreviate this by LHS.

$\mathrm{PH}(1) \leq 7$

Let COL: $(\underset{21, \ldots, 7\}}{ }) \rightarrow[2]$.
We show there is a LHS.

$\mathrm{PH}(1) \leq 7$

Let COL: $(\underset{2}{\{1, \ldots, 7\}}) \rightarrow[2]$.
We show there is a LHS.
Note The graph has 7 vertices so every point has degree 6 .

$\mathrm{PH}(1) \leq 7$

Let COL: $(\underset{2}{\{1, \ldots, 7\}}) \rightarrow[2]$.
We show there is a LHS.
Note The graph has 7 vertices so every point has degree 6 .
Assume We can assum $\operatorname{COL}(1,2)=R$.

Case 1: $\operatorname{deg}_{R}(1) \geq 3$

The 3 smallest R-Nbhs of 1 are $2=x_{1}<x_{2}<x_{3}$.

Case 1: $\operatorname{deg}_{R}(1) \geq 3$

The 3 smallest R-Nbhs of 1 are $2=x_{1}<x_{2}<x_{3}$.

- $(\exists 1 \leq i<j \leq 3)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=R\right]$. LHS: $\left\{1, x_{i}, x_{j}\right\}$.

Case 1: $\operatorname{deg}_{R}(1) \geq 3$

The 3 smallest R-Nbhs of 1 are $2=x_{1}<x_{2}<x_{3}$.

- $(\exists 1 \leq i<j \leq 3)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=R\right]$. LHS: $\left\{1, x_{i}, x_{j}\right\}$.
- $(\forall 1 \leq i<j \leq 3)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B\right]$. LHS: $\left\{2, x_{2}, x_{3}\right\}$

Case 2: $\operatorname{deg}_{B}(1) \geq 4$

The 4 smallest R-Nbhs are $x_{1}<x_{2}<x_{3}<x_{4}$.

Case 2: $\operatorname{deg}_{B}(1) \geq 4$

The 4 smallest R-Nbhs are $x_{1}<x_{2}<x_{3}<x_{4}$.

- $(\exists 1 \leq i<j \leq 4)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B\right]$. LHS: $\left\{1, x_{i}, x_{j}\right\}$.

Case 2: $\operatorname{deg}_{B}(1) \geq 4$

The 4 smallest R-Nbhs are $x_{1}<x_{2}<x_{3}<x_{4}$.

- $(\exists 1 \leq i<j \leq 4)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B\right]$. LHS: $\left\{1, x_{i}, x_{j}\right\}$.
- $(\forall 1 \leq i<j \leq 4)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=R \wedge x_{1}=3\right.$.

LHS: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.

Case 2: $\operatorname{deg}_{B}(1) \geq 4$

The 4 smallest R-Nbhs are $x_{1}<x_{2}<x_{3}<x_{4}$.

- $(\exists 1 \leq i<j \leq 4)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B\right]$. LHS: $\left\{1, x_{i}, x_{j}\right\}$.
- $(\forall 1 \leq i<j \leq 4)\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=R \wedge x_{1}=3\right.$.

LHS: $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$.
Last Case on Next Slide.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$. Remaining Case

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$. Remaining Case
($\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$. Remaining Case
($\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$. Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$. Cases

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$. Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$. Cases
$-\operatorname{COL}(2,3)=R . \operatorname{LHS}:\{1,2,3\}$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $\operatorname{COL}(2,3)=R$. LHS: $\{1,2,3\}$.
- $\operatorname{COL}(2,3)=B$.
a) $(\exists 4 \leq i \leq 7)[\operatorname{COL}(i, 2)=\operatorname{COL}(i, 3)=B$. LHS: $\{2,3, i\}$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $\operatorname{COL}(2,3)=R$. LHS: $\{1,2,3\}$.
- $\operatorname{COL}(2,3)=B$.
a) $(\exists 4 \leq i \leq 7)[\mathrm{COL}(i, 2)=\operatorname{COL}(i, 3)=B$. LHS: $\{2,3, i\}$.
b) $(\forall 4 \leq i \leq 7)[\operatorname{COL}(i, 2)=R \vee \operatorname{COL}(i, 3)=R]$.

Map $i \in\{4,5,6,7\}$ to $j \in\{2,3\}$ st $\operatorname{COL}(i, j)=R$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $\operatorname{COL}(2,3)=R$. LHS: $\{1,2,3\}$.
- $\operatorname{COL}(2,3)=B$.
a) $(\exists 4 \leq i \leq 7)[\mathrm{COL}(i, 2)=\operatorname{COL}(i, 3)=B$. LHS: $\{2,3, i\}$.
b) $(\forall 4 \leq i \leq 7)[\operatorname{COL}(i, 2)=R \vee \operatorname{COL}(i, 3)=R]$.

Map $i \in\{4,5,6,7\}$ to $j \in\{2,3\}$ st $\operatorname{COL}(i, j)=R$.
$(\exists i, j \in\{4,5,6,7\})$ map to $2 \rightarrow$ LHS $\{2, i, j\}$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$.

Cases
$-\operatorname{COL}(2,3)=R . \operatorname{LHS}:\{1,2,3\}$.

- $\operatorname{COL}(2,3)=B$.
a) $(\exists 4 \leq i \leq 7)[\mathrm{COL}(i, 2)=\operatorname{COL}(i, 3)=B$. LHS: $\{2,3, i\}$.
b) $(\forall 4 \leq i \leq 7)[\operatorname{COL}(i, 2)=R \vee \operatorname{COL}(i, 3)=R]$.

Map $i \in\{4,5,6,7\}$ to $j \in\{2,3\}$ st $\operatorname{COL}(i, j)=R$.
$(\exists i, j \in\{4,5,6,7\})$ map to $2 \rightarrow \operatorname{LHS}\{2, i, j\}$.
$(\exists i, j, k \in\{4,5,6,7\})$ map to $3 \rightarrow$ then LHS $\{3, i, j, k\}$.

Case 2 Still: $\operatorname{deg}_{B}(1)=4$

The 4 smallest R-neighbors of 1 be $x_{1}<x_{2}<x_{3}<x_{4}$.
Remaining Case
$\left(\forall 1 \leq i<j \leq 4\left[\operatorname{COL}\left(x_{i}, x_{j}\right)=B \wedge x_{1} \geq 4\right]\right.$.

1) $x_{1} \geq 5$. Then $x_{2} \geq 6, x_{3} \geq 7, x_{4} \geq 8$. Contradiction.
2) $x_{1}=4, x_{2}=5, x_{3}=6, x_{4}=7$. So R-nbhs of 1 are $\{2,3\}$.

Cases

- $\operatorname{COL}(2,3)=R . \operatorname{LHS}:\{1,2,3\}$.
- $\operatorname{COL}(2,3)=B$.
a) $(\exists 4 \leq i \leq 7)[\operatorname{COL}(i, 2)=\operatorname{COL}(i, 3)=B$. LHS: $\{2,3, i\}$.
b) $(\forall 4 \leq i \leq 7)[\operatorname{COL}(i, 2)=R \vee \operatorname{COL}(i, 3)=R]$.

Map $i \in\{4,5,6,7\}$ to $j \in\{2,3\}$ st $\operatorname{COL}(i, j)=R$.
$(\exists i, j \in\{4,5,6,7\})$ map to $2 \rightarrow$ LHS $\{2, i, j\}$.
$(\exists i, j, k \in\{4,5,6,7\})$ map to $3 \rightarrow$ then LHS $\{3, i, j, k\}$.
If neither happens then ≤ 1 element of $\{4,5,6,7\}$ maps to 2 and ≤ 2 elements of $\{4,5,6,7\}$ map to 3 . So ≤ 3 elements get mapped, contradiction.

Case 3: NOT Case 1 or 2

If neither Case 1 or Case 2 happens then

Case 3: NOT Case 1 or 2

If neither Case 1 or Case 2 happens then

- $\operatorname{deg}_{R}(1) \leq 2$

Case 3: NOT Case 1 or 2

If neither Case 1 or Case 2 happens then
$-\operatorname{deg}_{R}(1) \leq 2$

- $\operatorname{deg}_{B}(1) \leq 3$

So $\operatorname{deg}(1) \leq 5$ which is a contradiction.

