The Infinite a-ary Can Ramsey Thm

William Gasarch-U of MD
Min-Homog, Max-Homog, Rainbow

Def: Let $\text{COL} : \binom{\mathbb{N}}{2} \rightarrow \omega$. Let $V \subseteq \mathbb{N}$. Assume $a < b$ and $c < d$.

- V is homog if $\text{COL}(a, b) = \text{COL}(c, d)$ iff TRUE.
- V is min-homog if $\text{COL}(a, b) = \text{COL}(c, d)$ iff $a = c$.
- V is max-homog if $\text{COL}(a, b) = \text{COL}(c, d)$ iff $b = d$.
- V is rainb if $\text{COL}(a, b) = \text{COL}(c, d)$ iff $a = c$ and $b = d$.

Can Ramsey Thm for $\binom{\mathbb{N}}{2}$: For all $\text{COL} : \binom{\mathbb{N}}{2} \rightarrow \omega$, there exists an infinite set V such that V is homog OR min-homog OR max-homog OR rainb.
Restate So We Can Generalize

Def: Let \(COL : \binom{\mathbb{N}}{2} \to \omega \). Let \(V \subseteq \mathbb{N} \). Assume \(a_1 < a_2 \) and \(b_1 < b_2 \).

- \(V \) is *homog* if \(COL(a_1, a_2) = COL(b_1, b_2) \) iff \(TRUE \). So \(COL(x, y) \) does not depend on the first or second coordinate. We call this \(\emptyset \)-homog.

- \(V \) is *min-homog* if \(COL(a_1, a_2) = COL(b_1, b_2) \) iff \(a_1 = b_1 \). So \(COL(x, y) \) depend on the first coordinate only. We call this \(\{1\}\)-homog.

- \(V \) is *max-homog* if \(COL(a_1, a_2) = COL(b_1, b_2) \) iff \(a_2 = b_2 \). So \(COL(x, y) \) depend on the second coordinate only. Can call this \(\{2\}\)-homog.

- \(V \) is *rainb* if
 \[\text{COL}(a_1, a_2) = \text{COL}(b_1, b_2) \text{ iff } a_1 = b_1 \text{ and } a_2 = b_2.\]
 So \(COL(x, y) \) depend on the first and second coordinate only. Can call this \(\{1, 2\}\)-homog.

Can Ramsey Thm for \(\binom{\mathbb{N}}{2} \): For all \(COL : \binom{\mathbb{N}}{2} \to \omega \), there exists \(A \subseteq \{1, 2\} \) and an infinite set \(V \) such that \(V \) is \(A \)-homog.
All 8 Cases For 3-Ary Can Ramsey

\[\text{COL} : \binom{\mathbb{N}}{3} \to \omega. \ V \subseteq \mathbb{N}. \ a_1 < a_2 < a_3 \text{ and } b_1 < b_2 < b_3. \]
All 8 Cases For 3-Ary Can Ramsey

\[\text{COL} : \binom{\mathbb{N}}{3} \rightarrow \omega. \ V \subseteq \mathbb{N}. \ a_1 < a_2 < a_3 \text{ and } b_1 < b_2 < b_3. \]

\(V \) is \(\emptyset \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff TRUE.
All 8 Cases For 3-Ary Can Ramsey

\[\text{COL} : \binom{\mathbb{N}}{3} \rightarrow \omega. \]
\[V \subseteq \mathbb{N}. \ a_1 < a_2 < a_3 \text{ and } b_1 < b_2 < b_3. \]

\[V \text{ is } \emptyset\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } \text{TRUE}. \]

\[V \text{ is } \{1\}\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } a_1 = b_1. \]
All 8 Cases For 3-Ary Can Ramsey

\(\text{COL} : \binom{\mathbb{N}}{3} \rightarrow \omega. \ V \subseteq \mathbb{N}. \ a_1 < a_2 < a_3 \text{ and } b_1 < b_2 < b_3. \)

\(V \) is \(\emptyset \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(\text{TRUE} \).

\(V \) is \(\{1\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_1 = b_1 \).

\(V \) is \(\{2\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_2 = b_2 \).
All 8 Cases For 3-Ary Can Ramsey

\(\text{COL} : \binom{\mathbb{N}}{3} \rightarrow \omega \). \(V \subseteq \mathbb{N} \). \(a_1 < a_2 < a_3 \) and \(b_1 < b_2 < b_3 \).

\(V \) is \(\emptyset \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(\text{TRUE} \).

\(V \) is \(\{1\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_1 = b_1 \).

\(V \) is \(\{2\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_2 = b_2 \).

\(V \) is \(\{3\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_3 = b_3 \).
All 8 Cases For 3-Ary Can Ramsey

\[\text{COL} : \left(\mathbb{N} \right)^3 \to \omega. \]
\[V \subseteq \mathbb{N}. \ a_1 < a_2 < a_3 \text{ and } b_1 < b_2 < b_3. \]

\[V \text{ is } \emptyset\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } \text{TRUE}. \]

\[V \text{ is } \{1\}\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } a_1 = b_1. \]

\[V \text{ is } \{2\}\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } a_2 = b_2. \]

\[V \text{ is } \{3\}\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } a_3 = b_3. \]

\[V \text{ is } \{1, 2\}\text{-homog if } \text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \text{ iff } (a_1 = b_1) \land (a_2 = b_2). \]
COL : \((\mathbb{N}_3) \rightarrow \omega\). \(V \subseteq \mathbb{N}\). \(a_1 < a_2 < a_3\) and \(b_1 < b_2 < b_3\).

\(V\) is \(\emptyset\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3)\) iff \(TRUE\).

\(V\) is \(\{1\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3)\) iff \(a_1 = b_1\).

\(V\) is \(\{2\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3)\) iff \(a_2 = b_2\).

\(V\) is \(\{3\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3)\) iff \(a_3 = b_3\).

\(V\) is \(\{1, 2\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3)\) iff \((a_1 = b_1) \land (a_2 = b_2)\).

\(V\) is \(\{1, 3\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3)\) iff \((a_1 = b_1) \land (a_3 = b_3)\).
All 8 Cases For 3-Ary Can Ramsey

COL : \((\mathbb{N})^3 \rightarrow \omega \). \(V \subseteq \mathbb{N} \). \(a_1 < a_2 < a_3 \) and \(b_1 < b_2 < b_3 \).

\(V \) is \(\emptyset \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff TRUE.

\(V \) is \(\{1\} \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_1 = b_1 \).

\(V \) is \(\{2\} \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_2 = b_2 \).

\(V \) is \(\{3\} \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_3 = b_3 \).

\(V \) is \(\{1, 2\} \)-homog if
\(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_1 = b_1) \land (a_2 = b_2) \).

\(V \) is \(\{1, 3\} \)-homog if
\(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_1 = b_1) \land (a_3 = b_3) \).

\(V \) is \(\{2, 3\} \)-homog if
\(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_2 = b_2) \land (a_3 = b_3) \).
All 8 Cases For 3-Ary Can Ramsey

\[\text{COL} : \binom{\mathbb{N}}{3} \rightarrow \omega. \ V \subseteq \mathbb{N}. \ a_1 < a_2 < a_3 \text{ and } b_1 < b_2 < b_3. \]

\(V \) is \(\emptyset \)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(\text{TRUE} \).

\(V \) is \(\{1\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_1 = b_1 \).

\(V \) is \(\{2\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_2 = b_2 \).

\(V \) is \(\{3\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \(a_3 = b_3 \).

\(V \) is \(\{1, 2\}\)-homog if
\(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_1 = b_1) \land (a_2 = b_2) \).

\(V \) is \(\{1, 3\}\)-homog if
\(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_1 = b_1) \land (a_3 = b_3) \).

\(V \) is \(\{2, 3\}\)-homog if
\(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_2 = b_2) \land (a_3 = b_3) \).

\(V \) is \(\{1, 2, 3\}\)-homog if \(\text{COL}(a_1, a_2, a_3) = \text{COL}(b_1, b_2, b_3) \) iff \((a_1 = b_1) \land (a_2 = b_2) \land (a_3 = b_3) \).
Can Ramsey Thm for $\binom{\mathbb{N}}{3}$: For all $\text{COL} : \binom{\mathbb{N}}{3} \to \omega$, there exists $A \subseteq \{1, 2, 3\}$ and an infinite set V such that V is A-homog.
All 8 Types are Possible

Define $\text{COL} : \left(^{3} \mathbb{N} \right) \rightarrow \omega$ by

$$\text{COL}(x < y < z) = (x, z)$$

Then \mathbb{N} is a $(1, 3)$-homog set.
All 8 Types are Possible

Define $COL : \binom{\mathbb{N}}{3} \to \omega$ by

$$COL(x < y < z) = (x, z)$$

Then \mathbb{N} is a $(1, 3)$-homog set.

The rest of the cases are similar.
Proofs of 3-ary Can Ramsey

There are three proofs of 3-ary Ramsey.

1. One is similar to the proof of 2-ary Ramsey that used 4-ary. It uses 6-ary.
2. One is similar to the proof of 2-ary Ramsey that used 3-ary. It uses 5-ary (I think).
3. One is Mileti-Style.

Doing these is extra credit on hw02.
Proofs of 3-ary Can Ramsey

There are three proofs of 3-ary Ramsey.

1. One is similar to the proof of 2-ary Ramsey that used 4-ary. It uses 6-ary.
Proofs of 3-ary Can Ramsey

There are three proofs of 3-ary Ramsey.

1. One is similar to the proof of 2-ary Ramsey that used 4-ary. It uses 6-ary.

2. One is similar to the proof of 2-ary Ramsey that used 3-ary. It uses 5-ary (I think).
There are three proofs of 3-ary Ramsey.

1. One is similar to the proof of 2-ary Ramsey that used 4-ary. It uses 6-ary.
2. One is similar to the proof of 2-ary Ramsey that used 3-ary. It uses 5-ary (I think).
3. One is Mileti-Style.

Doing these is extra credit on hw02.
I leave it to you to state and prove a-ary Can Ramsey.