The Convex Polygon Problem

1 Introduction

These notes are helpful if you both watched the recording and attended class (by zoom). Otherwise I doubt they are helpful.

Convention 1.1 Every time we mention a set of points in \mathbb{R}^{2} they have no three colinear

2 Happy Ending Theorem

Def 2.1 Let $A \subseteq \mathbb{R}^{2}$ of size k. The points in A form a convex k-gon if for every $x, y, z \in A$, there is no point of A in the triangle formed by x, y, z. Henceforth we just say k-gon.

Theorem 2.2 (Esther Klein) For every 5 points in \mathbb{R}^{2} there exists a 4-gon.

Theorem 2.3 (Erdös and Szekeres) For all $k \geq 3$ there exists n such that for every set of n points in \mathbb{R}^{2} there exists k of them that form a k-gon.

Sketch:
$k=3$: Take $n=3$.
$k=4$: Take $n=5$ and use Klein's Theorem.
We assume $k \geq 5$.
We went over three proofs that used the following three colorings.
The points are p_{1}, \ldots, p_{n}. The ordering on the points is arbitrary; however, for the third proof we need the ordering.
Proof 1: $n=R_{4}(k)$. We have any n points in \mathbb{R}^{2}
$C O L(w, x, y, z)$ is RED if the for points form a 4 -gon, and BLUE if they do not.

The homog set can't be BLUE since if was then there would be $k \geq 5$ points such that NO 4-subset was a 4-gon, which contradicts Klein's Theorem.

Hence there are k points so that every set of 4 of them forms a 4 -gon. One can show that the entire set is a k-gon.

Proof 1': We can use $n=R_{4}(k, 5)$ which is the smallest n such that any 2-coloring of $\binom{[n]}{4}$ has either a RED Homog set of size k or a BLUE homog set of size 5 .

Proof 2: $n=R_{3}(k)$. We have any n points in \mathbb{R}^{2}
$C O L(w, x, y)$ is RED if their is an EVEN number of points inside the x, y, z triangle, BLUE otherwise.

Both cases are possible. One can show that in either case the set is a k-gon using a parity argument.

Proof 3: $n=R_{3}(k)$. We have any n points in \mathbb{R}^{2}
$C O L\left(p_{i}, p_{j}, p_{k}\right)$ where $i<j<k$ is RED if p_{i}, p_{j}, p_{k} is clockwise, and BLUE if counterclockwise.

Some cases, finishing the proof will be on a HW.

These bounds are quite large. The following upper and lower bounds are known.

Theorem 2.4

1. (Erdös and Szekeres) For all $k \geq 3$ there exists $n \leq\binom{ 2 n-4}{n-2}+1=4^{n+o(n)}$ such that for every set of n points in \mathbb{R}^{2} there exists k of them that form a k-gon.
2. (Andrew Suk) For all $k \geq 3$ there exists $n \leq 2^{n+o(n)}$ such that for every set of n points in \mathbb{R}^{2} there exists k of them that form a k-gon.
3. (a) For all sets of 3 points in \mathbb{R}^{2} there exists a subset of 3 that form a 3-gon (this is trivial). This is tight.
(b) For all sets of 5 points in \mathbb{R}^{2} there exists a subset of 4 that form a 4-gon. This is tight.
(c) For all sets of 9 points in \mathbb{R}^{2} there exists a subset of 5 that form a 5-gon. This is tight.
(d) For all sets of 17 points in \mathbb{R}^{2} there exists a subset of 6 that form a 6-gon. This is tight.
4. For all $k \geq 3$ there exists a set of 2^{k-2} points such that there is $N O$ subset of size k that form a k-gon.

The lower bound in the last part of the last theorem is the conjecture.
Conjecture 2.5 For all $k \geq 3$ for every set of $2^{k-2}+1$ points in \mathbb{R}^{2} there exists k of them that form a k-gon.

