The Convex Polygon Problem

1 Introduction

These notes are helpful if you both watched the recording and attended class (by zoom). Otherwise I doubt they are helpful.

Convention 1.1 Every time we mention a set of points in \mathbb{R}^2 they have no three colinear

2 Happy Ending Theorem

Def 2.1 Let $A \subseteq \mathbb{R}^2$ of size k. The points in A form a *convex* k-gon if for every $x, y, z \in A$, there is no point of A in the triangle formed by x, y, z. Henceforth we just say k-gon.

Theorem 2.2 (Esther Klein) For every 5 points in \mathbb{R}^2 there exists a 4-gon.

Theorem 2.3 (Erdös and Szekeres) For all $k \ge 3$ there exists n such that for every set of n points in \mathbb{R}^2 there exists k of them that form a k-gon.

Sketch:

k = 3: Take n = 3.

k = 4: Take n = 5 and use Klein's Theorem.

We assume $k \geq 5$.

We went over three proofs that used the following three colorings.

The points are p_1, \ldots, p_n . The ordering on the points is arbitrary; however, for the third proof we need the ordering.

Proof 1: $n = R_4(k)$. We have any *n* points in \mathbb{R}^2

COL(w, x, y, z) is RED if the for points form a 4-gon, and BLUE if they do not.

The homog set can't be BLUE since if was then there would be $k \ge 5$ points such that NO 4-subset was a 4-gon, which contradicts Klein's Theorem.

Hence there are k points so that every set of 4 of them forms a 4-gon. One can show that the entire set is a k-gon. **Proof 1':** We can use $n = R_4(k, 5)$ which is the smallest n such that any 2-coloring of $\binom{[n]}{4}$ has either a RED Homog set of size k or a BLUE homog set of size 5.

Proof 2: $n = R_3(k)$. We have any *n* points in \mathbb{R}^2

COL(w, x, y) is RED if their is an EVEN number of points inside the x, y, z triangle, BLUE otherwise.

Both cases are possible. One can show that in either case the set is a k-gon using a parity argument.

Proof 3: $n = R_3(k)$. We have any *n* points in \mathbb{R}^2

 $COL(p_i, p_j, p_k)$ where i < j < k is RED if p_i, p_j, p_k is clockwise, and BLUE if counterclockwise.

Some cases, finishing the proof will be on a HW.

These bounds are quite large. The following upper and lower bounds are known.

Theorem 2.4

- 1. (Erdös and Szekeres) For all $k \ge 3$ there exists $n \le \binom{2n-4}{n-2} + 1 = 4^{n+o(n)}$ such that for every set of n points in \mathbb{R}^2 there exists k of them that form a k-gon.
- 2. (Andrew Suk) For all $k \geq 3$ there exists $n \leq 2^{n+o(n)}$ such that for every set of n points in \mathbb{R}^2 there exists k of them that form a k-gon.
- (a) For all sets of 3 points in R² there exists a subset of 3 that form a 3-gon (this is trivial). This is tight.
 - (b) For all sets of 5 points in \mathbb{R}^2 there exists a subset of 4 that form a 4-gon. This is tight.
 - (c) For all sets of 9 points in \mathbb{R}^2 there exists a subset of 5 that form a 5-gon. This is tight.
 - (d) For all sets of 17 points in \mathbb{R}^2 there exists a subset of 6 that form a 6-gon. This is tight.
- 4. For all $k \ge 3$ there exists a set of 2^{k-2} points such that there is NO subset of size k that form a k-gon.

The lower bound in the last part of the last theorem is the conjecture.

Conjecture 2.5 For all $k \geq 3$ for every set of $2^{k-2} + 1$ points in \mathbb{R}^2 there exists k of them that form a k-gon.