Finding Small Dominating Set Via the Prob Method

William Gasarch-U of MD

Dominating Sets

Def Let $G=(V, E)$ be a graph. $D \subseteq V$ is a dominating set if

$$
(\forall v \in V)[v \in D \vee(\exists y \in D)[(x, y) \in E] .
$$

Dominating Sets

Def Let $G=(V, E)$ be a graph. $D \subseteq V$ is a dominating set if

$$
(\forall v \in V)[v \in D \vee(\exists y \in D)[(x, y) \in E]
$$

Easy Every graph has a dominating set of size $n: D=V$.

Dominating Sets

Def Let $G=(V, E)$ be a graph. $D \subseteq V$ is a dominating set if

$$
(\forall v \in V)[v \in D \vee(\exists y \in D)[(x, y) \in E] .
$$

Easy Every graph has a dominating set of size $n: D=V$.
Question Does every graph have a smaller dominating set?

Dominating Sets

Def Let $G=(V, E)$ be a graph. $D \subseteq V$ is a dominating set if

$$
(\forall v \in V)[v \in D \vee(\exists y \in D)[(x, y) \in E] .
$$

Easy Every graph has a dominating set of size $n: D=V$.
Question Does every graph have a smaller dominating set?
Answer No- take the graph with n vertices and no edges.

Dominating Sets

Def Let $G=(V, E)$ be a graph. $D \subseteq V$ is a dominating set if

$$
(\forall v \in V)[v \in D \vee(\exists y \in D)[(x, y) \in E]
$$

Easy Every graph has a dominating set of size $n: D=V$.
Question Does every graph have a smaller dominating set?
Answer No- take the graph with n vertices and no edges.
Modify the Problem What if we assume the min degree is $\geq d$?

Dominating Sets

Def Let $G=(V, E)$ be a graph. $D \subseteq V$ is a dominating set if

$$
(\forall v \in V)[v \in D \vee(\exists y \in D)[(x, y) \in E]
$$

Easy Every graph has a dominating set of size $n: D=V$.
Question Does every graph have a smaller dominating set?
Answer No- take the graph with n vertices and no edges.
Modify the Problem What if we assume the min degree is $\geq d$?
We sketch a proof that every graph with min degree d has a dominating set of size $\leq f(n, d)$ where $f(n, d)<n$.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$. Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$. Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.
If $v \in V$ then prob that $v \in Y$ is prod of the following

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$. Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.
If $v \in V$ then prob that $v \in Y$ is prod of the following

- Prob $v \notin X$. That's $(1-p)$.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
Pf p is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$. Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.
If $v \in V$ then prob that $v \in Y$ is prod of the following

- Prob $v \notin X$. That's $(1-p)$.
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq(1-p)^{d}$.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
$\operatorname{Pf} p$ is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$.
Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.
If $v \in V$ then prob that $v \in Y$ is prod of the following

- Prob $v \notin X$. That's $(1-p)$.
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq(1-p)^{d}$.
Hence prob $v \in Y$ is $\leq(1-p)^{d+1}$. Hence $E(|Y|) \leq n(1-p)^{d+1}$.

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
$\operatorname{Pf} p$ is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$.
Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.
If $v \in V$ then prob that $v \in Y$ is prod of the following

- Prob $v \notin X$. That's $(1-p)$.
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq(1-p)^{d}$.
Hence prob $v \in Y$ is $\leq(1-p)^{d+1}$. Hence $E(|Y|) \leq n(1-p)^{d+1}$. Note that (1) $X \cup Y$ is a dominating set, and (2)

Theorem on Dom Set

Thm If $G=(V, E)$ is a graph on n vertices with min degree $\geq d$ then G has a dominating set of size $\leq f(n, d)$.
$\operatorname{Pf} p$ is prob TBD.
Pick $X \subseteq V$ as follows: For every $v \in V$ choose x with prob p.
Each $v \in V$ has prob p of being chosen, so $E(|X|)=p n$.
Let $Y \subseteq V-X$ that DO NOT have an edge to an elt of X.
If $v \in V$ then prob that $v \in Y$ is prod of the following

- Prob $v \notin X$. That's $(1-p)$.
- Prob that all $\geq d$ neighbors of v are not in X. That's $\leq(1-p)^{d}$.
Hence prob $v \in Y$ is $\leq(1-p)^{d+1}$. Hence $E(|Y|) \leq n(1-p)^{d+1}$. Note that (1) $X \cup Y$ is a dominating set, and (2)

$$
E(|X \cup Y|)=E(|X|)+E(|Y|) \leq n p+n(1-p)^{d+1}
$$

Picking p : Set Up

$$
E(|X \cup Y|)=E(|X|)+E(|Y|) \leq n p+n(1-p)^{d+1} .
$$

Picking p : Set Up

$$
E(|X \cup Y|)=E(|X|)+E(|Y|) \leq n p+n(1-p)^{d+1}
$$

Want to pick p to minimize this, but that's messy. Instead:

Picking p : Set Up

$$
E(|X \cup Y|)=E(|X|)+E(|Y|) \leq n p+n(1-p)^{d+1}
$$

Want to pick p to minimize this, but that's messy. Instead:

$$
n p+(1-p)^{d+1} \leq n p+n e^{-p(d+1)}
$$

Picking p : Set Up

$$
E(|X \cup Y|)=E(|X|)+E(|Y|) \leq n p+n(1-p)^{d+1}
$$

Want to pick p to minimize this, but that's messy. Instead:

$$
n p+(1-p)^{d+1} \leq n p+n e^{-p(d+1)}
$$

Want to pick p to minimize this. Will do it on next slide.

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{gathered}
f(p)=n p+n e^{-p(d+1)} \\
f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0
\end{gathered}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{gathered}
f(p)=n p+n e^{-p(d+1)} \\
f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
n-n(d+1) e^{-p(d+1)}=0
\end{gathered}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{gathered}
f(p)=n p+n e^{-p(d+1)} \\
f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
n-n(d+1) e^{-p(d+1)}=0 \\
1-(d+1) e^{-p(d+1)}=0
\end{gathered}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{aligned}
& \qquad f(p)=n p+n e^{-p(d+1)} \\
& f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
& n-n(d+1) e^{-p(d+1)}=0 \\
& 1-(d+1) e^{-p(d+1)}=0 \\
& 1=(d+1) e^{-p(d+1)}
\end{aligned}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{aligned}
& \qquad f(p)=n p+n e^{-p(d+1)} \\
& f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
& n-n(d+1) e^{-p(d+1)}=0 \\
& 1-(d+1) e^{-p(d+1)}=0 \\
& 1=(d+1) e^{-p(d+1)} \\
& (d+1)^{-1}=e^{-p(d+1)}
\end{aligned}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{aligned}
& \qquad f(p)=n p+n e^{-p(d+1)} \\
& \qquad f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
& n-n(d+1) e^{-p(d+1)}=0 \\
& 1-(d+1) e^{-p(d+1)}=0 \\
& 1=(d+1) e^{-p(d+1)} \\
& (d+1)^{-1}=e^{-p(d+1)} \\
& -\ln (d+1)=-p(d+1)
\end{aligned}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{aligned}
& \qquad f(p)=n p+n e^{-p(d+1)} \\
& \qquad f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
& n-n(d+1) e^{-p(d+1)}=0 \\
& 1-(d+1) e^{-p(d+1)}=0 \\
& 1=(d+1) e^{-p(d+1)} \\
& (d+1)^{-1}=e^{-p(d+1)} \\
& -\ln (d+1)=-p(d+1) \\
& \ln (d+1)=p(d+1)
\end{aligned}
$$

Picking p to Minimizing $E(|X \cup Y|)$

We need to minimize the following function on the interval $[0,1]$.

$$
\begin{aligned}
& \qquad f(p)=n p+n e^{-p(d+1)} \\
& \qquad f^{\prime}(p)=n+n(-(d+1)) e^{-p(d+1)} \text { Set to } 0 \\
& n-n(d+1) e^{-p(d+1)}=0 \\
& 1-(d+1) e^{-p(d+1)}=0 \\
& 1=(d+1) e^{-p(d+1)} \\
& (d+1)^{-1}=e^{-p(d+1)} \\
& -\ln (d+1)=-p(d+1) \\
& \ln (d+1)=p(d+1) \\
& \quad p=\frac{\ln (d+1)}{d+1}
\end{aligned}
$$

Back to our Problem

$$
E(|X \cup Y|) \leq n p+n e^{-p(d+1)}=n\left(p+e^{-p(d+1)}\right)
$$

$$
p=\frac{\ln (d+1)}{d+1}
$$

Back to our Problem

$$
\begin{gathered}
E(|X \cup Y|) \leq n p+n e^{-p(d+1)}=n\left(p+e^{-p(d+1)}\right) \\
p=\frac{\ln (d+1)}{d+1} \\
p+e^{-p(d+1)}=p+e^{-\ln (d+1)}=\frac{\ln (d+1)}{d+1}+\frac{1}{d+1}=\frac{\ln (d+1)+1}{d+1}
\end{gathered}
$$

Back to our Problem

$$
\begin{gathered}
E(|X \cup Y|) \leq n p+n e^{-p(d+1)}=n\left(p+e^{-p(d+1)}\right) \\
p=\frac{\ln (d+1)}{d+1} \\
p+e^{-p(d+1)}=p+e^{-\ln (d+1)}=\frac{\ln (d+1)}{d+1}+\frac{1}{d+1}=\frac{\ln (d+1)+1}{d+1} \\
E(|X \cup Y|) \leq n\left(\frac{\ln (d+1)+1}{d+1}\right)
\end{gathered}
$$

Back to our Problem

$$
\begin{gathered}
E(|X \cup Y|) \leq n p+n e^{-p(d+1)}=n\left(p+e^{-p(d+1)}\right) \\
p=\frac{\ln (d+1)}{d+1} \\
p+e^{-p(d+1)}=p+e^{-\ln (d+1)}=\frac{\ln (d+1)}{d+1}+\frac{1}{d+1}=\frac{\ln (d+1)+1}{d+1} \\
E(|X \cup Y|) \leq n\left(\frac{\ln (d+1)+1}{d+1}\right)
\end{gathered}
$$

How good is this? Next Slide.

Table of $d: 10-100$

d	$\frac{\ln (d+1)+1}{d+1}$
10	0.3089
20	0.192596
30	0.143032
40	0.114965
50	0.0967025
60	0.0837848
70	0.0741223
80	0.0665981
90	0.0605589
100	0.0555953

Table of $d 100-1000$

d	$\frac{\ln (d+1)+1}{d+1}$
100	0.0555953
200	0.0313597
300	0.0222828
400	0.0174413
500	0.0144044
600	0.0123105
700	0.0107739
800	0.00959533
900	0.00866094
1000	0.00790085

Table of $d 1000-10000$

d	$\frac{\ln (d+1)+1}{d+1}$
1000	0.00790085
2000	0.00429855
3000	0.00300123
4000	0.00232299
5000	0.0019031
6000	0.00161634
7000	0.00140749
8000	0.00124826
9000	0.00112266
10000	0.00102094

Examples

Examples

1. If a graph has min degree ≥ 100 then there is DS size $\leq 0.06 n, \frac{3 n}{50}$.

Examples

1. If a graph has min degree ≥ 100 then there is $D S$ size $\leq 0.06 n, \frac{3 n}{50}$.
2. If a graph has min degree ≥ 1000 then there is $D S$ size $\leq 0.008 n, \frac{2 n}{250}$.

Examples

1. If a graph has min degree ≥ 100 then there is $D S$ size $\leq 0.06 n, \frac{3 n}{50}$.
2. If a graph has min degree ≥ 1000 then there is DS size $\leq 0.008 n, \frac{2 n}{250}$.
3. If a graph has min degree ≥ 10000 then there is DS size $\leq 0.002 n, \frac{n}{500}$.

The Theorem Restated Completely

Thm If $G=(V, E)$ is a graph on n vertices with m in degree $\geq d$ then G has a dominating set of size

$$
\leq n\left(\frac{\ln (d+1)+1}{d+1}\right)
$$

The Theorem Restated Completely

Thm If $G=(V, E)$ is a graph on n vertices with \min degree $\geq d$ then G has a dominating set of size

$$
\leq n\left(\frac{\ln (d+1)+1}{d+1}\right)
$$

Pf
Since the Expected Value of the experiment produced a set of this size, there must be some set of \geq this size.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.
3. \exists an approx alg that returns DS of size $\leq \ln (n) \operatorname{OPT}(G)$.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.
3. \exists an approx alg that returns DS of size $\leq \ln (n) \operatorname{OPT}(G)$.
4. $\forall \delta<1$ there is no approx alg that returns a DS of size $\leq \delta \ln (n) \mathrm{OPT}(G)$.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.
3. \exists an approx alg that returns DS of size $\leq \ln (n) \mathrm{OPT}(G)$.
4. $\forall \delta<1$ there is no approx alg that returns a DS of size $\leq \delta \ln (n) \mathrm{OPT}(G)$.
5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W [2]-complete).

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.
3. \exists an approx alg that returns DS of size $\leq \ln (n) \operatorname{OPT}(G)$.
4. $\forall \delta<1$ there is no approx alg that returns a DS of size $\leq \delta \ln (n) \mathrm{OPT}(G)$.
5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W [2]-complete).
6. Fix Δ. Restrict to graphs with MAX degree Δ.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.
3. \exists an approx alg that returns DS of size $\leq \ln (n) \operatorname{OPT}(G)$.
4. $\forall \delta<1$ there is no approx alg that returns a DS of size $\leq \delta \ln (n) \mathrm{OPT}(G)$.
5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W [2]-complete).
6. Fix Δ. Restrict to graphs with MAX degree Δ.
a) \exists approx alg that returns a DS of size $\leq O(\log \Delta) \mathrm{OPT}(G)$.

Other Information

DS is Dominating Set. OPT means the min size of a DS. Alg means Poly Time Algorithm. We assume $\mathrm{P} \neq \mathrm{NP}$.

1. The above gives a fast rand alg to find a nontrivial Dom Set.
2. Finding the minimum size Dom Set is not in P.
3. \exists an approx alg that returns DS of size $\leq \ln (n) \operatorname{OPT}(G)$.
4. $\forall \delta<1$ there is no approx alg that returns a DS of size $\leq \delta \ln (n) \mathrm{OPT}(G)$.
5. If you fix k and ask if there is a Dom Set of size k, can do in $n^{O(k)}$ time but likely not better (W [2]-complete).
6. Fix Δ. Restrict to graphs with MAX degree Δ.
a) \exists approx alg that returns a DS of size $\leq O(\log \Delta) \mathrm{OPT}(G)$.
b) $\exists \delta$ st NO approx alg returns DS of size $\leq \delta \mathrm{OPT}(G)$.
