## Duplicator Spoiler Games <br> Exposition by William Gasarch (gasarch@cs.umd.edu)

## 1 Introduction

Roland Fraïssé $[2,3,4]$ proved theorems about logical expressibility using a back-and-forth method. Andrzej Ehrenfeucht [1] formalized Fraïssé's method by invented Duplicator-Spoiler Games ${ }^{1}$.

In this exposition we will define Duplicator-Spoiler games for linear orderings and prove the connection to logical expressible for these games. We follow the treatment of [5] which is out of print.

## 2 Duplicator-Spoiler Games For Linear Orderings

Definition 2.1 A linear ordering $\mathcal{L}$ is defined as a set $L$ paired with an ordering $<$, denoted $\mathcal{L}=(L,<)$, such that

1. $(\forall x, y \in L)[x<y$ or $x \geq y$, but not both $]$.
2. $(\forall x, y, z \in L)[x<y \wedge y<z \Longrightarrow x<z]$.

We now define Duplicator-Spoiler Games played with linear orderings.
Definition 2.2 Let $\mathcal{L}_{1}=\left(L_{1},<\right), \mathcal{L}_{2}=\left(L_{2},<\right)$. The m-round Duplicator-Spoiler Game on $\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right)$ is defined as follows.

1. There are two players: the Spoiler and the Duplicator.
2. There are $m$ rounds. During round $i(1 \leq i \leq m)$ the Spoiler selects an element from either set and the Duplicator selects an element from the other set. The element selected from $L_{1}$ is called $a_{i}$ and from $L_{2}, b_{i}$.
3. If $(\forall i, j, 1 \leq i, j \leq m)\left[a_{i}<a_{j} \Longleftrightarrow b_{i}<b_{j}\right]$, then the Duplicator wins. Otherwise, the Spoiler wins.

Definition 2.3 Let $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ be two linear orderings. Let $m \in N$. If Duplicator wins the $m$ round Duplicator-Spoiler game on $\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right)$ then $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ are m-game equivalent which we denote $\mathcal{L}_{1} \equiv{ }_{m}^{G} \mathcal{L}_{2}$.

Geometrically, we imagine lines being drawn from elements of one set to another, each line representing a pair of inequalities. If two lines cross, the inequalities are not consistent from set to set and the Spoiler wins. Because of this, a line, or round, reduces any game into two new ones.

Convention 2.4 Unless otherwise specified, we will assume the Spoiler and the Duplicator play optimally. In other words, if one player can implement a strategy that wins every time then the player is assumed to implement said strategy.

[^0]Notation 2.5 The following notations will be used throughout.

- Let $\mathcal{F}_{m}$ be the finite linear ordering of $m$ elements.
- Let $\omega$ be the linear ordering $\{1<2<3<\cdots\}$. Note that this is equivalent to $\{2<4<\cdots\}$. The base set is unimportant.
- Let $\omega^{*}$ be the linear ordering $\{\cdots<-3<-2<-1\}$.
- Let Z be the linear ordering $\{\cdots<-2<-1<0<1<2 \cdots\}$.
- Let $Q$ be the natural ordering of the rational numbers.
- Let R be the natural ordering of the real numbers.

Definition 2.6 Let $\mathcal{L}_{1}=\left(L_{1},<_{1}\right), \mathcal{L}_{2}=\left(L_{2},<_{2}\right)$. The linear ordering $\mathcal{L}_{1}+\mathcal{L}_{2}$ is formed as follows.
We can assume that $L_{1} \cap L_{2}=\emptyset$ by changing the elements' labels. Let the base set for $\mathcal{L}_{1}+\mathcal{L}_{2}$ be $L_{1} \cup L_{2}$. Let the total order be as follows.

1. $\left(\forall x, y \in L_{1}\right)\left[x<y \Longleftrightarrow x<_{1} y\right]$.
2. $\left(\forall x, y \in L_{2}\right)\left[x<y \Longleftrightarrow x<_{2} y\right]$.
3. $\left(\forall x \in L_{1}\right)\left(\forall y \in L_{2}\right)[x<y]$.

BILL-DO EXAMPLES LEADING UP TO N and $\mathrm{N}+\mathrm{Z}$.

## 3 The Connection to Logic

We first define formulas and two notions of the complexity of formulas: quantifier depth and number of free variables.

We will now define formulas and quantifier depth (qd) rigorously.
Definition 3.1 Our language contains the symbols $\wedge, \vee, \neg, \exists, \forall,=,<$ and variables $x_{1}, x_{2}, \ldots$ We may use $x, y, z$ for notational convenience.

1. A variable is free if it is not quantified over. When we write (say) $\phi(x)$ the $x$ is a free variable. There may be other variables; however, they are quantified over.
2. An atomic formula is any formula of the form $x_{i}<x_{j}$ or $x_{i}=x_{j}$. If $\phi\left(x_{i}, x_{j}\right)$ is an atomic formula then $\operatorname{qd}\left(\phi\left(x_{i}, x_{j}\right)\right)=0$.
3. If $\phi(\vec{x})$ is a formula then $\neg \phi(\vec{x})$ is a formula and $\operatorname{qd}(\neg(\phi(\vec{x})))=\operatorname{qd}(\phi(\vec{x}))$.
4. If $\gamma(\vec{x})$ and $\theta(\vec{y})$ are formulas then

- $\gamma(\vec{x}) \wedge \theta(\vec{y})$ is a formula and $\operatorname{qd}(\gamma(\vec{x}) \wedge \theta(\vec{y}))=\max \{\operatorname{qd}(\gamma(\vec{x})), \operatorname{qd}(\theta(\vec{y}))\}$.
- $\gamma(\vec{x}) \vee \theta(\vec{y})$ is a formula and $\operatorname{qd}(\gamma(\vec{x}) \vee \theta(\vec{y}))=\max \{\operatorname{qd}(\gamma(\vec{x})), \operatorname{qd}(\theta(\vec{y}))\}$,

5. If $\phi(\vec{x}, x)$ is a formula then $(\exists x)[\phi(\vec{x}, x)]$ is a formula and $\operatorname{qd}((\exists x)[\phi(\vec{x}, x)])=\operatorname{qd}(\phi(\vec{x}, x))+1$. Note that $(\exists x)[\phi(\vec{x}, x)]$ has one less free variable then $\phi(\vec{x}, x)$.

Definition 3.2 A sentence is a formula with no free variables.
Let $\phi$ be a sentence like $(\exists x)(\forall y)[x \leq y]$. Is this sentence true or false? This is a stupid question: you need to know which linear order is being talked about. The next definition gives a succinct way of saying this.

Definition 3.3 Let $\mathcal{L}=(L,<)$ be a linear ordering.

1. Let $\phi$ be a sentence. $\mathcal{L} \models \phi$ means that $\phi$ is true when interpreted in $\mathcal{L}$.
2. $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ are $m$-truth-equivalent, denoted $\mathcal{L}_{1} \equiv{ }_{m}^{T} L_{2}$, if, for all $\phi$ with $\operatorname{qd}(\phi) \leq m$

$$
\mathcal{L}_{1} \models \phi \text { iff } \mathcal{L}_{2} \models \phi .
$$

We want to prove the following theorem:
Theorem 3.4 Let $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ be two linear orderings. Let $m \in N$. The following are equivalent:

1. $\mathcal{L}_{1} \equiv{ }_{m}^{G} \mathcal{L}_{2}$.
2. $\mathcal{L}_{1} \equiv{ }_{m}^{T} \mathcal{L}_{2}$.

However, this is one of those cases where it is easier to prove a harder theorem. We will (1) extend Duplicator-Spoiler games to the case where some of the moves are already specified, and (2) extend the definition of $\models$ to formulas with parameters. We will then show that those notions are equivalent.

Definition 3.5 Let $\mathcal{L}_{1}=\left(L_{1},<\right), \mathcal{L}_{2}=\left(L_{2},<\right), \vec{a} \in L_{1}^{k}$, and $\vec{b} \in L_{2}^{k}$. The m-round DuplicatorSpoiler Game on $\left(\left(\mathcal{L}_{1}, \vec{a}\right),\left(\mathcal{L}_{2}, \vec{b}\right)\right)$, is defined as follows.

1. There are two players: The Spoiler and The Duplicator.
2. There are $m$ rounds. During round $i(1 \leq i \leq m)$ Spoiler selects an element from either set and Duplicator selects an element from the other set. The element selected from $L_{1}$ is called $a_{k+i}$ and from $L_{2}, b_{k+i}$.
3. If $(\forall i, j, 1 \leq i, j \leq m+k)\left[a_{i}<a_{j} \Longleftrightarrow b_{i}<b_{j}\right]$, then Duplicator wins. Otherwise, Spoiler wins.

Definition 3.6 If Duplicator wins the $m$-round game then $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$.
The game is essentially the same as the original Duplicator-Spoiler game; however, the first $k$ rounds have already been played.

Note the following

## Fact 3.7

1. $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$ iff $\vec{a}$ and $\vec{b}$ are of the same order type.
2. Assume $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m+1}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$. If Spoiler plays a and Duplicator's winning response is $b$ then $\left(\mathcal{L}_{1} ; \vec{a}, a\right) \equiv_{m}^{G}\left(\mathcal{L}_{2} ; \vec{b}, b\right)$.

Let $\phi(\vec{x})$ be a formula with $k$ free variables. For example, if $k=1$ then $(\exists x)[x \leq y]$ would be such a formula. Is this sentence true or false? This is an even stupider question than the one about sentences: you need to know which linear order $\mathcal{L}=(L,<)$ is being talked about AND you need to know the $k$ elements of $L$ that you intend to plug into $\phi$. The next definition gives a succinct way of saying this.

Did I say succinct? If by succint I mean long and boring inductive definition then yes, it is succint. All we really want to say is
$(\mathcal{L} ; \vec{a}) \models \phi(\vec{x})$ iff the statement $\phi(\vec{a})$ is true in $\mathcal{L}$.
Why don't we just say that? Because we need the inductive definition in order to prove things about $\ell$. Alas, in order to prove things rigorously we must be a bit pedantic.

Definition 3.8 Let $\mathcal{L}=(L,<)$ and $\vec{a} \in L^{k}$. Let $\phi(\vec{x})$ have $k$ free variables. We define $(\mathcal{L} ; \vec{a}) \models \phi(\vec{x})$ inductively.

1. $\left(\mathcal{L} ; a_{1}, a_{2}\right) \models(x<y)$ holds iff $\left.a_{1}<a_{2}\right)$.
2. $\left(\mathcal{L} ; a_{1}, a_{2}\right) \models(x=y)$ holds iff $\left.a_{1}=a_{2}\right)$.
3. $(\mathcal{L} ; \vec{a}) \models \neg \phi(\vec{x})$ holds iff it is NOT the case that $(\mathcal{L}, \vec{a}) \models \phi(\vec{x})$.
4. $(\mathcal{L} ; \vec{a}) \models \phi_{1}(\vec{x}) \wedge \phi_{2}(\vec{x})$ holds iff $(\mathcal{L}, \vec{a}) \models \phi_{1}(\vec{x})$ and $(\mathcal{L}, \vec{a}) \models \phi_{2}(\vec{x})$.
5. $(\mathcal{L} ; \vec{a}) \models \phi_{1}(\vec{x}) \vee \phi_{2}(\vec{x})$ holds iff $(\mathcal{L}, \vec{a}) \models \phi_{1}(\vec{x})$ or $(\mathcal{L}, \vec{a}) \models \phi_{2}(\vec{x})$.
6. $(\mathcal{L}, \vec{a}) \models(\exists x)[\phi(\vec{x}, x)]$ holds iff there is an $a \in L$ such that $(\mathcal{L} ; \vec{a}, a) \models \phi(\vec{a}, a)$.
7. To summarize: If $\phi(\vec{x})$ has $k$ free variables and $\vec{a} \in L^{k}$ then $(\mathcal{L} ; \vec{a}) \models \phi(\vec{x})$ means that $\phi(\vec{a})$ is true in $\mathcal{L}$.

Definition 3.9 Let $\vec{a} \in L_{1}^{k}$ and $\vec{b} \in L_{2}^{k} .\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m}^{T}\left(\mathcal{L}_{2} ; \vec{b}\right)$ if, for all $\phi(\vec{x})$ with $\operatorname{qd}(\phi) \leq m$ and $k$ free variables,

$$
\left(\mathcal{L}_{1} ; \vec{a}\right) \models \phi(\vec{x}) \text { iff }\left(\mathcal{L}_{2} ; \vec{b}\right) \models \phi(\vec{x}) .
$$

Definition 3.10 Let $m \geq 1$. A formula is $m$-simple if it is of the form $(\exists x)[\psi(\vec{x}, x)]$ where $\operatorname{qd}(\psi(\vec{x}, x)) \leq m-1$.

We leave the proof of the following easy lemma to the reader.
Lemma 3.11 Let $m \geq 1$. If $\operatorname{qd}(\phi(\vec{x}))=m$ then $\phi(\vec{x})$ can be written as a boolean combination of $m$-simple formulas.

The following is our main theorem.
Theorem 3.12 Let $\mathcal{L}_{1}=\left(L_{1},<\right)$ and $\mathcal{L}_{2}=\left(L_{2},<\right)$ be two linear orderings. For all $m \in \mathbb{N}$, for all $k \in \mathrm{~N}$, for all $\vec{a} \in L_{1}^{k}$ and $\vec{b} \in L_{2}^{k}$. The following are equivalent:

1. $\left.\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv{ }_{m}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)\right)$.
2. $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m}^{T}\left(\mathcal{L}_{2} ; \vec{b}\right)$.

Proof: We prove this by induction on $m$.
Base Case: $m=0$. Assume $\vec{a}$ and $\vec{b}$ are $k$-tuples. We prove two implications.
First Implication:
$\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right) \Longrightarrow\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{T}\left(\mathcal{L}_{2} ; \vec{b}\right)$.
Assume $\left.\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)\right)$. Then, for all $1 \leq i, j \leq k$

$$
a_{i}<a_{j} \text { iff } b_{i}<b_{j} .
$$

Hence $\left(\mathcal{L}_{1} ; \vec{a}\right)$ and $\left(\mathcal{L}_{2}, \vec{b}\right)$ have the same order type.
We need to show, for all $\phi(\vec{x})$ of quantifier depth 0 that have $|\vec{a}|$ free variables, $\left(\mathcal{L}_{1} ; \vec{a}\right) \models \phi(\vec{x})$ iff $\left(\mathcal{L}_{2} ; \vec{b}\right) \models \phi(\vec{x})$. This means that they agree on all formulas of quantifier depth 0 . Formulas of quantifier depth 0 are Boolean combinations of atomic formulas. One can easily show but induction on formation that since $\left(\mathcal{L}_{1} ; \vec{a}\right)$ and $\left(\mathcal{L}_{2}, \vec{b}\right)$ have the same order type they will agree on any boolean combination of atomic formulas on $|\vec{a}|$ free variables.

Second Implication:
$\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{T}\left(\mathcal{L}_{2} ; \vec{b}\right) \Longrightarrow\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$.
Assume $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{T}\left(\mathcal{L}_{2} ; \vec{b}\right)$. Then for all $1 \leq i, j \leq k$

$$
\left(\mathcal{L}_{1} ; \vec{a}\right) \models x_{i}<x_{j} \text { iff }\left(\mathcal{L}_{2} ; \vec{b}\right) \models x_{i}<x_{j} .
$$

Hence $a_{i}<a_{j}$ iff $b_{i}<b_{j}$. Therefore $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{0}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$.

## Induction Step:

Induction Hypothesis: The statement of the theorem. However, we state it with the parameters that we need: For all $\vec{a} \in L_{1}^{k}, a \in L_{1}, \vec{b} \in L_{2}^{k}, b \in L_{2}$ the following are equivalent:

- $\left(L_{1} ; \vec{a}, a\right) \equiv_{m}^{T}\left(L_{2} ; \vec{b}, b\right)$.
- $\left(L_{1} ; \vec{a}, a\right) \equiv_{m}^{G}\left(L_{2} ; \vec{b}, b\right)$.

Let $k \in \mathrm{~N}, \vec{a} \in L_{1}^{k}, \vec{b} \in L_{2}^{k}$. We need to prove two implications.
First Implication:
$\left(L_{1} ; \vec{a}\right) \equiv{ }_{m+1}^{G}\left(L_{2} ; \vec{b}\right) \Longrightarrow\left(L_{1} ; \vec{a}\right) \equiv{ }_{m+1}^{T}\left(L_{2} ; \vec{b}\right)$.
Assume $\left(L_{1} ; \vec{a}\right) \equiv_{m+1}^{G}\left(L_{2} ; \vec{b}\right)$. (We won't use this until later.) We need to show that $\left(L_{1} ; \vec{a}\right) \equiv_{m+1}^{T}\left(L_{2} ; \vec{b}\right)$.
Now we need to show, for all formulas $\phi(\vec{x})$ with $|\vec{a}|$ free variables, of quantifier depth $\leq m+1$, $\left(\mathcal{L}_{1} ; \vec{a}\right) \models \phi(\vec{z})$ iff $\left(\mathcal{L}_{2} ; \vec{b}\right) \models \phi(\vec{z})$. We prove this by induction on the formation of $\phi(\vec{x})$.
CASE 1: If $\phi(\vec{x})$ has quantifier depth $\leq m$ then, by $\left(L_{1} ; \vec{a}\right) \equiv_{m}^{G}\left(L_{2} ; \vec{b}\right) \Longrightarrow\left(L_{1} ; \vec{a}\right) \equiv_{m}^{T}\left(L_{2} ; \vec{b}\right)$. (a weaker statement than we have) and the induction hypothesis we have $\left(\mathcal{L}_{1} ; \vec{a}\right) \models \phi(\vec{z})$ iff $\left(\mathcal{L}_{2} ; \vec{b}\right) \models$ $\phi(\vec{z})$.

CASE 2: (This is the main case of interest.) $\phi(\vec{x})$ is $m$-simple. $\phi(\vec{x})=(\exists x)[\psi(\vec{x}, x)]$.

$$
\left(\mathcal{L}_{1} ; \vec{a}\right) \models \phi(\vec{x})
$$

iff

$$
\left(\mathcal{L}_{1} ; \vec{a}\right) \models(\exists x)[\psi(\vec{x}, x)]
$$

iff
there is an $a \in L_{1}$ such that

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \models \psi(\vec{x}, x) .
$$

KEY: We call a WITNESS TO THE TRUTH! of $(\exists x)[\psi(\vec{x}, x)]$. We need to find an analogous witness in $L_{2}$. We use the game to find WITNESS TO THE TRUTH!. Duplicator's winning move is an analog of $a$ and is used to locate the WITNESS TO THE TRUTH!.

Recall that $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m+1}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$. Hence Duplicator has a winning strategy. If Spoiler were to make the move $a \in L_{1}$ as his first move then Duplicator has a response. Let $b$ be that response. Note that by Fact $3.7\left(\mathcal{L}_{1} ; \vec{a}, a\right) \equiv_{m+1-1}^{G}\left(\mathcal{L}_{2} ; \vec{b}, b\right)$. By the induction hypothesis applied to $\psi(\vec{x}, x)$

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \models \psi(\vec{x}, x) \text { iff }\left(\mathcal{L}_{2} ; \vec{b}, b\right) \models \psi(\vec{x}, x) .
$$

Hence

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \models \psi(\vec{x}, x)
$$

iff

$$
\left(\mathcal{L}_{2} ; \vec{b}, b\right) \models \psi(\vec{x}, x)
$$

iff

$$
\left(\mathcal{L}_{2} ; \vec{b}\right) \models(\exists x)[\psi(\vec{x}, x)] .
$$

iff

$$
\left(\mathcal{L}_{2} ; \vec{b}\right) \models \phi(\vec{x}) .
$$

Therefore we have

$$
\left(\mathcal{L}_{1} ; \vec{a}\right) \models \phi(\vec{x}) \text { iff }\left(\mathcal{L}_{2} ; \vec{b}\right) \models \phi(\vec{x}) .
$$

CASE 3: $\phi(\vec{x})$ is a boolean combination of $m$-simple formulas. This is an easy induction of formation.

By Lemma 3.11 we have covered all of the cases.

## Second Implication:

$\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m+1}^{T}\left(\mathcal{L}_{2} ; \vec{b}\right) \Longrightarrow\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m+1}^{G}\left(\mathcal{L}_{2} ; \vec{b}\right)$
We need to find a winning strategy for Duplicator.
Assume that Spoiler plays $a \in L_{1}$ (the case where he plays $b \in L_{2}$ is similar). Duplicator needs to find a $b \in L_{2}$ that is analogous to $a \in L_{1}$.

Let $F$ be the set of all formulas $\psi(\vec{x}, x)$ such that

- $\mathrm{qd}(\psi) \leq m$.
- $|\vec{x}|=|\vec{a}|$.
- $\left(\mathcal{L}_{1} ; \vec{a}, a\right) \models \psi(\vec{x}, x)$.

KEY: There are only a finite number of formulas in $F$.
Note that

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \models \bigwedge_{\psi \in F} \psi(\vec{x}, x) .
$$

Hence

$$
\left(\mathcal{L}_{1} ; \vec{a}\right) \models(\exists x)\left[\bigwedge_{\psi \in F} \psi(\vec{x}, x)\right] .
$$

KEY: $\operatorname{qd}\left((\exists x)\left[\bigwedge_{\psi \in F} \psi(\vec{x}, x)\right)\right]=m+1$. Hence, since $\left(\mathcal{L}_{1} ; \vec{a}\right) \equiv_{m+1}^{T}\left(L_{2} ; \vec{b}\right)$

$$
\left(\mathcal{L}_{2} ; \vec{b}\right) \models(\exists x)\left[\bigwedge_{\psi \in F} \psi(\vec{x}, x)\right] .
$$

Let $b$ be the witness. Hence

$$
\left.\left(\mathcal{L}_{2} ; \vec{b}, b\right) \models \bigwedge_{\psi \in F} \psi(\vec{x}, x)\right] .
$$

KEY: We use the logical equivalence to get the witness which will give us the winning move for Duplicator.

We claim that if Duplicator plays $b$ then he can win the game. Note that we now need to show

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \equiv_{m}^{G}\left(\mathcal{L}_{2} ; \vec{b}, b\right) .
$$

By the induction hypothesis it will suffice to show

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \equiv_{m}^{T}\left(\mathcal{L}_{2} ; \vec{b}, b\right) .
$$

Let $\phi(\vec{x}, x)$ be a formula such that $\operatorname{qd}(\phi(\vec{x}, x))=m$ and $|\vec{x}|=|\vec{a}|$. Assume

$$
\left(\mathcal{L}_{1} ; \vec{a}, a\right) \models \phi(\vec{x}, x) .
$$

Then $\phi \in F$.
Since

$$
\left.\left(\mathcal{L}_{2} ; \vec{b}, b\right) \models \bigwedge_{\psi \in F} \psi(\vec{x}, x)\right] .
$$

We have that

$$
\left.\left(\mathcal{L}_{2} ; \vec{b}, b\right) \models \phi(\vec{x}, x)\right] .
$$

## 4 Genearlization

Section 2 was about the Duplicator-Spoiler Game on a linear order. However, this can be generalized.

Exercise 1 Define Duplicator-Spoiler games on pairs of graphs. State and prove an analog of Theorem 3.4.

Exercise 2 Define Duplicator-Spoiler games on pairs of hypergraphs. State and prove an analog of Theorem 3.4.

## References

[1] A. Ehrenfeucht. An application of games to the completeness theorem for formalized theories. Fundamenta Mathematicae, 49:129-141, 1969.
[2] R. Fraisse. Sur une nouvelle classification des systemes de relations. Association Française pour l'Avancement des Sciences; Comptes Rendus, 230:1022-1024, 1950.
[3] R. Fraisse. Sur quelques classifications des systemes de relations, thesis. Publications Scientifiques de l'Universite d'Alger, series A, 1:35-182, 1954.
[4] R. Fraisse. Cours de Logique Mathematique. Tome 2, Paris, 1972.
[5] J. G. Rosenstein. Linear Orderings. Academic Press, New York, 1981. Pure and Applied Math Series 98.


[^0]:    ${ }^{1}$ Duplicator-Spoiler games are also referred to as Ehrenfeucht-Fraïssé games.

