Application of PVDW: Constructing Graphs with High Chromatic Number and High Girth

May 5, 2022

Credit Where Credit is Due

The results are by Paul O'Donnell.

Credit Where Credit is Due

The results are by Paul O'Donnell.
My source for the material is
The Mathematical Coloring Book: Mathematics of Coloring and the Colorful life of its Creators
by
Alexander Soifer

Credit Where Credit is Due

The results are by Paul O'Donnell.
My source for the material is
The Mathematical Coloring Book: Mathematics of Coloring and the Colorful life of its Creators
by
Alexander Soifer
I reviewed this book in my Book Review Column:
https://www.cs.umd.edu/~gasarch/bookrev/40-3.pdf

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 \text {. Low } \chi \text {, Low } g \text {. }
$$

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\begin{aligned}
& \text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 . \text { Low } \chi \text {, Low } g \text {. } \\
& \text { 2. } \chi\left(K_{n}\right)=n, g\left(K_{n}\right)=3 \text {. High } \chi \text {, Low } g
\end{aligned}
$$

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\begin{aligned}
& \text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 . \text { Low } \chi \text {, Low } g \text {. } \\
& \text { 2. } \chi\left(K_{n}\right)=n, g\left(K_{n}\right)=3 \text {. High } \chi \text {, Low } g \\
& \text { 3. } \chi\left(C_{n}\right) \in\{2,3\}, g\left(C_{n}\right)=n \text {. Low } \chi \text {. High } g \text {. }
\end{aligned}
$$

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\begin{aligned}
& \text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 . \text { Low } \chi \text {, Low } g \text {. } \\
& \text { 2. } \chi\left(K_{n}\right)=n, g\left(K_{n}\right)=3 \text {. High } \chi \text {, Low } g \\
& \text { 3. } \chi\left(C_{n}\right) \in\{2,3\}, g\left(C_{n}\right)=n \text {. Low } \chi \text {. High } g \text {. }
\end{aligned}
$$

Are there graph with high χ and high g ?

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\begin{aligned}
& \text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 . \text { Low } \chi \text {, Low } g \text {. } \\
& \text { 2. } \chi\left(K_{n}\right)=n, g\left(K_{n}\right)=3 \text {. High } \chi \text {, Low } g \\
& \text { 3. } \chi\left(C_{n}\right) \in\{2,3\}, g\left(C_{n}\right)=n \text {. Low } \chi \text {. High } g \text {. }
\end{aligned}
$$

Are there graph with high χ and high g ? Yes

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\begin{aligned}
& \text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 . \text { Low } \chi \text {, Low } g \text {. } \\
& \text { 2. } \chi\left(K_{n}\right)=n, g\left(K_{n}\right)=3 \text {. High } \chi \text {, Low } g \\
& \text { 3. } \chi\left(C_{n}\right) \in\{2,3\}, g\left(C_{n}\right)=n \text {. Low } \chi \text {. High } g \text {. }
\end{aligned}
$$

Are there graph with high χ and high g ? Yes
Will we use PVDW's theorem?

Chromatic Number and Girth

Def Let $G=(V, E)$ be a graph.

1. Chromatic Number of \boldsymbol{G} is the least c such that there exists COL: $V \rightarrow[c]$ such that no neighbors have the same color. We denote this by $\chi(G)$. This definition and notation are standard.
2. Girth of G is the length of the shortest cycle. We denote this by $g(G)$. This definition is standard, the notation is not.
Examples

$$
\begin{aligned}
& \text { 1. } \chi\left(I_{n}\right)=0, g\left(I_{n}\right)=0 . \text { Low } \chi \text {, Low } g \text {. } \\
& \text { 2. } \chi\left(K_{n}\right)=n, g\left(K_{n}\right)=3 \text {. High } \chi \text {, Low } g \\
& \text { 3. } \chi\left(C_{n}\right) \in\{2,3\}, g\left(C_{n}\right)=n \text {. Low } \chi \text {. High } g \text {. }
\end{aligned}
$$

Are there graph with high χ and high g ? Yes Will we use PVDW's theorem? Yes.

We Will Construct. . .

We will construct the following:

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory
3. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=12$. Use PVDW and Harder Numb Theory.

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory
3. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=12$. Use PVDW and Harder Numb Theory.
Better results are known; however, the structure of our G is such that G_{4} can be embedded as a unit graph in the plane:

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory
3. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=12$. Use PVDW and Harder Numb Theory.
Better results are known; however, the structure of our G is such that G_{4} can be embedded as a unit graph in the plane:
$(x, y) \in E \Longrightarrow d(x, y)=1$.
$(x, y) \notin E \Longrightarrow d(x, y) \neq 1$.

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory
3. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=12$. Use PVDW and Harder Numb Theory.
Better results are known; however, the structure of our G is such that G_{4} can be embedded as a unit graph in the plane:
$(x, y) \in E \Longrightarrow d(x, y)=1$.
$(x, y) \notin E \Longrightarrow d(x, y) \neq 1$.
Such graphs are motivated by work on the
Chromatic Number of the Plane.

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory
3. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=12$. Use PVDW and Harder Numb Theory.
Better results are known; however, the structure of our G is such that G_{4} can be embedded as a unit graph in the plane:
$(x, y) \in E \Longrightarrow d(x, y)=1$.
$(x, y) \notin E \Longrightarrow d(x, y) \neq 1$.
Such graphs are motivated by work on the
Chromatic Number of the Plane.
We may or may not discuss this later.

We Will Construct. . .

We will construct the following:
For all $c \geq 3$:

1. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=6$. Uses Pigeonhole Principle.
2. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=9$. Uses PVDW and Numb. Theory
3. G_{c} with $\chi\left(G_{c}\right)=c$ and $g(G)=12$. Use PVDW and Harder Numb Theory.
Better results are known; however, the structure of our G is such that G_{4} can be embedded as a unit graph in the plane:
$(x, y) \in E \Longrightarrow d(x, y)=1$.
$(x, y) \notin E \Longrightarrow d(x, y) \neq 1$.
Such graphs are motivated by work on the
Chromatic Number of the Plane.
We may or may not discuss this later. That is a tautology.

Application of Pigeonhole:

Constructing Graphs with High Chromatic Number and Girth 6

May 5, 2022

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf
Base $c=2$. Use C_{6}, the cycle on 6 vertices.

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf
Base $c=2$. Use C_{6}, the cycle on 6 vertices.
Ind Hyp There exists G_{c-1} such that

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf
Base $c=2$. Use C_{6}, the cycle on 6 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf
Base $c=2$. Use C_{6}, the cycle on 6 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and
- $g\left(G_{c-1}\right)=6$.

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf
Base $c=2$. Use C_{6}, the cycle on 6 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and
- $g\left(G_{c-1}\right)=6$.

Let M_{c-1} be the number of vertices in G_{c-1}.

$\chi\left(G_{c}\right)=c, g(G)=6$

Thm For all c there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=6$.

Pf
Base $c=2$. Use C_{6}, the cycle on 6 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and
- $g\left(G_{c-1}\right)=6$.

Let M_{c-1} be the number of vertices in G_{c-1}.
Ind Step We construct G_{c} on next slide.

Construction of G_{c}

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}}$:

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}}$:
a) Make a copy of $G_{c-1}: G_{c-1}^{A} .\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}}$:
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\left(\begin{array}{c}{\left[\begin{array}{c}{[L]} \\ M_{c-1}\end{array}\right) \text { : }}\end{array}\right.$
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts.)
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

GOTO WHITE BOARD TO LOOK AT G_{4}

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\left(\begin{array}{c}{\left[\begin{array}{c}{[L]} \\ M_{c-1}\end{array}\right) \text { : }}\end{array}\right.$
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

GOTO WHITE BOARD TO LOOK AT G_{4}
Construction is done.

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}}$:
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

GOTO WHITE BOARD TO LOOK AT G_{4}
Construction is done.
We prove it works in the next few slides.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.
Color each G_{c-1}^{A} with $[c-1]$.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.
Color each G_{c-1}^{A} with $[c-1]$.
Color all of the base vertices c.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.
Color each G_{c-1}^{A} with $[c-1]$.
Color all of the base vertices c.
Done!

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.
Of the L base vertices, there exists $\left\lceil\frac{L}{c-1}\right\rceil$ that are same color.

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$. Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.
Of the L base vertices, there exists $\left\lceil\frac{L}{c-1}\right\rceil$ that are same color.
Choose L such that $\left\lceil\frac{L}{c-1}\right\rceil \geq M_{c-1}$.

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$. Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.
Of the L base vertices, there exists $\left\lceil\frac{L}{c-1}\right\rceil$ that are same color.
Choose L such that $\left\lceil\frac{L}{c-1}\right\rceil \geq M_{c-1}$.
Let A be a set of M_{c-1} base vertices that are the same color.

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.
Of the L base vertices, there exists $\left\lceil\frac{L}{c-1}\right\rceil$ that are same color.
Choose L such that $\left\lceil\frac{L}{c-1}\right\rceil \geq M_{c-1}$.
Let A be a set of M_{c-1} base vertices that are the same color.
There is a bijection from A to G_{c-1}^{A} and via edges.

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.
Of the L base vertices, there exists $\left\lceil\frac{L}{c-1}\right\rceil$ that are same color.
Choose L such that $\left\lceil\frac{L}{c-1}\right\rceil \geq M_{c-1}$.
Let A be a set of M_{c-1} base vertices that are the same color.
There is a bijection from A to G_{c-1}^{A} and via edges.
The vertices in A must be a diff color than the $c-1$ colors used on the vertices of G_{c-1}^{A}. Hence the coloring must use $\geq c$ colors. Contradiction. Done!

$\chi\left(G_{c}\right) \geq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$.
Of the L base vertices, there exists $\left\lceil\frac{L}{c-1}\right\rceil$ that are same color.
Choose L such that $\left\lceil\frac{L}{c-1}\right\rceil \geq M_{c-1}$.
Let A be a set of M_{c-1} base vertices that are the same color.
There is a bijection from A to G_{c-1}^{A} and via edges.
The vertices in A must be a diff color than the $c-1$ colors used on the vertices of G_{c-1}^{A}. Hence the coloring must use $\geq c$ colors. Contradiction. Done! GOTO WHITE BOARD

$g\left(G_{c}\right) \leq 6$

Inductively G_{c-1}^{A} has a cycle of size 6 . Hence G_{c} does.

$g\left(G_{c}\right) \geq 6$

Assume inductively that $g\left(G_{c-1}\right)=6$.
Let C be a cycle in G_{c}. We show $|C| \geq 6$.

$g\left(G_{c}\right) \geq 6$

Assume inductively that $g\left(G_{c-1}\right)=6$.
Let C be a cycle in G_{c}. We show $|C| \geq 6$.
0) If C has 0 base vertices then C is a cycle in G_{c-1}^{A}, so $|C| \geq 6$.

$g\left(G_{c}\right) \geq 6$

Assume inductively that $g\left(G_{c-1}\right)=6$.
Let C be a cycle in G_{c}. We show $|C| \geq 6$.
0) If C has 0 base vertices then C is a cycle in G_{c-1}^{A}, so $|C| \geq 6$.

1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_{1}}$ and $G_{c-1}^{A_{2}}$. GOTO White Board!

$g\left(G_{c}\right) \geq 6$

Assume inductively that $g\left(G_{c-1}\right)=6$.
Let C be a cycle in G_{c}. We show $|C| \geq 6$.
0) If C has 0 base vertices then C is a cycle in G_{c-1}^{A}, so $|C| \geq 6$.

1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_{1}}$ and $G_{c-1}^{A_{2}}$. GOTO White Board!
Cycle goes from v to $G_{c-1}^{A_{1}}$ then leaves $G_{c-1}^{A_{1}}$ and has to goto a base vertex that is not v.
This is impossible. So this case can't happen.

$g\left(G_{c}\right) \geq 6$

Assume inductively that $g\left(G_{c-1}\right)=6$.
Let C be a cycle in G_{c}. We show $|C| \geq 6$.
0) If C has 0 base vertices then C is a cycle in G_{c-1}^{A}, so $|C| \geq 6$.

1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_{1}}$ and $G_{c-1}^{A_{2}}$. GOTO White Board!
Cycle goes from v to $G_{c-1}^{A_{1}}$ then leaves $G_{c-1}^{A_{1}}$ and has to goto a base vertex that is not v.
This is impossible. So this case can't happen.
2) Can it use exactly 2 base vertices, say 1,2 . Yes.

GOTO WHITE BOARD
B 1 is Base vertex 1, B2 is Base vertex 2.
C1 is 1 in a copy of $G_{c}, C 2$ is 2 in that copy.
D1 is 1 in a copy of G_{c}, D2 is 2 in that copy.

$g\left(G_{c}\right) \geq 6$

Assume inductively that $g\left(G_{c-1}\right)=6$.
Let C be a cycle in G_{c}. We show $|C| \geq 6$.
0) If C has 0 base vertices then C is a cycle in G_{c-1}^{A}, so $|C| \geq 6$.

1) If C has 1 base vertex v then v has two edges coming out of it, to $G_{c-1}^{A_{1}}$ and $G_{c-1}^{A_{2}}$. GOTO White Board!
Cycle goes from v to $G_{c-1}^{A_{1}}$ then leaves $G_{c-1}^{A_{1}}$ and has to goto a base vertex that is not v.
This is impossible. So this case can't happen.
2) Can it use exactly 2 base vertices, say 1,2 . Yes.

GOTO WHITE BOARD
B 1 is Base vertex 1, B2 is Base vertex 2.
C 1 is 1 in a copy of $G_{c}, \mathrm{C} 2$ is 2 in that copy.
D1 is 1 in a copy of $G_{c}, D 2$ is 2 in that copy.
Shortest cycle: $(B 1, C 1, C 2, B 2, D 2, D 1, B 1)$. Len 6.

Cases $3,4, \ldots$

Cases 3,4,...

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes. GOTO WHITE BOARD
C 1 is 1 in a copy of $G_{c}, \mathrm{C} 2$ is $2, \mathrm{C} 3$ is 3 .
D1 is 1 in a copy of $G_{c}, \mathrm{D} 2$ is $2, \mathrm{D} 3$ is 3 .
E1 is 1 in a copy of G_{c}, E2 is $2, \mathrm{E} 3$ is 3 .

Cases 3,4,...

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes. GOTO WHITE BOARD
C 1 is 1 in a copy of $G_{c}, \mathrm{C} 2$ is $2, \mathrm{C} 3$ is 3 .
D1 is 1 in a copy of $G_{c}, \mathrm{D} 2$ is $2, \mathrm{D} 3$ is 3 .
E1 is 1 in a copy of $G_{c}, \mathrm{E} 2$ is $2, \mathrm{E} 3$ is 3 .
Shortest cycle: $(B 1, C 1, C 2, B 2, D 2, D 3, B 3, E 3, E 1, B 1)$. Len 9 .

Cases 3,4,...

3) Can it use exactly 3 base vertices. Say 1,2,3. Yes. GOTO WHITE BOARD
C 1 is 1 in a copy of $G_{c}, \mathrm{C} 2$ is $2, \mathrm{C} 3$ is 3 .
D1 is 1 in a copy of $G_{c}, \mathrm{D} 2$ is $2, \mathrm{D} 3$ is 3 .
E 1 is 1 in a copy of $G_{c}, \mathrm{E} 2$ is $2, \mathrm{E} 3$ is 3 .
Shortest cycle: $(B 1, C 1, C 2, B 2, D 2, D 3, B 3, E 3, E 1, B 1)$. Len 9 .
4) Note If cycle uses $x \geq 2$ base vertices then shortest cycle is length $3 x$. (Will use this later)
GOTO WHITE BOARD

Upshot

We have
$\chi\left(G_{c}\right)=c$
$g\left(G_{c}\right)=6$.
So we are done.

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD
Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G)=G, g(G)=g, G$ is unit graph in the plane.

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD
Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G)=G, g(G)=g, G$ is unit graph in the plane.
The construction we did for $\chi\left(G_{c}\right)=c, g\left(G_{c}\right)=6$, credited to Blanch Descartes, yields such a graph when $c=4$.

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD
Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G)=G, g(G)=g, G$ is unit graph in the plane.
The construction we did for $\chi\left(G_{c}\right)=c, g\left(G_{c}\right)=6$, credited to Blanch Descartes, yields such a graph when $c=4$.
This construction yields unit graphs when $c=4$.

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD
Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G)=G, g(G)=g, G$ is unit graph in the plane.
The construction we did for $\chi\left(G_{c}\right)=c, g\left(G_{c}\right)=6$, credited to Blanch Descartes, yields such a graph when $c=4$.
This construction yields unit graphs when $c=4$.
Hence they want to do that kind of construction.

Their Motivation, but Not Ours

Discuss Chromatic Number of the Plane GOTO BLACKBOARD
Soifer, O'Donnell, Others(?) wanted to find G that had $\chi(G)=G, g(G)=g, G$ is unit graph in the plane.
The construction we did for $\chi\left(G_{c}\right)=c, g\left(G_{c}\right)=6$, credited to Blanch Descartes, yields such a graph when $c=4$.
This construction yields unit graphs when $c=4$.
Hence they want to do that kind of construction.
Our interest Some of the constructions used VDW and PVDW!

Known: $(\forall c)(\exists G)[\chi(G)=c$ and $\ldots]$

$g(G)$	Math	who
6	PHP	Folklore
9	VDW, Messy	O'Donnell
12	PVDW \& Hard Number Theory	O'Donnell
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell

Known: $(\forall c)(\exists G)[\chi(G)=c$ and $\ldots]$

$g(G)$	Math	who
6	PHP	Folklore
9	VDW, Messy	O'Donnell
12	PVDW \& Hard Number Theory	O'Donnell
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell

1. Don't want to show you messy OR Hard NT.

Known: $(\forall c)(\exists G)[\chi(G)=c$ and $\ldots]$

$g(G)$	Math	who
6	PHP	Folklore
9	VDW, Messy	O'Donnell
12	PVDW \& Hard Number Theory	O'Donnell
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell

1. Don't want to show you messy OR Hard NT.
2. Want to show you app of VDW or Poly VDW.

Known: $(\forall c)(\exists G)[\chi(G)=c$ and $\ldots]$

$g(G)$	Math	who
6	PHP	Folklore
9	VDW, Messy	O'Donnell
12	PVDW \& Hard Number Theory	O'Donnell
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell

1. Don't want to show you messy OR Hard NT.
2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:

$g(G)$	Math	who
9	PVDW \& Easy Number Theory	Gasarch

Known: $(\forall c)(\exists G)[\chi(G)=c$ and $\ldots]$

$g(G)$	Math	who
6	PHP	Folklore
9	VDW, Messy	O'Donnell
12	PVDW \& Hard Number Theory	O'Donnell
g	Hard Hypergraph	Erdos-Hajnal-O'Donnell

1. Don't want to show you messy OR Hard NT.
2. Want to show you app of VDW or Poly VDW.

Hence I came up with the following:

$g(G)$	Math	who
9	PVDW \& Easy Number Theory	Gasarch

We will do it the Gasarch Way!

Base Points and Cycles

Recall that we said earlier:

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9
We make sure that a cycle cannot connect to 2 base points.

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9
We make sure that a cycle cannot connect to 2 base points.
Lets look at cycles that connected to 2 base points.
GOTO WHITE BOARD

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9
We make sure that a cycle cannot connect to 2 base points.
Lets look at cycles that connected to 2 base points.
GOTO WHITE BOARD
Because there exists $A_{1}, A_{2} \in\binom{[L]}{M_{c-1}}$ with $\left|A_{1} \cap A_{2}\right| \geq 2$.

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9
We make sure that a cycle cannot connect to 2 base points.
Lets look at cycles that connected to 2 base points.
GOTO WHITE BOARD

We want the following:

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9
We make sure that a cycle cannot connect to 2 base points.
Lets look at cycles that connected to 2 base points.
GOTO WHITE BOARD
Because there exists $A_{1}, A_{2} \in\binom{[L]}{M_{c-1}}$ with $\left|A_{1} \cap A_{2}\right| \geq 2$.
We want the following:

- Fewer sets A so that for all $A_{1}, A_{2},\left|A_{1} \cap A_{2}\right| \leq 1$.

Base Points and Cycles

Recall that we said earlier:
If a cycle uses 1 base vertices then this cannot happen!
If a cycle uses 2 base vertices then cycle is ≥ 6
If a cycle uses 3 base vertices then it must have length ≥ 9
We make sure that a cycle cannot connect to 2 base points.
Lets look at cycles that connected to 2 base points.
GOTO WHITE BOARD
Because there exists $A_{1}, A_{2} \in\binom{[L]}{M_{c-1}}$ with $\left|A_{1} \cap A_{2}\right| \geq 2$.
We want the following:

- Fewer sets A so that for all $A_{1}, A_{2},\left|A_{1} \cap A_{2}\right| \leq 1$.
- Enough sets A so that can do the $\chi\left(G_{c}\right) \geq c$ proof.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}. Take two 5-APs with different differences, both powers of m.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}. Take two 5-APs with different differences, both powers of m. $a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}.
Take two 5-APs with different differences, both powers of m.
$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
Is there an m such that they cannot intersect in two places?
Next Slide

Want m so they Cannot Intersect in Two Places?

$$
a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}
$$

Want m so they Cannot Intersect in Two Places?

$$
\begin{aligned}
& a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m} \\
& a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}
\end{aligned}
$$

Want m so they Cannot Intersect in Two Places?

```
\(a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}\)
\(a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}\)
\(a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}\)
\(a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}\) where \(w, x, y, z \in\{0,1,2,3,4\}\).
```


Want m so they Cannot Intersect in Two Places?

```
\(a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}\)
\(a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}\)
\(a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}\)
\(a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}\) where \(w, x, y, z \in\{0,1,2,3,4\}\).
\((w-y) d_{1}^{m}=(x-z) d_{2}^{m}\) so \(\frac{w-y}{x-z}=\left(\frac{d_{2}}{d_{1}}\right)^{m}\)
```


Want m so they Cannot Intersect in Two Places?

$$
\begin{aligned}
& a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m} \\
& a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m} \\
& a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m} \\
& a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m} \text { where } w, x, y, z \in\{0,1,2,3,4\} . \\
& (w-y) d_{1}^{m}=(x-z) d_{2}^{m} \text { so } \frac{w-y}{x-z}=\left(\frac{d_{2}}{d_{1}}\right)^{m} \\
& \frac{w-y}{x-z} \in\left\{1,2,3,4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\right\}
\end{aligned}
$$

Want m so they Cannot Intersect in Two Places?

$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$ where $w, x, y, z \in\{0,1,2,3,4\}$.
$(w-y) d_{1}^{m}=(x-z) d_{2}^{m}$ so $\frac{w-y}{x-z}=\left(\frac{d_{2}}{d_{1}}\right)^{m}$
$\frac{w-y}{x-z} \in\left\{1,2,3,4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\right\}$
If $m=2$ then $\frac{w-y}{x-z} \in\left\{\frac{1}{4}, 1,4\right\}$.
Solution $w=4, y=3, x=4, z=0, d_{1}=2, d_{2}=1$.

Want m so they Cannot Intersect in Two Places?

$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$ where $w, x, y, z \in\{0,1,2,3,4\}$.
$(w-y) d_{1}^{m}=(x-z) d_{2}^{m}$ so $\frac{w-y}{x-z}=\left(\frac{d_{2}}{d_{1}}\right)^{m}$
$\frac{w-y}{x-z} \in\left\{1,2,3,4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\right\}$
If $m=2$ then $\frac{w-y}{x-z} \in\left\{\frac{1}{4}, 1,4\right\}$.
Solution $w=4, y=3, x=4, z=0, d_{1}=2, d_{2}=1$.
If $m=3$ then $\frac{w-y}{x-z}=1$, so $d_{1}^{m}=d_{2}^{m}$, so $d_{1}=d_{2}$. No solution.

Want m so they Cannot Intersect in Two Places?

$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$ where $w, x, y, z \in\{0,1,2,3,4\}$.
$(w-y) d_{1}^{m}=(x-z) d_{2}^{m}$ so $\frac{w-y}{x-z}=\left(\frac{d_{2}}{d_{1}}\right)^{m}$
$\frac{w-y}{x-z} \in\left\{1,2,3,4, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{3}{4}, \frac{4}{3}\right\}$
If $m=2$ then $\frac{w-y}{x-z} \in\left\{\frac{1}{4}, 1,4\right\}$.
Solution $w=4, y=3, x=4, z=0, d_{1}=2, d_{2}=1$.
If $m=3$ then $\frac{w-y}{x-z}=1$, so $d_{1}^{m}=d_{2}^{m}$, so $d_{1}=d_{2}$. No solution.
Upshot If A_{1}, A_{2} are two 5 -APs with different differences, both cubes, then $\left|A_{1} \cap A_{2}\right| \leq 1$.

A Lemma and a Thm

Lemma Let $k \geq 3$. $(\exists m)$ such that the the following holds:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

A Lemma and a Thm

Lemma Let $k \geq 3$. $(\exists m)$ such that the the following holds:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Thm Let $k \geq 3$. $(\exists m=m(k))$ such that the following holds: If A_{1} is a k-AP with diff d_{1}^{m} and A_{2} is a k-AP with diff d_{2}^{m}, with $d_{1} \neq d_{2}$, then $\left|A_{1} \cap A_{2}\right| \leq 1$.

Our Set of k-APs

Given k let $m=m(k)$. Let $D=\left\{d^{m}: d \geq 1\right\}$.

Our Set of k-APs

Given k let $m=m(k)$. Let $D=\left\{d^{m}: d \geq 1\right\}$.
Good news If A_{1} and A_{2} are k-APs with diffs in D, then $\left|A_{1} \cap A_{2}\right| \leq 1$.

Our Set of $k-A P s$

Given k let $m=m(k)$. Let $D=\left\{d^{m}: d \geq 1\right\}$.
Good news If A_{1} and A_{2} are k-APs with diffs in D, then $\left|A_{1} \cap A_{2}\right| \leq 1$.
Bad News If A_{1} and A_{2} are k-APs with same diff in D, could have $\left|A_{1} \cap A_{2}\right| \geq 2$.

Our Set of k-APs

Given k let $m=m(k)$. Let $D=\left\{d^{m}: d \geq 1\right\}$.
Good news If A_{1} and A_{2} are k-APs with diffs in D, then $\left|A_{1} \cap A_{2}\right| \leq 1$.
Bad News If A_{1} and A_{2} are k-APs with same diff in D, could have $\left|A_{1} \cap A_{2}\right| \geq 2$.
Example $k=5 . d=4$.

$$
|\{1,5,9,13,17\} \cap\{13,17,21,25,29\}|=2
$$

Our Set of k-APs

Given k let $m=m(k)$. Let $D=\left\{d^{m}: d \geq 1\right\}$.
Good news If A_{1} and A_{2} are k-APs with diffs in D, then $\left|A_{1} \cap A_{2}\right| \leq 1$.
Bad News If A_{1} and A_{2} are k-APs with same diff in D, could have $\left|A_{1} \cap A_{2}\right| \geq 2$.
Example $k=5 . d=4$.

$$
|\{1,5,9,13,17\} \cap\{13,17,21,25,29\}|=2
$$

What to do Next Slide.

We Can Use the Following

Note that the following do not intersect in ≥ 2 places:
$(1,5,9,13,17)$
$(2,6,10,14,18)$
$(3,7,11,15,19)$
(4, 8, 12, 16, 20)
Do we need to stop here? No.

We Can Use the Following

Note that the following do not intersect in ≥ 2 places:
$(1,5,9,13,17)$
$(2,6,10,14,18)$
$(3,7,11,15,19)$
(4, 8, 12, 16, 20)
Do we need to stop here? No.
$(21,25,29,33,37)$
$(22,26,30,34,38)$
(23, 27, 31, 35, 39)
(24, 28, 32, 36, 40)

We Can Use the Following

Note that the following do not intersect in ≥ 2 places:
$(1,5,9,13,17)$
$(2,6,10,14,18)$
$(3,7,11,15,19)$
(4, 8, 12, 16, 20)
Do we need to stop here? No.
(21, 25, 29, 33, 37)
$(22,26,30,34,38)$
$(23,27,31,35,39)$
(24, 28, 32, 36, 40)
So can start with any $a \equiv 1,2,3,4(\bmod 20)$.

Starting Points a

More generally we can do the following for k-APs and $d \in D$.

Starting Points a

More generally we can do the following for k-APs and $d \in D$.
Only use a such that $a \equiv 1, \ldots, d(\bmod k d)$.

Starting Points a

More generally we can do the following for k-APs and $d \in D$.
Only use a such that $a \equiv 1, \ldots, d(\bmod k d)$.
With this restriction on a, all k-APs with diff d intersect ≤ 1.

Starting Points a

More generally we can do the following for k-APs and $d \in D$.
Only use a such that $a \equiv 1, \ldots, d(\bmod k d)$.
With this restriction on a, all k-APs with diff d intersect ≤ 1.
Easy to prove, but we won't do that.

Final Upshot for $k-A P s$

Given k

Final Upshot for k-APs

Given k
Let $m=m(k)$.

Final Upshot for k-APs

Given k
Let $m=m(k)$.
Let $D=\left\{d^{m}: d \geq 1\right\}$.

Final Upshot for k-APs

Given k
Let $m=m(k)$.
Let $D=\left\{d^{m}: d \geq 1\right\}$.
Let $S(k)$ be all k-APs such that

- Difference is $d^{m} \in D$.
- Starting point is $a \equiv 1, \ldots, d\left(\bmod k d^{m}\right)$.

Lemma If A_{1} and A_{2} are in $S(k)$ then $\left|A_{1} \cap A_{2}\right| \leq 1$.

Final Upshot for k-APs

Given k
Let $m=m(k)$.
Let $D=\left\{d^{m}: d \geq 1\right\}$.
Let $S(k)$ be all k-APs such that

- Difference is $d^{m} \in D$.
- Starting point is $a \equiv 1, \ldots, d\left(\bmod k d^{m}\right)$.

Lemma If A_{1} and A_{2} are in $S(k)$ then $\left|A_{1} \cap A_{2}\right| \leq 1$.
We won't prove this but its easy.

Lemma on Starting Points

Start Lemma Consider the numbers

$$
a, a+d, \ldots, a+(k-1) d
$$

One of them is $\equiv 1, \ldots, d(\bmod k d)$. Pf View $\{1, \ldots, k d\}$ in chunks as follows:

$$
\{1, \ldots, d\},\{d+1, \ldots, 2 d\}, \cdots,\{(k-1) d+1, \ldots, k d\}
$$

Lemma on Starting Points

Start Lemma Consider the numbers

$$
a, a+d, \ldots, a+(k-1) d
$$

One of them is $\equiv 1, \ldots, d(\bmod k d)$. Pf View $\{1, \ldots, k d\}$ in chunks as follows:

$$
\{1, \ldots, d\},\{d+1, \ldots, 2 d\}, \cdots,\{(k-1) d+1, \ldots, k d\}
$$

Assume a is in the i th chunk.

Lemma on Starting Points

Start Lemma Consider the numbers

$$
a, a+d, \ldots, a+(k-1) d
$$

One of them is $\equiv 1, \ldots, d(\bmod k d)$. Pf View $\{1, \ldots, k d\}$ in chunks as follows:

$$
\{1, \ldots, d\},\{d+1, \ldots, 2 d\}, \cdots,\{(k-1) d+1, \ldots, k d\}
$$

Assume a is in the i th chunk.
Then $a+d$ is in the $i+1$ st chunk (count $\bmod k)$.

Lemma on Starting Points

Start Lemma Consider the numbers

$$
a, a+d, \ldots, a+(k-1) d
$$

One of them is $\equiv 1, \ldots, d(\bmod k d)$.
Pf View $\{1, \ldots, k d\}$ in chunks as follows:

$$
\{1, \ldots, d\},\{d+1, \ldots, 2 d\}, \cdots,\{(k-1) d+1, \ldots, k d\}
$$

Assume a is in the i th chunk.
Then $a+d$ is in the $i+1$ st chunk (count mod k).
$a+d, a+2 d, \ldots, a+(k-1) d$ hits every chunk, including 1st one.

Lemma on Starting Points

Start Lemma Consider the numbers

$$
a, a+d, \ldots, a+(k-1) d
$$

One of them is $\equiv 1, \ldots, d(\bmod k d)$. Pf View $\{1, \ldots, k d\}$ in chunks as follows:

$$
\{1, \ldots, d\},\{d+1, \ldots, 2 d\}, \cdots,\{(k-1) d+1, \ldots, k d\}
$$

Assume a is in the i th chunk.
Then $a+d$ is in the $i+1$ st chunk (count mod k).
$a+d, a+2 d, \ldots, a+(k-1) d$ hits every chunk, including 1st one.
End of Pf

Lemma on Starting Points

Start Lemma Consider the numbers

$$
a, a+d, \ldots, a+(k-1) d
$$

One of them is $\equiv 1, \ldots, d(\bmod k d)$.
Pf View $\{1, \ldots, k d\}$ in chunks as follows:

$$
\{1, \ldots, d\},\{d+1, \ldots, 2 d\}, \cdots,\{(k-1) d+1, \ldots, k d\}
$$

Assume a is in the i th chunk.
Then $a+d$ is in the $i+1$ st chunk (count mod k).
$a+d, a+2 d, \ldots, a+(k-1) d$ hits every chunk, including 1st one.
End of Pf
Note We will be applying this with $k=M_{c-1}$ and $d=d^{m}$.

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.

Pf

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.

Pf
Base $c=3$. Use C_{9}, the cycle on 9 vertices.

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.
Pf
Base $c=3$. Use C_{9}, the cycle on 9 vertices.
Ind Hyp There exists G_{c-1} such that

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.
Pf
Base $c=3$. Use C_{9}, the cycle on 9 vertices.
Ind Hyp There exists G_{c-1} such that
- $\chi\left(G_{c-1}\right)=c-1$, and

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.

Pf
Base $c=3$. Use C_{9}, the cycle on 9 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and
- $g\left(G_{c-1}\right)=9$.

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.

Pf

Base $c=3$. Use C_{9}, the cycle on 9 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and
- $g\left(G_{c-1}\right)=9$.

Let M_{c-1} be the number of vertices in G_{c-1}.

$\chi\left(G_{c}\right)=c, g(G)=9$

Thm For all $c \geq 3$ there exists graph G_{c} such that

- $\chi\left(G_{c}\right)=c$, and
$-g\left(G_{c}\right)=9$.

Pf
Base $c=3$. Use C_{9}, the cycle on 9 vertices.
Ind Hyp There exists G_{c-1} such that

- $\chi\left(G_{c-1}\right)=c-1$, and
- $g\left(G_{c-1}\right)=9$.

Let M_{c-1} be the number of vertices in G_{c-1}.
Ind Step We construct G_{c} on next slide.

Construction of G_{c}

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}} \cap S\left(M_{c-1}\right)$:

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}} \cap S\left(M_{c-1}\right)$:
a) Make a copy of $G_{c-1}: G_{c-1}^{A} .\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}} \cap S\left(M_{c-1}\right)$:
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts.)
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\left(\begin{array}{c}{\left[\begin{array}{l}L] \\ M_{c-1}\end{array}\right) \cap S\left(M_{c-1}\right) \text { : }}\end{array}\right.$
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts.)
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

GOTO WHITE BOARD TO LOOK AT G_{4}

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\left(\begin{array}{c}{\left[\begin{array}{l}L] \\ M_{c-1}\end{array}\right) \cap S\left(M_{c-1}\right) \text { : }}\end{array}\right.$
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

GOTO WHITE BOARD TO LOOK AT G_{4}
Construction is done.

Construction of G_{c}

1. Let L be a large number to be picked later. We call $[L]$ the base vertices. They will not be connected to each other.
2. For every $A \in\binom{[L]}{M_{c-1}} \cap S\left(M_{c-1}\right)$:
a) Make a copy of $G_{c-1}: G_{c-1}^{A}$. $\left(G_{c-1}^{A}\right.$ has M_{c-1} verts. $)$
b) Put edges between A and the verts of G_{c-1}^{A} as a bijection.

GOTO WHITE BOARD TO LOOK AT G_{4}
Construction is done.
We prove it works in the next few slides.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.
Color each G_{c-1}^{A} with $[c-1]$.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.
Color each G_{c-1}^{A} with $[c-1]$.
Color all of the base vertices c.

$\chi\left(G_{c}\right) \leq c$

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$.
Color each G_{c-1}^{A} with $[c-1]$.
Color all of the base vertices c.
Done!

$\chi\left(G_{c}\right) \geq c$ (This uses PVDW!)

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.

$\chi\left(G_{c}\right) \geq c$ (This uses PVDW!)

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$ via COL.

$\chi\left(G_{c}\right) \geq c$ (This uses PVDW!)

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$ via COL.
L is a $c-1$-colored sequence of integers.

$\chi\left(G_{c}\right) \geq c$ (This uses PVDW!)

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$ via COL.
L is a $c-1$-colored sequence of integers.
Choose $L=W\left(x^{m}, 2 x^{m}, \ldots, \square x^{m} ; c-1\right)$ where we choose \square later.

$\chi\left(G_{c}\right) \geq c$ (This uses PVDW!)

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$ via COL.
L is a $c-1$-colored sequence of integers.
Choose $L=W\left(x^{m}, 2 x^{m}, \ldots, \square x^{m} ; c-1\right)$ where we choose \square later.
There exists d such that

$$
a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m} \text { same color. }
$$

Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color

$\chi\left(G_{c}\right) \geq c$ (This uses PVDW!)

Assume inductively that $\chi\left(G_{c-1}\right)=c-1$. We show $\chi\left(G_{c}\right) \geq c$.
Assume, BWOC, $\chi\left(G_{c}\right) \leq c-1$ via COL.
L is a $c-1$-colored sequence of integers.
Choose $L=W\left(x^{m}, 2 x^{m}, \ldots, \square x^{m} ; c-1\right)$ where we choose \square later.
There exists d such that

$$
a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m} \text { same color. }
$$

Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color
We are halfway there since diff is an m th power.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.
We are halfway there since diff that is an m th power.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.
We are halfway there since diff that is an m th power.
By Start Lemma there exists $0 \leq x \leq M_{c-1}-1$ such that $a+x d^{m} \equiv 1, \ldots, d\left(\bmod M_{c-1} d^{m}\right)$.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.
We are halfway there since diff that is an m th power.
By Start Lemma there exists $0 \leq x \leq M_{c-1}-1$ such that $a+x d^{m} \equiv 1, \ldots, d\left(\bmod M_{c-1} d^{m}\right)$.
If we start out sequence there we get

$$
\left(a+x d^{m}, a+(x+1) d^{m}, \ldots, a+\left(M_{c-1}+x-1\right) d^{m}\right) \in S\left(M_{c-1}\right)
$$

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.
We are halfway there since diff that is an m th power.
By Start Lemma there exists $0 \leq x \leq M_{c-1}-1$ such that $a+x d^{m} \equiv 1, \ldots, d\left(\bmod M_{c-1} d^{m}\right)$.
If we start out sequence there we get

$$
\left(a+x d^{m}, a+(x+1) d^{m}, \ldots, a+\left(M_{c-1}+x-1\right) d^{m}\right) \in S\left(M_{c-1}\right)
$$

Need all of these to be $\leq \square d^{m}$.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.
We are halfway there since diff that is an m th power.
By Start Lemma there exists $0 \leq x \leq M_{c-1}-1$ such that $a+x d^{m} \equiv 1, \ldots, d\left(\bmod M_{c-1} d^{m}\right)$.
If we start out sequence there we get

$$
\left(a+x d^{m}, a+(x+1) d^{m}, \ldots, a+\left(M_{c-1}+x-1\right) d^{m}\right) \in S\left(M_{c-1}\right)
$$

Need all of these to be $\leq \square d^{m}$.
$M_{c-1}+x-1 \leq M_{c-1}+M_{c-1}-1=2 M_{c-1}-1$.

Need a Good Start Point

$(\exists a, d)\left[a, a+d^{m}, a+2 d^{m}, \ldots, a+\square d^{m}\right.$ same color $]$. Want to obtain an $M_{c-1}-\mathrm{AP}$ in $S\left(M_{c-1}\right)$ that is same color.
We are halfway there since diff that is an m th power.
By Start Lemma there exists $0 \leq x \leq M_{c-1}-1$ such that $a+x d^{m} \equiv 1, \ldots, d\left(\bmod M_{c-1} d^{m}\right)$.
If we start out sequence there we get

$$
\left(a+x d^{m}, a+(x+1) d^{m}, \ldots, a+\left(M_{c-1}+x-1\right) d^{m}\right) \in S\left(M_{c-1}\right)
$$

Need all of these to be $\leq \square d^{m}$.
$M_{c-1}+x-1 \leq M_{c-1}+M_{c-1}-1=2 M_{c-1}-1$.
Set $\square=2 M_{c-1}$. (Could have made it $2 M_{c-1}-1$ but bad for slides.)

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.
Look at COL on the L base points.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.
Look at COL on the L base points.
L is chosen to be $W\left(x^{m}, 2 x^{m}, \ldots, 2 M_{c-1} x^{m} ; c-1\right)$, so that there will be a mono $A \in S\left(M_{c-1}\right)$.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.
Look at COL on the L base points.
L is chosen to be $W\left(x^{m}, 2 x^{m}, \ldots, 2 M_{c-1} x^{m} ; c-1\right)$, so that there will be a mono $A \in S\left(M_{c-1}\right)$.
So we have a mono $A \in S\left(M_{c-1}\right)$. Look at G_{c-1}^{A}.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.
Look at COL on the L base points.
L is chosen to be $W\left(x^{m}, 2 x^{m}, \ldots, 2 M_{c-1} x^{m} ; c-1\right)$, so that there will be a mono $A \in S\left(M_{c-1}\right)$.
So we have a mono $A \in S\left(M_{c-1}\right)$. Look at G_{c-1}^{A}. G_{c-1}^{A} requires $c-1$ colors.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.
Look at COL on the L base points.
L is chosen to be $W\left(x^{m}, 2 x^{m}, \ldots, 2 M_{c-1} x^{m} ; c-1\right)$, so that there will be a mono $A \in S\left(M_{c-1}\right)$.
So we have a mono $A \in S\left(M_{c-1}\right)$. Look at G_{c-1}^{A}. G_{c-1}^{A} requires $c-1$ colors.
None of them can be the color of A.

Back to $\chi\left(G_{c}\right) \geq c$

We want to prove $\chi\left(G_{c}\right) \geq c$.
We assume, BWOC, that $\chi\left(G_{c}\right) \leq c-1$ via COL.
Look at COL on the L base points.
L is chosen to be $W\left(x^{m}, 2 x^{m}, \ldots, 2 M_{c-1} x^{m} ; c-1\right)$, so that there will be a mono $A \in S\left(M_{c-1}\right)$.
So we have a mono $A \in S\left(M_{c-1}\right)$. Look at G_{c-1}^{A}.
G_{c-1}^{A} requires $c-1$ colors.
None of them can be the color of A.
Hence $\chi\left(G_{c}\right) \geq c$. Done

$g\left(G_{c}\right) \geq 9:$ Familiar Cases

Assume inductively that $g\left(G_{c-1}\right)=9$.
Let C be a cycle in G_{C}. We show $|C| \geq 9$.
Familiar Cases

$g\left(G_{c}\right) \geq 9:$ Familiar Cases

Assume inductively that $g\left(G_{c-1}\right)=9$.
Let C be a cycle in G_{c}. We show $|C| \geq 9$.
Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^{A}, so $|C| \geq 9$.

$g\left(G_{c}\right) \geq 9:$ Familiar Cases

Assume inductively that $g\left(G_{c-1}\right)=9$.
Let C be a cycle in G_{C}. We show $|C| \geq 9$.
Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^{A}, so $|C| \geq 9$.
2) C has 1 base point v. Then v has two edges coming out of it, to $G_{c-1}^{A_{1}}$ and $G_{c-1}^{A_{2}}$.

$g\left(G_{c}\right) \geq 9:$ Familiar Cases

Assume inductively that $g\left(G_{c-1}\right)=9$.
Let C be a cycle in G_{c}. We show $|C| \geq 9$.
Familiar Cases

1) C has 0 base points. Then C is a cycle in G_{c-1}^{A}, so $|C| \geq 9$.
2) C has 1 base point v. Then v has two edges coming out of it, to $G_{c-1}^{A_{1}}$ and $G_{c-1}^{A_{2}}$.
Cycle goes from v to $G_{c-1}^{A_{1}}$ then leaves $G_{c-1}^{A_{1}}$ and has to goto a base vertex that is not v.
This is impossible. So this case can't happen.

$g\left(G_{c}\right) \geq 9:$ The New Case

3) C has 2 base points u, v. GOTO WHITE BOARD
Will show that u, v must be in the same $A \in S\left(M_{k-1}\right)$.

$g\left(G_{c}\right) \geq 9:$ The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD
Will show that u, v must be in the same $A \in S\left(M_{k-1}\right)$.
Recall that $S\left(M_{k-1}\right)$ was constructed so that no two APs in it intersected in ≥ 2 points.

$g\left(G_{c}\right) \geq 9:$ The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD
Will show that u, v must be in the same $A \in S\left(M_{k-1}\right)$.
Recall that $S\left(M_{k-1}\right)$ was constructed so that no two APs in it intersected in ≥ 2 points.
Hence this cannot happen.

$g\left(G_{c}\right) \geq 9:$ The New Case

3) C has 2 base points u, v.

GOTO WHITE BOARD
Will show that u, v must be in the same $A \in S\left(M_{k-1}\right)$.
Recall that $S\left(M_{k-1}\right)$ was constructed so that no two APs in it intersected in ≥ 2 points.
Hence this cannot happen.
4) C has ≥ 3 base points. Can show that C has length ≥ 9.

Touched on this earlier in the proof for $\chi\left(G_{c}\right)=c, g\left(G_{c}\right)=6$.

Application of VDW:

Constructing Graphs with High Chromatic Number and Girth 12

May 5, 2022

Base Points and Cycles

Recall that we said earlier:

Base Points and Cycles

Recall that we said earlier:
If a cycle use $\mathbf{1}$ base vertices then this cannot happen!

Base Points and Cycles

Recall that we said earlier:
If a cycle use 1 base vertices then this cannot happen!
If a cycle use 2 base vertices then cycle is ≥ 6

Base Points and Cycles

Recall that we said earlier:
If a cycle use 1 base vertices then this cannot happen!
If a cycle use 2 base vertices then cycle is ≥ 6
If a cycle use 3 base vertices then it must have length ≥ 9

Base Points and Cycles

Recall that we said earlier:
If a cycle use 1 base vertices then this cannot happen!
If a cycle use 2 base vertices then cycle is ≥ 6
If a cycle use 3 base vertices then it must have length ≥ 9
If a cycle use 4 base vertices then it must have length ≥ 12

Base Points and Cycles

Recall that we said earlier:
If a cycle use 1 base vertices then this cannot happen!
If a cycle use 2 base vertices then cycle is ≥ 6
If a cycle use 3 base vertices then it must have length ≥ 9
If a cycle use 4 base vertices then it must have length ≥ 12
So lets try to make sure that a cycle cannot have 3 base points.

Base Points and Cycles

Recall that we said earlier:
If a cycle use 1 base vertices then this cannot happen!
If a cycle use 2 base vertices then cycle is ≥ 6
If a cycle use 3 base vertices then it must have length ≥ 9
If a cycle use 4 base vertices then it must have length ≥ 12
So lets try to make sure that a cycle cannot have 3 base points.
The same construction I did for $g\left(G_{c}\right)=9$ actually shows $g\left(G_{c}\right)=12$ but uses harder Number Theory.

