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Prob 2

Give a sentence φ in the language of graphs such that

spec(φ) = {n : n ≡ 1 (mod 4)}.

SOL Plan: (1) there is one isolated point, and (2) all other points
come in sets of C4’s.
(∃x) the AND of the following:
(∀y)[¬E (x , y)]. x is an isolated vertex.

(∀y 6= x)(∃z1, z2)[E (y , z1) ∧ E (y , z2) ∧ (∀w 6= z1, z2)[¬E (y ,w)]]
All vertices except x have degree exactly 2.

(∀y 6= x)(∃y1, y2, y3)[E (y , y1) ∧ E (y1, y2) ∧ E (y2, y3) ∧ E (y3, y)]
Every non-x vert is in a C4. All non-x verts have deg 2, so the
y1, y2, y3, y are in a C4 and are not connected to anything else.
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Statement of Prob 3

We use the language of 3-hypergraphs. One predicate: E (x , y , z).
We assume E is symmetric.

φ = (∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

If (∃N ≥ X (n,m))[N ∈ spec(φ)] then

{n + m, n + m + 1, . . .} ⊆ spec(φ).

Fill in the X and prove it.



SOL to Prob 3: Sets U,Y

Assume ∃ 3-hypergraph G = (V ,E ) on ≥ X vertices, G |= φ.
Witnesses: u1, . . . , un be the witnesses.

U = {u1, . . . , un} Y = V − U |Y | = X − n = A.

Y = {y1, . . . , yA}

Want Y superhomog.



SOL to Prob 3 Y and
(
U
2

)

Map yi ∈ Y to the
(n
2

)
sized vector indexed by

([n]
2

)
:

The {a, b} entry is E (yi , a, b).

We map A elt to 2(n2) elts.
∃ B = A

2(
n
2)

that map to same vector.

Re-index to get:
{y1, . . . , yB} have same rel to all pairs in

(U
2

)
.
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SOL to Prob 3: RECAP

Recap
X TBD
A = X − n
B = A

2(
n
2)



(
Y
2

)
and U

Have: {y1, . . . , yB} have same rel to all pairs in
(U
2

)
.

We now need all pairs in
(Y
2

)
have same rel to elts in U.

Form the following coloring COL :
(Y
2

)
→ [{0, 1}n].

COL(yi , yj) = (E (yi , yj , u1), . . . ,E (yi , yj , un))

Replace Y with the homog set. Re-index to get

Y = {y1, . . . , yC}

C is an inv Ramsey Numb. We will state B as a ramsey numb.

Need B ≥ R(C , 2n).
We will see how big C needs to be, then how big B needs to be.
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Recap
X TBD
A = X − n
B = A
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B ≥ R(C , 2n).
C TBD



SOL to Prob 3:
(
Y
3

)

Want all of the yi ’s to have same rel to each other.

Use 3-ary Ramsey on Y to get a set of size m. So we will take
C = R3(m).
Let COL :

(Y
3

)
→ [2] by COL(yi , yj , yk) = E (yi , yj , yk).

Take homog set of size m. We now have a superhomg set Y . The
rest of the proof is like I did in class.
So what is X? Next Slide.
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SOL to Prob 3: What is X?

We include arities and numb colors for clarity.

C = R3(m, 2).

B = R2(C , 2n) = R2(R3(m, 2), 2n).
A

2(
n
2)

= R2(C , 2n) = R2(R3(m, 2), 2n).

A = 2(n2)R2(C , 2n) = 2(n2)R2(R3(m, 2), 2n).

X = A + n = 2(n2)R2(C , 2n) = R2(R3(m, 2), 2n) + n.
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Prob 4

A number of the form x2 + x where x ∈ N, x ≥ 1, is called a Liam.

The first few Liam’s are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of
{1, . . . , n} there exists two numbers that are the same color that
are a Liam apart.

1. Find an upper bound on L(2).

2. Find an upper bound on L(3).
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SOL to a

We show that (∀COL : [13]→ [2]) there exists x , y a Liam apart
that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam:
(∀x)[COL(x) = 1 =⇒ COL(x + 2) = 2 =⇒ COL(x + 4) = 1].

Hence COL(1) = COL(5) = COL(9) = COL(13)

1 and 13 are 12 = 33 + 3 apart. So COL(1) 6= COL(13).

Contradiction.
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SOL to b (Diagram)

This diagram shows that COL(1) = COL(55).

More generally, COL(x) = COL(x + 54).
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Figure: COL(x) = COL(x + 18)



SOL to b (Diagram)

This diagram shows that COL(1) = COL(55).

More generally, COL(x) = COL(x + 54).

1

13

7

19

12 =
3
2 +

3

6 =
2 2

+
2

6 = 22 + 2

6 =
2 2

+
2

12 =
3
2 +

3

Figure: COL(x) = COL(x + 18)



SOL to b (Finale)

(∀k ∈ N)[COL(1) = COL(1 + 18k)]

We need

18k = x2 + x = x(x + 1)

OH- lets take x = 8.

18k = 8× 9 = 18× 4

Great! We take k = 4.

SO L(3) ≤ 73.

Can we do better? I do not know.
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