HW08 Solutions

William Gasarch-U of MD

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. $(\exists x)$ the AND of the following: $(\forall y)[\neg E(x, y)].$

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. ($\exists x$) the AND of the following: ($\forall y$)[$\neg E(x, y)$]. x is an isolated vertex.

ション ふゆ アメビア メロア しょうくしゃ

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. ($\exists x$) the AND of the following: ($\forall y$)[$\neg E(x, y)$]. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$

ション ふぼう メリン メリン しょうくしゃ

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. ($\exists x$) the AND of the following: ($\forall y$)[$\neg E(x, y)$]. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$ All vertices except x have degree exactly 2.

ション ふぼう メリン メリン しょうくしゃ

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. ($\exists x$) the AND of the following: ($\forall y$)[$\neg E(x, y)$]. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$ All vertices except x have degree exactly 2.

 $(\forall y \neq x)(\exists y_1, y_2, y_3)[E(y, y_1) \land E(y_1, y_2) \land E(y_2, y_3) \land E(y_3, y)]$

Give a sentence ϕ in the language of graphs such that

$$\operatorname{spec}(\phi) = \{ n \colon n \equiv 1 \pmod{4} \}.$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_4 's. ($\exists x$) the AND of the following: ($\forall y$)[$\neg E(x, y)$]. x is an isolated vertex.

 $(\forall y \neq x)(\exists z_1, z_2)[E(y, z_1) \land E(y, z_2) \land (\forall w \neq z_1, z_2)[\neg E(y, w)]]$ All vertices except x have degree exactly 2.

 $(\forall y \neq x)(\exists y_1, y_2, y_3)[E(y, y_1) \land E(y_1, y_2) \land E(y_2, y_3) \land E(y_3, y)]$ Every non-x vert is in a C_4 . All non-x verts have deg 2, so the y_1, y_2, y_3, y are in a C_4 and are not connected to anything else.

Statement of Prob 3

We use the language of 3-hypergraphs. One predicate: E(x, y, z). We assume E is symmetric.

$$\phi = (\exists x_1) \cdots (\exists x_n) (\forall y_1) \cdots (\forall y_m) [\psi(x_1, \dots, x_n, y_1, \dots, y_m)]$$

If $(\exists N \ge X(n, m)) [N \in \operatorname{spec}(\phi)]$ then
 $\{n + m, n + m + 1, \dots\} \subseteq \operatorname{spec}(\phi).$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Fill in the X and prove it.

SOL to Prob 3: Sets U, Y

Assume \exists 3-hypergraph G = (V, E) on $\geq X$ vertices, $G \models \phi$. Witnesses: u_1, \ldots, u_n be the witnesses.

$$U = \{u_1, \ldots, u_n\}$$
 $Y = V - U$ $|Y| = X - n = A.$

$$Y = \{y_1, \ldots, y_A\}$$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Want Y superhomog.

SOL to Prob 3 Y and $\begin{pmatrix} U \\ 2 \end{pmatrix}$

Map $y_i \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$: The $\{a, b\}$ entry is $E(y_i, a, b)$.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

SOL to Prob 3 Y and $\binom{U}{2}$

Map $y_i \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$: The $\{a, b\}$ entry is $E(y_i, a, b)$. We map A elt to $2^{\binom{n}{2}}$ elts.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

SOL to Prob 3 Y and $\binom{U}{2}$

Map $y_i \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$: The $\{a, b\}$ entry is $E(y_i, a, b)$. We map A elt to $2^{\binom{n}{2}}$ elts. $\exists B = \frac{A}{2\binom{n}{2}}$ that map to same vector. Re-index to get:

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Map $y_i \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$: The $\{a, b\}$ entry is $E(y_i, a, b)$. We map A elt to $2\binom{n}{2}$ elts. $\exists B = \frac{A}{2\binom{n}{2}}$ that map to same vector. Re-index to get: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶ ◆□◆

SOL to Prob 3: RECAP

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Recap

X TBD A = X - n $B = \frac{A}{2^{\binom{n}{2}}}$

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$.

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$. We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.

*ロト *昼 * * ミ * ミ * ミ * のへぐ

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$. We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U. Form the following coloring $COL : \binom{Y}{2} \to [\{0,1\}^n]$.

$$COL(y_i, y_j) = (E(y_i, y_j, u_1), \ldots, E(y_i, y_j, u_n))$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$. We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U. Form the following coloring $COL : \binom{Y}{2} \to [\{0,1\}^n]$.

$$COL(y_i, y_j) = (E(y_i, y_j, u_1), \ldots, E(y_i, y_j, u_n))$$

Replace Y with the homog set. Re-index to get

$$Y = \{y_1, \ldots, y_C\}$$

ション ふぼう メリン メリン しょうくしゃ

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$. We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U. Form the following coloring $COL : \binom{Y}{2} \to [\{0,1\}^n]$.

$$COL(y_i, y_j) = (E(y_i, y_j, u_1), \ldots, E(y_i, y_j, u_n))$$

Replace Y with the homog set. Re-index to get

$$Y = \{y_1, \ldots, y_C\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

C is an inv Ramsey Numb. We will state B as a ramsey numb.

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$. We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U. Form the following coloring $COL : \binom{Y}{2} \to [\{0,1\}^n]$.

$$COL(y_i, y_j) = (E(y_i, y_j, u_1), \ldots, E(y_i, y_j, u_n))$$

Replace Y with the homog set. Re-index to get

$$Y = \{y_1, \ldots, y_C\}$$

C is an inv Ramsey Numb. We will state B as a ramsey numb. Need $B \ge R(C, 2^n)$.

Have: $\{y_1, \ldots, y_B\}$ have same rel to all pairs in $\binom{U}{2}$. We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U. Form the following coloring $COL : \binom{Y}{2} \to [\{0,1\}^n]$.

$$COL(y_i, y_j) = (E(y_i, y_j, u_1), \ldots, E(y_i, y_j, u_n))$$

Replace Y with the homog set. Re-index to get

$$Y = \{y_1, \ldots, y_C\}$$

C is an inv Ramsey Numb. We will state B as a ramsey numb. Need $B \ge R(C, 2^n)$. We will see how big C needs to be, then how big B needs to be.

SOL to Prob 3: RECAP

Recap X TBD A = X - n $B = \frac{A}{2\binom{n}{2}}$ $B \ge R(C, 2^n).$ C TBD

SOL to Prob 3: $\binom{Y}{3}$

Use 3-ary Ramsey on Y to get a set of size m. So we will take $C = R_3(m)$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

Use 3-ary Ramsey on Y to get a set of size m. So we will take $C = R_3(m)$. Let $COL : {Y \choose 3} \rightarrow [2]$ by $COL(y_i, y_j, y_k) = E(y_i, y_j, y_k)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Use 3-ary Ramsey on Y to get a set of size m. So we will take $C = R_3(m)$. Let $COL : {Y \choose 3} \rightarrow [2]$ by $COL(y_i, y_j, y_k) = E(y_i, y_j, y_k)$. Take homog set of size m. We now have a superhomg set Y. The rest of the proof is like I did in class.

ション ふぼう メリン メリン しょうくしゃ

Use 3-ary Ramsey on Y to get a set of size m. So we will take $C = R_3(m)$. Let $COL : \binom{Y}{3} \rightarrow [2]$ by $COL(y_i, y_j, y_k) = E(y_i, y_j, y_k)$. Take homog set of size m. We now have a superhomg set Y. The rest of the proof is like I did in class. So what is X? Next Slide.

ション ふぼう メリン メリン しょうくしゃ

SOL to Prob 3: What is *X***?**

We include arities and numb colors for clarity.

We include arities and numb colors for clarity. $C = R_3(m, 2).$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We include arities and numb colors for clarity. $C = R_3(m, 2).$ $B = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n).$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We include arities and numb colors for clarity. $C = R_3(m, 2)$. $B = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n)$. $\frac{A}{2^{\binom{n}{2}}} = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n)$.

We include arities and numb colors for clarity.

$$C = R_3(m, 2).$$

$$B = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n).$$

$$\frac{A}{2\binom{n}{2}} = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n).$$

$$A = 2\binom{n}{2}R_2(C, 2^n) = 2\binom{n}{2}R_2(R_3(m, 2), 2^n).$$

We include arities and numb colors for clarity.

$$C = R_3(m, 2).$$

$$B = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n).$$

$$\frac{A}{2\binom{n}{2}} = R_2(C, 2^n) = R_2(R_3(m, 2), 2^n).$$

$$A = 2\binom{n}{2}R_2(C, 2^n) = 2\binom{n}{2}R_2(R_3(m, 2), 2^n).$$

$$X = A + n = 2\binom{n}{2}R_2(C, 2^n) = R_2(R_3(m, 2), 2^n) + n$$

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*.

・ロト・母ト・ヨト・ヨト・ヨー つへぐ

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

1. Find an upper bound on L(2).

A number of the form $x^2 + x$ where $x \in N$, $x \ge 1$, is called a *Liam*. The first few Liam's are 2, 6, 12, 20, 30, 42, 56, 72, 90.

Let L(c) be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

- 1. Find an upper bound on L(2).
- 2. Find an upper bound on L(3).

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color. Assume not. We can assume COL(1) = 1.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color. Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x+2) = 2 \implies COL(x+4) = 1].$

ション ふぼう メリン メリン しょうくしゃ

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color. Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x+2) = 2 \implies COL(x+4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)

ション ふぼう メリン メリン しょうくしゃ

We show that $(\forall \text{COL} : [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)1 and 13 are $12 = 3^3 + 3$ apart.

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)1 and 13 are $12 = 3^3 + 3$ apart. So $COL(1) \neq COL(13).$

We show that $(\forall \text{COL}: [13] \rightarrow [2])$ there exists x, y a Liam apart that are the same color.

Assume not. We can assume COL(1) = 1.

Since 2 is Liam: $(\forall x)[COL(x) = 1 \implies COL(x + 2) = 2 \implies COL(x + 4) = 1].$ Hence COL(1) = COL(5) = COL(9) = COL(13)1 and 13 are $12 = 3^3 + 3$ apart. So $COL(1) \neq COL(13).$ Contradiction.

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

We determine n later.

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We determine n later.

Assume not. We can assume COL(1) = 1.

We show that $(\forall \text{COL}: [n] \rightarrow [3])$ there exists x, y a Liam apart that are the same color.

We determine *n* later.

Assume not. We can assume COL(1) = 1.

We need some COL(x) = COL(x + d).

SOL to b (Diagram)

This diagram shows that COL(1) = COL(55).

*ロト *昼 * * ミ * ミ * ミ * のへぐ

SOL to b (Diagram)

This diagram shows that COL(1) = COL(55).

More generally, COL(x) = COL(x + 54).

Figure: COL(x) = COL(x + 18)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

 $(\forall k \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+18k)]$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$(\forall k \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+18k)]$$

We need

$$18k = x^2 + x = x(x+1)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$(\forall k \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+18k)]$$

We need

$$18k = x^2 + x = x(x+1)$$

OH- lets take x = 8.

$$18k = 8 \times 9 = 18 \times 4$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$$(\forall k \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+18k)]$$

We need

$$18k = x^2 + x = x(x+1)$$

OH- lets take x = 8.

$$18k = 8 \times 9 = 18 \times 4$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

Great! We take k = 4.

$$(\forall k \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+18k)]$$

We need

$$18k = x^2 + x = x(x+1)$$

OH- lets take x = 8.

$$18k = 8 \times 9 = 18 \times 4$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Great! We take k = 4. SO $L(3) \le 73$.

$$(\forall k \in \mathsf{N})[\operatorname{COL}(1) = \operatorname{COL}(1+18k)]$$

We need

$$18k = x^2 + x = x(x+1)$$

OH- lets take x = 8.

 $18k = 8 \times 9 = 18 \times 4$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Great! We take k = 4. SO $L(3) \le 73$. Can we do better? I do not know.