HW08 Solutions

William Gasarch-U of MD

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:
$(\forall y)[\neg E(x, y)]$.

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:
$(\forall y)[\neg E(x, y)] . x$ is an isolated vertex.

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:
$(\forall y)[\neg E(x, y)] . x$ is an isolated vertex.
$(\forall y \neq x)\left(\exists z_{1}, z_{2}\right)\left[E\left(y, z_{1}\right) \wedge E\left(y, z_{2}\right) \wedge\left(\forall w \neq z_{1}, z_{2}\right)[\neg E(y, w)]\right]$

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:
$(\forall y)[\neg E(x, y)] . x$ is an isolated vertex.
$(\forall y \neq x)\left(\exists z_{1}, z_{2}\right)\left[E\left(y, z_{1}\right) \wedge E\left(y, z_{2}\right) \wedge\left(\forall w \neq z_{1}, z_{2}\right)[\neg E(y, w)]\right]$
All vertices except x have degree exactly 2 .

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\}
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:
$(\forall y)[\neg E(x, y)] . x$ is an isolated vertex.
$(\forall y \neq x)\left(\exists z_{1}, z_{2}\right)\left[E\left(y, z_{1}\right) \wedge E\left(y, z_{2}\right) \wedge\left(\forall w \neq z_{1}, z_{2}\right)[\neg E(y, w)]\right]$
All vertices except x have degree exactly 2 .
$(\forall y \neq x)\left(\exists y_{1}, y_{2}, y_{3}\right)\left[E\left(y, y_{1}\right) \wedge E\left(y_{1}, y_{2}\right) \wedge E\left(y_{2}, y_{3}\right) \wedge E\left(y_{3}, y\right)\right]$

Prob 2

Give a sentence ϕ in the language of graphs such that

$$
\operatorname{spec}(\phi)=\{n: n \equiv 1 \quad(\bmod 4)\} .
$$

SOL Plan: (1) there is one isolated point, and (2) all other points come in sets of C_{4} 's.
$(\exists x)$ the AND of the following:
$(\forall y)[\neg E(x, y)] . x$ is an isolated vertex.
$(\forall y \neq x)\left(\exists z_{1}, z_{2}\right)\left[E\left(y, z_{1}\right) \wedge E\left(y, z_{2}\right) \wedge\left(\forall w \neq z_{1}, z_{2}\right)[\neg E(y, w)]\right]$
All vertices except x have degree exactly 2 .
$(\forall y \neq x)\left(\exists y_{1}, y_{2}, y_{3}\right)\left[E\left(y, y_{1}\right) \wedge E\left(y_{1}, y_{2}\right) \wedge E\left(y_{2}, y_{3}\right) \wedge E\left(y_{3}, y\right)\right]$ Every non- x vert is in a C_{4}. All non- x verts have deg 2 , so the y_{1}, y_{2}, y_{3}, y are in a C_{4} and are not connected to anything else.

Statement of Prob 3

We use the language of 3-hypergraphs. One predicate: $E(x, y, z)$. We assume E is symmetric.

$$
\phi=\left(\exists x_{1}\right) \cdots\left(\exists x_{n}\right)\left(\forall y_{1}\right) \cdots\left(\forall y_{m}\right)\left[\psi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)\right]
$$

If $(\exists N \geq X(n, m))[N \in \operatorname{spec}(\phi)]$ then

$$
\{n+m, n+m+1, \ldots\} \subseteq \operatorname{spec}(\phi)
$$

Fill in the X and prove it.

SOL to Prob 3: Sets U, Y

Assume \exists 3-hypergraph $G=(V, E)$ on $\geq X$ vertices, $G \vDash \phi$. Witnesses: u_{1}, \ldots, u_{n} be the witnesses.

$$
\begin{gathered}
U=\left\{u_{1}, \ldots, u_{n}\right\} \quad Y=V-U \quad|Y|=X-n=A . \\
Y=\left\{y_{1}, \ldots, y_{A}\right\}
\end{gathered}
$$

Want Y superhomog.

SOL to Prob $3 Y$ and $\binom{U}{2}$

Map $y_{i} \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$: The $\{a, b\}$ entry is $E\left(y_{i}, a, b\right)$.

SOL to Prob $3 Y$ and $\binom{U}{2}$

Map $y_{i} \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$:
The $\{a, b\}$ entry is $E\left(y_{i}, a, b\right)$.
We map A elt to $2\binom{n}{2}$ elts.

SOL to Prob $3 Y$ and $\binom{U}{2}$

Map $y_{i} \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$:
The $\{a, b\}$ entry is $E\left(y_{i}, a, b\right)$.
We map A elt to $2\binom{n}{2}$ elts.

Re-index to get:

SOL to Prob $3 Y$ and $\binom{U}{2}$

Map $y_{i} \in Y$ to the $\binom{n}{2}$ sized vector indexed by $\binom{[n]}{2}$:
The $\{a, b\}$ entry is $E\left(y_{i}, a, b\right)$.
We map A elt to $2\binom{n}{2}$ elts.

Re-index to get:
$\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.

SOL to Prob 3: RECAP

Recap
X TBD
$A=X-n$
$B=\frac{A}{2\binom{n}{2}}$

$\binom{Y}{2}$ and U

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.
We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.
We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.
Form the following coloring COL: $\binom{Y}{2} \rightarrow\left[\{0,1\}^{n}\right]$.

$$
\operatorname{COL}\left(y_{i}, y_{j}\right)=\left(E\left(y_{i}, y_{j}, u_{1}\right), \ldots, E\left(y_{i}, y_{j}, u_{n}\right)\right)
$$

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.
We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.
Form the following coloring COL: $\binom{Y}{2} \rightarrow\left[\{0,1\}^{n}\right]$.

$$
\operatorname{COL}\left(y_{i}, y_{j}\right)=\left(E\left(y_{i}, y_{j}, u_{1}\right), \ldots, E\left(y_{i}, y_{j}, u_{n}\right)\right)
$$

Replace Y with the homog set. Re-index to get

$$
Y=\left\{y_{1}, \ldots, y_{C}\right\}
$$

$\binom{Y}{2}$ and U

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.
We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.
Form the following coloring COL : $\binom{Y}{2} \rightarrow\left[\{0,1\}^{n}\right]$.

$$
\operatorname{COL}\left(y_{i}, y_{j}\right)=\left(E\left(y_{i}, y_{j}, u_{1}\right), \ldots, E\left(y_{i}, y_{j}, u_{n}\right)\right)
$$

Replace Y with the homog set. Re-index to get

$$
Y=\left\{y_{1}, \ldots, y_{C}\right\}
$$

C is an inv Ramsey Numb. We will state B as a ramsey numb.

$\binom{Y}{2}$ and U

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.
We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.
Form the following coloring COL : $\binom{Y}{2} \rightarrow\left[\{0,1\}^{n}\right]$.

$$
\operatorname{COL}\left(y_{i}, y_{j}\right)=\left(E\left(y_{i}, y_{j}, u_{1}\right), \ldots, E\left(y_{i}, y_{j}, u_{n}\right)\right)
$$

Replace Y with the homog set. Re-index to get

$$
Y=\left\{y_{1}, \ldots, y_{C}\right\}
$$

C is an inv Ramsey Numb. We will state B as a ramsey numb.
Need $B \geq R\left(C, 2^{n}\right)$.

$\binom{Y}{2}$ and U

Have: $\left\{y_{1}, \ldots, y_{B}\right\}$ have same rel to all pairs in $\binom{U}{2}$.
We now need all pairs in $\binom{Y}{2}$ have same rel to elts in U.
Form the following coloring COL : $\binom{Y}{2} \rightarrow\left[\{0,1\}^{n}\right]$.

$$
\operatorname{COL}\left(y_{i}, y_{j}\right)=\left(E\left(y_{i}, y_{j}, u_{1}\right), \ldots, E\left(y_{i}, y_{j}, u_{n}\right)\right)
$$

Replace Y with the homog set. Re-index to get

$$
Y=\left\{y_{1}, \ldots, y_{C}\right\}
$$

C is an inv Ramsey Numb. We will state B as a ramsey numb.
Need $B \geq R\left(C, 2^{n}\right)$.
We will see how big C needs to be, then how big B needs to be.

SOL to Prob 3: RECAP

Recap
X TBD
$A=X-n$
$B=\frac{A}{2^{\binom{n}{2}}}$
$B \geq R\left(C, 2^{n}\right)$.
C TBD

SOL to Prob 3: $\binom{Y}{3}$

SOL to Prob 3: $\binom{Y}{3}$

Want all of the y_{i} 's to have same rel to each other.

SOL to Prob 3: $\binom{Y}{3}$

Want all of the y_{i} 's to have same rel to each other.
Use 3-ary Ramsey on Y to get a set of size m. So we will take $C=R_{3}(m)$.

SOL to Prob 3: $\binom{Y}{3}$

Want all of the y_{i} 's to have same rel to each other.
Use 3-ary Ramsey on Y to get a set of size m. So we will take $C=R_{3}(m)$.
Let COL : $\binom{Y}{3} \rightarrow[2]$ by $\operatorname{COL}\left(y_{i}, y_{j}, y_{k}\right)=E\left(y_{i}, y_{j}, y_{k}\right)$.

SOL to Prob 3: $\binom{Y}{3}$

Want all of the y_{i} 's to have same rel to each other.
Use 3-ary Ramsey on Y to get a set of size m. So we will take $C=R_{3}(m)$.
Let COL: $\binom{Y}{3} \rightarrow[2]$ by $\operatorname{COL}\left(y_{i}, y_{j}, y_{k}\right)=E\left(y_{i}, y_{j}, y_{k}\right)$.
Take homog set of size m. We now have a superhomg set Y. The rest of the proof is like I did in class.

SOL to Prob 3: $\binom{Y}{3}$

Want all of the y_{i} 's to have same rel to each other.
Use 3-ary Ramsey on Y to get a set of size m. So we will take $C=R_{3}(m)$.
Let COL: $\binom{Y}{3} \rightarrow[2]$ by $\operatorname{COL}\left(y_{i}, y_{j}, y_{k}\right)=E\left(y_{i}, y_{j}, y_{k}\right)$.
Take homog set of size m. We now have a superhomg set Y. The rest of the proof is like I did in class.
So what is X ? Next Slide.

SOL to Prob 3: What is X ?

We include arities and numb colors for clarity.

SOL to Prob 3: What is X ?

We include arities and numb colors for clarity.
$C=R_{3}(m, 2)$.

SOL to Prob 3: What is X ?

We include arities and numb colors for clarity.
$C=R_{3}(m, 2)$.
$B=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.

SOL to Prob 3: What is X ?

We include arities and numb colors for clarity.
$C=R_{3}(m, 2)$.
$B=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.
$\frac{A}{2^{\binom{n}{2}}}=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.

SOL to Prob 3: What is X ?

We include arities and numb colors for clarity.
$C=R_{3}(m, 2)$.
$B=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.
$\frac{A}{2^{\binom{n}{2}}}=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.
$A=2\binom{n}{2} R_{2}\left(C, 2^{n}\right)=2\binom{n}{2} R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.

SOL to Prob 3: What is X ?

We include arities and numb colors for clarity.
$C=R_{3}(m, 2)$.
$B=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.
$\frac{A}{2^{\binom{2}{2}}}=R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.
$A=2^{\binom{n}{2}} R_{2}\left(C, 2^{n}\right)=2^{\binom{n}{2}} R_{2}\left(R_{3}(m, 2), 2^{n}\right)$.
$X=A+n=2\binom{n}{2} R_{2}\left(C, 2^{n}\right)=R_{2}\left(R_{3}(m, 2), 2^{n}\right)+n$.

Prob 4

A number of the form $x^{2}+x$ where $x \in N, x \geq 1$, is called a Liam.

Prob 4

A number of the form $x^{2}+x$ where $x \in N, x \geq 1$, is called a Liam. The first few Liam's are $2,6,12,20,30,42,56,72,90$.

Prob 4

A number of the form $x^{2}+x$ where $x \in N, x \geq 1$, is called a Liam. The first few Liam's are $2,6,12,20,30,42,56,72,90$.

Let $L(c)$ be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

Prob 4

A number of the form $x^{2}+x$ where $x \in N, x \geq 1$, is called a Liam. The first few Liam's are $2,6,12,20,30,42,56,72,90$.

Let $L(c)$ be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

1. Find an upper bound on $L(2)$.

Prob 4

A number of the form $x^{2}+x$ where $x \in N, x \geq 1$, is called a Liam. The first few Liam's are $2,6,12,20,30,42,56,72,90$.

Let $L(c)$ be the least n (if it exists) so that for all c-colorings of $\{1, \ldots, n\}$ there exists two numbers that are the same color that are a Liam apart.

1. Find an upper bound on $L(2)$.
2. Find an upper bound on $L(3)$.

SOL to a

We show that $(\forall \mathrm{COL}:[13] \rightarrow[2])$ there exists x, y a Liam apart that are the same color.

SOL to a

We show that $(\forall \mathrm{COL}:[13] \rightarrow[2])$ there exists x, y a Liam apart that are the same color.
Assume not. We can assume $\operatorname{COL}(1)=1$.

SOL to a

We show that (\forall COL: $[13] \rightarrow[2]$) there exists x, y a Liam apart that are the same color.
Assume not. We can assume $\operatorname{COL}(1)=1$.
Since 2 is Liam:
$(\forall x)[\operatorname{COL}(x)=1 \Longrightarrow \operatorname{COL}(x+2)=2 \Longrightarrow \operatorname{COL}(x+4)=1]$.

SOL to a

We show that (\forall COL: $[13] \rightarrow[2]$) there exists x, y a Liam apart that are the same color.
Assume not. We can assume $\operatorname{COL}(1)=1$.
Since 2 is Liam:
$(\forall x)[\operatorname{COL}(x)=1 \Longrightarrow \operatorname{COL}(x+2)=2 \Longrightarrow \operatorname{COL}(x+4)=1]$.
Hence $\operatorname{COL}(1)=\operatorname{COL}(5)=\operatorname{COL}(9)=\operatorname{COL}(13)$

SOL to a

We show that (\forall COL: $[13] \rightarrow[2]$) there exists x, y a Liam apart that are the same color.
Assume not. We can assume $\operatorname{COL}(1)=1$.
Since 2 is Liam:
$(\forall x)[\operatorname{COL}(x)=1 \Longrightarrow \operatorname{COL}(x+2)=2 \Longrightarrow \operatorname{COL}(x+4)=1]$.
Hence $\operatorname{COL}(1)=\operatorname{COL}(5)=\operatorname{COL}(9)=\operatorname{COL}(13)$
1 and 13 are $12=3^{3}+3$ apart.

SOL to a

We show that (\forall COL: $[13] \rightarrow[2]$) there exists x, y a Liam apart that are the same color.
Assume not. We can assume $\operatorname{COL}(1)=1$.
Since 2 is Liam:
$(\forall x)[\operatorname{COL}(x)=1 \Longrightarrow \operatorname{COL}(x+2)=2 \Longrightarrow \operatorname{COL}(x+4)=1]$.
Hence $\operatorname{COL}(1)=\operatorname{COL}(5)=\operatorname{COL}(9)=\operatorname{COL}(13)$
1 and 13 are $12=3^{3}+3$ apart. So $\operatorname{COL}(1) \neq \operatorname{COL}(13)$.

SOL to a

We show that (\forall COL: $[13] \rightarrow[2]$) there exists x, y a Liam apart that are the same color.
Assume not. We can assume $\operatorname{COL}(1)=1$.
Since 2 is Liam:
$(\forall x)[\operatorname{COL}(x)=1 \Longrightarrow \operatorname{COL}(x+2)=2 \Longrightarrow \operatorname{COL}(x+4)=1]$.
Hence $\operatorname{COL}(1)=\operatorname{COL}(5)=\operatorname{COL}(9)=\operatorname{COL}(13)$
1 and 13 are $12=3^{3}+3$ apart. So $\operatorname{COL}(1) \neq \operatorname{COL}(13)$.
Contradiction.

SOL to b

We show that (\forall COL: $[n] \rightarrow[3]$) there exists x, y a Liam apart that are the same color.

SOL to b

We show that ($\forall \mathrm{COL}:[n] \rightarrow[3])$ there exists x, y a Liam apart that are the same color.

We determine n later.

SOL to b

We show that (\forall COL: $[n] \rightarrow[3]$) there exists x, y a Liam apart that are the same color.

We determine n later.
Assume not. We can assume $\operatorname{COL}(1)=1$.

SOL to b

We show that (\forall COL: $[n] \rightarrow[3]$) there exists x, y a Liam apart that are the same color.

We determine n later.
Assume not. We can assume $\operatorname{COL}(1)=1$.
We need some $\operatorname{COL}(x)=\operatorname{COL}(x+d)$.

SOL to b (Diagram)

This diagram shows that $\operatorname{COL}(1)=\operatorname{COL}(55)$.

SOL to b (Diagram)

This diagram shows that $\operatorname{COL}(1)=\operatorname{COL}(55)$.
More generally, $\operatorname{COL}(x)=\operatorname{COL}(x+54)$.

Figure: $\operatorname{COL}(x)=\operatorname{COL}(x+18)$

SOL to b (Finale)

$$
(\forall k \in N)[\operatorname{COL}(1)=\operatorname{COL}(1+18 k)]
$$

SOL to b (Finale)

$$
(\forall k \in \mathrm{~N})[\mathrm{COL}(1)=\operatorname{COL}(1+18 k)]
$$

We need

$$
18 k=x^{2}+x=x(x+1)
$$

SOL to b (Finale)

$$
(\forall k \in \mathrm{~N})[\mathrm{COL}(1)=\operatorname{COL}(1+18 k)]
$$

We need

$$
18 k=x^{2}+x=x(x+1)
$$

OH - lets take $x=8$.

$$
18 k=8 \times 9=18 \times 4
$$

SOL to b (Finale)

$$
(\forall k \in \mathrm{~N})[\mathrm{COL}(1)=\operatorname{COL}(1+18 k)]
$$

We need

$$
18 k=x^{2}+x=x(x+1)
$$

OH - lets take $x=8$.

$$
18 k=8 \times 9=18 \times 4
$$

Great! We take $k=4$.

SOL to b (Finale)

$$
(\forall k \in \mathrm{~N})[\mathrm{COL}(1)=\operatorname{COL}(1+18 k)]
$$

We need

$$
18 k=x^{2}+x=x(x+1)
$$

OH - lets take $x=8$.

$$
18 k=8 \times 9=18 \times 4
$$

Great! We take $k=4$.
SO $L(3) \leq 73$.

SOL to b (Finale)

$$
(\forall k \in \mathrm{~N})[\mathrm{COL}(1)=\operatorname{COL}(1+18 k)]
$$

We need

$$
18 k=x^{2}+x=x(x+1)
$$

OH - lets take $x=8$.

$$
18 k=8 \times 9=18 \times 4
$$

Great! We take $k=4$.
SO $L(3) \leq 73$.
Can we do better? I do not know.

