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Hungarian Math Comp Problem

From the 1950 “Kürschák/Eötvös Math Competition”:

There are 1950 cans of paint. Find an x such that (1) there are
either x cans of paint all the same color, or x cans of paint that
are all different colors and (2) it is possible to have neither x + 1
cans that are all the same nor x + 1 cans that are all different.
Prove with your neighbor.

Answer is x = 45:
1) If there are 45 different paint colors DONE
2) If there are 45 of the same color then DONE
3) If there are ≤ 44 diff colors and each color appears ≤ 44 times
then ≤ 44 ∗ 44 = 1936 < 1950 cans.
4) CAN have NEITHER 46 the same NOR 46 different:
Color 1st 45 1, 2nd 45 2, . . ., 43nd 45 43. You’ve colored
43× 45 = 1935. Color the rest 44. Have used 44 colors.
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Can Ramsey Thm

The Can Ramsey Thm is for any number of colors.

It is named “Can Ramsey” in honor of the paint can problem on
the 1950 Kürschák/Eötvös Math Competition



1-ary Ramsey’s Thm

Thm: For every COL : N→ [c] there is an infinite homog set.

What if the number of colors was infinite?

Do not necessarily get a homog set since could color EVERY
vertex differently. But then get infinite rainbow set.



One-Dim Can Ramsey Thm

Thm: Let V be a countable set. Let COL : V → ω. Then there
exists either an infinite homog set (all the same color) or an infinite
rainb set (all diff colors).

Prove with your neighbor.
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Ramsey’s Thm For Graphs

Thm: For every COL :
(N
2

)
→ [c] there is an infinite homog set.

What if the number of colors was infinite?

Do not necessarily get a homog set since could color EVERY edge
differently. But then get infinite rainbow set.



Attempt

Conjecture For every COL :
(N
2

)
→ ω there is an infinite homog

set OR an infinite rainb set.
VOTE: TRUE, FALSE, or UNKNOWN TO SCIENCE.

FALSE:

I COL(i , j) = min{i , j}.
I COL(i , j) = max{i , j}.
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Min-Homog, Max-Homog, Rainbow

Def: Let COL :
(N
2

)
→ ω. Let V ⊆ N. Assume a < b and c < d .

I V is homog if COL(a, b) = COL(c , d) iff TRUE .

I V is min-homog if COL(a, b) = COL(c , d) iff a = c.

I V is max-homog if COL(a, b) = COL(c , d) iff b = d .

I V is rainb if COL(a, b) = COL(c , d) iff a = c and b = d .

Can Ramsey Thm for
(N

2

)
: For all COL :

(N
2

)
→ ω, there exists

an infinite set V such that either V is homog, min-homog,
max-homog, or rainb.



Our First “Application”

We will do the following

1. Use the 4-ary Ramsey Theorem to prove the 2-ary Can
Ramsey Theorem.

2. Use the 3-ary Ramsey Theorem to prove the 2-ary Can
Ramsey Theorem.

3. Use a similar technique from 2-ary Ramsey Theorem to
prove 2-ary Can Ramsey.
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Proof of Can Ramsey Thm for
(N

2

)
We are given COL :

(N
2

)
→ ω.

Want to find infinite homog OR min-homog OR max-homog OR
rainbow set.

We use COL to define COL′ :
(N
4

)
→ [16]

We then apply 4-ary Ramsey Theorem. (an “Application!”)

In the slides below x1 < x2 < x3 < x4.
All cases assume negation of prior cases.

Homog always means infinite Homog.



Pairs that begin the same way are same color

1. COL(x1, x2) = COL(x1, x3)→ COL′(x1 < x2 < x3 < x4) = 1.

2. COL(x1, x2) = COL(x1, x4)→ COL′(x1 < x2 < x3 < x4) = 2.

3. COL(x1, x3) = COL(x1, x4)→ COL′(x1 < x2 < x3 < x4) = 3.

4. COL(x2, x3) = COL(x2, x4)→ COL′(x1 < x2 < x3 < x4) = 4.

H is homog set,color 1 (rest similar)
COL′′ : H → ω is COL′′(x) = color of all (x , y) with x < y ∈ H.

Use 1-dim Can Ramsey!:
Case 1: COL′′ has homog set H ′ then H’ homog for COL.
Case 2: COL′′ has rainb set H ′ then H ′ min-homog for COL.



Pairs that End the same way are same color

1. COL(x1, x3) = COL(x2, x3)→ COL′(x1 < x2 < x3 < x4) = 5.

2. COL(x1, x4) = COL(x2, x4)→ COL′(x1 < x2 < x3 < x4) = 6.

3. COL(x1, x4) = COL(x3, x4)→ COL′(x1 < x2 < x3 < x4) = 7.

4. COL(x2, x4) = COL(x3, x4)→ COL′(x1 < x2 < x3 < x4) = 8.

H is homog set,color 5 (rest similar)
COL′′ : H → ω is COL′′(y) = color of all (x , y) with x < y ∈ H.

Use 1-dim Can Ramsey!:
Case 1: COL′′ has homog set H ′ then H ′ homog for COL.
Case 2: COL′′ has rainb set H ′ then H ′ max-homog for COL.



Easy Homog Cases

1. COL(x1, x2) = COL(x2, x3)⇒ COL′(x1, x2, x3, x4) = 9.

2. COL(x1, x2) = COL(x2, x4)⇒ COL′(x1, x2, x3, x4) = 10.

3. COL(x1, x2) = COL(x3, x4)⇒ COL′(x1, x2, x3, x4) = 11.

4. COL(x1, x3) = COL(x2, x4)⇒ COL′(x1, x2, x3, x4) = 12.

5. COL(x1, x3) = COL(x3, x4)⇒ COL′(x1, x2, x3, x4) = 13.

6. COL(x2, x3) = COL(x1, x4)⇒ COL′(x1, x2, x3, x4) = 14.

7. COL(x2, x3) = COL(x3, x4)⇒ COL′(x1, x2, x3, x4) = 15.

H is homog set,color 9 (rest similar)
For all w < x < y < z ∈ H.

COL(w , x) = COL(x , y) = COL(y , z).

Other cases, like COL(w , y) = COL(x , z), are similar



That Last Case

If NONE of the above cases hold then COL′(x1, x2, x3, x4) = 16.

Let H be the homogenous set of COL′ of color 16.

Then H is a rainbow set for COL. Leave this to the reader,
thought it is obvious.
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PROS and CONS of Proof

Give me a PRO and a CON of the proof.

PRO: Each Case easy. Note that Rainbow case was easy.

CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite
version have large bounds.
Let CR2(k) = least n s.t. ∀COL :

([n]
2

)
→ ω, ∃H of size k such

that either H is homog, min-homog, max-homog, or rainb. If
finitized, this proof obtains

CR2(k) ≤ R4(k , 16) ≤ 1616
16O(k)

We will give anther proof which only uses 3-ary hypergraph
Ramsey.
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Def that Will Help Us

Def Let COL :
(N
2

)
→ ω. If c is a color and v ∈ N then degc(v) is

the number of c-colored edges with v as an endpoint.

Note: degc(v) could be infinite.



Needed Lemma

Lemma Let X be infinite. Let COL :
(X
2

)
→ ω. If for every x ∈ X

and c ∈ ω, degc(x) ≤ 1 then there is an infinite rainb set.

Prove with your Neighbor



Proof

Let M be a MAXIMAL rainb set of X .

(∀y ∈ X −M)[M ∪ {y} is not a rainb set].

We prove M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?

Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.

Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})

then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u).

Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Proof that M is infinite

Assume, BWOC, that M is finite. So X −M is infinite.

Let y ∈ X −M. Why is y /∈ M?
Must be that:

(∃u ∈ M,∃{a, b} ∈
(
M

2

)
)[COL(y , u) = COL(a, b)].

Informally Map y ∈ X −M to the reason y /∈ M.
Formally If y ∈ X −M map it to the {u, {a, b}} noted above.

Map is injective: if y1 and y2 both map to (u, {a, b})
then COL(y1, u) = COL(y2, u). Can’t happen! degc(u) ≤ 1.

So have injection from infinite X −M to finite M ×
(M
2

)
.

Contradiction So M is infinite.



Generalization We’ll Need Later

Lemma Let X be infinite. Let COL :
(X
2

)
→ ω. Let d ∈ ω. If for

every x ∈ X and c ∈ ω, degc(x) ≤ d then there is an infinite rainb
set.
Prove on your own.



Can Ramsey Thm for N

Thm: For all COL :
(N
2

)
→ ω there is either

I an infinite homog set,

I an infinite min-homog set,

I an infinite max-homog set, or

I an infinite rainb set.



Proof of Can Ramsey Thm for Graphs

Given COL :
(N
2

)
→ ω. We use COL to obtain COL′ :

(N
3

)
→ [4]

We use 3-ary RT. In all of the below x1 < x2 < x3.

1. If COL(x1, x2) = COL(x1, x3) then COL′(x1 < x2 < x3) = 1.

2. If COL(x1, x3) = COL(x2, x3) then COL′(x1 < x2 < x3) = 2.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1 < x2 < x3) = 3.

4. If none of the above occur then COL′(x1 < x2 < x3) = 4.

Cases 1,2,3 are just like in the prior proof.
Case 4 Next slide.
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)
→ ω. We use COL to obtain COL′ :

(N
3

)
→ [4]

We use 3-ary RT. In all of the below x1 < x2 < x3.

1. If COL(x1, x2) = COL(x1, x3) then COL′(x1 < x2 < x3) = 1.

2. If COL(x1, x3) = COL(x2, x3) then COL′(x1 < x2 < x3) = 2.

3. If COL(x1, x2) = COL(x2, x3) then COL′(x1 < x2 < x3) = 3.

4. If none of the above occur then COL′(x1 < x2 < x3) = 4.

Cases 1,2,3 are just like in the prior proof.
Case 4 Next slide.



Proof of Can Ramsey Thm for Graphs (cont)

Case 4 for all x1 < x2 < x3
COL(x1, x2) 6= COL(x1, x3)
COL(x1, x3) 6= COL(x2, x3)
COL(x1, x2) 6= COL(x2, x3)

From this can show that, for all x , for all c , degc(x) ≤ 1. By

Lemma on last slide there exists M ⊆ H that is an infinite rainb
set.



Proof of Can Ramsey Thm for Graphs (cont)

Case 4 for all x1 < x2 < x3
COL(x1, x2) 6= COL(x1, x3)
COL(x1, x3) 6= COL(x2, x3)
COL(x1, x2) 6= COL(x2, x3)

From this can show that, for all x , for all c , degc(x) ≤ 1.

By

Lemma on last slide there exists M ⊆ H that is an infinite rainb
set.



Proof of Can Ramsey Thm for Graphs (cont)

Case 4 for all x1 < x2 < x3
COL(x1, x2) 6= COL(x1, x3)
COL(x1, x3) 6= COL(x2, x3)
COL(x1, x2) 6= COL(x2, x3)

From this can show that, for all x , for all c , degc(x) ≤ 1. By

Lemma on last slide there exists M ⊆ H that is an infinite rainb
set.



Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

CR2(k) ≤ 1616
16O(k)

Using new proof, 3-ary with 4 colors, bound is:

CR2(k) ≤ 44
O(k3)



Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

CR2(k) ≤ 1616
16O(k)

Using new proof, 3-ary with 4 colors, bound is:

CR2(k) ≤ 44
O(k3)



Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

CR2(k) ≤ 1616
16O(k)

Using new proof, 3-ary with 4 colors, bound is:

CR2(k) ≤ 44
O(k3)


