# The Infinite 2-ary Can Ramsey Thm 

William Gasarch-U of MD

## Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an $x$ such that (1) there are either $x$ cans of paint all the same color, or $x$ cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different. Prove with your neighbor.

## Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an $x$ such that (1) there are either $x$ cans of paint all the same color, or $x$ cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different. Prove with your neighbor.

Answer is $x=45$ :

## Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an $x$ such that (1) there are either $x$ cans of paint all the same color, or $x$ cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different. Prove with your neighbor.

Answer is $x=45$ :

1) If there are 45 different paint colors DONE

## Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an $x$ such that (1) there are either $x$ cans of paint all the same color, or $x$ cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different. Prove with your neighbor.

Answer is $x=45$ :

1) If there are 45 different paint colors DONE
2) If there are 45 of the same color then DONE

## Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an $x$ such that (1) there are either $x$ cans of paint all the same color, or $x$ cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different. Prove with your neighbor.

Answer is $x=45$ :

1) If there are 45 different paint colors DONE
2) If there are 45 of the same color then DONE
3) If there are $\leq 44$ diff colors and each color appears $\leq 44$ times then $\leq 44 * 44=1936<1950$ cans.

## Hungarian Math Comp Problem

From the 1950 "Kürschák/Eötvös Math Competition":
There are 1950 cans of paint. Find an $x$ such that (1) there are either $x$ cans of paint all the same color, or $x$ cans of paint that are all different colors and (2) it is possible to have neither $x+1$ cans that are all the same nor $x+1$ cans that are all different. Prove with your neighbor.

Answer is $x=45$ :

1) If there are 45 different paint colors DONE
2) If there are 45 of the same color then DONE
3) If there are $\leq 44$ diff colors and each color appears $\leq 44$ times then $\leq 44 * 44=1936<1950$ cans.
4) CAN have NEITHER 46 the same NOR 46 different:

Color 1st 45 1, 2nd 45 2, ..., 43nd 45 43. You've colored $43 \times 45=1935$. Color the rest 44. Have used 44 colors.

## Can Ramsey Thm

The Can Ramsey Thm is for any number of colors.
It is named "Can Ramsey" in honor of the paint can problem on the 1950 Kürschák/Eötvös Math Competition

## 1-ary Ramsey's Thm

Thm: For every $C O L: \mathbb{N} \rightarrow[c]$ there is an infinite homog set.
What if the number of colors was infinite?
Do not necessarily get a homog set since could color EVERY vertex differently. But then get infinite rainbow set.

## One-Dim Can Ramsey Thm

Thm: Let $V$ be a countable set. Let $C O L: V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainb set (all diff colors).

## One-Dim Can Ramsey Thm

Thm: Let $V$ be a countable set. Let $C O L: V \rightarrow \omega$. Then there exists either an infinite homog set (all the same color) or an infinite rainb set (all diff colors).

Prove with your neighbor.

## Ramsey's Thm For Graphs

Thm: For every COL : $\binom{\mathbb{N}}{2} \rightarrow[c]$ there is an infinite homog set.
What if the number of colors was infinite?
Do not necessarily get a homog set since could color EVERY edge differently. But then get infinite rainbow set.

## Attempt

Conjecture For every COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$ there is an infinite homog set OR an infinite rainb set. VOTE: TRUE, FALSE, or UNKNOWN TO SCIENCE.

## Attempt

Conjecture For every COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$ there is an infinite homog set OR an infinite rainb set. VOTE: TRUE, FALSE, or UNKNOWN TO SCIENCE. FALSE:

- $\operatorname{COL}(i, j)=\min \{i, j\}$.
- $\operatorname{COL}(i, j)=\max \{i, j\}$.


## Min-Homog, Max-Homog, Rainbow

Def: Let $C O L:\binom{\mathbb{N}}{2} \rightarrow \omega$. Let $V \subseteq \mathbb{N}$. Assume $a<b$ and $c<d$.

- $V$ is homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff TRUE.
- $V$ is min-homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$.
- $V$ is max-homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $b=d$.
- $V$ is rainb if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$ and $b=d$.

Can Ramsey Thm for $\binom{\mathbb{N}}{2}$ : For all COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$, there exists an infinite set $V$ such that either $V$ is homog, min-homog, max-homog, or rainb.

## Our First "Application"

We will do the following

## Our First "Application"

We will do the following

1. Use the 4-ary Ramsey Theorem to prove the 2-ary Can Ramsey Theorem.

## Our First "Application"

We will do the following

1. Use the 4-ary Ramsey Theorem to prove the 2-ary Can Ramsey Theorem.
2. Use the 3-ary Ramsey Theorem to prove the 2-ary Can Ramsey Theorem.

## Our First "Application"

We will do the following

1. Use the 4-ary Ramsey Theorem to prove the 2-ary Can Ramsey Theorem.
2. Use the 3-ary Ramsey Theorem to prove the 2-ary Can Ramsey Theorem.
3. Use a similar technique from 2-ary Ramsey Theorem to prove 2-ary Can Ramsey.

## Proof of Can Ramsey Thm for $\binom{\mathbb{N}}{2}$

We are given COL : $\binom{\mathbb{N}}{2} \rightarrow \omega$.
Want to find infinite homog OR min-homog OR max-homog OR rainbow set.

We use $C O L$ to define $C O L^{\prime}:\binom{\mathbb{N}}{4} \rightarrow[16]$
We then apply 4-ary Ramsey Theorem. (an "Application!")
In the slides below $x_{1}<x_{2}<x_{3}<x_{4}$.
All cases assume negation of prior cases.
Homog always means infinite Homog.

## Pairs that begin the same way are same color

$$
\begin{aligned}
& \text { 1. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=1 . \\
& \text { 2. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right) \rightarrow \operatorname{CoL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=2 . \\
& \text { 3. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=3 . \\
& \text { 4. } \operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=4 .
\end{aligned}
$$

$H$ is homog set,color 1 (rest similar)
$C O L^{\prime \prime}: H \rightarrow \omega$ is $\operatorname{COL}^{\prime \prime}(x)=$ color of all $(x, y)$ with $x<y \in H$.
Use 1-dim Can Ramsey!:
Case 1: $C O L^{\prime \prime}$ has homog set $H^{\prime}$ then $H^{\prime}$ homog for COL.
Case 2: $C O L^{\prime \prime}$ has rainb set $H^{\prime}$ then $H^{\prime}$ min-homog for COL.

## Pairs that End the same way are same color

$$
\begin{aligned}
& \text { 1. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=5 . \\
& \text { 2. } \operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=6 . \\
& \text { 3. } \operatorname{COL}\left(x_{1}, x_{4}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=7 . \\
& \text { 4. } \operatorname{COL}\left(x_{2}, x_{4}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \rightarrow \operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)=8 .
\end{aligned}
$$

$H$ is homog set,color 5 (rest similar)
$C O L^{\prime \prime}: H \rightarrow \omega$ is $\operatorname{COL}^{\prime \prime}(y)=$ color of all $(x, y)$ with $x<y \in H$.
Use 1-dim Can Ramsey!:
Case 1: $C O L^{\prime \prime}$ has homog set $H^{\prime}$ then $H^{\prime}$ homog for COL.
Case 2: COL" has rainb set $H^{\prime}$ then $H^{\prime}$ max-homog for COL.

## Easy Homog Cases

$$
\begin{aligned}
& \text { 1. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right) \Rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=9 . \\
& \text { 2. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \Rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=10 . \\
& \text { 3. } \operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \Rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=11 . \\
& \text { 4. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{4}\right) \Rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=12 . \\
& \text { 5. } \operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{3}, x_{4}\right) \Rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=13 . \\
& \text { 6. } \operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{1}, x_{4}\right) \Rightarrow \operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=14 . \\
& \text { 7. } \operatorname{COL}\left(x_{2}, x_{3}\right)=\operatorname{COL}\left(x_{3}\right) \Rightarrow \operatorname{CoL}^{\prime}\left(x_{1}, x_{2}, x_{4}\right)=15 .
\end{aligned}
$$

$H$ is homog set, color 9 (rest similar)
For all $w<x<y<z \in H$.

$$
\operatorname{COL}(w, x)=\operatorname{COL}(x, y)=\operatorname{COL}(y, z)
$$

Other cases, like $\operatorname{COL}(w, y)=\operatorname{COL}(x, z)$, are similar

## That Last Case

If NONE of the above cases hold then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=16$.

## That Last Case

If NONE of the above cases hold then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=16$.
Let $H$ be the homogenous set of $C O L^{\prime}$ of color 16 .

## That Last Case

If NONE of the above cases hold then $\operatorname{COL}^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=16$.
Let $H$ be the homogenous set of $C O L^{\prime}$ of color 16 .
Then $H$ is a rainbow set for COL. Leave this to the reader, thought it is obvious.

## PROS and CONS of Proof

Give me a PRO and a CON of the proof.

## PROS and CONS of Proof

Give me a PRO and a CON of the proof.
PRO: Each Case easy. Note that Rainbow case was easy.
CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite version have large bounds. Let $\mathrm{CR}_{2}(k)=$ least $n$ s.t. $\forall \mathrm{COL}:\binom{[n]}{2} \rightarrow \omega, \exists H$ of size $k$ such that either $H$ is homog, min-homog, max-homog, or rainb. If finitized, this proof obtains

$$
\mathrm{CR}_{2}(k) \leq R_{4}(k, 16) \leq 16^{16^{16^{O(k)}}}
$$

## PROS and CONS of Proof

Give me a PRO and a CON of the proof.
PRO: Each Case easy. Note that Rainbow case was easy.
CON: Lots of Cases. Use of 4-ary hypergraph Ramsey makes finite version have large bounds.
Let $\mathrm{CR}_{2}(k)=$ least $n$ s.t. $\forall \mathrm{COL}:\binom{[n]}{2} \rightarrow \omega, \exists H$ of size $k$ such that either $H$ is homog, min-homog, max-homog, or rainb. If finitized, this proof obtains

$$
\mathrm{CR}_{2}(k) \leq R_{4}(k, 16) \leq 16^{16^{16^{O(k)}}}
$$

We will give anther proof which only uses 3-ary hypergraph Ramsey.

## Def that Will Help Us

Def Let COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. If $c$ is a color and $v \in \mathbb{N}$ then $\operatorname{deg}_{c}(v)$ is the number of $c$-colored edges with $v$ as an endpoint.

Note: $\operatorname{deg}_{c}(v)$ could be infinite.

## Needed Lemma

Lemma Let $X$ be infinite. Let $C O L:\binom{X}{2} \rightarrow \omega$. If for every $x \in X$ and $c \in \omega, \operatorname{deg}_{c}(x) \leq 1$ then there is an infinite rainb set.

Prove with your Neighbor

## Proof

Let $M$ be a MAXIMAL rainb set of $X$.

$$
(\forall y \in X-M)[M \cup\{y\} \text { is not a rainb set }] .
$$

We prove $M$ is infinite.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.
Formally If $y \in X-M$ map it to the $\{u,\{a, b\}\}$ noted above.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.
Formally If $y \in X-M$ map it to the $\{u,\{a, b\}\}$ noted above.
Map is injective: if $y_{1}$ and $y_{2}$ both map to $(u,\{a, b\})$

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.
Formally If $y \in X-M$ map it to the $\{u,\{a, b\}\}$ noted above.
Map is injective: if $y_{1}$ and $y_{2}$ both map to $(u,\{a, b\})$ then $\operatorname{COL}\left(y_{1}, u\right)=\operatorname{COL}\left(y_{2}, u\right)$.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.
Formally If $y \in X-M$ map it to the $\{u,\{a, b\}\}$ noted above.
Map is injective: if $y_{1}$ and $y_{2}$ both map to ( $u,\{a, b\}$ ) then $\operatorname{COL}\left(y_{1}, u\right)=\operatorname{COL}\left(y_{2}, u\right)$. Can't happen! $\operatorname{deg}_{c}(u) \leq 1$.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.
Formally If $y \in X-M$ map it to the $\{u,\{a, b\}\}$ noted above.
Map is injective: if $y_{1}$ and $y_{2}$ both map to $(u,\{a, b\})$ then $\operatorname{COL}\left(y_{1}, u\right)=\operatorname{COL}\left(y_{2}, u\right)$. Can't happen! $\operatorname{deg}_{c}(u) \leq 1$.
So have injection from infinite $X-M$ to finite $M \times\binom{ M}{2}$.

## Proof that $M$ is infinite

Assume, BWOC, that $M$ is finite. So $X-M$ is infinite.
Let $y \in X-M$. Why is $y \notin M$ ?
Must be that:

$$
\left(\exists u \in M, \exists\{a, b\} \in\binom{M}{2}\right)[\operatorname{COL}(y, u)=\operatorname{COL}(a, b)]
$$

Informally Map $y \in X-M$ to the reason $y \notin M$.
Formally If $y \in X-M$ map it to the $\{u,\{a, b\}\}$ noted above.
Map is injective: if $y_{1}$ and $y_{2}$ both map to $(u,\{a, b\})$ then $\operatorname{COL}\left(y_{1}, u\right)=\operatorname{COL}\left(y_{2}, u\right)$. Can't happen! $\operatorname{deg}_{c}(u) \leq 1$.
So have injection from infinite $X-M$ to finite $M \times\binom{ M}{2}$.
Contradiction So $M$ is infinite.

## Generalization We'll Need Later

Lemma Let $X$ be infinite. Let $C O L:\binom{X}{2} \rightarrow \omega$. Let $d \in \omega$. If for every $x \in X$ and $c \in \omega, \operatorname{deg}_{c}(x) \leq d$ then there is an infinite rainb set.
Prove on your own.

## Can Ramsey Thm for $\mathbb{N}$

Thm: For all COL : $\binom{\mathbb{N}}{2} \rightarrow \omega$ there is either

- an infinite homog set,
- an infinite min-homog set,
- an infinite max-homog set, or
- an infinite rainb set.


## Proof of Can Ramsey Thm for Graphs

Given COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. We use COL to obtain $\mathrm{COL}^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We use 3-ary RT. In all of the below $x_{1}<x_{2}<x_{3}$.

## Proof of Can Ramsey Thm for Graphs

Given COL: $:\binom{\mathbb{N}}{2} \rightarrow \omega$. We use COL to obtain COL $^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We use 3-ary RT. In all of the below $x_{1}<x_{2}<x_{3}$.

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=1$.

## Proof of Can Ramsey Thm for Graphs

Given COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. We use $C O L$ to obtain $C O L^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We use 3-ary RT. In all of the below $x_{1}<x_{2}<x_{3}$.

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=1$.
2. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=2$.

## Proof of Can Ramsey Thm for Graphs

Given COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. We use COL to obtain $\mathrm{COL}^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We use 3-ary RT. In all of the below $x_{1}<x_{2}<x_{3}$.

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=1$.
2. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=2$.
3. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=3$.

## Proof of Can Ramsey Thm for Graphs

Given COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. We use COL to obtain $\mathrm{COL}^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We use 3 -ary RT. In all of the below $x_{1}<x_{2}<x_{3}$.

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=1$.
2. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=2$.
3. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=3$.
4. If none of the above occur then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=4$.

Cases $1,2,3$ are just like in the prior proof.

## Proof of Can Ramsey Thm for Graphs

Given COL: $\binom{\mathbb{N}}{2} \rightarrow \omega$. We use COL to obtain $\mathrm{COL}^{\prime}:\binom{\mathbb{N}}{3} \rightarrow[4]$ We use 3 -ary RT. In all of the below $x_{1}<x_{2}<x_{3}$.

1. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{1}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=1$.
2. If $\operatorname{COL}\left(x_{1}, x_{3}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=2$.
3. If $\operatorname{COL}\left(x_{1}, x_{2}\right)=\operatorname{COL}\left(x_{2}, x_{3}\right)$ then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=3$.
4. If none of the above occur then $\operatorname{COL}^{\prime}\left(x_{1}<x_{2}<x_{3}\right)=4$.

Cases $1,2,3$ are just like in the prior proof.
Case 4 Next slide.

## Proof of Can Ramsey Thm for Graphs (cont)

Case 4 for all $x_{1}<x_{2}<x_{3}$
$\operatorname{COL}\left(x_{1}, x_{2}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}\right)$
$\operatorname{COL}\left(x_{1}, x_{3}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}\right)$
$\operatorname{COL}\left(x_{1}, x_{2}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}\right)$

## Proof of Can Ramsey Thm for Graphs (cont)

Case 4 for all $x_{1}<x_{2}<x_{3}$
$\operatorname{COL}\left(x_{1}, x_{2}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}\right)$
$\operatorname{COL}\left(x_{1}, x_{3}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}\right)$
$\operatorname{COL}\left(x_{1}, x_{2}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}\right)$
From this can show that, for all $x$, for all $c, \operatorname{deg}_{c}(x) \leq 1$.

## Proof of Can Ramsey Thm for Graphs (cont)

Case 4 for all $x_{1}<x_{2}<x_{3}$
$\operatorname{COL}\left(x_{1}, x_{2}\right) \neq \operatorname{COL}\left(x_{1}, x_{3}\right)$
$\operatorname{COL}\left(x_{1}, x_{3}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}\right)$
$\operatorname{COL}\left(x_{1}, x_{2}\right) \neq \operatorname{COL}\left(x_{2}, x_{3}\right)$
From this can show that, for all $x$, for all $c, \operatorname{deg}_{c}(x) \leq 1$. By
Lemma on last slide there exists $M \subseteq H$ that is an infinite rainb set.

## Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

## Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

$$
\mathrm{CR}_{2}(k) \leq 16^{16^{16^{O(k)}}}
$$

Using new proof, 3 -ary with 4 colors, bound is:

## Better Bounds on Can Ramsey

Using 4-ary proof, 16 colors, bound was:

$$
\mathrm{CR}_{2}(k) \leq 16^{16^{16^{O(k)}}}
$$

Using new proof, 3 -ary with 4 colors, bound is:

$$
\mathrm{CR}_{2}(k) \leq 4^{4 O\left(k^{3}\right)}
$$

