
Ramsey’s Theorem
for the Infinite Complete Graph and

the Infinite Complete Hypergraph
Exposition by William Gasarch

1 Introduction

In this document we define notation for graphs and hypergraphs that we use
for the course and then look at Ramsey’s theorem and the Canonical Ramsey
theory on N. Why start with N? Because Joel Spencer said

Infinite Ramsey Theory is easier than Finite Ramsey Theory
because all of the messy constants go away.

2 Notation

Recall that a graph is a set of vertices and a set of edges which are unordered
pairs of vertices. Why pairs? We will generalize this by allowing edges to be
sets of size 1, 2 (the usual case), 3, general a and not have any restriction on
size.

Notation 2.1

1. If n ≥ 1 then [n] = {1, . . . , n}.

2. If a ∈ N and A is a set then
(
A
a

)
is the set of all subsets of A of size a.

We commonly use
(
[n]
a

)
and

(
N
a

)
.

Def 2.2 Let a ∈ N (note that a = 0 is allowed). A a-hypergraph is a set of
vertices V and a set of edges which is a subset of

(
V
a

)
.

Examples

1. A 0-hypergraph is just a set of vertices. This is just stupid but we’ll
keep it around in case we need some edge case.

2. A 1-hypergraph is a set of vertices together with edges which are also
vertices. So its just a set of vertices but some are also called edges.
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3. A 2-hypergraph is the usual graphs you know and love.

4. A 3-hypergraph. Edges are sets of 3 vertices. V = N and the edges
are all (a, b, c) such that a + b + c ≡ 0 (mod 9). I could not have said
a + b + c ≡ 0 (mod 9) since then the order would matter. We are
dealing with unordered hypergraphs. I could have said all (a, b, c) with
a < b < c such that a + 2b + 3c ≡ 0 (mod 9).

5. Another example of a 3-hypergraph: let V be some set of points in the
plane. Let the edges be all 3-sets of points that form non-degenerate
triangles.

Def 2.3 A hypergraph (notice the lack of a parameter) is a set of vertices V
together with edges which are subsets of V .

Example

1. V = N and we take the set of all finite subsets of N whose sum is ≡ 0
(mod 9). Note that the empty set would be an edge.

2. V is a set of points in the plane. The edges are all of the lines in the
plane.

3. Any a-hypergraph is also a hypergraph.

We are all familiar with the complete graph on N:

Notation 2.4 KN is the graph (V,E) where

V = N

E =
(
N
2

)
Here is the complete a-hypergraph on N:

Notation 2.5 Ka
N is the hypergraph (V,E) where

V = N

E =
(
N
a

)
Convention 2.6 In this course unless otherwise noted (1) a coloring of a
graph is a coloring of the edges of the graph. and (2) a coloring of a hypergraph
is a coloring of the edges of the hypergraph.

2



3 Ramsey Theory on the Complete 1-Hypergraph

on N

The following theorem is to obvious to prove but I want to state it:

Theorem 3.1 For every 2-coloring of N there is an infinite A ⊆ N that is
the same color.

Even though this is an easy theorem here are some questions:

1. Is there a finite version of this theorem?

2. If you are given a program that computes the coloring can you deter-
mine which color (or perhaps both) appears infinitely often?

3. What if you are given a simple computational device (e.g., a DFA with
output). Then can you determine which color? What is the complexity
of the problem?

What if I allow an infinite number of colors?

Theorem 3.2 For every coloring of N there is either (1) an infinite A ⊆ N
that is the same color, or (2) an infinite A ⊆ N that all have different colors
(called a rainbow set).

Proof: Let COL be a coloring of N. We define an infinite sequence of
vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL.
Here is the intuition: Either COL(1) appears infinitely often (so we are

done) or not. If not then we get rid of the finite number of vertices colored
COL(1) except 1. We then do the same for COL(2). We will either find some
color that appears infinitely often or create a sequence of all different colors.

We now describe it formally.
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V0 = N
x1 = 1

c1 = DONE if |{v ∈ V0 | COL(v) = COL(x1)}| is infinite. And you are DONE! STOP
= COL(x1) otherwise

V1 = {v ∈ V0 | COL(v) 6= c1} (note that |V1| is infinite)

Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci = DONE if |{v ∈ Vi−1 | COL(v) = COL(xi)}| is infinite. And you are DONE! STOP
= COL(xi) otherwise

Vi = {v ∈ Vi−1 | COL(v) 6= ci} (note that |Vi| is infinite)

How long can this sequence go on for? If ever it stops then we are done
as we have found a color appearing infinitely often. If not then the sequence

x1, x2, . . . ,

is infinite and each number in it is a different color, so we have found a
rainbow set.

1. Is there a finite version of this theorem?

2. If you are given a program that computes the coloring can you deter-
mine which color (if any) appears infinitely often?

3. What if you are given a simple computational device (e.g., a DFA with
output). Then can you determine which color? What is the complexity
of the problem?

4 A Bit More Notation

For the case of the 1-hypergraph we didn’t need notions of complete graphs
or homog sets, though that is what we were talking about. For a-hypergraphs
we will.
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Def 4.1 Let COL:
(
N
2

)
→ [2]. Let V ⊆ N. The set V is homog if there exists

a color c such that every elements of
(
V
2

)
is colored c.

Def 4.2 Let COL:
(
N
k

)
→ [c]. Let V ⊆ N. The set V is homog if there exists

a color c such that every elements of
(
V
k

)
is colored c.

5 Ramsey’s Theorem for the Infinite Com-

plete Graphs

The following is Ramsey’s Theorem for KN.

Theorem 5.1 For every 2-coloring of the edges of KN there is an infinite
homog set.

Proof: Let COL be a 2-coloring of KN. We define an infinite sequence of
vertices,

x1, x2, . . . ,

and an infinite sequence of sets of vertices,

V0, V1, V2, . . . ,

that are based on COL.
Here is the intuition: Vertex x1 = 1 has an infinite number of edges

coming out of it. Some are RED, and some are BLUE. Hence there are
an infinite number of RED edges coming out of x1, or there are an infinite
number of BLUE edges coming out of x1 (or both). Let c1 be a color such
that x1 has an infinite number of edges coming out of it that are colored c1.
Let V1 be the set of vertices v such that COL(v, x1) = c1. Then keep iterating
this process.

We now describe it formally.

V0 = N
x1 = 1

c1 = RED if |{v ∈ V0 | COL(v, x1) = RED}| is infinite
= BLUE otherwise

V1 = {v ∈ V0 | COL(v, x1) = c1} (note that |V1| is infinite)
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Let i ≥ 2, and assume that Vi−1 is defined. We define xi, ci, and Vi:

xi = the least number in Vi−1

ci = RED if |{v ∈ Vi−1 | COL(v, xi) = RED}| is infinite
= BLUE otherwise

Vi = {v ∈ Vi−1 | COL(v, xi) = ci} (note that |Vi| is infinite)

(NOTE- look at the step where we define ci. We are using the fact that
if you 2-color N you are guaranteed some color appears infinitely often; we
are using the 1-hypergraph Ramsey Theorem. Later when we prove Ramsey
on 3-hypergraphs we will use Ramsey on 2-hypergraphs.)

How long can this sequence go on for? Well, xi can be defined if Vi−1 is
nonempty. We can show by induction that, for every i, Vi is infinite. Hence
the sequence

x1, x2, . . .

is infinite.
Consider the infinite sequence

c1, c2, . . .

Each of the colors in this sequence is either RED or BLUE. Hence there
must be an infinite sequence i1, i2, . . . such that i1 < i2 < · · · and

ci1 = ci2 = · · ·

Denote this color by c, and consider the vertices

H = {xi1 , xi2 , · · · }

We leave it to the reader to show that H is homog.

Exercise 1 Show that, for all c ≥ 3, for every c-coloring of the edges of KN,
there is a an infinite homog set.

Questions to ponder:

1. Is there a finite version?

2. What if we allow an infinite number of colors?

3. Computational and Complexity issues.
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6 Ramsey’s Theorem for 3-Hypergraphs: First

Proof

Theorem 6.1 For all COL:
(
N
3

)
→ [2] there exists an infinite 3-homog set.

Proof:
CONSTRUCTION
PART ONE

V0 = N
x0 = 1.
Assume x1, . . . , xi−1 defined, Vi−1 defined and infinite.

xi = the least number in Vi−1
Vi = Vi−1 − {xi} (Will change later without changing name.)

COL∗(x, y) = COL(xi, x, y) for all {x, y} ∈
(
Vi

2

)
Vi = an infinite 2-homogeneous set for COL∗

ci = the color of Vi

KEY: for all y, z ∈ Vi, COL(xi, y, z) = ci.
END OF PART ONE

PART TWO
We have vertices

x1, x2, . . . ,

and associated colors

c1, c2, . . . , .

There are only two colors, hence, by the 1-homog Ramsey Theorem there
exists i1, i2, . . . , such that i1 < i2 < · · · and

ci1 = ci2 = · · ·

We take this color to be RED. Let

H = {xi1 , xi2 , . . . , }.

We leave it to the reader to show that H is homog.
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END OF PART TWO
END OF CONSTRUCTION

Exercise 2

1. Show that, for all c, for all c-coloring of K3
N there exists an infinite

3-homog set.

2. State and prove a theorem about c-coloring
(
N
a

)
.

3. What if we allow an infinite number of colors?

7 Ramsey’s Theorem for 3-Hypergraphs: Sec-

ond Proof

In the last section the proof went as follows:

• Color a node by using 2-hypergraph Ramsey. This is done ω times.

• After the nodes are colored we use 1-hypergraph. This is done once.

We given an alternative proof where:

• Color an edge by using 1-hypergraph Ramsey This is done ω times.

• After all the edges of an infinite complete graph are colored we use
2-hypergraph Ramsey. This is done once.

We now proceed formally.

Theorem 7.1 For all COL:
(
N
3

)
→ [2] there exists an infinite 3-homog set.

Proof:
Let COL be a 2-coloring of

(
N
3

)
. We define a sequence of vertices,

x1, x2, . . . ,
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Here is the intuition: Let x1 = 1 and x2 = 2. The vertices x1, x2 induces
the following coloring of {3, 4, . . .}.

COL∗(y) = COL(x1, x2, y).

Let V1 be an infinite 1-homogeneous for COL∗. Let COL∗∗(x1, x2) be the
color of V1. Let x3 be the least vertex left (bigger than x2).

The number x3 induces two colorings of V1 − {x3}:

(∀y ∈ V1 − {x3})[COL∗1(y) = COL(x1, x3, y)]

(∀y ∈ V1 − {x3})[COL∗2(y) = COL(x2, x3, y)]

Let V2 be an infinite 1-homogeneous for COL∗1. Let COL∗∗(x1, x3) be the
color of V2. Restrict COL∗2 to elements of V2, though still call it COL∗2. We
reuse the variable name V2 to be an infinite 1-homogeneous for COL∗2. Let
COL∗∗(x1, x3) be the color of V2. Let x4 be the least element of V2. Repeat
the process.

We describe the construction formally.

CONSTRUCTION
PART ONE:

x1 = 1
V1 = N− {x1}

Let i ≥ 2. Assume that x1, . . . , xi−1, Vi−1, and COL∗∗ :
({x1,...,xi−1}

2

)
→

{RED,BLUE} are defined.

xi = the least element of Vi−1
Vi = Vi−1 − {xi} (We will change this set without changing its name).

We define COL∗∗(x1, xi), COL∗∗(x2, xi), . . ., COL∗∗(xi−1, xi). We will also
define smaller and smaller sets Vi (not smaller by size – they are all infinite –
but smaller by being subsets). We will keep the variable name Vi throughout.

For j = 1 to i− 1

1. COL∗j : Vi → {RED,BLUE} is defined by COL∗j(y) = COL(xj, xi, y).
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2. Let Vi be redefined as an infinite 1-homogeneous set for COL∗. Note
that Vi is still infinite.

3. COL∗∗(xj, xi) is the color of Vi.

END OF PART ONE

PART TWO:
From PART ONE we have a set of vertices X

X = {x1, x2, . . .}

and a 2-coloring COL∗∗ of
(
X
2

)
. By the 2-hypergraph Ramsey Theorem there

exists an infinite homog (with respect to COL∗∗) set

H = {y1, y2, . . .}

Assume that the homog color is R. Then for i < j < k

COL(yi, yj, yk) = COL∗∗(yi, yj) = R

So H is homog for COL. END OF PART TWO
END OF CONSTRUCTION

10


