Some Solutions to Midterm Problems

William Gasarch-U of MD

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Prove the following and fill in the f(k). **Thm** For all k there exists n = f(k) such that the following holds. For all pairs of colorings: $\operatorname{COL}_1: {[n] \choose 1} \to [2],$ $\operatorname{COL}_2: {[n] \choose 2} \to [2]$

ション ふゆ アメビア メロア しょうくり

 $(\exists H \subseteq [n])(\exists c_1, c_2 \in \{1,2\})$ such that

Prove the following and fill in the f(k). **Thm** For all k there exists n = f(k) such that the following holds. For all pairs of colorings: $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$ $\operatorname{COL}_2: \binom{[n]}{2} \to [2]$ $(\exists H \subseteq [n])(\exists c_1, c_2 \in \{1, 2\})$ such that

ション ふゆ アメビア メロア しょうくり

 \blacktriangleright *H* is of size *k*,

Prove the following and fill in the f(k). Thm For all k there exists n = f(k) such that the following holds. For all pairs of colorings:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

$$\begin{aligned} \operatorname{COL}_1 \colon {\binom{[n]}{1}} &\to [2], \\ \operatorname{COL}_2 \colon {\binom{[n]}{2}} &\to [2] \\ (\exists H \subseteq [n]) (\exists c_1, c_2 \in \{1, 2\}) \text{ such that} \\ &\blacktriangleright H \text{ is of size } k, \end{aligned}$$

• every element of H is colored c_1 , and

Prove the following and fill in the f(k). Thm For all k there exists n = f(k) such that the following holds. For all pairs of colorings:

$$\begin{aligned} \operatorname{COL}_1 \colon {\binom{[n]}{1}} &\to [2], \\ \operatorname{COL}_2 \colon {\binom{[n]}{2}} &\to [2] \\ (\exists H \subseteq [n]) (\exists c_1, c_2 \in \{1, 2\}) \text{ such that} \\ &\blacktriangleright H \text{ is of size } k, \end{aligned}$$

- every element of H is colored c_1 , and
- every element of $\binom{H}{2}$ is colored c_2 .

$$\begin{split} &\operatorname{COL}_1\colon {[n] \choose 1} \to [2],\\ &\operatorname{COL}_2\colon {[n] \choose 2} \to [2]. \text{ We do the following.} \end{split}$$

 $\operatorname{COL}_1 \colon {\binom{[n]}{1}} \to [2],$ $\operatorname{COL}_2 \colon {\binom{[n]}{2}} \to [2].$ We do the following. We determine *n* later.

 $\operatorname{COL}_1 : {\binom{[n]}{1}} \to [2],$ $\operatorname{COL}_2 : {\binom{[n]}{2}} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 .

 $\operatorname{COL}_1 : {\binom{[n]}{1}} \to [2],$ $\operatorname{COL}_2 : {\binom{[n]}{2}} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 . We apply 2-ary Ramsey. We showed in class:

 $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$ $\operatorname{COL}_2: \binom{[n]}{2} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 . We apply 2-ary Ramsey. We showed in class:

$$(\forall \text{COL}: \binom{2^{2k}}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].$$

 $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$ $\operatorname{COL}_2: \binom{[n]}{2} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 . We apply 2-ary Ramsey. We showed in class:

$$(\forall \text{COL}: \binom{2^{2k}}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].$$

ション ふゆ アメビア メロア しょうくり

We turn this around:

 $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$ $\operatorname{COL}_2: \binom{[n]}{2} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 . We apply 2-ary Ramsey. We showed in class:

$$(\forall \text{COL}: \binom{2^{2k}}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].$$

We turn this around:

$$(\forall \text{COL}: \binom{m}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \ge 0.5 \log_2(m)].$$

ション ふゆ アメビア メロア しょうくり

 $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$ $\operatorname{COL}_2: \binom{[n]}{2} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 . We apply 2-ary Ramsey. We showed in class:

$$(\forall \text{COL}: \binom{2^{2k}}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].$$

We turn this around:

$$(\forall \text{COL}: \binom{m}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \ge 0.5 \log_2(m)].$$

Restrict COL₂ to $\binom{H_1}{2}$. Get: $|H| \ge 0.5 \log_2(|H_1|) = 0.5 \log_2(\frac{n}{2})$.

 $\operatorname{COL}_1: \binom{[n]}{1} \to [2],$ $\operatorname{COL}_2: \binom{[n]}{2} \to [2].$ We do the following. We determine *n* later. By 1-ary Ramsey $(\exists H_1)[|H_1| \ge \frac{n}{2}], \operatorname{COL}_1$ on H_1 is color c_1 . We apply 2-ary Ramsey. We showed in class:

$$(\forall \text{COL}: \binom{2^{2k}}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \geq k].$$

We turn this around:

$$(\forall \text{COL}: \binom{m}{2} \rightarrow [2])(\exists H)[H \text{ Homog } |H| \ge 0.5 \log_2(m)].$$

Restrict COL₂ to $\binom{H_1}{2}$. Get: $|H| \ge 0.5 \log_2(|H_1|) = 0.5 \log_2(\frac{n}{2})$. Need $0.5 \log_2(\frac{n}{2}) \ge k$. Take $n = 2^{2k+1}$.

In the lang of graphs (E(x, y)) the question:

In the lang of graphs (E(x, y)) the question: **Given an** E^*A^* **statement** ϕ , find spec (ϕ) is decidable.

In the lang of graphs (E(x, y)) the question: **Given an** E^*A^* **statement** ϕ , find spec (ϕ) is decidable. And spec (ϕ) is always finite or cofinite.

In the lang of graphs (E(x, y)) the question: **Given an** E^*A^* **statement** ϕ , find spec (ϕ) is decidable. And spec (ϕ) is always finite or cofinite. **Key** Make the set Y **very homog** by making every element in Y have the same relation to every $u \in U$ and to each other.

In the lang of graphs (E(x, y)) the question: **Given an** E^*A^* **statement** ϕ , find spec (ϕ) is decidable.

And spec(ϕ) is always finite or cofinite.

Key Make the set Y very homog by making every element in Y have the same relation to every $u \in U$ and to each other.

What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to also make every element of Y the same color.

In the lang of graphs (E(x, y)) the question: **Given an** E^*A^* **statement** ϕ , find spec (ϕ) is decidable.

And spec(ϕ) is always finite or cofinite.

Key Make the set Y very homog by making every element in Y have the same relation to every $u \in U$ and to each other.

What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to also make every element of Y the same color.

This problem showed that YES we can do BOTH- make every element of Y the same color AND make every pair of elements of Y the same color.

We have the following: Language is 2-col graphs ($E_1(x)$ and $E_2(x, y)$) the question:

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

We have the following: Language is 2-col graphs ($E_1(x)$ and $E_2(x, y)$) the question: **Given an** E^*A^* statement ϕ , find spec(ϕ) is decidable.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

We have the following:

Language is 2-col graphs $(E_1(x) \text{ and } E_2(x, y))$ the question:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Given an E^*A^* statement ϕ , find spec (ϕ)

is decidable.

And spec(ϕ) is always finite or cofinite.

By iterating Ramsey we get the following theorem.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

By iterating Ramsey we get the following theorem. In the lang of any finite set of relations $(E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \ldots$ \vdots $E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m))$

ション ふぼう メリン メリン しょうくしゃ

By iterating Ramsey we get the following theorem. In the lang of any finite set of relations $(E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \vdots$ $E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m)$) the question: **Given an** E^*A^* statement ϕ , find $spec(\phi)$ is decidable.

うしん 同一人用 人用 人用 人口 マ

By iterating Ramsey we get the following theorem. In the lang of any finite set of relations $(E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \vdots$ $E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m)$) the question: **Given an** E^*A^* statement ϕ , find $spec(\phi)$ is decidable.

ション ふぼう メリン メリン しょうくしゃ

And spec(ϕ) is always finite or cofinite.

By iterating Ramsey we get the following theorem. In the lang of any finite set of relations $(E_{11}(x), E_{12}(x), \ldots, E_{1k_1}(x), E_{21}(x_1, x_2), E_{22}(x_1, x_2), \ldots, E_{2k_2}(x_1, x_2), \vdots$ $E_{m1}(x_1, \ldots, x_m), E_{m2}(x_1, \ldots, x_m), \ldots, E_{mk_m}(x_1, \ldots, x_m)$) the question: **Given an** E^*A^* statement ϕ , find $spec(\phi)$ is decidable.

ション ふぼう メリン メリン しょうくしゃ

And spec(ϕ) is always finite or cofinite.

This is what Ramsey proved in his paper.

Let T be the set of trees and \preceq be the minor ordering. Show that (T, \preceq) is a wqo.

Let T be the set of trees and \leq be the minor ordering. Show that (T, \leq) is a wqo.

You may use any theorem that was PROVEN in class or on the HW. (Note that we DID NOT prove the Graph Minor Theorem, so you can't use that.)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume that there exists a bad seq.

Assume that there exists a bad seq.

Let T_1 be the smallest tree that begins a bad seq. KILL.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Assume that there exists a bad seq.

:

Let T_1 be the smallest tree that begins a bad seq. KILL.

Let T_2 be the smallest tree that begins a bad seq that begins T_1 . KILL.

Assume that there exists a bad seq.

Let T_1 be the smallest tree that begins a bad seq. KILL.

Let T_2 be the smallest tree that begins a bad seq that begins T_1 . KILL.

 T_1, T_2, \ldots

is called a minimal bad seq.

Assume that there exists a bad seq.

Let T_1 be the smallest tree that begins a bad seq. KILL.

Let T_2 be the smallest tree that begins a bad seq that begins T_1 . KILL.

 T_1, T_2, \ldots

is called a minimal bad seq.

 $(\forall i)$ take T_i and rm root to get **finite set** of trees T_{i1}, \ldots, T_{ik_i} .

ション ふゆ アメビア メロア しょうくり

Assume that there exists a bad seq.

Let T_1 be the smallest tree that begins a bad seq. KILL.

Let T_2 be the smallest tree that begins a bad seq that begins T_1 . KILL.

 T_1, T_2, \ldots

is called a minimal bad seq.

 $(\forall i)$ take T_i and rm root to get **finite set** of trees T_{i1}, \ldots, T_{ik_i} . Let

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

ション ふゆ アメリア メリア しょうくしゃ

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

▲□▶▲□▶▲目▶▲目▶ 目 のへで

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Assume not. Then \exists bad seq.

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$.

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i_1j_1}, T_{i_2j_2}, \dots$$
 (We have $i_1 \leq i_2, i_3, \dots$)

▲□▶ ▲□▶ ▲目▶ ▲目▶ - 目 - のへで

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i_1j_1}, T_{i_2j_2}, \dots$$
 (We have $i_1 \le i_2, i_3, \dots$)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i_1j_1}, T_{i_2j_2}, \dots$$
 (We have $i_1 \leq i_2, i_3, \dots$)
we PREPEND T_1, \dots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

$$X = \bigcup_{i=1}^{\infty} \{T_{i1}, \ldots, T_{ik_i}\}$$

Assume not. Then \exists bad seq. Say it begins $T_{i_1j_1}$. We can assume i_1 is smallest numb that appears as a 1st index.

$$T_{i_1j_1}, T_{i_2j_2}, \dots$$
 (We have $i_1 \leq i_2, i_3, \dots$)
we PREPEND T_1, \dots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

For the rest goto the next slide.

(*)
$$T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

(*) $T_{i_1j_1}, T_{i_2j_2}, \dots$ $(i_1 \le i_2, i_3, \dots)$ we PREPEND T_1, \dots, T_{i_1-1} to the seq to get

 $(*) \quad T_{i_1j_1}, T_{i_2j_2}, \dots \ (i_1 \leq i_2, i_3, \dots)$ we PREPEND T_1, \dots, T_{i_1-1} to the seq to get

 $T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$

(*) $T_{i_1j_1}, T_{i_2j_2}, \dots$ $(i_1 \le i_2, i_3, \dots)$ we PREPEND T_1, \dots, T_{i_1-1} to the seq to get $T_1, T_2, \dots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \dots$ $(i_1 \le i_2, i_3, \dots)$

Claim This is a bad seq.

(*) $T_{i_1j_1}, T_{i_2j_2}, \dots$ $(i_1 \le i_2, i_3, \dots)$ we PREPEND T_1, \dots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.

 $(*) \quad T_{i_1j_1}, T_{i_2j_2}, \dots \ (i_1 \leq i_2, i_3, \dots)$ we PREPEND T_1, \dots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

- a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq.
- b) NO uptick within $T_{i_1i_1}, \ldots$ since its a bad seq.

(*) $T_{i_1j_1}, T_{i_2j_2}, \dots$ $(i_1 \leq i_2, i_3, \dots)$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

- a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq. b) NO uptick within $T_{i_1i_1}, \ldots$ since its a bad seq.
- c) NO uptick $T_i \leq T_{i_k i_k}$ since otherwise $T_i \leq T_{i_k}$ and $i < i_k$.

(*) $T_{i_1j_1}, T_{i_2j_2}, \ldots$ $(i_1 \leq i_2, i_3, \ldots)$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq. b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq. c) NO uptick $T_i \leq T_{i_kj_k}$ since otherwise $T_i \leq T_{i_k}$ and $i < i_k$. End of Proof of Claim

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

(*)
$$T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq. b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq. c) NO uptick $T_i \leq T_{i_kj_k}$ since otherwise $T_i \leq T_{i_k}$ and $i < i_k$. End of Proof of Claim

(*) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1j_1}$.

(*)
$$T_{i_1j_1}, T_{i_2j_2}, \ldots$$
 $(i_1 \leq i_2, i_3, \ldots)$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq. b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq. c) NO uptick $T_i \leq T_{i_kj_k}$ since otherwise $T_i \leq T_{i_k}$ and $i < i_k$. End of Proof of Claim

(*) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1j_1}$. T_{i_1} is the smallest tree that is right after T_1, \ldots, T_{i_1-1} in a bad seq.

・ロト・日本・ヨト・ヨー シック

(*)
$$T_{i_1j_1}, T_{i_2j_2}, \ldots$$
 $(i_1 \leq i_2, i_3, \ldots)$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq. b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq. c) NO uptick $T_i \leq T_{i_kj_k}$ since otherwise $T_i \leq T_{i_k}$ and $i < i_k$. End of Proof of Claim

(*) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1j_1}$. T_{i_1} is the smallest tree that is right after T_1, \ldots, T_{i_1-1} in a bad seq.

 $T_{i_1 j_1}$ is smaller than T_{i_1} , so contradiction.

(*)
$$T_{i_1j_1}, T_{i_2j_2}, \ldots$$
 $(i_1 \leq i_2, i_3, \ldots)$

we PREPEND T_1, \ldots, T_{i_1-1} to the seq to get

$$T_1, T_2, \ldots, T_{i_1-1}, T_{i_1j_1}, T_{i_2j_2}, \ldots (i_1 \leq i_2, i_3, \ldots)$$

Claim This is a bad seq.

a) NO uptick within T_1, \ldots, T_{i_1-1} since T_1, T_2, \ldots is Bad Seq. b) NO uptick within $T_{i_1j_1}, \ldots$ since its a bad seq. c) NO uptick $T_i \preceq T_{i_kj_k}$ since otherwise $T_i \preceq T_{i_k}$ and $i < i_k$. End of Proof of Claim

(*) is a bad seq that begins $T_{i_1}, \ldots, T_{i_1-1}$ and then has $T_{i_1j_1}$. T_{i_1} is the smallest tree that is right after T_1, \ldots, T_{i_1-1} in a bad seq.

 $T_{i_1j_1}$ is smaller than T_{i_1} , so contradiction. End of proof that X is wqo

Recall HW04

Recall HW04

Assume (X, \preceq) is a wqo.

Recall HW04

Assume (X, \preceq) is a wqo.

Let PF(X) be the set of finite subsets of X.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

Recall HW04

Assume (X, \preceq) is a wqo.

Let PF(X) be the set of finite subsets of X.

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Let \leq' be the following order on PF(X).

Recall HW04

Assume (X, \preceq) is a wqo.

Let PF(X) be the set of finite subsets of X.

Let \leq' be the following order on PF(X).

Let $Y, Z \in PF(X)$.

Recall HW04

Assume (X, \preceq) is a wqo.

Let PF(X) be the set of finite subsets of X.

Let \leq' be the following order on PF(X).

Let $Y, Z \in PF(X)$.

 $Y \preceq' Z$ iff $(\exists injective f : Y \rightarrow Z)(\forall y \in Y)[y \preceq f(y)].$

ション ふゆ アメリア メリア しょうくしゃ

Recall HW04

Assume (X, \preceq) is a wqo.

Let PF(X) be the set of finite subsets of X.

Let \leq' be the following order on PF(X).

Let $Y, Z \in PF(X)$.

 $Y \preceq' Z$ iff $(\exists$ injective $f : Y \to Z)(\forall y \in Y)[y \preceq f(y)].$

Then $(PF(X), \preceq')$ is a wqo.

Recall HW04

Assume (X, \preceq) is a wqo.

Let PF(X) be the set of finite subsets of X.

Let \leq' be the following order on PF(X).

Let $Y, Z \in PF(X)$.

 $Y \preceq' Z$ iff $(\exists injective f : Y \rightarrow Z)(\forall y \in Y)[y \preceq f(y)].$

ション ふゆ アメリア メリア しょうくしゃ

Then $(PF(X), \preceq')$ is a wqo.

We will use this.

The Original Min Bad Sequence is

 T_1, T_2, \ldots

(ロト (個) (E) (E) (E) (E) のへの

The Original Min Bad Sequence is

 T_1, T_2, \ldots

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$

The Original Min Bad Sequence is

 T_1, T_2, \ldots

ション ふゆ アメリア メリア しょうくしゃ

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

$$\{T_{i1},\ldots,T_{ik_i}\} \preceq' \{T_{j1},\ldots,T_{jk_j}\}.$$

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

$$\{T_{i1}, \dots, T_{ik_i}\} \preceq' \{T_{j1}, \dots, T_{jk_j}\}.$$

$$T_{i1} \text{ is a minor of SOME elt of } \{T_{j1}, \dots, T_{jk_j}\}.$$

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

$$\{T_{i1},\ldots,T_{ik_i}\} \preceq' \{T_{j1},\ldots,T_{jk_j}\}.$$

ション ふゆ アメリア メリア しょうくしゃ

 T_{i1} is a minor of SOME elt of $\{T_{j1}, \ldots, T_{jk_j}\}$. T_{i2} is a minor of SOME other elt of $\{T_{j1}, \ldots, T_{jk_i}\}$.

The Original Min Bad Sequence is

•

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

$$\{T_{i1},\ldots,T_{ik_i}\} \preceq' \{T_{j1},\ldots,T_{jk_j}\}.$$

ション ふゆ アメビア メロア しょうくしゃ

 T_{i1} is a minor of SOME elt of $\{T_{j1}, \ldots, T_{jk_j}\}$. T_{i2} is a minor of SOME other elt of $\{T_{j1}, \ldots, T_{jk_i}\}$.

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

$$\{T_{i1},\ldots,T_{ik_i}\} \preceq' \{T_{j1},\ldots,T_{jk_j}\}.$$

 T_{i1} is a minor of SOME elt of $\{T_{j1}, \ldots, T_{jk_j}\}$. T_{i2} is a minor of SOME other elt of $\{T_{j1}, \ldots, T_{jk_j}\}$.

 T_{ik_i} is a minor of SOME other elt of $\{T_{j1}, \ldots, T_{jk_j}\}$.

・ロト・西ト・西ト・西ト・日・今日・

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$T_1, T_2, \ldots$$

View this as a seq of finite sets of trees from wqo X. $\{T_{11}, \ldots, T_{1k_1}\}, \{T_{21}, \ldots, T_{2k_2}\}, \cdots$ By HW there is an uptick in this seq. So there is

$$\{T_{i1},\ldots,T_{ik_i}\} \preceq' \{T_{j1},\ldots,T_{jk_j}\}.$$

 T_{i1} is a minor of SOME elt of $\{T_{j1}, \ldots, T_{jk_j}\}$. T_{i2} is a minor of SOME other elt of $\{T_{j1}, \ldots, T_{jk_i}\}$.

 T_{ik_i} is a minor of SOME other elt of $\{T_{j1}, \ldots, T_{jk_j}\}$. You can put all this together to get T_i is a minor of T_j , which contradicts T_1, \ldots , being a bad seq.

Problem 3: Afterthought

What did we use about minor in the proof?

Problem 3: Afterthought

What did we use about **minor** in the proof?

Would the same proof show that the subgraph-ordering for trees is a wqo?

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Problem 3: Afterthought

What did we use about **minor** in the proof?

Would the same proof show that the subgraph-ordering for trees is a wqo?

I leave this for you to ponder.

Let \mathcal{G} be the set of all graphs and \leq be the subgraph ordering.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Let ${\mathcal G}$ be the set of all graphs and \preceq be the subgraph ordering. Vote

Let \mathcal{G} be the set of all graphs and \leq be the subgraph ordering. Vote a) (\mathcal{G}, \leq) is a wqo and this is known.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Let ${\mathcal G}$ be the set of all graphs and \preceq be the subgraph ordering. Vote

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

a) (\mathcal{G}, \preceq) is a wqo and this is known. a) (\mathcal{G}, \preceq) is not a wqo and this is known.

Let ${\mathcal G}$ be the set of all graphs and \preceq be the subgraph ordering. Vote

- a) (\mathcal{G}, \preceq) is a wqo and this is known.
- a) (\mathcal{G}, \preceq) is not a wqo and this is known.
- c) The question "is (\mathcal{G}, \preceq) a wqo?" is unknown to science.

ション ふゆ アメビア メロア しょうくり

Let ${\mathcal G}$ be the set of all graphs and \preceq be the subgraph ordering. Vote

a) (G, ≤) is a wqo and this is known.
a) (G, ≤) is not a wqo and this is known.
c) The question "is (G, ≤) a wqo?" is unknown to science. Answer on next slide.

Graphs under Subgraph

- * ロト * 課 ト * ヨト * ヨト - ヨー のへぐ

Graphs under Subgraph

Let C_i be the cycle on *i* vertices.

$\mathit{C}_3, \mathit{C}_4, \mathit{C}_5, \ldots$

is an infinite seq of incomparable elements, so graphs under subgraph are NOT a wqo.

Prove or Disprove:

For every $\mathrm{COL}\colon \mathsf{Q}\to [100]$ there exists an $H\subseteq \mathsf{Q}$ such that

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

▶ *H* has the same order type as the rationals:

Prove or Disprove:

For every $\mathrm{COL}\colon \mathsf{Q}\to [100]$ there exists an $H\subseteq \mathsf{Q}$ such that

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

H has the same order type as the rationals:
 a) H is countable

Prove or Disprove:

For every $\mathrm{COL}\colon \mathsf{Q}\to [100]$ there exists an $H\subseteq\mathsf{Q}$ such that

H has the same order type as the rationals:
a) H is countable
b) H is dense: (∀x, y ∈ H)[x < y ⇒ (∃z)[x < z < y].

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Prove or Disprove:

For every ${\rm COL}\colon Q\to [100]$ there exists an $H\subseteq Q$ such that

- H has the same order type as the rationals:
 a) H is countable
 - b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y].$

ション ふゆ アメビア メロア しょうくり

c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y]$.

Prove or Disprove:

For every ${\rm COL}\colon Q\to [100]$ there exists an $H\subseteq Q$ such that

- H has the same order type as the rationals:
 - a) H is countable
 - b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y].$
 - c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y]$.
 - d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x < y]$.

Prove or Disprove:

For every ${\rm COL}\colon Q\to [100]$ there exists an $H\subseteq Q$ such that

- *H* has the same order type as the rationals:
 - a) H is countable
 - b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y].$
 - c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y]$.
 - d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x < y]$.

every number in H is the same color.

Prove or Disprove:

For every ${\rm COL}\colon Q\to [100]$ there exists an $H\subseteq Q$ such that

• *H* has the same order type as the rationals:

a) H is countable

b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y].$

c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y]$.

d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x < y]$.

every number in H is the same color.

TRUE. We prove it TWO ways.

Prove or Disprove:

For every ${\rm COL}\colon Q\to [100]$ there exists an $H\subseteq Q$ such that

• *H* has the same order type as the rationals:

a) H is countable

- b) H is dense: $(\forall x, y \in H)[x < y \implies (\exists z)[x < z < y].$
- c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x < y]$.
- d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x < y]$.

every number in H is the same color.

TRUE. We prove it TWO ways.

Advice You should understand both proofs.

Def Let *L* be a linear ordering. a) $L \equiv Q$ means *L* has same order type as Q. Hence *L* is countable, dense, and has no endpoints.

Def Let *L* be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let COL: $L \rightarrow [c]$. *H* is **Q-homog** if *H* is homog & $H \equiv Q$.

Def Let *L* be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let COL: $L \rightarrow [c]$. *H* is **Q-homog** if *H* is homog & $H \equiv Q$. We will prove the following:

Def Let *L* be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let COL: $L \rightarrow [c]$. *H* is **Q-homog** if *H* is homog & $H \equiv Q$.

We will prove the following:

 $(\forall c)(\forall L \equiv \mathsf{Q})(\forall \text{COL} \colon L \to [c])(\exists H \subseteq L)[H \text{ Q-homog}].$

Def Let *L* be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let COL: $L \rightarrow [c]$. *H* is **Q-homog** if *H* is homog & $H \equiv Q$.

We will prove the following:

 $(\forall c)(\forall L \equiv \mathsf{Q})(\forall \text{COL} \colon L \to [c])(\exists H \subseteq L)[H \text{ Q-homog}].$

We use c instead of 100 since we can then do an induction on c.

Def Let *L* be a linear ordering.

a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.

b) Let COL: $L \rightarrow [c]$. *H* is **Q-homog** if *H* is homog & $H \equiv Q$. We will prove the following:

 $(\forall c)(\forall L \equiv \mathsf{Q})(\forall \text{COL} \colon L \to [c])(\exists H \subseteq L)[H \text{ Q-homog}].$

We use *c* instead of 100 since we can then do an induction on *c*. We use *L* instead of Q since in the induction proof we will have a coloring of (say) (a, b) and want to use the Ind Hyp on a COL restricted to (a, b).

$(\forall c)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)H$ is Q-homog

Proof One and Proof Two Begin the Same Way We prove this by induction on *c*.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

$(\forall c)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)H$ is Q-homog

Proof One and Proof Two Begin the Same Way We prove this by induction on c. **IB** c = 1. Obviously true.

$(\forall c)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)H \text{ is } Q\text{-homog}$

Proof One and Proof Two Begin the Same Way

ション ふゆ アメビア メロア しょうくり

We prove this by induction on c.

- **IB** c = 1. Obviously true.
- **IH** Assume true for c 1.

$(\forall c)(\forall \text{COL}: L \rightarrow [c])(\exists H \subseteq L)H$ is Q-homog

Proof One and Proof Two Begin the Same Way

ション ふゆ アメビア メロア しょうくり

We prove this by induction on c.

IB c = 1. Obviously true.

IH Assume true for c - 1. Continued on Next Slide.

Let COL: $L \rightarrow [c]$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Let COL:
$$L \rightarrow [c]$$
.
Let

$$H = \{x \in L \colon \mathrm{COL}(x) = c\}.$$

▲□▶▲□▶▲臣▶▲臣▶ 臣 の�?

Let COL:
$$L \rightarrow [c]$$
.
Let

$$H = \{x \in L \colon \mathrm{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Let COL:
$$L \rightarrow [c]$$
.
Let

$$H = \{x \in L : \operatorname{COL}(x) = c\}.$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Case 1 $H \equiv Q$. DONE! Case 2 $H \not\equiv Q$. Three possibilities.

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE! Case 2 $H \not\equiv Q$. Three possibilities. Case 2a H is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$.

・ロト・西ト・市・・市・ うくぐ

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Case 1 $H \equiv Q$. DONE!

Case 2 $H \neq Q$. Three possibilities.

Case 2a *H* is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored *c*.

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → 目 → の Q @

Case 1 $H \equiv Q$. DONE!

Case 2 $H \neq Q$. Three possibilities.

Case 2a *H* is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored *c*. Let COL' be COL restricted to (x, y).

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \neq Q$. Three possibilities.

Case 2a *H* is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored *c*. Let COL' be COL restricted to (x, y). This is a c - 1 coloring on $(x, y) \equiv Q$. Done by IH.

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \neq Q$. Three possibilities.

Case 2a *H* is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored *c*. Let COL' be COL restricted to (x, y). This is a c - 1 coloring on $(x, y) \equiv Q$. Done by IH. **Case 2b** *H* has a left endpoint. So $(\exists y)[(-\infty, y) \cap H = \emptyset]$. Let $x \in L$ such that x < y. Let COL' be COL restricted to (x, y). This is a c - 1 coloring on $(x, y) \equiv Q$. Done by IH.

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \neq Q$. Three possibilities.

Case 2a *H* is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored *c*.

Let COL' be COL restricted to (x, y).

This is a c - 1 coloring on $(x, y) \equiv Q$. Done by IH.

Case 2b *H* has a left endpoint. So $(\exists y)[(-\infty, y) \cap H = \emptyset]$. Let $x \in L$ such that x < y. Let COL' be COL restricted to (x, y). This is a c - 1 coloring on $(x, y) \equiv Q$. Done by IH.

Case 2c *H* has a right endpoint. Similar to Case 2b.

Let COL: $L \rightarrow [c]$. Let

$$H = \{x \in L \colon \operatorname{COL}(x) = c\}.$$

Case 1 $H \equiv Q$. DONE!

Case 2 $H \neq Q$. Three possibilities.

Case 2a *H* is not dense. So $(\exists x < y \in H)[(x, y) \cap H = \emptyset]$. Nothing in (x, y) is colored *c*.

Let COL' be COL restricted to (x, y).

This is a c-1 coloring on $(x, y) \equiv Q$. Done by IH.

Case 2b *H* has a left endpoint. So $(\exists y)[(-\infty, y) \cap H = \emptyset]$. Let $x \in L$ such that x < y. Let COL' be COL restricted to (x, y). This is a c - 1 coloring on $(x, y) \equiv Q$. Done by IH.

Case 2c *H* has a right endpoint. Similar to Case 2b. **End of Proof One**

Induction Step for Proof Two: Plan

We will try to **construct** a Q-homog set.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

► We succeed! YEAH!

Induction Step for Proof Two: Plan

We will try to **construct** a Q-homog set.

- ► We succeed! YEAH!
- ▶ We fail! Then we will have an open interval (x, y) where COL is never color c. Use IH.

Let COL: $L \rightarrow [c]$.

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.)

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail. Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail. Let $q_1 \in I$ such that COL $(q_2) = c$ (If no such exists use IH)

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If
$$(\exists q < p_1)[COL(q) = c]$$
 then let q_{n+1} be q .

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If
$$(\exists q < p_1)[COL(q) = c]$$
 then let q_{n+1} be q .
If NOT then COL: $(p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.

For
$$1 \le i \le n$$

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If $(\exists q < p_1)[\text{COL}(q) = c]$ then let q_{n+1} be q. If NOT then COL: $(p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.

For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q.

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If $(\exists q < p_1)[\operatorname{COL}(q) = c]$ then let q_{n+1} be q. If NOT then $\operatorname{COL}: (p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.

▶ For
$$1 \le i \le n$$

If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q .
If NOT then COL: $(p_i, p_{i+1}) \rightarrow [c-1]$. STOP. Use IH.

▶ If
$$(\exists p_1 < q)[COL(q) = c]$$
 then let q_{2n+2} be q .

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If $(\exists q < p_1)[\operatorname{COL}(q) = c]$ then let q_{n+1} be q. If NOT then $\operatorname{COL}: (p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.

▶ For
$$1 \le i \le n$$

If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q .
If NOT then COL: $(p_i, p_{i+1}) \rightarrow [c-1]$. STOP. Use IH.

▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q. If NOT then COL: $(p_n, p_n + \epsilon) \rightarrow [c - 1]$. STOP. Use IH.

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

- ▶ If $(\exists q < p_1)[\operatorname{COL}(q) = c]$ then let q_{n+1} be q. If NOT then $\operatorname{COL}: (p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.
- ▶ For $1 \le i \le n$ If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q. If NOT then COL: $(p_i, p_{i+1}) \rightarrow [c-1]$. STOP. Use IH.
- ▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q. If NOT then COL: $(p_n, p_n + \epsilon) \rightarrow [c - 1]$. STOP. Use IH.

Case 1 Const never stops. $\{q_1, q_2, \ldots\} \equiv \mathsf{Q}$ & homog. Done!

Let COL: $L \to [c]$. We define a seq q_1, q_2, \ldots such that $\{q_1, q_2, \ldots\}$ is Q-homog OR we fail.

Let $q_1 \in L$ such that $COL(q_1) = c$. (If no such exists, use IH.) Assume q_1, \ldots, q_n have been defined and are all color c. Order them to get $p_1 < \cdots < p_n$.

▶ If
$$(\exists q < p_1)[\operatorname{COL}(q) = c]$$
 then let q_{n+1} be q .
If NOT then $\operatorname{COL}: (p_1 - \epsilon, p_1) \rightarrow [c - 1]$. STOP. Use IH.

For
$$1 \le i \le n$$

If $(\exists p_i < q < p_{i+1})[COL(q) = c]$ then let q_{n+i+1} be q .
If NOT then COL: $(p_i, p_{i+1}) \rightarrow [c-1]$. STOP. Use IH.

▶ If $(\exists p_1 < q)[COL(q) = c]$ then let q_{2n+2} be q. If NOT then COL: $(p_n, p_n + \epsilon) \rightarrow [c - 1]$. STOP. Use IH.

Case 1 Const never stops. $\{q_1, q_2, \ldots\} \equiv Q$ & homog. Done! Case 2 Const stops . $\exists a < b, \text{ COL}: (a, b) \rightarrow [c - 1]$. Use IH.