Some Solutions to Midterm Problems

William Gasarch-U of MD

Problem 2

Prove the following and fill in the $f(k)$.
Thm For all k there exists $n=f(k)$ such that the following holds.
For all pairs of colorings:
$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$
$(\exists H \subseteq[n])\left(\exists c_{1}, c_{2} \in\{1,2\}\right)$ such that

Problem 2

Prove the following and fill in the $f(k)$.
Thm For all k there exists $n=f(k)$ such that the following holds.
For all pairs of colorings:
$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$
$(\exists H \subseteq[n])\left(\exists c_{1}, c_{2} \in\{1,2\}\right)$ such that

- H is of size k,

Problem 2

Prove the following and fill in the $f(k)$.
Thm For all k there exists $n=f(k)$ such that the following holds.
For all pairs of colorings:
$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$
$(\exists H \subseteq[n])\left(\exists c_{1}, c_{2} \in\{1,2\}\right)$ such that

- H is of size k,
- every element of H is colored c_{1}, and

Problem 2

Prove the following and fill in the $f(k)$.
Thm For all k there exists $n=f(k)$ such that the following holds.
For all pairs of colorings:
$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$
$(\exists H \subseteq[n])\left(\exists c_{1}, c_{2} \in\{1,2\}\right)$ such that

- H is of size k,
- every element of H is colored c_{1}, and
- every element of $\binom{H}{2}$ is colored c_{2}.

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$, $\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.
We determine n later.

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right]$, COL_{1} on H_{1} is color c_{1}.

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right]$, COL_{1} on H_{1} is color c_{1}.
We apply 2-ary Ramsey. We showed in class:

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right]$, COL_{1} on H_{1} is color c_{1}.
We apply 2-ary Ramsey. We showed in class:

$$
\left(\forall \mathrm{COL}:\binom{2^{2 k}}{2} \rightarrow[2]\right)(\exists H)[H \text { Homog }|H| \geq k] .
$$

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right]$, COL_{1} on H_{1} is color c_{1}.
We apply 2-ary Ramsey. We showed in class:

$$
\left(\forall \mathrm{COL}:\binom{2^{2 k}}{2} \rightarrow[2]\right)(\exists H)[H \text { Homog }|H| \geq k]
$$

We turn this around:

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow[2]$. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right]$, COL_{1} on H_{1} is color c_{1}.
We apply 2-ary Ramsey. We showed in class:

$$
\left(\forall \mathrm{COL}:\binom{2^{2 k}}{2} \rightarrow[2]\right)(\exists H)[H \text { Homog }|H| \geq k]
$$

We turn this around:

$$
\left(\forall \mathrm{COL}:\binom{m}{2} \rightarrow[2]\right)(\exists H)\left[H \text { Homog }|H| \geq 0.5 \log _{2}(m)\right] .
$$

Problem 2 Solution

$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow$ [2]. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right], \mathrm{COL}_{1}$ on H_{1} is color c_{1}.
We apply 2 -ary Ramsey. We showed in class:

$$
\left(\forall \mathrm{COL}:\binom{2^{2 k}}{2} \rightarrow[2]\right)(\exists H)[H \text { Homog }|H| \geq k] .
$$

We turn this around:

$$
\left(\forall \mathrm{COL}:\binom{m}{2} \rightarrow[2]\right)(\exists H)\left[H \text { Homog }|H| \geq 0.5 \log _{2}(m)\right] .
$$

Restrict COL_{2} to $\binom{H_{1}}{2}$. Get: $|H| \geq 0.5 \log _{2}\left(\left|H_{1}\right|\right)=0.5 \log _{2}\left(\frac{n}{2}\right)$.

Problem 2 Solution

$\mathrm{COL}_{1}:\binom{[n]}{1} \rightarrow[2]$,
$\mathrm{COL}_{2}:\binom{[n]}{2} \rightarrow$ [2]. We do the following.
We determine n later.
By 1 -ary Ramsey $\left(\exists H_{1}\right)\left[\left|H_{1}\right| \geq \frac{n}{2}\right], \mathrm{COL}_{1}$ on H_{1} is color c_{1}.
We apply 2 -ary Ramsey. We showed in class:

$$
\left(\forall \mathrm{COL}:\binom{2^{2 k}}{2} \rightarrow[2]\right)(\exists H)[H \text { Homog }|H| \geq k] .
$$

We turn this around:

$$
\left(\forall \mathrm{COL}:\binom{m}{2} \rightarrow[2]\right)(\exists H)\left[H \text { Homog }|H| \geq 0.5 \log _{2}(m)\right] .
$$

Restrict COL_{2} to $\binom{H_{1}}{2}$. Get: $|H| \geq 0.5 \log _{2}\left(\left|H_{1}\right|\right)=0.5 \log _{2}\left(\frac{n}{2}\right)$.
Need $0.5 \log _{2}\left(\frac{n}{2}\right) \geq k$. Take $n=2^{2 k+1}$.

Problem 2. Why Important?

In the lang of graphs $(E(x, y))$ the question:

Problem 2. Why Important?

In the lang of graphs $(E(x, y))$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$ is decidable.

Problem 2. Why Important?

In the lang of graphs $(E(x, y))$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.

Problem 2. Why Important?

In the lang of graphs $(E(x, y))$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.
Key Make the set Y very homog by making every element in Y have the same relation to every $u \in U$ and to each other.

Problem 2. Why Important?

In the lang of graphs $(E(x, y))$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.
Key Make the set Y very homog by making every element in Y have the same relation to every $u \in U$ and to each other.
What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to also make every element of Y the same color.

Problem 2. Why Important?

In the lang of graphs $(E(x, y))$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.
Key Make the set Y very homog by making every element in Y have the same relation to every $u \in U$ and to each other.
What if we added a unary predicate to the lang? So every element is colored RED or BLUE. Then we would need to also make every element of Y the same color.
This problem showed that YES we can do BOTH- make every element of Y the same color AND make every pair of elements of Y the same color.

Problem 2. Why Important?

We have the following:
Language is 2-col graphs $\left(E_{1}(x)\right.$ and $\left.E_{2}(x, y)\right)$ the question:

Problem 2. Why Important?

We have the following:
Language is 2-col graphs $\left(E_{1}(x)\right.$ and $\left.E_{2}(x, y)\right)$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.

Problem 2. Why Important?

We have the following:
Language is 2-col graphs $\left(E_{1}(x)\right.$ and $\left.E_{2}(x, y)\right)$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.

Problem 2. Why Important?

By iterating Ramsey we get the following theorem.

Problem 2. Why Important?

By iterating Ramsey we get the following theorem.
In the lang of any finite set of relations $\left(E_{11}(x), E_{12}(x), \ldots\right.$,
$E_{1 k_{1}}(x)$,
$E_{21}\left(x_{1}, x_{2}\right), E_{22}\left(x_{1}, x_{2}\right), \ldots, E_{2 k_{2}}\left(x_{1}, x_{2}\right)$,
$\left.E_{m 1}\left(x_{1}, \ldots, x_{m}\right), E_{m 2}\left(x_{1}, \ldots, x_{m}\right), \ldots, E_{m k_{m}}\left(x_{1}, \ldots, x_{m}\right)\right)$

Problem 2. Why Important?

By iterating Ramsey we get the following theorem.
In the lang of any finite set of relations $\left(E_{11}(x), E_{12}(x), \ldots\right.$,
$E_{1 k_{1}}(x)$,
$E_{21}\left(x_{1}, x_{2}\right), E_{22}\left(x_{1}, x_{2}\right), \ldots, E_{2 k_{2}}\left(x_{1}, x_{2}\right)$,
引
$\left.E_{m 1}\left(x_{1}, \ldots, x_{m}\right), E_{m 2}\left(x_{1}, \ldots, x_{m}\right), \ldots, E_{m k_{m}}\left(x_{1}, \ldots, x_{m}\right)\right)$ the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.

Problem 2. Why Important?

By iterating Ramsey we get the following theorem.
In the lang of any finite set of relations $\left(E_{11}(x), E_{12}(x), \ldots\right.$,
$E_{1 k_{1}}(x)$,
$E_{21}\left(x_{1}, x_{2}\right), E_{22}\left(x_{1}, x_{2}\right), \ldots, E_{2 k_{2}}\left(x_{1}, x_{2}\right)$,
引
$\left.E_{m 1}\left(x_{1}, \ldots, x_{m}\right), E_{m 2}\left(x_{1}, \ldots, x_{m}\right), \ldots, E_{m k_{m}}\left(x_{1}, \ldots, x_{m}\right)\right)$
the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.

Problem 2. Why Important?

By iterating Ramsey we get the following theorem.
In the lang of any finite set of relations $\left(E_{11}(x), E_{12}(x), \ldots\right.$,
$E_{1 k_{1}}(x)$,
$E_{21}\left(x_{1}, x_{2}\right), E_{22}\left(x_{1}, x_{2}\right), \ldots, E_{2 k_{2}}\left(x_{1}, x_{2}\right)$,
\vdots
$\left.E_{m 1}\left(x_{1}, \ldots, x_{m}\right), E_{m 2}\left(x_{1}, \ldots, x_{m}\right), \ldots, E_{m k_{m}}\left(x_{1}, \ldots, x_{m}\right)\right)$
the question:
Given an $E^{*} A^{*}$ statement ϕ, find $\operatorname{spec}(\phi)$
is decidable.
And $\operatorname{spec}(\phi)$ is always finite or cofinite.
This is what Ramsey proved in his paper.

Problem 3

Let T be the set of trees and \preceq be the minor ordering. Show that (T, \preceq) is a wqo.

Problem 3

Let T be the set of trees and \preceq be the minor ordering. Show that (T, \preceq) is a wqo.

You may use any theorem that was PROVEN in class or on the HW. (Note that we DID NOT prove the Graph Minor Theorem, so you can't use that.)

Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.

Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_{1} be the smallest tree that begins a bad seq. KILL.

Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_{1} be the smallest tree that begins a bad seq. KILL.
Let T_{2} be the smallest tree that begins a bad seq that begins T_{1}. KILL.

Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_{1} be the smallest tree that begins a bad seq. KILL.
Let T_{2} be the smallest tree that begins a bad seq that begins T_{1}. KILL.

$$
T_{1}, T_{2}, \ldots
$$

is called a minimal bad seq.

Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_{1} be the smallest tree that begins a bad seq. KILL.
Let T_{2} be the smallest tree that begins a bad seq that begins T_{1}. KILL.

$$
T_{1}, T_{2}, \ldots
$$

is called a minimal bad seq.
$(\forall i)$ take T_{i} and rm root to get finite set of trees $T_{i 1}, \ldots, T_{i k_{i}}$.

Problem 3. Form a Minimal Bad Sequence

Assume that there exists a bad seq.
Let T_{1} be the smallest tree that begins a bad seq. KILL.
Let T_{2} be the smallest tree that begins a bad seq that begins T_{1}. KILL.

$$
T_{1}, T_{2}, \ldots
$$

is called a minimal bad seq.
$(\forall i)$ take T_{i} and rm root to get finite set of trees $T_{i 1}, \ldots, T_{i k_{i}}$.
Let

$$
X=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Problem 3. X is a WQO

$$
X=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq.

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq. Say it begins $T_{i_{1} j_{1}}$.

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq. Say it begins $T_{i_{1} j_{1}}$.
We can assume i_{1} is smallest numb that appears as a 1st index.

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq. Say it begins $T_{i_{1} j_{1}}$.
We can assume i_{1} is smallest numb that appears as a 1st index.

$$
T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(\text { We have } i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq. Say it begins $T_{i_{1} j_{1}}$. We can assume i_{1} is smallest numb that appears as a 1st index.

$$
T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(\text { We have } i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq. Say it begins $T_{i_{1} j_{1}}$. We can assume i_{1} is smallest numb that appears as a 1st index.

$$
T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(\text { We have } i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Problem 3. X is a WQO

$$
x=\bigcup_{i=1}^{\infty}\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\}
$$

Assume not. Then \exists bad seq. Say it begins $T_{i_{1} j_{1}}$.
We can assume i_{1} is smallest numb that appears as a 1st index.

$$
T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(\text { We have } i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

For the rest goto the next slide.

Problem 3. X is a WQO

(*) $\quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)$

Problem 3. X is a WQO

(*) $T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)$
we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

Problem 3. X is a WQO

(*) $\quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)$ we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Problem 3. X is a WQO

(*) $T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)$ we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.

Problem 3. X is a WQO

(*) $T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)$
we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.
c) NO uptick $T_{i} \preceq T_{i_{k} j_{k}}$ since otherwise $T_{i} \preceq T_{i_{k}}$ and $i<i_{k}$.

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.
c) NO uptick $T_{i} \preceq T_{i_{k} j_{k}}$ since otherwise $T_{i} \preceq T_{i_{k}}$ and $i<i_{k}$. End of Proof of Claim

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.
c) NO uptick $T_{i} \preceq T_{i_{k} j_{k}}$ since otherwise $T_{i} \preceq T_{i_{k}}$ and $i<i_{k}$. End of Proof of Claim
$(*)$ is a bad seq that begins $T_{i_{1}}, \ldots, T_{i_{1}-1}$ and then has $T_{i_{1} j_{1}}$.

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.
c) NO uptick $T_{i} \preceq T_{i_{k} j_{k}}$ since otherwise $T_{i} \preceq T_{i_{k}}$ and $i<i_{k}$. End of Proof of Claim
$(*)$ is a bad seq that begins $T_{i_{1}}, \ldots, T_{i_{1}-1}$ and then has $T_{i_{1} j_{1}}$.
$T_{i_{1}}$ is the smallest tree that is right after $T_{1}, \ldots, T_{i_{1}-1}$ in a bad seq.

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.
c) NO uptick $T_{i} \preceq T_{i_{k} j_{k}}$ since otherwise $T_{i} \preceq T_{i_{k}}$ and $i<i_{k}$. End of Proof of Claim
$(*)$ is a bad seq that begins $T_{i_{1}}, \ldots, T_{i_{1}-1}$ and then has $T_{i_{1} j_{1}}$.
$T_{i_{1}}$ is the smallest tree that is right after $T_{1}, \ldots, T_{i_{1}-1}$ in a bad seq.
$T_{i_{1} j_{1}}$ is smaller than $T_{i_{1}}$, so contradiction.

Problem 3. X is a WQO

$$
(*) \quad T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

we PREPEND $T_{1}, \ldots, T_{i_{1}-1}$ to the seq to get

$$
T_{1}, T_{2}, \ldots, T_{i_{1}-1}, T_{i_{1} j_{1}}, T_{i_{2} j_{2}}, \ldots\left(i_{1} \leq i_{2}, i_{3}, \ldots\right)
$$

Claim This is a bad seq.
a) NO uptick within $T_{1}, \ldots, T_{i_{1}-1}$ since T_{1}, T_{2}, \ldots is Bad Seq.
b) NO uptick within $T_{i_{1} j_{1}}, \ldots$ since its a bad seq.
c) NO uptick $T_{i} \preceq T_{i_{k} j_{k}}$ since otherwise $T_{i} \preceq T_{i_{k}}$ and $i<i_{k}$. End of Proof of Claim
$(*)$ is a bad seq that begins $T_{i_{1}}, \ldots, T_{i_{1}-1}$ and then has $T_{i_{1} j_{1}}$.
$T_{i_{1}}$ is the smallest tree that is right after $T_{1}, \ldots, T_{i_{1}-1}$ in a bad seq.
$T_{i_{1} j_{1}}$ is smaller than $T_{i_{1}}$, so contradiction.
End of proof that X is wqo

Problem 3. X is wqo so by HW...

Recall HW04

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.
Let $\operatorname{PF}(X)$ be the set of finite subsets of X.

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.
Let $\operatorname{PF}(X)$ be the set of finite subsets of X.
Let \preceq^{\prime} be the following order on $\operatorname{PF}(X)$.

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.
Let $\operatorname{PF}(X)$ be the set of finite subsets of X.
Let \preceq^{\prime} be the following order on $\operatorname{PF}(X)$.
Let $Y, Z \in \operatorname{PF}(X)$.

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.
Let $\operatorname{PF}(X)$ be the set of finite subsets of X.
Let \preceq^{\prime} be the following order on $\operatorname{PF}(X)$.
Let $Y, Z \in \operatorname{PF}(X)$.
$Y \preceq^{\prime} Z$ iff $(\exists$ injective $f: Y \rightarrow Z)(\forall y \in Y)[y \preceq f(y)]$.

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.
Let $\operatorname{PF}(X)$ be the set of finite subsets of X.
Let \preceq^{\prime} be the following order on $\operatorname{PF}(X)$.
Let $Y, Z \in \operatorname{PF}(X)$.
$Y \preceq^{\prime} Z$ iff $(\exists$ injective $f: Y \rightarrow Z)(\forall y \in Y)[y \preceq f(y)]$.
Then $\left(\operatorname{PF}(X), \preceq^{\prime}\right)$ is a wqo.

Problem 3. X is wqo so by HW...

Recall HW04

Assume (X, \preceq) is a wqo.
Let $\operatorname{PF}(X)$ be the set of finite subsets of X.
Let \preceq^{\prime} be the following order on $\operatorname{PF}(X)$.
Let $Y, Z \in \operatorname{PF}(X)$.
$Y \preceq^{\prime} Z$ iff $(\exists$ injective $f: Y \rightarrow Z)(\forall y \in Y)[y \preceq f(y)]$.
Then $\left(\operatorname{PF}(X), \preceq^{\prime}\right)$ is a wqo.
We will use this.

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

$$
\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\} \preceq^{\prime}\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\} .
$$

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

$$
\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\} \preceq^{\prime}\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\} .
$$

$T_{i 1}$ is a minor of SOME elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

$$
\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\} \preceq^{\prime}\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\} .
$$

$T_{i 1}$ is a minor of SOME elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$. $T_{i 2}$ is a minor of SOME other elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

$$
\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\} \preceq^{\prime}\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\} .
$$

$T_{i 1}$ is a minor of SOME elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.
$T_{i 2}$ is a minor of SOME other elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X. $\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

$$
\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\} \preceq^{\prime}\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\} .
$$

$T_{i 1}$ is a minor of SOME elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.
$T_{i 2}$ is a minor of SOME other elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.
$T_{i k_{i}}$ is a minor of SOME other elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.

Problem 3. View the Min Bad Seq As...

The Original Min Bad Sequence is

$$
T_{1}, T_{2}, \ldots
$$

View this as a seq of finite sets of trees from wqo X.
$\left\{T_{11}, \ldots, T_{1 k_{1}}\right\},\left\{T_{21}, \ldots, T_{2 k_{2}}\right\}, \cdots$
By HW there is an uptick in this seq. So there is

$$
\left\{T_{i 1}, \ldots, T_{i k_{i}}\right\} \preceq^{\prime}\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\} .
$$

$T_{i 1}$ is a minor of SOME elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.
$T_{i 2}$ is a minor of SOME other elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.
$T_{i k_{i}}$ is a minor of SOME other elt of $\left\{T_{j 1}, \ldots, T_{j k_{j}}\right\}$.
You can put all this together to get T_{i} is a minor of T_{j}, which contradicts T_{1}, \ldots, being a bad seq.

Problem 3: Afterthought

What did we use about minor in the proof?

Problem 3: Afterthought

What did we use about minor in the proof?
Would the same proof show that the subgraph-ordering for trees is a wqo?

Problem 3: Afterthought

What did we use about minor in the proof?
Would the same proof show that the subgraph-ordering for trees is a wqo?

I leave this for you to ponder.

Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering.

Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering. Vote

Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering. Vote
a) (\mathcal{G}, \preceq) is a wqo and this is known.

Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering. Vote
a) (\mathcal{G}, \preceq) is a wqo and this is known.
a) ($\mathcal{G}, \preceq)$ is not a wqo and this is known.

Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering. Vote
a) (\mathcal{G}, \preceq) is a wqo and this is known.
a) (\mathcal{G}, \preceq) is not a wqo and this is known.
c) The question "is (\mathcal{G}, \preceq) a wqo?" is unknown to science.

Problem 3: Another Afterthought

Let \mathcal{G} be the set of all graphs and \preceq be the subgraph ordering. Vote
a) (\mathcal{G}, \preceq) is a wqo and this is known.
a) (\mathcal{G}, \preceq) is not a wqo and this is known.
c) The question "is (\mathcal{G}, \preceq) a wqo?" is unknown to science. Answer on next slide.

Graphs under Subgraph

Graphs under Subgraph

Let C_{i} be the cycle on i vertices.

$$
C_{3}, C_{4}, C_{5}, \ldots
$$

is an infinite seq of incomparable elements, so graphs under subgraph are NOT a wqo.

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq \mathrm{Q}$ such that

- H has the same order type as the rationals:

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq \mathrm{Q}$ such that

- H has the same order type as the rationals:
a) H is countable

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq \mathrm{Q}$ such that

- H has the same order type as the rationals:
a) H is countable
b) H is dense: $(\forall x, y \in H)[x<y \Longrightarrow(\exists z)[x<z<y]$.

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq Q$ such that

- H has the same order type as the rationals:
a) H is countable
b) H is dense: $(\forall x, y \in H)[x<y \Longrightarrow(\exists z)[x<z<y]$.
c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x<y]$.

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq Q$ such that

- H has the same order type as the rationals:
a) H is countable
b) H is dense: $(\forall x, y \in H)[x<y \Longrightarrow(\exists z)[x<z<y]$.
c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x<y]$.
d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x<y]$.

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq \mathrm{Q}$ such that

- H has the same order type as the rationals:
a) H is countable
b) H is dense: $(\forall x, y \in H)[x<y \Longrightarrow(\exists z)[x<z<y]$.
c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x<y]$.
d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x<y]$.
- every number in H is the same color.

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow$ [100] there exists an $H \subseteq Q$ such that

- H has the same order type as the rationals:
a) H is countable
b) H is dense: $(\forall x, y \in H)[x<y \Longrightarrow(\exists z)[x<z<y]$.
c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x<y]$.
d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x<y]$.
- every number in H is the same color.

TRUE. We prove it TWO ways.

Problem 4

Prove or Disprove:
For every COL: $\mathrm{Q} \rightarrow[100]$ there exists an $H \subseteq Q$ such that

- H has the same order type as the rationals:
a) H is countable
b) H is dense: $(\forall x, y \in H)[x<y \Longrightarrow(\exists z)[x<z<y]$.
c) H has no left endpoint: $(\forall y \in H)(\exists x \in H)[x<y]$.
d) H has no right endpoint: $(\forall x \in H)(\exists y \in H)[x<y]$.
- every number in H is the same color.

TRUE. We prove it TWO ways.
Advice You should understand both proofs.

We Actually Prove

Def Let L be a linear ordering.
a) $L \equiv$ Q means L has same order type as Q . Hence L is countable, dense, and has no endpoints.

We Actually Prove

Def Let L be a linear ordering.
a) $L \equiv$ Q means L has same order type as Q . Hence L is countable, dense, and has no endpoints.
b) Let COL: $L \rightarrow[c] . H$ is Q-homog if H is homog \& $H \equiv$ Q.

We Actually Prove

Def Let L be a linear ordering.
a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.
b) Let COL: $L \rightarrow[c]$. H is Q-homog if H is homog \& $H \equiv$ Q.

We will prove the following:

We Actually Prove

Def Let L be a linear ordering.
a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.
b) Let COL: $L \rightarrow[c]$. H is Q-homog if H is homog \& $H \equiv$ Q.

We will prove the following:
$(\forall c)(\forall L \equiv \mathrm{Q})(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L)[H$ Q-homog].

We Actually Prove

Def Let L be a linear ordering.
a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.
b) Let COL: $L \rightarrow[c]$. H is Q-homog if H is homog \& $H \equiv$ Q.

We will prove the following:
$(\forall c)(\forall L \equiv \mathrm{Q})(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L)[H$ Q-homog].
We use c instead of 100 since we can then do an induction on c.

We Actually Prove

Def Let L be a linear ordering.
a) $L \equiv Q$ means L has same order type as Q. Hence L is countable, dense, and has no endpoints.
b) Let COL: $L \rightarrow[c]$. H is Q-homog if H is homog \& $H \equiv$ Q.

We will prove the following:
$(\forall c)(\forall L \equiv \mathrm{Q})(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L)[H$ Q-homog].
We use c instead of 100 since we can then do an induction on c.
We use L instead of Q since in the induction proof we will have a coloring of (say) (a, b) and want to use the Ind Hyp on a COL restricted to (a, b).

$(\forall c)(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L) H$ is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c.

$(\forall c)(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L) H$ is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c.
IB $c=1$. Obviously true.

$(\forall c)(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L) H$ is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c.
IB $c=1$. Obviously true.
IH Assume true for $c-1$.

$(\forall c)(\forall \mathrm{COL}: L \rightarrow[c])(\exists H \subseteq L) H$ is Q-homog

Proof One and Proof Two Begin the Same Way
We prove this by induction on c.
IB $c=1$. Obviously true.
IH Assume true for $c-1$.
Continued on Next Slide.

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 H \equiv$ Q. DONE!

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 H \equiv$ Q. DONE!
Case $2 H \not \equiv Q$. Three possibilities.

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$.

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$. Nothing in (x, y) is colored c.

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$. Nothing in (x, y) is colored c.
Let COL' be COL restricted to (x, y).

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$. Nothing in (x, y) is colored c.
Let COL' be COL restricted to (x, y).
This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$.
Nothing in (x, y) is colored c.
Let COL' be COL restricted to (x, y).
This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .
Case 2b H has a left endpoint. So $(\exists y)[(-\infty, y) \cap H=\emptyset]$. Let $x \in L$ such that $x<y$. Let COL' be COL restricted to (x, y). This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$.
Nothing in (x, y) is colored c.
Let COL' be COL restricted to (x, y).
This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .
Case 2b H has a left endpoint. So $(\exists y)[(-\infty, y) \cap H=\emptyset]$. Let $x \in L$ such that $x<y$. Let COL' be COL restricted to (x, y).
This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .
Case 2c H has a right endpoint. Similar to Case 2b.

Induction Step for Proof One.

Let COL: $L \rightarrow[c]$.
Let

$$
H=\{x \in L: \operatorname{COL}(x)=c\} .
$$

Case $1 \mathrm{H} \equiv \mathrm{Q}$. DONE!
Case $2 \mathrm{H} \not \equiv \mathrm{Q}$. Three possibilities.
Case 2a H is not dense. So $(\exists x<y \in H)[(x, y) \cap H=\emptyset]$.
Nothing in (x, y) is colored c.
Let COL' be COL restricted to (x, y).
This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .
Case 2b H has a left endpoint. So $(\exists y)[(-\infty, y) \cap H=\emptyset]$. Let $x \in L$ such that $x<y$. Let COL' be COL restricted to (x, y).
This is a $c-1$ coloring on $(x, y) \equiv \mathrm{Q}$. Done by IH .
Case 2c H has a right endpoint. Similar to Case 2b.
End of Proof One

Induction Step for Proof Two: Plan

We will try to construct a Q-homog set.

- We succeed! YEAH!

Induction Step for Proof Two: Plan

We will try to construct a Q-homog set.

- We succeed! YEAH!
- We fail! Then we will have an open interval (x, y) where COL is never color c. Use IH.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.

We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.

We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.)

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.

We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.

We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.
We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q. If NOT then COL: $\left(p_{1}-\epsilon, p_{1}\right) \rightarrow[c-1]$. STOP. Use IH.
- For $1 \leq i \leq n$

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.
We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q. If NOT then COL: $\left(p_{1}-\epsilon, p_{1}\right) \rightarrow[c-1]$. STOP. Use IH.
- For $1 \leq i \leq n$ If $\left(\exists p_{i}<q<p_{i+1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+i+1} be q.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.
We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q. If NOT then COL: $\left(p_{1}-\epsilon, p_{1}\right) \rightarrow[c-1]$. STOP. Use IH.
- For $1 \leq i \leq n$

If $\left(\exists p_{i}<q<p_{i+1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+i+1} be q.
If NOT then COL: $\left(p_{i}, p_{i+1}\right) \rightarrow[c-1]$. STOP. Use IH.

- If $\left(\exists p_{1}<q\right)[\operatorname{COL}(q)=c]$ then let $q_{2 n+2}$ be q.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.
We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q. If NOT then COL: $\left(p_{1}-\epsilon, p_{1}\right) \rightarrow[c-1]$. STOP. Use IH.
- For $1 \leq i \leq n$

If $\left(\exists p_{i}<q<p_{i+1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+i+1} be q. If NOT then COL: $\left(p_{i}, p_{i+1}\right) \rightarrow[c-1]$. STOP. Use IH.

- If $\left(\exists p_{1}<q\right)[\operatorname{COL}(q)=c]$ then let $q_{2 n+2}$ be q. If NOT then COL: $\left(p_{n}, p_{n}+\epsilon\right) \rightarrow[c-1]$. STOP. Use IH.

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.
We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q. If NOT then COL: $\left(p_{1}-\epsilon, p_{1}\right) \rightarrow[c-1]$. STOP. Use IH.
- For $1 \leq i \leq n$

If $\left(\exists p_{i}<q<p_{i+1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+i+1} be q.
If NOT then COL: $\left(p_{i}, p_{i+1}\right) \rightarrow[c-1]$. STOP. Use IH.

- If $\left(\exists p_{1}<q\right)[\operatorname{COL}(q)=c]$ then let $q_{2 n+2}$ be q. If NOT then COL: $\left(p_{n}, p_{n}+\epsilon\right) \rightarrow[c-1]$. STOP. Use IH.
Case 1 Const never stops. $\left\{q_{1}, q_{2}, \ldots\right\} \equiv Q \&$ homog. Done!

Induction Step for Proof Two: Action

Let COL: $L \rightarrow[c]$.
We define a seq q_{1}, q_{2}, \ldots such that $\left\{q_{1}, q_{2}, \ldots\right\}$ is Q-homog OR we fail.
Let $q_{1} \in L$ such that $\operatorname{COL}\left(q_{1}\right)=c$. (If no such exists, use IH.) Assume q_{1}, \ldots, q_{n} have been defined and are all color c. Order them to get $p_{1}<\cdots<p_{n}$.

- If $\left(\exists q<p_{1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+1} be q. If NOT then COL: $\left(p_{1}-\epsilon, p_{1}\right) \rightarrow[c-1]$. STOP. Use IH.
- For $1 \leq i \leq n$

If $\left(\exists p_{i}<q<p_{i+1}\right)[\operatorname{COL}(q)=c]$ then let q_{n+i+1} be q.
If NOT then COL: $\left(p_{i}, p_{i+1}\right) \rightarrow[c-1]$. STOP. Use IH.

- If $\left(\exists p_{1}<q\right)[\operatorname{COL}(q)=c]$ then let $q_{2 n+2}$ be q. If NOT then COL: $\left(p_{n}, p_{n}+\epsilon\right) \rightarrow[c-1]$. STOP. Use IH.
Case 1 Const never stops. $\left\{q_{1}, q_{2}, \ldots\right\} \equiv$ Q \& homog. Done!
Case 2 Const stops. $\exists a<b$, COL: $(a, b) \rightarrow[c-1]$. Use IH.

