The Infinite Can Ramsey Thm: Mileti's Proof

William Gasarch-U of MD

(ロト (個) (E) (E) (E) (E) のへの

We gave two proofs of Inf Can Ramsey:

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.

2. My interest: educational.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.

ション ふゆ アメリア メリア しょうくしゃ

- 2. My interest: educational.
- 3. My interest: better bounds when finitized.

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- ▶ One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Yes. It is due to Joesph Mileti.

- 1. His interest: He got a more constructive proof of Can Ramsey.
- 2. My interest: educational.
- 3. My interest: better bounds when finitized.
- 4. This finization has never been written up. Will be an extra credit project.

Min-Homog, Max-Homog, Rainbow

Def: Let $COL : \binom{N}{2} \to \omega$. Let $V \subseteq N$. Assume a < b and c < d.

- V is homog if COL(a, b) = COL(c, d) iff TRUE.
- V is min-homog if COL(a, b) = COL(c, d) iff a = c.
- V is max-homog if COL(a, b) = COL(c, d) iff b = d.
- V is rainb if COL(a, b) = COL(c, d) iff a = c and b = d.

Can Ramsey Thm for $\binom{N}{2}$: For all $COL : \binom{N}{2} \to \omega$, there exists an infinite set V such that either V is homog, min-homog, max-homog, or rainb.

Notation

$(\exists^{\infty} x \in A)$ means for an infinite number of $x \in A$

・ロト・4回ト・4回ト・4回ト・回りの()

Notation

 $(\exists^{\infty} x \in A)$ means for an infinite number of $x \in A$ $(\forall^{\infty} x \in A)$ means for all but a finite number of $x \in A$

・ロト・日本・ヨト・ヨト・日・ つへぐ

The following notation will make later cases similar to this case. $V_1 = N$ $x_1 = 1$ Have $COL : \binom{V_1}{2} \rightarrow \omega$.

The following notation will make later cases similar to this case. $V_1 = N$ $x_1 = 1$ Have $COL : \binom{V_1}{2} \rightarrow \omega$. One of the following happens:

The following notation will make later cases similar to this case. $V_1 = N$ $x_1 = 1$ Have $COL : {V_1 \choose 2} \rightarrow \omega$. One of the following happens: $(\exists c \in \omega) (\exists^{\infty}y \in V_1) [COL(x_1, y) = c].$

ション ふゆ アメリア メリア しょうくしゃ

The following notation will make later cases similar to this case. $V_1 = N$ $x_1 = 1$ Have $COL : \binom{V_1}{2} \rightarrow \omega$. One of the following happens: $(\exists c \in \omega)(\exists^{\infty}y \in V_1)[COL(x_1, y) = c].$

ション ふゆ アメリア メリア しょうくしゃ

► $(\exists c \in \omega)(\exists w y \in V_1)[COL(x_1, y) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c).$ Similar to 1st step of Inf Ramsey.

The following notation will make later cases similar to this case. $V_1 = N$ $x_1 = 1$ Have $COL: \binom{V_1}{2} \rightarrow \omega$.

One of the following happens:

- ▶ $(\exists c \in \omega)(\exists^{\infty} y \in V_1)[COL(x_1, y) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c).$ Similar to 1st step of lnf Ramsey.
- $(\forall c \in \omega)(\forall^{\infty} y \in V_1)[COL(x_1, y) \neq c]$. For every color c the set of y with $COL(x_1, y) = c$ is finite.

The following notation will make later cases similar to this case. $V_1 = N$ $x_1 = 1$

Have $COL : \binom{V_1}{2} \to \omega$. One of the following happens:

▶ $(\exists c \in \omega)(\exists^{\infty} y \in V_1)[COL(x_1, y) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c).$ Similar to 1st step of Inf Ramsey.

(∀c ∈ ω)(∀[∞]y ∈ V₁)[COL(x₁, y) ≠ c]. For every color c the set of y with COL(x₁, y) = c is finite.
 Kill duplicates, so in new set COL(x₁,?) are all different.
 COL'(x₁) = (RB, 1). Similar to proof of 1-ary Can Ramsey.

The following notation will make later cases similar to this case. $V_1 = N$

 $x_1 = 1$ Have $COL : {V_1 \choose 2} \rightarrow \omega$. One of the following happens:

- ▶ $(\exists c \in \omega)(\exists^{\infty}y \in V_1)[COL(x_1, y) = c].$ Kill all those who disagree. $COL'(x_1) = (H, c).$ Similar to 1st step of Inf Ramsey.
- (∀c ∈ ω)(∀[∞]y ∈ V₁)[COL(x₁, y) ≠ c]. For every color c the set of y with COL(x₁, y) = c is finite.
 Kill duplicates, so in new set COL(x₁,?) are all different.
 COL'(x₁) = (RB, 1). Similar to proof of 1-ary Can Ramsey.

In both cases let

 V_2 be the new infinite set.

 x_2 be the least element of V_2 .

Have V_2 and x_2 . Have $COL : \binom{V_2}{2} \rightarrow \omega$.

Have V_2 and x_2 . Have $COL : \binom{V_2}{2} \to \omega$. • $(\exists c \in \omega)(\exists^{\infty}y \in V_2)[COL(x_2, y) = c]$. Then restrict to that set and color x_2 with (H, c). Similar to 2nd step of Inf Ram.

ション ふゆ アメリア メリア しょうくしゃ

Have
$$V_2$$
 and x_2 .
Have $COL : \binom{V_2}{2} \to \omega$.
• $(\exists c \in \omega)(\exists^{\infty}y \in V_2)[COL(x_2, y) = c]$. Then restrict to that
set and color x_2 with (H, c) . Similar to 2nd step of Inf Ram.
• $(\forall c \in \omega)(\forall^{\infty}y \in V_2)[COL(x_2, x) \neq c]$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

ション ふぼう メリン メリン しょうくしゃ

Convention

When we say (H, j) we think of j as a color. We also say $j \in \omega$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Convention

```
When we say (H, j) we think of j as a color.
We also say j \in \omega.
```

```
When we say (RB, j) we think of j as an index.
We also say j \in N.
```

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Convention

When we say (H, j) we think of j as a color. We also say $j \in \omega$.

When we say (RB, j) we think of j as an index. We also say $j \in N$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Really $\omega = N$ so they are all numbers.

$$W = \{w_3, w_4, \ldots, \}$$

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- ▶ $COL(x_1, w_3)$, $COL(x_1, w_4)$, · · · are all different.
- ▶ $COL(x_2, w_3)$, $COL(x_2, w_4)$, · · · are all different.

$$W = \{w_3, w_4, \ldots, \}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Note following

- ▶ $COL(x_1, w_3)$, $COL(x_1, w_4)$, · · · are all different.
- ▶ $COL(x_2, w_3)$, $COL(x_2, w_4)$, · · · are all different.

One of the following occurs.

$$W = \{w_3, w_4, \ldots, \}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Note following

- ▶ $COL(x_1, w_3)$, $COL(x_1, w_4)$, · · · are all different.
- ▶ $COL(x_2, w_3)$, $COL(x_2, w_4)$, · · · are all different.

One of the following occurs.

1.
$$(\exists^{\infty} w \in W)[\operatorname{COL}(x_1, w) = \operatorname{COL}(x_2, w)].$$
 Then let $V_3 = \{w \in W : \operatorname{COL}(x_1, w) = \operatorname{COL}(x_2, w)\}.$

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- ▶ $COL(x_1, w_3)$, $COL(x_1, w_4)$, · · · are all different.
- ▶ $COL(x_2, w_3)$, $COL(x_2, w_4)$, · · · are all different.

One of the following occurs.

1.
$$(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)]$$
. Then let
 $V_3 = \{w \in W : COL(x_1, w) = COL(x_2, w)\}.$
 $COL'(x_2) = (RB, 1).$
Note that $(\forall y \in V_3)[COL(x_1, y) = COL(x_2, y)] \& |V_3| = \infty$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- ▶ $COL(x_1, w_3)$, $COL(x_1, w_4)$, · · · are all different.
- ▶ $COL(x_2, w_3)$, $COL(x_2, w_4)$, · · · are all different.

One of the following occurs.

1.
$$(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)].$$
 Then let
 $V_3 = \{w \in W: COL(x_1, w) = COL(x_2, w)\}.$
 $COL'(x_2) = (RB, 1).$
Note that $(\forall y \in V_3)[COL(x_1, y) = COL(x_2, y)] \& |V_3| = \infty$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

2.
$$(\exists^{\infty} w \in W)[\operatorname{COL}(x_1, w) \neq \operatorname{COL}(x_2, w)].$$
 Then let $V_3 = \{w \in W : COL(x_1, w) \neq \operatorname{COL}(x_2, w)\}.$

$$W = \{w_3, w_4, \ldots, \}$$

Note following

- ▶ $COL(x_1, w_3)$, $COL(x_1, w_4)$, · · · are all different.
- ▶ $COL(x_2, w_3)$, $COL(x_2, w_4)$, · · · are all different.

One of the following occurs.

1.
$$(\exists^{\infty} w \in W)[COL(x_1, w) = COL(x_2, w)].$$
 Then let
 $V_3 = \{w \in W: COL(x_1, w) = COL(x_2, w)\}.$
 $COL'(x_2) = (RB, 1).$
Note that $(\forall y \in V_3)[COL(x_1, y) = COL(x_2, y)] \& |V_3| = \infty$

2.
$$(\exists^{\infty} w \in W)[\operatorname{COL}(x_1, w) \neq \operatorname{COL}(x_2, w)]$$
. Then let
 $V_3 = \{w \in W : \operatorname{COL}(x_1, w) \neq \operatorname{COL}(x_2, w)\}$.
 $\operatorname{COL}'(x_2) = (\operatorname{RB}, 2)$.
Note that $(\forall y \in V_3)[\operatorname{COL}(x_1, y) \neq \operatorname{COL}(x_2, y)]$ & $|V_3| = \infty$

Third Step, ith Step

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 .

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Third Step, ith Step

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 . HW: Do third step.

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

 V_3 is defined and is infinite. x_1, x_2 are colored. x_3 is least element of V_3 . HW: Do third step. After third step $\operatorname{COL}'(x_3) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \leq 3\}.$ V_4 will be infinite.

```
V_3 is defined and is infinite. x_1, x_2 are colored.

x_3 is least element of V_3.

HW: Do third step.

After third step

\operatorname{COL}'(x_3) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \leq 3\}.

V_4 will be infinite.
```

 V_i is defined and is infinite. x_1, \ldots, x_{i-1} are colored. x_i is least element of V_i .

ション ふゆ アメリア メリア しょうくしゃ

```
V_3 is defined and is infinite. x_1, x_2 are colored.

x_3 is least element of V_3.

HW: Do third step.

After third step

\operatorname{COL}'(x_3) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \leq 3\}.

V_4 will be infinite.
```

```
V_i is defined and is infinite. x_1, \ldots, x_{i-1} are colored.
x_i is least element of V_i.
HW: Do ith step.
```

ション ふゆ アメリア メリア しょうくしゃ

```
V_3 is defined and is infinite. x_1, x_2 are colored.

x_3 is least element of V_3.

HW: Do third step.

After third step

\operatorname{COL}'(x_3) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \leq 3\}.

V_4 will be infinite.
```

```
V_i is defined and is infinite. x_1, \ldots, x_{i-1} are colored.

x_i is least element of V_i.

HW: Do ith step.

After ith step

\operatorname{COL}'(x_i) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \leq i\}.

V_{i+1} will be infinite.
```

Recap We have $X = \{x_1, x_2, x_3, ...\}$

Recap We have $X = \{x_1, x_2, x_3, \ldots\}$ For all $x \in X$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Recap We have $X = \{x_1, x_2, x_3, ...\}$ For all $x \in X$ $\operatorname{COL}'(x) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \in \mathsf{N}\}.$ **Key** We started with $\operatorname{COL} : \binom{\mathsf{N}}{2} \to \omega$ and now have $\operatorname{COL}' : X \to \omega$.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ For all $x \in X$ $\operatorname{COL}'(x) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \in \mathsf{N}\}.$ Key We started with $\operatorname{COL}: \binom{\mathsf{N}}{2} \to \omega$ and now have $\operatorname{COL}': X \to \omega.$

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

$$H = \{x \in X : \operatorname{COL}'(x) = (\operatorname{H}, c_0)\}$$

ション ふゆ アメリア メリア しょうくしゃ

Recap We have $X = \{x_1, x_2, x_3, ...\}$ For all $x \in X$ $\operatorname{COL}'(x) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \in \mathsf{N}\}.$ Key We started with $\operatorname{COL}: \binom{\mathsf{N}}{2} \to \omega$ and now have $\operatorname{COL}': X \to \omega.$

Case 1 *H* occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

 $H = \{x \in X : \operatorname{COL}'(x) = (\operatorname{H}, c_0)\}$ COL restricted to $\binom{H}{2}$ is always color c_0 .

Recap We have $X = \{x_1, x_2, x_3, ...\}$ For all $x \in X$ $\operatorname{COL}'(x) \in \{(\operatorname{H}, j) : j \in \omega\} \cup \{(\operatorname{RB}, j) : j \in \mathsf{N}\}.$ Key We started with $\operatorname{COL}: \binom{\mathsf{N}}{2} \to \omega$ and now have $\operatorname{COL}': X \to \omega.$

Case 1 *H* occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

 $H = \{x \in X : \operatorname{COL}'(x) = (\mathrm{H}, c_0)\}$

COL restricted to $\binom{H}{2}$ is always color c_0 . *H* is homog of color c_0 .

Recap We have $X = \{x_1, x_2, x_3, ...\}$

Recap We have $X = \{x_1, x_2, x_3, \ldots\}$ COL'(x) $\in \{(H, j): j \in \omega\} \cup \{(RB, j): j \in N\}.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$ **Case 2** *H* occurs inf often as 1st coordinate and

 $(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$

Eliminate Duplicates to get

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$ **Case 2** *H* occurs inf often as 1st coordinate and

 $(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$

Eliminate Duplicates to get

$$H = \{h_1, h_2, h_3, \ldots\}$$

where $\text{COL}'(h_i) = (\text{H}, c_i)$ with c_i 's different.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(H, j) : j \in \omega\} \cup \{(RB, j) : j \in N\}.$ **Case 2** *H* occurs inf often as 1st coordinate and

 $(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$

Eliminate Duplicates to get

$$H = \{h_1, h_2, h_3, \ldots\}$$

where $\text{COL}'(h_i) = (\text{H}, c_i)$ with c_i 's different. *H* is min-homog.

Case 1 H occurs inf often as 1st coordinate and

 $(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

 $(\forall c)(\forall^{\infty} x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

 $(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$

If neither happens then H only occurs finite often as 1st coordinate.

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that COL'(x) = (H, ?).

ション ふゆ アメリア メリア しょうくしゃ

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that COL'(x) = (H, ?). Keep the name of the set X too avoid to much notation.

ション ふゆ アメリア メリア しょうくしゃ

Case 1 H occurs inf often as 1st coordinate and

$$(\exists c_0 \in \omega)(\exists^{\infty} x \in X)[\operatorname{COL}'(x) = (\operatorname{H}, c_0)].$$

Case 2 H occurs inf often as 1st coordinate and

$$(\forall c)(\forall^{\infty}x)[\operatorname{COL}'(x) \neq (\operatorname{H}, c)].$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that COL'(x) = (H, ?). Keep the name of the set X too avoid to much notation. For Cases 3,4 assume $(\forall x \in X)[COL'(x) = (RB, ?)]$.

ション ふぼう メリン メリン しょうくしゃ

Recap We have $X = \{x_1, x_2, x_3, ...\}$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL'(x) $\in \{(RB, j) : j \in N\}.$

Recap We have
$$X = \{x_1, x_2, x_3, ...\}$$

 $COL'(x) \in \{(RB, j) : j \in N\}.$
Case 3 $(\exists i_0 \in N)(\exists^{\infty}x \in X)[COL'(x) = (RB, i_0)].$

$$H = \{x \in X : \operatorname{COL}'(x) = (\operatorname{RB}, i_0)\}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Recap We have
$$X = \{x_1, x_2, x_3, ...\}$$

 $COL'(x) \in \{(RB, j) : j \in N\}.$
Case 3 $(\exists i_0 \in N)(\exists^{\infty}x \in X)[COL'(x) = (RB, i_0)].$

$$H = \{x \in X : \operatorname{COL}'(x) = (\operatorname{RB}, i_0)\}$$

H is max-homog.

Recap We have $X = \{x_1, x_2, x_3, ...\}$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ COL'(x) $\in \{(\text{RB}, j) : j \in \mathbb{N}\}.$

Recap We have $X = \{x_1, x_2, x_3, \ldots\}$ COL'(x) $\in \{(\text{RB}, j) : j \in \mathbb{N}\}.$ If Case 1,2,3 do not occur then have:

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)].$ Eliminate Duplicates to get

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)].$ Eliminate Duplicates to get

 $H = \{h_1, h_2, h_3, \ldots\}$

where $\text{COL}'(h_j) = (\text{RB}, c_j)$ with c_j 's different.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)]$ Eliminate Duplicates to gr

 $(\forall x)(\forall^{\infty}i)[\text{COL}'(x) \neq (\text{RB}, i)]$. Eliminate Duplicates to get

$$H = \{h_1, h_2, h_3, \ldots\}$$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different. So where are we now? Let a < b < c.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)].$ Eliminate Duplicates to get

 $H = \{h_1, h_2, h_3, \ldots\}$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different. So where are we now? Let a < b < c.

All of the edges out of h_a to the right, are different from each other.

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)].$ Eliminate Duplicates to get

 $H = \{h_1, h_2, h_3, \ldots\}$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different. So where are we now? Let a < b < c.

All of the edges out of h_a to the right, are different from each other.

▶
$$\operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$$

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)]$ Eliminate Duplicates to a

 $(\forall x)(\forall^{\infty}i)[\text{COL}'(x) \neq (\text{RB}, i)]$. Eliminate Duplicates to get

 $H = \{h_1, h_2, h_3, \ldots\}$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different. So where are we now? Let a < b < c.

All of the edges out of h_a to the right, are different from each other.

▶
$$\operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$$

So is H a rainbow set?

Recap We have $X = \{x_1, x_2, x_3, ...\}$ $COL'(x) \in \{(RB, j) : j \in N\}.$ If Case 1,2,3 do not occur then have: **Case 4** $(\forall x)(\forall^{\infty}i)[COL'(x) \neq (RB, i)].$ Eliminate Duplicates to get

 $H = \{h_1, h_2, h_3, \ldots\}$

where $COL'(h_j) = (RB, c_j)$ with c_j 's different. So where are we now? Let a < b < c.

All of the edges out of h_a to the right, are different from each other.

▶
$$\operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$$

So is H a rainbow set?

No. Counterexample on next slide.

$$\operatorname{COL}:\binom{N}{2} \to \omega$$

$$\operatorname{COL}: \binom{N}{2} \to \omega$$

 $\operatorname{COL}(i,j) = |i-j|$

Let a < b < c.

$$\operatorname{COL}:\binom{N}{2} \to \omega$$

$$\operatorname{COL}(i,j) = |i-j|$$

Let a < b < c.

All of the edges out of a to the right are different from each other.

(ロト (個) (E) (E) (E) (E) のへの

$$\operatorname{COL}: \binom{N}{2} \to \omega$$

$$\operatorname{COL}(i,j) = |i-j|$$

Let a < b < c.

All of the edges out of a to the right are different from each other.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

▶ $\operatorname{COL}(a, c) \neq \operatorname{COL}(b, c)$.

wth Step, Case 4 (cont) Recap

$$H = \{h_1, h_2, h_3, \ldots\}$$

Let a < b < c.

ω th Step, Case 4 (cont) Recap

$$H = \{h_1, h_2, h_3, \ldots\}$$

Let a < b < c.

All of the edges out of h_a to the right are different from each other.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへの

ω th Step, Case 4 (cont)

Recap

$$H = \{h_1, h_2, h_3, \ldots\}$$

Let a < b < c.

All of the edges out of h_a to the right are different from each other.

▶
$$\operatorname{COL}(h_a, h_c) \neq \operatorname{COL}(h_b, h_c).$$

Claim For all $i \in \mathbb{N}$, c a color, $\deg_c(h_i) \leq 2$.

Proof Assume, BWOC that $\deg_c(h_i) \geq 3$.

Case 1 There two vertices x, y to the right of h_i such that $COL(h_i, x) = COL(h_i, y) = c$. This contradicts that all the edges coming out of h_i are different.

Case 2 There two vertices x, y to the left of h_i such that $COL(x, h_i) = COL(y, h_i) = c$. This contradicts that x and y disagree.

End of Proof of Claim

Last Step

Recall

Lemma Let X be infinite. Let $COL : \binom{X}{2} \to \omega$. Let $d \in \omega$. If for every $x \in X$ and $c \in \omega$, $\deg_c(x) \leq d$ then there is an infinite rainb set.

We apply this to our set H with d = 2 to get a rainbow set.