The Infinite Can Ramsey Thm: Mileti's Proof

William Gasarch-U of MD

Recap

We gave two proofs of Inf Can Ramsey:

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?
Yes. It is due to Joesph Mileti.

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?
Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?
Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.
2. My interest: educational.

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?
Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.
2. My interest: educational.
3. My interest: better bounds when finitized.

Recap

We gave two proofs of Inf Can Ramsey:

- One used 4-ary Ramsey and 1-d Can Ramsey.
- One used 3-ary Ramsey, 1-d Can Ram, and Maximal Sets.

Is there a proof that is similar in spirit to the proof of Inf Ramsey?
Yes. It is due to Joesph Mileti.

1. His interest: He got a more constructive proof of Can Ramsey.
2. My interest: educational.
3. My interest: better bounds when finitized.
4. This finization has never been written up. Will be an extra credit project.

Min-Homog, Max-Homog, Rainbow

Def: Let $C O L:\binom{N}{2} \rightarrow \omega$. Let $V \subseteq N$. Assume $a<b$ and $c<d$.

- V is homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff TRUE.
- V is min-homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$.
- V is max-homog if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $b=d$.
- V is rainb if $\operatorname{COL}(a, b)=\operatorname{COL}(c, d)$ iff $a=c$ and $b=d$.

Can Ramsey Thm for $\binom{N}{2}$: For all COL: $\binom{N}{2} \rightarrow \omega$, there exists an infinite set V such that either V is homog, min-homog, max-homog, or rainb.

Notation

$\left(\exists^{\infty} x \in A\right)$ means for an infinite number of $x \in A$

Notation

$\left(\exists{ }^{\infty} x \in A\right)$ means for an infinite number of $x \in A$
$\left(\forall^{\infty} x \in A\right)$ means for all but a finite number of $x \in A$

First Step of Construction

The following notation will make later cases similar to this case. $V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL : $\binom{V_{1}}{2} \rightarrow \omega$.

First Step of Construction

The following notation will make later cases similar to this case. $V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL : $\binom{V_{1}}{2} \rightarrow \omega$.
One of the following happens:

First Step of Construction

The following notation will make later cases similar to this case. $V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL : $\binom{V_{1}}{2} \rightarrow \omega$.
One of the following happens:

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=c\right]$.

First Step of Construction

The following notation will make later cases similar to this case.
$V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL : $\binom{V_{1}}{2} \rightarrow \omega$.
One of the following happens:

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=c\right]$. Kill all those who disagree. $\mathrm{COL}^{\prime}\left(x_{1}\right)=(\mathrm{H}, \mathrm{c})$.
Similar to 1st step of Inf Ramsey.

First Step of Construction

The following notation will make later cases similar to this case.
$V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL : $\binom{V_{1}}{2} \rightarrow \omega$.
One of the following happens:

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=c\right]$. Kill all those who disagree. $\mathrm{COL}^{\prime}\left(x_{1}\right)=(\mathrm{H}, \mathrm{c})$.
Similar to 1st step of Inf Ramsey.
- $(\forall c \in \omega)\left(\forall^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right) \neq c\right]$. For every color c the set of y with $\operatorname{COL}\left(x_{1}, y\right)=c$ is finite.

First Step of Construction

The following notation will make later cases similar to this case.
$V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL : $\binom{V_{1}}{2} \rightarrow \omega$.
One of the following happens:

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=c\right]$. Kill all those who disagree. $\mathrm{COL}^{\prime}\left(x_{1}\right)=(\mathrm{H}, \mathrm{c})$.
Similar to 1st step of Inf Ramsey.
- $(\forall c \in \omega)\left(\forall^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right) \neq c\right]$. For every color c the set of y with $\operatorname{COL}\left(x_{1}, y\right)=c$ is finite. Kill duplicates, so in new set $\operatorname{COL}\left(x_{1}, ?\right)$ are all different. $\operatorname{COL}^{\prime}\left(x_{1}\right)=(R B, 1)$. Similar to proof of 1-ary Can Ramsey.

First Step of Construction

The following notation will make later cases similar to this case.
$V_{1}=\mathrm{N}$
$x_{1}=1$
Have COL: $\binom{V_{1}}{2} \rightarrow \omega$.
One of the following happens:

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=c\right]$. Kill all those who disagree. $\mathrm{COL}^{\prime}\left(x_{1}\right)=(\mathrm{H}, \mathrm{c})$.
Similar to 1st step of Inf Ramsey.
- $(\forall c \in \omega)\left(\forall^{\infty} y \in V_{1}\right)\left[\operatorname{COL}\left(x_{1}, y\right) \neq c\right]$. For every color c the set of y with $\operatorname{COL}\left(x_{1}, y\right)=c$ is finite. Kill duplicates, so in new set $\operatorname{COL}\left(x_{1}, ?\right)$ are all different. $\operatorname{COL}^{\prime}\left(x_{1}\right)=(\mathrm{RB}, 1)$. Similar to proof of 1-ary Can Ramsey.
In both cases let
V_{2} be the new infinite set.
x_{2} be the least element of V_{2}.

Second Step of Construction

Have V_{2} and x_{2}.
Have COL: $\binom{V_{2}}{2} \rightarrow \omega$.

Second Step of Construction

Have V_{2} and x_{2}.
Have COL: $\binom{V_{2}}{2} \rightarrow \omega$.

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, y\right)=c\right]$. Then restrict to that set and color x_{2} with (H, c). Similar to 2nd step of Inf Ram.

Second Step of Construction

Have V_{2} and x_{2}.
Have COL : $\binom{V_{2}}{2} \rightarrow \omega$.

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, y\right)=c\right]$. Then restrict to that set and color x_{2} with (H, c). Similar to 2nd step of Inf Ram.
- $(\forall c \in \omega)\left(\forall^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, x\right) \neq c\right]$.

Second Step of Construction

Have V_{2} and x_{2}.
Have COL : $\binom{V_{2}}{2} \rightarrow \omega$.

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, y\right)=c\right]$. Then restrict to that set and color x_{2} with (H, c). Similar to 2nd step of Inf Ram.
- $(\forall c \in \omega)\left(\forall^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, x\right) \neq c\right]$.
- For every color c the set of y with $\operatorname{COL}\left(x_{2}, y\right)=c$ is finite. Kill duplicates so that $\operatorname{COL}\left(x_{2}, ?\right)$ are all different. New set is W. Will not be final V_{3}.

Second Step of Construction

Have V_{2} and x_{2}.
Have COL : $\binom{V_{2}}{2} \rightarrow \omega$.

- $(\exists c \in \omega)\left(\exists^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, y\right)=c\right]$. Then restrict to that set and color x_{2} with (H, c). Similar to 2nd step of Inf Ram.
- $(\forall c \in \omega)\left(\forall^{\infty} y \in V_{2}\right)\left[\operatorname{COL}\left(x_{2}, x\right) \neq c\right]$.
- For every color c the set of y with $\operatorname{COL}\left(x_{2}, y\right)=c$ is finite. Kill duplicates so that $\operatorname{COL}\left(x_{2}, ?\right)$ are all different. New set is W. Will not be final V_{3}.
- $\operatorname{COL}^{\prime}\left(x_{2}\right)=(\mathrm{RB}, 1)$ if x_{1} and x_{2} are similar. $\operatorname{COL}^{\prime}\left(x_{2}\right)=(\mathrm{RB}, 2)$ if x_{1} and x_{2} are different. See next slide.

Convention

When we say (H, j) we think of j as a color. We also say $j \in \omega$.

Convention

When we say (H, j) we think of j as a color.
We also say $j \in \omega$.
When we say (RB, j) we think of j as an index.
We also say $j \in N$.

Convention

When we say (H, j) we think of j as a color.
We also say $j \in \omega$.
When we say (RB, j) we think of j as an index.
We also say $j \in N$.
Really $\omega=\mathrm{N}$ so they are all numbers.

$\operatorname{COL}^{\prime}\left(x_{1}\right), \operatorname{COL}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, \mathbf{1}),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

$\operatorname{COL}^{\prime}\left(x_{1}\right), \operatorname{COL}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, 1),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

Note following

- $\operatorname{COL}\left(x_{1}, w_{3}\right), \operatorname{COL}\left(x_{1}, w_{4}\right), \cdots$ are all different.
- $\operatorname{COL}\left(x_{2}, w_{3}\right), \operatorname{COL}\left(x_{2}, w_{4}\right), \cdots$ are all different.

$\operatorname{COL}^{\prime}\left(x_{1}\right), \mathbf{C O L}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, 1),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

Note following

- $\operatorname{COL}\left(x_{1}, w_{3}\right), \operatorname{COL}\left(x_{1}, w_{4}\right), \cdots$ are all different.
- $\operatorname{COL}\left(x_{2}, w_{3}\right), \operatorname{COL}\left(x_{2}, w_{4}\right), \cdots$ are all different.

One of the following occurs.

$\operatorname{COL}^{\prime}\left(x_{1}\right), \mathbf{C O L}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, 1),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

Note following
$-\operatorname{COL}\left(x_{1}, w_{3}\right), \operatorname{COL}\left(x_{1}, w_{4}\right), \cdots$ are all different.

- $\operatorname{COL}\left(x_{2}, w_{3}\right), \operatorname{COL}\left(x_{2}, w_{4}\right), \cdots$ are all different.

One of the following occurs.

1. $\left(\exists^{\infty} w \in W\right)\left[\operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right]$. Then let $V_{3}=\left\{w \in W: \operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right\}$.

$\operatorname{COL}^{\prime}\left(x_{1}\right), \operatorname{COL}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, 1),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

Note following

- $\operatorname{COL}\left(x_{1}, w_{3}\right), \operatorname{COL}\left(x_{1}, w_{4}\right), \cdots$ are all different.
- $\operatorname{COL}\left(x_{2}, w_{3}\right), \operatorname{COL}\left(x_{2}, w_{4}\right), \cdots$ are all different.

One of the following occurs.

1. $\left(\exists^{\infty} w \in W\right)\left[\operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right]$. Then let $V_{3}=\left\{w \in W: \operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right\}$. $\operatorname{COL}^{\prime}\left(x_{2}\right)=(\mathrm{RB}, 1)$.
Note that $\left(\forall y \in V_{3}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=\operatorname{COL}\left(x_{2}, y\right)\right] \&\left|V_{3}\right|=\infty$

$\operatorname{COL}^{\prime}\left(x_{1}\right), \operatorname{COL}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, 1),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

Note following

- $\operatorname{COL}\left(x_{1}, w_{3}\right), \operatorname{COL}\left(x_{1}, w_{4}\right), \cdots$ are all different.
- $\operatorname{COL}\left(x_{2}, w_{3}\right), \operatorname{COL}\left(x_{2}, w_{4}\right), \cdots$ are all different.

One of the following occurs.

1. $\left(\exists^{\infty} w \in W\right)\left[\operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right]$. Then let $V_{3}=\left\{w \in W: \operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right\}$. $\mathrm{COL}^{\prime}\left(x_{2}\right)=(\mathrm{RB}, 1)$.
Note that $\left(\forall y \in V_{3}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=\operatorname{COL}\left(x_{2}, y\right)\right] \&\left|V_{3}\right|=\infty$
2. $\left(\exists^{\infty} w \in W\right)\left[\operatorname{COL}\left(x_{1}, w\right) \neq \operatorname{COL}\left(x_{2}, w\right)\right]$. Then let $V_{3}=\left\{w \in W: \operatorname{COL}\left(x_{1}, w\right) \neq \operatorname{COL}\left(x_{2}, w\right)\right\}$.

$\operatorname{COL}^{\prime}\left(x_{1}\right), \operatorname{COL}^{\prime}\left(x_{2}\right) \in\{(\mathbf{R B}, \mathbf{1}),(\mathbf{R B}, 2)\}$

$$
W=\left\{w_{3}, w_{4}, \ldots,\right\}
$$

Note following
$-\operatorname{COL}\left(x_{1}, w_{3}\right), \operatorname{COL}\left(x_{1}, w_{4}\right), \cdots$ are all different.

- $\operatorname{COL}\left(x_{2}, w_{3}\right), \operatorname{COL}\left(x_{2}, w_{4}\right), \cdots$ are all different.

One of the following occurs.

1. $\left(\exists^{\infty} w \in W\right)\left[\operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right]$. Then let $V_{3}=\left\{w \in W: \operatorname{COL}\left(x_{1}, w\right)=\operatorname{COL}\left(x_{2}, w\right)\right\}$. $\mathrm{COL}^{\prime}\left(x_{2}\right)=(\mathrm{RB}, 1)$.
Note that $\left(\forall y \in V_{3}\right)\left[\operatorname{COL}\left(x_{1}, y\right)=\operatorname{COL}\left(x_{2}, y\right)\right] \&\left|V_{3}\right|=\infty$
2. $\left(\exists^{\infty} w \in W\right)\left[\operatorname{COL}\left(x_{1}, w\right) \neq \operatorname{COL}\left(x_{2}, w\right)\right]$. Then let $V_{3}=\left\{w \in W: \operatorname{COL}\left(x_{1}, w\right) \neq \operatorname{COL}\left(x_{2}, w\right)\right\}$.
$\mathrm{COL}^{\prime}\left(x_{2}\right)=(\mathrm{RB}, 2)$.
Note that $\left(\forall y \in V_{3}\right)\left[\operatorname{COL}\left(x_{1}, y\right) \neq \operatorname{COL}\left(x_{2}, y\right)\right] \&\left|V_{3}\right|=\infty$

Third Step, ith Step

V_{3} is defined and is infinite. x_{1}, x_{2} are colored. x_{3} is least element of V_{3}.

Third Step, ith Step

V_{3} is defined and is infinite. x_{1}, x_{2} are colored.
x_{3} is least element of V_{3}.
HW: Do third step.

Third Step, ith Step

V_{3} is defined and is infinite. x_{1}, x_{2} are colored.
x_{3} is least element of V_{3}.
HW: Do third step.
After third step
$\mathrm{COL}^{\prime}\left(x_{3}\right) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \leq 3\}$.
V_{4} will be infinite.

Third Step, ith Step

V_{3} is defined and is infinite. x_{1}, x_{2} are colored.
x_{3} is least element of V_{3}.
HW: Do third step.
After third step
$\mathrm{COL}^{\prime}\left(x_{3}\right) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \leq 3\}$.
V_{4} will be infinite.
V_{i} is defined and is infinite. x_{1}, \ldots, x_{i-1} are colored.
x_{i} is least element of V_{i}.

Third Step, ith Step

V_{3} is defined and is infinite. x_{1}, x_{2} are colored.
x_{3} is least element of V_{3}.
HW: Do third step.
After third step
$\mathrm{COL}^{\prime}\left(x_{3}\right) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \leq 3\}$.
V_{4} will be infinite.
V_{i} is defined and is infinite. x_{1}, \ldots, x_{i-1} are colored.
x_{i} is least element of V_{i}.
HW: Do ith step.

Third Step, ith Step

V_{3} is defined and is infinite. x_{1}, x_{2} are colored.
x_{3} is least element of V_{3}.
HW: Do third step.
After third step
$\mathrm{COL}^{\prime}\left(x_{3}\right) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \leq 3\}$.
V_{4} will be infinite.
V_{i} is defined and is infinite. x_{1}, \ldots, x_{i-1} are colored.
x_{i} is least element of V_{i}.
HW: Do ith step.
After i th step
$\mathrm{COL}^{\prime}\left(x_{i}\right) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \leq i\}$.
V_{i+1} will be infinite.

ω th Step, Case 1

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

ω th Step, Case 1

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
For all $x \in X$
$\mathrm{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.

ω th Step, Case 1

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
For all $x \in X$
$\mathrm{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$. Key We started with COL: $\binom{N}{2} \rightarrow \omega$ and now have $\mathrm{COL}^{\prime}: X \rightarrow \omega$.

ω th Step, Case 1

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
For all $x \in X$
$\mathrm{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$. Key We started with COL: $\binom{N}{2} \rightarrow \omega$ and now have
COL' : $X \rightarrow \omega$.
Case 1 H occurs inf often as 1 st coordinate and

$$
\begin{gathered}
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right] . \\
H=\left\{x \in X: \operatorname{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right\}
\end{gathered}
$$

ω th Step, Case 1

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
For all $x \in X$
$\mathrm{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$. Key We started with COL: $\binom{N}{2} \rightarrow \omega$ and now have
COL' : $X \rightarrow \omega$.
Case 1 H occurs inf often as 1 st coordinate and

$$
\begin{gathered}
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right] . \\
H=\left\{x \in X: \operatorname{COL}^{\prime}(x)=\left(H, c_{0}\right)\right\}
\end{gathered}
$$

COL restricted to $\binom{H}{2}$ is always color c_{0}.

ω th Step, Case 1

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
For all $x \in X$
$\mathrm{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$. Key We started with COL: $\binom{N}{2} \rightarrow \omega$ and now have
COL' : $X \rightarrow \omega$.
Case 1 H occurs inf often as 1 st coordinate and

$$
\begin{gathered}
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right] . \\
H=\left\{x \in X: \operatorname{COL}^{\prime}(x)=\left(H, c_{0}\right)\right\}
\end{gathered}
$$

COL restricted to $\binom{H}{2}$ is always color c_{0}.
H is homog of color c_{0}.

ω th Step, Case 2

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

ω th Step, Case 2

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.

ω th Step, Case 2

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

Eliminate Duplicates to get

ω th Step, Case 2

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\mathrm{COL}^{\prime}\left(h_{i}\right)=\left(\mathrm{H}, c_{i}\right)$ with c_{i} 's different.

ω th Step, Case 2

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{H}, j): j \in \omega\} \cup\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\mathrm{COL}^{\prime}\left(h_{i}\right)=\left(\mathrm{H}, c_{i}\right)$ with c_{i} 's different.
H is min-homog.

If Cases 1，2 Do Not Occur Then ．．．

If Cases 1,2 Do Not Occur Then ...

Case 1 H occurs inf often as 1 st coordinate and

$$
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(H, c_{0}\right)\right]
$$

If Cases 1,2 Do Not Occur Then ...

Case 1 H occurs inf often as 1 st coordinate and

$$
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right]
$$

Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

If Cases 1,2 Do Not Occur Then ...

Case 1 H occurs inf often as 1 st coordinate and

$$
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right]
$$

Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

If neither happens then H only occurs finite often as 1st coordinate.

If Cases $\mathbf{1 , 2}$ Do Not Occur Then ...

Case 1 H occurs inf often as 1 st coordinate and

$$
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right]
$$

Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that $\mathrm{COL}^{\prime}(x)=(\mathrm{H}$, ?).

If Cases $\mathbf{1 , 2}$ Do Not Occur Then ...

Case 1 H occurs inf often as 1 st coordinate and

$$
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right]
$$

Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that $\mathrm{COL}^{\prime}(x)=(\mathrm{H}$, ?). Keep the name of the set X too avoid to much notation.

If Cases $\mathbf{1 , 2}$ Do Not Occur Then ...

Case 1 H occurs inf often as 1 st coordinate and

$$
\left(\exists c_{0} \in \omega\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{H}, c_{0}\right)\right]
$$

Case 2 H occurs inf often as 1st coordinate and

$$
(\forall c)\left(\forall^{\infty} x\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{H}, c)\right] .
$$

If neither happens then H only occurs finite often as 1st coordinate. Eliminate those finite x such that $\mathrm{COL}^{\prime}(x)=(\mathrm{H}$, ?). Keep the name of the set X too avoid to much notation. For Cases 3,4 assume $(\forall x \in X)\left[\mathrm{COL}^{\prime}(x)=(\mathrm{RB}, ?)\right]$.

ω th Step, Case 3

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

ω th Step, Case 3

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.

ω th Step, Case 3

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
Case $3\left(\exists i_{0} \in \mathrm{~N}\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{RB}, i_{0}\right)\right]$.

$$
H=\left\{x \in X: \mathrm{COL}^{\prime}(x)=\left(\mathrm{RB}, i_{0}\right)\right\}
$$

ω th Step, Case 3

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
Case $3\left(\exists i_{0} \in \mathrm{~N}\right)\left(\exists^{\infty} x \in X\right)\left[\mathrm{COL}^{\prime}(x)=\left(\mathrm{RB}, i_{0}\right)\right]$.

$$
H=\left\{x \in X: \mathrm{COL}^{\prime}(x)=\left(\mathrm{RB}, i_{0}\right)\right\}
$$

H is max-homog.

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ $\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ $\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$. If Case 1,2,3 do not occur then have:

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case 1,2,3 do not occur then have:
Case 4
$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case 1,2,3 do not occur then have:

Case 4

$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\mathrm{COL}^{\prime}\left(h_{j}\right)=\left(\mathrm{RB}, c_{j}\right)$ with c_{j} 's different.

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case 1,2,3 do not occur then have:

Case 4

$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\mathrm{COL}^{\prime}\left(h_{j}\right)=\left(\mathrm{RB}, c_{j}\right)$ with c_{j} 's different.
So where are we now?
Let $a<b<c$.

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case 1,2,3 do not occur then have:

Case 4

$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\mathrm{COL}^{\prime}\left(h_{j}\right)=\left(\mathrm{RB}, c_{j}\right)$ with c_{j} 's different.
So where are we now?
Let $a<b<c$.

- All of the edges out of h_{a} to the right, are different from each other.

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case 1,2,3 do not occur then have:
Case 4
$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\mathrm{COL}^{\prime}\left(h_{j}\right)=\left(\mathrm{RB}, c_{j}\right)$ with c_{j} 's different.
So where are we now?
Let $a<b<c$.

- All of the edges out of h_{a} to the right, are different from each other.
$-\operatorname{COL}\left(h_{a}, h_{c}\right) \neq \operatorname{COL}\left(h_{b}, h_{c}\right)$.

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case $1,2,3$ do not occur then have:
Case 4
$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\operatorname{COL}^{\prime}\left(h_{j}\right)=\left(\mathrm{RB}, c_{j}\right)$ with c_{j} 's different.
So where are we now?
Let $a<b<c$.

- All of the edges out of h_{a} to the right, are different from each other.
$-\operatorname{COL}\left(h_{a}, h_{c}\right) \neq \operatorname{COL}\left(h_{b}, h_{c}\right)$.
So is H a rainbow set?

ω th Step, Case 4

Recap We have $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$
$\operatorname{COL}^{\prime}(x) \in\{(\mathrm{RB}, j): j \in \mathrm{~N}\}$.
If Case $1,2,3$ do not occur then have:
Case 4
$(\forall x)\left(\forall^{\infty} i\right)\left[\mathrm{COL}^{\prime}(x) \neq(\mathrm{RB}, i)\right]$. Eliminate Duplicates to get

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

where $\operatorname{COL}^{\prime}\left(h_{j}\right)=\left(\mathrm{RB}, c_{j}\right)$ with c_{j} 's different.
So where are we now?
Let $a<b<c$.

- All of the edges out of h_{a} to the right, are different from each other.
$-\operatorname{COL}\left(h_{a}, h_{c}\right) \neq \operatorname{COL}\left(h_{b}, h_{c}\right)$.
So is H a rainbow set?
No. Counterexample on next slide.

Countexample Due to Liam Gerst

COL: $\binom{N}{2} \rightarrow \omega$

Countexample Due to Liam Gerst

COL : $\binom{N}{2} \rightarrow \omega$

$$
\operatorname{COL}(i, j)=|i-j|
$$

Let $a<b<c$.

Countexample Due to Liam Gerst

COL : $\binom{N}{2} \rightarrow \omega$

$$
\operatorname{COL}(i, j)=|i-j|
$$

Let $a<b<c$.

- All of the edges out of a to the right are different from each other.

Countexample Due to Liam Gerst

COL : $\binom{N}{2} \rightarrow \omega$

$$
\operatorname{COL}(i, j)=|i-j|
$$

Let $a<b<c$.

- All of the edges out of a to the right are different from each other.
$-\operatorname{COL}(a, c) \neq \operatorname{COL}(b, c)$.

ω th Step, Case 4 (cont)

Recap

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

Let $a<b<c$.

ω th Step, Case 4 (cont)

Recap

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

Let $a<b<c$.

- All of the edges out of h_{a} to the right are different from each other.

ω th Step, Case 4 (cont)

Recap

$$
H=\left\{h_{1}, h_{2}, h_{3}, \ldots\right\}
$$

Let $a<b<c$.

- All of the edges out of h_{a} to the right are different from each other.
$-\operatorname{COL}\left(h_{a}, h_{c}\right) \neq \operatorname{COL}\left(h_{b}, h_{c}\right)$.
Claim For all $i \in \mathrm{~N}, \mathrm{c}$ a color, $\operatorname{deg}_{c}\left(h_{i}\right) \leq 2$.
Proof Assume, BWOC that $\operatorname{deg}_{c}\left(h_{i}\right) \geq 3$.
Case 1 There two vertices x, y to the right of h_{i} such that $\operatorname{COL}\left(h_{i}, x\right)=\operatorname{COL}\left(h_{i}, y\right)=c$. This contradicts that all the edges coming out of h_{i} are different.
Case 2 There two vertices x, y to the left of h_{i} such that $\operatorname{COL}\left(x, h_{i}\right)=\operatorname{COL}\left(y, h_{i}\right)=c$. This contradicts that x and y disagree.

End of Proof of Claim

Last Step

Recall

Lemma Let X be infinite. Let $C O L:\binom{X}{2} \rightarrow \omega$. Let $d \in \omega$. If for every $x \in X$ and $c \in \omega, \operatorname{deg}_{c}(x) \leq d$ then there is an infinite rainb set.
We apply this to our set H with $d=2$ to get a rainbow set.

