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How it Began

A Recreational Math Conference
(Gathering for Gardner)

May 2016
I found a pamphlet:

The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?



Five Muffins, Three Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3



Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?
Work on it with your neighbor



Five Muffins, Three People–Proc by Picture

YES WE CAN!

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12



Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?
Work on it with your neighbor



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.

(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .
(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12
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What Happened Next?

Yada Yada Yada- in 2020:
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What Happened Next?

Yada Yada Yada- in 2020:



General Problem

f (m, s) be the smallest piece in the best procedure (best in that
the smallest piece is maximized) to divide m muffins among s
students so that everyone gets m

s .

We have shown f (5, 3) = 5
12 here.

We have two proofs that shown f (m, s) exists, is rational, and is
computable.
One use Linear Programming.
One use Integer Programming.



Amazing Results!/Amazing Theorems!

1. f (43, 33) = 91
264 .

2. f (52, 11) = 83
176 .

3. f (35, 13) = 64
143 .

All done by hand, no use of a computer
by Co-author Erik Metz is a muffin savant !

Have General Theorems from which upper bounds follow.
Have General Procedures from which lower bounds follow.
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What if m < s?

Duality Theorem: f (m, s) = m
s f (s,m).

Hence we will just look at m > s.
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Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .
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FC Gives Upper Bound

Give m, s:

FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
Gives an upper bound. So we know

(∀m, s)[f (m, s) ≤ FC(m, s)].

Is the following true?

(∀m, s)[f (m, s) = FC(m, s)]

No: If so my book would be about 20 pages.
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THREE Students

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

f (1, 3) = 1
3

f (3k, 3) = 1.

f (3k + 1, 3) = 3k−1
6k , k ≥ 1.

f (3k + 2, 3) = 3k+2
6k+6 .

Note: A Mod 3 Pattern.
Theorem: For all m ≥ 3, f (m, 3) = FC(m, 3).



FOUR Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

f (4k, 4) = 1 (easy)

f (1, 4) = 1
4 (easy)

f (4k + 1, 4) = 4k−1
8k , k ≥ 1.

f (4k + 2, 4) = 1
2 .

f (4k + 3, 4) = 4k+1
8k+4 .

Note: A Mod 4 Pattern.
Theorem: For all m ≥ 4, f (m, 4) = FC(m, 4).



FIVE Students

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For k ≥ 1, f (5k , 5) = 1.

For k = 1 and k ≥ 3, f (5k + 1, 5) = 5k+1
10k+5 . f (11, 5)?

For k ≥ 2, f (5k + 2, 5) = 5k−2
10k . f (7, 5) = FC(7, 5) = 1

3

For k ≥ 1, f (5k + 3, 5) = 5k+3
10k+10

For k ≥ 1, f (5k + 4, 5) = 5k+1
10k+5

Note: A Mod 5 Pattern.
Theorem: For all m ≥ 5 except m=11, f (m, 5) = FC(m, 5).



What About FIVE students, ELEVEN muffins?

1. We have a procedure which shows f (11, 5) ≥ 13
30 .

2. f (11, 5) ≤ max{13 ,min{ 11
5d22/5e , 1− 11

5b22/5c}} = 11
25 .

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

Options:

1. f (11, 5) = 11
25 . Need to find procedure.

2. f (11, 5) = 13
30 . Need to find new technique for upper bounds.

3. f (11, 5) in between. Need to find both.

4. f (11, 5) unknown to science!

Vote

WE SHOW f (11, 5) = 13
30 . Exciting new technique!
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Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M.
The other piece from muffin M is the buddy of x .

Note that the buddy of x is of size

1− x .



f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 < 13

30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)
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f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

That pieces buddy is of size:

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)
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f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.
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f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

The buddy of x is of size

≤ 1− x = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!
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f (11, 5) = 13
30

, Fun Cases

Case 4.2: All 4-shares are > 1
2 . There are 4s4 = 12 4-shares.

There are ≥ 12 pieces > 1
2 . Can’t occur.



HALF Method

The above reasoning can be used to verify that f (11, 5) ≤ 13
30 but

could not generate the upper bound 13
30 .

Can modify the method so that we have an easily computable
function HALF(m, s) such that

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s)}]

No: If so my book would be about 40 pages.
For f (24, 11) it fails!



HALF Method

The above reasoning can be used to verify that f (11, 5) ≤ 13
30 but

could not generate the upper bound 13
30 .

Can modify the method so that we have an easily computable
function HALF(m, s) such that

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s)}]

No: If so my book would be about 40 pages.
For f (24, 11) it fails!



HALF Method

The above reasoning can be used to verify that f (11, 5) ≤ 13
30 but

could not generate the upper bound 13
30 .

Can modify the method so that we have an easily computable
function HALF(m, s) such that

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s)}]

No: If so my book would be about 40 pages.
For f (24, 11) it fails!



HALF Method

The above reasoning can be used to verify that f (11, 5) ≤ 13
30 but

could not generate the upper bound 13
30 .

Can modify the method so that we have an easily computable
function HALF(m, s) such that

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s)}]

No: If so my book would be about 40 pages.

For f (24, 11) it fails!



HALF Method

The above reasoning can be used to verify that f (11, 5) ≤ 13
30 but

could not generate the upper bound 13
30 .

Can modify the method so that we have an easily computable
function HALF(m, s) such that

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s)}]

No: If so my book would be about 40 pages.
For f (24, 11) it fails!



f (24, 11) ≤ 19
44

Assume (24, 11)-procedure with smallest piece > 19
44 .

Can assume all muffin cut in two and all student gets ≥ 2 shares.
We show that there is a piece ≤ 19

44 .

Case 1: A student gets ≥ 6 shares. Some piece ≤ 24
11×6 < 19

44 .

Case 2: A student gets ≤ 3 shares. Some piece ≥ 24
11×3 = 8

11 .

Buddy of that piece ≤ 1− 8
11 ≤

3
11 < 19

44 .

Case 3: Every muffin is cut in 2 pieces and every student gets
either 4 or 5 shares. Total number of shares is 48.
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How many students get 4? 5? Where are the
Shares?

4-students: a student who gets 4 shares. s4 is the number of them.
5-students: a student who gets 5 shares. s5 is the number of them.

4-share: a share that a 4-student who gets.
5-share: a share that a 5-student who gets.

4s4 + 5s5 = 48
s4 + s5 = 11

s4 = 7. Hence there are 4s4 = 4× 7 = 28 4-shares.
s5 = 4. Hence there are 5s5 = 5× 4 = 20 5-shares.
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Case 3.1 and 3.2: Too Big or Too Small

Case 3.1: ∃ a share ≥ 25
44 . Its buddy is

≤ 1− 25

44
=

19

44

Case 3.2: There is a share ≤ 19
44 . Duh.

Henceforth assume that all shares are in(
19

44
,

25

44

)
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Case 3.3: Some 5-shares ≥ 20
44

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is ≥ 20
44 then some share ≤ 19

44 .
Proof: Assume that Alice 5 pieces A,B,C ,D,E and E ≥ 20

44 .
Since A + B + C + D + E = 24

11 and E > 20
44

A + B + C + D <
24

11
− 20

44
=

76

44

Assume A is the smallest of A,B,C ,D.

A ≤ 76

44
× 1

4
=

19

44

Henceforth we assume all 5-shares are in(
19

44
,

20

44

)
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Case 3.5: All Shares in Their Proper Intervals

Case 3.5: 4-shares in (2144 ,
25
44), 5-shares in (1944 ,

20
44).

( ?? 5-shs )[ 0 shs ]( ?? 4-shs )
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Recall: there are 4s4 = 4× 7 = 28 4-shares.
Recall: there are 5s5 = 5× 4 = 20 5-shares.
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More Refined Picture of What is Going On

( 20 5-shs )[ 0 shs ]( 28 4-shs )
19
44

20
44

21
44

25
44

Claim 1: There are no shares x ∈ [2344 ,
24
44 ].

If there was such a share then its buddy is in [2044 ,
21
44 ].

The following picture captures what we know so far.

( 20 5-shs )[ 0 ]( 8 S4-shs )[ 0 ]( 20 L4-shs )
19
44

20
44

21
44

23
44

24
44

25
44

S4= Small 4-shares
L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.
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Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had ≤ 2 L4 shares then he has

< 2×
(

23

44

)
+ 2×

(
25

44

)
=

24

11
.

Contradiction: Each 4-student gets ≥ 3 L4 shares. There are
s4 = 7 4-students. Hence there are ≥ 21 L4-shares. But there are
only 20.
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INT Technique

The above reasoning can be used to verify that f (24, 11) ≤ 19
44 but

could not generate the upper bound 19
44 .

Can modify the method so that we have an easily computable
function INT(m, s) such that

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s), INT(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s), INT(m, s)}]

No: If so my book would be about 60 pages.
For f (31, 19) it fails!
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f (31, 19) ≤ 54
133

We show f (31, 19) ≤ 54
133 .

Assume (31, 19)-procedure with smallest piece > 54
133 .

By INT-technique methods obtain:
s3 = 14, s4 = 5.

( 20 4-shs )[ 0 ]( S3 shs )[ 0 ]( 20 L3-shs )
54
133

55
133

59
133

74
133

78
133

79
133

We just look at the 3-shares:

( S3 shs )[ 0 ]( 20 L3-shs )
59
133

74
133

78
133

79
133
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f (31, 19) ≤ 54
133

( S3 shs )[ 0 ]( 20 L3-shs )
59
133

74
133

78
133

79
133

1. J1 = ( 59
133 ,

66.5
133 )

2. J2 = (66.5133 ,
74
133) (|J1| = |J2|)
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e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .

1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.



f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.



f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.



f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.



f (31, 19) ≤ 54
133

e(1, 5, 5). Let the number of such students be x
e(2, 4, 5). Let the number of such students be y1
e(3, 4, 5). Let the number of such students be y2.
e(4, 4, 4). Let the number of such students be z .
1) |J2| = |J3|,
only students using J2 are e(2, 4, 5) – they use one share each,
only students using J3 are e(3, 4, 5) – they use one share each.
Hence y1 = y2. We call them both y .

2) Since |J1| = |J4|, x = 2y + 3z .

3) Since s3 = 14, x + 2y + z = 14.

(2y + 3z) + 2y + z = 14 =⇒ 4(y + z) = 14 =⇒ y + z = 7
2 .

Contradiction.



GAP Technique

The above reasoning can be used to verify that f (31, 19) ≤ 54
133

but could not generate the upper bound 54
133 .

Cannot quite modify the method, but we can use this method and
a method we have to find procedure and to a binary search to
zero-in on answer. We call this GAP(m, s). So we have

(∀m, s)[f (m, s) ≤ min{FC(m, s),HALF(m, s), INT(m, s),GAP(m, s)}]

Is the following true?

(∀m, s)[f (m, s) = min{FC(m, s),HALF(m, s), INT(m, s),GAP(m, s)}]

No: If so my book would be about 80 pages.
For f (67, 21) it fails!
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The Train Method

We developed the Train Method which showed settled f (67, 21)
and 13 other problems we could not do.



Upshot

Let

A = {(m, s) | 2 ≤ s ≤ 100 and s < m ≤ 110 and m, s rel prime}

There are 3520 pairs (m, s) in A. We solved all of them!

I For 2301 of them f (m, s) = FC(m, s). That is ∼ 65.37%.

I For 329 of them f (m, s) = HALF(m, s). That is ∼ 9.35%.

I For 186 of them f (m, s) = INT(m, s). That is ∼ 5.28%.

I For 111 of them f (m, s) = MID(m, s). That is ∼ 3.15%.

I For 240 of them f (m, s) = EBM(m, s). That is ∼ 6.28%.

I For 89 of them f (m, s) = HBM(m, s). That is ∼ 2.53%.

I For 250 of them f (m, s) = GAP(m, s). That is ∼ 7.10%.

I For 13 of them f (m, s) = TRAIN(m, s). That is ∼ 0.40%



So Where Are We Now?

Is the following true: For all m, s, f (m, s) is the min of

FC(m, s),HALF(m, s),INT(m, s),MID(m, s),
EBM(m, s),HBM(m, s),GAP(m, s),TRAIN(m, s)

No. Did not work on

I f (205, 178)

I f (226, 135)

I f (233, 141)
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The Scott Huddleston Technique

Scott Huddleston has an algorithm that is REALLY FAST and
seems to ALWAYS WORK. Erik and Jacob understand it, nobody
else does. They have replicated his results and think that YES it
solves ALL problems.

Richard Chatwin independently came up with the same algorithm
and proved it worked, but never coded it up. He tells me its poly
time and I believe this can be proved, though its not in his paper.
His paper is here: https://arxiv.org/abs/1907.08726

https://arxiv.org/abs/1907.08726
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Lessons Learned

I found this problem in a pamphlet at a Recreational math
Conference.

Math is all around you! Pursue your curiosity!

You never know where the next big project will come from!
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