On well-quasi-ordering finite trees

By C. ST. J. A. NASH-WILLIAMS
King's College, Aberdeen

(Received 9 March 1963)
Abstract. A new and simple proof is given of the known theorem that, if T_{1}, T_{2}, \ldots is an infinite sequence of finite trees, then there exist i and j such that $i<j$ and T_{i} is homeomorphic to a subtree of T_{j}.

A quasi-ordered set is a set Q on which a reflexive and transitive relation \leqslant is defined. Q and Q^{\prime} will denote quasi-ordered sets. An infinite sequence q_{1}, q_{2}, \ldots of elements of Q will be called good if there exist positive integers i, j such that $i<j$ and $q_{i} \leqslant q_{j}$; if not, the sequence will be called bad. A quasi-ordered set Q is well-quasi-ordered (wqo) if every infinite sequence of elements of Q is good.

A graph G consists (for our purposes) of a finite set $V(G)$ of elements called vertices of G and a subset $E(G)$ of the Cartesian product $V(G) \times V(G)$. The elements of $E(G)$ are called edges of G. If $(\xi, \eta) \in E(G)$, we call η a successor of ξ. If $\xi, \eta \in V(G)$, a $\xi \eta$-path is a sequence ξ_{0}, \ldots, ξ_{n} of vertices of G such that $\xi_{0}=\xi, \xi_{n}=\eta$ and $\left(\xi_{i-1}, \xi_{i}\right) \in E(G)$ for $i=1, \ldots, n$. The sequence with sole term ξ is accepted as a $\xi \xi$-path. If there exists a $\xi \eta$-path, we say that η follows ξ. For the purposes of this paper, a tree is a graph T possessing a vertex $\rho(T)$ (called its root) such that, for every $\xi \in V(T)$, there exists a unique $\rho(T) \xi$-path in T. The letter T (with or without dashes or suffixes) will always denote a tree. For the purposes of this paper, a homeomorphism of T into T^{\prime} is a function $\phi: V(T) \rightarrow V\left(T^{\prime}\right)$ such that, for every $\xi \in V(T)$, the images under ϕ of the successors of ξ follow distinct successors of $\phi(\xi)$. The set of all trees will be quasi-ordered by the rule that $T \leqslant T^{\prime}$ if and only if there exists a homeomorphism of T into T^{\prime}. This paper presents a new and shorter proof of the following theorem of Kruskal (2).

Theorem 1. The set of all trees is wqo.
If A, B are subsets of Q, a mapping $f: A \rightarrow B$ is non-descending if $a \leqslant f(a)$ for every $a \in A$. The class of finite subsets of Q will be denoted by $S Q$, and will be quasi-ordered by the rule that $A \leqslant B$ if and only if there exists a one-to-one non-descending mapping of A into B, where A, B denote members of $S Q$. The Cartesian product $Q \times Q^{\prime}$ will be quasi-ordered by the rule that $\left(q_{1}, q_{1}^{\prime}\right) \leqslant\left(q_{2}, q_{2}^{\prime}\right)$ if and only if $q_{1} \leqslant q_{2}$ and $q_{1}^{\prime} \leqslant q_{2}^{\prime}$. The cardinal number of a set A will be denoted by $|A|$.

The following two lemmas are well known (see (1)), but for the reader's convenience their proofs are given here.

Lemma 1. If Q, Q^{\prime} are $w q o$, then $Q \times Q^{\prime}$ is wqo.
Proof. We must prove an arbitrary infinite sequence $\left(q_{1}, q_{1}^{\prime}\right),\left(q_{2}, q_{2}^{\prime}\right), \ldots$ of elements of $Q \times Q^{\prime}$ to be good. Call q_{m} terminal if there is no $n>m$ such that $q_{m} \leqslant q_{n}$. The number
of q_{m} which are terminal must be finite, since otherwise they would form a bad subsequence of q_{1}, q_{2}, \ldots. Therefore there is an N such that q_{r} is not terminal if $r>N$. We can therefore select a positive integer $f(1)>N$, then an $f(2)>f(1)$ such that $q_{f(1)} \leqslant q_{f(2)}$, then an $f(3)>f(2)$ such that $q_{f(2)} \leqslant q_{f(3)}$ and so on. Since Q^{\prime} is wqo, there exist i, j such that $i<j$ and $q_{f(i)}^{\prime} \leqslant q_{f(j)}^{\prime}$, whence $\left(q_{f(i)}, q_{f(i)}^{\prime}\right) \leqslant\left(q_{f(j)}, q_{f(j)}^{\prime}\right)$ and therefore our original sequence is good.

Lemma 2. If Q is wqo, then $S Q$ is wqo.
Proof. Assume that the lemma is false. Select an $A_{1} \in S Q$ such that A_{1} is the first term of a bad sequence of members of $S Q$ and $\left|A_{1}\right|$ is as small as possible. Then select an A_{2} such that A_{1}, A_{2} (in that order) are the first two terms of a bad sequence of members of $S Q$ and $\left|A_{2}\right|$ is as small as possible. Then select an A_{3} such that A_{1}, A_{2}, A_{3} (in that order) are the first three terms of a bad sequence of members of $S Q$ and $\left|A_{3}\right|$ is as small as possible. Assuming the Axiom of Choice, this process yields a bad sequence $A_{1}, A_{2}, A_{3}, \ldots$. Since this sequence is bad, no A_{i} is empty: therefore we can select an element a_{i} from each A_{i}. Let $B_{i}=A_{i}-\left\{a_{i}\right\}$. If there existed a bad sequence $B_{f(1)}$, $B_{f(2)}, \ldots$ such that $f(1) \leqslant f(i)$ for all i, the sequence

$$
A_{1}, A_{2}, \ldots, A_{f(1)-1}, B_{f(1)}, B_{f(2)}, \ldots
$$

would be bad (since $A_{i} \leqslant B_{j}$ entails $A_{i} \leqslant A_{j}$ and is therefore impossible if $i<j$). Since this would contradict the definition of $A_{f(1)}$, there can be no bad sequence $B_{f(1)}, B_{f(2)}, \ldots$ such that $f(1) \leqslant f(i)$ for all i. It follows that the class (\mathfrak{B}, say) of sets B_{i} is wqo, since any bad sequence of sets B_{i} would have a (bad) infinite subsequence in which no suffix was less than the first. Therefore, by Lemma $1, Q \times \mathfrak{B}$ is wqo. Therefore there exist i, j such that $i<j$ and $\left(a_{i}, B_{i}\right) \leqslant\left(a_{j}, B_{j}\right)$, which implies that $A_{i} \leqslant A_{j}$ and thus contradicts the badness of A_{1}, A_{2}, \ldots This contradiction proves the lemma.

The branch of T at a vertex ξ is the tree R such that $V(R)$ is the set of those vertices of T which follow ξ and

$$
E(R)=E(T) \cap(V(R) \times V(R)) .
$$

Proof of Theorem 1. Assume that the theorem is false. Select a tree T_{1} such that T_{1} is the first term of a bad sequence of trees and $\left|V\left(T_{1}\right)\right|$ is as small as possible. Then select a T_{2} such that T_{1}, T_{2} (in that order) are the first two terms of a bad sequence of trees and $\left|V\left(T_{2}\right)\right|$ is as small as possible. Continuing this process as in the proof of Lemma 2 yields a bad sequence T_{1}, T_{2}, \ldots Let B_{i} be the set of branches of T_{i} at the successors of its root, and let $B=B_{1} \cup B_{2} \cup \ldots$. If there existed a bad sequence R_{1}, R_{2}, \ldots such that $R_{i} \in B_{f(i)}$ and $f(1) \leqslant f(i)$ for every i, the sequence

$$
T_{1}, T_{2}, \ldots, T_{f(\mathcal{1}-1}, R_{1}, R_{2}, \ldots
$$

would be bad (since $T_{i} \leqslant R \in B_{j}$ entails $T_{i} \leqslant T_{j}$ and is therefore impossible if $i<j$). Since this would contradict the definition of $T_{f(1)}$, there can be no bad sequence R_{1}, R_{2}, \ldots such that $R_{i} \in B_{f(i)}$ and $f(1) \leqslant f(i)$ for every i. Since any bad sequence of elements of B would have a bad subsequence of this form, it follows that no sequence of elements of B is bad. Therefore B is wqo and hence, by Lemma $2, S B$ is wqo. Therefore
$B_{i} \leqslant B_{j}$ for some pair i, j such that $i<j$. Therefore there is a one-to-one nondescending mapping $\phi: B_{i} \rightarrow B_{j}$. For each $R \in B_{i}, R \leqslant \phi(R)$ and so there exists a homeomorphism h_{R} of R into $\phi(R)$. A homeomorphism h of T_{i} into T_{j} may thus be defined by writing $h\left(\rho\left(T_{i}\right)\right)=\rho\left(T_{j}\right)$ and making h coincide with h_{R} on the vertices of each $R \in B_{i}$. Therefore $T_{i} \leqslant T_{j}$, which contradicts the badness of T_{1}, T_{2}, \ldots and thus proves Theorem 1.
.The Tree Theorem of (2) is stronger than Theorem 1 of the present paper, but the above proof of Theorem I can easily be adapted to prove the Tree Theorem by considering $X \times F(B)$ in place of $S B$ (where X, F have the meanings stated in (2)). Because the necessary changes are easy to make, I have sacrificed this much generality in the interests of readability.

Note added 10 August 1963. It has been brought to the author's notice that Kruskal's proof of the Tree Theorem (2) anticipated a somewhat similar proof obtained independently by S. Tarkowski (Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 39-41).

REFERENCES

(1) Higman, G. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3), 2 (1952), 326-336.
(2) Kruskat, J. B. Well-quasi-ordering, the tree theorem, and Vázsonyi's conjecture. Trans. American Math. Soc. 95 (1960), 210-225.

An application of harmonic coordinates in general relativity

By R. H. BOYER
Department of Applied Mathematics, University of Liverpool

Communicated by L. Rosenhead
(Received 23 November 1962 and, in revised form, 17 April 1963)
We suppose the first derivatives of the components of a continuous metric tensor to exhibit jumps across a non-null hypersurface. We shall show that harmonic coordinates (see Fock (1), p. 175) lead to an automatic smoothing of the metric.

Let $x^{m}(m=1,2,3,4)$ be coordinates in a certain region of Riemannian space-time. We write $F \in\left(C^{N}, C^{N+K}\right)$ to mean that $F\left(x^{m}\right)$ has continuous N th partial derivatives throughout the region with its $(N+1)$ th, $\ldots,(N+K)$ th derivatives discontinuous only across a hypersurface $u\left(x^{m}\right)=0$. Lichnerowicz ((2), p. 5) requires the metric tensor $g_{i j}\left(x^{m}\right)$ in 'admissible' coordinates to satisfy $g_{i j} \in\left(C^{1}, C^{3}\right)$ with respect to hypersurfaces for which $u \in\left(C^{2}, C^{4}\right)$. This state of affairs is preserved by a (C^{2}, C^{4}) coordinate transformation. Now suppose we leave the class of admissible coordinate systems by

