
We will use k-AP’s

Our set A will be a set of k-AP’s (k = Mc−1) with diff dm.

We take k = 5 for our running examples. Diff is dm.
Take two 5-APs with different differences, both powers of m.

a1, a1 + dm
1 , a1 + 2dm

1 , a1 + 3dm
1 , a1 + 4dm

1

a2, a2 + dm
2 , a2 + 2dm

2 , a2 + 3dm
2 , a2 + 4dm

2

Is there an m such that they cannot intersect in two places?
Next Slide
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Want m so they Cannot Intersect in Two Places?

a1, a1 + dm
1 , a1 + 2dm

1 , a1 + 3dm
1 , a1 + 4dm

1

a2, a2 + dm
2 , a2 + 2dm

2 , a2 + 3dm
2 , a2 + 4dm

2

a1 + wdm
1 = a2 + xdm

2

a1 + ydm
1 = a2 + zdm

2 where w , x , y , z ∈ {0, 1, 2, 3, 4}.

(w − y)dm
1 = (x − z)dm

2

Let w − y = α and x − z = β. We can assume α, β ∈ {1, 2, 3, 4}
and that they are rel prime.
Claim If m = 3 then (∀α, β ∈ {1, 2, 3, 4}) αdm

1 = βdm
2 has no sol.

Pf Factor d3
1 and d3

2 and divide out common factors.

αp3a11 · · · p3amm = βq3b11 · · · q3b`` .

Since α, β rel prime, α must have some q3bii as a factor.

So some number ≥ 23 = 8 divides α. But α ∈ {1, 2, 3, 4}.
End of Proof
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An Easy Number Theory Lemma
Lemma Let k ≥ 3. (∃m = m(k)) such that:
For all α, β ∈ {1, . . . , k} there is no (d1, d2) with d1 6= d2 such that

αdm
1 = βdm

2 .

Pf
For each α, β ∈ {1, . . . , k} we find cond on m so that αdm

1 = βdm
2

has no solution.

Assume there is a d1, d2 such that αdm
1 = βdm

2 .
Elim common factors of α, β so can assume rel prime.
Factor out any common factors of dm

1 and dm
2 .

We have the following

αpa1m1 · · · pa`m` = βqb1m1 · · · qb`′m`′

Let r be a prime that divides α. Since α, β are rel prime r does not
divide β. Hence r is some qi . Since there are no other qi ’s on the
LHS, qbimi must divide α. The smallest this can be is 2m. Hence
take m such that 2m > k for a contradiction.
End of Pf
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A Theorem about Intersecting APs

Thm Let k ≥ 3 and m = m(k). If A1 is a k-AP with diff dm
1 and

A2 is a k-AP with diff dm
2 , with d1 6= d2, then |A1 ∩ A2| ≤ 1.

Pf
Assume, BWOC, (∃a1, d1, a2, d2) such that

|{a1, a1 + dm
1 , a1 + 2dm

1 , . . . , a1 + (k − 1)dm
1 } ∩ {a2 + dm

2 , a2 +
2dm

2 , . . . , a2 + (k − 1)dm
2 }| ≥ 2

Then (∃w , x , y , z ∈ {0, . . . , k − 1}) such that
a1 + wdm

1 = a2 + xdm
2

a1 + ydm
1 = a2 + zdm

2

(w − y)dm
1 = (x − z)dm

2

Next Slide
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A Theorem about Intersecting APs

We now have

(w − y)dm
1 = (x − z)dm

2

where w , x , y , z ∈ {0, . . . , k − 1} and m = m(k).

0) If w − y = 0 then you only have ond intersection, not two.
1) If w − y ≥ 1 and x − z ≥ 1 then let α = w − y and β = x − z .
Note that α, β ∈ [k − 2] but we just assume [k − 1].
2) If w − y ≤ −11 and x − z ≤ −1 then let α = y − w and
β = z − x . Note that α, β ∈ [k − 2] but we just assume [k − 1].
So we have α, β ∈ [k − 1] with

αdm
1 = βdm

2 .

This contradicts the definiton of m = m(k).
End of Pf
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