We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}. Take two 5-APs with different differences, both powers of m.

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}. Take two 5-APs with different differences, both powers of m. $a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$

We will use k-AP's

Our set A will be a set of k-AP's $\left(k=M_{c-1}\right)$ with diff d^{m}. We take $k=5$ for our running examples. Diff is d^{m}.
Take two 5-APs with different differences, both powers of m.
$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
Is there an m such that they cannot intersect in two places?
Next Slide

Want m so they Cannot Intersect in Two Places?

$$
a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}
$$

Want m so they Cannot Intersect in Two Places?

$$
\begin{aligned}
& a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m} \\
& a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}
\end{aligned}
$$

Want m so they Cannot Intersect in Two Places?

$$
\begin{aligned}
& a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m} \\
& a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m} \\
& a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m} \\
& a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m} \text { where } w, x, y, z \in\{0,1,2,3,4\} .
\end{aligned}
$$

Want m so they Cannot Intersect in Two Places?

$$
\begin{aligned}
& a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m} \\
& a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m} \\
& a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m} \\
& a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m} \text { where } w, x, y, z \in\{0,1,2,3,4\} . \\
& (w-y) d_{1}^{m}=(x-z) d_{2}^{m} \\
& \text { Let } w-y=\alpha \text { and } x-z=\beta . \text { We can assume } \alpha, \beta \in\{1,2,3,4\} \\
& \text { and that they are rel prime. }
\end{aligned}
$$

Want m so they Cannot Intersect in Two Places?

$$
\begin{aligned}
& a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m} \\
& a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m} \\
& a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m} \\
& a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m} \text { where } w, x, y, z \in\{0,1,2,3,4\} . \\
& (w-y) d_{1}^{m}=(x-z) d_{2}^{m} \\
& \text { Let } w-y=\alpha \text { and } x-z=\beta . \text { We can assume } \alpha, \beta \in\{1,2,3,4\} \\
& \text { and that they are rel prime. } \\
& \text { Claim If } m=3 \text { then }(\forall \alpha, \beta \in\{1,2,3,4\}) \alpha d_{1}^{m}=\beta d_{2}^{m} \text { has no sol. } \\
& \text { Pf Factor } d_{1}^{3} \text { and } d_{2}^{3} \text { and divide out common factors. }
\end{aligned}
$$

Want m so they Cannot Intersect in Two Places?

$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$ where $w, x, y, z \in\{0,1,2,3,4\}$.
$(w-y) d_{1}^{m}=(x-z) d_{2}^{m}$
Let $w-y=\alpha$ and $x-z=\beta$. We can assume $\alpha, \beta \in\{1,2,3,4\}$
and that they are rel prime.
Claim If $m=3$ then $(\forall \alpha, \beta \in\{1,2,3,4\}) \alpha d_{1}^{m}=\beta d_{2}^{m}$ has no sol.
Pf Factor d_{1}^{3} and d_{2}^{3} and divide out common factors.
$\alpha p_{1}^{3 a_{1}} \cdots p_{m}^{3 a_{m}}=\beta q_{1}^{3 b_{1}} \cdots q_{\ell}^{3 b_{\ell}}$.
Since α, β rel prime, α must have some $q_{i}^{3 b_{i}}$ as a factor.

Want m so they Cannot Intersect in Two Places?

$a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, a_{1}+3 d_{1}^{m}, a_{1}+4 d_{1}^{m}$
$a_{2}, a_{2}+d_{2}^{m}, a_{2}+2 d_{2}^{m}, a_{2}+3 d_{2}^{m}, a_{2}+4 d_{2}^{m}$
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$ where $w, x, y, z \in\{0,1,2,3,4\}$.
$(w-y) d_{1}^{m}=(x-z) d_{2}^{m}$
Let $w-y=\alpha$ and $x-z=\beta$. We can assume $\alpha, \beta \in\{1,2,3,4\}$ and that they are rel prime.
Claim If $m=3$ then $(\forall \alpha, \beta \in\{1,2,3,4\}) \alpha d_{1}^{m}=\beta d_{2}^{m}$ has no sol.
Pf Factor d_{1}^{3} and d_{2}^{3} and divide out common factors.
$\alpha p_{1}^{3 a_{1}} \cdots p_{m}^{3 a_{m}}=\beta q_{1}^{3 b_{1}} \cdots q_{\ell}^{3 b_{\ell}}$.
Since α, β rel prime, α must have some $q_{i}^{3 b_{i}}$ as a factor.
So some number $\geq 2^{3}=8$ divides α. But $\alpha \in\{1,2,3,4\}$.
End of Proof

An Easy Number Theory Lemma

Lemma Let $k \geq 3$. $(\exists m=m(k))$ such that:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Pf
For each $\alpha, \beta \in\{1, \ldots, k\}$ we find cond on m so that $\alpha d_{1}^{m}=\beta d_{2}^{m}$ has no solution.

An Easy Number Theory Lemma

Lemma Let $k \geq 3$. $(\exists m=m(k))$ such that:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Pf
For each $\alpha, \beta \in\{1, \ldots, k\}$ we find cond on m so that $\alpha d_{1}^{m}=\beta d_{2}^{m}$ has no solution.
Assume there is a d_{1}, d_{2} such that $\alpha d_{1}^{m}=\beta d_{2}^{m}$.

An Easy Number Theory Lemma

Lemma Let $k \geq 3$. $(\exists m=m(k))$ such that:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Pf
For each $\alpha, \beta \in\{1, \ldots, k\}$ we find cond on m so that $\alpha d_{1}^{m}=\beta d_{2}^{m}$ has no solution.
Assume there is a d_{1}, d_{2} such that $\alpha d_{1}^{m}=\beta d_{2}^{m}$.
Elim common factors of α, β so can assume rel prime.

An Easy Number Theory Lemma

Lemma Let $k \geq 3$. $(\exists m=m(k))$ such that:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Pf
For each $\alpha, \beta \in\{1, \ldots, k\}$ we find cond on m so that $\alpha d_{1}^{m}=\beta d_{2}^{m}$ has no solution.
Assume there is a d_{1}, d_{2} such that $\alpha d_{1}^{m}=\beta d_{2}^{m}$.
Elim common factors of α, β so can assume rel prime.
Factor out any common factors of d_{1}^{m} and d_{2}^{m}.

An Easy Number Theory Lemma

Lemma Let $k \geq 3$. $(\exists m=m(k))$ such that:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Pf
For each $\alpha, \beta \in\{1, \ldots, k\}$ we find cond on m so that $\alpha d_{1}^{m}=\beta d_{2}^{m}$ has no solution.
Assume there is a d_{1}, d_{2} such that $\alpha d_{1}^{m}=\beta d_{2}^{m}$.
Elim common factors of α, β so can assume rel prime.
Factor out any common factors of d_{1}^{m} and d_{2}^{m}.
We have the following

An Easy Number Theory Lemma

Lemma Let $k \geq 3$. $(\exists m=m(k))$ such that:
For all $\alpha, \beta \in\{1, \ldots, k\}$ there is no $\left(d_{1}, d_{2}\right)$ with $d_{1} \neq d_{2}$ such that

$$
\alpha d_{1}^{m}=\beta d_{2}^{m} .
$$

Pf
For each $\alpha, \beta \in\{1, \ldots, k\}$ we find cond on m so that $\alpha d_{1}^{m}=\beta d_{2}^{m}$ has no solution.
Assume there is a d_{1}, d_{2} such that $\alpha d_{1}^{m}=\beta d_{2}^{m}$.
Elim common factors of α, β so can assume rel prime.
Factor out any common factors of d_{1}^{m} and d_{2}^{m}.
We have the following

$$
\alpha p_{1}^{a_{1} m} \cdots p_{\ell}^{a_{\ell} m}=\beta q_{1}^{b_{1} m} \cdots q_{\ell^{\prime}}^{b_{\ell^{\prime}} m}
$$

Let r be a prime that divides α. Since α, β are rel prime r does not divide β. Hence r is some q_{i}. Since there are no other q_{i} 's on the LHS, $q_{i}^{b_{i m}}$ must divide α. The smallest this can be is 2^{m}. Hence take m such that $2^{m}>k$ for a contradiction.

A Theorem about Intersecting APs

Thm Let $k \geq 3$ and $m=m(k)$. If A_{1} is a k-AP with diff d_{1}^{m} and A_{2} is a k-AP with diff d_{2}^{m}, with $d_{1} \neq d_{2}$, then $\left|A_{1} \cap A_{2}\right| \leq 1$. Pf
Assume, BWOC, $\left(\exists a_{1}, d_{1}, a_{2}, d_{2}\right)$ such that

A Theorem about Intersecting APs

Thm Let $k \geq 3$ and $m=m(k)$. If A_{1} is a k-AP with diff d_{1}^{m} and A_{2} is a k-AP with diff d_{2}^{m}, with $d_{1} \neq d_{2}$, then $\left|A_{1} \cap A_{2}\right| \leq 1$. Pf
Assume, BWOC, $\left(\exists a_{1}, d_{1}, a_{2}, d_{2}\right)$ such that
$\mid\left\{a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, \ldots, a_{1}+(k-1) d_{1}^{m}\right\} \cap\left\{a_{2}+d_{2}^{m}, a_{2}+\right.$ $\left.2 d_{2}^{m}, \ldots, a_{2}+(k-1) d_{2}^{m}\right\} \mid \geq 2$

A Theorem about Intersecting APs

Thm Let $k \geq 3$ and $m=m(k)$. If A_{1} is a k-AP with diff d_{1}^{m} and A_{2} is a k-AP with diff d_{2}^{m}, with $d_{1} \neq d_{2}$, then $\left|A_{1} \cap A_{2}\right| \leq 1$. Pf
Assume, BWOC, $\left(\exists a_{1}, d_{1}, a_{2}, d_{2}\right)$ such that
$\mid\left\{a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, \ldots, a_{1}+(k-1) d_{1}^{m}\right\} \cap\left\{a_{2}+d_{2}^{m}, a_{2}+\right.$ $\left.2 d_{2}^{m}, \ldots, a_{2}+(k-1) d_{2}^{m}\right\} \mid \geq 2$
Then $(\exists w, x, y, z \in\{0, \ldots, k-1\})$ such that
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$

A Theorem about Intersecting APs

Thm Let $k \geq 3$ and $m=m(k)$. If A_{1} is a k-AP with diff d_{1}^{m} and A_{2} is a k-AP with diff d_{2}^{m}, with $d_{1} \neq d_{2}$, then $\left|A_{1} \cap A_{2}\right| \leq 1$. Pf
Assume, BWOC, $\left(\exists a_{1}, d_{1}, a_{2}, d_{2}\right)$ such that
$\mid\left\{a_{1}, a_{1}+d_{1}^{m}, a_{1}+2 d_{1}^{m}, \ldots, a_{1}+(k-1) d_{1}^{m}\right\} \cap\left\{a_{2}+d_{2}^{m}, a_{2}+\right.$
$\left.2 d_{2}^{m}, \ldots, a_{2}+(k-1) d_{2}^{m}\right\} \mid \geq 2$
Then $(\exists w, x, y, z \in\{0, \ldots, k-1\})$ such that
$a_{1}+w d_{1}^{m}=a_{2}+x d_{2}^{m}$
$a_{1}+y d_{1}^{m}=a_{2}+z d_{2}^{m}$
$(w-y) d_{1}^{m}=(x-z) d_{2}^{m}$
Next Slide

A Theorem about Intersecting APs

We now have

$$
(w-y) d_{1}^{m}=(x-z) d_{2}^{m}
$$

where $w, x, y, z \in\{0, \ldots, k-1\}$ and $m=m(k)$.

A Theorem about Intersecting APs

We now have

$$
(w-y) d_{1}^{m}=(x-z) d_{2}^{m}
$$

where $w, x, y, z \in\{0, \ldots, k-1\}$ and $m=m(k)$.
0) If $w-y=0$ then you only have ond intersection, not two.

A Theorem about Intersecting APs

We now have

$$
(w-y) d_{1}^{m}=(x-z) d_{2}^{m}
$$

where $w, x, y, z \in\{0, \ldots, k-1\}$ and $m=m(k)$.
0) If $w-y=0$ then you only have ond intersection, not two.

1) If $w-y \geq 1$ and $x-z \geq 1$ then let $\alpha=w-y$ and $\beta=x-z$.

Note that $\alpha, \beta \in[k-2]$ but we just assume $[k-1]$.

A Theorem about Intersecting APs

We now have

$$
(w-y) d_{1}^{m}=(x-z) d_{2}^{m}
$$

where $w, x, y, z \in\{0, \ldots, k-1\}$ and $m=m(k)$.
0) If $w-y=0$ then you only have ond intersection, not two.

1) If $w-y \geq 1$ and $x-z \geq 1$ then let $\alpha=w-y$ and $\beta=x-z$.

Note that $\alpha, \beta \in[k-2]$ but we just assume $[k-1]$.
2) If $w-y \leq-11$ and $x-z \leq-1$ then let $\alpha=y-w$ and
$\beta=z-x$. Note that $\alpha, \beta \in[k-2]$ but we just assume $[k-1]$.

A Theorem about Intersecting APs

We now have

$$
(w-y) d_{1}^{m}=(x-z) d_{2}^{m}
$$

where $w, x, y, z \in\{0, \ldots, k-1\}$ and $m=m(k)$.
0) If $w-y=0$ then you only have ond intersection, not two.

1) If $w-y \geq 1$ and $x-z \geq 1$ then let $\alpha=w-y$ and $\beta=x-z$.

Note that $\alpha, \beta \in[k-2]$ but we just assume $[k-1]$.
2) If $w-y \leq-11$ and $x-z \leq-1$ then let $\alpha=y-w$ and
$\beta=z-x$. Note that $\alpha, \beta \in[k-2]$ but we just assume $[k-1]$.
So we have $\alpha, \beta \in[k-1]$ with

$$
\alpha d_{1}^{m}=\beta d_{2}^{m}
$$

This contradicts the definiton of $m=m(k)$.
End of Pf

