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It has recently been discovered that a certain variant of Ramsey's theorem
cannot be proved in first-order Peano arithmetic although it is in fact a true
theorem. In this paper we give some bounds for the "Ramsey-Paris-Harrington
numbers" associated with this variant of Ramsey's theorem, involving coloring of
pairs . In the course of the investigation we also study certain weaker and stronger
partition relations .

1 . INTRODUCTION AND NOTATION

We first introduce some appropriate notation . Lower case variables will
always denote positive integers, while upper case variables will denote finite
sets of positive integers (except when clear from context) . We let XI denote
the cardinality of X, minX the minimum element of X, [a, b] the interval
{x j a < x < b}, and [a] the interval [1,a]. Let log x denote the logarithm of
x to base 2. Given a map F we let F"Z= {F(z)

I
z E Z} . Let Fl y 1 denote the

yth iterate of F, that is, F1'1(x)=x, Fy+ 11 (x) = F(Fly)(x)) . Finally, let
[X]e= {YI Yc--X and FYI = e} .

We now introduce notation generalizing the customary partition calculus .
For each i = 1, 2, . . ., c, let a ; be a positive integer or the symbol * . Define

X_ al, . ., a ,

to mean that for any map F : [X] e -> [c] there exists YL-_X and iC [c] such
that F"[Y]e= {i} and

YI > a ;

	

if al is an integer,

Y j > min Y
and

	

if a; is * .
I Yj >e
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In this context we will often refer to the elements of [c] as colors and to F as
a c-coloring of [X]e . The set Y is called homogeneous since IF" [Y]e l = 1, and
relatively large when I Y J > min Y. As usual, if a, = aZ = • • • = a, = a, we
write X (a)' for X -> (a,, . . ., a je . As we will have occasion to use the
ordinary Ramsey function, we define r(m, n) =,up([ p] -> (m, n) 2 ) .

It is clear that for fixed integers a, e, c the relation X-> (a)C depends only
on the cardinality of X. However, X-> (*)e is sensitive to the particular
elements in X. The classical Ramsey's theorem states that for all integers a,
e, c there exists an x such that [x]-> (a)e (usually written x-> (a)e). This
theorem is provable from the traditional first-order Peano axioms of
arithmetic (PA) . In April 1977, Paris discovered that certain combinatorial
statements akin to Ramsey's theorem are true but cannot be proved from the
Peano axioms [7]. Later Harrington, using ideas of Kirby and Paris [4],
showed that the statement

de dk dc 3n

	

[k, n] -> (*)e (*)

is also an example of such a statement . From one viewpoint it can be said
that the reason for the unprovability of (*) is the fact that the function
Re,(k) =,un([k, n] -> (*)C ) grows too rapidly for the axioms of Peano
arithmetic to keep pace : If g(x) is any function which PA can prove to be
total recursive, then there exists a number e such that g(x) < RZ(x) for all
sufficiently large x (see [8]) . Since R is recursive it follows that PA cannot
prove that the diagonal function RZ(x) is total (i .e ., defined for all x), and a
fortiori PA cannot prove (* ) .

It is not true, however, that (*) is very far out of the reach of Peano's
axioms. In fact for any fixed exponent e the following statement can be
proved in PA

dk do 3n

	

([k, n] -+ (*)C) .

	

(*e)

(Cf. Paris and Harrington [8] . Having a separate proof of each instance (*e)
(infinitely many proofs in all) is not the same as having one single proof of
(*) . This illustrates the fact that PA is co-incomplete.) Thus for any fixed
exponent e, PA can prove that the function f(k, c)=Rc(k) is total, whence f
does not exhibit quite the same phenomenal growth rate as R itself:

In this paper we concentrate on the function R Z, i.e .,
Ramsey-Paris-Harrington numbers for partitions of exponent two . In
Section 2 we state in the simplest terms the main conclusions of the paper .
Section 3 contains further discussion of the results of the paper and mentions
results obtained by other authors. In Section 4 we give the proofs . In most
cases the results proved in Section 4 are stronger than the versions stated in
Section 2. In particular we obtain bounds for certain weaker and stronger
partition relations as well .
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2 . MAIN RESULTS

Let R,(k) = R2(k), or in other words,

R,(k) =,un([k, n]

	

(*)2) .

Let R(k) = RA) . We obtain the following values and bounds for R and R,

THEOREM 1 .

THEOREM 2 . (i) There exists c > 0 such that (c f/log k) 2k ' < R(k) for
all sufficiently large k .

(ü) R(k) < 2kzk for all k > 2 .

THEOREM 3 . Define two sequences of primitive recursive functions as
follows :

Then

(i) R(1)=6 .
(ii) R(2) = 8 .

(iii) R(3) - 13 .
(iv) R(4) < 687 .

L,(k) = k + 1

	

L"(k) = LR'-,' ) (k)

	

for n > 1,

U2(k) = 2kzk

	

U3(k) = Uz6k-I t)(k)

U,, (k) = Un"lk - ")(k)

	

for n > 4.

(i) L,(k) < R,(k)

	

for k> 3, c > 1,
(ü) R,(k) < U,(k)

	

for k>, 3, 2 < c < k .

COROLLARY 4 . (i) For each primitive recursive function g(x) there
exists a c such that g(k) < R,(k) for all k .

(ü) For each c there exists a primitive recursive function g(x) such
that R,(k) < g(k) for all k.

3. REMARKS

Theorems 2 and 3 are formulated as simply as possible . In each case the
actual proof gives considerably more information than what we have stated
above. In particular each of the stated lower bounds is in fact a lower bound
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for a weaker partition relation (cf . Theorems 5, 7, 8) while each of the upper
bounds is a simplification of a somewhat sharper upper bound which is more
complicated to express and hence less perspicuous (cf . Theorems 6, 9, 10) .

Note that L,,(k) and Ujk), considered as functions of two variables, are
simply variants of Ackermann's generalized exponential function . For
example, for k > 3 we have L2(k) > 2 k, L 3 (k) > 22 a stack of k twos, and
so forth. We can summarize Theorem 3 as saying simply that R jk), as a
function of two variables, grows as fast as Ackermann's function . Thus
Corollary 4 is an immediate consequence of Theorem 3 by well-known
results of mathematical logic . It follows of course that R jk), as a function of
two variables, has no primitive recursive upper bound .

A further consequence is that RZ(k) also grows essentially as fast as
Ackermann's function and has no primitive recursive upper bound . Indeed,
suppose k (3)~ and let I = [ k, R,(k) - 1 ] . If F: [I] z > [c] refutes I -> (*)2,
then we get a refutation of I -> (* )z by defining for X C [I]'

1

	

if X is homogeneous for F,
2

	

otherwise .

Therefore R jk) < R2(k) . It would be interesting to know whether
R 3(k) > R jk). We remark that the class of primitive recursive functions (as
well as Ackermann's function) form a small subset of the class mentioned
earlier of all recursive functions which PA can prove to be total .

A number of authors have obtained results similar if not equivalent to our
Corollary 4(i) (cf. Paris and Harrington [8], Solovay [9], and Joel Spencer,
personal communication), but no results as sharp as Theorem 3 have
previously been announced . A slightly weaker upper bound for R(k) was
obtained earlier in a series of two manuscripts by Máté [5] and [6] . He
showed roughly that R(k) < (I2k)(k-z)"31 . . .ck-z>!

Benda [1] has independently obtained upper bounds very similar to our
Theorem 2(ü) for a slightly different formulation of the partition relation .
Following [8] define

G(X) _

n

	

(k)c

to mean that for any c-coloring of [0, n - 1 ]e there exists a relatively large
homogeneous set of size >k. Let r* (k)=,un(n-+* (k)z). Then r* (k) < R(k)
for k > 3 . Benda independently arrived at an argument very similar to our
proof of Theorem 6 to obtain an upper bound b k for r*(k) expressed in terms
of iterated ordinary Ramsey numbers. His b k is conceptually the same as our
bound n obtained in Theorem 6 .
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(iii) R(3) > 13

4 . PROOFS

Proof of Theorem 1 . The lower bounds in (i), (ü), and (iii) are verified
by noting that none of the colorings in Fig . 1 contains a relatively large
homogeneous set. (Lines join red pairs, no lines join green pairs .)

We now derive the upper bounds .

(i) R (1) < 6. Let [ l , 6 ] 2 be colored red and green . The usual proof
that 11, 6 ] ( 3)2 can easily be enhanced to show that there must be at least
two homogeneous triangles . One of these must intersect { 1, 2, 31 and hence
be relatively large .

(ü) R(2) < 8. Let [2, 8]2 be colored red and green, and suppose there
is no relatively large homogeneous set. We will write "xy is red" to mean
that {x, y ) is assigned the color red under this coloring . Let R2 = {x 2 1 2x
is red l and G 2 = {x t- 2 12x is green) ; and similarly R 3 = {x 3 13x is red),
G 3 = ] x # 3 1 3x is green). W .l .o .g . 3 E R2 . By symmetry, 2 E R 3 . Note that
R 3 must be homogeneous green, since otherwise there exist x, y E R 3 such
that {3, x, y) is relatively large and homogeneous red . Similarly R2 is
homogeneous green while G 2 and G 3 are homogeneous red. Since 2 E R 3 ,
J R 3I < 3 . Since 3 E R2 , J R 2 I < 3 . Let a = min G 3 . Then IG3I < a . Since
7=á[2,8]I=l(31UR 3 UG,I<1+2+(a-1) we must have a>5 . It
follows that 4 G3 , so 4 E R 3 . Similarly 4 (tG 2 , so 4 E R 2 . But then
{2, 3, 41 is homogeneous red and relatively large, contradiction .

8

FIGURE 1

(ü) R(2) > 8

57
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(iii) R(3)< 13 . Let [3, 13] 2 be colored red and green, and suppose
there is no relatively large homogeneous set . Let R3 and G 3 be as above.
W.I.o.g . 4 E R 3 , so IR3 < 3 . Let b=min G3 , so IG3 < b- 1 . Hence
11 = I + j R 3 j + J G 3 1 < I +3+(h- 1), so b,>8 . But we cannot have
{4, 5, 6, 7 } -- R 3 since I R 3 1 < 3, so b E {5, 6, 7), contradiction .

(iv) R(4) < 687 . Let [4,687] 2 be colored red and green, and suppose
there is no relatively large homogeneous set . W .l .o .g . 45 is green (i .e., {4, 5}
is green). Let b, =,ux (4x is red). Define

A, _ {x > 5 1 4x green, 5x red },

A Z = { x > 5 1 4x green, 5x green },

B, _ {x > b, 14x red, b, x green },

BZ = {x > b, 14x red, b, x red) .

Let a2 =minA 2 , b 2 =minB2 . Then [4,687]={4,5,b,}UA,UA Z U
B, U B 2 , a disjoint union. (See Fig . 2) .
Now A, 74 (3, 4) 2 since if {x, y, z } C A, were homogeneous green then

{4, x, y, z } would be relatively large and homogeneous green, while if
{ w, x, y, z } A, were homogeneous red then {5, w, x, y, z } would be
relatively large and homogeneous red . Since 9 -• (3, 4) 2 , we have IA, < 8 .
Now A 2 must be homogeneous red since otherwise there exist x, y E A 2 such
that {4, 5, x, y} is relatively large and homogeneous green . Therefore
IA 2 1 < a 2 . Similarly,

B, 4+ (3, b, - 1) 2

	

(1)

and I B Z I < b 2 . We have

684=1[4,68711=3+ IA, I+IA2I+IBII+IB2I

<3+8+(az-1)+IB,I+(b2-1)

so
675 < a 2 + b 2 + 1B,1 .

	

(2)

a t e A2

4

Al

	

B1

FIGURE 2

B 2 3 b 2



We also have

b,<6+1A,I+IA 2 1<13+az

	

(3)

min {a 2 , b,) < 6 + IA, I < 14 .

	

(4)

We now consider three cases : b, < 14, 15 < b, < 26, and 27 < b, .

Case (I) . b, < 14. Then by (1), B, -4 (3, 13 ) 2 . Since r(3, 13) < ( 2 } = 91,
we have IB, I < 90. Let c, = min {a 2 , b 2 } and c2 = max{a2 , b 2 } . Then

c,<7+ JA, I+ B,1<7+8+90=105

and

c2 <7+IA,I+IB,I+IC,I<7+8+90+104=209

where C, =A 2 if c, = a 2 and C, = B 2 if c, = b 2 (hence I C, I < c, - 1). We
conclude from (2) that 675 < 105 + 209 + 90 = 404, a contradiction .

Case (II). 15 < b, < 26 . Then by (1), B, (3, 25) 2 . In Graver and
Yackel [3] it is proved that r(3,9)<,37. Using the recurrence relation
r(3, n + 1) < r(3, n) + n + 1, it follows that r(3,25),<317. Therefore
B,1<316. (An improvement in the estimation of r(3,25) would yield a
corresponding improvement in the bound for R(4) . See note added in proof.)
Now by (4) we have a 2 < 14, so that

b2< 7 +IA,I+IA2I+IBII
<7+8+ 13+316=344 .

We conclude from (2) that 675 < 14 + 344 + 316 = 674, a contradiction .

Case (III). b, > 27 . By (4), a 2 < 14 . But IA21 < a 2 - 1 < 13 and
A,1 < 8, so by (3)

27<b,<6+ A,1+IA 2 1<6+8+13=27 .

Therefore equality holds throughout, and a 2 = 14, IA ,1 = 8, and A ,j = 13 . It
follows that A, _ { 6, 7, . . ., 13) and A 2 = { 14, . . ., 26 } . Now, since [6, 9 ] cannot
be homogeneous red (else [5, 9 ] would be), let ( p, q} E [6, 9 ] 2 be colored
green. Since { p } U (RP n A 2 ) is homogeneous red, we must have I R P n A 21 <
p - 2 < 6 . Consequently I GP n A 2 1 > 13 - 6 = 7. Also I G P n A, I > 2 (since
RP nA,-A(3,3) 2 implies IRP nA,I<5). Now IGP n(A,UAA>9,
q E GP n (A, U A 2 ), and GP n (A, U A 2 ) must be homogeneous red to avoid
forming a green triangle inside A, U A 2 . Since q < 9, GP n (A, U A 2 ) is a
relatively large homogeneous set, contradiction . This completes the proof of
Theorem 1 .
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Theorem 2(i) is a corollary of the following bound for a weaker partition
relation .

THEOREM 5 . Given k, let n ° = k, n ;+ , = n i + r(3, n,) - I and
n = n(k) = n,/2 _, . Then

(i) [k,n-1]-/*(k,*)2.
(ii) There is a positive constant c such that n(k) > (c vlk-/log k)2k2 for

all sufficiently large k .

Proof. (i) Let I = [ k, n - 11 . We must construct a 2-coloring of [I] 2
with no size k homogeneous set of color 1 and no relatively large
homogeneous set of color 2 . For each i = 0, 1, . . ., k/2 - 2 pick a coloring
F, : [n i , n i+ , - 1]2_ [2] with no homogeneous triangle of color 1 and no size
n i homogeneous set of color 2 . This is possible since I [n i , n i+ , - 1 ] _
r(3, n,) - 1 . Define the coloring F : [I] 2 -> [2] by

F(u, v) _
F,(u, v)

	

if n, < u < v .< n,+ ,
1

	

otherwise .

Now if X (-- I is homogeneous for F to color 1, then for each í,
X r) [ni , n ; + , - 1 ] is homogeneous for Fi to color 1 . Hence
lX rl [n i , n i+ , - 1 < 2 for all i, so IXI < 2(k/2 - 1) < k . On the other hand
if X S I is homogeneous for F to color 2, then X 9 [n,, n,+ , - 1 ] for some i.
Consequently X is homogeneous for F i to color 2, so IXI < n, < min X and X
is not relatively large. Thus F is a counterexample to I-4 (k, *) 2 , as desired .

(ii) According to a theorem of Erdós [?] there is a positive constant a
such that for all sufficiently large m, r(3, m) > am2/(log m)2. Let
b = a/(log k) 2 . We may assume b < 1 . We show inductively for i = 0, 1, . . .,
k/2 - 1 that

n, > k2'b2`-'/42`-i-' .

For i = 0 we have n° = k = k'b °/4 ° , as claimed. Now assuming it holds for i,
we have

as claimed .

ni-,, > r(3, (k
2 'b 21- '/4 21-i-

1 ))
a(k21)2 (b2'-1)2/(42`-i-1)2 (log k 2') 2

= akv+'b 2 "' - 2/42 ' + ' -21-22 2 '(log k) 2

_ (k2'+'b2' +' -2/42' +' -1-2)(a/(log k) 2 )
= (k2`+'b21 +'

-1)/(421
+' -(i+1)-I)
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Now let c = á/a14 . Note that c does not depend on k, and we have for
sufficiently large k

n(k) = nk,Z -, > (kZ"2-'b2w2 -'- `)/(4Z"2 -' -W2)

(kb14) 2"2 - '

_ (cV/-k-/log k)Z"2 .

Proof of Theorem 2(i) . Certainly if X [k, n - 1 ] is relatively large then
X > k. Therefore [k, n - 1 ] -+ (*) Z implies [k, n - I]-+ (k, *) z , so
R(k)>,n(k) from Theorem 5 .

We note that for sufficiently large k, c

	

/log k > 2, so we have

2ZW2 < R(k)

for all sufficiently large k .
Theorem 2(ü) will follow as a corollary of the following somewhat sharper

upper bound for R(k) involving iteration of ordinary Ramsey numbers .

THEOREM 6 . Let k > 3 be given . Let I be the collection of all binary
sequences with at most (k - 2) zeros and (k - 2) ones. Define the number n o
for each a E E by recursion on the length of a . Let no = k + 1. Given no , let

nap=n a +r(k-i,n a -1)

where i is the number of zeros in A, and

na , = na + r(k -j, na - 1)

where j is the number of ones in a 1 .
Let n = max{na I a E E} . Then R(k) < n, that is,

[k, n] --' (*)z

Proof. Let [k, m] Z be colored red and green, and suppose there is no
relatively large homogeneous set . We will show m < na for some a E E,
whence m < n . Define as = k.

a,+ , =,ux(x > a ; and {a	a,, x} is homogeneous green).

A,+ , _ {x I x > a ;+ „ {ao , . . ., a,, x} is homogeneous green and
a,+ , x is red } .

Define bo = k, b, + , , B, + , analogously with the colors reversed . Note that
since a o = k, a k _, "doesn't exist" (otherwise {a	ak -, } would be relatively



62

	

ERDŐS AND MILLS

JA i l < r(k - i, a i - 1),

IB i l < r(k-i, b i - 1) .

_ Aj

	

if C i = aj
Ci

	

~Bj

	

if ci = b; .

2

	

B k-2
FIGURE 3

large and homogeneous). We will carry out the argument as if all of
Ja	ak 2 } were defined . The contrary assumption involves only minor
notational changes. Note also that [k, m] is equal to the disjoint union {k,
a„ a2 , . . ., a k _ Z , b,, . . ., bk_ 2 } U A, U . . . UA k _ 2 UB, U . . . UB k _ z . See
Fig. 3 .
We claim that for each i = 1, 2, . . ., k - 2

A ; -A (k - i, a ; - 1) 2 ,

B i -4 (k - i, b i - 1) 2 .

Indeed, if {x i , . . ., x,_, } c A i were homogeneous green then {a a , a,, . . ., a i _„
xi , . . ., xk _, } would be relatively large and homogeneous green . If
{x,, . . .,xa ._,}(--_Ai were homogeneous red then {a„x,, . . .,xq ._I} would be
relatively large and homogeneous red . Similarly for B ; with colors reversed .
It follows that

k-

(5)

(6)

Now let C„ C2,-5 C2k_3 be a,, . . ., ak_2, b,	bk_2, m + 1, listed in
increasing order .

	

(In particular c, = k + 1, C2k_3 = m + 1 .) For
i = 1, 2, . . ., 2k - 4 define

Also define a binary sequence a of length 2k - 4 so that

o

	

if c; = a, for some j
a(i} = 1

	

if ci = b, for some j
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for i = 1,-, 2k - 4 . (Formally, a binary sequence is a function from some
[x] to {0, 1 } .) Clearly a C .E. We claim that m < n o . To prove this we show
inductively that

c,<k+i+ ` ~CJj<narr-n

	

(7)
1<j<t

for i = 1, 2, . . ., 2k - 3, where u r [i - 1 ] denotes the restriction of a to [i - 1 ] .
We have c, = k + 1 = k + 1 + ~, < J< , j C1 j and n or[o] = no = k + 1, so (7)
holds for i = 1 . For i > 1 the left-hand inequality in (7) is clear from the
definition of the CJ 's . For the right-hand inequality, consider the case
u(i) = 0. Then c, = a,, and C ; =A,, for some i' (i' is the number of zeros in
u r [i]), and we have

nQri ( = na ~ i ,( + r(k - i', no (,_,~

	

1)

	

by definition

k + i + ",, I Ci l + r(k - i', a,, - 1) since norf,-, ,1> c, = a,'
! <J<i

~k+i+ ~, j Cj I +JA,, j +1

	

by (5)

k + (i + 1) + ",1 I C; j

	

as required .
I_J<i

The case o(i) = 1 is analogous. This proves (7) .
We conclude that czk-3 < nar[2k-41 = nQ . But czk-3 = m + 1, so m < n Q .

This concludes the proof of Theorem 6 .

We note that Theorem 6 yields an upper bound for R(5) on the order of
3 X 10" by actually calculating upper bounds for all the n o 's .

Proof of Theorem 2(ü). We prove that in Theorem 6

no < 2(2(k + 1)(k-2)!)(k-2)'

	

for all c E E

	

(8)

whence

We use the fact that

R(k) < 2(2(k + 1)(k-z)1)(k-2)!,

( s+e-1 )

	

,

	

2r(e,s-1)<

	

<S
e-

-
Se-

e-

<J7<

(9)
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for 2 < e < s . We have no = k + 1 ;

nvo =nQ +r(k-í,n,- 1)

< nQ + n (k -i-1) - n(k -i -2)
o

	

a
n (k-1-1)

or

n. o < 2nvk-i- ' ) = 2n,

	

for i = k-2.

Similarly, nQ , < npk-l - `) if j < k - 2, and n,, < 2n,, if j = k - 2. It follows
that nv < 2(2(k + 1)V1z • ' ' Vr)Vr + t . . . Ps for each a E E, where F1 1'=, y,
(k - 2) ! 2 and Hi=r+I Yi < (k - 2)! . The bound (8) follows .
We now have

R(k) < 2(2(k + 1)(k-2)1)(k-2)1

< 2(k-1)12 < 2k 2k '

Theorem 3(i) is an immediate corollary of Theorem 7 which shows that in
fact L,(k) is a lower bound for a weaker partition relation . Given a coloring
of [X] 2 , a subset Y 9 X is said to be path-homogeneous if and only if every
pair of consecutive elements of Y receives the same color . Clearly this is
weaker than being homogeneous . Let Rc(k) denote the last n such that for
every c-coloring of [k, n] 2 there exists a relatively large path-homogeneous
subset of [k, n] . Then R,(k) < Rc(k) and we have

THEOREM 7 . For c > l, k > 3, L,(k) < R,(k).

Proof. We give a direct proof. Given c, k, let I = [k, L,(k) - 1 ] . We
claim the following c-coloring of [I] 2 contains no relatively large path-
homogeneous set

F(x, y) = max (n 13i x < L ni) (k) <y } .

Indeed, suppose X= (x„ x 2 , . . ., x,,,} S I is path-homogeneous for F with x, <
X2 < • • • < xm . We must show m < x, .
We know that for some nC [0, c - 1 ] and for all i E [m - I ],

F(x ;, x,+ ,) = n . This means there exist integers r, < r2 < ' • • < r,,,-, such that
x; < L,(,rd (k) < x,+ 1 and for all integers r, either L,(,r+,(k) < x ; or
x ;+ , < Ln+,(k) . Let r be maximal such that Lnr+,(k) < x, and let
s =Ln+,(k). It follows that x,n < Ln+,' )(k) =L„+,(s) =Lns-')(s). On the
other hand using the monotonicity of L„ for arguments >3, we establish
inductively that L (,i ) ( s) < x;+, for i = 0, i, 2, . . ., m - 1 . Thus L,(,m-')(s) < x,,, <
Lns- ' ) ( s), so m < s < x, and we are done .

for i<k-2
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We note that it is also possible to establish Theorem 7 inductively by
showing that in fact for each c,

Rc(k ,' )(k) < R jk) .

This gives a slightly stronger result, assuming, as is likely, that
L c -,(k) < R c _,(k). The same sort of argument will establish that
RCk 1' )(k) < R,(k) . In fact an even stronger result will be proved in
Theorem 8. Thus using Theorem 2(i) we could have defined the sequence of
L functions starting with L 2(k) = 22V2 .
We now turn our attention to a more general case of the

Ramsey-Paris-Harrington partition relation. We define

R jk; m) =,un([k, n] -> (m, *) C)

where * denotes a sequence of c - 1 stars. In other words the homogeneous
set is required to have size >m if it is of color 1 and to be relatively large
(and of size >3) if it is of a color greater than one . As a special case we
have R jk) = R, + ,(k ; 2) . Other special cases are R,(k ; m) = k + m - 1 and
R,(k ; 1) = k . Theorem 5 expresses the fact that for some c > 0 eventually
(cV6k-/log k) ZV 2 < RA; k) .

We remark that for any k, m < h

R,(k ; m) < R jh).

This holds since [h, n] -> (*)2 implies [k, n] -> (m, #)2 whenever k, m < h .
The following theorem gives the basis for an alternative inductive proof

(which we shall not spell out) of Theorem 3(i).

THEOREM 8 . For m, c > 1 and k > 3

( i ) R(('-,)(k) < R C+,(k; m),
(ii) RC ` )(k) < R,+,(k) •

Proof. (i) For each i = 1, 2, . . ., m - 1 let I; _ [R~'-1J(k), R ( ' ) (k) - 1 ] . Let
F; be a c-coloring of [Ii ] 2 with no relatively large homogeneous set . Define
the (c + 1)-coloring F on [k, R (m-1) (k) - 1 ] by

F(a, b

	

`
f)

- (F;(a, b) + 1

	

if a, b E I; some i
1

	

otherwise .

If X is homogeneous for F to color 1, then I X n I; < 1 for each i, so
I X~ < m - 1 . IfX is homogeneous for F to a color greater than 1, then X -C I i
for some i . Hence X is homogeneous for F ; and thus not relatively large.
Thus [k, RC(m -,)(k) - 1 ] -A (m, *)c+,
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(ü) By the remark immediately preceding this theorem, we have
R,+,(k) > R,+,(k ; k) > R~ k- "(k). 1

The following theorem gives the key inductive relationship to be used in
calculating upper bounds for R,(k ; m) and hence for R,(k) .

THEOREM 9 . Let c > 1 be given and suppose

R,(k ; m) < g(k, m)

	

for all k, m > 1 .

Define

Then

R, + , (k ; m) < f(k, m)

	

for all k, m > 1 .

Proof. Fix k and proceed by induction on m . By the special case noted
above R,, + ,(k ; 1) = k = f (k, 1), so the conclusion holds for m = 1 . Now
assume inductively that R, + ,(k ; m) < f(k, m) and we wish to prove
R,,, (k ; m + 1) < f(k, m + 1). Let P : [k, f(k, m + 1)] Z -> [c + I] be given . If
there exists a relatively large X c [k, f(k, m)] which is homogeneous for P to
some color d > 2, we are done. So assume there is none, and by the
induction hypothesis find a set of m elements a, < a 2 < • • • < a„, in
[k, f (k, m)] which is homogeneous for P to color 1 .

Let I = [f(k, m) + 1, f(k, m + 1)] . If for some a E I we have P(a i , a) = 1
for all i E [m], then again we are done, for {a„ az , . . ., a,,,, a} will be a size
m + 1 set homogeneous for P to color 1 . So assume no such a E I exists and
express I as a disjoint union

f(k, 1)=k

f(k,m+ 1)=g(f(k,m)+ 1,r(m+ 1, mc(f(k, m) - 2) + 1)) .

I= U {A jj 1 1 <i<m,2<j<e+ 1}

so that P(a i , a) =j for all a E A ij .
We now alter the (c + 1)-coloring P on I somewhat to obtain a c-coloring

Q : [1] Z , [c] by stipulating

Q(a, b) = P(a, b) if a, b E A if and P(a, b) < j

= P(a, b) - 1 if a, b E A,, and P(a, b) > j

= 1

	

otherwise .

Thus all lines between points in different A ir 's are changed to color 1 . Within



A;1 , lines of color ~-,j are left fixed, lines of color] are changed to color 1,
and lines of color >j are decreased one color .

By the defining equation for f(k, m + 1) one of the following two cases
must occur .

Case 1 . There exists X g I which is relatively large and homogeneous for
Q to some color d > 2 . Then X A ; ; for some i,j. Since we cannot have
P(a, b) < j < P(r, s) and P(a, b) = P(r, s) - 1 for any a, b, r, s E A,j , we must
have either d - Q(a, b) = P(a, b) for all {a, h} E [X]z or d = Q(a, b) _
P(a, b) - 1 for all Ia, b} E [X] 2 . Thus X is homogeneous for P to color either
d or d + 1, and we are done .

Case 2 . There exists X -- I which is homogeneous for Q to color 1 and
JXJ > r(m + 1, mc(f(k, m) - 2) + 1). In this case define R : [X] 2 -4 [2] by

By the definition of r(x, y) one of the following two subcases must occur .

Subcase (i) . There exists Y E-- X which is homogeneous for R to color
1 and ~ YJ > m + 1 . Then Y is also homogeneous for P to color 1, and we are
done .

Subcase (ü) . There exists Y~;; X which is homogeneous for R to color
2 and I YJ > mc(f (k, m) - 2) + 1). By the pigeonhole principle I Y n A ;j I
f(k, m) - I > a ; - I for some A,j , since there are at most me different A,j 's .
We have P(a, b) =j for all a, b E Yn A,j , since Q(a, b) = 1 and P(a, b) > 1 .
Therefore (Yn A;J) U {a,j is relatively large and homogeneous for P to color
j>2.

This completes the proof of Theorem 8 . /

COROLLARY 10 . Define the function U= U(c, k, m) by the equations

Then
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R(a, b) = 1

	

if P(a, b) = 1

= 2

	

if P(a, b) > 1 .

U(l,k,m)=k+m-1,

U(c + 1, k, 1)) = k,

U(c + 1, k, m + 1)

= U(c, U(c + 1, k, m) + 1, r(m + 1, mc(U(c + 1, k, m) - 2) + 1)) .

R,(k ; m) < U(c, k, m),

R,(k) < U(c + 1, k, 2) . /
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COROLLARY 1 1 . For any c > 1, k > 3,

R,(k) G R,(k + 1 ; c(k - 2) + 1) .

Proof. Let g(k, m) = R,(k ; m) and define f(k, m) as in Theorem 8 . Then

R,(k) = R,+,(k ; 2)

f(k, 2)
= R,(f(k, 1) + 1 ; r(2, 1 • c • (f(k, 1) - 2) + 1))

=R,(k+ 1 ;c(k-2)+ 1).

For the following corollary let E(x) = x'x , and given function f (x) let f ~ yI
denote the yth iterate of fo E, so that fly + ' I(x)= f(E(f1YI(x))) . In the proof
of the following corollary and in subsequent proofs we will make frequent
implicit use of the monotonicity of E, R, and U, We also use the fact that
E(h) < U,(h) for all h > 1 .

COROLLARY 12 . For 3 < k, 2 < c < k, and 1 < m

Rc+,(k ; m) < Rcm- ~ I (k)

Proof. Let g(k, m) = R c(k; m) and define f(k, m) as in Theorem 8 . We
show by induction on m that in fact f(k, m) < Rtm - 'I(k). For m = 1 we have
f(k, 1)=k=Rr°I(k) .

Now suppose the corollary holds for a given m > 1 and we wish to prove
it for m + 1 . Let B = r(m + l, mc(f(k, m) - 2) + 1) and h = f(k, m). Since
m + l, c, k < h we have

B < r(h, h' - 1) < h" = E(f (k, m)) .

Therefore, using the remark preceding Theorem 8 and the monotonicity of R,
and E, we have

f(k, m + 1) = R,(h + 1 ; B)

< R,(B)

< R,(E(f(k, m)))
C R,(E(R,'"-'I(k))) = R,'I(k) . 1

LEMMA 13 . For any c > 2 and k > 1

U,(U,(k)) < U,(U,(k» .
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Proof. This is trivial for c = 2 . Assuming it holds for a given c > 3, we
have

U2(Uc+,(k)) =
Ü2(U(c(c+n(k-'))(k))

	

definition Uc+,
•

	

Uac+ nck- n ) (U2(k)) induction

•

	

UC((`+1)W2(k)-'))(U2(k)) monotonicity

= Uc+I(U2(k)) .

	

definition Uc+ ,

With trivial modifications the above argument works also for c = 3, hence by
induction we are done .

Proof of Theorem 3(ü) . For
Theorem 2(ü) . For c = 3 we have

R3(k) < R 3(k + 1 ; 3(k - 2) + 1) Corollary 11

Corollary 12

monotonicity

<RZ3k-61(k+ 1)
•

	

U(26k-12)(k+ 1)

•

	

U("- ")(k) = U3(k).

Now assume the theorem holds for a given c > 3 and we wish to prove it
for c + 1 . Letting K = (c + 1)(k - 2) we have

R,,, (k) <R,,, (k + 1, K + 1)

<Re
[K](k+ 1)

•

	

VK)(U(K)(k+
1 ))

•

	

U~K)(U3(K+ 1))

•

	

UeK)(U3(U,(k)))
•

	

U(K+2)(k)

U«c+n(k-n)(k)= U,+,(k) . 1

c=2 we have R2(k)<2kzk = U2(k) by

Note added in proof. Grinstead and Roberts [101 have recently announced that
r(3, 9) = 36 . This enables us to improve Theorem I (iv) to R(4) S 685 .
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