Primitive Recursive Function and Ramsey Theory

Exposition by William Gasarch-U of MD

Bounds on a-ary Ramsey Numbers

Def $R_{a}(k)$ is the least n such that, for all COL: $\binom{[n]}{a} \rightarrow[2]$ there exists a homog set of size k.

Bounds on a-ary Ramsey Numbers

Def $R_{a}(k)$ is the least n such that, for all COL: $\binom{[n]}{a} \rightarrow[2]$ there exists a homog set of size k.

Recall that we showed
$R_{2}(k) \leq 2^{2 k-1}$.
$R_{3}(k) \leq \operatorname{TOW}(2 k)$.

Bounds on a-ary Ramsey Numbers

Def $R_{a}(k)$ is the least n such that, for all COL: $\binom{[n]}{a} \rightarrow[2]$ there exists a homog set of size k.

Recall that we showed
$R_{2}(k) \leq 2^{2 k-1}$.
$R_{3}(k) \leq \operatorname{TOW}(2 k)$.
What would the bound be on $R_{4}(k)$?
We do not have a good way to write it down.

Bounds on a-ary Ramsey Numbers

Def $R_{a}(k)$ is the least n such that, for all COL: $\binom{[n]}{a} \rightarrow[2]$ there exists a homog set of size k.

Recall that we showed
$R_{2}(k) \leq 2^{2 k-1}$.
$R_{3}(k) \leq \operatorname{TOW}(2 k)$.
What would the bound be on $R_{4}(k)$?
We do not have a good way to write it down.
Consider the function
(a, k) maps to $R_{a}(k)$.
What are the bounds on that?

Bounds on a-ary Ramsey Numbers

Def $R_{a}(k)$ is the least n such that, for all COL: $\binom{[n]}{a} \rightarrow[2]$ there exists a homog set of size k.

Recall that we showed
$R_{2}(k) \leq 2^{2 k-1}$.
$R_{3}(k) \leq \operatorname{TOW}(2 k)$.
What would the bound be on $R_{4}(k)$?
We do not have a good way to write it down.
Consider the function
(a, k) maps to $R_{a}(k)$.
What are the bounds on that?
We need a way to express very fast growing functions.

Definition of Primitive Recursive (PR)

Def $f\left(x_{1}, \ldots, x_{n}\right)$ is $\mathbf{P R}$ if either:

Definition of Primitive Recursive (PR)

Def $f\left(x_{1}, \ldots, x_{n}\right)$ is PR if either:

1. $f\left(x_{1}, \ldots, x_{n}\right)=0$;

Definition of Primitive Recursive (PR)

Def $f\left(x_{1}, \ldots, x_{n}\right)$ is PR if either:

1. $f\left(x_{1}, \ldots, x_{n}\right)=0$;
2. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$;

Definition of Primitive Recursive (PR)

Def $f\left(x_{1}, \ldots, x_{n}\right)$ is PR if either:

1. $f\left(x_{1}, \ldots, x_{n}\right)=0$;
2. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$;
3. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}+1$;

Definition of Primitive Recursive (PR)

Def $f\left(x_{1}, \ldots, x_{n}\right)$ is $\mathbf{P R}$ if either:

1. $f\left(x_{1}, \ldots, x_{n}\right)=0$;
2. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$;
3. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}+1$;
4. $g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right), h\left(x_{1}, \ldots, x_{n}\right)$ PR \Longrightarrow

$$
f\left(x_{1}, \ldots, x_{k}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right)\right) \text { is } \mathrm{PR}
$$

Definition of Primitive Recursive (PR)

Def $f\left(x_{1}, \ldots, x_{n}\right)$ is PR if either:

1. $f\left(x_{1}, \ldots, x_{n}\right)=0$;
2. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$;
3. $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}+1$;
4. $g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right), h\left(x_{1}, \ldots, x_{n}\right)$ PR \Longrightarrow

$$
f\left(x_{1}, \ldots, x_{k}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{k}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{k}\right)\right) \text { is } \mathrm{PR}
$$

5. $h\left(x_{1}, \ldots, x_{n+1}\right)$ and $g\left(x_{1}, \ldots, x_{n-1}\right) \mathrm{PR} \Longrightarrow$

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{n-1}, 0\right) & =g\left(x_{1}, \ldots, x_{n-1}\right) \\
f\left(x_{1}, \ldots, x_{n-1}, m+1\right) & =h\left(x_{1}, \ldots, x_{n-1}, m, f\left(x_{1}, \ldots, x_{n-1}, m\right)\right)
\end{aligned}
$$

is PR .

Examples of PR Functions

$$
f_{0}(x, y)=y+1 . \text { Successor. }
$$

Examples of PR Functions

$$
\begin{aligned}
& f_{0}(x, y)=y+1 . \text { Successor. } \\
& f_{1}(x, y)=x+y
\end{aligned}
$$

Examples of PR Functions

$$
\begin{aligned}
& f_{0}(x, y)=y+1 . \text { Successor. } \\
& f_{1}(x, y)=x+y \\
& f_{1}(x, 0)=x \\
& f_{1}(x, y+1)=f_{1}(x, y)+1
\end{aligned}
$$

Used Rec Rule Once. Addition.

Examples of PR Functions

$$
\begin{aligned}
& f_{0}(x, y)=y+1 . \text { Successor. } \\
& f_{1}(x, y)=x+y \\
& f_{1}(x, 0)=x \\
& f_{1}(x, y+1)=f_{1}(x, y)+1
\end{aligned}
$$

Used Rec Rule Once. Addition.

$$
f_{2}(x, y)=x y:
$$

Examples of PR Functions

$$
\begin{aligned}
& f_{0}(x, y)=y+1 . \text { Successor. } \\
& f_{1}(x, y)=x+y \\
& f_{1}(x, 0)=x \\
& f_{1}(x, y+1)=f_{1}(x, y)+1
\end{aligned}
$$

Used Rec Rule Once. Addition.

$$
f_{2}(x, y)=x y:
$$

$$
f_{2}(x, 1)=x(\text { Didn't start at } 0 . \text { A detail. })
$$

$$
f_{2}(x, y+1)=f_{2}(x, y)+x
$$

Used Rec Rule Twice. Once to get $x+y$ PR, and once here. Multiplication

Examples of PR Functions

$f_{0}(x, y)=y+1$. Successor.
$f_{1}(x, y)=x+y$
$f_{1}(x, 0)=x$
$f_{1}(x, y+1)=f_{1}(x, y)+1$.
Used Rec Rule Once. Addition.
$f_{2}(x, y)=x y$:
$f_{2}(x, 1)=x$ (Didn't start at 0. A detail.)
$f_{2}(x, y+1)=f_{2}(x, y)+x$.
Used Rec Rule Twice. Once to get $x+y$ PR, and once here.
Multiplication
The PR functions can be put in a hierarchy depending on how many times the recursion rule is used to build up to the function.

More PR Functions

More PR Functions

$$
f_{3}(x, y)=x^{y}:
$$

More PR Functions

$$
\begin{aligned}
& f_{3}(x, y)=x^{y}: \\
& f_{3}(x, 0)=1 \\
& f_{3}(x, y+1)=f_{3}(x, y) x
\end{aligned}
$$

Used Rec Rule three times. Exp.

More PR Functions

$f_{3}(x, y)=x^{y}:$
$f_{3}(x, 0)=1$
$f_{3}(x, y+1)=f_{3}(x, y) x$.
Used Rec Rule three times. Exp.
$f_{4}(x, y)=\operatorname{TOW}(x, y)$.

More PR Functions

$$
\begin{aligned}
& f_{3}(x, y)=x^{y}: \\
& f_{3}(x, 0)=1 \\
& f_{3}(x, y+1)=f_{3}(x, y) x .
\end{aligned}
$$

Used Rec Rule three times. Exp.
$f_{4}(x, y)=\operatorname{TOW}(x, y)$.
$f_{4}(x, 0)=1$
$f_{4}(x, y+1)=f_{4}(x, y)^{x}$.
Used Rec Rule four times. TOWER.

More PR Functions

$$
\begin{aligned}
& f_{3}(x, y)=x^{y}: \\
& f_{3}(x, 0)=1 \\
& f_{3}(x, y+1)=f_{3}(x, y) x .
\end{aligned}
$$

Used Rec Rule three times. Exp.
$f_{4}(x, y)=\operatorname{TOW}(x, y)$.
$f_{4}(x, 0)=1$
$f_{4}(x, y+1)=f_{4}(x, y)^{x}$.
Used Rec Rule four times. TOWER.
$f_{5}(x, y)=$ WHAT SHOULD WE CALL THIS?

More PR Functions

$f_{3}(x, y)=x^{y}:$
$f_{3}(x, 0)=1$
$f_{3}(x, y+1)=f_{3}(x, y) x$.
Used Rec Rule three times. Exp.
$f_{4}(x, y)=\operatorname{TOW}(x, y)$.
$f_{4}(x, 0)=1$
$f_{4}(x, y+1)=f_{4}(x, y)^{x}$.
Used Rec Rule four times. TOWER.
$f_{5}(x, y)=$ WHAT SHOULD WE CALL THIS?
$f_{5}(x, 0)=1$
$f_{5}(x, y+1)=\operatorname{TOW}\left(f_{5}(x, y), x\right)$.
Used Rec Rule five times.
What should we call this? Discuss

More PR Functions

$f_{3}(x, y)=x^{y}:$
$f_{3}(x, 0)=1$
$f_{3}(x, y+1)=f_{3}(x, y) x$.
Used Rec Rule three times. Exp.
$f_{4}(x, y)=\operatorname{TOW}(x, y)$.
$f_{4}(x, 0)=1$
$f_{4}(x, y+1)=f_{4}(x, y)^{x}$.
Used Rec Rule four times. TOWER.
$f_{5}(x, y)=$ WHAT SHOULD WE CALL THIS?
$f_{5}(x, 0)=1$
$f_{5}(x, y+1)=\operatorname{TOW}\left(f_{5}(x, y), x\right)$.
Used Rec Rule five times.
What should we call this? Discuss
Its been called WOWER.

The Functions That Have No Name

$f_{a}(x, y)$ is defined as

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor
f_{1} is Addition

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor
f_{1} is Addition
f_{2} is Multiplication

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor
f_{1} is Addition
f_{2} is Multiplication
f_{3} is Exp

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor
f_{1} is Addition
f_{2} is Multiplication
f_{3} is Exp
f_{4} is Tower (This name has become standard.)

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor
f_{1} is Addition
f_{2} is Multiplication
f_{3} is Exp
f_{4} is Tower (This name has become standard.)
f_{5} is Wower (This name is not standard.)

The Functions That Have No Name

$f_{a}(x, y)$ is defined as
$f_{a}(x, 0)=1$
$f_{a}(x, y+1)=f_{a-1}\left(f_{a}(x, y), x, y\right)$
f_{0} is Successor
f_{1} is Addition
f_{2} is Multiplication
f_{3} is Exp
f_{4} is Tower (This name has become standard.)
f_{5} is Wower (This name is not standard.)
f_{6} and beyond have no name.

Levels

Def PR_{a} is the set of PR functions that can be defined with $\leq a$ uses of the Recursion rule.

Levels

Def PR_{a} is the set of PR functions that can be defined with $\leq a$ uses of the Recursion rule.
Note One can show that any finite number of exponentials is in PR_{3}.

Bounding the Hypergraph Ramsey Numbers

$R_{2}(k) \leq 2^{2 k}=f_{3}(O(k))$. Level 3.
$R_{3}(k) \leq \operatorname{TOW}(2 k)=f_{4}(O(k))$. Level 4.
$R_{a}(k) \leq f_{a+1}(O(k))$. Level $a+1$.
$L R(k)$ I only showed exists but did not show a bound.

Bounding the Hypergraph Ramsey Numbers

$R_{2}(k) \leq 2^{2 k}=f_{3}(O(k))$. Level 3.
$R_{3}(k) \leq \operatorname{TOW}(2 k)=f_{4}(O(k))$. Level 4 .
$R_{a}(k) \leq f_{a+1}(O(k))$. Level $a+1$.
$L R(k)$ I only showed exists but did not show a bound.
I can now state my questions and add some more.

Bounding the Hypergraph Ramsey Numbers

$R_{2}(k) \leq 2^{2 k}=f_{3}(O(k))$. Level 3.
$R_{3}(k) \leq \operatorname{TOW}(2 k)=f_{4}(O(k))$. Level 4 .
$R_{a}(k) \leq f_{a+1}(O(k))$. Level $a+1$.
$L R(k)$ I only showed exists but did not show a bound.
I can now state my questions and add some more.

- Is $R_{3}(k)$ in PR_{3} ?

Bounding the Hypergraph Ramsey Numbers

$R_{2}(k) \leq 2^{2 k}=f_{3}(O(k))$. Level 3.
$R_{3}(k) \leq \operatorname{TOW}(2 k)=f_{4}(O(k))$. Level 4 .
$R_{a}(k) \leq f_{a+1}(O(k))$. Level $a+1$.
$L R(k)$ I only showed exists but did not show a bound.
I can now state my questions and add some more.

- Is $R_{3}(k)$ in PR_{3} ?
- Is the function $f(a, k)=R_{a}(k) P R$?

Bounding the Hypergraph Ramsey Numbers

$R_{2}(k) \leq 2^{2 k}=f_{3}(O(k))$. Level 3.
$R_{3}(k) \leq \operatorname{TOW}(2 k)=f_{4}(O(k))$. Level 4 .
$R_{a}(k) \leq f_{a+1}(O(k))$. Level $a+1$.
$L R(k)$ I only showed exists but did not show a bound.
I can now state my questions and add some more.

- Is $R_{3}(k)$ in PR_{3} ?
- Is the function $f(a, k)=R_{a}(k) P R$?
- Is $\operatorname{LR}(k) P R$? If so then what level?

More is PR than you Think

The following are PR:

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.
2. $f(x, y)=$ the quotient when you divide x by y.

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.
2. $f(x, y)=$ the quotient when you divide x by y.
3. $f(x, y)=$ the remainder when you divide x by y.

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.
2. $f(x, y)=$ the quotient when you divide x by y.
3. $f(x, y)=$ the remainder when you divide x by y.
4. $f(x, y)=x(\bmod y)$.

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.
2. $f(x, y)=$ the quotient when you divide x by y.
3. $f(x, y)=$ the remainder when you divide x by y.
4. $f(x, y)=x(\bmod y)$.
5. $f(x, y)=\operatorname{GCD}(x, y)$.

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.
2. $f(x, y)=$ the quotient when you divide x by y.
3. $f(x, y)=$ the remainder when you divide x by y.
4. $f(x, y)=x(\bmod y)$.
5. $f(x, y)=\operatorname{GCD}(x, y)$.
6. $f(x)=1$ if x is prime, 0 if not.

More is PR than you Think

The following are PR:

1. $f(x, y)=x-y$ if $x \geq y, 0$ otherwise.
2. $f(x, y)=$ the quotient when you divide x by y.
3. $f(x, y)=$ the remainder when you divide x by y.
4. $f(x, y)=x(\bmod y)$.
5. $f(x, y)=\operatorname{GCD}(x, y)$.
6. $f(x)=1$ if x is prime, 0 if not.
7. $f(x)=1$ if x is the sum of 2 primes, 0 otherwise.

Most Functions are PR

Virtually any computable function from N^{k} to N that you encounter in mathematics is primitive recursive.

Most Functions are PR

Virtually any computable function from N^{k} to N that you encounter in mathematics is primitive recursive.
Are there any computable functions that are not primitive recursive?
Discuss.

Most Functions are PR

Virtually any computable function from N^{k} to N that you encounter in mathematics is primitive recursive.
Are there any computable functions that are not primitive recursive?
Discuss.
Yes. We will see a contrived one on the next slide.

A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode the derivation of a PR function as a number. One can then assign to every number a PR function easily.

A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode the derivation of a PR function as a number. One can then assign to every number a PR function easily.
Let f_{1}, f_{2}, \ldots be all of the PR functions.

A Contrived Not PR Function

The PR functions are formed by building up rules. One can encode the derivation of a PR function as a number. One can then assign to every number a PR function easily.
Let f_{1}, f_{2}, \ldots be all of the PR functions.

$$
F(x)=f_{x}(x)+1
$$

is computable but not a PR function.

A "Natural" non PR Function

Def Ackerman's function is the function defined by

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

A "Natural" non PR Function

Def Ackerman's function is the function defined by

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

1. A is obviously computable.

A "Natural" non PR Function

Def Ackerman's function is the function defined by

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

1. A is obviously computable.
2. A grows faster than any PR function.

A "Natural" non PR Function

Def Ackerman's function is the function defined by

$$
\begin{aligned}
A(0, y) & =y+1 \\
A(x+1,0) & =A(x, 1) \\
A(x+1, y+1) & =A(x, A(x+1, y))
\end{aligned}
$$

1. A is obviously computable.
2. A grows faster than any PR function.
3. Since A is defined using a recursion which involves applying the function to itself there is no obvious way to take the definition and make it PR. Not a proof, an intuition.

Ackerman's Function is Natural: Security

https://ackerman-security-systems.pissedconsumer.com/ customer-service.html

Ackerman's Function is Natural: Security

https://ackerman-security-systems.pissedconsumer.com/ customer-service.html
They are called Ackerman Security since they claim that Burglar would have to be Ackerman(n)-good to break in.

Ackerman's Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:

Ackerman's Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make $\{a\}$ a set.

Ackerman's Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make $\{a\}$ a set.
(2) If A, B are sets then make $A \cup B$ a set.

Ackerman's Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make $\{a\}$ a set.
(2) If A, B are sets then make $A \cup B$ a set.
(3) Given x find which, if any, set it is in.

Ackerman's Function is Natural: DS

DS is Data Structure.
UNION-FIND DS for sets that supports:
(1) If a is a number then make $\{a\}$ a set.
(2) If A, B are sets then make $A \cup B$ a set.
(3) Given x find which, if any, set it is in.

- There is a DS for this problem that can do n operations in $n A^{-1}(n)$ steps.
- One can show that there is no better DS.

So $n A^{-1}(n, n)$ is the exact upper and lower bound!

Ackerman's Function and Goodstein Seq

Writing a number as a sum of powers of 2.

$$
1000=2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}
$$

Ackerman's Function and Goodstein Seq

Writing a number as a sum of powers of 2.

$$
1000=2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}
$$

But we can also write the exponents as sums of power of 2

$$
1000=2^{2^{3}+2^{0}}+2^{2^{3}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Ackerman's Function and Goodstein Seq

Writing a number as a sum of powers of 2 .

$$
1000=2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}
$$

But we can also write the exponents as sums of power of 2

$$
1000=2^{2^{3}+2^{0}}+2^{2^{3}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

We can even write the exponents that are not already powers of 2 as sums of powers of 2 .

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Ackerman's Function and Goodstein Seq

Writing a number as a sum of powers of 2.

$$
1000=2^{9}+2^{8}+2^{7}+2^{6}+2^{5}+2^{3}
$$

But we can also write the exponents as sums of power of 2

$$
1000=2^{2^{3}+2^{0}}+2^{2^{3}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

We can even write the exponents that are not already powers of 2 as sums of powers of 2 .

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

This is called Hereditary Base n Notation

Ackerman's Function and Goodstein Seq

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Replace all of the 2's with 3's:

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}
$$

Ackerman's Function and Goodstein Seq

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Replace all of the 2's with 3's:

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}
$$

This number just went WAY up. Now subtract 1.

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}-1
$$

Ackerman's Function and Goodstein Seq

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Replace all of the 2's with 3's:

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}
$$

This number just went WAY up. Now subtract 1.

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}-1
$$

Repeat the process:
Replace 3 by 4 , and subtract 1 , Replace 4 by 5 , and subtract $1, \cdots$.

Ackerman's Function and Goodstein Seq

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Replace all of the 2's with 3's:

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}
$$

This number just went WAY up. Now subtract 1.

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}-1
$$

Repeat the process:
Replace 3 by 4 , and subtract 1 , Replace 4 by 5 , and subtract $1, \cdots$.
Vote Does the sequence:

- Goto infinity (and if so how fast- perhaps Ack-like?)
- Eventually stabilizes (e.g., goes to 18 and then stops there)
- Cycles- goes UP then DOWN then UP then DOWN

Ackerman's Function and Goodstein Seq

$$
1000=2^{2^{2^{1}+2^{0}}+2^{0}}+2^{2^{2^{1}+2^{0}}}+2^{2^{2}+2^{1}+2^{0}}+2^{2^{1}+2^{0}}
$$

Replace all of the 2 's with 3 's:

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}
$$

This number just went WAY up. Now subtract 1.

$$
3^{3^{3^{1}+3^{0}}+3^{0}}+3^{3^{3^{1}+3^{0}}}+3^{3^{3}+3^{1}+3^{0}}+3^{3^{1}+3^{0}}-1
$$

Repeat the process:
Replace 3 by 4, and subtract 1, Replace 4 by 5, and subtract $1, \cdots$.
Vote Does the sequence:

- Goto infinity (and if so how fast- perhaps Ack-like?)
- Eventually stabilizes (e.g., goes to 18 and then stops there)
- Cycles- goes UP then DOWN then UP then DOWN

The sequence goes to 0 .
The number of steps for n to goto 0 is roughly $A C K(n, n)$.

Vote

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN YES

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$. YES, NO, UNKNOWN

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$. YES, NO, UNKNOWN YES

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN
YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$.

YES, NO, UNKNOWN
YES We will "show" $R_{a}(k)$ is $\leq \operatorname{stack}-$ of- $(a-1) 2$'s.

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN
YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$.

YES, NO, UNKNOWN
YES We will "show" $R_{a}(k)$ is $\leq \operatorname{stack}$-of- $(a-1)$ 2's.
3. $\mathrm{LR}_{2}(k)$ is PR .

YES, NO, UNKNOWN

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN
YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$.

YES, NO, UNKNOWN
YES We will "show" $R_{a}(k)$ is \leq stack-of- $(a-1)$ 2's.
3. $\mathrm{LR}_{2}(k)$ is PR .

YES, NO, UNKNOWN
YES

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN
YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$.

YES, NO, UNKNOWN
YES We will "show" $R_{a}(k)$ is $\leq \operatorname{stack}-$ of- $(a-1) 2$'s.
3. $\mathrm{LR}_{2}(k)$ is PR .

YES, NO, UNKNOWN
YES $L R R_{2}(k) \leq 2^{2^{5 k}}$. Proof Messy.

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN
YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$.

YES, NO, UNKNOWN
YES We will "show" $R_{a}(k)$ is $\leq \operatorname{stack}-$ of- $(a-1) 2$'s.
3. $\mathrm{LR}_{2}(k)$ is PR .

YES, NO, UNKNOWN
YES $L R R_{2}(k) \leq 2^{2^{5 k}}$. Proof Messy.
4. $f(a, k)=\operatorname{LR}_{a}(k)$ is PR YES, NO, UNKNOWN

Vote

1. $R_{3}(k)$ is in PR_{3} (finite stack-of-2's rather than TOW) YES, NO, UNKNOWN
YES We will show $R_{3}(k) \leq 2^{2^{O(k)}}$.
2. $R_{a}(k)$ is $P R$.

YES, NO, UNKNOWN
YES We will "show" $R_{a}(k)$ is $\leq \operatorname{stack}-$ of- $(a-1) 2$'s.
3. $\mathrm{LR}_{2}(k)$ is PR .

YES, NO, UNKNOWN
YES $L R R_{2}(k) \leq 2^{2^{5 k}}$. Proof Messy.
4. $f(a, k)=\operatorname{LR}_{a}(k)$ is PR YES, NO, UNKNOWN
NO. See next slide.

What is known about $\mathrm{LR}_{a}(k)$?

Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all COL: $(\{k, \ldots, k+n\}) \rightarrow[2] \exists$ a large homog set.

What is known about $\mathrm{LR}_{a}(k)$?

Thm For all a, k there exists $n=\mathrm{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2] \exists$ a large homog set.
Let $f(a, k)=\mathrm{LR}_{a}(k)$. The following are known.

What is known about $\mathrm{LR}_{a}(k)$?

Thm For all a, k there exists $n=\mathrm{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2] \exists$ a large homog set.
Let $f(a, k)=\mathrm{LR}_{a}(k)$. The following are known.

1. $f(a, k)$ grows faster than any primitive rec function.

What is known about $\mathrm{LR}_{a}(k)$?

Thm For all a, k there exists $n=\mathrm{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2] \exists$ a large homog set.
Let $f(a, k)=\mathrm{LR}_{a}(k)$. The following are known.

1. $f(a, k)$ grows faster than any primitive rec function.
2. $f(a, k)$ grows faster than Ackerman's function.

What is known about $\mathrm{LR}_{a}(k)$?

Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2] \exists$ a large homog set.
Let $f(a, k)=\mathrm{LR}_{a}(k)$. The following are known.

1. $f(a, k)$ grows faster than any primitive rec function.
2. $f(a, k)$ grows faster than Ackerman's function.
3. We defined $\mathrm{PR}_{1}, \mathrm{PR}_{2}$. One can define PR_{ω} and that is where ACKERMAN is. One can then define PR_{α} for all countable ordinals $\alpha<\epsilon_{0}$ (won't get into that).

What is known about $\mathrm{LR}_{a}(k)$?

Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2] \exists$ a large homog set.
Let $f(a, k)=\mathrm{LR}_{a}(k)$. The following are known.

1. $f(a, k)$ grows faster than any primitive rec function.
2. $f(a, k)$ grows faster than Ackerman's function.
3. We defined $\mathrm{PR}_{1}, \mathrm{PR}_{2}$. One can define PR_{ω} and that is where ACKERMAN is. One can then define PR_{α} for all countable ordinals $\alpha<\epsilon_{0}$ (won't get into that).
For all $\alpha<\epsilon_{0}, f(a, k)$ is not in any PR_{α}.

What is known about $\mathrm{LR}_{2}(k)$?

For large arity, $\mathrm{LR}_{\mathrm{a}}(k)$ is large.

What is known about $\mathrm{LR}_{2}(k)$?

For large arity, $\mathrm{LR}_{\mathrm{a}}(k)$ is large.
What about if we just look at graphs?

What is known about $\mathrm{LR}_{2}(k)$?

For large arity, $\mathrm{LR}_{\mathrm{a}}(k)$ is large.
What about if we just look at graphs?
We will also vary the number of colors, that can't matter.
Thm For all k there exists $n=\mathrm{LR}_{2}(k, c)$ such that for all COL: $(\underset{2}{\{k, \ldots, k+n\}}) \rightarrow[c] \exists$ a large homog set.

What is known about $\mathrm{LR}_{2}(k)$?

For large arity, $\mathrm{LR}_{\mathrm{a}}(k)$ is large.
What about if we just look at graphs?
We will also vary the number of colors, that can't matter.
Thm For all k there exists $n=\mathrm{LR}_{2}(k, c)$ such that for all COL: $(\underset{2}{\{k, \ldots, k+n\}}) \rightarrow[c] \exists$ a large homog set.
$\mathrm{LR}_{2}(k, c)$ grows as fast as Ackerman's function!

What is known about $\mathrm{LR}_{2}(k)$?

For large arity, $\mathrm{LR}_{\mathrm{a}}(k)$ is large.
What about if we just look at graphs?
We will also vary the number of colors, that can't matter.
Thm For all k there exists $n=\mathrm{LR}_{2}(k, c)$ such that for all COL: $(\underset{2}{\{k, \ldots, k+n\}}) \rightarrow[c] \exists$ a large homog set.
$\mathrm{LR}_{2}(k, c)$ grows as fast as Ackerman's function!
So just on graphs LR grows fast!

What is known about $\mathrm{LR}_{2}(k)$?

For large arity, $\mathrm{LR}_{\mathrm{a}}(k)$ is large.
What about if we just look at graphs?
We will also vary the number of colors, that can't matter.
Thm For all k there exists $n=\mathrm{LR}_{2}(k, c)$ such that for all COL: $(\underset{2}{\{k, \ldots, k+n\}}) \rightarrow[c] \exists$ a large homog set.
$\mathrm{LR}_{2}(k, c)$ grows as fast as Ackerman's function!
So just on graphs LR grows fast!
Num of colors matters-1st time in this course!

What is known about LR Thm?

LR Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2]$ there exists a large homog set.

What is known about LR Thm?

LR Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2]$ there exists a large homog set.

1. Godel(1933) prove that \exists a TRUE statement ϕ that CANNOT be proven in Peano Arithmetic (PA), or any similar system. Most of mathematics can be done in PA.

What is known about LR Thm?

LR Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all
COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2]$ there exists a large homog set.

1. Godel(1933) prove that \exists a TRUE statement ϕ that CANNOT be proven in Peano Arithmetic (PA), or any similar system. Most of mathematics can be done in PA.
2. ϕ is not of mathematical interest. It was a contrived statement constructed for the sole point of being True-but-not-provable.

What is known about LR Thm?

LR Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all
COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2]$ there exists a large homog set.

1. Godel(1933) prove that \exists a TRUE statement ϕ that CANNOT be proven in Peano Arithmetic (PA), or any similar system. Most of mathematics can be done in PA.
2. ϕ is not of mathematical interest. It was a contrived statement constructed for the sole point of being True-but-not-provable.
3. Since then mathematicians have been looking for interesting statements that could not be proven in PA.

What is known about LR Thm?

LR Thm For all a, k there exists $n=\operatorname{LR}_{a}(k)$ such that for all
COL: $(\underset{a}{\{k, \ldots, k+n\}}) \rightarrow[2]$ there exists a large homog set.

1. Godel(1933) prove that \exists a TRUE statement ϕ that CANNOT be proven in Peano Arithmetic (PA), or any similar system. Most of mathematics can be done in PA.
2. ϕ is not of mathematical interest. It was a contrived statement constructed for the sole point of being
True-but-not-provable.
3. Since then mathematicians have been looking for interesting statements that could not be proven in PA.
4. Paris \& Harrington(1977) showed LR could not be proven in PA, using Model Theory. Solovay \& Ketonen (1981) showed LR not provable in PA via $f(a, k)$ growing fast.
Vote Is the LR Theorem a natural theorem? YES, NO, UNKNOWN TO SCIENCE.
Commentary on next slide.

Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear?

Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear? In Paris-Harrington paper that showed LR was Ind of PA.

Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear? In Paris-Harrington paper that showed LR was Ind of PA. Thats an argument for LR being contrived.

Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear? In Paris-Harrington paper that showed LR was Ind of PA. Thats an argument for LR being contrived.
2. LR is far more interesting than Godel's Sentence.

Is the Large Ramsey Theorem Natural?

1. When did the Large Ramsey Theorem first appear? In Paris-Harrington paper that showed LR was Ind of PA. Thats an argument for LR being contrived.
2. LR is far more interesting than Godel's Sentence.
3. The proof of LR is interesting since you get it from infinite Ramsey but can't get it a more normal way.
