Asy Lower Bounds on Ramsey Numbers

Exposition by William Gasarch

Summary Of Talk

- We obtain asy lower bounds on $R(k)$.

Summary Of Talk

- We obtain asy lower bounds on $R(k)$.
- We then use the method to do other things, outside of Ramsey Theory.

Recall Upper Bound on Ramsey Numbers

We know that

$$
R(k) \leq 2^{2 k-1}
$$

Recall Upper Bound on Ramsey Numbers

We know that

$$
R(k) \leq 2^{2 k-1}
$$

One can also get

$$
R(k) \leq\binom{ 2 k-2}{k-1} \sim \frac{2^{2 k}}{\sqrt{k}}
$$

Recall Upper Bound on Ramsey Numbers

We know that

$$
R(k) \leq 2^{2 k-1}
$$

One can also get

$$
R(k) \leq\binom{ 2 k-2}{k-1} \sim \frac{2^{2 k}}{\sqrt{k}}
$$

We want to find lower bounds

Recall Upper Bound on Ramsey Numbers

We know that

$$
R(k) \leq 2^{2 k-1}
$$

One can also get

$$
R(k) \leq\binom{ 2 k-2}{k-1} \sim \frac{2^{2 k}}{\sqrt{k}}
$$

We want to find lower bounds
PROBLEM We want to find a coloring of the edges of $K_{n} \mathrm{w} / \mathrm{o}$ a mono K_{k}. for some $n=f(k)$.

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof
Here is a coloring of the edges of $K_{(k-1)^{2}}$ with no mono K_{k} :

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof
Here is a coloring of the edges of $K_{(k-1)^{2}}$ with no mono K_{k} :
First partition $\left[(k-1)^{2}\right]$ into $k-1$ groups of $k-1$ each.

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof
Here is a coloring of the edges of $K_{(k-1)^{2}}$ with no mono K_{k} :
First partition $\left[(k-1)^{2}\right.$] into $k-1$ groups of $k-1$ each.

$$
\operatorname{COL}(x, y)= \begin{cases}\text { RED } & \text { if } x, y \text { are in same } V_{i} \tag{1}\\ \operatorname{BLUE} & \text { if } x, y \text { are in different } V_{i}\end{cases}
$$

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof
Here is a coloring of the edges of $K_{(k-1)^{2}}$ with no mono K_{k} :
First partition $\left[(k-1)^{2}\right]$ into $k-1$ groups of $k-1$ each.

$$
\operatorname{COL}(x, y)= \begin{cases}\text { RED } & \text { if } x, y \text { are in same } V_{i} \tag{1}\\ \operatorname{BLUE} & \text { if } x, y \text { are in different } V_{i}\end{cases}
$$

Look at any k vertices.

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof
Here is a coloring of the edges of $K_{(k-1)^{2}}$ with no mono K_{k} :
First partition $\left[(k-1)^{2}\right]$ into $k-1$ groups of $k-1$ each.

$$
\operatorname{COL}(x, y)= \begin{cases}\operatorname{RED} & \text { if } x, y \text { are in same } V_{i} \tag{1}\\ \operatorname{BLUE} & \text { if } x, y \text { are in different } V_{i}\end{cases}
$$

Look at any k vertices.

- They can't all be in one V_{i}, so it can't have RED K_{k}.

A Lower Bound

Theorem $R(k) \geq(k-1)^{2}$.
Proof
Here is a coloring of the edges of $K_{(k-1)^{2}}$ with no mono K_{k} :
First partition $\left[(k-1)^{2}\right.$] into $k-1$ groups of $k-1$ each.

$$
\operatorname{COL}(x, y)= \begin{cases}\operatorname{RED} & \text { if } x, y \text { are in same } V_{i} \tag{1}\\ \operatorname{BLUE} & \text { if } x, y \text { are in different } V_{i}\end{cases}
$$

Look at any k vertices.

- They can't all be in one V_{i}, so it can't have RED K_{k}.
- They can't all be in different V_{i}, so it can't have BLUE K_{k}.

Recap

$$
(k-1)^{2} \leq R(k) \leq 2^{2 k-1}
$$

Recap

$$
(k-1)^{2} \leq R(k) \leq 2^{2 k-1}
$$

Can we do better?

Recap

$$
(k-1)^{2} \leq R(k) \leq 2^{2 k-1}
$$

Can we do better?
PROBLEM We want to find a coloring of the edges of K_{n} without a mono K_{k} for some $n \geq k^{2}$.

Recap

$$
(k-1)^{2} \leq R(k) \leq 2^{2 k-1}
$$

Can we do better?
PROBLEM We want to find a coloring of the edges of K_{n} without a mono K_{k} for some $n \geq k^{2}$.

WRONG QUESTION I only need show that such a coloring exists.

Pick a coloring at Random!

Numb of colorings: $2\binom{n}{2}$.

Pick a coloring at Random!

Numb of colorings: $2\binom{n}{2}$.
Numb of colorings: that have mono K_{k} is bounded by

Pick a coloring at Random!

Numb of colorings: $2\binom{n}{2}$.
Numb of colorings: that have mono K_{k} is bounded by

$$
\binom{n}{k} \times 2 \times 2^{\binom{n}{2}-\binom{k}{2}}
$$

Prob that a random 2-coloring HAS a homog set is bounded by

$$
\frac{\binom{n}{k} \times 2 \times 2^{\binom{n}{2}-\binom{k}{2}}}{2^{\binom{n}{2}}} \leq \frac{\binom{n}{k} \times 2}{2^{\binom{k}{2}} \leq \frac{n^{k}}{k!2^{k(k-1) / 2}}, ~}
$$

Pick a coloring at Random! (cont)

Recap If we color $\binom{[n]}{2}$ at random then

Pick a coloring at Random! (cont)

Recap If we color $\binom{[n]}{2}$ at random then
Prob that the coloring HAS a homog set of size k is $\leq \frac{n^{k}}{k!2^{k(k-1) / 2}}$.

Pick a coloring at Random! (cont)

Recap If we color $\binom{[n]}{2}$ at random then
Prob that the coloring HAS a homog set of size k is $\leq \frac{n^{k}}{k!2^{k(k-1) / 2}}$.
IF this prob is <1 then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

Pick a coloring at Random! (cont)

Recap If we color $\binom{[n]}{2}$ at random then
Prob that the coloring HAS a homog set of size k is $\leq \frac{n^{k}}{k!2^{k(k-1) / 2}}$. IF this prob is <1 then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.
So if $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.

Pick a coloring at Random! (cont)

Recap If we color $\binom{[n]}{2}$ at random then
Prob that the coloring HAS a homog set of size k is $\leq \frac{n^{k}}{k!2^{k(k-1) / 2}}$. IF this prob is <1 then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.
So if $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.
We will work out the algebra of $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is <1.

Pick a coloring at Random! (cont)

Recap If we color $\binom{[n]}{2}$ at random then
Prob that the coloring HAS a homog set of size k is $\leq \frac{n^{k}}{k!2^{k(k-1) / 2}}$.
IF this prob is <1 then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.
So if $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$ then there exists a coloring of the edges $\binom{[n]}{2}$ with no homog set of size k.
We will work out the algebra of $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$ on the next slide; however, the real innovation here is that we show that a coloring exists by showing that the prob that it does not exists is <1. This is The Probabilistic Method. We talk more about its history later.

Working Out the Inequality

Want $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$

Working Out the Inequality

Want $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$

$$
n<(k!)^{1 / k} 2^{(k-1) / 2}=(k!)^{1 / k} \frac{1}{\sqrt{2}} 2^{k / 2}
$$

Working Out the Inequality

Want $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$

$$
n<(k!)^{1 / k} 2^{(k-1) / 2}=(k!)^{1 / k} \frac{1}{\sqrt{2}} 2^{k / 2}
$$

Stirling's Fml $k!\sim(2 \pi k)^{1 / 2}\left(\frac{k}{e}\right)^{k}$, so $(k!)^{1 / k} \sim(2 \pi k)^{1 / 2 k}\left(\frac{k}{e}\right)$

Working Out the Inequality

Want $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$

$$
n<(k!)^{1 / k} 2^{(k-1) / 2}=(k!)^{1 / k} \frac{1}{\sqrt{2}} 2^{k / 2}
$$

Stirling's Fml $k!\sim(2 \pi k)^{1 / 2}\left(\frac{k}{e}\right)^{k}$, so $(k!)^{1 / k} \sim(2 \pi k)^{1 / 2 k}\left(\frac{k}{e}\right)$

$$
\begin{gathered}
n<(k!)^{1 / k} \frac{1}{\sqrt{2}} 2^{k / 2} \sim(2 \pi k)^{1 / 2 k}\left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k / 2} \\
\sim(2 \pi k)^{1 / 2 k} \frac{1}{e \sqrt{2}} k 2^{k / 2}
\end{gathered}
$$

Working Out the Inequality

Want $\frac{n^{k}}{k!2^{k(k-1) / 2}}<1$

$$
n<(k!)^{1 / k} 2^{(k-1) / 2}=(k!)^{1 / k} \frac{1}{\sqrt{2}} 2^{k / 2}
$$

Stirling's Fml $k!\sim(2 \pi k)^{1 / 2}\left(\frac{k}{e}\right)^{k}$, so $(k!)^{1 / k} \sim(2 \pi k)^{1 / 2 k}\left(\frac{k}{e}\right)$

$$
\begin{gathered}
n<(k!)^{1 / k} \frac{1}{\sqrt{2}} 2^{k / 2} \sim(2 \pi k)^{1 / 2 k}\left(\frac{k}{e}\right) \frac{1}{\sqrt{2}} 2^{k / 2} \\
\sim(2 \pi k)^{1 / 2 k} \frac{1}{e \sqrt{2}} k 2^{k / 2}
\end{gathered}
$$

Want n large. $n=\frac{1}{e \sqrt{2}} k 2^{k / 2}$ works.

Upper and Lower Bounds

$$
\frac{1}{e \sqrt{2}} k 2^{k / 2} \leq R(k) \leq \frac{2^{2 k}}{\sqrt{k}}
$$

Upper and Lower Bounds

$$
\frac{1}{e \sqrt{2}} k 2^{k / 2} \leq R(k) \leq \frac{2^{2 k}}{\sqrt{k}}
$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

Upper and Lower Bounds

$$
\frac{1}{e \sqrt{2}} k 2^{k / 2} \leq R(k) \leq \frac{2^{2 k}}{\sqrt{k}}
$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$
(\forall a \in \mathbb{N})\left[R(k) \leq \frac{2^{2 k}}{k^{a}}\right]
$$

Upper and Lower Bounds

$$
\frac{1}{e \sqrt{2}} k 2^{k / 2} \leq R(k) \leq \frac{2^{2 k}}{\sqrt{k}}
$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$
(\forall a \in \mathbb{N})\left[R(k) \leq \frac{2^{2 k}}{k^{a}}\right]
$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

Upper and Lower Bounds

$$
\frac{1}{e \sqrt{2}} k 2^{k / 2} \leq R(k) \leq \frac{2^{2 k}}{\sqrt{k}}
$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$
(\forall a \in \mathbb{N})\left[R(k) \leq \frac{2^{2 k}}{k^{a}}\right]
$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$
\frac{\sqrt{2}}{e} k 2^{k / 2} \leq R(k)
$$

Upper and Lower Bounds

$$
\frac{1}{e \sqrt{2}} k 2^{k / 2} \leq R(k) \leq \frac{2^{2 k}}{\sqrt{k}}
$$

David Conlon https://arxiv.org/pdf/math/0607788.pdf using sophisticated methods improved the upper bound to:

$$
(\forall a \in \mathbb{N})\left[R(k) \leq \frac{2^{2 k}}{k^{a}}\right]
$$

Joel Spencer spencerLBR using sophisticated methods improved the lower bound to:

$$
\frac{\sqrt{2}}{e} k 2^{k / 2} \leq R(k)
$$

Joel Spencer told me he was hoping for a better improvement.

The Prob Method

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

The Prob Method

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.

The Prob Method

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.

The Prob Method

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on $R(k)$ as shown here.

The Prob Method

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on $R(k)$ as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)

The Prob Method

The Prob Method Showing that an object exists by showing that the prob that it exists is nonzero.

- Used a lot in combinatorics, algorithms, complexity theory.
- Uses very sophisticated probability and has been the motivation for new theorems in probability.
- Origin is Ramsey Theory. Erdös developed it to get better lower bounds on $R(k)$ as shown here.
- I would not call the Prob Method and application of Ramsey. (Some articles do.)
- I would say that Ramsey Theory was the initial motivation for the Prob Method which is now used for many other things, some of which are practical.

DISTINCT DIFF SETS

Exposition by William Gasarch

Distinct Diff Sets

Given n try to find a set $A \subseteq\{1, \ldots, n\}$ such that ALL of the differences of elements of A are DISTINCT.

Distinct Diff Sets

Given n try to find a set $A \subseteq\{1, \ldots, n\}$ such that ALL of the differences of elements of A are DISTINCT.

$$
\left\{1,2,2^{2}, \ldots, 2^{\left\lfloor\log _{2} n\right\rfloor}\right\} \sim \log _{2} n \text { elements }
$$

Distinct Diff Sets

Given n try to find a set $A \subseteq\{1, \ldots, n\}$ such that ALL of the differences of elements of A are DISTINCT.

$$
\left\{1,2,2^{2}, \ldots, 2^{\left\lfloor\log _{2} n\right\rfloor}\right\} \sim \log _{2} n \text { elements }
$$

Can we do better?
STUDENTS break into small groups and try to either do better OR show that you best you can do is $O(\log n)$.

An Approach

Let a be a number to be determined.

An Approach

Let a be a number to be determined.
Pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a.

An Approach

Let a be a number to be determined.
Pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a.
What is the probability that all of the diffs in A are distinct?

An Approach

Let a be a number to be determined.
Pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a.
What is the probability that all of the diffs in A are distinct?
We hope the prob is strictly GREATER THAN 0.

An Approach

Let a be a number to be determined.
Pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a.
What is the probability that all of the diffs in A are distinct?
We hope the prob is strictly GREATER THAN 0.
KEY: If the prob is strictly greater than 0 then there must be SOME set of a elements where all of the diffs are distinct.

Determining the Prob

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are distinct?

Determining the Prob

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are distinct?

WRONG QUESTION!

Determining the Prob

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are distinct?

WRONG QUESTION!

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are NOT distinct?

We hope the Prob is strictly LESS THAN 1.

Determining the Prob

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are NOT distinct?

Determining the Prob

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are NOT distinct?
WRONG QUESTION!

Determining the Prob

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a what is the probability that all of the diffs in A are NOT distinct? WRONG QUESTION!

We only need to show that the prob is LESS THAN 1.

Review a Little Bit of Combinatorics

The number of ways to CHOOSE y elements out of x elements is

$$
\binom{x}{y}=\frac{x!}{y!(x-y)!}
$$

Determining the Prob I

Determining the Prob I

If a RAND $A \subseteq\{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$.

Determining the Prob I

If a RAND $A \subseteq\{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$.
Two ways to create a set with a diff repeated:

Determining the Prob I

If a RAND $A \subseteq\{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$.
Two ways to create a set with a diff repeated:
Way One:

- Pick $x<y$. There are $\binom{n}{2} \leq n^{2}$ ways to do that.
- Pick diff d such that $x+d \neq y, x+d \leq n, y+d \leq n$. Can do $\leq n$ ways. Put $x, y, x+d, y+d$ into A.
- Pick a-4 more elements out of the $n-4$ left.

Determining the Prob I

If a RAND $A \subseteq\{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$.
Two ways to create a set with a diff repeated:
Way One:

- Pick $x<y$. There are $\binom{n}{2} \leq n^{2}$ ways to do that.
- Pick diff d such that $x+d \neq y, x+d \leq n, y+d \leq n$. Can do $\leq n$ ways. Put $x, y, x+d, y+d$ into A.
- Pick a-4 more elements out of the $n-4$ left.

Number of ways to do this is $\leq n^{3} \times\binom{ n-4}{a-4}$.

Determining the Prob I

If a RAND $A \subseteq\{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$.
Two ways to create a set with a diff repeated:
Way One:

- Pick $x<y$. There are $\binom{n}{2} \leq n^{2}$ ways to do that.
- Pick diff d such that $x+d \neq y, x+d \leq n, y+d \leq n$. Can do $\leq n$ ways. Put $x, y, x+d, y+d$ into A.
- Pick a-4 more elements out of the $n-4$ left.

Number of ways to do this is $\leq n^{3} \times\binom{ n-4}{a-4}$.
Way Two: Pick $x<y$. Let $d=y-x$ (so we do NOT pick d).
Put $x, y=x+d, y+d$ into A. Pick $a-3$ more elements out of the $n-3$ left.

Determining the Prob I

If a RAND $A \subseteq\{1, \ldots, n\}$, size a, want bound on prob all of the diffs in A are NOT distinct. Numb of ways to choose a elements out of $\{1, \ldots, n\}$ is $\binom{n}{a}$.
Two ways to create a set with a diff repeated:

Way One:

- Pick $x<y$. There are $\binom{n}{2} \leq n^{2}$ ways to do that.
- Pick diff d such that $x+d \neq y, x+d \leq n, y+d \leq n$. Can do $\leq n$ ways. Put $x, y, x+d, y+d$ into A.
- Pick a-4 more elements out of the $n-4$ left.

Number of ways to do this is $\leq n^{3} \times\binom{ n-4}{a-4}$.
Way Two: Pick $x<y$. Let $d=y-x$ (so we do NOT pick d).
Put $x, y=x+d, y+d$ into A. Pick $a-3$ more elements out of the $n-3$ left.
Number of ways to do this is $\leq n^{2} \times\binom{ n-3}{a-3}$.

Determining the Prob II

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a then a bound on the probability that all of the diffs in A are NOT distinct is

$$
\frac{n^{3} \times\binom{ n-4}{a-4}+n^{2} \times\binom{ n-3}{a-3}}{\binom{n}{a}}=\frac{n^{3} \times\binom{ n-4}{a-4}}{\binom{n}{a}}+\frac{n^{2} \times\binom{ n-3}{a-3}}{\binom{n}{a}}
$$

Determining the Prob II

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a then a bound on the probability that all of the diffs in A are NOT distinct is

$$
\begin{gathered}
\frac{n^{3} \times\binom{ n-4}{a-4}+n^{2} \times\binom{ n-3}{a-3}}{\binom{n}{a}}=\frac{n^{3} \times\binom{ n-4}{a-4}}{\binom{n}{a}}+\frac{n^{2} \times\binom{ n-3}{a-3}}{\binom{n}{a}} \\
=\frac{n^{3} a(a-1)(a-2)(a-3)}{n(n-1)(n-2)(n-3)}+\frac{n^{2} a(a-1)(a-2)}{n(n-1)(n-2)}
\end{gathered}
$$

Determining the Prob II

If you pick a RANDOM $A \subseteq\{1, \ldots, n\}$ of size a then a bound on the probability that all of the diffs in A are NOT distinct is

$$
\begin{gathered}
\frac{n^{3} \times\binom{ n-4}{a-4}+n^{2} \times\binom{ n-3}{a-3}}{\binom{n}{a}}=\frac{n^{3} \times\binom{ n-4}{a-4}}{\binom{n}{a}}+\frac{n^{2} \times\binom{ n-3}{a-3}}{\binom{n}{a}} \\
=\frac{n^{3} a(a-1)(a-2)(a-3)}{n(n-1)(n-2)(n-3)}+\frac{n^{2} a(a-1)(a-2)}{n(n-1)(n-2)} \\
\leq \frac{32 a^{4}}{n} \text { Need some Elem Algebra and uses } n \geq 5 .
\end{gathered}
$$

ANSWER

RECAP: If pick a RANDOM $A \subseteq\{1, \ldots, n\}$ then the prob that there IS a repeated difference is $\leq \frac{32 a^{4}}{n}$.

ANSWER

RECAP: If pick a RANDOM $A \subseteq\{1, \ldots, n\}$ then the prob that there IS a repeated difference is $\leq \frac{32 a^{4}}{n}$. So WANT

$$
\frac{32 a^{4}}{n}<1
$$

ANSWER

RECAP: If pick a RANDOM $A \subseteq\{1, \ldots, n\}$ then the prob that there IS a repeated difference is $\leq \frac{32 a^{4}}{n}$.
So WANT

$$
\frac{32 a^{4}}{n}<1
$$

Take

$$
a=\left(\frac{n}{33}\right)^{1 / 4}
$$

ANSWER

RECAP: If pick a RANDOM $A \subseteq\{1, \ldots, n\}$ then the prob that there IS a repeated difference is $\leq \frac{32 a^{4}}{n}$. So WANT

$$
\frac{32 a^{4}}{n}<1
$$

Take

$$
a=\left(\frac{n}{33}\right)^{1 / 4}
$$

UPSHOT: For all $n \geq 5$ there exists a all-diff-distinct subset of $\{1, \ldots, n\}$ of size roughly $n^{1 / 4}$.

GENERAL UPSHOT

We proved an object existed by showing that the Prob that it exists is nonzero!.

GENERAL UPSHOT

We proved an object existed by showing that the Prob that it exists is nonzero!.
Is the proof constructive?

GENERAL UPSHOT

We proved an object existed by showing that the Prob that it exists is nonzero!.
Is the proof constructive?

- Old view: proof is nonconstructive since it does not say how to obtain the object.

GENERAL UPSHOT

We proved an object existed by showing that the Prob that it exists is nonzero!.
Is the proof constructive?

- Old view: proof is nonconstructive since it does not say how to obtain the object.
- New view: proof is constructive since can DO the random experiment and will probably get what you want.

GENERAL UPSHOT

We proved an object existed by showing that the Prob that it exists is nonzero!.
Is the proof constructive?

- Old view: proof is nonconstructive since it does not say how to obtain the object.
- New view: proof is constructive since can DO the random experiment and will probably get what you want.
- Caveat: Evan Golub's PhD thesis took some prob constructions and showed how to make them really work. I was his advisor.

GENERAL UPSHOT

We proved an object existed by showing that the Prob that it exists is nonzero!.
Is the proof constructive?

- Old view: proof is nonconstructive since it does not say how to obtain the object.
- New view: proof is constructive since can DO the random experiment and will probably get what you want.
- Caveat: Evan Golub's PhD thesis took some prob constructions and showed how to make them really work. I was his advisor.
- Caveat: If the Prob Proof has high prob of getting the object, then seems constructive. If all you prove is nonzero, than maybe not.

Actually Can Do Better

- With a maximal set argument can do $\Omega\left(n^{1 / 3}\right)$.
- Better is known: $\Omega\left(n^{1 / 2}\right)$ which is optimal

SUM FREE SET PROBLEM

Exposition by William Gasarch

Sum Free Set Problem

A More Sophisticated Use of Prob Method.
Definition: A set of numbers A is sum free if there is NO $x, y, z \in A$ such that $x+y=z$.

Example: Let $y_{1}, \ldots, y_{m} \in(1 / 3,2 / 3)$ (so they are all between $1 / 3$ and 2/3). Note that $y_{i}+y_{j}>2 / 3$, hence $y_{i}+y_{j} \notin\left\{y_{1}, \ldots, y_{m}\right\}$.

ANOTHER EXAMPLE

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414)=.414$.

ANOTHER EXAMPLE

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414)=.414$.
Lemma: If y_{1}, y_{2}, y_{3} are such that $\operatorname{frac}\left(y_{1}\right), \operatorname{frac}\left(y_{2}\right), \operatorname{frac}\left(y_{3}\right) \in(1 / 3,2 / 3)$ then $y_{1}+y_{2} \neq y_{3}$.

ANOTHER EXAMPLE

Def: $\operatorname{frac}(x)$ is the fractional part of x. E.g., $\operatorname{frac}(1.414)=.414$.
Lemma: If y_{1}, y_{2}, y_{3} are such that
$\operatorname{frac}\left(y_{1}\right), \operatorname{frac}\left(y_{2}\right), \operatorname{frac}\left(y_{3}\right) \in(1 / 3,2 / 3)$ then $y_{1}+y_{2} \neq y_{3}$.
Proof: STUDENTS DO THIS. ITS EASY.
Example: Let $A=\left\{y_{1}, \ldots, y_{m}\right\}$ all have fractional part in $(1 / 3,2 / 3)$. A is sum free by above Lemma.

QUESTION

Given $x_{1}, \ldots, x_{n} \in \mathrm{R}$ does there exist a LARGE sum-free subset? How Large?

QUESTION

Given $x_{1}, \ldots, x_{n} \in \mathrm{R}$ does there exist a LARGE sum-free subset? How Large?
VOTE:

1. There is a sumfree set of size roughly $n / 3$.
2. There is a sumfree set of size roughly \sqrt{n}.
3. There is a sumfree set of size roughly $\log n$.

QUESTION

Given $x_{1}, \ldots, x_{n} \in \mathrm{R}$ does there exist a LARGE sum-free subset?
How Large?
VOTE:

1. There is a sumfree set of size roughly $n / 3$.
2. There is a sumfree set of size roughly \sqrt{n}.
3. There is a sumfree set of size roughly $\log n$. STUDENTS - WORK ON THIS IN GROUPS.

SUM SET PROBLEM

Theorem For all $\epsilon>0$, for all A that are a set of n real numbers, there is a sum-free subset of A of size $(1 / 3-\epsilon) n$.

SUM SET PROBLEM

Theorem For all $\epsilon>0$, for all A that are a set of n real numbers, there is a sum-free subset of A of size $(1 / 3-\epsilon) n$.
Proof: Let L be LESS than everything in A and U be BIGGER than everything in A. We will make $U-L$ LARGE later.
For $a \in[L, U]$ let

$$
B_{a}=\{x \in A: \operatorname{frac}(a x) \in(1 / 3,2 / 3)\} .
$$

SUM SET PROBLEM

Theorem For all $\epsilon>0$, for all A that are a set of n real numbers, there is a sum-free subset of A of size $(1 / 3-\epsilon) n$.
Proof: Let L be LESS than everything in A and U be BIGGER than everything in A. We will make $U-L$ LARGE later.
For $a \in[L, U]$ let

$$
B_{a}=\{x \in A: \operatorname{frac}(a x) \in(1 / 3,2 / 3)\} .
$$

For all a, B_{a} is sum-free by Lemma above. SO we need an a such that B_{a} is LARGE.

How Big IS B_{a} ?

What is the EXPECTED VALUE of $\left|B_{a}\right|$?

How Big IS B_{a} ?

What is the EXPECTED VALUE of $\left|B_{a}\right|$?
Let $x \in A$.

$$
\operatorname{Pr}_{a \in[L, U]}(\operatorname{frac}(a x) \in(1 / 3,2 / 3))
$$

How Big IS B_{a} ?

What is the EXPECTED VALUE of $\left|B_{a}\right|$?
Let $x \in A$.

$$
\operatorname{Pr}_{a \in[L, U]}(\operatorname{frac}(a x) \in(1 / 3,2 / 3))
$$

We take $U-L$ large enough so that this prob is $\geq(1 / 3-\epsilon)$.

$$
\begin{aligned}
E\left(\left|B_{a}\right|\right) & =\sum_{x \in A} \operatorname{Pr}_{a \in[L, U]}(\operatorname{frac}(a x) \in(1 / 3,2 / 3)) \\
& =\sum_{x \in A}(1 / 3-\epsilon) \\
& =(1 / 3-\epsilon) n
\end{aligned}
$$

How Big IS B_{a} ?

What is the EXPECTED VALUE of $\left|B_{a}\right|$?
Let $x \in A$.

$$
\operatorname{Pr}_{a \in[L, U]}(\operatorname{frac}(a x) \in(1 / 3,2 / 3))
$$

We take $U-L$ large enough so that this prob is $\geq(1 / 3-\epsilon)$.

$$
\begin{aligned}
E\left(\left|B_{a}\right|\right) & =\sum_{x \in A} \operatorname{Pr}_{a \in[L, U]}(\operatorname{frac}(a x) \in(1 / 3,2 / 3)) \\
& =\sum_{x \in A}(1 / 3-\epsilon) \\
& =(1 / 3-\epsilon) n
\end{aligned}
$$

So THERE EXISTS an a such that $\left|B_{a}\right| \geq(1 / 3-\epsilon) n$. What is a ? I DON" T KNOW AND I DON" T CARE!
End of Proof

Turan's Theorem

Exposition by William Gasarch

Turan's Theorem

Theorem If $G=(V, E)$ is a graph, $|V|=n$, and $|E|=e$, then G has an ind set of size at least

$$
\frac{n}{\frac{2 e}{n}+1}
$$

Turan's Theorem

Theorem If $G=(V, E)$ is a graph, $|V|=n$, and $|E|=e$, then G has an ind set of size at least

$$
\frac{n}{\frac{2 e}{n}+1} .
$$

We proof this using Probability, but first need a lemma.

Lemma

Lemma If $G=(V, E)$ is a graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 e
$$

Lemma

Lemma If $G=(V, E)$ is a graph. Then

$$
\sum_{v \in V} \operatorname{deg}(v)=2 e
$$

Proof: Try to count the edges by summing the degrees at each vertex. This counts every edge TWICE.

Proof of Turan's Theorem

Theorem If $G=(V, E)$ is a graph, $|V|=n$, and $|E|=e$, then G has an ind set of size

$$
\geq \frac{n}{\frac{2 e}{n}+1} .
$$

Proof of Turan's Theorem

Theorem If $G=(V, E)$ is a graph, $|V|=n$, and $|E|=e$, then G has an ind set of size

$$
\geq \frac{n}{\frac{2 e}{n}+1}
$$

Proof: Take the graph and RANDOMLY permute the vertices.

Proof of Turan's Theorem

Theorem If $G=(V, E)$ is a graph, $|V|=n$, and $|E|=e$, then G has an ind set of size

$$
\geq \frac{n}{\frac{2 e}{n}+1} .
$$

Proof: Take the graph and RANDOMLY permute the vertices.
Example:

Proof of Turan's Theorem

Theorem If $G=(V, E)$ is a graph, $|V|=n$, and $|E|=e$, then G has an ind set of size

$$
\geq \frac{n}{\frac{2 e}{n}+1} .
$$

Proof: Take the graph and RANDOMLY permute the vertices.
Example:

The set of vertices that have NO edges coming out on the right form an Ind Set. Call this set I.

How Big is I?

How big is I

How Big is I?

How big is I WRONG QUESTION!

How Big is I?

How big is I
WRONG QUESTION!
What is the EXPECTED VALUE of the size of I.
(NOTE- we permuted the vertices RANDOMLY)

What is Prob $v \in I$

Let $v \in V$. What is prob that $v \in I$

What is Prob $v \in I$

Let $v \in V$. What is prob that $v \in I$

v has degree d_{v}. How many ways can v and its vertices be laid out: $\left(d_{v}+1\right)$!. In how many of them is v on the right? d_{v} !.

What is Prob $v \in I$

Let $v \in V$. What is prob that $v \in I$

v has degree d_{v}. How many ways can v and its vertices be laid out: $\left(d_{v}+1\right)$!. In how many of them is v on the right? d_{v} !.

$$
\operatorname{Pr}(v \in I)=\frac{d_{v}!}{\left(d_{v}+1\right)!}=\frac{1}{d_{v}+1}
$$

What is Prob $v \in I$

Let $v \in V$. What is prob that $v \in I$

v has degree d_{v}. How many ways can v and its vertices be laid out: $\left(d_{v}+1\right)$!. In how many of them is v on the right? d_{v} !.

$$
\operatorname{Pr}(v \in I)=\frac{d_{v}!}{\left(d_{v}+1\right)!}=\frac{1}{d_{v}+1}
$$

Hence

What is Prob $v \in I$

Let $v \in V$. What is prob that $v \in I$

v has degree d_{v}. How many ways can v and its vertices be laid out: $\left(d_{v}+1\right)$!. In how many of them is v on the right? d_{v} !.

$$
\operatorname{Pr}(v \in I)=\frac{d_{v}!}{\left(d_{v}+1\right)!}=\frac{1}{d_{v}+1}
$$

Hence

$$
E\left(\left||\mid)=\sum_{v \in V} \frac{1}{d_{v}+1} .\right.\right.
$$

How Big is this Sum?

Need to find lower bound on

$$
\sum_{v \in V} \frac{1}{d_{v}+1}
$$

Rephrase

NEW PROBLEM:

Minimize

$$
\sum_{v \in V} \frac{1}{x_{v}+1}
$$

relative to the constraint:

$$
\sum_{v \in V} x_{v}=2 e
$$

KNOWN: This sum is minimized when all of the x_{v} are $\frac{2 e}{|V|}=\frac{2 e}{n}$. So the min the sum can be is

$$
\sum_{v \in V} \frac{1}{\frac{2 e}{n}+1}=\frac{n}{\frac{2 e}{n}+1}
$$

Recap and Done

$E\left(\left||\mid)=\sum_{v \in V} \frac{1}{d_{v}+1}\right.\right.$ and $\sum_{v \in V} d_{v}=2 e$.

Recap and Done

$E\left(\left||\mid)=\sum_{v \in V} \frac{1}{d_{v}+1}\right.\right.$ and $\sum_{v \in V} d_{v}=2 e$.
To lower bound $E(||\mid)$ we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_{v}+1}$ with constraint $\sum_{v \in V} x_{V}=2 e$.

Recap and Done

$E\left(\left||\mid)=\sum_{v \in V} \frac{1}{d_{v}+1}\right.\right.$ and $\sum_{v \in V} d_{v}=2 e$.
To lower bound $E(||\mid)$ we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_{v}+1}$ with constraint $\sum_{v \in V} x_{V}=2 e$.

The min occurs when $(\forall v)\left[x_{v}=\frac{2 e}{n}\right]$. Hence

Recap and Done

$E\left(\left||\mid)=\sum_{v \in V} \frac{1}{d_{v}+1}\right.\right.$ and $\sum_{v \in V} d_{v}=2 e$.
To lower bound $E(||\mid)$ we solve a continuous problem: minimize $\sum_{v \in V} \frac{1}{x_{v}+1}$ with constraint $\sum_{v \in V} x_{V}=2 e$.

The min occurs when $(\forall v)\left[x_{v}=\frac{2 e}{n}\right]$. Hence

$$
E(I) \geq \sum_{v \in V} \frac{1}{x_{v}+1} \geq \sum_{v \in V} \frac{1}{\frac{2 e}{n}+1}=\frac{n}{\frac{2 e}{n}+1} .
$$

END OF THIS TALK/TAKEAWAY

END OF THIS TALK
TAKEAWAY: There are TWO ways (probably more) to show that an object exists using probability.

1. Show that the probability that it exists is NONZERO. Hence there must be some set of random choices that makes it exist. We did this for the distinct-sums problem.
2. You want to show that an object of a size $\geq s$ exists. Show that if you do a probabilistic experiment then you (a) always get the object of the type you want, and (b) the expected size is $\geq s$. Hence again SOME set of random choices produces an object of size $\geq s$.
