Ramsey's Theorem - A New Lower Bound
 Joel Spencer*
 Department of Mathematics, Massachusetts, Institute of Technolgy, Cambridge, Massachusetts 02139
 Communicated by the Managing Editors

Received May 21, 1974

This paper gives improved asymptotic lower bounds to the Ramsey function $R(k, t)$. Section 1 considers the symmetric case $k=t$ while the more general case is considered in Section 2.

1. The Symmetric Case

Define $R(k)$ to be the minimal intcger n so that if the edge of K_{n} (the complete graph on n points) are two colored there is a set S of k vertices such that all edges $\{x, y\}, x, y \in S$, are the same color.

The existance of $R(k)$ for all k is a special case of Ramsey's Theorem for which an enormous literature exists. The "standard" proof (see, e.g., [4]) of the existance of $R(k)$ yields

$$
R(k) \leqslant\binom{ 2 k-2}{k-1}
$$

which has been slightly improved recently to

$$
R(k) \leqslant \frac{c \log \log k}{\log k}\binom{2 k-2}{k-1}
$$

(Yackel [5]). It is expected that further small improvements could be made.
The lower bound on $R(k)$, due to Erdös [1], is generally considered the canonical example of the "probabilistic method" in combinatorial mathematics. We shall outline this proof, and then show how a new method of L. Lovász gives a slight improvement.

We let P denote probability, \vee denote "or," concatenation or \wedge denote "and," and bar denote negation. We state the following obvious lemma without proof.

[^0]Lemma 1. Let $A_{i}, 1 \leqslant i \leqslant m$, be events in a probability space with $P\left(A_{i}\right) \leqslant p$. If $m p<1$ then

$$
P\left(\bar{A}_{1} \cdots \bar{A}_{m}\right)>0
$$

Theorem 1 (Erdös [1]). If

$$
\begin{equation*}
\binom{n}{k} 2^{1-\binom{n}{k}}<1 \tag{1}
\end{equation*}
$$

then $R(k) \geqslant n$.
Proof. We call a coloring good if there is no set S of k vertices, all of whose edges are the same color.

Fix k, n satisying (1). Let \mathbf{G} be a random 2-coloring of K_{n}. That is, each edge is independently colored, equally probably either color. If S is a set of k vertices, let A_{S} be the event that all edges on S are the same color. Clearly

$$
P\left[A_{S}\right]=2^{1-\binom{k}{2}}
$$

There are $\binom{n}{k}$ different S. Hence, given (1) and Lemma 1,

$$
P\left[\wedge \bar{A}_{s}\right]>0
$$

and therefore there is a G for which all A_{s} are false. That is, there is a good coloring of K_{n}. This implies $R(k) \geqslant n$.

An application of Sterling's Formula yields the following.
Corollary 1. $\quad R(k) \geqslant k 2^{k / 2}[(1 / e \sqrt{2})+o(1)]$.
The improvement of Theorem 1 is based on the independence of A_{S}, A_{T} if $|S \cap T| \leqslant 1$. To make use of the "partial independence" of the A 's we use the following elementary, but far reaching, result of L. Lovász.

Lemma 2. (Lovász Local Theorem). Let G be a finite graph with maximal degree d and vertices $1, \ldots, m$. Let $A_{i}, 1 \leqslant i \leqslant m$ be events in a probability space such that A_{i} is independent of $\left\{A_{j}:(i, j) \in E(G)\right\}$. Assume $P\left(A_{i}\right) \leqslant p$ for $1 \leqslant i \leqslant m$. If $4 d p<1$ then

$$
P\left(\bar{A}_{1} \cdots \bar{A}_{m}\right)>0
$$

For completeness, we outline the proof given in [3]. We show, by induction on m,

$$
\begin{equation*}
P\left(A_{1} \mid \bar{A}_{2} \cdots \bar{A}_{m}\right) \leqslant 1 / 2 d \tag{2}
\end{equation*}
$$

Assume A_{1} independent of $A_{i}, i>d+1$.

$$
\begin{equation*}
P\left(A_{1} \mid \bar{A}_{2} \cdots \bar{A}_{m}\right)=\frac{P\left(A_{1} \bar{A}_{2} \cdots \bar{A}_{d+1} \mid \bar{A}_{d+2} \cdots \bar{A}_{m}\right)}{P\left(\bar{A}_{2} \cdots \bar{A}_{d+1} \mid \bar{A}_{d+2} \cdots \bar{A}_{m}\right)} \tag{3}
\end{equation*}
$$

We prove (2) by bounding numerator and denominator of (3). The numerator

$$
P\left(A_{1} \bar{A}_{2} \cdots \bar{A}_{d+1} \mid \bar{A}_{d+2} \cdots \bar{A}_{m}\right) \leqslant P\left(A_{1} \mid \bar{A}_{d+2} \cdots \bar{A}_{m}\right)=P\left(A_{1}\right) \leqslant \frac{1}{4} d
$$

The denominator

$$
\begin{aligned}
P\left(\bar{A}_{2} \cdots \bar{A}_{d+1} \mid \bar{A}_{d+2} \cdots \bar{A}_{m}\right) & \geqslant 1-\sum_{i=2}^{d+1} P\left(A_{i} \mid \bar{A}_{d+2} \cdots \bar{A}_{m}\right) \\
& \geqslant 1-d\left(\frac{1}{2} d\right) \geqslant \frac{1}{2}
\end{aligned}
$$

where the penultimate inequality has required the inductive hypothesis.
Theorem 2. If

$$
\begin{equation*}
4\binom{k}{2}\binom{n}{k-2} 2^{1-\binom{k}{2}}<1 \tag{4}
\end{equation*}
$$

then $R(k) \geqslant n$.
Proof. Let A_{S} be as in Theorem 1. Then A_{S} is independent of $\left\{A_{T}:|S \cap T| \leqslant 1\right\}$ since S shares no edges with the T 's. We apply the Lovász Local Theorem with

$$
d=|\{T:|T|=k,|S \cap T|>1\}| \leqslant\binom{ k}{2}\binom{n}{k-2}
$$

COROLLARY 2. $\quad R(k) \geqslant k 2^{k / 2}[(\sqrt{2} / e)+o(1)]$.
The corollary is again a simple application of Sterling's Formula. This improvement of the lower bound by a factor of 2 does not lessen the gap between the bounds in any significant way. It is, however, the first improvement in the lower bound of $R(k)$ in 27 years.

If n is picked slightly less than the critical value in (2) then

$$
\binom{n}{k} 2^{1-\binom{k}{2}} \ll 1
$$

Thus, not only does there exist a two coloring of K_{n} but "almost all" such colorings are good. However, using the Lovász Local Theorem, $P\left(\bar{A}_{1} \cdots \bar{A}_{m}\right)$ may be very small. One can show that most colorings on
$k 2^{k / 2}(\sqrt{2} / e+o(1))$ points are not good. We have found a "rare" good coloring with a "random" method.

2. The General Case

Define $R(k, t)$ to be the minimal integer n so that if the edges of K_{n} are colored Red and Blue there is either a set S of k vertices all of whose edges are Red or a set T of t vertices all of whose edges are Blue.

The "standard" proof [13] of Ramsey's Theorem yields

$$
\begin{equation*}
R(k, t) \leqslant\binom{ k+t-2}{k-1} \tag{5}
\end{equation*}
$$

We shall focus our attention on the case k fixed, $t \rightarrow \infty$. Then

$$
R(k, t) \leqslant c_{k} t^{k-1}
$$

where c_{k} is a constant dependent on k. This result has been slightly improved to

$$
R(k, t) \leqslant c\left(\frac{\log \log t}{\log t}\right) t^{k-1}
$$

(Yackel [4]).
We first derive a lower bound for $R(k, t)$ by generalizing Theorem 1 .
Theorem 3. If there exists $p, 0 \leqslant p \leqslant 1$, such that

$$
\begin{equation*}
\binom{n}{p} p^{\binom{k}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}<1 \tag{6}
\end{equation*}
$$

then $R(k, t)>n$.
Proof. Fix k, t, p, n satisfying (6). Let G be a two coloring (Red and Blue) of K_{n} where each edge is colored Red with probability p and these probabilities are mutually independent. If S is a set of k vertices let A_{S} be the event that all edges on S are Red. If T is a set of t vertices let B_{T} be the event that all edges in T are blue. Clearly,

$$
P\left[A_{s}\right]=p^{\left(\begin{array}{c}
k_{2}
\end{array}\right)} \quad P\left[B_{T}\right]=(1-p)^{\binom{t}{2}}
$$

So, given (5) and Lemma 1,

$$
\begin{equation*}
P\left[\Lambda \bar{A}_{S} \wedge \Lambda \bar{B}_{T}\right]>0 \tag{7}
\end{equation*}
$$

and thus $R(k, t)>n$.

Now let us fix k, let $t \rightarrow \infty$, and consider the asymptotic consequences of (6). By selecting $p=n^{-2 /(k-1)}$, we get

$$
\binom{n}{k} p^{\binom{k}{2}}<n^{k} p^{k(k-1) / 2} / k!=1 / k!
$$

Using the inequality $1-p<e^{-p}$, we have

$$
\begin{align*}
\binom{n}{t}(1-p)^{\binom{t}{2}} & <\left(n^{t} / t!\right) e^{-p t(t-1) / 2} \\
& <\left[n e^{-p(t-1) / 2}\right]^{t} / t! \tag{8}
\end{align*}
$$

If $t-1 \geqslant(2 \ln n) / p$, then (6) holds. Asymptotically, then,

$$
\begin{equation*}
R\left(k,(2 \ln n) n^{2 /(k-1)}(1+o(1))\right)>n \tag{9}
\end{equation*}
$$

Expressing (9) in terms of the parameter t, we have the following.
Corollary 3. For k fixed, $t \rightarrow \infty$

$$
\begin{equation*}
R(k, t)>t^{(k-1) / 2+o(1)} \tag{10}
\end{equation*}
$$

A major open problem in this area is to determine $\alpha=\alpha(k)$ such that $R(k, i)=t^{\alpha+o(1)}$. It is not known if such an α exists. For $k=3$ Erdös [2] has shown

$$
\begin{equation*}
R(3, t)>c t^{2} /(\ln t)^{2} \tag{11}
\end{equation*}
$$

and hence $\alpha(3)=2$. A plausible conjecture is that $\alpha(k)=k-1$ for all $k \geqslant 3$ but this is not even known for $k=4$.

We now give a generalization of the Lovász Local Theorem.
Theorem 4. Let G be a finite graph on vertices $1, \ldots, m$. Let $A_{i}, 1 \leqslant i \leqslant m$, be events in a probability space such that A_{i} is independent of $\left\{A_{j}:\{i, j\} \in E(G)\right\}$. For $1 \leqslant i \leqslant m$ assume

$$
\begin{equation*}
\sum_{\{i, j\} \in G} P\left(A_{j}\right)<\frac{1}{4} \tag{12}
\end{equation*}
$$

Assume, further, that $P\left(A_{j}\right)<1$ for all j. Then

$$
\begin{equation*}
P\left(\bar{A}_{1} \cdots \bar{A}_{m}\right)>0 \tag{13}
\end{equation*}
$$

When all $P\left(A_{i}\right)$ are equal the statement of Theorem 4 reduces to Lemma 2. The proof will parallel that of Lemma 2. We first observe that if $P\left(A_{j}\right)>\frac{1}{4}$ then, by (12), A_{j} is mutually independent of the other A 's and
hence it suffices to show (13) with A_{j} deleted. We therefore assume $P\left(A_{j}\right) \leqslant \frac{1}{4}$ for all j.

We show, by induction on m,

$$
\begin{equation*}
P\left(A_{1} \mid \bar{A}_{2} \cdots \bar{A}_{m}\right) \leqslant 2 P\left(A_{1}\right) \tag{14}
\end{equation*}
$$

Assume 1 is adjacent to $2,3, \ldots, d$ in G. Then

$$
\begin{equation*}
P\left(A_{1} \mid \bar{A}_{2} \cdots \bar{A}_{m}\right)=\frac{P\left(A_{1} \bar{A}_{2} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{n}\right)}{P\left(\bar{A}_{2} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{n}\right)} . \tag{15}
\end{equation*}
$$

The numerator of (15) is $\leqslant P\left(A_{1}\right)$ as before. The denominator

$$
\begin{align*}
P\left(\bar{A}_{2} \cdots \bar{A}_{d} \mid \bar{A}_{d+1} \cdots \bar{A}_{n}\right) & \geqslant 1-\sum_{i=2}^{a} P\left(A_{i} \mid \bar{A}_{d+1} \cdots \bar{A}_{n}\right) \\
& \geqslant 1-\sum_{i=2}^{a} 2 P\left(A_{i}\right) \\
& \geqslant \frac{1}{2}, \tag{16}
\end{align*}
$$

where the penultimate inequality has required the inductive hypothesis. Finally

$$
\begin{align*}
P\left(\bar{A}_{1} \cdots \bar{A}_{m}\right) & =\prod_{i=1}^{m} P\left(\bar{A}_{i} \mid \bar{A}_{i+1} \cdots \bar{A}_{m}\right) \\
& \geqslant \prod_{i=1}^{m}\left(1-2 P\left(A_{i}\right)\right) \\
& >0 \tag{17}
\end{align*}
$$

This completes the proof.
We apply Theorem 4 to improve the lower bound for $R(k, t)$. We first give the precise result. Let $A \subseteq\{1, \ldots, n\},|A|=a$. Denote by $f(a, b, n)$ the number of $B \subseteq\{1, \ldots, n\},|B|=b$, such that $|A \cap B| \geqslant 2$.

Theorem 5. Let $k \leqslant t \leqslant n$. If there exists $p, 0<p<1$, so that

$$
\begin{equation*}
f(t, k, n) p^{\binom{k}{2}}+f(t, t, n)(1-p)^{\left(\frac{t_{2}}{2}\right)}<\frac{1}{4}, \tag{18}
\end{equation*}
$$

then $R(k, t)>n$.
Proof. Let \mathbf{G} be as in Theorem 3. The events A_{S}, B_{T} satisfy (6) and we need show (7). Our assumption (18) states that each B_{T} is independent of all events except those with total probability $<\frac{1}{4}$. An event A_{S} is independent of even more events, since $k \leqslant t$. (That is, $f(a, b, n)$ is
monotone increasing in a). Therefore the conditions of Theorem 4 are met, implying (7).
Now we examine the asymptotic consequences of Theorem 5 in the case of k fixed, $t \rightarrow \infty$. We bound

$$
\begin{aligned}
& f(t, t, n) \leqslant\binom{ n}{t} \leqslant n^{t} \\
& f(t, k, n) \leqslant\binom{ t}{2}\binom{n}{k-2}=c_{k} t^{2} n^{k-2}
\end{aligned}
$$

If there exists $p, 0<p<1$ so that

$$
\left.c_{k} t^{2} n^{k-2} p^{(k}{ }^{k}\right)<\frac{1}{8}
$$

and

$$
\binom{n}{t}(1-p)^{\left(\frac{\mathbf{t}_{2}^{t}}{2}\right)}<\frac{1}{8},
$$

then (18) holds. Set $\left.\beta=(k-2) /\binom{k}{2}-2\right)$ and, for any $0<\delta<\epsilon$, $t=n^{\beta+\varepsilon}$ and $p=n^{-\epsilon-\beta+\varepsilon}$. For n sufficiently large (18) holds and thus $R(k, t)>n$. Expressing n in terms of t.

Corollary 3. For k fixed, $t \rightarrow \infty$

$$
R(k, t)>t^{\alpha+o(1)}
$$

where

$$
\alpha=\left(\binom{\kappa}{2}-2\right) /(k-2) .
$$

Note that for k large $\alpha \sim(k+1) / 2+o(1)$. Table 1 gives the various upper and lower bounds for $\alpha(k)$

TABLE I
Bounds on $\alpha(k)$

k	Lower by Corollary 3	Lower by Theorem 5	Lower by Erdös [2]	Upper by (5)

References

1. P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
2. P. Erdös, Graph theory and probability. II, Canad. J. Math. 13 (1961), 346-352.
3. P. Erdös and L. Lovasz, Problems and results on a 3-chromatic hybergraphs and some related questions, Acta Arith. to appear.
4. P. Erdös and G. Szekeres, A combinatorial problem in geometry., Compositio Math. 2 (1935), 463-470.
5. J. Yackel, Inequalities and asymptotic bounds for Ramsey numbers, J. Combinatorial Theory 13 (1972), 56-68.

[^0]: * Research supported by ONR N00014-67- Λ-0204-0063.

