Exposition by William Gasarch

April 20, 2022

Definition Let $G \in \mathbb{N}$ and $c \in N$. Let $COL: [G] \times [G] \rightarrow [c]$.

1. A mono L is 3 points

$$(x, y), (x + d, y), (x, y + d)$$

that are all the same color $(d \ge 1)$. (This should be called an mono isosceles right triangle but we just call it a mono L.)

2. A mono Square is 4 points

$$(x,y),(x+d,y),(x,y+d),(x+d,y+d)$$

that are all the same color $(d \ge 1)$. This is a square.

Theorem There exists G such that for all $COL: [G] \times [G] \rightarrow [2]$ there exists a mono square.

1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.
- 3. To prove **The Square Theorem** (about 2-coloring) we need to know that GG(c) exists for a very large c.

- 1. The proof of **The Square Theorem** gives enormous bounds on *G*; however, the answer is known to be 15.
- 2. We will first prove For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.
- 3. To prove **The Square Theorem** (about 2-coloring) we need to know that GG(c) exists for a very large c.
- 4. More Colors: For all c there exists G = G(c) such that for all $COL: [G] \times [G] \rightarrow [c]$ there exists a mono square. Proof needs a larger c' for GG(c').

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for c = 2. We will set H later. Let COL: $[H] \times [H] \rightarrow [c]$.

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for c = 2. We will set H later. Let $COL: [H] \times [H] \rightarrow [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2^9 -coloring of the tiles.

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Proof We prove this for c = 2. We will set H later. Let $COL: [H] \times [H] \rightarrow [c]$.

Take the $[H] \times [H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times [H]$ as a 2^9 -coloring of the tiles.

This is very typical of VDW-Ramsey Theory: a 2-coloring of BLAH is viewed as a X-coloring of a different object where X is quite large.

Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an **almost** L

Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an **almost** L

Goto White Board.

Take
$$H = 3(2^9 + 1)$$
.

Take
$$H = 3(2^9 + 1)$$
.

View $[H] \times [H]$ grid of **points** as $[2^9 + 1] \times [2^9 + 1]$ grid of **tiles**.

Take
$$H = 3(2^9 + 1)$$
.

View $[H] \times [H]$ grid of **points** as $[2^9 + 1] \times [2^9 + 1]$ grid of **tiles**.

Look at the first column of tiles. Two are the same color.

Take
$$H = 3(2^9 + 1)$$
.

View $[H] \times [H]$ grid of **points** as $[2^9 + 1] \times [2^9 + 1]$ grid of **tiles**.

Look at the first column of tiles. Two are the same color.

Go to White Board.

First take 4×4 -tiles.

First take 4×4 -tiles.

Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L

First take 4×4 -tiles.

Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L

Goto White Board.

Take
$$H = 4(3^{16} + 1)$$
.

Take
$$H = 4(3^{16} + 1)$$
.

View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**.

Take
$$H = 4(3^{16} + 1)$$
.

View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**.

Look at the first column of tiles. Two are the same color.

Take
$$H = 4(3^{16} + 1)$$
.

View $[H] \times [H]$ grid of **points** as $[3^{16} + 1] \times [3^{16} + 1]$ grid of **tiles**.

Look at the first column of tiles. Two are the same color.

Go to White Board.

Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L's converging to the same point.

Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L's converging to the same point.

Go to White Board.

Full L Theorem

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

Full L Theorem

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

► We won't prove this but I am sure any of you could prove it given what we have done so far. Would be messy.

Full L Theorem

Theorem For all c there exists GG = GG(c) such that for all $COL: [GG] \times [GG] \rightarrow [c]$ there exists a mono L.

- We won't prove this but I am sure any of you could prove it given what we have done so far. Would be messy.
- ► Easier to prove it from the Hales-Jewitt Theorem, which we won't be doing.

Theorem There exists G such that for all $COL: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Theorem There exists G such that for all $COL: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

Theorem There exists G such that for all $COL: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$ -coloring of the tiles.

Theorem There exists G such that for all $COL: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$ -coloring of the tiles.

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- ▶ There is a mono *L* of tiles.

Theorem There exists G such that for all $COL: [G] \times [G] \rightarrow [2]$ there exists a mono square.

Proof G will be $GG(2)GG(2^{GG(2)^2})$.

Tile the $[G] \times [G]$ plane with $GG(2) \times GG(2)$ Tiles.

View the 2-coloring of $[G] \times [G]$ as a $2^{GG(2)^2}$ -coloring of the tiles.

For any 2-coloring of $[G] \times [G]$:

- Every tile has a mono L
- ▶ There is a mono *L* of tiles.

Go to Whiteboard for rest of proof.