The Square Theorem

Exposition by William Gasarch

April 20, 2022

The Square Theorem

Definition Let $G \in \mathbb{N}$ and $c \in N$. Let COL: $[G] \times[G] \rightarrow[c]$.

1. A mono L is 3 points

$$
(x, y),(x+d, y),(x, y+d)
$$

that are all the same color $(d \geq 1)$. (This should be called an mono isosceles right triangle but we just call it a mono L.)
2. A mono Square is 4 points

$$
(x, y),(x+d, y),(x, y+d),(x+d, y+d)
$$

that are all the same color $(d \geq 1)$. This is a square.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15 .

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15 .
2. We will first prove For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15 .
2. We will first prove For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.
3. To prove The Square Theorem (about 2-coloring) we need to know that $G G(c)$ exists for a very large c.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.

1. The proof of The Square Theorem gives enormous bounds on G; however, the answer is known to be 15 .
2. We will first prove For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.
3. To prove The Square Theorem (about 2-coloring) we need to know that $G G(c)$ exists for a very large c.
4. More Colors: For all c there exists $G=G(c)$ such that for all COL: $[G] \times[G] \rightarrow[c]$ there exists a mono square. Proof needs a larger c^{\prime} for $G G\left(c^{\prime}\right)$.

The L Theorem for $c=2$

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

The L Theorem for $c=2$

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

Proof We prove this for $c=2$. We will set H later. Let COL: $[H] \times[H] \rightarrow[c]$.

The L Theorem for $c=2$

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

Proof We prove this for $c=2$. We will set H later. Let COL: $[H] \times[H] \rightarrow[c]$.
Take the $[H] \times[H]$ grid and tile it with 3×3 tiles. View a 2-coloring of $[H] \times[H]$ as a 2^{9}-coloring of the tiles.

The L Theorem for $c=2$

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

Proof We prove this for $c=2$. We will set H later. Let COL: $[H] \times[H] \rightarrow[c]$.

Take the $[H] \times[H]$ grid and tile it with 3×3 tiles.
View a 2-coloring of $[\mathrm{H}] \times[\mathrm{H}]$ as a 2^{9}-coloring of the tiles.
This is very typical of VDW-Ramsey Theory: a 2-coloring of BLAH is viewed as a X-coloring of a different object where X is quite large.

Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an almost L

Why This Size Tile?

Any 2-coloring of the 3×3 tile will have two of the same color in the first column and hence an almost L

Goto White Board.

Make H Big Enough To Get Two Tiles Same Color

Take $H=3\left(2^{9}+1\right)$.

Make H Big Enough To Get Two Tiles Same Color

Take $H=3\left(2^{9}+1\right)$.
View $[H] \times[H]$ grid of points as $\left[2^{9}+1\right] \times\left[2^{9}+1\right]$ grid of tiles.

Make H Big Enough To Get Two Tiles Same Color

Take $H=3\left(2^{9}+1\right)$.
View $[H] \times[H]$ grid of points as $\left[2^{9}+1\right] \times\left[2^{9}+1\right]$ grid of tiles.
Look at the first column of tiles. Two are the same color.

Make H Big Enough To Get Two Tiles Same Color

Take $H=3\left(2^{9}+1\right)$.
View $[H] \times[H]$ grid of points as $\left[2^{9}+1\right] \times\left[2^{9}+1\right]$ grid of tiles.
Look at the first column of tiles. Two are the same color.
Go to White Board.

The L Theorem for $c=3$

First take 4×4-tiles.

The L Theorem for $c=3$

First take 4×4-tiles.
Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L

The L Theorem for $c=3$

First take 4×4-tiles.
Any 3-coloring of the 4×4 tile will have two of the same color in the first column and hence an almost L

Goto White Board.

Make H Big Enough To Get Two Tiles Same Color

Take $H=4\left(3^{16}+1\right)$.

Make H Big Enough To Get Two Tiles Same Color

Take $H=4\left(3^{16}+1\right)$.
View $[H] \times[H]$ grid of points as $\left[3^{16}+1\right] \times\left[3^{16}+1\right]$ grid of tiles.

Make H Big Enough To Get Two Tiles Same Color

Take $H=4\left(3^{16}+1\right)$.
View $[H] \times[H]$ grid of points as $\left[3^{16}+1\right] \times\left[3^{16}+1\right]$ grid of tiles.
Look at the first column of tiles. Two are the same color.

Make H Big Enough To Get Two Tiles Same Color

Take $H=4\left(3^{16}+1\right)$.
View $[H] \times[H]$ grid of points as $\left[3^{16}+1\right] \times\left[3^{16}+1\right]$ grid of tiles.
Look at the first column of tiles. Two are the same color.
Go to White Board.

Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L's converging to the same point.

Take Much Bigger Tiles

Take Tile so big that any 3-coloring of it has two different colored almost-L's converging to the same point.

Go to White Board.

Full L Theorem

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

Full L Theorem

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

- We won't prove this but I am sure any of you could prove it given what we have done so far. Would be messy.

Full L Theorem

Theorem For all c there exists $G G=G G(c)$ such that for all COL: $[G G] \times[G G] \rightarrow[c]$ there exists a mono L.

- We won't prove this but I am sure any of you could prove it given what we have done so far. Would be messy.
- Easier to prove it from the Hales-Jewitt Theorem, which we won't be doing.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.
Proof G will be $G G(2) G G\left(2^{G G(2)^{2}}\right)$.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.
Proof G will be $G G(2) G G\left(2^{G G(2)^{2}}\right)$.
Tile the $[G] \times[G]$ plane with $G G(2) \times G G(2)$ Tiles.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.
Proof G will be $G G(2) G G\left(2^{G G(2)^{2}}\right)$.
Tile the $[G] \times[G]$ plane with $G G(2) \times G G(2)$ Tiles.
View the 2-coloring of $[G] \times[G]$ as a $2^{G G(2)^{2}}$-coloring of the tiles.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.
Proof G will be $G G(2) G G\left(2^{G G(2)^{2}}\right)$.
Tile the $[G] \times[G]$ plane with $G G(2) \times G G(2)$ Tiles.
View the 2-coloring of $[G] \times[G]$ as a $2^{G G(2)^{2}}$-coloring of the tiles.
For any 2-coloring of $[G] \times[G]$:

- Every tile has a mono L
- There is a mono L of tiles.

The Square Theorem

Theorem There exists G such that for all COL: $[G] \times[G] \rightarrow[2]$ there exists a mono square.
Proof G will be $G G(2) G G\left(2^{G G(2)^{2}}\right)$.
Tile the $[G] \times[G]$ plane with $G G(2) \times G G(2)$ Tiles.
View the 2-coloring of $[G] \times[G]$ as a $2^{G G(2)^{2}}$-coloring of the tiles.
For any 2-coloring of $[G] \times[G]$:

- Every tile has a mono L
- There is a mono L of tiles.

Go to Whiteboard for rest of proof.

