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Credit Where Credit is Due

The following people have used Ramsey Theory to show Primes are
Infinite.

1. Alpoge (2015) used (1) Elementary NT, (2) VDW.

2. Granville (2017) used (1) Intermediary NT, (2) VDW.

3. Elshotz (2021) & Gasarch (2023) used (1) Intermediary NT,
(2) Schur’s Theorem.

1. Granville and Gasarch build on work from Alpoge.

2. Gasarch uses easier Ramsey Theory than the other two.

3. All three of these proofs are harder than the usual proof
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Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ] → [c] there
exists x , y , z monochormatic such that x + y = z .

Pf We determine S later. Given COL we define COL′([S]
2

)
→ [c]

as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).



Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ] → [c] there
exists x , y , z monochormatic such that x + y = z .
Pf We determine S later. Given COL we define COL′([S]

2

)
→ [c]

as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).



Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ] → [c] there
exists x , y , z monochormatic such that x + y = z .
Pf We determine S later. Given COL we define COL′([S]

2

)
→ [c]

as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).



Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ] → [c] there
exists x , y , z monochormatic such that x + y = z .
Pf We determine S later. Given COL we define COL′([S]

2

)
→ [c]

as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).



Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ] → [c] there
exists x , y , z monochormatic such that x + y = z .
Pf We determine S later. Given COL we define COL′([S]

2

)
→ [c]

as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).



Schur’s Theorem

Thm (∀c)(∃S = S(c)) st for all c-colorings COL : [S ] → [c] there
exists x , y , z monochormatic such that x + y = z .
Pf We determine S later. Given COL we define COL′([S]

2

)
→ [c]

as follows:

COL′(x , y) = COL(|x − y |).

There exists a COL′-homog set H of size 3 (thats all we need!).
Say its a < b < c

COL′(c , b) = COL′(b, a) = COL′(c , a)

So

COL(c − b) = COL(b − a) = COL(c − a)

Let x = c − b, y = b − a, z = c − a.

So let S(c) = R(3; c) (homog set 3, colors c).



Fermat’s Last Theorem

In 1637 Fermat wrote in the margins of Arithmetica, a book on
Number Theory by Diophantus, the following (translated from
Latin)

To divide a cube into two cubes, a fourth power, or in general any
power whatever above the second into two powers of the same
denomination, is impossible, and I have assuredly found a proof of
this, but the margin is too narrow to contain it.
In modern terminology:

(∀n ≥ 3)(∀x , y , z ∈ N− {0})[xn + yn ̸= zn].

This has come to be known as Fermat’s Last Theorem.
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Did Fermat Have a Proof?

Arguments Against

1) He proved the n = 4 case later in his life.

2) Andrew Wiles proved FLT in the early 1990s with techniques far
beyone what Fermat could have known.

Arguments For

1) The 7th Dr. Who had a 5-line proof that uses Boolean Algebra.

2) The 11th Dr. Who gave The real proof to a group of geniuses
to gain their trust. He later said that it was Fermat’s original proof
(possible but unlikely) but that Fermat didn’t write it down since
he died in a duel (not true). The writers of the show either
confused Galois with Fermat or meant to say that Fermat died in a
duel in a dual timeline.
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More Fiction about Fermat’s Last Theorem

In Star Trek: TNG, the episode The Royale which aired on
March 27, 1989, Captain Picard, in the 24th Century is working on
Fermat’s Last Theorem, which is still OPEN.

Whoops

In Star Trek: DSN, the episode Facets which aired on June 12,
1995, Dax says that one of her previous hosts, Tobin, had done the
most creative work on Fermat’s Last Theorem since Wiles.

My guess is that Tobin wrote this limerick:
A challenge for many long ages
Had baffled the savants and sages

Yet at last came the light
Seems that Fermat was right

To the margin add 200 pages.
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Proof that Primes are Infinite

Thm The number of primes is infinite.

Pf
Assume, BWOC, that the primes are finite. p1, . . . , pL.

Let COL : N → {0, 1, 2, 3}L be the following coloring:

COL(pa11 · · · paLL ) = (a1 (mod 4), . . . , aL (mod 4))

By Schur’s Thm there exists x , y , z same color with x + y = z .
Assume the color is (e1, . . . , eL).

x = p4x1+e1
1 · · · p4xL+eL

L

y = p4y1+e1
1 · · · p4yL+eL

L

z = p4z1+e1
1 · · · p4zn+eL

L

x + y = z
p4x1+e1
1 · · · p4xL+eL

L + p4y1+e1
1 · · · p4yL+eL

L = p4z1+e1
1 · · · p4zn+eL

L

p4x11 · · · p4xLL + p4y11 · · · p4yLL = p4z11 · · · p4znL
(px11 · · · pxLL )4 + (py11 · · · pyLL )4 = (pz11 · · · pzLL )4

This violates FLT for n = 4.
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