Van Der Warden's (VDW) Theorem

Exposition by William Gasarch

April 21, 2022

VDW's Theorem

Definition Let $W, k, c \in \mathbb{N}$. Let COL: $[W] \rightarrow[c]$. A mono k-AP is an arithmetic progression of length k where every elements has the same color. We often say

$$
a, a+d, \ldots, a+(k-1) d \text { are all he same color }
$$

VDW's Theorem

Definition Let $W, k, c \in \mathbb{N}$. Let COL: $[W] \rightarrow[c]$. A mono k-AP is an arithmetic progression of length k where every elements has the same color. We often say

$$
a, a+d, \ldots, a+(k-1) d \text { are all he same color }
$$

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.
$W(1, c)=$

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.
$W(1, c)=1$.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.
$W(1, c)=1$. A mono 1 - AP is just 1 number.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.
$W(1, c)=1$. A mono 1 - AP is just 1 number.
$W(2, c)=$

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.
$W(1, c)=1$. A mono 1 - AP is just 1 number.
$W(2, c)=c+1$.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono k-AP.
$W(1, c)=1$. A mono 1-AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono k-AP.
$W(1, c)=1$. A mono 1-AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.
$W(k, 1)=$

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono k-AP.
$W(1, c)=1$. A mono 1-AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.
$W(k, 1)=k$.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono k-AP.
$W(1, c)=1$. A mono 1-AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.
$W(k, 1)=k$. The mono k-AP is $1,2, \ldots, k$.

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono k-AP.
$W(1, c)=1$. A mono 1-AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.
$W(k, 1)=k$. The mono k-AP is $1,2, \ldots, k$.
$W(3,2)=$

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono k-AP.
$W(1, c)=1$. A mono 1-AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.
$W(k, 1)=k$. The mono k-AP is $1,2, \ldots, k$.
$W(3,2)=H m m m$,

VDW Easy Cases

VDW's Theorem For all k, c there exists $W=W(k, c)$ such that for all COL: $[W] \rightarrow[c]$ there exists a mono $k-A P$.
$W(1, c)=1$. A mono 1 - AP is just 1 number.
$W(2, c)=c+1$. By Pigeon Hole Principle.
$W(k, 1)=k$. The mono k-AP is $1,2, \ldots, k$.
$W(3,2)=H m m m$, this is the first non-trivial one.

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.
We break $[W]$ into blocks of $5: B_{1}, \ldots, B_{|W| / 5}$.

$W(3,2)$ exists

We will determine W later.
Let $\mathrm{COL}:[W] \rightarrow[2]$.
We break $[W]$ into blocks of 5: $B_{1}, \ldots, B_{|W| / 5}$.
We view the 2 -coloring of $[W]$ as a 2^{5}-coloring of the B_{i} 's

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.
We break $[W]$ into blocks of 5: $B_{1}, \ldots, B_{|W| / 5}$.
We view the 2 -coloring of $[W]$ as a 2^{5}-coloring of the B_{i} 's
We take enough blocks so that

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.
We break $[W]$ into blocks of 5: $B_{1}, \ldots, B_{|W| / 5}$.
We view the 2 -coloring of $[W]$ as a 2^{5}-coloring of the B_{i} 's
We take enough blocks so that

- Two of the blocks are the same color, say B_{i} and B_{j}.

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.
We break $[W]$ into blocks of 5: $B_{1}, \ldots, B_{|W| / 5}$.
We view the 2 -coloring of $[W]$ as a 2^{5}-coloring of the B_{i} 's
We take enough blocks so that

- Two of the blocks are the same color, say B_{i} and B_{j}.
- If B_{i} and B_{j} are the same color then there exists B_{k} such that B_{i}, B_{j}, B_{k} are a 3-AP.

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.
We break $[W]$ into blocks of 5: $B_{1}, \ldots, B_{|W| / 5}$.
We view the 2 -coloring of $[W]$ as a 2^{5}-coloring of the B_{i} 's
We take enough blocks so that

- Two of the blocks are the same color, say B_{i} and B_{j}.
- If B_{i} and B_{j} are the same color then there exists B_{k} such that B_{i}, B_{j}, B_{k} are a 3-AP.
If there are 33 blocks then 2 are the same color.

$W(3,2)$ exists

We will determine W later.
Let COL: $[W] \rightarrow[2]$.
We break $[W]$ into blocks of 5: $B_{1}, \ldots, B_{|W| / 5}$.
We view the 2 -coloring of $[W]$ as a 2^{5}-coloring of the B_{i} 's
We take enough blocks so that

- Two of the blocks are the same color, say B_{i} and B_{j}.
- If B_{i} and B_{j} are the same color then there exists B_{k} such that B_{i}, B_{j}, B_{k} are a 3-AP.
If there are 33 blocks then 2 are the same color.
Worst Case Scenario B_{1} and B_{33} same color. So need B_{65} to exist.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
However, whenever I give this talk someone bring it up.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
However, whenever I give this talk someone bring it up. So I will be proactive.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored RRRBB we are done.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored RRRBB we are done.
So we don't really have to look at 32 colorings.

Side Note: Can Get By With Less Blocks

Warning This Slide is NOT important.
However, whenever I give this talk someone bring it up. So I will be proactive.

If a block is colored RRRBB we are done.
So we don't really have to look at 32 colorings.
How many colorings of a block already have a mono 3-AP.

Side Note: Can Get By With Less Blocks (cont)

RRRXY with $X, Y \in\{R, B\} .4$ colorings.
BBBXY with $X, Y \in\{R, B\} .4$ colorings.
RBRRR
RBRBR
BRBBB
BRBRB
RBBBX with $X \in\{R, B\}$. 2 colorings.
BRRRX with $X \in\{R, B\}$. 2 colorings.
RRBBB
BBRRR

Side Note: Can Get By With Less Blocks (cont)

RRRXY with $X, Y \in\{R, B\} .4$ colorings.
BBBXY with $X, Y \in\{R, B\} .4$ colorings.
RBRRR
RBRBR
BRBBB
BRBRB
RBBBX with $X \in\{R, B\}$. 2 colorings.
BRRRX with $X \in\{R, B\}$. 2 colorings.
RRBBB
BBRRR
I have 16 blocks which already have a mono 3-AP. I might have missed some. but if not then can replace 32 with 18 .

Side Note: Can Get By With Less Blocks (cont)

RRRXY with $X, Y \in\{R, B\} .4$ colorings.
BBBXY with $X, Y \in\{R, B\} .4$ colorings.
RBRRR
RBRBR
BRBBB
BRBRB
RBBBX with $X \in\{R, B\}$. 2 colorings.
BRRRX with $X \in\{R, B\}$. 2 colorings.
RRBBB
BBRRR
I have 16 blocks which already have a mono 3-AP. I might have missed some. but if not then can replace 32 with 18.
I really do not care.

Back to $W(3,2)$

Let COL: $[W] \rightarrow[2]$.

Back to $W(3,2)$

Let COL: $[W] \rightarrow[2]$.
Break [W] into 65 blocks of size 5 .

Back to $W(3,2)$

Let COL: $[W] \rightarrow[2]$.
Break [W] into 65 blocks of size 5 .

- Exists i, j, k such that B_{i}, B_{j} same color and B_{k} such that B_{i}, B_{j}, B_{k} is 3-AP exists.

Back to $W(3,2)$

Let COL: $[W] \rightarrow[2]$.
Break [W] into 65 blocks of size 5 .

- Exists i, j, k such that B_{i}, B_{j} same color and B_{k} such that B_{i}, B_{j}, B_{k} is 3-AP exists.
- In every block there exists x, y same color and z such that x, y, z are 3-AP in same block. (This is why blocks-of-5.)

Back to $W(3,2)$

Let COL: $[W] \rightarrow[2]$.
Break [W] into 65 blocks of size 5 .

- Exists i, j, k such that B_{i}, B_{j} same color and B_{k} such that B_{i}, B_{j}, B_{k} is 3-AP exists.
- In every block there exists x, y same color and z such that x, y, z are 3-AP in same block. (This is why blocks-of-5.)

Go to White Board to finish proof.

$W(3,2)$ Really

We got

$$
W(3,2) \leq 5 \times(2 \times 32+1)=365
$$

$W(3,2)$ Really

We got

$$
W(3,2) \leq 5 \times(2 \times 32+1)=365
$$

If use that 18 of the block colors already get you a $3-\mathrm{AP}$ then

$$
W(3,2) \leq 5 \times(2 \times 14+1)=145 .
$$

$W(3,2)$ Really

We got

$$
W(3,2) \leq 5 \times(2 \times 32+1)=365
$$

If use that 18 of the block colors already get you a $3-\mathrm{AP}$ then

$$
W(3,2) \leq 5 \times(2 \times 14+1)=145 .
$$

What is $W(3,2)$?

$W(3,2)$ Really

We got

$$
W(3,2) \leq 5 \times(2 \times 32+1)=365
$$

If use that 18 of the block colors already get you a $3-\mathrm{AP}$ then

$$
W(3,2) \leq 5 \times(2 \times 14+1)=145 .
$$

What is $W(3,2)$?
One can work out by hand that

$$
W(3,2)=9
$$

$W(3,3)$

COL: $[W] \rightarrow[3]$.
$W(3,3)$

COL: $[W] \rightarrow[3]$.
How big should the blocks be?
$W(3,3)$

COL: $[W] \rightarrow[3]$.
How big should the blocks be? 7.
Then $(\exists x, y)$ same color with z such that x, y, z is 3 -AP all in a block.

COL: $[W] \rightarrow[3]$.
How big should the blocks be? 7.
Then $(\exists x, y)$ same color with z such that x, y, z is 3 -AP all in a block.

We view the 3 -coloring of $[W]$ as a 3^{7}-coloring of the B_{i} 's

COL: $[W] \rightarrow[3]$.
How big should the blocks be? 7.
Then $(\exists x, y)$ same color with z such that x, y, z is 3 -AP all in a block.

We view the 3 -coloring of $[W]$ as a 3^{7}-coloring of the B_{i} 's
Need blocks so B_{i}, B_{j} same color, $B_{i}, B_{j}, B_{k} 3-\mathrm{AP}, B_{k}$ exists.

COL: $[W] \rightarrow[3]$.
How big should the blocks be? 7.
Then $(\exists x, y)$ same color with z such that x, y, z is 3 -AP all in a block.

We view the 3 -coloring of $[W]$ as a 3^{7}-coloring of the B_{i} 's
Need blocks so B_{i}, B_{j} same color, $B_{i}, B_{j}, B_{k} 3-\mathrm{AP}, B_{k}$ exists.
$2 \times\left(3^{7}+1\right)$

COL: $[W] \rightarrow[3]$.
How big should the blocks be? 7.
Then $(\exists x, y)$ same color with z such that x, y, z is 3 -AP all in a block.

We view the 3 -coloring of $[W]$ as a 3^{7}-coloring of the B_{i} 's
Need blocks so B_{i}, B_{j} same color, $B_{i}, B_{j}, B_{k} 3-\mathrm{AP}, B_{k}$ exists.
$2 \times\left(3^{7}+1\right)$
Go to White Board to finish the proof.
$W(3, c)$

From what you have seen:

From what you have seen:

- You COULD do a proof that $W(3,4)$ exists. You would need to iterate what I did twice.

From what you have seen:

- You COULD do a proof that $W(3,4)$ exists. You would need to iterate what I did twice.
- You can BELIEVE that $W(3, c)$ exists though might wonder how to prove it formally.

From what you have seen:

- You COULD do a proof that $W(3,4)$ exists. You would need to iterate what I did twice.
- You can BELIEVE that $W(3, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.

$W(3, c)$

From what you have seen:

- You COULD do a proof that $W(3,4)$ exists. You would need to iterate what I did twice.
- You can BELIEVE that $W(3, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, they are not enlightening.
- The Hales-Jewitt Theorem is a general theorem from which VDW is a corollary. We won't be doing that.

What Did We Use to Prove $W(3, c)$?

$W(2, c)=c+1$ is just PHP.

What Did We Use to Prove $W(3, c)$?

$W(2, c)=c+1$ is just PHP.
$W\left(2,2^{5}\right) \Longrightarrow W(3,2)$
$W\left(2,3^{2 \times 3^{7}}+1\right) \Longrightarrow W(3,3)$.
$W(2, X) \Longrightarrow W(3,4)$ where X is an Issac-number.

What Did We Use to Prove $W(3, c)$?

$W(2, c)=c+1$ is just PHP.
$W\left(2,2^{5}\right) \Longrightarrow W(3,2)$
$W\left(2,3^{2 \times 3^{7}}+1\right) \Longrightarrow W(3,3)$.
$W(2, X) \Longrightarrow W(3,4)$ where X is an Issac-number.
Note that we do not do
$W(3,2) \Longrightarrow W(3,3)$.
$W(4,2)$

COL: $[W] \rightarrow[3]$.

COL: $[W] \rightarrow[3]$.
Key Take blocks of size $2 W(3,2)$.
Within a block there will be mono 3-AP and fourth elt exists.

COL: $[W] \rightarrow[3]$.
Key Take blocks of size $2 W(3,2)$.
Within a block there will be mono 3-AP and fourth elt exists.
Key Take blocks of size $2 W(3,2)$.

COL: $[W] \rightarrow[3]$.
Key Take blocks of size $2 W(3,2)$.
Within a block there will be mono 3-AP and fourth elt exists.
Key Take blocks of size $2 W(3,2)$.
How many blocks?

COL: $[W] \rightarrow[3]$.
Key Take blocks of size $2 W(3,2)$.
Within a block there will be mono 3-AP and fourth elt exists.
Key Take blocks of size $2 W(3,2)$.
How many blocks?
We want to get a mono 3-AP of blocks and room for a fourth.

COL: $[W] \rightarrow[3]$.
Key Take blocks of size $2 W(3,2)$.
Within a block there will be mono 3-AP and fourth elt exists.
Key Take blocks of size $2 W(3,2)$.
How many blocks?
We want to get a mono 3-AP of blocks and room for a fourth. $W\left(3,2^{2 W(3,2)}\right)$.

COL: $[W] \rightarrow[3]$.
Key Take blocks of size $2 W(3,2)$.
Within a block there will be mono 3-AP and fourth elt exists.
Key Take blocks of size $2 W(3,2)$.
How many blocks?
We want to get a mono 3-AP of blocks and room for a fourth. $W\left(3,2^{2 W(3,2)}\right)$.

Go to White Board to finish proof.
$W(k, c)$
$W(k, c)$

- You COULD do a proof that $W(k, c)$. You would need to iterate what I did ... a lot.
- You COULD do a proof that $W(k, c)$. You would need to iterate what I did ... a lot.
- You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.
- You COULD do a proof that $W(k, c)$. You would need to iterate what I did ... a lot.
- You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, the are not enlightening.

$W(k, c)$

- You COULD do a proof that $W(k, c)$. You would need to iterate what I did ... a lot.
- You can BELIEVE that $W(k, c)$ exists though might wonder how to prove it formally.
- There are ways to formalize the proof; however, the are not enlightening.
- The Hales-Jewitt Theorem is a general theorem from which VDW is a corollary. We won't be doing that.

Induction, But On What?

$(2,2) \prec(2,3) \prec \cdots \prec(3,2) \prec(3,3) \prec \cdots \prec(4,2) \cdots$

Induction, But On What?

$$
(2,2) \prec(2,3) \prec \cdots \prec(3,2) \prec(3,3) \prec \cdots \prec(4,2) \cdots
$$

This is an ω^{2} induction. The ordering is well-founded so it works.

Induction, But On What?

$$
(2,2) \prec(2,3) \prec \cdots \prec(3,2) \prec(3,3) \prec \cdots \prec(4,2) \cdots
$$

This is an ω^{2} induction. The ordering is well-founded so it works.
This is an ω^{2} induction. Thats why the numbers are so large.

Induction, But On What?

$$
(2,2) \prec(2,3) \prec \cdots \prec(3,2) \prec(3,3) \prec \cdots \prec(4,2) \cdots
$$

This is an ω^{2} induction. The ordering is well-founded so it works.
This is an ω^{2} induction. Thats why the numbers are so large.
How large?

Induction, But On What?

$$
(2,2) \prec(2,3) \prec \cdots \prec(3,2) \prec(3,3) \prec \cdots \prec(4,2) \cdots
$$

This is an ω^{2} induction. The ordering is well-founded so it works.
This is an ω^{2} induction. Thats why the numbers are so large.
How large? The bounds are not primitive recursive.

A False Prediction

In 1983 there were two thoughts in the air

A False Prediction

In 1983 there were two thoughts in the air

1. $W(k, c)$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.

A False Prediction

In 1983 there were two thoughts in the air

1. $W(k, c)$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.
2. $W(k, c)$ is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.

A False Prediction

In 1983 there were two thoughts in the air

1. $W(k, c)$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.
2. $W(k, c)$ is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.
So what happened?

A False Prediction

In 1983 there were two thoughts in the air

1. $W(k, c)$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.
2. $W(k, c)$ is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.
So what happened?
Logician (Shelah) proved $W(k, c)$ prim rec: clever!

A False Prediction

In 1983 there were two thoughts in the air

1. $W(k, c)$ is not prim rec and a logician will prove this deep result. Perhaps like the Large Ramsey Numbers (1977) though not that big.
2. $W(k, c)$ is surely prim rec and a combinatorist will prove this perhaps with a clever elementary technique.
So what happened?
Logician (Shelah) proved $W(k, c)$ prim rec: clever!

- Proof is elementary. Can be in a this class but won't.
- Bounds still large. Not able to write down.

Deep Math From Search for Better Upper Bounds on VDW Numbers

Exposition by William Gasarch

April 21, 2022

A Man, A Plan, A Canal: Panama!

A Man, A Plan, A Canal: Panama!

Well, a plan anyway.

A Man, A Plan, A Canal: Panama!

Well, a plan anyway.
We outline a plan for getting better upper bounds on $W(k, c)$.

A Man, A Plan, A Canal: Panama!

Well, a plan anyway.
We outline a plan for getting better upper bounds on $W(k, c)$.
On the one hand, it lead to very deep mathematics.

A Man, A Plan, A Canal: Panama!

Well, a plan anyway.
We outline a plan for getting better upper bounds on $W(k, c)$.
On the one hand, it lead to very deep mathematics.
On the other hand,

A Man, A Plan, A Canal: Panama!

Well, a plan anyway.
We outline a plan for getting better upper bounds on $W(k, c)$.
On the one hand, it lead to very deep mathematics.
On the other hand,
It DID succeed! (Oh! Thats a good thing!)

Upper Density

Definition Let $A \subseteq \mathbb{N}$ The upper density of \boldsymbol{A} is

$$
\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}
$$

Upper Density

Definition Let $A \subseteq \mathbb{N}$ The upper density of \boldsymbol{A} is

$$
\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}
$$

Definition Positive upper density means that the upper density is >0.

Upper Density

Definition Let $A \subseteq \mathbb{N}$ The upper density of \boldsymbol{A} is

$$
\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}
$$

Definition Positive upper density means that the upper density is >0.

Examples

1. For all $k,\{x: x \equiv 0(\bmod k)\}$ has upper $\operatorname{den} \frac{1}{k}$.

Upper Density

Definition Let $A \subseteq \mathbb{N}$ The upper density of \boldsymbol{A} is

$$
\limsup _{n \rightarrow \infty} \frac{|A \cap[n]|}{n}
$$

Definition Positive upper density means that the upper density is >0.

Examples

1. For all $k,\{x: x \equiv 0(\bmod k)\}$ has upper $\operatorname{den} \frac{1}{k}$.
2. $\left\{x^{2}: x \in \mathbb{N}\right\}$ has upper den 0 .

A Conjecture, 1936

Conjecture If $A \subseteq \mathbb{N}$ has positive upper density then, for all k, A has a k-AP.

A Conjecture, 1936

Conjecture If $A \subseteq \mathbb{N}$ has positive upper density then, for all k, A has a k-AP.

Theorem Conj implies VDW's Theorem. HW or Final.

A Conjecture, 1936

Conjecture If $A \subseteq \mathbb{N}$ has positive upper density then, for all k, A has a k-AP.

Theorem Conj implies VDW's Theorem. HW or Final.
The hope was that the proof of Conj would require a new proof of VDW's Theorem that would lead to better bounds.

Roth's Theorem, 1952

Theorem If $A \subseteq \mathbb{N}$ has positive upper density then A has a 3-AP.

Roth's Theorem, 1952

Theorem If $A \subseteq \mathbb{N}$ has positive upper density then A has a 3-AP.

- The proof used Fourier Analysis so not elementary

Roth's Theorem, 1952

Theorem If $A \subseteq \mathbb{N}$ has positive upper density then A has a 3-AP.

- The proof used Fourier Analysis so not elementary
- Roth won the Fields Medal in 1958 for his work on Diophantine approximation (so not for this work).

Szemeredi

Szemeredi Proved the conjecture in 1975.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- The theorem is known as Szemeredi's Theorem.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- The theorem is known as Szemeredi's Theorem.
- Szemeredi should have won Fields Medal $(\$ 15,000)$ but did not since combinatorics was not seen as deep math.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- The theorem is known as Szemeredi's Theorem.
- Szemeredi should have won Fields Medal $(\$ 15,000)$ but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize $(\$ 700,000)$ in 2012 for his work in combinatorics.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- The theorem is known as Szemeredi's Theorem.
- Szemeredi should have won Fields Medal $(\$ 15,000)$ but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize $(\$ 700,000)$ in 2012 for his work in combinatorics. So there!
- What is better financially: Fields Medal when you are 40 or Abel prize when you are 70?

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- The theorem is known as Szemeredi's Theorem.
- Szemeredi should have won Fields Medal $(\$ 15,000)$ but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize $(\$ 700,000)$ in 2012 for his work in combinatorics. So there!
- What is better financially: Fields Medal when you are 40 or Abel prize when you are 70? Fields Medal can lead to better jobs and pay while you are still young.

Szemeredi

Szemeredi Proved the conjecture in 1975.

- Szemeredi's proof used VDW's theorem and hence did not give better bounds.
- Even so, it introduced very deep methods.
- Proof is elementary but strains the use of the word elementary.
- The theorem is known as Szemeredi's Theorem.
- Szemeredi should have won Fields Medal $(\$ 15,000)$ but did not since combinatorics was not seen as deep math.
- Szemeredi won the Abel Prize $(\$ 700,000)$ in 2012 for his work in combinatorics. So there!
- What is better financially: Fields Medal when you are 40 or Abel prize when you are 70? Fields Medal can lead to better jobs and pay while you are still young. I wish this was my dilemma.

Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

- Proof is nonconstructive, so gives no bounds on $W(k, c)$.

Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

- Proof is nonconstructive, so gives no bounds on $W(k, c)$.
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.

Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

- Proof is nonconstructive, so gives no bounds on $W(k, c)$.
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.
- His technique was later used to prove Poly VDW theorem.

Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

- Proof is nonconstructive, so gives no bounds on $W(k, c)$.
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.
- His technique was later used to prove Poly VDW theorem.
- Proof is not elementary.

Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

- Proof is nonconstructive, so gives no bounds on $W(k, c)$.
- Some proof theorists disagree and say you can get bounds from Furstenberg's proof. The bounds are much worse than VDW's proof.
- His technique was later used to prove Poly VDW theorem.
- Proof is not elementary.
- Furstenberg won the Abel Prize $(\$ 700,000)$ in 2020.

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

- Proof is not elementary.

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

- Proof is not elementary.
- Gowers won the Fields Medal $(\$ 15,000)$ in 1998 for this work.

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

- Proof is not elementary.
- Gowers won the Fields Medal $(\$ 15,000)$ in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

- Proof is not elementary.
- Gowers won the Fields Medal $(\$ 15,000)$ in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?
- Gowers work used traditional deep math. Szemeredi's used new deep math that was not appreciated.

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

- Proof is not elementary.
- Gowers won the Fields Medal $(\$ 15,000)$ in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?
- Gowers work used traditional deep math. Szemeredi's used new deep math that was not appreciated.
- Combinatorics was less respected in 1975 then in 1998.

Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and combinatorics.

- Gowers proof gave upper bounds you can actually write down:

$$
W(k, c) \leq 2^{2^{c^{2^{k+9}}}}
$$

- Proof is not elementary.
- Gowers won the Fields Medal $(\$ 15,000)$ in 1998 for this work. Why did Gowers win the Fields Medal but not Szemeredi?
- Gowers work used traditional deep math. Szemeredi's used new deep math that was not appreciated.
- Combinatorics was less respected in 1975 then in 1998.
- Causes of change: (1) combinatorics using deep math, (2) CS inspired new problems in combinatorics.

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76
\end{aligned}
$$

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293
\end{aligned}
$$

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293 \\
& W(5,2)=178
\end{aligned}
$$

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293 \\
& W(5,2)=178
\end{aligned}
$$

$W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever.

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293 \\
& W(5,2)=178
\end{aligned}
$$

$W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get $W(7,2)$.

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293 \\
& W(5,2)=178
\end{aligned}
$$

$W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get $W(7,2)$. He said never.

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293 \\
& W(5,2)=178
\end{aligned}
$$

$W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get $W(7,2)$. He said never.

Known VDW Numbers

$$
\begin{aligned}
& W(3,2)=9 \\
& W(3,3)=27 \\
& W(3,4)=76 \\
& W(4,2)=35 \\
& W(4,3)=293 \\
& W(5,2)=178
\end{aligned}
$$

$W(6,2)=1132$: was Michal Kouril's PhD thesis. Very clever. I've asked Kouril when we will get $W(7,2)$. He said never.

None of these results used mathematics of interest.

Known Lower Bounds

1. Easy Use of Prob Method (was on HW) $W(k, 2) \geq \sqrt{k} 2^{k / 2}$ (Easy extension to 3 colors)
2. Very sophisticated use yields $W(k, 2) \geq \frac{2^{k}}{k^{\epsilon}}$ (Does not extend to 3 colors.)
3. If p is prime then $W(p, 2) \geq p\left(2^{p}-1\right)$. Constructive! (Does not extend to 3 colors.)

The Green-Tao Theorem

Green-Tao proved the following in 2004.

The Green-Tao Theorem

Green-Tao proved the following in 2004. Theorem For all k there is a k-AP of primes.

The Green-Tao Theorem

Green-Tao proved the following in 2004.
Theorem For all k there is a k-AP of primes.

- Does not follow from Sz Thm, primes do have upper density 0 .

The Green-Tao Theorem

Green-Tao proved the following in 2004.
Theorem For all k there is a k-AP of primes.

- Does not follow from Sz Thm, primes do have upper density 0 .
- Tao won the Field's Medal $(\$ 15,000)$ in 2006, a MacArthur Genius award $(\$ 500,000)$ in 2006, and a Breakthrough Prize ($\$ 3,000,000$ but not as much prestige) in 2014.

The Green-Tao Theorem

Green-Tao proved the following in 2004.
Theorem For all k there is a k-AP of primes.

- Does not follow from Sz Thm, primes do have upper density 0 .
- Tao won the Field's Medal $(\$ 15,000)$ in 2006, a MacArthur Genius award $(\$ 500,000)$ in 2006, and a Breakthrough Prize ($\$ 3,000,000$ but not as much prestige) in 2014.
- Green won the ConservaMath Medal (\$0) in 2006.

The Green-Tao Theorem

Green-Tao proved the following in 2004.
Theorem For all k there is a k-AP of primes.

- Does not follow from Sz Thm, primes do have upper density 0 .
- Tao won the Field's Medal $(\$ 15,000)$ in 2006, a MacArthur Genius award $(\$ 500,000)$ in 2006, and a Breakthrough Prize ($\$ 3,000,000$ but not as much prestige) in 2014.
- Green won the ConservaMath Medal (\$0) in 2006.

The ConservaMath Medal is a merit-based alternative to the Field's Medal. Deserving recipients should solve a real longstanding problem, rather than an invented problem. Green earned this award in 2006 for the Green-Tao Thm to dim the star of Obama-supporter Tao, making Tao less effectively politically

The Green-Tao Theorem

Green-Tao proved the following in 2004.
Theorem For all k there is a k-AP of primes.

- Does not follow from Sz Thm, primes do have upper density 0 .
- Tao won the Field's Medal $(\$ 15,000)$ in 2006, a MacArthur Genius award $(\$ 500,000)$ in 2006, and a Breakthrough Prize ($\$ 3,000,000$ but not as much prestige) in 2014.
- Green won the ConservaMath Medal (\$0) in 2006.

The ConservaMath Medal is a merit-based alternative to the Field's Medal. Deserving recipients should solve a real longstanding problem, rather than an invented problem. Green earned this award in 2006 for the Green-Tao Thm to dim the star of Obama-supporter Tao, making Tao less effectively politically

- There is also a ConservaMedical Medal- an alternative to the Nobel Prize in Medicine. It went to Donald Trump for his Medical Advice on Covonavirus.

The Green-Tao Theorem

Green-Tao proved the following in 2004.
Theorem For all k there is a k-AP of primes.

- Does not follow from Sz Thm, primes do have upper density 0 .
- Tao won the Field's Medal $(\$ 15,000)$ in 2006, a MacArthur Genius award $(\$ 500,000)$ in 2006, and a Breakthrough Prize ($\$ 3,000,000$ but not as much prestige) in 2014.
- Green won the ConservaMath Medal (\$0) in 2006.

The ConservaMath Medal is a merit-based alternative to the Field's Medal. Deserving recipients should solve a real longstanding problem, rather than an invented problem. Green earned this award in 2006 for the Green-Tao Thm to dim the star of Obama-supporter Tao, making Tao less effectively politically

- There is also a ConservaMedical Medal- an alternative to the Nobel Prize in Medicine. It went to Donald Trump for his Medical Advice on Covonavirus. I am kidding.

