Exposition by William Gasarch-U of MD

 Σ is the alphabet, usually $\Sigma = \{a,b\}$.

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

 Σ^* is the set of all strings over Σ . Includes the empty string.

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

 Σ^* is the set of all strings over Σ . Includes the empty string.

Example $\Sigma = \{a, b\}$ then

 $\Sigma^* = \{e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \dots, \}$

 Σ is the alphabet, usually $\Sigma = \{a, b\}$.

 Σ^* is the set of all strings over Σ . Includes the empty string.

Example $\Sigma = \{a, b\}$ then

 $\Sigma^* = \{e, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, \dots, \}$

 $L \subseteq \{a, b\}^*$ is often called **a language**.

Subsequence

Let
$$x \in \Sigma^*$$

$$x = \sigma_1 \sigma_2 \cdots \sigma_n$$

SUBSEQ(x) is the set of all subsequences of x.

Subsequence

Let
$$x \in \Sigma^*$$

$$x = \sigma_1 \sigma_2 \cdots \sigma_n$$

SUBSEQ(x) is the set of all subsequences of x.

Example

 $SUBSEQ(aaba) = \{e, a, b, aa, ab, ba, aaa, aab, aba, aaba\}.$

L is regular $\Longrightarrow \mathrm{SUBSEQ}(L)$ is regular. This is easy to prove.

L is regular \Longrightarrow SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

L is regular \Longrightarrow SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

L context-free $\Longrightarrow \mathrm{SUBSEQ}(L)$ context-free. This is easy to prove.

L is regular \Longrightarrow SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

L context-free \Longrightarrow SUBSEQ(L) context-free.

This is easy to prove.

Add rules that replace each $\sigma \in \Sigma$ on the RHS with e.

L is regular \Longrightarrow SUBSEQ(L) is regular.

This is easy to prove.

Take the DFA for L and put between any two states add an e-transition.

L context-free \Longrightarrow SUBSEQ(L) context-free.

This is easy to prove.

Add rules that replace each $\sigma \in \Sigma$ on the RHS with e.

Question L decidable \implies SUBSEQ(L) decidable?

Def (X, \preceq) is a **Quasi Order** if

- ▶ If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).
- ▶ For all $x \in X$, $x \leq x$ (reflexive).

Def (X, \preceq) is a **Quasi Order** if

- ▶ If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).
- For all $x \in X$, $x \leq x$ (reflexive).

Note that it is possible to have $x \leq y$ and $y \leq x$ but $x \neq y$.

Def (X, \preceq) is a **Quasi Order** if

- ▶ If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).
- For all $x \in X$, $x \leq x$ (reflexive).

Note that it is possible to have $x \leq y$ and $y \leq x$ but $x \neq y$. If we insist that

$$x \leq y \text{ and } y \leq x \implies x = y.$$

then that is a partial order.

Def (X, \preceq) is a **Quasi Order** if

- ▶ If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).
- For all $x \in X$, $x \leq x$ (reflexive).

Note that it is possible to have $x \leq y$ and $y \leq x$ but $x \neq y$. If we insist that

 $x \leq y \text{ and } y \leq x \implies x = y.$

then that is a partial order.

Most wqo are also partial order, but NOT the one on the HW which caused this hot mess.

Def (X, \leq) is a **Well Quasi Order (wqo)** if $(X \leq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$

there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$ there exists i < j with $x_i \le x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$ there exists i < j with $x_i \le x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$ there exists i < j with $x_i \le x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence.

Proof Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
 (1)

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$ there exists i < j with $x_i \le x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence. **Proof** Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
 (1)

There is an infinite homog set.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$ there exists i < j with $x_i \le x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence.

Proof Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
 (1)

There is an infinite homog set.

CANT be color DOWN: Get a sequence with no uptick.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences $x_1, x_2, ...$ there exists i < j with $x_i \le x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_1, x_2, \ldots there exists an infinite mono increasing subsequence.

Proof Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
 (1)

There is an infinite homog set.

CANT be color DOWN: Get a sequence with no uptick. CANT be color INCOMP: Get a sequence with no uptick.

Def (X, \preceq) is a **Well Quasi Order (wqo)** if $(X \preceq)$ is a quasi order AND the following holds:

For all infinite sequences x_1, x_2, \dots

there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Thm If (X, \preceq) is a wqo then for all infinite sequences $x_1, x_2, ...$ there exists an infinite mono increasing subsequence. Proof Use Ramsey theory! Assume i < j.

$$COL(i,j) = \begin{cases} UP & \text{if } x_i \leq x_j \\ DOWN & \text{if } x_j \prec x_i \\ INCOMP & \text{if } x_i \text{ and } x_j \text{ are incomparable} \end{cases}$$
 (1)

There is an infinite homog set.

CANT be color DOWN: Get a sequence with no uptick.

CANT be color INCOMP: Get a sequence with no uptick.

HAS to be color UP- so we get an infinite increasing subsequence.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \dots$$

there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \ldots$$

there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Def Two (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \dots$$

there exists an infinite mono increasing sequence.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \ldots$$

there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Def Two (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \ldots$$

there exists an infinite mono increasing sequence.

Use Def One when want to prove (X, \preceq) is a wgo.

Def One (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \ldots$$

there exists i < j with $x_i \leq x_j$. We call this an **uptick**.

Def Two (X, \preceq) is a **Well Quasi Order (wqo)** if (X, \preceq) is a quasi order AND for all infinite sequences

$$x_1, x_2, \ldots$$

there exists an infinite mono increasing sequence.

Use Def One when want to prove (X, \leq) is a wqo.

Use Def Two when you already know (X, \preceq) is a wgo.

$$X = \{a, b\}^*$$

Order is

$$X = \{a, b\}^*$$

Order is

▶ If |x| < |y| then $x \prec y$.

$$X = \{a, b\}^*$$

Order is

- ▶ If |x| < |y| then $x \prec y$.
- ▶ If |x| = |y| then incomparable.

$$X = \{a, b\}^*$$

Order is

- ▶ If |x| < |y| then $x \prec y$.
- ▶ If |x| = |y| then incomparable.

Discuss Prove this is a wqo.

THE REST OF THIS TALK IS ON BLACKBOARD

THE REST OF THIS TALK IS ON BLACKBOARD. SOME IF IT IS ON THIS SLIDES. ITS ALSO ALL IN THE NOTES.

Very Hard Theorem (We Won't Prove it)

Def H is a **minor** of G (Denoted by $H \leq_m G$) if one can obtain H by taking G and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let $\mathcal G$ be the set of all graphs.

Very Hard Theorem (We Won't Prove it)

Def H is a **minor** of G (Denoted by $H \leq_m G$) if one can obtain H by taking G and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let $\mathcal G$ be the set of all graphs.

Hard Thm (\mathcal{G}, \leq_m) is a wqo.

Very Hard Theorem (We Won't Prove it)

Def H is a **minor** of G (Denoted by $H \leq_m G$) if one can obtain H by taking G and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \leq_m) is a wqo.

1) Proven by Robertson and Seymour.

Very Hard Theorem (We Won't Prove it)

Def H is a **minor** of G (Denoted by $H \leq_m G$) if one can obtain H by taking G and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \leq_m) is a wqo.

- 1) Proven by Robertson and Seymour.
- 2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.

Very Hard Theorem (We Won't Prove it)

Def H is a **minor** of G (Denoted by $H \leq_m G$) if one can obtain H by taking G and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \leq_m) is a wqo.

- 1) Proven by Robertson and Seymour.
- 2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.
- 3) Will use later: Fix H. Testing $H \leq G$ takes $O(n^3)$ time where n is the number of vertices in G.

Very Hard Theorem (We Won't Prove it)

Def H is a **minor** of G (Denoted by $H \leq_m G$) if one can obtain H by taking G and carrying out the following operations in some order:

- 1) Remove a vertex (and all of the edges from it).
- 2) Remove an edge.
- 3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Hard Thm (\mathcal{G}, \leq_m) is a wqo.

- 1) Proven by Robertson and Seymour.
- 2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.
- 3) Will use later: Fix H. Testing $H \leq G$ takes $O(n^3)$ time where n is the number of vertices in G.

We use (\mathcal{G}, \leq_m) as an example of a wqo in the next few slides.

Notice the following

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.

Notice the following

- 1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.
- 2) (Wagner's Thm) G is planar IFF $((K_{3,3} \not \preceq_m G)$ and $(K_5 \not \preceq_m G))$

Notice the following

- 1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.
- 2) (Wagner's Thm) G is planar IFF $((K_{3,3} \not \preceq_m G)$ and $(K_5 \not \preceq_m G))$

These two facts are connected.

Def Let (X, \preceq) be a wqo. (EXAMPLE: (\mathcal{G}, \preceq_m) .) Let $Y \subseteq X$ (EXAMPLE Y is the planar graphs.)

Notice the following

- 1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.
- 2) (Wagner's Thm) G is planar IFF $((K_{3,3} \not \preceq_m G)$ and $(K_5 \not \preceq_m G))$

These two facts are connected.

Def Let (X, \preceq) be a wqo. (EXAMPLE: (\mathcal{G}, \preceq_m) .) Let $Y \subseteq X$ (EXAMPLE Y is the planar graphs.)

1) Y is closed downward if

$$(\forall y \in Y)(\forall x \in X)[x \leq_m y \implies x \in Y].$$

(Planar graphs are closed downward.)

Notice the following

- 1) Planar graphs are closed under minor. That is, if G is planar and $H \leq_m G$, then H is planar.
- 2) (Wagner's Thm) G is planar IFF $((K_{3,3} \not \preceq_m G)$ and $(K_5 \not \preceq_m G))$

These two facts are connected.

Def Let (X, \preceq) be a wqo. (EXAMPLE: (\mathcal{G}, \preceq_m) .) Let $Y \subseteq X$ (EXAMPLE Y is the planar graphs.)

1) Y is closed downward if

$$(\forall y \in Y)(\forall x \in X)[x \leq_m y \implies x \in Y].$$

(Planar graphs are closed downward.)

2) O is an Obstruction Set for Y if

$$(\forall x \notin Y)(\exists o \in O)[o \leq_m x].$$

(Obstruction set for Planar graphs is $\{K_{3,3}, K_5\}$.)

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for Y.

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for Y.

Pf Let *O* be the set of minimal elements that are NOT in *Y*:

$$O = \{x \in X - Y \colon (\forall y)[y \prec x \implies y \in Y]\}$$

We claim O is a finite obstruction set.

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for Y.

Pf Let *O* be the set of minimal elements that are NOT in *Y*:

$$O = \{x \in X - Y : (\forall y)[y \prec x \implies y \in Y]\}$$

We claim O is a finite obstruction set.

1) O is Obstruction: If $z_1 \in X - Y$ then either $z_1 \in O$ (DONE) or $z_1 \notin O$, so there exists $z_2 \in X - Y$ with $z_2 \prec z_1$. Repeat process with z_2 . end up with

$$z_1 \succ z_2 \succ z_3 \cdots$$

Has to stop or else have infinite descending sequence. Ends at an element of O.

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a **Finite Obstruction Set** for Y.

Pf Let *O* be the set of minimal elements that are NOT in *Y*:

$$O = \{x \in X - Y : (\forall y)[y \prec x \implies y \in Y]\}$$

We claim O is a finite obstruction set.

1) O is Obstruction: If $z_1 \in X - Y$ then either $z_1 \in O$ (DONE) or $z_1 \notin O$, so there exists $z_2 \in X - Y$ with $z_2 \prec z_1$. Repeat process with z_2 . end up with

$$z_1 \succ z_2 \succ z_3 \cdots$$

Has to stop or else have infinite descending sequence. Ends at an element of O.

2) *O* is finite: All elements of *O* are incomparable to each other. If *O* was infinite then would have an infinite antichain.

