Well Quasi Orders

Exposition by William Gasarch-U of MD

Our Motivating Question

Σ is the alphabet, usually $\Sigma=\{a, b\}$.

Our Motivating Question

Σ is the alphabet, usually $\Sigma=\{a, b\}$.
Σ^{*} is the set of all strings over Σ.
Includes the empty string.

Our Motivating Question
Σ is the alphabet, usually $\Sigma=\{a, b\}$.
Σ^{*} is the set of all strings over Σ. Includes the empty string.

Example $\Sigma=\{a, b\}$ then
$\Sigma^{*}=\{e, a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots$,

Our Motivating Question

Σ is the alphabet, usually $\Sigma=\{a, b\}$.
Σ^{*} is the set of all strings over Σ.
Includes the empty string.
Example $\Sigma=\{a, b\}$ then
$\Sigma^{*}=\{e, a, b, a a, a b, b a, b b, a a a, a a b, a b a, a b b, b a a, b a b, b b a, b b b, \ldots$,
$L \subseteq\{a, b\}^{*}$ is often called a language.

Subsequence

Let $x \in \Sigma^{*}$

$$
x=\sigma_{1} \sigma_{2} \cdots \sigma_{n}
$$

$\operatorname{SUBSEQ}(x)$ is the set of all subsequences of x.

Subsequence

Let $x \in \Sigma^{*}$

$$
x=\sigma_{1} \sigma_{2} \cdots \sigma_{n}
$$

$\operatorname{SUBSEQ}(x)$ is the set of all subsequences of x.

Example

SUBSEQ $(a a b a)=\{e, a, b, a a, a b, b a, a a a, a a b, a b a, a a b a\}$.

If L is BLAH then $\operatorname{SUBSEQ}(L)$ is BLAH

L is regular $\Longrightarrow \operatorname{SUBSEQ}(L)$ is regular.
This is easy to prove.

If L is BLAH then $\operatorname{SUBSEQ}(L)$ is BLAH

L is regular $\Longrightarrow \operatorname{SUBSEQ}(L)$ is regular.
This is easy to prove.
Take the DFA for L and put between any two states add an e-transition.

If L is BLAH then $\operatorname{SUBSEQ}(L)$ is BLAH

L is regular $\Longrightarrow \operatorname{SUBSEQ}(L)$ is regular.
This is easy to prove.
Take the DFA for L and put between any two states add an e-transition.
L context-free $\Longrightarrow \mathrm{SUBSEQ}(L)$ context-free. This is easy to prove.

If L is BLAH then $\operatorname{SUBSEQ}(L)$ is BLAH

L is regular $\Longrightarrow \operatorname{SUBSEQ}(L)$ is regular.
This is easy to prove.
Take the DFA for L and put between any two states add an e-transition.
L context-free \Longrightarrow SUBSEQ (L) context-free.
This is easy to prove.
Add rules that replace each $\sigma \in \Sigma$ on the RHS with e.

If L is BLAH then $\operatorname{SUBSEQ}(L)$ is BLAH

L is regular $\Longrightarrow \operatorname{SUBSEQ}(L)$ is regular.
This is easy to prove.
Take the DFA for L and put between any two states add an e-transition.
L context-free \Longrightarrow SUBSEQ (L) context-free.
This is easy to prove.
Add rules that replace each $\sigma \in \Sigma$ on the RHS with e.
Question L decidable $\Longrightarrow \operatorname{SUBSEQ}(L)$ decidable?

Quasi Orders

Def (X, \preceq) is a Quasi Order if

- If $x \preceq y$ and $y \preceq z$ then $x \preceq z$ (transitive).
- For all $x \in X, x \preceq x$ (reflexive).

Quasi Orders

Def (X, \preceq) is a Quasi Order if

- If $x \preceq y$ and $y \preceq z$ then $x \preceq z$ (transitive).
- For all $x \in X, x \preceq x$ (reflexive).

Note that it is possible to have $x \preceq y$ and $y \preceq x$ but $x \neq y$.

Quasi Orders

Def (X, \preceq) is a Quasi Order if

- If $x \preceq y$ and $y \preceq z$ then $x \preceq z$ (transitive).
- For all $x \in X, x \preceq x$ (reflexive).

Note that it is possible to have $x \preceq y$ and $y \preceq x$ but $x \neq y$. If we insist that
$x \preceq y$ and $y \preceq x \Longrightarrow x=y$. then that is a partial order.

Quasi Orders

Def (X, \preceq) is a Quasi Order if

- If $x \preceq y$ and $y \preceq z$ then $x \preceq z$ (transitive).
- For all $x \in X, x \preceq x$ (reflexive).

Note that it is possible to have $x \preceq y$ and $y \preceq x$ but $x \neq y$.
If we insist that
$x \preceq y$ and $y \preceq x \Longrightarrow x=y$.
then that is a partial order.
Most wqo are also partial order, but NOT the one on the HW which caused this hot mess.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if $(X \preceq)$ is a quasi order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if $(X \preceq)$ is a quasi order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if $(X \preceq)$ is a quasi order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence. Proof Use Ramsey theory! Assume $i<j$.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if $(X \preceq)$ is a quasi order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence. Proof Use Ramsey theory! Assume $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}U P & \text { if } x_{i} \preceq x_{j} \tag{1}\\ D O W N & \text { if } x_{j} \prec x_{i} \\ I N C O M P & \text { if } x_{i} \text { and } x_{j} \text { are incomparable }\end{cases}
$$

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if ($X \preceq$) is a quasi
order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence. Proof Use Ramsey theory! Assume $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}U P & \text { if } x_{i} \preceq x_{j} \tag{1}\\ D O W N & \text { if } x_{j} \prec x_{i} \\ I N C O M P & \text { if } x_{i} \text { and } x_{j} \text { are incomparable }\end{cases}
$$

There is an infinite homog set.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if ($X \preceq$) is a quasi
order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence. Proof Use Ramsey theory! Assume $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}U P & \text { if } x_{i} \preceq x_{j} \tag{1}\\ D O W N & \text { if } x_{j} \prec x_{i} \\ I N C O M P & \text { if } x_{i} \text { and } x_{j} \text { are incomparable }\end{cases}
$$

There is an infinite homog set.
CANT be color DOWN: Get a sequence with no uptick.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if $(X \preceq)$ is a quasi
order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence. Proof Use Ramsey theory! Assume $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}U P & \text { if } x_{i} \preceq x_{j} \tag{1}\\ D O W N & \text { if } x_{j} \prec x_{i} \\ I N C O M P & \text { if } x_{i} \text { and } x_{j} \text { are incomparable }\end{cases}
$$

There is an infinite homog set.
CANT be color DOWN: Get a sequence with no uptick. CANT be color INCOMP: Get a sequence with no uptick.

Well Quasi Orders

Def (X, \preceq) is a Well Quasi Order (wqo) if $(X \preceq)$ is a quasi
order AND the following holds:
For all infinite sequences x_{1}, x_{2}, \ldots there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Thm If (X, \preceq) is a wqo then for all infinite sequences x_{1}, x_{2}, \ldots there exists an infinite mono increasing subsequence.
Proof Use Ramsey theory! Assume $i<j$.

$$
\operatorname{COL}(i, j)= \begin{cases}U P & \text { if } x_{i} \preceq x_{j} \tag{1}\\ D O W N & \text { if } x_{j} \prec x_{i} \\ I N C O M P & \text { if } x_{i} \text { and } x_{j} \text { are incomparable }\end{cases}
$$

There is an infinite homog set.
CANT be color DOWN: Get a sequence with no uptick. CANT be color INCOMP: Get a sequence with no uptick. HAS to be color UP- so we get an infinite increasing subsequence.

Now Two Defs of wqo

Def One (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.

Now Two Defs of wqo

Def One (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.
Def Two (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists an infinite mono increasing sequence.

Now Two Defs of wqo

Def One (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.
Def Two (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists an infinite mono increasing sequence.
Use Def One when want to prove (X, \preceq) is a wqo.

Now Two Defs of wqo

Def One (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists $i<j$ with $x_{i} \preceq x_{j}$. We call this an uptick.
Def Two (X, \preceq) is a Well Quasi Order (wqo) if (X, \preceq) is a quasi order AND
for all infinite sequences

$$
x_{1}, x_{2}, \ldots
$$

there exists an infinite mono increasing sequence.
Use Def One when want to prove (X, \preceq) is a wqo.
Use Def Two when you already know (X, \preceq) is a wqo.

Interesting Example of a wqo

$X=\{a, b\}^{*}$
Order is

Interesting Example of a wqo

$X=\{a, b\}^{*}$
Order is

- If $|x|<|y|$ then $x \prec y$.

Interesting Example of a wqo

$X=\{a, b\}^{*}$
Order is

- If $|x|<|y|$ then $x \prec y$.
- If $|x|=|y|$ then incomparable.

Interesting Example of a wqo

$X=\{a, b\}^{*}$
Order is

- If $|x|<|y|$ then $x \prec y$.
- If $|x|=|y|$ then incomparable.

Discuss Prove this is a wqo.

THE REST OF THIS TALK IS ON BLACKBOARD

THE REST OF THIS TALK IS ON BLACKBOARD.
SOME IF IT IS ON THIS SLIDES.
ITS ALSO ALL IN THE NOTES.

Very Hard Theorem (We Won't Prove it)

Def H is a minor of G (Denoted by $H \preceq_{m} G$) if one can obtain H by taking G and carrying out the following operations in some order:

1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.

Very Hard Theorem (We Won't Prove it)

Def H is a minor of G (Denoted by $H \preceq_{m} G$) if one can obtain H by taking G and carrying out the following operations in some order:

1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.
Hard Thm $\left(\mathcal{G}, \preceq_{m}\right)$ is a wqo.

Very Hard Theorem (We Won't Prove it)

Def H is a minor of G (Denoted by $H \preceq_{m} G$) if one can obtain H by taking G and carrying out the following operations in some order:

1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.
Hard Thm $\left(\mathcal{G}, \preceq_{m}\right)$ is a wqo.

1) Proven by Robertson and Seymour.

Very Hard Theorem (We Won't Prove it)

Def H is a minor of G (Denoted by $H \preceq_{m} G$) if one can obtain H by taking G and carrying out the following operations in some order:

1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.
Hard Thm $\left(\mathcal{G}, \preceq_{m}\right)$ is a wqo.

1) Proven by Robertson and Seymour.
2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.

Very Hard Theorem (We Won't Prove it)

Def H is a minor of G (Denoted by $H \preceq_{m} G$) if one can obtain H by taking G and carrying out the following operations in some order:

1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.
Hard Thm $\left(\mathcal{G}, \preceq_{m}\right)$ is a wqo.

1) Proven by Robertson and Seymour.
2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.
3) Will use later: Fix H. Testing $H \preceq G$ takes $O\left(n^{3}\right)$ time where n is the number of vertices in G.

Very Hard Theorem (We Won't Prove it)

Def H is a minor of G (Denoted by $H \preceq_{m} G$) if one can obtain H by taking G and carrying out the following operations in some order:

1) Remove a vertex (and all of the edges from it).
2) Remove an edge.
3) Contract an Edge (so merge vertices at ends).

Let \mathcal{G} be the set of all graphs.
Hard Thm $\left(\mathcal{G}, \preceq_{m}\right)$ is a wqo.

1) Proven by Robertson and Seymour.
2) Proved in a series of 20 papers which are over 500 pages written between 1983 and 2004.
3) Will use later: Fix H. Testing $H \preceq G$ takes $O\left(n^{3}\right)$ time where n is the number of vertices in G.

We use $\left(\mathcal{G}, \preceq_{m}\right)$ as an example of a wqo in the next few slides.

Planar Graphs

Notice the following

Planar Graphs

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \preceq_{m} G$, then H is planar.

Planar Graphs

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \preceq_{m} G$, then H is planar.
2) (Wagner's Thm) G is planar IFF $\left(\left(K_{3,3} \nwarrow_{m} G\right)\right.$ and $\left.\left(K_{5} \nwarrow_{m} G\right)\right)$

Planar Graphs

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \preceq_{m} G$, then H is planar.
2) (Wagner's Thm) G is planar IFF $\left(\left(K_{3,3} \nwarrow_{m} G\right)\right.$ and $\left.\left(K_{5} \nwarrow_{m} G\right)\right)$

These two facts are connected.
Def Let (X, \preceq) be a wqo. (EXAMPLE: $\left(\mathcal{G}, \preceq_{m}\right)$.) Let $Y \subseteq X$
(EXAMPLE Y is the planar graphs.)

Planar Graphs

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \preceq_{m} G$, then H is planar.
2) (Wagner's Thm) G is planar IFF $\left(\left(K_{3,3} \nwarrow_{m} G\right)\right.$ and $\left.\left(K_{5} \nwarrow_{m} G\right)\right)$

These two facts are connected.
Def Let (X, \preceq) be a wqo. (EXAMPLE: $\left(\mathcal{G}, \preceq_{m}\right)$.) Let $Y \subseteq X$
(EXAMPLE Y is the planar graphs.)

1) Y is closed downward if

$$
(\forall y \in Y)(\forall x \in X)\left[x \preceq_{m} y \Longrightarrow x \in Y\right]
$$

(Planar graphs are closed downward.)

Planar Graphs

Notice the following

1) Planar graphs are closed under minor. That is, if G is planar and $H \preceq_{m} G$, then H is planar.
2) (Wagner's Thm) G is planar IFF $\left(\left(K_{3,3} \nwarrow_{m} G\right)\right.$ and $\left.\left(K_{5} \nwarrow_{m} G\right)\right)$

These two facts are connected.
Def Let (X, \preceq) be a wqo. (EXAMPLE: $\left(\mathcal{G}, \preceq_{m}\right)$.) Let $Y \subseteq X$
(EXAMPLE Y is the planar graphs.)

1) Y is closed downward if

$$
(\forall y \in Y)(\forall x \in X)\left[x \preceq_{m} y \Longrightarrow x \in Y\right] .
$$

(Planar graphs are closed downward.)
2) O is an Obstruction Set for Y if

$$
(\forall x \notin Y)(\exists o \in O)\left[o \preceq_{m} x\right] .
$$

(Obstruction set for Planar graphs is $\left\{K_{3,3}, K_{5}\right\}$.)

Obstruction Set Theorem

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a Finite Obstruction Set for Y.

Obstruction Set Theorem

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a Finite Obstruction Set for Y. Pf Let O be the set of minimal elements that are NOT in Y :

$$
O=\{x \in X-Y:(\forall y)[y \prec x \Longrightarrow y \in Y]\}
$$

We claim O is a finite obstruction set.

Obstruction Set Theorem

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a Finite Obstruction Set for Y.
Pf Let O be the set of minimal elements that are NOT in Y :

$$
O=\{x \in X-Y:(\forall y)[y \prec x \Longrightarrow y \in Y]\}
$$

We claim O is a finite obstruction set.

1) O is Obstruction: If $z_{1} \in X-Y$ then either $z_{1} \in O$ (DONE) or $z_{1} \notin O$, so there exists $z_{2} \in X-Y$ with $z_{2} \prec z_{1}$. Repeat process with z_{2}. end up with

$$
z_{1} \succ z_{2} \succ z_{3} \cdots
$$

Has to stop or else have infinite descending sequence. Ends at an element of O.

Obstruction Set Theorem

Thm Let (X, \preceq) be a wqo. Let $Y \subseteq X$ be closed downward. Then there exists a Finite Obstruction Set for Y.
Pf Let O be the set of minimal elements that are NOT in Y :

$$
O=\{x \in X-Y:(\forall y)[y \prec x \Longrightarrow y \in Y]\}
$$

We claim O is a finite obstruction set.

1) O is Obstruction: If $z_{1} \in X-Y$ then either $z_{1} \in O$ (DONE) or $z_{1} \notin O$, so there exists $z_{2} \in X-Y$ with $z_{2} \prec z_{1}$. Repeat process with z_{2}. end up with

$$
z_{1} \succ z_{2} \succ z_{3} \cdots
$$

Has to stop or else have infinite descending sequence. Ends at an element of O.
2) O is finite: All elements of O are incomparable to each other. If
O was infinite then would have an infinite antichain.

