CMSC 752 Homework 4 Morally Due Tue Feb 25, 2025 Dead Cat Feb 27

Notation $R_a(k)$ is the *a*-ary Ramsey number.

1. (30 points) RECALL: We used $R_2(k) \le 2^{2k}$ to obtain $R_3(k) \le 2^{2^{4k}}$.

What if Arushi, Danesh, and Sharma show $R_2(k) \leq 2^{1.9k}$? What if Soren and Rishi show $R_2(k) \leq 2^{1.7k}$? What if Larry, Moe, and Curly show $R_2(k) \leq 2^{1.5n}$?

How will these new bounds on $R_2(k)$ help get better bounds on $R_3(k)$? That is the point of this problem.

Find a function f that has the following properties (and prove them):

- f(2) = 4
- If x < 2 then f(x) < 4.
- IF $R_2(k) \le 2^{ck}$ THEN $R_3(k) \le 2^{2^{f(c)k}}$.

(Note: You may get an upper bound like (I am making this up) $2^{2^{3n+7}}$. Ignore the additive contant 7.)

I am asking you to reprove the finite 3-hypergraph Ramsey Theorem with the parameter c so that you can see how an improvement on the upper bound for $R_2(k)$ will result in an improvement on the upper bound for $R_3(k)$. 2. (30 points) Find a function f that has the following properties (and prove them):

IF
$$R_3(k) \le 2^{2^{ck}}$$
 THEN $R_4(k) \le f(c,k)$

I am asking you to prove the finite 4-hypergraph Ramsey Theorem with the parameter c so that you can

(a) see what the upper bound on $R_4(k)$ was when the upper bound on $R_3(k)$ was $2^{2^{4k}}$.

(b) see what the upper bound on $R_4(k)$ was now that the upper bound on $R_3(k)$ was $2^{2^{2k}}$.

(c) be prepared for the future when Danesh-1, Danesh-2, and Danesh-3 team up to show $R_3(k) \leq 2^{2^{1.99k}}$.

3. (40 points)

(a) (40 points) Prove the following: For all $n \ge 2$, for all functions

 $f: \mathsf{Z}^n \rightarrow \mathsf{Z}$

there exists infinite $\mathsf{D}\subseteq\mathsf{Z}$ such that

 $f: \mathsf{D}^n \rightarrow \mathsf{Z}$

is NOT onto.

(b) (0 points) THINK ABOUT: Let T(n) be the number of times you used Ramsey's Theorem in the proof of Part 1. What was your T(n)?

- 4. (0 points, Extra Credit)
 - (a) Give your name (this will not get you any extra credit, but since I grade this one by putting the names of who got it right into a file, this makes my life easier.)
 - (b) Recall that a coloring of the edges of K_{n,n} (the complete bipartite graph) is a coloring of [n] × [n].
 Prove the following
 For all k there exists n = B(k) such that for all

COL: $[n] \times [n] \rightarrow [2]$

there exists $A \subseteq [n]$ and $B \subseteq [n]$ such that |A| = |B| = k and COL restricted to $A \times B$ is constant. Provide bounds on B(k).