CMSC 752 Homework 10 Morally Due Tue April 15, 2025 Dead Cat April 17

1. (50 points)

Motivation As every Hungarian Kindergarten child knows:

- (a) $\exists \text{COL:} \binom{[5]}{2} \rightarrow [2]$ with NO homog sets. Note that this is the worse case. We wonder about what USUALLY happens.
- (b) For every COL: $\binom{[6]}{2} \rightarrow [2]$ there exists two homog sets. Note that this is the worse case. We wonder about what USUALLY happens.

Problem is on the next page

- (a) (Nothing to hand in for this step.) Write a program that will, on input $n \in \mathbb{N}$ generate a coloring of the edges of K_n at random: for each edge, prob of RED is $\frac{1}{2}$ and prob of BLUE is $\frac{1}{2}$. Use adjacency matrices for the graph.
- (b) (Nothing to hand in for this step.) Write a program that will, on input a graph K_n that has its edges 2-colored, determines how many Homog sets of size 3 are there.
- (c) (Nothing to hand in for this step.) Write the following program.1) Input n.
 - 2) For i = 1 to 100
 - i. Generate a graph using the program in Part 1.
 - ii. Find how many homog triangles there are using the program in Part 2.
 - iii. Let A[i] be the number of homog triangles.
- (d) Calculate the MIN, MAX, and MEAN of the A[i]'s.
- (e) (This you hand in.)

Write a program that generates the following table (I have made up the numbers).

n	MIN	MAX	MEAN
5	0	5	3
6	0	5	3
:	:	:	÷
40	0	5	2

(f) In class we showed that in the worst case there will be $\sim \frac{1}{4} \binom{n}{3}$ mono triangles. Find A, B, C such that the following seems to be true empirically:

If you choose a coloring at random then

- The MIN will be $\sim A\binom{[n]}{3}$.
- The MAX will be $\sim B\binom{[n]}{3}$.
- The AVG will be $\sim C\binom{[n]}{3}$.

- 2. (50 points) Prove the following statement
 For all c there exists a finite set of grids OBS_c such that
 n × m is c-colorable iff n × m does not contain any element of OBS_c.
- 3. (Extra credit)
 - (a) Give your name.
 - (b) Use Spencer's proof to find reasonably sized graphs G = (V, E) such that
 - K_4 is not a subgraph of G, and
 - For all COL: $E \rightarrow [2]$ there exists a mono triangle.