\documentclass[12pt,ifthen]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{html} \usepackage{hyperref} \newcommand{\OBS}{{\rm OBS}} \newcommand{\D}{{\sf D}} \newcommand{\N}{{\sf N}} \newcommand{\Z}{{\sf Z}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\reals}{{\sf R}} \newcommand{\into}{{\rightarrow}} \newcommand{\ceil}[1]{\lceil #1 \rceil} \newcommand{\COL}{{\rm COL}} \newcommand{\fractional}{{\rm frac}} \usepackage{amsthm} \newtheorem{theorem}{Theorem} \begin{document} \centerline{\bf CMSC 752 Homework 10} \centerline{\bf Morally Due Tue April 15, 2025} \centerline{\bf Dead Cat April 17} \bigskip \newif{\ifshowsoln} \showsolntrue % comment out to NOT show solution inside \ifshowsoln and \fi blocks. \smallskip \begin{enumerate} % 1 \item (50 points) {\bf Motivation} As every Hungarian Kindergarten child knows: \begin{enumerate} %2 \item $\exists$ $\COL\colon \binom{[5]}{2} \into [2]$ with NO homog sets. Note that this is the worse case. We wonder about what USUALLY happens. \item For every $\COL\colon \binom{[6]}{2} \into [2]$ there exists two homog sets. Note that this is the worse case. We wonder about what USUALLY happens. \end{enumerate} %2 Problem is on the next page \newpage \begin{enumerate} %2 \item (Nothing to hand in for this step.) Write a program that will, on input $n\in\N$ generate a coloring of the edges of $K_n$ at random: for each edge, prob of RED is $\frac{1}{2}$ and prob of BLUE is $\frac{1}{2}$. Use adjacency matrices for the graph. \item (Nothing to hand in for this step.) Write a program that will, on input a graph $K_n$ that has its edges 2-colored, determines {\it how many} Homog sets of size 3 are there. \item (Nothing to hand in for this step.) Write the following program. 1) Input $n$. 2) For $i=1$ to 100 \begin{enumerate} %3 \item Generate a graph using the program in Part 1. \item Find how many homog triangles there are using the program in Part 2. \item Let $A[i]$ be the number of homog triangles. \end{enumerate} %3 \item Calculate the MIN, MAX, and MEAN of the $A[i]$'s. \item (This you hand in.) Write a program that generates the following table (I have made up the numbers). \begin{tabular}{|c|c|c|c|} \hline n & MIN & MAX & MEAN \cr \hline 5 & 0 & 5 & 3 \cr 6 & 0 & 5 & 3 \cr $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \cr 40 & 0 & 5 & 2 \cr \hline \end{tabular} \item In class we showed that in the worst case there will be $\sim \frac{1}{4}\binom{n}{3}$ mono triangles. Find $A,B,C$ such that the following seems to be true empirically: {\it If you choose a coloring at random then \begin{itemize} \item The MIN will be $\sim A\binom{[n]}{3}$. \item The MAX will be $\sim B\binom{[n]}{3}$. \item The AVG will be $\sim C\binom{[n]}{3}$. \end{itemize} } \end{enumerate} %2 \newpage \item (50 points) Prove the following statement {\it For all $c$ there exists a finite set of grids $\OBS_c$ such that $n\times m$ is $c$-colorable iff $n\times m$ does not contain any element of $\OBS_c$. } \item (Extra credit) \begin{enumerate} \item Give your name. \item Use Spencer's proof to find reasonably sized graphs $G=(V,E)$ such that \begin{itemize} \item $K_4$ is not a subgraph of $G$, and \item For all $\COL \colon E\into [2]$ there exists a mono triangle. \end{itemize} \end{enumerate} \end{enumerate} %1 \end{document}