\documentclass[12pt,ifthen]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{html} \usepackage{hyperref} \usepackage{tikz} \newcommand{\OBS}{{\rm D}} \newcommand{\D}{{\sf D}} \newcommand{\N}{{\sf N}} \newcommand{\Z}{{\sf Z}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\reals}{{\sf R}} \newcommand{\into}{{\rightarrow}} \newcommand{\ceil}[1]{\lceil #1 \rceil} \newcommand{\COL}{{\rm COL}} \newcommand{\fractional}{{\rm frac}} \usepackage{amsthm} \newtheorem{theorem}{Theorem} \begin{document} \centerline{\bf CMSC 752 Homework 11} \centerline{\bf Morally Due Tue April 22, 2025} \centerline{\bf Dead Cat April 24} \bigskip \newif{\ifshowsoln} \showsolntrue % comment out to NOT show solution inside \ifshowsoln and \fi blocks. \smallskip \begin{enumerate} \item (50 points) Show that every $\COL\colon [11]\times [11]\into [3]$ there is a mono rectangle. \newpage \item (50 points) The shape below is called a {\it Soren}. In a Soren the following pairs-of-points have the same distance apart: 1 and 2 1 and 3 2 and 4 3 and 4 4 and 5. Given a coloring, a {\it monochromatic Soren} is a Soren where all five vertices have the same color. \bigskip \begin{tikzpicture} \node[shape=circle,draw=black] (1) at (0,5) {1}; \node[shape=circle,draw=black] (2) at (0,7) {2}; \node[shape=circle,draw=black] (3) at (2,5) {3}; \node[shape=circle,draw=black] (4) at (2,7) {4}; \node[shape=circle,draw=black] (5) at (4,7) {5}; \path [-, black, thick](1) edge (2); \path [-, black, thick](1) edge (3); \path [-, black, thick](2) edge (4); \path [-, black, thick](3) edge (4); \path [-, black, thick](4) edge (5); \end{tikzpicture} Show that there exists a number $N$ such that, for all 2-colorings of $[N]\times [N]$ there exists a monochromatic Soren. You may assume the following: {\it For all $c$ there exists $S=SQ(c)$ such that for all $c$-colorings of $[S]\times[S]$ there exists a monochromatic square (all four corners the same color.)} \end{enumerate} \end{document}