\documentclass[12pt,ifthen]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{html} \usepackage{hyperref} \usepackage{tikz} \newcommand{\PVDW}{{\rm PVDW}} \newcommand{\OBS}{{\rm D}} \newcommand{\D}{{\sf D}} \newcommand{\N}{{\sf N}} \newcommand{\Z}{{\sf Z}} \newcommand{\Q}{{\sf Q}} \newcommand{\R}{{\sf R}} \newcommand{\reals}{{\sf R}} \newcommand{\into}{{\rightarrow}} \newcommand{\ceil}[1]{\lceil #1 \rceil} \newcommand{\COL}{{\rm COL}} \newcommand{\fractional}{{\rm frac}} \usepackage{amsthm} \newtheorem{theorem}{Theorem} \begin{document} \centerline{\bf CMSC 752 Homework 13} \centerline{\bf Morally Due Tue May 6, 2025} \centerline{\bf Dead Cat May 8} \bigskip \newif{\ifshowsoln} \showsolntrue % comment out to NOT show solution inside \ifshowsoln and \fi blocks. \smallskip \begin{enumerate} \item (50 points) For this problem you can assume the Gallai-Witt Theorem in two dimensions which we state here for your convinence. {\it For all $k$, for all $c$, there exists $GW=GW(k,c)$ such that for all $$\COL\colon [GW] \times [GW] \into [c]$$ there exists a monochromatic $k\times k$ equally spaced grid. More preciesly there exists $a,b,d)$ such that the following are all the same color: $$\{(a+id,b+jd)\colon 0\le i,j\le k-1\}.$$ } Prove the following which is the Can VDW theorem. {\it For all $k$ there exists $C=C(k)$ such that, for all $\COL \colon [C]\into [\omega]$ one of the two occurs \begin{itemize} \item There exists $a,d$ such that $a, a+d, \ldots, a+(k-1)d$ are the same color. \item There exists $a,d$ such that $a, a+d, \ldots, a+(k-1)d$ are all different colors. \end{itemize} } {\bf Hint} given $\COL\colon [W]\into [\omega]$ form $\COL'\colon [W']\times [W']\into [c]$ ($W'$ and $c'$ to be deterined by you) as follows: $\COL'(a,d)$ is determined by looking at $X=\{\COL(a), \COL(a+d),\ldots,\COL(a+kd)\}$ and outputing the $k+1$-tuple Number of times $\COL(a)$ appears in $X$. Number of times $\COL(a+d)$ appears in $X$. $\vdots\qquad\vdots\qquad\vdots$ Number of times $\COL(a+kd)$ appears in $X$. For example, if the $\COL(a)=R$ $\COL(a+d)=R$ $\COL(a+2d)=B$ $\COL(a+3d)=Y$ $\COL(a+4d)=R$ $\COL(a+5d)=B$ Then $\COL'(a,d)=(3,3,2,1,3,2)$ \newpage \item (50 points) Use the Prob Method to get a lower bound on $W(k,c)$. (This DOES NOT use the fancy Lovasz Local Lemma.) \end{enumerate} \end{document}